WorldWideScience

Sample records for anonymous dna sequences

  1. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progress report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.

  2. Dna Sequencing

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  3. DNA sequences encoding erythropoietin

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.K.

    1987-10-27

    A purified and isolated DNA sequence is described consisting essentially of a DNA sequence encoding a polypeptide having an amino acid sequence sufficiently duplicative of that of erythropoietin to allow possession of the biological property of causing bone marrow cells to increase production of reticulocytes and red blood cells, and to increase hemoglobin synthesis or iron uptake.

  4. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  5. Automated DNA Sequencing System

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  6. DNA sequencing by CE.

    Science.gov (United States)

    Karger, Barry L; Guttman, András

    2009-06-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA-sequencing methods have evolved from the labor-intensive slab gel electrophoresis, through automated multiCE systems using fluorophore labeling with multispectral imaging, to the "next-generation" technologies of cyclic-array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes were only possible with the advent of modern sequencing technologies that were a result of step-by-step advances with a contribution of academics, medical personnel and instrument companies. While next-generation sequencing is moving ahead at breakneck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of CE in DNA sequencing based in part of several of our articles in this journal.

  7. Information Theory of DNA Sequencing

    CERN Document Server

    Motahari, Abolfazl; Tse, David

    2012-01-01

    DNA sequencing is the basic workhorse of modern day biology and medicine. Shotgun sequencing is the dominant technique used: many randomly located short fragments called reads are extracted from the DNA sequence, and these reads are assembled to reconstruct the original sequence. By drawing an analogy between the DNA sequencing problem and the classic communication problem, we define an information theoretic notion of sequencing capacity. This is the maximum number of DNA base pairs that can be resolved reliably per read, and provides a fundamental limit to the performance that can be achieved by any assembly algorithm. We compute the sequencing capacity explicitly for a simple statistical model of the DNA sequence and the read process. Using this framework, we also study the impact of noise in the read process on the sequencing capacity.

  8. Biosensors for DNA sequence detection

    Science.gov (United States)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  9. Graphene nanodevices for DNA sequencing

    Science.gov (United States)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  10. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  11. DNA Sequencing Sensors: An Overview

    Directory of Open Access Journals (Sweden)

    Jose Antonio Garrido-Cardenas

    2017-03-01

    Full Text Available The first sequencing of a complete genome was published forty years ago by the double Nobel Prize in Chemistry winner Frederick Sanger. That corresponded to the small sized genome of a bacteriophage, but since then there have been many complex organisms whose DNA have been sequenced. This was possible thanks to continuous advances in the fields of biochemistry and molecular genetics, but also in other areas such as nanotechnology and computing. Nowadays, sequencing sensors based on genetic material have little to do with those used by Sanger. The emergence of mass sequencing sensors, or new generation sequencing (NGS meant a quantitative leap both in the volume of genetic material that was able to be sequenced in each trial, as well as in the time per run and its cost. One can envisage that incoming technologies, already known as fourth generation sequencing, will continue to cheapen the trials by increasing DNA reading lengths in each run. All of this would be impossible without sensors and detection systems becoming smaller and more precise. This article provides a comprehensive overview on sensors for DNA sequencing developed within the last 40 years.

  12. Comparative population genetic analysis of bocaccio rockfish Sebastes paucispinis using anonymous and gene-associated simple sequence repeat loci.

    Science.gov (United States)

    Buonaccorsi, Vincent P; Kimbrell, Carol A; Lynn, Eric A; Hyde, John R

    2012-01-01

    Comparative population genetic analyses of traditional and emergent molecular markers aid in determining appropriate use of new technologies. The bocaccio rockfish Sebastes paucispinis is a high gene-flow marine species off the west coast of North America that experienced strong population decline over the past 3 decades. We used 18 anonymous and 13 gene-associated simple sequence repeat (SSR) loci (expressed sequence tag [EST]-SSRs) to characterize range-wide population structure with temporal replicates. No F(ST)-outliers were detected using the LOSITAN program, suggesting that neither balancing nor divergent selection affected the loci surveyed. Consistent hierarchical structuring of populations by geography or year class was not detected regardless of marker class. The EST-SSRs were less variable than the anonymous SSRs, but no correlation between F(ST) and variation or marker class was observed. General linear model analysis showed that low EST-SSR variation was attributable to low mean repeat number. Comparative genomic analysis with Gasterosteus aculeatus, Takifugu rubripes, and Oryzias latipes showed consistently lower repeat number in EST-SSRs than SSR loci that were not in ESTs. Purifying selection likely imposed functional constraints on EST-SSRs resulting in low repeat numbers that affected diversity estimates but did not affect the observed pattern of population structure.

  13. Fractals in DNA sequence analysis

    Institute of Scientific and Technical Information of China (English)

    Yu Zu-Guo(喻祖国); Vo Anh; Gong Zhi-Min(龚志民); Long Shun-Chao(龙顺潮)

    2002-01-01

    Fractal methods have been successfully used to study many problems in physics, mathematics, engineering, finance,and even in biology. There has been an increasing interest in unravelling the mysteries of DNA; for example, how can we distinguish coding and noncoding sequences, and the problems of classification and evolution relationship of organisms are key problems in bioinformatics. Although much research has been carried out by taking into consideration the long-range correlations in DNA sequences, and the global fractal dimension has been used in these works by other people, the models and methods are somewhat rough and the results are not satisfactory. In recent years, our group has introduced a time series model (statistical point of view) and a visual representation (geometrical point of view)to DNA sequence analysis. We have also used fractal dimension, correlation dimension, the Hurst exponent and the dimension spectrum (multifractal analysis) to discuss problems in this field. In this paper, we introduce these fractal models and methods and the results of DNA sequence analysis.

  14. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  15. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  16. Information Analysis of DNA Sequences

    CERN Document Server

    Mohammed, Riyazuddin

    2010-01-01

    The problem of differentiating the informational content of coding (exons) and non-coding (introns) regions of a DNA sequence is one of the central problems of genomics. The introns are estimated to be nearly 95% of the DNA and since they do not seem to participate in the process of transcription of amino-acids, they have been termed "junk DNA." Although it is believed that the non-coding regions in genomes have no role in cell growth and evolution, demonstration that these regions carry useful information would tend to falsify this belief. In this paper, we consider entropy as a measure of information by modifying the entropy expression to take into account the varying length of these sequences. Exons are usually much shorter in length than introns; therefore the comparison of the entropy values needs to be normalized. A length correction strategy was employed using randomly generated nucleonic base strings built out of the alphabet of the same size as the exons under question. Our analysis shows that intron...

  17. A blind testing design for authenticating ancient DNA sequences.

    Science.gov (United States)

    Yang, H; Golenberg, E M; Shoshani, J

    1997-04-01

    Reproducibility is a serious concern among researchers of ancient DNA. We designed a blind testing procedure to evaluate laboratory accuracy and authenticity of ancient DNA obtained from closely related extant and extinct species. Soft tissue and bones of fossil and contemporary museum proboscideans were collected and identified based on morphology by one researcher, and other researchers carried out DNA testing on the samples, which were assigned anonymous numbers. DNA extracted using three principal isolation methods served as template in PCR amplifications of a segment of the cytochrome b gene (mitochondrial genome), and the PCR product was directly sequenced and analyzed. The results show that such a blind testing design performed in one laboratory, when coupled with phylogenetic analysis, can nonarbitrarily test the consistency and reliability of ancient DNA results. Such reproducible results obtained from the blind testing can increase confidence in the authenticity of ancient sequences obtained from postmortem specimens and avoid bias in phylogenetic analysis. A blind testing design may be applicable as an alternative to confirm ancient DNA results in one laboratory when independent testing by two laboratories is not available.

  18. Anonymous Gossiping

    CERN Document Server

    Datta, Anwitaman

    2010-01-01

    In this paper we introduce a novel gossiping primitive to support privacy preserving data analytics (PPDA). In contrast to existing computational PPDA primitives such as secure multiparty computation and data randomization based approaches, the proposed primitive `anonymous gossiping' is a communication primitive for privacy preserving personalized information aggregation complementing such traditional computational analytics. We realize this novel primitive by composing existing gossiping mechanisms for peer sampling & information aggregation and onion routing technique for establishing anonymous communication. This is more an `ideas' paper, rather than providing concrete and quantified results.

  19. A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences.

    Science.gov (United States)

    Othman, Razib M; Deris, Safaai; Illias, Rosli M

    2008-02-01

    A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology browsers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its structure to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools are presented to show the effectiveness of the proposed algorithm and tools.

  20. Anonymous Gossiping

    OpenAIRE

    Datta, Anwitaman

    2010-01-01

    In this paper we introduce a novel gossiping primitive to support privacy preserving data analytics (PPDA). In contrast to existing computational PPDA primitives such as secure multiparty computation and data randomization based approaches, the proposed primitive `anonymous gossiping' is a communication primitive for privacy preserving personalized information aggregation complementing such traditional computational analytics. We realize this novel primitive by composing existing gossiping me...

  1. [DNA sequencing technology and automatization of it].

    Science.gov (United States)

    Kraev, A S

    1991-01-01

    Precise manipulations with genetic material, typical for modern experiments in molecular biology and in new biotechnology, require a capability to determine DNA base sequence. This capability enables today to exploit specific genetic knowledge for the dissection of complex cell processes and for modulation of cell metabolism in transgenic organisms. The review focuses on such DNA sequencing technologies that are widespread in general laboratory practice. They can safely be called, with the availability of commercial reagents, industrial techniques. Modern DNA sequencing requires recurrent breakdown of large genomic DNA into smaller pieces, that are then amplified, sequenced and the initial long stretch reconstructed via overlap of small pieces. The DNA sequencing process has several steps: a DNA fragment is obtained in sufficient quantity and purity, it is converted to a form suitable for a particular sequencing method, a sequencing reaction is performed and its products fractionated; and finally the resultant data are interpreted (i.e. an autoradiograph is read into a computer memory) and a long sequence in reconstructed via overlap of short stretches. These steps are considered in separate parts; an accent is made on sequencing strategies with respect to their biological task. In the last part, possibilities for automation of sequencing experiment are considered, followed by a discussion of domestic problems in DNA sequencing.

  2. Fibonacci Sequence and Supramolecular Structure of DNA.

    Science.gov (United States)

    Shabalkin, I P; Grigor'eva, E Yu; Gudkova, M V; Shabalkin, P I

    2016-05-01

    We proposed a new model of supramolecular DNA structure. Similar to the previously developed by us model of primary DNA structure [11-15], 3D structure of DNA molecule is assembled in accordance to a mathematic rule known as Fibonacci sequence. Unlike primary DNA structure, supramolecular 3D structure is assembled from complex moieties including a regular tetrahedron and a regular octahedron consisting of monomers, elements of the primary DNA structure. The moieties of the supramolecular DNA structure forming fragments of regular spatial lattice are bound via linker (joint) sequences of the DNA chain. The lattice perceives and transmits information signals over a considerable distance without acoustic aberrations. Linker sequences expand conformational space between lattice segments allowing their sliding relative to each other under the action of external forces. In this case, sliding is provided by stretching of the stacked linker sequences.

  3. Against anonymity.

    Science.gov (United States)

    Baker, Robert

    2014-05-01

    In 'New Threats to Academic Freedom' Francesca Minerva argues that anonymity for the authors of controversial articles is a prerequisite for academic freedom in the Internet age. This argument draws its intellectual and emotional power from the author's account of the reaction to the on-line publication of ' After-birth abortion: why should the baby live?'--an article that provoked cascades of hostile postings and e-mails. Reflecting on these events, Minerva proposes that publishers should offer the authors of controversial articles the option of publishing their articles anonymously. This response reviews the history of anonymous publication and concludes that its reintroduction in the Internet era would recreate problems similar to those that led print journals to abandon the practice: corruption of scholarly discourse by invective and hate speech, masked conflicts of interest, and a diminution of editorial accountability. It also contends that Minerva misreads the intent of the hostile e-mails provoked by 'After-birth abortion,' and that ethicists who publish controversial articles should take responsibility by dialoguing with their critics--even those whose critiques are emotionally charged and hostile.

  4. Mitochondrial DNA sequence evolution in shorebird populations.

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons why mtDNA is the molecule of

  5. Long range correlations in DNA sequences

    CERN Document Server

    Mohanty, A K

    2002-01-01

    The so called long range correlation properties of DNA sequences are studied using the variance analyses of the density distribution of a single or a group of nucleotides in a model independent way. This new method which was suggested earlier has been applied to extract slope parameters that characterize the correlation properties for several intron containing and intron less DNA sequences. An important aspect of all the DNA sequences is the properties of complimentarity by virtue of which any two complimentary distributions (like GA is complimentary to TC or G is complimentary to ATC) have identical fluctuations at all scales although their distribution functions need not be identical. Due to this complimentarity, the famous DNA walk representation whose statistical interpretation is still unresolved is shown to be a special case of the present formalism with a density distribution corresponding to a purine or a pyrimidine group. Another interesting aspect of most of the DNA sequences is that the factorial m...

  6. Group Anonymity

    CERN Document Server

    Chertov, Oleg; 10.1007/978-3-642-14058-7_61

    2010-01-01

    In recent years the amount of digital data in the world has risen immensely. But, the more information exists, the greater is the possibility of its unwanted disclosure. Thus, the data privacy protection has become a pressing problem of the present time. The task of individual privacy-preserving is being thoroughly studied nowadays. At the same time, the problem of statistical disclosure control for collective (or group) data is still open. In this paper we propose an effective and relatively simple (wavelet-based) way to provide group anonymity in collective data. We also provide a real-life example to illustrate the method.

  7. Dynamics and Control of DNA Sequence Amplification

    CERN Document Server

    Marimuthu, Karthikeyan

    2014-01-01

    DNA amplification is the process of replication of a specified DNA sequence \\emph{in vitro} through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction (PCR) as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal tempe...

  8. DNA display I. Sequence-encoded routing of DNA populations.

    Directory of Open Access Journals (Sweden)

    David R Halpin

    2004-07-01

    Full Text Available Recently reported technologies for DNA-directed organic synthesis and for DNA computing rely on routing DNA populations through complex networks. The reduction of these ideas to practice has been limited by a lack of practical experimental tools. Here we describe a modular design for DNA routing genes, and routing machinery made from oligonucleotides and commercially available chromatography resins. The routing machinery partitions nanomole quantities of DNA into physically distinct subpools based on sequence. Partitioning steps can be iterated indefinitely, with worst-case yields of 85% per step. These techniques facilitate DNA-programmed chemical synthesis, and thus enable a materials biology that could revolutionize drug discovery.

  9. Visible periodicity of strong nucleosome DNA sequences.

    Science.gov (United States)

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  10. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. (Oak Ridge National Lab., TN (United States)); Arlinghaus, H.F. (Atom Sciences, Inc., Oak Ridge, TN (United States))

    1993-01-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  11. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. [Oak Ridge National Lab., TN (United States); Arlinghaus, H.F. [Atom Sciences, Inc., Oak Ridge, TN (United States)

    1993-06-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  12. EGNAS: an exhaustive DNA sequence design algorithm

    Directory of Open Access Journals (Sweden)

    Kick Alfred

    2012-06-01

    Full Text Available Abstract Background The molecular recognition based on the complementary base pairing of deoxyribonucleic acid (DNA is the fundamental principle in the fields of genetics, DNA nanotechnology and DNA computing. We present an exhaustive DNA sequence design algorithm that allows to generate sets containing a maximum number of sequences with defined properties. EGNAS (Exhaustive Generation of Nucleic Acid Sequences offers the possibility of controlling both interstrand and intrastrand properties. The guanine-cytosine content can be adjusted. Sequences can be forced to start and end with guanine or cytosine. This option reduces the risk of “fraying” of DNA strands. It is possible to limit cross hybridizations of a defined length, and to adjust the uniqueness of sequences. Self-complementarity and hairpin structures of certain length can be avoided. Sequences and subsequences can optionally be forbidden. Furthermore, sequences can be designed to have minimum interactions with predefined strands and neighboring sequences. Results The algorithm is realized in a C++ program. TAG sequences can be generated and combined with primers for single-base extension reactions, which were described for multiplexed genotyping of single nucleotide polymorphisms. Thereby, possible foldback through intrastrand interaction of TAG-primer pairs can be limited. The design of sequences for specific attachment of molecular constructs to DNA origami is presented. Conclusions We developed a new software tool called EGNAS for the design of unique nucleic acid sequences. The presented exhaustive algorithm allows to generate greater sets of sequences than with previous software and equal constraints. EGNAS is freely available for noncommercial use at http://www.chm.tu-dresden.de/pc6/EGNAS.

  13. Extracting biological knowledge from DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    De La Vega, F.M. [CINVESTAV-IPN (Mexico); Thieffry, D. [Universite Libre de Bruxelles, Rhode-Saint-Genese (Belgium)]|[Universidad Nacional Autonoma de Mexico, Morelos (Mexico); Collado-Vides, J. [Universidad Nacional Autonoma de Mexico, Morelos (Mexico)

    1996-12-31

    This session describes the elucidation of information from dna sequences and what challenges computational biologists face in their task of summarizing and deciphering the human genome. Techniques discussed include methods from statistics, information theory, artificial intelligence and linguistics. 1 ref.

  14. Nanopore DNA sequencing using kinetic proofreading

    Science.gov (United States)

    Ling, Xinsheng

    We propose a method of DNA sequencing by combining the physical method of nanopore electrical measurements and Southern's sequencing-by-hybridization. The new key ingredient, essential to both lowering the costs and increasing the precision, is an asymmetric nanopore sandwich device capable of measuring the DNA hybridization probe twice separated by a designed waiting time. Those incorrect probes appearing only once in nanopore ionic current traces are discriminated from the correct ones that appear twice. This method of discrimination is similar to the principle of kinetic proofreading proposed by Hopfield and Ninio in gene transcription and translation processes. An error analysis is of this nanopore kinetic proofreading (nKP) technique for DNA sequencing is carried out in comparison with the most precise 3' dideoxy termination method developed by Sanger. Nanopore DNA sequencing using kinetic proofreading.

  15. An approach to sequence DNA without tagging

    Science.gov (United States)

    Niu, Sanjun; Saraf, Ravi F.

    2002-10-01

    Microarray technology is playing an increasingly important role in biology and medicine and its application to genomics for gene expression analysis has already reached the market with a variety of commercially available instruments. In these combinatorial analysis methods, known probe single-strand DNA (ssDNA) 'primers' are attached in clusters of typically 100 µm × 100 µm pixels. Each pixel of the array has a slightly different sequence. On exposure to 'unknown' target ssDNA, the pixels with the right complementary probe ssDNA sequence convert to double-stranded DNA (dsDNA) by a hybridization reaction. To transduct the conversion of the pixel to dsDNA, the target ssDNA is labelled with a photoluminescent tag during the polymerase chain reaction (PCR) amplification process. Due to the statistical distribution of the tags in the target ssDNA, it becomes significantly difficult to implement these methods as a diagnostic tool in a pathology laboratory. A method to sequence DNA without tagging the molecule is developed. The fabrication process is compatible with current microelectronics and (emerging) soft-material fabrication technologies, allowing the method to be integrable with micro-electromechanical systems (MEMS) and lab-on-a-chip devices. An estimated sensitivity of 10-12 g on a 1 cm2 device area is obtained.

  16. gargammel: a sequence simulator for ancient DNA.

    Science.gov (United States)

    Renaud, Gabriel; Hanghøj, Kristian; Willerslev, Eske; Orlando, Ludovic

    2016-10-29

    Ancient DNA has emerged as a remarkable tool to infer the history of extinct species and past populations. However, many of its characteristics, such as extensive fragmentation, damage and contamination, can influence downstream analyses. To help investigators measure how these could impact their analyses in silico, we have developed gargammel, a package that simulates ancient DNA fragments given a set of known reference genomes. Our package simulates the entire molecular process from post-mortem DNA fragmentation and DNA damage to experimental sequencing errors, and reproduces most common bias observed in ancient DNA datasets.

  17. Inconsistencies in Neanderthal genomic DNA sequences.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Wall

    2007-10-01

    Full Text Available Two recently published papers describe nuclear DNA sequences that were obtained from the same Neanderthal fossil. Our reanalyses of the data from these studies show that they are not consistent with each other and point to serious problems with the data quality in one of the studies, possibly due to modern human DNA contaminants and/or a high rate of sequencing errors.

  18. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  19. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  20. Nanopore-CMOS Interfaces for DNA Sequencing.

    Science.gov (United States)

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  1. Osmylated DNA, a novel concept for sequencing DNA using nanopores

    Science.gov (United States)

    Kanavarioti, Anastassia

    2015-03-01

    Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. ‘Base calling’ becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

  2. Female-specific DNA sequences in geese.

    Science.gov (United States)

    Huang, M C; Lin, W C; Horng, Y M; Rouvier, R; Huang, C W

    2003-07-01

    1. The OPAE random primers (Operon Technologies, Inc., CA) were used for random amplified polymorphic DNA (RAPD) fingerprinting in Chinese, White Roman and Landaise geese. One of these primers, OPAE-06, produced a 938-bp sex-specific fragment in all females and in no males of Chinese geese only. 2. A novel female-specific DNA sequence in Chinese goose was cloned and sequenced. Two primers, CGSex-F and CGSex-R, were designed in order to amplify a 912-bp sex-specific polymerase chain reaction (PCR) fragment on genomic DNA from female geese. 3. It was shown that a simple and effective PCR-based sexing technique could be used in the three goose breeds studied. 4. Nucleotide sequencing of the sex-specific fragments in White Roman and Landaise geese was performed and sequence differences were observed among these three breeds.

  3. Dynamics and control of DNA sequence amplification

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, Karthikeyan [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054 (United States)

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  4. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  5. cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project cDNA sequence quality data Data detail Data name cDNA sequence quality... data Description of data contents Phred's quality score. PHD format, one file to a single cDNA data, and co...ription Download License Update History of This Database Site Policy | Contact Us cDNA sequence quality data - Budding yeast cDNA sequencing project | LSDB Archive ...

  6. DNA Sequencing in Cultural Heritage.

    Science.gov (United States)

    Vai, Stefania; Lari, Martina; Caramelli, David

    2016-02-01

    During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.

  7. DNA sequencing by synthesis with degenerate primers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The degenerate primer-based sequencing Was developed by a synthesis method(DP-SBS)for high-throughput DNA sequencing,in which a set of degenerate primers are hybridized on the arrayed DNA templates and extended by DNA polymerase on microarrays.In this method,adifferent set of degenerate primers containing a give nnumber(n)of degenerate nucleotides at the 3'-ends were annealed to the sequenced templates that were immobilized on the solid surface.The nucleotides(n+1)on the template sequences were determined by detecting the incorporation of fluorescent labeled nucleotides.The fluorescent labeled nucleotide was incorporated into the primer in a base-specific manner after the enzymatic primer extension reactions and nine-base length were read out accurately.The main advanmge of the DP-SBS is that the method only uses very conventional biochemical reagents and avoids the complicated special chemical reagents for removing the labeled nucleotides and reactivating the primer for further extension.From the present study,it is found that the DP-SBS method is reliable,simple,and cost-effective for laboratory-sequencing a large amount of short DNA fragments.

  8. Glycome mapping on DNA sequencing equipment.

    Science.gov (United States)

    Laroy, Wouter; Contreras, Roland; Callewaert, Nico

    2006-01-01

    Here we provide a detailed protocol for the analysis of protein-linked glycans on DNA sequencing equipment. This protocol satisfies the glyco-analytical needs of many projects and can form the basis of 'glycomics' studies, in which robustness, high throughput, high sensitivity and reliable quantification are of paramount importance. The protocol routinely resolves isobaric glycan stereoisomers, which is much more difficult by mass spectrometry (MS). Earlier methods made use of polyacrylamide gel-based sequencers, but we have now adapted the technique to multicapillary DNA sequencers, which represent the state of the art today. In addition, we have integrated an option for HPLC-based fractionation of highly anionic 8-amino-1,3,6-pyrenetrisulfonic acid (APTS)-labeled glycans before rapid capillary electrophoretic profiling. This option facilitates either two-dimensional profiling of complex glycan mixtures and exoglycosidase sequencing, or MS analysis of particular compounds of interest rather than of the total pool of glycans in a sample.

  9. The complete DNA sequence of vaccinia virus.

    Science.gov (United States)

    Goebel, S J; Johnson, G P; Perkus, M E; Davis, S W; Winslow, J P; Paoletti, E

    1990-11-01

    The complete DNA sequence of the genome of vaccinia virus has been determined. The genome consisted of 191,636 bp with a base composition of 66.6% A + T. We have identified 198 "major" protein-coding regions and 65 overlapping "minor" regions, for a total of 263 potential genes. Genes encoded by the virus were located by examination of DNA sequence characteristics and compared with existing vaccinia virus mapping analyses, sequence data, and transcription data. These genes were found to be compactly organized along the genome with relatively few regions of noncoding sequences. Whereas several similarities to proteins of known function were discerned, the function of the majority of proteins encoded by these open reading frames is as yet undetermined.

  10. DNA Sequence Alignment during Homologous Recombination.

    Science.gov (United States)

    Greene, Eric C

    2016-05-27

    Homologous recombination allows for the regulated exchange of genetic information between two different DNA molecules of identical or nearly identical sequence composition, and is a major pathway for the repair of double-stranded DNA breaks. A key facet of homologous recombination is the ability of recombination proteins to perfectly align the damaged DNA with homologous sequence located elsewhere in the genome. This reaction is referred to as the homology search and is akin to the target searches conducted by many different DNA-binding proteins. Here I briefly highlight early investigations into the homology search mechanism, and then describe more recent research. Based on these studies, I summarize a model that includes a combination of intersegmental transfer, short-distance one-dimensional sliding, and length-specific microhomology recognition to efficiently align DNA sequences during the homology search. I also suggest some future directions to help further our understanding of the homology search. Where appropriate, I direct the reader to other recent reviews describing various issues related to homologous recombination.

  11. Automated Template Quantification for DNA Sequencing Facilities

    Science.gov (United States)

    Ivanetich, Kathryn M.; Yan, Wilson; Wunderlich, Kathleen M.; Weston, Jennifer; Walkup, Ward G.; Simeon, Christian

    2005-01-01

    The quantification of plasmid DNA by the PicoGreen dye binding assay has been automated, and the effect of quantification of user-submitted templates on DNA sequence quality in a core laboratory has been assessed. The protocol pipets, mixes and reads standards, blanks and up to 88 unknowns, generates a standard curve, and calculates template concentrations. For pUC19 replicates at five concentrations, coefficients of variance were 0.1, and percent errors were from 1% to 7% (n = 198). Standard curves with pUC19 DNA were nonlinear over the 1 to 1733 ng/μL concentration range required to assay the majority (98.7%) of user-submitted templates. Over 35,000 templates have been quantified using the protocol. For 1350 user-submitted plasmids, 87% deviated by ≥ 20% from the requested concentration (500 ng/μL). Based on data from 418 sequencing reactions, quantification of user-submitted templates was shown to significantly improve DNA sequence quality. The protocol is applicable to all types of double-stranded DNA, is unaffected by primer (1 pmol/μL), and is user modifiable. The protocol takes 30 min, saves 1 h of technical time, and costs approximately $0.20 per unknown. PMID:16461949

  12. Anonymity in voting revisited

    NARCIS (Netherlands)

    Jonker, Hugo; Pieters, Wolter; Chaum, David; Jakobsson, Markus; Rivest, Ronald L.; Ryan, Peter Y.A.; Benaloh, Josh; Kutylowski, Miroslaw; Adida, Ben

    2010-01-01

    According to international law, anonymity of the voter is a fundamental precondition for democratic elections. In electronic voting, several aspects of voter anonymity have been identified. In this paper, we re-examine anonymity with respect to voting, and generalise existing notions of anonymity in

  13. The first determination of DNA sequence of a specific gene.

    Science.gov (United States)

    Inouye, Masayori

    2016-05-10

    How and when the first DNA sequence of a gene was determined? In 1977, F. Sanger came up with an innovative technology to sequence DNA by using chain terminators, and determined the entire DNA sequence of the 5375-base genome of bacteriophage φX 174 (Sanger et al., 1977). While this Sanger's achievement has been recognized as the first DNA sequencing of genes, we had determined DNA sequence of a gene, albeit a partial sequence, 11 years before the Sanger's DNA sequence (Okada et al., 1966).

  14. DNA sequencing by nanopores: advances and challenges

    Science.gov (United States)

    Agah, Shaghayegh; Zheng, Ming; Pasquali, Matteo; Kolomeisky, Anatoly B.

    2016-10-01

    Developing inexpensive and simple DNA sequencing methods capable of detecting entire genomes in short periods of time could revolutionize the world of medicine and technology. It will also lead to major advances in our understanding of fundamental biological processes. It has been shown that nanopores have the ability of single-molecule sensing of various biological molecules rapidly and at a low cost. This has stimulated significant experimental efforts in developing DNA sequencing techniques by utilizing biological and artificial nanopores. In this review, we discuss recent progress in the nanopore sequencing field with a focus on the nature of nanopores and on sensing mechanisms during the translocation. Current challenges and alternative methods are also discussed.

  15. Mitochondrial DNA sequence variation in Greeks.

    Science.gov (United States)

    Kouvatsi, A; Karaiskou, N; Apostolidis, A; Kirmizidis, G

    2001-12-01

    Mitochondrial DNA (mtDNA) control region sequences were determined in 54 unrelated Greeks, coming from different regions in Greece, for both segments HVR-I and HVR-II. Fifty-two different mtDNA haplotypes were revealed, one of which was shared by three individuals. A very low heterogeneity was found among Greek regions. No one cluster of lineages was specific to individuals coming from a certain region. The average pairwise difference distribution showed a value of 7.599. The data were compared with that for other European or neighbor populations (British, French, Germans, Tuscans, Bulgarians, and Turks). The genetic trees that were constructed revealed homogeneity between Europeans. Median networks revealed that most of the Greek mtDNA haplotypes are clustered to the five known haplogroups and that a number of haplotypes are shared among Greeks and other European and Near Eastern populations.

  16. Local Renyi entropic profiles of DNA sequences

    Directory of Open Access Journals (Sweden)

    Vinga Susana

    2007-10-01

    Full Text Available Abstract Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM. Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at http://kdbio.inesc-id.pt/~svinga/ep/. Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.

  17. Sequence-specific recognition of DNA nanostructures.

    Science.gov (United States)

    Rusling, David A; Fox, Keith R

    2014-05-15

    DNA is the most exploited biopolymer for the programmed self-assembly of objects and devices that exhibit nanoscale-sized features. One of the most useful properties of DNA nanostructures is their ability to be functionalized with additional non-nucleic acid components. The introduction of such a component is often achieved by attaching it to an oligonucleotide that is part of the nanostructure, or hybridizing it to single-stranded overhangs that extend beyond or above the nanostructure surface. However, restrictions in nanostructure design and/or the self-assembly process can limit the suitability of these procedures. An alternative strategy is to couple the component to a DNA recognition agent that is capable of binding to duplex sequences within the nanostructure. This offers the advantage that it requires little, if any, alteration to the nanostructure and can be achieved after structure assembly. In addition, since the molecular recognition of DNA can be controlled by varying pH and ionic conditions, such systems offer tunable properties that are distinct from simple Watson-Crick hybridization. Here, we describe methodology that has been used to exploit and characterize the sequence-specific recognition of DNA nanostructures, with the aim of generating functional assemblies for bionanotechnology and synthetic biology applications.

  18. New stopping criteria for segmenting DNA sequences

    CERN Document Server

    Li, W

    2001-01-01

    We propose a solution on the stopping criterion in segmenting inhomogeneous DNA sequences with complex statistical patterns. This new stopping criterion is based on Bayesian Information Criterion (BIC) in the model selection framework. When this stopping criterion is applied to a left telomere sequence of yeast Saccharomyces cerevisiae and the complete genome sequence of bacterium Escherichia coli, borders of biologically meaningful units were identified (e.g. subtelomeric units, replication origin, and replication terminus), and a more reasonable number of domains was obtained. We also introduce a measure called segmentation strength which can be used to control the delineation of large domains. The relationship between the average domain size and the threshold of segmentation strength is determined for several genome sequences.

  19. An overview of anonymity and anonymous communication

    NARCIS (Netherlands)

    Koot, M.

    2008-01-01

    Privacy is becoming an increasingly important aspect in distributed systems. In anonymous communication, privacy is provided to communicating parties by hiding their identities from each other and/or from others. This paper discusses the problem of anonymous communication and clarifies the notion of

  20. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation r...

  1. Random Coding Bounds for DNA Codes Based on Fibonacci Ensembles of DNA Sequences

    Science.gov (United States)

    2008-07-01

    COVERED (From - To) 6 Jul 08 – 11 Jul 08 4. TITLE AND SUBTITLE RANDOM CODING BOUNDS FOR DNA CODES BASED ON FIBONACCI ENSEMBLES OF DNA SEQUENCES ... sequences which are generalizations of the Fibonacci sequences . 15. SUBJECT TERMS DNA Codes, Fibonacci Ensembles, DNA Computing, Code Optimization 16...coding bound on the rate of DNA codes is proved. To obtain the bound, we use some ensembles of DNA sequences which are generalizations of the Fibonacci

  2. An oligonucleotide hybridization approach to DNA sequencing.

    Science.gov (United States)

    Khrapko, K R; Lysov YuP; Khorlyn, A A; Shick, V V; Florentiev, V L; Mirzabekov, A D

    1989-10-09

    We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient for the computer-assisted reconstruction of the structures for 80% of random-sequence fragments up to 200 bases long, based on the analysis of the octanucleotide overlapping. Here a refinement of the method and some experimental data are presented. We have performed hybridizations with oligonucleotides immobilized on a glass plate, and obtained their dissociation curves down to heptanucleotides. Other approaches, e.g., an additional hybridization of short oligonucleotides which continuously extend duplexes formed between the fragment and immobilized oligonucleotides, should considerably increase either the probability of unambiguous reconstruction, or the length of reconstructed sequences, or decrease the size of immobilized oligonucleotides.

  3. The enzymatic nature of an anonymous protein sequence cannot reliably be inferred from superfamily level structural information alone.

    Science.gov (United States)

    Roche, Daniel Barry; Brüls, Thomas

    2015-05-01

    As the largest fraction of any proteome does not carry out enzymatic functions, and in order to leverage 3D structural data for the annotation of increasingly higher volumes of sequence data, we wanted to assess the strength of the link between coarse grained structural data (i.e., homologous superfamily level) and the enzymatic versus non-enzymatic nature of protein sequences. To probe this relationship, we took advantage of 41 phylogenetically diverse (encompassing 11 distinct phyla) genomes recently sequenced within the GEBA initiative, for which we integrated structural information, as defined by CATH, with enzyme level information, as defined by Enzyme Commission (EC) numbers. This analysis revealed that only a very small fraction (about 1%) of domain sequences occurring in the analyzed genomes was found to be associated with homologous superfamilies strongly indicative of enzymatic function. Resorting to less stringent criteria to define enzyme versus non-enzyme biased structural classes or excluding highly prevalent folds from the analysis had only modest effect on this proportion. Thus, the low genomic coverage by structurally anchored protein domains strongly associated to catalytic activities indicates that, on its own, the power of coarse grained structural information to infer the general property of being an enzyme is rather limited.

  4. Rapid annotation of anonymous sequences from genome projects using semantic similarities and a weighting scheme in gene ontology.

    Directory of Open Access Journals (Sweden)

    Paolo Fontana

    Full Text Available BACKGROUND: Large-scale sequencing projects have now become routine lab practice and this has led to the development of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means for this task. METHODOLOGY: We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms that is able to process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be obtained by different methods and in this work we have based ARGOT processing on BLAST results. CONCLUSIONS: The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and coverage.

  5. Modified Genetic Algorithm for DNA Sequence Assembly by Shotgun and Hybridization Sequencing Techniques

    Directory of Open Access Journals (Sweden)

    Prof.Narayan Kumar Sahu

    2012-09-01

    Full Text Available Since the advent of rapid DNA sequencing methods in 1976, scientists have had the problem of inferring DNA sequences from sequenced fragments. Shotgun sequencing is a well-established biological and computational method used in practice. Many conventional algorithms for shotgun sequencing are based on the notion of pair wise fragment overlap. While shotgun sequencing infers a DNA sequence given the sequences of overlapping fragments, a recent and complementary method, called sequencing by hybridization (SBH, infers a DNA sequence given the set of oligomers that represents all sub words of some fixed length, k. In this paper, we propose a new computer algorithm for DNA sequence assembly that combines in a novel way the techniques of both shotgun and SBH methods. Based on our preliminary investigations, the algorithm promises- to be very fast and practical for DNA sequence assembly [1].

  6. Nucleosome DNA sequence structure of isochores

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2011-04-01

    Full Text Available Abstract Background Significant differences in G+C content between different isochore types suggest that the nucleosome positioning patterns in DNA of the isochores should be different as well. Results Extraction of the patterns from the isochore DNA sequences by Shannon N-gram extension reveals that while the general motif YRRRRRYYYYYR is characteristic for all isochore types, the dominant positioning patterns of the isochores vary between TAAAAATTTTTA and CGGGGGCCCCCG due to the large differences in G+C composition. This is observed in human, mouse and chicken isochores, demonstrating that the variations of the positioning patterns are largely G+C dependent rather than species-specific. The species-specificity of nucleosome positioning patterns is revealed by dinucleotide periodicity analyses in isochore sequences. While human sequences are showing CG periodicity, chicken isochores display AG (CT periodicity. Mouse isochores show very weak CG periodicity only. Conclusions Nucleosome positioning pattern as revealed by Shannon N-gram extension is strongly dependent on G+C content and different in different isochores. Species-specificity of the pattern is subtle. It is reflected in the choice of preferentially periodical dinucleotides.

  7. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Winston Chen, C.H.; Taranenko, N.I.; Zhu, Y.F.; Chung, C.N.; Allman, S.L.

    1997-03-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, the authors recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Snager`s enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. The preliminary results indicate laser mass spectrometry can possibly be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, the authors applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  8. Sequence dependent hole evolution in DNA.

    Science.gov (United States)

    Lakhno, V D

    2004-06-01

    The paper examines thedynamical behavior of a radical cation(G(+*)) generated in adouble stranded DNA for differentoligonucleotide sequences. The resonancehole tunneling through an oligonucleotidesequence is studied by the method ofnumerical integration of self-consistentquantum-mechanical equations. The holemotion is considered quantum mechanicallyand nucleotide base oscillations aretreated classically. The results obtaineddemonstrate a strong dependence of chargetransfer on the type of nucleotidesequence. The rates of the hole transferare calculated for different nucleotidesequences and compared with experimentaldata on the transfer from (G(+*))to a GGG unit.

  9. Anonymity in Voting Revisited

    Science.gov (United States)

    Jonker, Hugo; Pieters, Wolter

    According to international law, anonymity of the voter is a fundamental precondition for democratic elections. In electronic voting, several aspects of voter anonymity have been identified. In this paper, we re-examine anonymity with respect to voting, and generalise existing notions of anonymity in e-voting. First, we identify and categorise the types of attack that can be a threat to anonymity of the voter, including different types of vote buying and coercion. This analysis leads to a categorisation of anonymity in voting in terms of a) the strength of the anonymity achieved and b) the extent of interaction between voter and attacker. Some of the combinations, including weak and strong receipt-freeness, are formalised in epistemic logic.

  10. Transverse Electronic Signature of DNA for Electronic Sequencing

    Science.gov (United States)

    Xu, Mingsheng; Endres, Robert G.; Arakawa, Yasuhiko

    In recent years, the proliferation of large-scale DNA sequencing projects for applications in clinical medicine and health care has driven the search for new methods that could reduce the time and cost. The commonly used Sanger sequencing method relies on the chemistry to read the bases in DNA and is far too slow and expensive for reading personal genetic codes. There were earlier attempts to sequence DNA by directly visualizing the nucleotide composition of the DNA molecules by scanning tunneling microscopy (STM). However, sequencing DNA based on directly imaging DNA's atomic structure has not yet been successful. In Chap. 9, Xu, Endres, and Arakawa report a potential physical alternative by detecting unique transverse electronic signatures of DNA bases using ultrahigh vacuum STM. Supported by the principles, calculations and statistical analyses, these authors argue that it would be possible to directly sequence DNA by the STM-based technology without any modification of the DNA.

  11. Understanding Long-Range Correlations in DNA sequences

    CERN Document Server

    Li, W; Kaneko, K; Wentian Li; Thomas G Marr; Kunihiko Kaneko

    1994-01-01

    Abstract: In this paper, we review the literature on statistical long-range correlation in DNA sequences. We examine the current evidence for these correlations, and conclude that a mixture of many length scales (including some relatively long ones) in DNA sequences is responsible for the observed 1/f-like spectral component. We note the complexity of the correlation structure in DNA sequences. The observed complexity often makes it hard, or impossible, to decompose the sequence into a few statistically stationary regions. We suggest that, based on the complexity of DNA sequences, a fruitful approach to understand long-range correlation is to model duplication, and other rearrangement processes, in DNA sequences. One model, called ``expansion-modification system", contains only point duplication and point mutation. Though simplistic, this model is able to generate sequences with 1/f spectra. We emphasize the importance of DNA duplication in its contribution to the observed long-range correlation in DNA sequen...

  12. A new DNA sequence assembly program.

    Science.gov (United States)

    Bonfield, J K; Smith, K f; Staden, R

    1995-01-01

    We describe the Genome Assembly Program (GAP), a new program for DNA sequence assembly. The program is suitable for large and small projects, a variety of strategies and can handle data from a range of sequencing instruments. It retains the useful components of our previous work, but includes many novel ideas and methods. Many of these methods have been made possible by the program's completely new, and highly interactive, graphical user interface. The program provides many visual clues to the current state of a sequencing project and allows users to interact in intuitive and graphical ways with their data. The program has tools to display and manipulate the various types of data that help to solve and check difficult assemblies, particularly those in repetitive genomes. We have introduced the following new displays: the Contig Selector, the Contig Comparator, the Template Display, the Restriction Enzyme Map and the Stop Codon Map. We have also made it possible to have any number of Contig Editors and Contig Joining Editors running simultaneously even on the same contig. The program also includes a new 'Directed Assembly' algorithm and routines for automatically detecting unfinished segments of sequence, to which it suggests experimental solutions. Images PMID:8559656

  13. Improved taboo search algorithm for designing DNA sequences

    Institute of Scientific and Technical Information of China (English)

    Kai Zhang; Jin Xu; Xiutang Geng; Jianhua Xiao; Linqiang Pan

    2008-01-01

    The design of DNA sequences is one of the most practical and important research topics in DNA computing.We adopt taboo search algorithm and improve the method for the systematic design of equal-length DNA sequences,which can satisfy certain combinatorial and thermodynamic constraints.Using taboo search algorithm,our method can avoid trapping into local optimization and can find a set of good DNA sequences satisfying required constraints.

  14. ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors

    OpenAIRE

    2009-01-01

    This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein–DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are esse...

  15. DNA Sequence Optimization Based on Continuous Particle Swarm Optimization for Reliable DNA Computing and DNA Nanotechnology

    Directory of Open Access Journals (Sweden)

    N. K. Khalid

    2008-01-01

    Full Text Available Problem statement: In DNA based computation and DNA nanotechnology, the design of good DNA sequences has turned out to be an essential problem and one of the most practical and important research topics. Basically, the DNA sequence design problem is a multi-objective problem and it can be evaluated using four objective functions, namely, Hmeasure, similarity, continuity and hairpin. Approach: There are several ways to solve multi-objective problem, however, in order to evaluate the correctness of PSO algorithm in DNA sequence design, this problem is converted into single objective problem. Particle Swarm Optimization (PSO is proposed to minimize the objective in the problem, subjected to two constraints: melting temperature and GCcontent. A model is developed to present the DNA sequence design based on PSO computation. Results: Based on experiments and researches done, 20 particles are used in the implementation of the optimization process, where the average values and the standard deviation for 100 runs are shown along with comparison to other existing methods. Conclusion: The results achieve verified that PSO can suitably solves the DNA sequence design problem using the proposed method and model, comparatively better than other approaches.

  16. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  17. Anonymizing Unstructured Data

    CERN Document Server

    Motwani, Rajeev

    2008-01-01

    In this paper we consider the problem of anonymizing datasets in which each individual is associated with a set of items that constitute private information about the individual. Illustrative datasets include market-basket datasets and search engine query logs. We formalize the notion of k-anonymity for set-valued data as a variant of the k-anonymity model for traditional relational datasets. We define an optimization problem that arises from this definition of anonymity and provide a constant factor approximation algorithm for the same. We evaluate our algorithms on the America Online query log dataset.

  18. Solid-Phase Purification of Synthetic DNA Sequences.

    Science.gov (United States)

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L

    2016-08-05

    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  19. Affinity purification of sequence-specific DNA binding proteins.

    OpenAIRE

    1986-01-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed t...

  20. Anonymization of Court Orders

    DEFF Research Database (Denmark)

    Povlsen, Claus; Jongejan, Bart; Hansen, Dorte Haltrup;

    We describe an anonymization tool that was commissioned by and specified together with Schultz, a publishing company specialized in Danish law related publications. Unavailability of training data and the need to guarantee compliance with pre-existing anonymization guidelines forced us to implement...

  1. SWORDS: A statistical tool for analysing large DNA sequences

    Indian Academy of Sciences (India)

    Probal Chaudhuri; Sandip Das

    2002-02-01

    In this article, we present some simple yet effective statistical techniques for analysing and comparing large DNA sequences. These techniques are based on frequency distributions of DNA words in a large sequence, and have been packaged into a software called SWORDS. Using sequences available in public domain databases housed in the Internet, we demonstrate how SWORDS can be conveniently used by molecular biologists and geneticists to unmask biologically important features hidden in large sequences and assess their statistical significance.

  2. DNA Sequence Determination by Hybridization: A Strategy for Efficient Large-Scale Sequencing

    Science.gov (United States)

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoddy, J.; Funkhouser, W. K.; Koop, B.; Hood, L.; Crkvenjakov, R.

    1993-06-01

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project.

  3. A novel constraint for thermodynamically designing DNA sequences.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap.

  4. Preparing DNA libraries for multiplexed paired-end deep sequencing for Illumina GA sequencers.

    Science.gov (United States)

    Son, Mike S; Taylor, Ronald K

    2011-02-01

    Whole-genome sequencing, also known as deep sequencing, is becoming a more affordable and efficient way to identify SNP mutations, deletions, and insertions in DNA sequences across several different strains. Two major obstacles preventing the widespread use of deep sequencers are the costs involved in services used to prepare DNA libraries for sequencing and the overall accuracy of the sequencing data. This unit describes the preparation of DNA libraries for multiplexed paired-end sequencing using the Illumina GA series sequencer. Self-preparation of DNA libraries can help reduce overall expenses, especially if optimization is required for the different samples, and use of the Illumina GA Sequencer can improve the quality of the data.

  5. New method to study DNA sequences: the languages of evolution.

    Science.gov (United States)

    Spinelli, Gino; Mayer-Foulkes, David

    2008-04-01

    Recently, several authors have reported statistical evidence for deterministic dynamics in the flux of genetic information, suggesting that evolution involves the emergence and maintenance of a fractal landscape in DNA chains. Here we examine the idea that motif repetition lies at the origin of these statistical properties of DNA. To analyse repetition patterns we apply a modification of the BDS statistic, devised to analyze complex economic dynamics and adapted here to DNA sequence analysis. This provides a new method to detect structured signals in genetic information. We compare naturally occurring DNA sequences along the evolutionary tree with randomly generated sequences and also with simulated sequences with repetition motifs. For easier understanding, we also define a new statistic for a DNA sequence that constitutes a specific fingerprint. The new methods are applied to exon and intron DNA sequences, finding specific statistical differences. Moreover, by analysing DNA sequences of different species from Bacteria to Man, we explore the evolution of these linguistic DNA features along the evolutionary tree. The results are consistent with the idea that all the flux of DNA information need not be random, but may be structured along the evolutionary tree. The implications for evolutionary theory are discussed.

  6. Statistical assignment of DNA sequences using Bayesian phylogenetics

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Huelsenbeck, John P.;

    2008-01-01

    -analysis of previously published ancient DNA data and show that, with high statistical confidence, most of the published sequences are in fact of Neanderthal origin. However, there are several cases of chimeric sequences that are comprised of a combination of both Neanderthal and modern human DNA....

  7. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    NARCIS (Netherlands)

    Buschmann, Tilo; Bystrykh, Leonid V.

    2013-01-01

    Background: High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called multi

  8. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  9. Cloning and sequencing of mouse GABA transporter complementary DNA

    Institute of Scientific and Technical Information of China (English)

    TAMANTHONYC.W.; LIHEGUO; 等

    1994-01-01

    A cDNA encoding the mouse GABA transporter has been isolated and sequenced.The results show that the mouse GABA transporter cDNA differs from that of the rat by 60 base pairs at the open reading frame region but the deduced amino acid sequences of the two cDNAs are identical and both composed of 599 amino acids.However,the amino acid sequence is different from the sequence deduced from a recently published mouse GABA transporter cDNA.

  10. Affordable Hands-On DNA Sequencing and Genotyping: An Exercise for Teaching DNA Analysis to Undergraduates

    Science.gov (United States)

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C…

  11. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  12. Effects of Sequence on Transmission Properties of DNA Molecules

    Institute of Scientific and Technical Information of China (English)

    DONG Rui-Xin; YAN Xun-Ling; YANG Bing

    2008-01-01

    A double helix model of charge transport in DNA molecule is given and the transmission spectra of four DNA sequences are obtained. The calculated results show that the transmission characteristics of DNA are not only related to the longitudinal transport but also to the transverse transport of molecule. The periodic sequence with the same composition has stronger conduction ability. With the increasing of bases composition, the conductive ability reduces, but the weight of θ direction rises in charge transfer.

  13. Deniable Anonymous Group Authentication

    Science.gov (United States)

    2014-02-13

    electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24:84–88, February 1981. [16] D. Chaum. Blind signatures for...ASIACRYPT, 2004. [59] P. P. Tsang and V. K. Wei. Short linkable ring signatures for e- voting , e-cash and attestation. In ’05 ISPEC, 2005. [60] D. I...which we term anonymity, proportionality, forward anonymity, and deniability. Like ring signatures [50], DAGA allows a user to au- thenticate as an

  14. Code domains in tandem repetitive DNA sequence structures.

    Science.gov (United States)

    Vogt, P

    1992-10-01

    Traditionally, many people doing research in molecular biology attribute coding properties to a given DNA sequence if this sequence contains an open reading frame for translation into a sequence of amino acids. This protein coding capability of DNA was detected about 30 years ago. The underlying genetic code is highly conserved and present in every biological species studied so far. Today, it is obvious that DNA has a much larger coding potential for other important tasks. Apart from coding for specific RNA molecules such as rRNA, snRNA and tRNA molecules, specific structural and sequence patterns of the DNA chain itself express distinct codes for the regulation and expression of its genetic activity. A chromatin code has been defined for phasing of the histone-octamer protein complex in the nucleosome. A translation frame code has been shown to exist that determines correct triplet counting at the ribosome during protein synthesis. A loop code seems to organize the single stranded interaction of the nascent RNA chain with proteins during the splicing process, and a splicing code phases successive 5' and 3' splicing sites. Most of these DNA codes are not exclusively based on the primary DNA sequence itself, but also seem to include specific features of the corresponding higher order structures. Based on the view that these various DNA codes are genetically instructive for specific molecular interactions or processes, important in the nucleus during interphase and during cell division, the coding capability of tandem repetitive DNA sequences has recently been reconsidered.

  15. ProteDNA: a sequence-based predictor of sequence-specific DNA-binding residues in transcription factors.

    Science.gov (United States)

    Chu, Wen-Yi; Huang, Yu-Feng; Huang, Chun-Chin; Cheng, Yi-Sheng; Huang, Chien-Kang; Oyang, Yen-Jen

    2009-07-01

    This article presents the design of a sequence-based predictor named ProteDNA for identifying the sequence-specific binding residues in a transcription factor (TF). Concerning protein-DNA interactions, there are two types of binding mechanisms involved, namely sequence-specific binding and nonspecific binding. Sequence-specific bindings occur between protein sidechains and nucleotide bases and correspond to sequence-specific recognition of genes. Therefore, sequence-specific bindings are essential for correct gene regulation. In this respect, ProteDNA is distinctive since it has been designed to identify sequence-specific binding residues. In order to accommodate users with different application needs, ProteDNA has been designed to operate under two modes, namely, the high-precision mode and the balanced mode. According to the experiments reported in this article, under the high-precision mode, ProteDNA has been able to deliver precision of 82.3%, specificity of 99.3%, sensitivity of 49.8% and accuracy of 96.5%. Meanwhile, under the balanced mode, ProteDNA has been able to deliver precision of 60.8%, specificity of 97.6%, sensitivity of 60.7% and accuracy of 95.4%. ProteDNA is available at the following websites: http://protedna.csbb.ntu.edu.tw/, http://protedna.csie.ntu.edu.tw/, http://bio222.esoe.ntu.edu.tw/ProteDNA/.

  16. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    Science.gov (United States)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  17. Next Generation Sequencing of Ancient DNA: Requirements, Strategies and Perspectives

    Directory of Open Access Journals (Sweden)

    Michael Knapp

    2010-07-01

    Full Text Available The invention of next-generation-sequencing has revolutionized almost all fields of genetics, but few have profited from it as much as the field of ancient DNA research. From its beginnings as an interesting but rather marginal discipline, ancient DNA research is now on its way into the centre of evolutionary biology. In less than a year from its invention next-generation-sequencing had increased the amount of DNA sequence data available from extinct organisms by several orders of magnitude. Ancient DNA  research is now not only adding a temporal aspect to evolutionary studies and allowing for the observation of evolution in real time, it also provides important data to help understand the origins of our own species. Here we review progress that has been made in next-generation-sequencing of ancient DNA over the past five years and evaluate sequencing strategies and future directions.

  18. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group......Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...

  19. DNA splice site sequences clustering method for conservativeness analysis

    Institute of Scientific and Technical Information of China (English)

    Quanwei Zhang; Qinke Peng; Tao Xu

    2009-01-01

    DNA sequences that are near to splice sites have remarkable conservativeness,and many researchers have contributed to the prediction of splice site.In order to mine the underlying biological knowledge,we analyze the conservativeness of DNA splice site adjacent sequences by clustering.Firstly,we propose a kind of DNA splice site sequences clustering method which is based on DBSCAN,and use four kinds of dissimilarity calculating methods.Then,we analyze the conservative feature of the clustering results and the experimental data set.

  20. PNA Directed Sequence Addressed Self-Assembly of DNA Nanostructures

    Science.gov (United States)

    Nielsen, Peter E.

    2008-10-01

    Peptide nucleic acids (PNA) can be designed to target duplex DNA with very high sequence specificity and efficiency via various binding modes. We have designed three domain PNA clamps, that bind stably to predefined decameric homopurine targets in large dsDNA molecules and via a third PNA domain sequence specifically recognize another PNA oligomer. We describe how such three domain PNAs have utility for assembling dsDNA grid and clover leaf structures, and in combination with SNAP-tag technology of protein dsDNA structures.

  1. Thermodynamics of sequence-specific binding of PNA to DNA

    DEFF Research Database (Denmark)

    Ratilainen, T; Holmén, A; Tuite, E

    2000-01-01

    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and seq......For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes...

  2. Current-voltage characteristics of double-strand DNA sequences

    Science.gov (United States)

    Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.

    2009-09-01

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  3. Current-voltage characteristics of double-strand DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bezerril, L.M.; Moreira, D.A. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@dfte.ufrn.b [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Fulco, U.L. [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Oliveira, E.L. de; Sousa, J.S. de [Departamento de Fisica, Universidade Federal do Ceara, 60455-760, Fortaleza-CE (Brazil)

    2009-09-07

    We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.

  4. Characteristics of alternating current hopping conductivity in DNA sequences

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Wang Huan-You; Guo Rui

    2009-01-01

    This paper presents a model to describe alternating current (AC) conductivity of DNA sequences,in which DNA is considered as a one-dimensional (1D) disordered system,and electrons transport via hopping between localized states.It finds that AC conductivity in DNA sequences increases as the frequency of the external electric field rises,and it takes the form of σac(ω)~ω2 ln2(1/ω).Also AC conductivity of DNA sequences increases with the increase of temperature,this phenomenon presents characteristics of weak temperature-dependence.Meanwhile,the AC conductivity in an off diagonally correlated case is much larger than that in the uncorrelated case of the Anderson limit in low temperatures,which indicates that the off-diagonal correlations in DNA sequences have a great effect on the AC conductivity,while at high temperature the off-diagonal correlations no longer play a vital role in electric transport. In addition,the proportion of nucleotide pairs p also plays an important role in AC electron transport of DNA sequences.For p<0.5,the conductivity of DNA sequence decreases with the increase of p,while for p > 0.5,the conductivity increases with the increase of p.

  5. Spectroscopic investigation on the telomeric DNA base sequence repeat

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Telomeres are protein-DNA complexes at the terminals of linear chromosomes, which protect chromosomal integrity and maintain cellular replicative capacity.From single-cell organisms to advanced animals and plants,structures and functions of telomeres are both very conservative. In cells of human and vertebral animals, telomeric DNA base sequences all are (TTAGGG)n. In the present work, we have obtained absorption and fluorescence spectra measured from seven synthesized oligonucleotides to simulate the telomeric DNA system and calculated their relative fluorescence quantum yields on which not only telomeric DNA characteristics are predicted but also possibly the shortened telomeric sequences during cell division are imrelative fluorescence quantum yield and remarkable excitation energy innerconversion, which tallies with the telomeric sequence of (TTAGGG)n. This result shows that telomeric DNA has a strong non-radiative or innerconvertible capability.``

  6. ATRF Houses the Latest DNA Sequencing Technologies | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer By the end of October, the Advanced Technology Research Facility (ATRF) will be one of the few facilities in the world to house all of the latest DNA sequencing technologies.

  7. Which Are More Random: Coding or Noncoding DNA Sequences?

    Institute of Scientific and Technical Information of China (English)

    WU Fang; ZHENG Wei-Mou

    2002-01-01

    Evidence seems to show that coding DNA is more random than noncoding DNA, but other conflictingevidence also exists. Based on the third-base degeneracy of codons, we regard the third position of codons as a 'noisy'position. By deleting one fixed position of non-overlapping triplets in a given sequence, three masked sequences may bededuced from the sequence. We have investigated the block-to-site mutual information functions of coding and noncodingsequences in yeast without and with the masking. Characteristics that distinguish coding from noncoding DNA havebeen found. It is observed that the strong correlations in the coding regions may be blocked by the third base of codons,and the proper masking can extract the correlations. Distribution of dimeric tandem repeats of unmasked sequences isalso compared with that of masked sequences.

  8. Repetitive DNA Sequences in Wheat and Its Relatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-yong; LI Da-yong

    2001-01-01

    Repetitive DNA sequences form a large portion of eukaryote genomes. Using wheat ( Triticum )as a model, the classification, features and functions of repetitive DNA sequences in the Tritieeae grass tribe is reviewed as well as the role of these sequences in genome differentiation, control and regulation of homologous chromosome synapsis and pairing. Transposable elements, as an important portion of dispersed repetitives,may play an essential role in gene mutation of the host. Dynamic models for change of copy number and sequences of the repetitive family are also presented after the models of Charlesworth et al. Application of repetitive DNA sequences in the study of evolution, chromosome fingerprinting and marker assisted gene transfer and breeding are described by taking wheat as an example.

  9. PREDICTION OF CHROMATIN STATES USING DNA SEQUENCE PROPERTIES

    KAUST Repository

    Bahabri, Rihab R.

    2013-06-01

    Activities of DNA are to a great extent controlled epigenetically through the internal struc- ture of chromatin. This structure is dynamic and is influenced by different modifications of histone proteins. Various combinations of epigenetic modification of histones pinpoint to different functional regions of the DNA determining the so-called chromatin states. How- ever, the characterization of chromatin states by the DNA sequence properties remains largely unknown. In this study we aim to explore whether DNA sequence patterns in the human genome can characterize different chromatin states. Using DNA sequence motifs we built binary classifiers for each chromatic state to eval- uate whether a given genomic sequence is a good candidate for belonging to a particular chromatin state. Of four classification algorithms (C4.5, Naive Bayes, Random Forest, and SVM) used for this purpose, the decision tree based classifiers (C4.5 and Random Forest) yielded best results among those we evaluated. Our results suggest that in general these models lack sufficient predictive power, although for four chromatin states (insulators, het- erochromatin, and two types of copy number variation) we found that presence of certain motifs in DNA sequences does imply an increased probability that such a sequence is one of these chromatin states.

  10. PNA Directed Sequence Addressed Self-Assembly of DNA Nanostructures

    DEFF Research Database (Denmark)

    Nielsen, Peter E.

    2008-01-01

    sequence specifically recognize another PNA oligomer. We describe how such three domain PNAs have utility for assembling dsDNA grid and clover leaf structures, and in combination with SNAP-tag technol. of protein dsDNA structures. (c) 2008 American Institute of Physics. [on SciFinder (R)] Udgivelsesdato...

  11. Biometric Authentication Using ElGamal Cryptosystem And DNA Sequence

    Directory of Open Access Journals (Sweden)

    V.SAMUEL SUSAN

    2010-06-01

    Full Text Available Biometrics are automated methods of identifying a person or verifying the identity of a person based on a Physiological or behavioral characteristic. Physiological haracteristics include hand or finger images, facial characteristics and iris recognition. Behavioral characteristics include dynamic signature verification, speaker verification and keystroke dynamics. DNA is unique feature among individuals. DNA provides high security level, long term stability, user acceptance and is intrusive. Combining ElGamal cryptosystem and DNA sequence, a novel biometric authentication scheme is proposed.

  12. Anonymous Mobile Payment Solution

    Directory of Open Access Journals (Sweden)

    Alhaj Ali Jalila

    2015-09-01

    Full Text Available The evolution and increasing popularity of mobile handheld devices has led to the development of payment applications. The global acceptance of mobile payments is hindered by security and privacy concerns. One of the main problems evoked is the anonymity related with banking transactions. In this paper I propose a new secured architecture for mobile banking. Anonymity and privacy protection are the measures to be enhanced in order to satisfy people’s current needs. The banking platform must provide the highest level of security for messages exchanged between bank and the customer.

  13. Anonymous Quantum Communication

    Science.gov (United States)

    Brassard, Gilles; Broadbent, Anne; Fitzsimons, Joseph; Gambs, Sébastien; Tapp, Alain

    We introduce the first protocol for the anonymous transmission of a quantum state that is information-theoretically secure against an active adversary, without any assumption on the number of corrupt participants. The anonymity of the sender and receiver is perfectly preserved, and the privacy of the quantum state is protected except with exponentially small probability. Even though a single corrupt participant can cause the protocol to abort, the quantum state can only be destroyed with exponentially small probability: if the protocol succeeds, the state is transferred to the receiver and otherwise it remains in the hands of the sender (provided the receiver is honest).

  14. Protein sequence for clustering DNA based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gamal. F. Elhadi

    2012-01-01

    Full Text Available DNA is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms and some viruses. Clustering is a process that groups a set of objects into clusters so that the similarity among objects in the same cluster is high, while that among the objects in different clusters is low. In this paper, we proposed an approach for clustering DNA sequences using Self-Organizing Map (SOM algorithm and Protein Sequence. The main objective is to analyze biological data and to bunch DNA to many clusters more easily and efficiently. We use the proposed approach to analyze both large and small amount of input DNA sequences. The results show that the similarity of the sequences does not depend on the amount of input sequences. Our approach depends on evaluating the degree of the DNA sequences similarity using the hierarchal representation Dendrogram. Representing large amount of data using hierarchal tree gives the ability to compare large sequences efficiently

  15. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    Science.gov (United States)

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  16. Sequencing and Analysis of Neanderthal Genomic DNA

    OpenAIRE

    Noonan, James P.; Coop, Graham; Kudaravalli, Sridhar; Smith, Doug; Krause, Johannes; Alessi, Joe; Chen, Feng; Platt, Darren; Paabo, Svante; Pritchard, Jonathan K; Rubin, Edward M.

    2006-01-01

    Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library a...

  17. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie;

    2014-01-01

    sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5'-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections...

  18. Zinc finger recombinases with adaptable DNA sequence specificity.

    Directory of Open Access Journals (Sweden)

    Chris Proudfoot

    Full Text Available Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene, mediated by zinc finger recombinases (ZFRs, chimaeric enzymes with linked zinc finger (DNA recognition and recombinase (catalytic domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.

  19. cDNA cloning and sequencing of ostrich Growth hormone

    Directory of Open Access Journals (Sweden)

    Doosti Abbas

    2012-01-01

    Full Text Available In recent years, industrial breeding of ostrich (Struthio camelus has been widely developed in Iran. Growth hormone (GH is a peptide hormone that stimulates growth and cell reproduction in different animals. The aim of this study was to clone and sequence the ostrich growth hormone gene in E. coli, done for the first time in Iran. The cDNA that encodes ostrich growth hormone was isolated from total mRNA of the pituitary gland and amplified by RT-PCR using GH specific PCR primers. Then GH cDNA was cloned by T/A cloning technique and the construct was transformed into E. coli. Finally, GH cDNA sequence was submitted to the GenBank (Accession number: JN559394. The results of present study showed that GH cDNA was successfully cloned in E. coli. Sequencing confirmed that GH cDNA was cloned and that the length of ostrich GH cDNA was 672 bp; BLAST search showed that the sequence of growth hormone cDNA of the ostrich from Iran has 100% homology with other records existing in GenBank.

  20. Selective binding of anti-DNA antibodies to native dsDNA fragments of differing sequence.

    Science.gov (United States)

    Uccellini, Melissa B; Busto, Patricia; Debatis, Michelle; Marshak-Rothstein, Ann; Viglianti, Gregory A

    2012-03-30

    Systemic autoimmune diseases are characterized by the development of autoantibodies directed against a limited subset of nuclear antigens, including DNA. DNA-specific B cells take up mammalian DNA through their B cell receptor, and this DNA is subsequently transported to an endosomal compartment where it can potentially engage TLR9. We have previously shown that ssDNA-specific B cells preferentially bind to particular DNA sequences, and antibody specificity for short synthetic oligodeoxynucleotides (ODNs). Since CpG-rich DNA, the ligand for TLR9 is found in low abundance in mammalian DNA, we sought to determine whether antibodies derived from DNA-reactive B cells showed binding preference for CpG-rich native dsDNA, and thereby select immunostimulatory DNA for delivery to TLR9. We examined a panel of anti-DNA antibodies for binding to CpG-rich and CpG-poor DNA fragments. We show that a number of anti-DNA antibodies do show preference for binding to certain native dsDNA fragments of differing sequence, but this does not correlate directly with the presence of CpG dinucleotides. An antibody with preference for binding to a fragment containing optimal CpG motifs was able to promote B cell proliferation to this fragment at 10-fold lower antibody concentrations than an antibody that did not selectively bind to this fragment, indicating that antibody binding preference can influence autoreactive B cell responses.

  1. Bayesian classification for promoter prediction in human DNA sequences

    Science.gov (United States)

    Bercher, J.-F.; Jardin, P.; Duriez, B.

    2006-11-01

    Many Computational methods are yet available for data retrieval and analysis of genomic sequences, but some functional sites are difficult to characterize. In this work, we examine the problem of promoter localization in human DNA sequences. Promoters are regulatory regions that governs the expression of genes, and their prediction is reputed difficult, so that this issue is still open. We present the Chaos Game representation (CGR) of DNA sequences which has many interesting properties, and the notion of `genomic signature' that proved relevant in phylogeny applications. Based on this notion, we develop a (naïve) bayesian classifier, evaluate its performances, and show that its adaptive implementation enable to reveal or assess core-promoter positions along a DNA sequence.

  2. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Dai; Xia Lei; Jia-Xin Min; Guo-Qiang Zhang; Hong Wei

    2005-01-01

    AIM: To study genetic difference of mitochondrial DNA (mtDNA)between two hepatocarcinoma cell lines (Hca-F and Hca-P)with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3' end sequence of the hepatocarcinoma cell lines was determined by sequencing.RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile,ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.

  3. Recognizing a Single Base in an Individual DNA Strand: A Step Toward Nanopore DNA Sequencing**

    Science.gov (United States)

    Ashkenasy, N.; Sánchez-Quesada, J.; Ghadiri, M. R.; Bayley, H.

    2007-01-01

    Functional supramolecular chemistry at the single-molecule level. Single strands of DNA can be captured inside α-hemolysin transmembrane pore protein to form single-species α-HL·DNA pseudorotaxanes. This process can be used to identify a single adenine nucleotide at a specific location on a strand of DNA by the characteristic reductions in the α-HL ion conductance. This study suggests that α-HL-mediated single-molecule DNA sequencing might be fundamentally feasible. PMID:15666419

  4. Analysis of sequence variation in Gnathostoma spinigerum mitochondrial DNA by single-strand conformation polymorphism analysis and DNA sequence.

    Science.gov (United States)

    Ngarmamonpirat, Charinthon; Waikagul, Jitra; Petmitr, Songsak; Dekumyoy, Paron; Rojekittikhun, Wichit; Anantapruti, Malinee T

    2005-03-01

    Morphological variations were observed in the advance third stage larvae of Gnathostoma spinigerum collected from swamp eel (Fluta alba), the second intermediate host. Larvae with typical and three atypical types were chosen for partial cytochrome c oxidase subunit I (COI) gene sequence analysis. A 450 bp polymerase chain reaction product of the COI gene was amplified from mitochondrial DNA. The variations were analyzed by single-strand conformation polymorphism and DNA sequencing. The nucleotide variations of the COI gene in the four types of larvae indicated the presence of an intra-specific variation of mitochondrial DNA in the G. spinigerum population.

  5. LONG-RANGE CORRELATIONS IN DNA SEQUENCES USING TWO-DIMENSIONAL DNA WALKS

    Institute of Scientific and Technical Information of China (English)

    Jin Chen; Lin-xi Zhang; De-lu Zhao

    2005-01-01

    The characterization of long-range correlations and fractal properties of DNA sequences has proved to be a difficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various lengths with different nucleotide constitutions. In this paper we investigate statistical correlations among different positions in DNA sequences using the two-dimensional DNA walk. The root-mean-square fluctuation F(l) is described by a power law. The autocorrelation function C(l), which is used to measure the linear dependence and periodicity, exists a power law of C(l) -τμ. We also calculate the mean-square distance <R2(l)> along the DNA chain, and it may be expressed as <R2(l)> - l r with 2 >γ> 1. Our investigations can provide some insights into long-range correlations in DNA sequences.

  6. Probabilistic models for semisupervised discriminative motif discovery in DNA sequences.

    Science.gov (United States)

    Kim, Jong Kyoung; Choi, Seungjin

    2011-01-01

    Methods for discriminative motif discovery in DNA sequences identify transcription factor binding sites (TFBSs), searching only for patterns that differentiate two sets (positive and negative sets) of sequences. On one hand, discriminative methods increase the sensitivity and specificity of motif discovery, compared to generative models. On the other hand, generative models can easily exploit unlabeled sequences to better detect functional motifs when labeled training samples are limited. In this paper, we develop a hybrid generative/discriminative model which enables us to make use of unlabeled sequences in the framework of discriminative motif discovery, leading to semisupervised discriminative motif discovery. Numerical experiments on yeast ChIP-chip data for discovering DNA motifs demonstrate that the best performance is obtained between the purely-generative and the purely-discriminative and the semisupervised learning improves the performance when labeled sequences are limited.

  7. Chaos game representation (CGR)-walk model for DNA sequences

    Institute of Scientific and Technical Information of China (English)

    Gao Jie; Xu Zhen-Yuan

    2009-01-01

    Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their positions in a continuous space. This distribution of positions has two features: one is unique, and the other is source sequence that can be recovered from the coordinates so that the distance between positions may serve as a measure of similarity between the corresponding sequences. A CGR-walk model is proposed based on CGR coordinates for the DNA sequences. The CGR coordinates are converted into a time series, and a long-memory ARFIMA (p, d, q) model, where ARFIMA stands for autoregressive fractionally integrated moving average, is introduced into the DNA sequence analysis. This model is applied to simulating real CGR-walk sequence data of ten genomic sequences. Remarkably long-range correlations are uncovered in the data, and the results from these models are reasonably fitted with those from the ARFIMA (p, d, q) model.

  8. Applications of recursive segmentation to the analysis of DNA sequences.

    Science.gov (United States)

    Li, Wentian; Bernaola-Galván, Pedro; Haghighi, Fatameh; Grosse, Ivo

    2002-07-01

    Recursive segmentation is a procedure that partitions a DNA sequence into domains with a homogeneous composition of the four nucleotides A, C, G and T. This procedure can also be applied to any sequence converted from a DNA sequence, such as to a binary strong(G + C)/weak(A + T) sequence, to a binary sequence indicating the presence or absence of the dinucleotide CpG, or to a sequence indicating both the base and the codon position information. We apply various conversion schemes in order to address the following five DNA sequence analysis problems: isochore mapping, CpG island detection, locating the origin and terminus of replication in bacterial genomes, finding complex repeats in telomere sequences, and delineating coding and noncoding regions. We find that the recursive segmentation procedure can successfully detect isochore borders, CpG islands, and the origin and terminus of replication, but it needs improvement for detecting complex repeats as well as borders between coding and noncoding regions.

  9. How effective is graphene nanopore geometry on DNA sequencing?

    CERN Document Server

    Satarifard, Vahid; Ejtehadi, Mohammad Reza

    2015-01-01

    In this paper we investigate the effects of graphene nanopore geometry on homopolymer ssDNA pulling process through nanopore using steered molecular dynamic (SMD) simulations. Different graphene nanopores are examined including axially symmetric and asymmetric monolayer graphene nanopores as well as five layer graphene polyhedral crystals (GPC). The pulling force profile, moving fashion of ssDNA, work done in irreversible DNA pulling and orientations of DNA bases near the nanopore are assessed. Simulation results demonstrate the strong effect of the pore shape as well as geometrical symmetry on free energy barrier, orientations and dynamic of DNA translocation through graphene nanopore. Our study proposes that the symmetric circular geometry of monolayer graphene nanopore with high pulling velocity can be used for DNA sequencing.

  10. Qualitatively predicting acetylation and methylation areas in DNA sequences.

    Science.gov (United States)

    Pham, Tho Hoan; Tran, Dang Hung; Ho, Tu Bao; Satou, Kenji; Valiente, Gabriel

    2005-01-01

    Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form nucleosomes. Nucleosome occupancy, acetylation, and methylation, which have a major impact on all nuclear processes involving DNA, have been recently mapped across the yeast genome using chromatin immunoprecipitation and DNA microarrays. However, this experimental protocol is laborious and expensive. Moreover, experimental methods often produce noisy results. In this paper, we introduce a computational approach to the qualitative prediction of nucleosome occupancy, acetylation, and methylation areas in DNA sequences. Our method uses support vector machines to discriminate between DNA areas with high and low relative occupancy, acetylation, or methylation, and rank k-gram features based on their support for these DNA modifications. Experimental results on the yeast genome reveal genetic area preferences of nucleosome occupancy, acetylation, and methylation that are consistent with previous studies. Supplementary files are available from http://www.jaist.ac.jp/~tran/nucleosome/.

  11. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Directory of Open Access Journals (Sweden)

    Baldwin Stephen A

    2011-03-01

    Full Text Available Abstract Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/.

  12. PIMS sequencing extension: a laboratory information management system for DNA sequencing facilities

    Science.gov (United States)

    2011-01-01

    Background Facilities that provide a service for DNA sequencing typically support large numbers of users and experiment types. The cost of services is often reduced by the use of liquid handling robots but the efficiency of such facilities is hampered because the software for such robots does not usually integrate well with the systems that run the sequencing machines. Accordingly, there is a need for software systems capable of integrating different robotic systems and managing sample information for DNA sequencing services. In this paper, we describe an extension to the Protein Information Management System (PIMS) that is designed for DNA sequencing facilities. The new version of PIMS has a user-friendly web interface and integrates all aspects of the sequencing process, including sample submission, handling and tracking, together with capture and management of the data. Results The PIMS sequencing extension has been in production since July 2009 at the University of Leeds DNA Sequencing Facility. It has completely replaced manual data handling and simplified the tasks of data management and user communication. Samples from 45 groups have been processed with an average throughput of 10000 samples per month. The current version of the PIMS sequencing extension works with Applied Biosystems 3130XL 96-well plate sequencer and MWG 4204 or Aviso Theonyx liquid handling robots, but is readily adaptable for use with other combinations of robots. Conclusions PIMS has been extended to provide a user-friendly and integrated data management solution for DNA sequencing facilities that is accessed through a normal web browser and allows simultaneous access by multiple users as well as facility managers. The system integrates sequencing and liquid handling robots, manages the data flow, and provides remote access to the sequencing results. The software is freely available, for academic users, from http://www.pims-lims.org/. PMID:21385349

  13. Label-free DNA sequencing using Millikan detection.

    Science.gov (United States)

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-10-15

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucleotides attached to the bead. The velocity of beads tethered via a polymer to a microfluidic channel and subjected to an oscillating electric field was measured using dark-field microscopy and used to determine how many nucleotides were incorporated during each sequencing-by-synthesis cycle. Increases in bead velocity of approximately 1% were reliably detected during DNA polymerization, allowing for sequencing of short DNA templates. The method could lead to a low-cost, high-throughput sequencing platform that could enable routine sequencing in medical applications.

  14. Nonlinear Aspects of Coding and Noncoding DNA Sequences

    Science.gov (United States)

    Stanley, H. Eugene

    2001-03-01

    One of the most remarkable features of human DNA is that 97 percent is not coding for proteins. Studying this noncoding DNA is important both for practical reasons (to distinguish it from the coding DNA as the human genome is sequenced), and for scientific reasons (why is the noncoding DNA present at all, if it appears to have little if any purpose?). In this talk we discuss new methods of analyzing coding and noncoding DNA in parallel, with a view to uncovering different statistical properties of the two kinds of DNA. We also speculate on possible roles of noncoding DNA. The work reported here was carried out primarily by P. Bernaola-Galvan, S. V. Buldyrev, P. Carpena, N. Dokholyan, A. L. Goldberger, I. Grosse, S. Havlin, H. Herzel, J. L. Oliver, C.-K. Peng, M. Simons, H. E. Stanley, R. H. R. Stanley, and G. M. Viswanathan. [1] For a brief overview in language that physicists can understand, see H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, and M. Simons, "Scaling Features of Noncoding DNA" [Proc. XII Max Born Symposium, Wroclaw], Physica A 273, 1-18 (1999). [2] I. Grosse, H. Herzel, S. V. Buldyrev, and H. E. Stanley, "Species Independence of Mutual Information in Coding and Noncoding DNA," Phys. Rev. E 61, 5624-5629 (2000). [3] P. Bernaola-Galvan, I. Grosse, P. Carpena, J. L. Oliver, and H. E. Stanley, "Identification of DNA Coding Regions Using an Entropic Segmentation Method," Phys. Rev. Lett. 84, 1342-1345 (2000). [4] N. Dokholyan, S. V. Buldyrev, S. Havlin, and H. E. Stanley, "Distributions of Dimeric Tandem Repeats in Non-coding and Coding DNA Sequences," J. Theor. Biol. 202, 273-282 (2000). [5] R. H. R. Stanley, N. V. Dokholyan, S. V. Buldyrev, S. Havlin, and H. E. Stanley, "Clumping of Identical Oligonucleotides in Coding and Noncoding DNA Sequences," J. Biomol. Structure and Design 17, 79-87 (1999). [6] N. Dokholyan, S. V. Buldyrev, S. Havlin, and H. E. Stanley, "Distribution of Base Pair Repeats in Coding and Noncoding DNA

  15. Dialects of the DNA uptake sequence in Neisseriaceae.

    Directory of Open Access Journals (Sweden)

    Stephan A Frye

    2013-04-01

    Full Text Available In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS, which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic

  16. Mitochondrial DNA sequence of Onychostoma rara.

    Science.gov (United States)

    Zeng, Chun-Fang; Li, Xiao-Ling; Li, Chuan-Wu; Huang, Xiang-Rong; Wan, Yi-Wen

    2015-01-01

    The complete mitochondrial genome sequence of Onychostoma rara was determined to be 16,590 bp in length and contains 13 protein-coding genes (PCGs), 22 tRNA genes, large (rrnL) and small (rrnS) rRNA and the non-coding control region. Its total A + T content is 55.65%. We also analyzed the structure of control region, 6 CSBs (CSB-1, CSB-2, CSB-3, CSB-D, CSB-E and CSB-F) and 2 bp tandem repeat were detected.

  17. Anonymous Authentication for Smartcards

    Directory of Open Access Journals (Sweden)

    J. Hajny

    2010-06-01

    Full Text Available The paper presents an innovative solution in the field of RFID (Radio-Frequency IDentification smartcard authentication. Currently the smartcards are used for many purposes - e.g. employee identification, library cards, student cards or even identity credentials. Personal identity is revealed to untrustworthy entities every time we use these cards. Such information could later be used without our knowledge and for harmful reasons like shopping pattern scanning or even movement tracking. We present a communication scheme for keeping one’s identity private in this paper. Although our system provides anonymity, it does not allow users to abuse this feature. The system is based on strong cryptographic primitives that provide features never available before. Besides theoretical design of the anonymous authentication scheme and its analysis we also provide implementation results.

  18. Noninvasive prenatal paternity testing (NIPAT) through maternal plasma DNA sequencing

    DEFF Research Database (Denmark)

    Jiang, Haojun; Xie, Yifan; Li, Xuchao

    2016-01-01

    Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we...... developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels...... paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future....

  19. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    Science.gov (United States)

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The application to these ultrathin gels of electric fields up to 250 volts/cm permits the rapid separation of multiple DNA sequencing reactions in parallel. When used in conjunction with 32P-based autoradiography, the DNA bands appear substantially sharper than those obtained in conventional electrophoresis. This increased sharpness permits shorter autoradiographic exposure times and longer sequence reads. Images PMID:1870968

  20. Facilitated diffusion on mobile DNA: configurational traps and sequence heterogeneity

    CERN Document Server

    Brackley, C A; Marenduzzo, D; 10.1103/PhysRevLett.109.168103

    2012-01-01

    We present Brownian dynamics simulations of the facilitated diffusion of a protein, modelled as a sphere with a binding site on its surface, along DNA, modelled as a semi-flexible polymer. We consider both the effect of DNA organisation in 3D, and of sequence heterogeneity. We find that in a network of DNA loops, as are thought to be present in bacterial DNA, the search process is very sensitive to the spatial location of the target within such loops. Therefore, specific genes might be repressed or promoted by changing the local topology of the genome. On the other hand, sequence heterogeneity creates traps which normally slow down facilitated diffusion. When suitably positioned, though, these traps can, surprisingly, render the search process much more efficient.

  1. SNP discovery using Paired-End RAD-tag sequencing on pooled genomic DNA of Sisymbrium austriacum (Brassicaceae).

    Science.gov (United States)

    Vandepitte, K; Honnay, O; Mergeay, J; Breyne, P; Roldán-Ruiz, I; De Meyer, T

    2013-03-01

    Single nucleotide polymorphisms SNPs are rapidly replacing anonymous markers in population genomic studies, but their use in non model organisms is hampered by the scarcity of cost-effective approaches to uncover genome-wide variation in a comprehensive subset of individuals. The screening of one or only a few individuals induces ascertainment bias. To discover SNPs for a population genomic study of the Pyrenean rocket (Sisymbrium austriacum subsp. chrysanthum), we undertook a pooled RAD-PE (Restriction site Associated DNA Paired-End sequencing) approach. RAD tags were generated from the PstI-digested pooled genomic DNA of 12 individuals sampled across the species distribution range and paired-end sequenced using Illumina technology to produce ~24.5 Mb of sequences, covering ~7% of the specie's genome. Sequences were assembled into ~76 000 contigs with a mean length of 323 bp (N(50)  = 357 bp, sequencing depth = 24x). In all, >15 000 SNPs were called, of which 47% were annotated in putative genic regions based on homology with the Arabidopsis thaliana genome. Gene ontology (GO) slim categorization demonstrated that the identified SNPs covered extant genic variation well. The validation of 300 SNPs on a larger set of individuals using a KASPar assay underpinned the utility of pooled RAD-PE as an inexpensive genome-wide SNP discovery technique (success rate: 87%). In addition to SNPs, we discovered >600 putative SSR markers.

  2. Vector sequences - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...od - Number of data entries 7 entries - Joomla SEF URLs by Artio About This Database Database Description Download License Update His...tory of This Database Site Policy | Contact Us Vector sequences - Budding yeast cDNA sequencing project | LSDB Archive ...

  3. Label-Free DNA Sequencing Using Millikan Detection

    OpenAIRE

    Dettloff, Roger; Leiske, Danielle; Chow, Andrea; Farinas, Javier

    2015-01-01

    A label-free method for DNA sequencing based on the principle of the Millikan oil drop experiment was developed. This sequencing-by-synthesis approach sensed increases in bead charge as nucleotides were added by a polymerase to DNA templates attached to beads. The balance between an electrical force, which was dependent on the number of nucleotide charges on a bead, and opposing hydrodynamic drag and restoring tether forces resulted in a bead velocity that was a function of the number of nucl...

  4. Anaplasma phagocytophilum in Danish sheep: confirmation by DNA sequencing

    Directory of Open Access Journals (Sweden)

    Thamsborg Stig M

    2009-12-01

    Full Text Available Abstract Background The presence of Anaplasma phagocytophilum, an Ixodes ricinus transmitted bacterium, was investigated in two flocks of Danish grazing lambs. Direct PCR detection was performed on DNA extracted from blood and serum with subsequent confirmation by DNA sequencing. Methods 31 samples obtained from clinically normal lambs in 2000 from Fussingø, Jutland and 12 samples from ten lambs and two ewes from a clinical outbreak at Feddet, Zealand in 2006 were included in the study. Some of the animals from Feddet had shown clinical signs of polyarthritis and general unthriftiness prior to sampling. DNA extraction was optimized from blood and serum and detection achieved by a 16S rRNA targeted PCR with verification of the product by DNA sequencing. Results Five DNA extracts were found positive by PCR, including two samples from 2000 and three from 2006. For both series of samples the product was verified as A. phagocytophilum by DNA sequencing. Conclusions A. phagocytophilum was detected by molecular methods for the first time in Danish grazing lambs during the two seasons investigated (2000 and 2006.

  5. Preparation of next-generation sequencing libraries from damaged DNA.

    Science.gov (United States)

    Briggs, Adrian W; Heyn, Patricia

    2012-01-01

    Next-generation sequencing (NGS) has revolutionized ancient DNA research, especially when combined with high-throughput target enrichment methods. However, attaining high sequencing depth and accuracy from samples often remains problematic due to the damaged state of ancient DNA, in particular the extremely low copy number of ancient DNA and the abundance of uracil residues derived from cytosine deamination that lead to miscoding errors. It is therefore critical to use a highly efficient procedure for conversion of a raw DNA extract into an adaptor-ligated sequencing library, and equally important to reduce errors from uracil residues. We present a protocol for NGS library preparation that allows highly efficient conversion of DNA fragments into an adaptor-ligated form. The protocol incorporates an option to remove the vast majority of uracil miscoding lesions as part of the library preparation process. The procedure requires only two spin column purification steps and no gel purification or bead handling. Starting from an aliquot of DNA extract, a finished, highly amplified library can be generated in 5 h, or under 3 h if uracil removal is not required.

  6. Sequence-selective DNA recognition with peptide-bisbenzamidine conjugates.

    Science.gov (United States)

    Sánchez, Mateo I; Vázquez, Olalla; Vázquez, M Eugenio; Mascareñas, José L

    2013-07-22

    Transcription factors (TFs) are specialized proteins that play a key role in the regulation of genetic expression. Their mechanism of action involves the interaction with specific DNA sequences, which usually takes place through specialized domains of the protein. However, achieving an efficient binding usually requires the presence of the full protein. This is the case for bZIP and zinc finger TF families, which cannot interact with their target sites when the DNA binding fragments are presented as isolated monomers. Herein it is demonstrated that the DNA binding of these monomeric peptides can be restored when conjugated to aza-bisbenzamidines, which are readily accessible molecules that interact with A/T-rich sites by insertion into their minor groove. Importantly, the fluorogenic properties of the aza-benzamidine unit provide details of the DNA interaction that are eluded in electrophoresis mobility shift assays (EMSA). The hybrids based on the GCN4 bZIP protein preferentially bind to composite sequences containing tandem bisbenzamidine-GCN4 binding sites (TCAT⋅AAATT). Fluorescence reverse titrations show an interesting multiphasic profile consistent with the formation of competitive nonspecific complexes at low DNA/peptide ratios. On the other hand, the conjugate with the DNA binding domain of the zinc finger protein GAGA binds with high affinity (KD≈12 nM) and specificity to a composite AATTT⋅GAGA sequence containing both the bisbenzamidine and the TF consensus binding sites.

  7. Perspectives of DNA microarray and next-generation DNA sequencing technologies

    Institute of Scientific and Technical Information of China (English)

    TENG XiaoKun; XIAO HuaSheng

    2009-01-01

    DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequenc-ing method was first introduced by the 454 Company in 2003, immediately followed by the establish-ment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

  8. Real-time DNA sequencing from single polymerase molecules.

    Science.gov (United States)

    Eid, John; Fehr, Adrian; Gray, Jeremy; Luong, Khai; Lyle, John; Otto, Geoff; Peluso, Paul; Rank, David; Baybayan, Primo; Bettman, Brad; Bibillo, Arkadiusz; Bjornson, Keith; Chaudhuri, Bidhan; Christians, Frederick; Cicero, Ronald; Clark, Sonya; Dalal, Ravindra; Dewinter, Alex; Dixon, John; Foquet, Mathieu; Gaertner, Alfred; Hardenbol, Paul; Heiner, Cheryl; Hester, Kevin; Holden, David; Kearns, Gregory; Kong, Xiangxu; Kuse, Ronald; Lacroix, Yves; Lin, Steven; Lundquist, Paul; Ma, Congcong; Marks, Patrick; Maxham, Mark; Murphy, Devon; Park, Insil; Pham, Thang; Phillips, Michael; Roy, Joy; Sebra, Robert; Shen, Gene; Sorenson, Jon; Tomaney, Austin; Travers, Kevin; Trulson, Mark; Vieceli, John; Wegener, Jeffrey; Wu, Dawn; Yang, Alicia; Zaccarin, Denis; Zhao, Peter; Zhong, Frank; Korlach, Jonas; Turner, Stephen

    2009-01-02

    We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.

  9. Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing

    Science.gov (United States)

    Chen, K.

    2017-01-01

    With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).

  10. DNA qualification workflow for next generation sequencing of histopathological samples.

    Directory of Open Access Journals (Sweden)

    Michele Simbolo

    Full Text Available Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF tissues, 6 formalin-fixed paraffin-embedded (FFPE tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard

  11. DNA qualification workflow for next generation sequencing of histopathological samples.

    Science.gov (United States)

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  12. High-throughput DNA sequencing: a genomic data manufacturing process.

    Science.gov (United States)

    Huang, G M

    1999-01-01

    The progress trends in automated DNA sequencing operation are reviewed. Technological development in sequencing instruments, enzymatic chemistry and robotic stations has resulted in ever-increasing capacity of sequence data production. This progress leads to a higher demand on laboratory information management and data quality assessment. High-throughput laboratories face the challenge of organizational management, as well as technology management. Engineering principles of process control should be adopted in this biological data manufacturing procedure. While various systems attempt to provide solutions to automate different parts of, or even the entire process, new technical advances will continue to change the paradigm and provide new challenges.

  13. RNA-DNA sequence differences spell genetic code ambiguities

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Michael L

    2013-01-01

    A recent paper in Science by Li et al. 2011(1) reports widespread sequence differences in the human transcriptome between RNAs and their encoding genes termed RNA-DNA differences (RDDs). The findings could add a new layer of complexity to gene expression but the study has been criticized. ...

  14. Decoding long nanopore sequencing reads of natural DNA.

    Science.gov (United States)

    Laszlo, Andrew H; Derrington, Ian M; Ross, Brian C; Brinkerhoff, Henry; Adey, Andrew; Nova, Ian C; Craig, Jonathan M; Langford, Kyle W; Samson, Jenny Mae; Daza, Riza; Doering, Kenji; Shendure, Jay; Gundlach, Jens H

    2014-08-01

    Nanopore sequencing of DNA is a single-molecule technique that may achieve long reads, low cost and high speed with minimal sample preparation and instrumentation. Here, we build on recent progress with respect to nanopore resolution and DNA control to interpret the procession of ion current levels observed during the translocation of DNA through the pore MspA. As approximately four nucleotides affect the ion current of each level, we measured the ion current corresponding to all 256 four-nucleotide combinations (quadromers). This quadromer map is highly predictive of ion current levels of previously unmeasured sequences derived from the bacteriophage phi X 174 genome. Furthermore, we show nanopore sequencing reads of phi X 174 up to 4,500 bases in length, which can be unambiguously aligned to the phi X 174 reference genome, and demonstrate proof-of-concept utility with respect to hybrid genome assembly and polymorphism detection. This work provides a foundation for nanopore sequencing of long, natural DNA strands.

  15. Functionalized nanopore-embedded electrodes for rapid DNA sequencing

    CERN Document Server

    He, Haiying; Pandey, Ravindra; Rocha, Alexandre Reily; Sanvito, Stefano; Grigoriev, Anton; Ahuja, Rajeev; Karna, Shashi P

    2007-01-01

    The determination of a patient's DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design "personalized medicine" [3]. Moreover, statistical studies and comparison of genomes [4] of a large number of individuals are crucial for the analysis of mutations [5] and hereditary diseases, paving the way to preventive medicine [6]. DNA sequencing is, however, currently still a vastly time-consuming and very expensive task [4], consisting of pre-processing steps, the actual sequencing using the Sanger method, and post-processing in the form of data analysis [7]. Here we propose a new approach that relies on functionalized nanopore-embedded electrodes to achieve an unambiguous distinction of the four nucleic acid bases in the DNA sequencing process. This represents a significant improvement over previously studied designs [8,9] which cannot reliably distinguish all four bases of DNA. The transport properties of the setup investigated by us, employing state-o...

  16. DNA sequence handling programs in BASIC for home computers.

    OpenAIRE

    Biro, P A

    1984-01-01

    This paper describes a DNA sequence handling program written entirely in BASIC and designed to be run on an Atari home computer. Many of the features common to more sophisticated programs have been included. The advantage of this program are its convenience, its transportability and its potential for user modification. The disadvantages are lack of sophistication and speed.

  17. POSA : Perl objects for DNA sequencing data analysis

    NARCIS (Netherlands)

    Aerts, JA; Jungerius, BJ; Groenen, MA

    2004-01-01

    Background: Capillary DNA sequencing machines allow the generation of vast amounts of data with little hands-on time. With this expansion of data generation, there is a growing need for automated data processing. Most available software solutions, however, still require user intervention or provide

  18. A simple method encoding linear single strain DNA sequence with natural numbers

    Institute of Scientific and Technical Information of China (English)

    LI Jiye; XU Yuan; ZHANG Wang

    2008-01-01

    A simple method presenting linear single strain DNA (LssDNA) sequence with natural numbers is introduced in this paper. The method presents LssDNA correspondingly with the numerals 1, 2, 3 and 4. After calculation, the sequence can be coded in natural numbers which can also be decoded into the DNA sequence. Thus, an LssDNA sequence can be expressed in a natural number and a dot at coordinate axes. In the future, a new LssDNA sequences database termed "DotBank" would be realized in which each LssDNA sequence is determined as a dot.

  19. Solid-State Nanopore-Based DNA Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Zewen Liu

    2016-01-01

    Full Text Available The solid-state nanopore-based DNA sequencing technology is becoming more and more attractive for its brand new future in gene detection field. The challenges that need to be addressed are diverse: the effective methods to detect base-specific signatures, the control of the nanopore’s size and surface properties, and the modulation of translocation velocity and behavior of the DNA molecules. Among these challenges, the realization of the high-quality nanopores with the help of modern micro/nanofabrication technologies is a crucial one. In this paper, typical technologies applied in the field of solid-state nanopore-based DNA sequencing have been reviewed.

  20. Sequence heterogeneity accelerates protein search for targets on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Alexey A.; Kolomeisky, Anatoly B., E-mail: tolya@rice.edu [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  1. Electronic density of states in sequence dependent DNA molecules

    Science.gov (United States)

    de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-09-01

    We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.

  2. The Metadata Anonymization Toolkit

    OpenAIRE

    2012-01-01

    This document summarizes the experience of Julien Voisin during the 2011 edition of the well-known \\emph{Google Summer of Code}. This project is a first step in the domain of metadata anonymization in Free Software. This article is articulated in three parts. First, a state of the art and a categorization of usual metadata, then the privacy policy is exposed/discussed in order to find the right balance between information lost and privacy enhancement. Finally, the specification of the Metadat...

  3. DNA watermarks in non-coding regulatory sequences

    Directory of Open Access Journals (Sweden)

    Pyka Martin

    2009-07-01

    Full Text Available Abstract Background DNA watermarks can be applied to identify the unauthorized use of genetically modified organisms. It has been shown that coding regions can be used to encrypt information into living organisms by using the DNA-Crypt algorithm. Yet, if the sequence of interest presents a non-coding DNA sequence, either the function of a resulting functional RNA molecule or a regulatory sequence, such as a promoter, could be affected. For our studies we used the small cytoplasmic RNA 1 in yeast and the lac promoter region of Escherichia coli. Findings The lac promoter was deactivated by the integrated watermark. In addition, the RNA molecules displayed altered configurations after introducing a watermark, but surprisingly were functionally intact, which has been verified by analyzing the growth characteristics of both wild type and watermarked scR1 transformed yeast cells. In a third approach we introduced a second overlapping watermark into the lac promoter, which did not affect the promoter activity. Conclusion Even though the watermarked RNA and one of the watermarked promoters did not show any significant differences compared to the wild type RNA and wild type promoter region, respectively, it cannot be generalized that other RNA molecules or regulatory sequences behave accordingly. Therefore, we do not recommend integrating watermark sequences into regulatory regions.

  4. DNA sequence analysis of newly formed telomeres in yeast.

    Science.gov (United States)

    Wang, S S; Pluta, A F; Zakian, V A

    1989-01-01

    A plasmid can be maintained in linear form in baker's yeast if it bears telomeric sequences at each end. Linear plasmids bearing cloned telomeric C4A4 repeats at one end (test end) and a natural DNA terminus with approximately 300 bps of C4A2 repeats at the other or control end were introduced by transformation into yeast. Test-end termini of 28 to 112 bps supported telomere formation. During telomere formation, C4A2 repeats were often transferred to test-end termini. To determine in greater detail the fate of test-end sequences on these plasmids after propagation in yeast, test-end telomeres were subcloned into E. coli and sequenced. DNA sequencing established a number of points about the molecular events involved in telomere formation in yeast. The results suggest that there are at least two mechanisms for telomere formation in yeast. One is mediated by a recombination event that requires neither a long stretch of homology nor the RAD52 gene product. The other mechanism is by addition of C1-3A repeats to the termini of linear DNA molecules. The telomeric sequence required to support C1-3A addition need not be at the very end of a molecule for telomere formation.

  5. A Nano-Biosensor for DNA Sequence Detection Using Absorption Spectra of SWNT-DNA Composite

    Directory of Open Access Journals (Sweden)

    J. Bansal

    2011-01-01

    Full Text Available A biosensor based on Single Walled Carbon Nanotube (SWNT-Poly (GTn ssDNA hybrid has been developed for medical diagnostics. The absorption spectrum of this assay is determined with the help of a Shimadzu UV-VIS-NIR spectrophotometer. Two distinct bands each containing three peaks corresponding to first and second van Hove singularities in the density of states of the nanotubes were observed in the absorption spectrum. When a single-stranded DNA (ssDNA having a sequence complementary to probic DNA is added to the ssDNA-SWNT conjugates, hybridization takes place, which causes the red shift of absorption spectrum of nanotubes. On the other hand, when the DNA is noncomplementary, no shift in the absorption spectrum occurs since hybridization between the DNA and probe does not take place. The red shifting of the spectrum is considered to be due to change in the dielectric environment around nanotubes.

  6. Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers

    Directory of Open Access Journals (Sweden)

    Martin Andrew P

    2009-12-01

    Full Text Available Abstract Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of

  7. Spectral sum rules and search for periodicities in DNA sequences

    Science.gov (United States)

    Chechetkin, V. R.

    2011-04-01

    Periodic patterns play the important regulatory and structural roles in genomic DNA sequences. Commonly, the underlying periodicities should be understood in a broad statistical sense, since the corresponding periodic patterns have been strongly distorted by the random point mutations and insertions/deletions during molecular evolution. The latent periodicities in DNA sequences can be efficiently displayed by Fourier transform. The criteria of significance for observed periodicities are obtained via the comparison versus the counterpart characteristics of the reference random sequences. We show that the restrictions imposed on the significance criteria by the rigorous spectral sum rules can be rationally described with De Finetti distribution. This distribution provides the convenient intermediate asymptotic form between Rayleigh distribution and exact combinatoric theory.

  8. Cloning, characterization, and properties of seven triplet repeat DNA sequences.

    Science.gov (United States)

    Ohshima, K; Kang, S; Larson, J E; Wells, R D

    1996-07-12

    Several neuromuscular and neurodegenerative diseases are caused by genetically unstable triplet repeat sequences (CTG.CAG, CGG.CCG, or AAG.CTT) in or near the responsible genes. We implemented novel cloning strategies with chemically synthesized oligonucleotides to clone seven of the triplet repeat sequences (GTA.TAC, GAT.ATC, GTT.AAC, CAC.GTG, AGG.CCT, TCG.CGA, and AAG.CTT), and the adjoining paper (Ohshima, K., Kang, S., Larson, J. E., and Wells, R. D.(1996) J. Biol. Chem. 271, 16784-16791) describes studies on TTA.TAA. This approach in conjunction with in vivo expansion studies in Escherichia coli enabled the preparation of at least 81 plasmids containing the repeat sequences with lengths of approximately 16 up to 158 triplets in both orientations with varying extents of polymorphisms. The inserts were characterized by DNA sequencing as well as DNA polymerase pausings, two-dimensional agarose gel electrophoresis, and chemical probe analyses to evaluate the capacity to adopt negative supercoil induced non-B DNA conformations. AAG.CTT and AGG.CCT form intramolecular triplexes, and the other five repeat sequences do not form any previously characterized non-B structures. However, long tracts of TCG.CGA showed strong inhibition of DNA synthesis at specific loci in the repeats as seen in the cases of CTG.CAG and CGG.CCG (Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S., and Wells, R. D.(1995) J. Biol. Chem. 270, 27014-27021). This work along with other studies (Wells, R. D.(1996) J. Biol. Chem. 271, 2875-2878) on CTG.CAG, CGG.CCG, and TTA.TAA makes available long inserts of all 10 triplet repeat sequences for a variety of physical, molecular biological, genetic, and medical investigations. A model to explain the reduction in mRNA abundance in Friedreich's ataxia based on intermolecular triplex formation is proposed.

  9. VoSeq: a voucher and DNA sequence web application.

    Directory of Open Access Journals (Sweden)

    Carlos Peña

    Full Text Available There is an ever growing number of molecular phylogenetic studies published, due to, in part, the advent of new techniques that allow cheap and quick DNA sequencing. Hence, the demand for relational databases with which to manage and annotate the amassing DNA sequences, genes, voucher specimens and associated biological data is increasing. In addition, a user-friendly interface is necessary for easy integration and management of the data stored in the database back-end. Available databases allow management of a wide variety of biological data. However, most database systems are not specifically constructed with the aim of being an organizational tool for researchers working in phylogenetic inference. We here report a new software facilitating easy management of voucher and sequence data, consisting of a relational database as back-end for a graphic user interface accessed via a web browser. The application, VoSeq, includes tools for creating molecular datasets of DNA or amino acid sequences ready to be used in commonly used phylogenetic software such as RAxML, TNT, MrBayes and PAUP, as well as for creating tables ready for publishing. It also has inbuilt BLAST capabilities against all DNA sequences stored in VoSeq as well as sequences in NCBI GenBank. By using mash-ups and calls to web services, VoSeq allows easy integration with public services such as Yahoo! Maps, Flickr, Encyclopedia of Life (EOL and GBIF (by generating data-dumps that can be processed with GBIF's Integrated Publishing Toolkit.

  10. Perspectives of DNA microarray and next-generation DNA sequencing technologies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research,in revealing both the structural and functional characteristics of genomes.In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics,systems biology and pharmacogenomics.The next-generation DNA sequencing method was first introduced by the 454 Company in 2003,immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies.Though it has not been long since the first emergence of this technology,with the fast and impressive improvement,the application of this technology has extended to almost all fields of genomics research,as a rival challenging the existing DNA microarray technology.This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

  11. Recent developments in sequence selective minor groove DNA effectors.

    Science.gov (United States)

    Reddy, B S; Sharma, S K; Lown, J W

    2001-04-01

    DNA is a well characterized intracellular target but its large size and sequential nature make it an elusive target for selective drug action. Binding of low molecular weight ligands to DNA causes a wide variety of potential biological responses. In this respect the main consideration is given to recent developments in DNA sequence selective binding agents bearing conjugated effectors because of their potential application in diagnosis and treatment of cancers as well as in molecular biology. Recent progress in the development of cross linked lexitropsin oligopeptides and hairpins, which bind selectively to the minor groove of duplex DNA, is discussed. Bis-distamycins and related lexitropsins show inhibitory activity against HIV-1 and HIV-2 integrases at low nanomolar concentrations. Benzoyl nitrogen mustard analogs of lexitropsins are active against a variety of tumor models. Certain of the bis-benzimidazoles show altered DNA sequence preference and bind to DNA at 5'CG and TG sequences rather than at the preferred AT sites of the parent drug. A comparison of bifunctional bizelesin with monoalkylating adozelesin shows that it appears to have an increased sequence selectivity such that monoalkylating compounds react at more than one site but bizelesin reacts only at sites where there are two suitably positioned alkylation sites. Adozelesin, bizelesin and carzelesin are far more potent as cytotoxic agents than cisplatin or doxorubicin. A new class of 1,2,9,9a-tetrahydrocyclo-propa[c]benz[e]indole-4-one (CBI) analogs i.e., CBI-lexitropsin conjugates arising from the latter leads are also discussed.A number of cyclopropylpyrroloindole (CPI) and CBI-lexitropsin conjugates related to CC-1065 alkylate at the N3 position of adenine in the minor groove of DNA in a sequence specific manner, and also show cytotoxicities in the femtomolar range. The cross linking efficiency of PBD dimers is much greater than that of other cross linkers including cisplatin, and melphalan. A new

  12. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3' to 5' exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  13. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3` to 5` exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  14. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Energy Technology Data Exchange (ETDEWEB)

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  15. Delineating relative homogeneous G+C domains in DNA sequences.

    Science.gov (United States)

    Li, W

    2001-10-03

    The concept of homogeneity of G+C content is always relative and subjective. This point is emphasized and quantified in this paper using a simple example of one sequence segmented into two subsequences. Whether the sequence is homogeneous or not can be answered by whether the two-subsequence model describes the DNA sequence better than the one-sequence model. There are at least three equivalent ways of looking at the 1-to-2 segmentation: Jensen-Shannon divergence measure, log likelihood ratio test, and model selection using Bayesian information criterion. Once a criterion is chosen, a DNA sequence can be recursively segmented into multiple domains. We use one subjective criterion called segmentation strength based on the Bayesian information criterion. Whether or not a sequence is homogeneous and how many domains it has depend on this criterion. We compare six different genome sequences (yeast S. cerevisiae chromosome III and IV, bacterium M. pneumoniae, human major histocompatibility complex sequence, longest contigs in human chromosome 21 and 22) by recursive segmentations at different strength criteria. Results by recursive segmentation confirm that yeast chromosome IV is more homogeneous than yeast chromosome III, human chromosome 21 is more homogeneous than human chromosome 22, and bacterial genomes may not be homogeneous due to short segments with distinct base compositions. The recursive segmentation also provides a quantitative criterion for identifying isochores in human sequences. Some features of our recursive segmentation, such as the possibility of delineating domain borders accurately, are superior to those of the moving-window approach commonly used in such analyses.

  16. Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq).

    Science.gov (United States)

    Graham, Carly F; Glenn, Travis C; McArthur, Andrew G; Boreham, Douglas R; Kieran, Troy; Lance, Stacey; Manzon, Richard G; Martino, Jessica A; Pierson, Todd; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M

    2015-11-01

    Degraded DNA from suboptimal field sampling is common in molecular ecology. However, its impact on techniques that use restriction site associated next-generation DNA sequencing (RADSeq, GBS) is unknown. We experimentally examined the effects of in situDNA degradation on data generation for a modified double-digest RADSeq approach (3RAD). We generated libraries using genomic DNA serially extracted from the muscle tissue of 8 individual lake whitefish (Coregonus clupeaformis) following 0-, 12-, 48- and 96-h incubation at room temperature posteuthanasia. This treatment of the tissue resulted in input DNA that ranged in quality from nearly intact to highly sheared. All samples were sequenced as a multiplexed pool on an Illumina MiSeq. Libraries created from low to moderately degraded DNA (12-48 h) performed well. In contrast, the number of RADtags per individual, number of variable sites, and percentage of identical RADtags retained were all dramatically reduced when libraries were made using highly degraded DNA (96-h group). This reduction in performance was largely due to a significant and unexpected loss of raw reads as a result of poor quality scores. Our findings remained consistent after changes in restriction enzymes, modified fold coverage values (2- to 16-fold), and additional read-length trimming. We conclude that starting DNA quality is an important consideration for RADSeq; however, the approach remains robust until genomic DNA is extensively degraded.

  17. Automated parallel DNA sequencing on multiple channel microchips.

    Science.gov (United States)

    Liu, S; Ren, H; Gao, Q; Roach, D J; Loder, R T; Armstrong, T M; Mao, Q; Blaga, I; Barker, D L; Jovanovich, S B

    2000-05-09

    We report automated DNA sequencing in 16-channel microchips. A microchip prefilled with sieving matrix is aligned on a heating plate affixed to a movable platform. Samples are loaded into sample reservoirs by using an eight-tip pipetting device, and the chip is docked with an array of electrodes in the focal plane of a four-color scanning detection system. Under computer control, high voltage is applied to the appropriate reservoirs in a programmed sequence that injects and separates the DNA samples. An integrated four-color confocal fluorescent detector automatically scans all 16 channels. The system routinely yields more than 450 bases in 15 min in all 16 channels. In the best case using an automated base-calling program, 543 bases have been called at an accuracy of >99%. Separations, including automated chip loading and sample injection, normally are completed in less than 18 min. The advantages of DNA sequencing on capillary electrophoresis chips include uniform signal intensity and tolerance of high DNA template concentration. To understand the fundamentals of these unique features we developed a theoretical treatment of cross-channel chip injection that we call the differential concentration effect. We present experimental evidence consistent with the predictions of the theory.

  18. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes

    DEFF Research Database (Denmark)

    Binladen, Jonas; Wiuf, Carsten Henrik; Gilbert, M. Thomas P.

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in ph...

  19. The influence of DNA sequence on epigenome-induced pathologies

    Directory of Open Access Journals (Sweden)

    Meagher Richard B

    2012-07-01

    Full Text Available Abstract Clear cause-and-effect relationships are commonly established between genotype and the inherited risk of acquiring human and plant diseases and aberrant phenotypes. By contrast, few such cause-and-effect relationships are established linking a chromatin structure (that is, the epitype with the transgenerational risk of acquiring a disease or abnormal phenotype. It is not entirely clear how epitypes are inherited from parent to offspring as populations evolve, even though epigenetics is proposed to be fundamental to evolution and the likelihood of acquiring many diseases. This article explores the hypothesis that, for transgenerationally inherited chromatin structures, “genotype predisposes epitype”, and that epitype functions as a modifier of gene expression within the classical central dogma of molecular biology. Evidence for the causal contribution of genotype to inherited epitypes and epigenetic risk comes primarily from two different kinds of studies discussed herein. The first and direct method of research proceeds by the examination of the transgenerational inheritance of epitype and the penetrance of phenotype among genetically related individuals. The second approach identifies epitypes that are duplicated (as DNA sequences are duplicated and evolutionarily conserved among repeated patterns in the DNA sequence. The body of this article summarizes particularly robust examples of these studies from humans, mice, Arabidopsis, and other organisms. The bulk of the data from both areas of research support the hypothesis that genotypes predispose the likelihood of displaying various epitypes, but for only a few classes of epitype. This analysis suggests that renewed efforts are needed in identifying polymorphic DNA sequences that determine variable nucleosome positioning and DNA methylation as the primary cause of inherited epigenome-induced pathologies. By contrast, there is very little evidence that DNA sequence directly

  20. Spectral sum rules and search for periodicities in DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Chechetkin, V.R., E-mail: chechet@biochip.r [Theoretical Department of Division for Perspective Investigations, Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI), Troitsk, 142190 Moscow Region (Russian Federation)

    2011-04-18

    Periodic patterns play the important regulatory and structural roles in genomic DNA sequences. Commonly, the underlying periodicities should be understood in a broad statistical sense, since the corresponding periodic patterns have been strongly distorted by the random point mutations and insertions/deletions during molecular evolution. The latent periodicities in DNA sequences can be efficiently displayed by Fourier transform. The criteria of significance for observed periodicities are obtained via the comparison versus the counterpart characteristics of the reference random sequences. We show that the restrictions imposed on the significance criteria by the rigorous spectral sum rules can be rationally described with De Finetti distribution. This distribution provides the convenient intermediate asymptotic form between Rayleigh distribution and exact combinatoric theory. - Highlights: We study the significance criteria for latent periodicities in DNA sequences. The constraints imposed by sum rules can be described with De Finetti distribution. It is intermediate between Rayleigh distribution and exact combinatoric theory. Theory is applicable to the study of correlations between different periodicities. The approach can be generalized to the arbitrary discrete Fourier transform.

  1. Early Lyme disease with spirochetemia - diagnosed by DNA sequencing

    Directory of Open Access Journals (Sweden)

    Jones William

    2010-11-01

    Full Text Available Abstract Background A sensitive and analytically specific nucleic acid amplification test (NAAT is valuable in confirming the diagnosis of early Lyme disease at the stage of spirochetemia. Findings Venous blood drawn from patients with clinical presentations of Lyme disease was tested for the standard 2-tier screen and Western Blot serology assay for Lyme disease, and also by a nested polymerase chain reaction (PCR for B. burgdorferi sensu lato 16S ribosomal DNA. The PCR amplicon was sequenced for B. burgdorferi genomic DNA validation. A total of 130 patients visiting emergency room (ER or Walk-in clinic (WALKIN, and 333 patients referred through the private physicians' offices were studied. While 5.4% of the ER/WALKIN patients showed DNA evidence of spirochetemia, none (0% of the patients referred from private physicians' offices were DNA-positive. In contrast, while 8.4% of the patients referred from private physicians' offices were positive for the 2-tier Lyme serology assay, only 1.5% of the ER/WALKIN patients were positive for this antibody test. The 2-tier serology assay missed 85.7% of the cases of early Lyme disease with spirochetemia. The latter diagnosis was confirmed by DNA sequencing. Conclusion Nested PCR followed by automated DNA sequencing is a valuable supplement to the standard 2-tier antibody assay in the diagnosis of early Lyme disease with spirochetemia. The best time to test for Lyme spirochetemia is when the patients living in the Lyme disease endemic areas develop unexplained symptoms or clinical manifestations that are consistent with Lyme disease early in the course of their illness.

  2. A CLIQUE algorithm using DNA computing techniques based on closed-circle DNA sequences.

    Science.gov (United States)

    Zhang, Hongyan; Liu, Xiyu

    2011-07-01

    DNA computing has been applied in broad fields such as graph theory, finite state problems, and combinatorial problem. DNA computing approaches are more suitable used to solve many combinatorial problems because of the vast parallelism and high-density storage. The CLIQUE algorithm is one of the gird-based clustering techniques for spatial data. It is the combinatorial problem of the density cells. Therefore we utilize DNA computing using the closed-circle DNA sequences to execute the CLIQUE algorithm for the two-dimensional data. In our study, the process of clustering becomes a parallel bio-chemical reaction and the DNA sequences representing the marked cells can be combined to form a closed-circle DNA sequences. This strategy is a new application of DNA computing. Although the strategy is only for the two-dimensional data, it provides a new idea to consider the grids to be vertexes in a graph and transform the search problem into a combinatorial problem.

  3. Short sequence effect of ancient DNA on mammoth phylogenetic analyses

    Institute of Scientific and Technical Information of China (English)

    Guilian SHENG; Lianjuan WU; Xindong HOU; Junxia YUAN; Shenghong CHENG; Bojian ZHONG; Xulong LAI

    2009-01-01

    The evolution of Elephantidae has been intensively studied in the past few years, especially after 2006. The molecular approaches have made great contribution to the assumption that the extinct woolly mammoth has a close relationship with the Asian elephant instead of the African elephant. In this study, partial ancient DNA sequences of cytochrome b (cyt b) gene in mitochondrial genome were successfully retrieved from Late Pleistocene Mammuthus primigenius bones collected from Heilongjiang Province in Northeast China. Both the partial and complete homologous cyt b gene sequences and the whole mitochondrial genome sequences extracted from GenBank were aligned and used as datasets for phylogenetic analyses. All of the phylogenetic trees, based on either the partial or the complete cyt b gene, reject the relationship constructed by the whole mitochondrial genome, showing the occurrence of an effect of sequence length of cyt b gene on mammoth phylogenetic analyses.

  4. DNA sequence representation by trianders and determinative degree of nucleotides

    Institute of Scientific and Technical Information of China (English)

    DUPLIJ Diana; DUPLIJ Steven

    2005-01-01

    A new version of DNA walks, where nucleotides are regarded unequal in their contribution to a walk is introduced,which allows us to study thoroughly the "fine structure" of nucleotide sequences. The approach is based on the assumption that nucleotides have an inner abstract characteristic, the determinative degree, which reflects genetic code phenomenological properties and is adjusted to nucleotides physical properties. We consider each codon position independently, which gives three separate walks characterized by different angles and lengths, and that such an object is called triander which reflects the "strength"of branch. A general method for identifying DNA sequence "by triander" which can be treated as a unique "genogram" (or "gene passport") is proposed. The two- and three-dimensional trianders are considered. The difference of sequences fine structure in genes and the intergenic space is shown. A clear triplet signal in coding sequences was found which is absent in the intergenic space and is independent from the sequence length. This paper presents the topological classification oftrianders which can allow us to provide a detailed working out signatures of functionally different genomic regions.

  5. Sequences sufficient for programming imprinted germline DNA methylation defined.

    Directory of Open Access Journals (Sweden)

    Yoon Jung Park

    Full Text Available Epigenetic marks are fundamental to normal development, but little is known about signals that dictate their placement. Insights have been provided by studies of imprinted loci in mammals, where monoallelic expression is epigenetically controlled. Imprinted expression is regulated by DNA methylation programmed during gametogenesis in a sex-specific manner and maintained after fertilization. At Rasgrf1 in mouse, paternal-specific DNA methylation on a differential methylation domain (DMD requires downstream tandem repeats. The DMD and repeats constitute a binary switch regulating paternal-specific expression. Here, we define sequences sufficient for imprinted methylation using two transgenic mouse lines: One carries the entire Rasgrf1 cluster (RC; the second carries only the DMD and repeats (DR from Rasgrf1. The RC transgene recapitulated all aspects of imprinting seen at the endogenous locus. DR underwent proper DNA methylation establishment in sperm and erasure in oocytes, indicating the DMD and repeats are sufficient to program imprinted DNA methylation in germlines. Both transgenes produce a DMD-spanning pit-RNA, previously shown to be necessary for imprinted DNA methylation at the endogenous locus. We show that when pit-RNA expression is controlled by the repeats, it regulates DNA methylation in cis only and not in trans. Interestingly, pedigree history dictated whether established DR methylation patterns were maintained after fertilization. When DR was paternally transmitted followed by maternal transmission, the unmethylated state that was properly established in the female germlines could not be maintained. This provides a model for transgenerational epigenetic inheritance in mice.

  6. Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison

    Directory of Open Access Journals (Sweden)

    Kato Mikio

    2003-01-01

    Full Text Available Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA.

  7. Effect of dephasing on DNA sequencing via transverse electronic transport

    Energy Technology Data Exchange (ETDEWEB)

    Zwolak, Michael [Los Alamos National Laboratory; Krems, Matt [NON LANL; Pershin, Yuriy V [NON LANL; Di Ventra, Massimiliano [NON LANL

    2009-01-01

    We study theoretically the effects of dephasing on DNA sequencing in a nanopore via transverse electronic transport. To do this, we couple classical molecular dynamics simulations with transport calculations using scattering theory. Previous studies, which did not include dephasing, have shown that by measuring the transverse current of a particular base multiple times, one can get distributions of currents for each base that are distinguishable. We introduce a dephasing parameter into transport calculations to simulate the effects of the ions and other fluctuations. These effects lower the overall magnitude of the current, but have little effect on the current distributions themselves. The results of this work further implicate that distinguishing DNA bases via transverse electronic transport has potential as a sequencing tool.

  8. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure tha...

  9. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Bradley Michael Zamft

    Full Text Available High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases--Dpo4 and Klenow exo(---obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+ with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+ and Mg(2+ change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.

  10. An automated annotation tool for genomic DNA sequences using GeneScan and BLAST

    Indian Academy of Sciences (India)

    Andrew M. Lynn; Chakresh Kumar Jain; K. Kosalai; Pranjan Barman; Nupur Thakur; Harish Batra; Alok Bhattacharya

    2001-04-01

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences.

  11. Computational optimisation of targeted DNA sequencing for cancer detection

    DEFF Research Database (Denmark)

    Martinez, Pierre; McGranahan, Nicholas; Birkbak, Nicolai Juul

    2013-01-01

    detection. Dividing 4,467 samples into one discovery and two independent validation cohorts, we show that up to 76% of 10 cancer types harbour at least one mutation in a panel of only 25 genes, with high sensitivity across most tumour types. Our analyses demonstrate that targeting "hotspot" regions would......Despite recent progress thanks to next-generation sequencing technologies, personalised cancer medicine is still hampered by intra-tumour heterogeneity and drug resistance. As most patients with advanced metastatic disease face poor survival, there is need to improve early diagnosis. Analysing...... circulating tumour DNA (ctDNA) might represent a non-invasive method to detect mutations in patients, facilitating early detection. In this article, we define reduced gene panels from publicly available datasets as a first step to assess and optimise the potential of targeted ctDNA scans for early tumour...

  12. Similarity Estimation Between DNA Sequences Based on Local Pattern Histograms of Binary Images

    Institute of Scientific and Technical Information of China (English)

    Yusei Kobori; Satoshi Mizuta

    2016-01-01

    Graphical representation of DNA sequences is one of the most popular techniques for alignment-free sequence comparison. Here, we propose a new method for the feature extraction of DNA sequences represented by binary images, by estimating the similarity between DNA sequences using the frequency histograms of local bitmap patterns of images. Our method shows linear time complexity for the length of DNA sequences, which is practical even when long sequences, such as whole genome sequences, are compared. We tested five distance measures for the estimation of sequence similarities, and found that the histogram intersection and Manhattan distance are the most appropriate ones for phylogenetic analyses.

  13. Rapid sequencing of DNA based on single-molecule detection

    Science.gov (United States)

    Soper, Steven A.; Davis, Lloyd M.; Fairfield, Frederick R.; Hammond, Mark L.; Harger, Carol A.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.; Nutter, Harvey L.; Shera, E. Brooks; Simpson, Daniel J.

    1991-07-01

    Sequencing the human genome is a major undertaking considering the large number of nucleotides present in the genome and the slow methods currently available to perform the task. The authors have recently reported on a scheme to sequence DNA rapidly using a non-gel based technique. The concept is based upon the incorporation of fluorescently labeled nucleotides into a strand of DNA, isolation and manipulation of a labeled DNA fragment and the detection of single nucleotides using ultra-sensitive laser-induced fluorescence detection following their cleavage from the fragment. Detection of individual fluorophores in the liquid phase was accomplished with time-gated detection following pulsed-laser excitation. The photon bursts from individual rhodamine 6G (R6G) molecules travelling through a laser beam have been observed, as have bursts from single fluorescently modified nucleotides. Using two different biotinylated nucleotides as a model system for fluorescently labeled nucleotides, the authors have observed synthesis of the complementary copy of M13 bacteriophage. Work with fluorescently labeled nucleotides is underway. Individual molecules of DNA attached to a microbead have been observed and manipulated with an epifluorescence microscope.

  14. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification.

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2009-05-01

    To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.

  15. A DNA sequence alignment algorithm using quality information and a fuzzy inference method

    Institute of Scientific and Technical Information of China (English)

    Kwangbaek Kim; Minhwan Kim; Youngwoon Woo

    2008-01-01

    DNA sequence alignment algorithms in computational molecular biology have been improved by diverse methods.In this paper.We propose a DNA sequence alignment that Uses quality information and a fuzzy inference method developed based on the characteristics of DNA fragments and a fuzzy logic system in order to improve conventional DNA sequence alignment methods that uses DNA sequence quality information.In conventional algorithms.DNA sequence alignment scores are calculated by the global sequence alignment algorithm proposed by Needleman-Wunsch,which is established by using quality information of each DNA fragment.However,there may be errors in the process of calculating DNA sequence alignment scores when the quality of DNA fragment tips is low.because only the overall DNA sequence quality information are used.In our proposed method.an exact DNA sequence alignment can be achieved in spite of the low quality of DNA fragment tips by improvement of conventional algorithms using quality information.Mapping score parameters used to calculate DNA sequence alignment scores are dynamically adjusted by the fuzzy logic system utilizing lengths of DNA fragments and frequencies of low quality DNA bases in the fragments.From the experiments by applying real genome data of National Center for Bioteclmology Information,we could see that the proposed method is more efficient than conventional algorithms.

  16. Artificial intelligence approach in analysis of DNA sequences.

    Science.gov (United States)

    Brézillon, P J; Zaraté, P; Saci, F

    1993-01-01

    We present an approach for designing a knowledge-based system, called Sequence Acquisition In Context (SAIC), that will be able to cooperate with a biologist in the analysis of DNA sequences. The main task of the system is the acquisition of the expert knowledge that the biologist uses for solving ambiguities from gel autoradiograms, with the aim of re-using it later for solving similar ambiguities. The various types of expert knowledge constitute what we call the contextual knowledge of the sequence analysis. Contextual knowledge deals with the unavoidable problems that are common in the study of the living material (eg noise on data, difficulties of observations). Indeed, the analysis of DNA sequences from autoradiograms belongs to an emerging and promising area of investigation, namely reasoning with images. The SAIC project is developed in a theoretical framework that is shared with other applications. Not all tasks have the same importance in each application. We use this observation for designing an intelligent assistant system with three applications. In the SAIC project, we focus on knowledge acquisition, human-computer interaction and explanation. The project will benefit research in the two other applications. We also discuss our SAIC project in the context of large international projects that aim to re-use and share knowledge in a repository.

  17. Model identification for DNA sequence-structure relationships.

    Science.gov (United States)

    Hawley, Stephen Dwyer; Chiu, Anita; Chizeck, Howard Jay

    2006-11-01

    We investigate the use of algebraic state-space models for the sequence dependent properties of DNA. By considering the DNA sequence as an input signal, rather than using an all atom physical model, computational efficiency is achieved. A challenge in deriving this type of model is obtaining its structure and estimating its parameters. Here we present two candidate model structures for the sequence dependent structural property Slide and a method of encoding the models so that a recursive least squares algorithm can be applied for parameter estimation. These models are based on the assumption that the value of Slide at a base-step is determined by the surrounding tetranucleotide sequence. The first model takes the four bases individually as inputs and has a median root mean square deviation of 0.90 A. The second model takes the four bases pairwise and has a median root mean square deviation of 0.88 A. These values indicate that the accuracy of these models is within the useful range for structure prediction. Performance is comparable to published predictions of a more physically derived model, at significantly less computational cost.

  18. DNA sequence chromatogram browsing using JAVA and CORBA.

    Science.gov (United States)

    Parsons, J D; Buehler, E; Hillier, L

    1999-03-01

    DNA sequence chromatograms (traces) are the primary data source for all large-scale genomic and expressed sequence tags (ESTs) sequencing projects. Access to the sequencing trace assists many later analyses, for example contig assembly and polymorphism detection, but obtaining and using traces is problematic. Traces are not collected and published centrally, they are much larger than the base calls derived from them, and viewing them requires the interactivity of a local graphical client with local data. To provide efficient global access to DNA traces, we developed a client/server system based on flexible Java components integrated into other applications including an applet for use in a WWW browser and a stand-alone trace viewer. Client/server interaction is facilitated by CORBA middleware which provides a well-defined interface, a naming service, and location independence. [The software is packaged as a Jar file available from the following URL: http://www.ebi.ac.uk/jparsons. Links to working examples of the trace viewers can be found at http://corba.ebi.ac.uk/EST. All the Washington University mouse EST traces are available for browsing at the same URL.

  19. DNA Sequencing via Quantum Mechanics and Machine Learning

    CERN Document Server

    Yuen, Henry; Zhang, Kevin J; Nomura, Ken-ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya

    2010-01-01

    Rapid sequencing of individual human genome is prerequisite to genomic medicine, where diseases will be prevented by preemptive cures. Quantum-mechanical tunneling through single-stranded DNA in a solid-state nanopore has been proposed for rapid DNA sequencing, but unfortunately the tunneling current alone cannot distinguish the four nucleotides due to large fluctuations in molecular conformation and solvent. Here, we propose a machine-learning approach applied to the tunneling current-voltage (I-V) characteristic for efficient discrimination between the four nucleotides. We first combine principal component analysis (PCA) and fuzzy c-means (FCM) clustering to learn the "fingerprints" of the electronic density-of-states (DOS) of the four nucleotides, which can be derived from the I-V data. We then apply the hidden Markov model and the Viterbi algorithm to sequence a time series of DOS data (i.e., to solve the sequencing problem). Numerical experiments show that the PCA-FCM approach can classify unlabeled DOS ...

  20. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Science.gov (United States)

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  1. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    Directory of Open Access Journals (Sweden)

    Chun-Tien Chang

    2012-01-01

    Full Text Available The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs, insertion-deletions (indels, short tandem repeats (STRs, and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR, which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS; (iii determine human papilloma virus (HPV genotypes by searching current viral databases in cases of double infections; (iv estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4 and its paralog HSPDP3.

  2. Mixed sequence reader: a program for analyzing DNA sequences with heterozygous base calling.

    Science.gov (United States)

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3.

  3. On Backward-Style Anonymity Verification

    Science.gov (United States)

    Kawabe, Yoshinobu; Mano, Ken; Sakurada, Hideki; Tsukada, Yasuyuki

    Many Internet services and protocols should guarantee anonymity; for example, an electronic voting system should guarantee to prevent the disclosure of who voted for which candidate. To prove trace anonymity, which is an extension of the formulation of anonymity by Schneider and Sidiropoulos, this paper presents an inductive method based on backward anonymous simulations. We show that the existence of an image-finite backward anonymous simulation implies trace anonymity. We also demonstrate the anonymity verification of an e-voting protocol (the FOO protocol) with our backward anonymous simulation technique. When proving the trace anonymity, this paper employs a computer-assisted verification tool based on a theorem prover.

  4. From DNA sequence to transcriptional behaviour: a quantitative approach.

    Science.gov (United States)

    Segal, Eran; Widom, Jonathan

    2009-07-01

    Complex transcriptional behaviours are encoded in the DNA sequences of gene regulatory regions. Advances in our understanding of these behaviours have been recently gained through quantitative models that describe how molecules such as transcription factors and nucleosomes interact with genomic sequences. An emerging view is that every regulatory sequence is associated with a unique binding affinity landscape for each molecule and, consequently, with a unique set of molecule-binding configurations and transcriptional outputs. We present a quantitative framework based on existing methods that unifies these ideas. This framework explains many experimental observations regarding the binding patterns of factors and nucleosomes and the dynamics of transcriptional activation. It can also be used to model more complex phenomena such as transcriptional noise and the evolution of transcriptional regulation.

  5. Maternal Plasma DNA and RNA Sequencing for Prenatal Testing.

    Science.gov (United States)

    Tamminga, Saskia; van Maarle, Merel; Henneman, Lidewij; Oudejans, Cees B M; Cornel, Martina C; Sistermans, Erik A

    2016-01-01

    Cell-free DNA (cfDNA) testing has recently become indispensable in diagnostic testing and screening. In the prenatal setting, this type of testing is often called noninvasive prenatal testing (NIPT). With a number of techniques, using either next-generation sequencing or single nucleotide polymorphism-based approaches, fetal cfDNA in maternal plasma can be analyzed to screen for rhesus D genotype, common chromosomal aneuploidies, and increasingly for testing other conditions, including monogenic disorders. With regard to screening for common aneuploidies, challenges arise when implementing NIPT in current prenatal settings. Depending on the method used (targeted or nontargeted), chromosomal anomalies other than trisomy 21, 18, or 13 can be detected, either of fetal or maternal origin, also referred to as unsolicited or incidental findings. For various biological reasons, there is a small chance of having either a false-positive or false-negative NIPT result, or no result, also referred to as a "no-call." Both pre- and posttest counseling for NIPT should include discussing potential discrepancies. Since NIPT remains a screening test, a positive NIPT result should be confirmed by invasive diagnostic testing (either by chorionic villus biopsy or by amniocentesis). As the scope of NIPT is widening, professional guidelines need to discuss the ethics of what to offer and how to offer. In this review, we discuss the current biochemical, clinical, and ethical challenges of cfDNA testing in the prenatal setting and its future perspectives including novel applications that target RNA instead of DNA.

  6. Chimeric TALE recombinases with programmable DNA sequence specificity.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Fuller, Roberta P; Barbas, Carlos F

    2012-11-01

    Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.

  7. Bacterial DNA Sequence Compression Models Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Armando J. Pinho

    2013-08-01

    Full Text Available It is widely accepted that the advances in DNA sequencing techniques have contributed to an unprecedented growth of genomic data. This fact has increased the interest in DNA compression, not only from the information theory and biology points of view, but also from a practical perspective, since such sequences require storage resources. Several compression methods exist, and particularly, those using finite-context models (FCMs have received increasing attention, as they have been proven to effectively compress DNA sequences with low bits-per-base, as well as low encoding/decoding time-per-base. However, the amount of run-time memory required to store high-order finite-context models may become impractical, since a context-order as low as 16 requires a maximum of 17.2 x 109 memory entries. This paper presents a method to reduce such a memory requirement by using a novel application of artificial neural networks (ANN to build such probabilistic models in a compact way and shows how to use them to estimate the probabilities. Such a system was implemented, and its performance compared against state-of-the art compressors, such as XM-DNA (expert model and FCM-Mx (mixture of finite-context models , as well as with general-purpose compressors. Using a combination of order-10 FCM and ANN, similar encoding results to those of FCM, up to order-16, are obtained using only 17 megabytes of memory, whereas the latter, even employing hash-tables, uses several hundreds of megabytes.

  8. Stability of capillary gels for automated sequencing of DNA.

    Science.gov (United States)

    Swerdlow, H; Dew-Jager, K E; Brady, K; Grey, R; Dovichi, N J; Gesteland, R

    1992-08-01

    Recent interest in capillary gel electrophoresis has been fueled by the Human Genome Project and other large-scale sequencing projects. Advances in gel polymerization techniques and detector design have enabled sequencing of DNA directly in capillaries. Efforts to exploit this technology have been hampered by problems with the reproducibility and stability of gels. Gel instability manifests itself during electrophoresis as a decrease in the current passing through the capillary under a constant voltage. Upon subsequent microscopic examination, bubbles are often visible at or near the injection (cathodic) end of the capillary gel. Gels have been prepared with the polyacrylamide matrix covalently attached to the silica walls of the capillary. These gels, although more stable, still suffer from problems with bubbles. The use of actual DNA sequencing samples also adversely affects gel stability. We examined the mechanisms underlying these disruptive processes by employing polyacrylamide gel-filled capillaries in which the gel was not attached to the capillary wall. Three sources of gel instability were identified. Bubbles occurring in the absence of sample introduction were attributed to electroosmotic force; replacing the denaturant urea with formamide was shown to reduce the frequency of these bubbles. The slow, steady decline in current through capillary sequencing gels interferes with the ability to detect other gel problems. This phenomenon was shown to be a result of ionic depletion at the gel-liquid interface. The decline was ameliorated by adding denaturant and acrylamide monomers to the buffer reservoirs. Sample-induced problems were shown to be due to the presence of template DNA; elimination of the template allowed sample loading to occur without complications.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Choosing the best heuristic for seeded alignment of DNA sequences

    Directory of Open Access Journals (Sweden)

    Buhler Jeremy

    2006-03-01

    Full Text Available Abstract Background Seeded alignment is an important component of algorithms for fast, large-scale DNA similarity search. A good seed matching heuristic can reduce the execution time of genomic-scale sequence comparison without degrading sensitivity. Recently, many types of seed have been proposed to improve on the performance of traditional contiguous seeds as used in, e.g., NCBI BLASTN. Choosing among these seed types, particularly those that use information besides the presence or absence of matching residue pairs, requires practical guidance based on a rigorous comparison, including assessment of sensitivity, specificity, and computational efficiency. This work performs such a comparison, focusing on alignments in DNA outside widely studied coding regions. Results We compare seeds of several types, including those allowing transition mutations rather than matches at fixed positions, those allowing transitions at arbitrary positions ("BLASTZ" seeds, and those using a more general scoring matrix. For each seed type, we use an extended version of our Mandala seed design software to choose seeds with optimized sensitivity for various levels of specificity. Our results show that, on a test set biased toward alignments of noncoding DNA, transition information significantly improves seed performance, while finer distinctions between different types of mismatches do not. BLASTZ seeds perform especially well. These results depend on properties of our test set that are not shared by EST-based test sets with a strong bias toward coding DNA. Conclusion Practical seed design requires careful attention to the properties of the alignments being sought. For noncoding DNA sequences, seeds that use transition information, especially BLASTZ-style seeds, are particularly useful. The Mandala seed design software can be found at http://www.cse.wustl.edu/~yanni/mandala/.

  10. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%.

  11. Sequencing of mitochondrial HV1 and HV2 DNA with length heteroplasmy

    DEFF Research Database (Denmark)

    Rasmussen, E. Michael; Eriksen, Birthe; Larsen, Hans Jakob;

    2003-01-01

    This study presents a fast method for sequencing the poly C/G regions in HV1 and HV2 in the mitochondrial DNA (mtDNA)......This study presents a fast method for sequencing the poly C/G regions in HV1 and HV2 in the mitochondrial DNA (mtDNA)...

  12. Anonymous Broadcast Messages

    Directory of Open Access Journals (Sweden)

    Dragan Lazic

    2013-01-01

    Full Text Available The Dining Cryptographer network (or DC-net is a privacy preserving communication protocol devised by David Chaum for anonymous message publication. A very attractive feature of DC-nets is the strength of its security, which is inherent in the protocol and is not dependent on other schemes, like encryption. Unfortunately the DC-net protocol has a level of complexity that causes it to suffer from exceptional communication overhead and implementation difficulty that precludes its use in many real-world use-cases. We have designed and created a DC-net implementation that uses a pure client-server model, which successfully avoids much of the complexity inherent in the DC-net protocol. We describe the theory of DC-nets and our pure client-server implementation, as well as the compromises that were made to reduce the protocol’s level of complexity. Discussion centers around the details of our implementation of DC-net.

  13. Developmentally programmed excision of internal DNA sequences in Paramecium aurelia.

    Science.gov (United States)

    Gratias, A; Bétermier, M

    2001-01-01

    The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5'-TA-3' dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60,000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.

  14. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    Science.gov (United States)

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene.

  15. DNA sequencing technology, walking with modular primers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, L.

    1996-12-31

    The success of the Human Genome Project depends on the development of adequate technology for rapid and inexpensive DNA sequencing, which will also benefit biomedical research in general. The authors are working on DNA technologies that eliminate primer synthesis, the main bottleneck in sequencing by primer walking. They have developed modular primers that are assembled from three 5-mer, 6-mer or 7-mer modules selected from a presynthesized library of as few as 1,000 oligonucleotides ({double_bond}4, {double_bond}5, {double_bond}7). The three modules anneal contiguously at the selected template site and prime there uniquely, even though each is not unique for the most part when used alone. This technique is expected to speed up primer walking 30 to 50 fold, and reduce the sequencing cost by a factor of 5 to 15. Time and expensive will be saved on primer synthesis itself and even more so due to closed-loop automation of primer walking, made possible by the instant availability of primers. Apart from saving time and cost, closed-loop automation would also minimize the errors and complications associated with human intervention between the walks. The author has also developed two additional approaches to primer-library based sequencing. One involves a branched structure of modular primers which has a distinctly different mechanism of achieving priming specificity. The other introduces the concept of ``Differential Extension with Nucleotide Subsets`` as an approach increasing priming specificity, priming strength and allowing cycle sequencing. These approaches are expected to be more robust than the original version of the modular primer technique.

  16. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  17. Discovering motifs in ranked lists of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Eran Eden

    2007-03-01

    Full Text Available Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray measurements. Several major challenges in sequence motif discovery still require consideration: (i the need for a principled approach to partitioning the data into target and background sets; (ii the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii the need for an appropriate framework for accounting for motif multiplicity; (iv the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs, which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP-chip and CpG methylation data and obtained the following results. (i Identification of 50 novel putative transcription factor (TF binding sites in yeast ChIP-chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked

  18. A MapReduce Framework for DNA Sequencing Data Processing

    Directory of Open Access Journals (Sweden)

    Samy Ghoneimy

    2016-12-01

    Full Text Available Genomics and Next Generation Sequencers (NGS like Illumina Hiseq produce data in the order of ‎‎200 billion base pairs in a single one-week run for a 60x human genome coverage, which ‎requires modern high-throughput experimental technologies that can ‎only be tackled with high performance computing (HPC and specialized software algorithms called ‎‎“short read aligners”. This paper focuses on the implementation of the DNA sequencing as a set of MapReduce programs that will accept a DNA data set as a FASTQ file and finally generate a VCF (variant call format file, which has variants for a given DNA data set. In this paper MapReduce/Hadoop along with Burrows-Wheeler Aligner (BWA, Sequence Alignment/Map (SAM ‎tools, are fully utilized to provide various utilities for manipulating alignments, including sorting, merging, indexing, ‎and generating alignments. The Map-Sort-Reduce process is designed to be suited for a Hadoop framework in ‎which each cluster is a traditional N-node Hadoop cluster to utilize all of the Hadoop features like HDFS, program ‎management and fault tolerance. The Map step performs multiple instances of the short read alignment algorithm ‎‎(BoWTie that run in parallel in Hadoop. The ordered list of the sequence reads are used as input tuples and the ‎output tuples are the alignments of the short reads. In the Reduce step many parallel instances of the Short ‎Oligonucleotide Analysis Package for SNP (SOAPsnp algorithm run in the cluster. Input tuples are sorted ‎alignments for a partition and the output tuples are SNP calls. Results are stored via HDFS, and then archived in ‎SOAPsnp format. ‎ The proposed framework enables extremely fast discovering somatic mutations, inferring population genetical ‎parameters, and performing association tests directly based on sequencing data without explicit genotyping or ‎linkage-based imputation. It also demonstrate that this method achieves comparable

  19. PCR master mixes harbour murine DNA sequences. Caveat emptor!

    Directory of Open Access Journals (Sweden)

    Philip W Tuke

    Full Text Available BACKGROUND: XMRV is the most recently described retrovirus to be found in Man, firstly in patients with prostate cancer (PC and secondly in 67% of patients with chronic fatigue syndrome (CFS and 3.7% of controls. Both disease associations remain contentious. Indeed, a recent publication has concluded that "XMRV is unlikely to be a human pathogen". Subsequently related but different polytropic MLV (pMLV sequences were also reported from the blood of 86.5% of patients with CFS. and 6.8% of controls. Consequently we decided to investigate blood donors for evidence of XMRV/pMLV. METHODOLOGY/PRINCIPAL FINDINGS: Testing of cDNA prepared from the whole blood of 80 random blood donors, generated gag PCR signals from two samples (7C and 9C. These had previously tested negative for XMRV by two other PCR based techniques. To test whether the PCR mix was the source of these sequences 88 replicates of water were amplified using Invitrogen Platinum Taq (IPT and Applied Biosystems Taq Gold LD (ABTG. Four gag sequences (2D, 3F, 7H, 12C were generated with the IPT, a further sequence (12D by ABTG re-amplification of an IPT first round product. Sequence comparisons revealed remarkable similarities between these sequences, endogeous MLVs and the pMLV sequences reported in patients with CFS. CONCLUSIONS/SIGNIFICANCE: Methodologies for the detection of viruses highly homologous to endogenous murine viruses require special caution as the very reagents used in the detection process can be a source of contamination and at a level where it is not immediately apparent. It is suggested that such contamination is likely to explain the apparent presence of pMLV in CFS.

  20. Peptide Synthesis on a Next-Generation DNA Sequencing Platform.

    Science.gov (United States)

    Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R

    2016-09-01

    Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays.

  1. Mitochondrial DNA sequence analysis of patients with 'atypical psychosis'.

    Science.gov (United States)

    Kazuno, An-A; Munakata, Kae; Mori, Kanako; Tanaka, Masashi; Nanko, Shinichiro; Kunugi, Hiroshi; Umekage, Tadashi; Tochigi, Mamoru; Kohda, Kazuhisa; Sasaki, Tsukasa; Akiyama, Tsuyoshi; Washizuka, Shinsuke; Kato, Nobumasa; Kato, Tadafumi

    2005-08-01

    Although classical psychopathological studies have shown the presence of an independent diagnostic category, 'atypical psychosis', most psychotic patients are currently classified into two major diagnostic categories, schizophrenia and bipolar disorder, by the Diagnostic and Statistical Manual of Mental Disorders (4th edn; DSM-IV) criteria. 'Atypical psychosis' is characterized by acute confusion without systematic delusion, emotional instability, and psychomotor excitement or stupor. Such clinical features resemble those seen in organic mental syndrome, and differential diagnosis is often difficult. Because patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) sometimes show organic mental disorder, 'atypical psychosis' may be caused by mutations of mitochondrial DNA (mtDNA) in some patients. In the present study whole mtDNA was sequenced for seven patients with various psychotic disorders, who could be categorized as 'atypical psychosis'. None of them had known mtDNA mutations pathogenic for mitochondrial encephalopathy. Two of seven patients belonged to a subhaplogroup F1b1a with low frequency. These results did not support the hypothesis that clinical presentation of some patients with 'atypical psychosis' is a reflection of subclinical mitochondrial encephalopathy. However, the subhaplogroup F1b1a may be a good target for association study of 'atypical psychosis'.

  2. Entropy and long-range correlations in DNA sequences.

    Science.gov (United States)

    Melnik, S S; Usatenko, O V

    2014-12-01

    We analyze the structure of DNA molecules of different organisms by using the additive Markov chain approach. Transforming nucleotide sequences into binary strings, we perform statistical analysis of the corresponding "texts". We develop the theory of N-step additive binary stationary ergodic Markov chains and analyze their differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain by means of the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses two point correlators instead of probability of block occurring, it makes possible to calculate the entropy of subsequences at much longer distances than with the use of the standard methods. We utilize the obtained analytical result for numerical evaluation of the entropy of coarse-grained DNA texts. We believe that the entropy study can be used for biological classification of living species.

  3. New scoring schema for finding motifs in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Nowzari-Dalini Abbas

    2009-03-01

    Full Text Available Abstract Background Pattern discovery in DNA sequences is one of the most fundamental problems in molecular biology with important applications in finding regulatory signals and transcription factor binding sites. An important task in this problem is to search (or predict known binding sites in a new DNA sequence. For this reason, all subsequences of the given DNA sequence are scored based on an scoring function and the prediction is done by selecting the best score. By assuming no dependency between binding site base positions, most of the available tools for known binding site prediction are designed. Recently Tomovic and Oakeley investigated the statistical basis for either a claim of dependence or independence, to determine whether such a claim is generally true, and they presented a scoring function for binding site prediction based on the dependency between binding site base positions. Our primary objective is to investigate the scoring functions which can be used in known binding site prediction based on the assumption of dependency or independency in binding site base positions. Results We propose a new scoring function based on the dependency between all positions in biding site base positions. This scoring function uses joint information content and mutual information as a measure of dependency between positions in transcription factor binding site. Our method for modeling dependencies is simply an extension of position independency methods. We evaluate our new scoring function on the real data sets extracted from JASPAR and TRANSFAC data bases, and compare the obtained results with two other well known scoring functions. Conclusion The results demonstrate that the new approach improves known binding site discovery and show that the joint information content and mutual information provide a better and more general criterion to investigate the relationships between positions in the TFBS. Our scoring function is formulated by simple

  4. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    Science.gov (United States)

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  5. Indirect readout of DNA sequence by p22 repressor: roles of DNA and protein functional groups in modulating DNA conformation.

    Science.gov (United States)

    Harris, Lydia-Ann; Watkins, Derrick; Williams, Loren Dean; Koudelka, Gerald B

    2013-01-09

    The repressor of bacteriophage P22 (P22R) discriminates between its various DNA binding sites by sensing the identity of non-contacted base pairs at the center of its binding site. The "indirect readout" of these non-contacted bases is apparently based on DNA's sequence-dependent conformational preferences. The structures of P22R-DNA complexes indicate that the non-contacted base pairs at the center of the binding site are in the B' state. This finding suggests that indirect readout and therefore binding site discrimination depend on P22R's ability to either sense and/or impose the B' state on the non-contacted bases of its binding sites. We show here that the affinity of binding sites for P22R depends on the tendency of the central bases to assume the B'-DNA state. Furthermore, we identify functional groups in the minor groove of the non-contacted bases as the essential modulators of indirect readout by P22R. In P22R-DNA complexes, the negatively charged E44 and E48 residues are provocatively positioned near the negatively charged DNA phosphates of the non-contacted nucleotides. The close proximity of the negatively charged groups on protein and DNA suggests that electrostatics may play a key role in the indirect readout process. Changing either of two negatively charged residues to uncharged residues eliminates the ability of P22R to impose structural changes on DNA and to recognize non-contacted base sequence. These findings suggest that these negatively charged amino acids function to force the P22R-bound DNA into the B' state and therefore play a key role in indirect readout by P22R.

  6. Mitochondrial DNA sequence variation in the Anatolian Peninsula (Turkey)

    Indian Academy of Sciences (India)

    Hatice Mergen; Reyhan Öner; Cihan Öner

    2004-04-01

    Throughout human history, the region known today as the Anatolian peninsula (Turkey) has served as a junction connecting the Middle East, Europe and Central Asia, and, thus, has been subject to major population movements. The present study is undertaken to obtain information about the distribution of the existing mitochondrial D-loop sequence variations in the Turkish population of Anatolia. A few studies have previously reported mtDNA sequences in Turks. We attempted to extend these results by analysing a cohort that is not only larger, but also more representative of the Turkish population living in Anatolia. In order to obtain a descriptive picture for the phylogenetic distribution of the mitochondrial genome within Turkey, we analysed mitochondrial D-loop region sequence variations in 75 individuals from different parts of Anatolia by direct sequencing. Analysis of the two hypervariable segments within the noncoding region of the mitochondrial genome revealed the existence of 81 nucleotide mutations at 79 sites. The neighbour-joining tree of Kimura’s distance matrix has revealed the presence of six main clusters, of which H and U are the most common. The data obtained are also compared with several European and Turkic Central Asian populations.

  7. Probabilistic Anonymity and Admissible Schedulers

    CERN Document Server

    Garcia, Flavio D; Sokolova, Ana

    2007-01-01

    When studying safety properties of (formal) protocol models, it is customary to view the scheduler as an adversary: an entity trying to falsify the safety property. We show that in the context of security protocols, and in particular of anonymizing protocols, this gives the adversary too much power; for instance, the contents of encrypted messages and internal computations by the parties should be considered invisible to the adversary. We restrict the class of schedulers to a class of admissible schedulers which better model adversarial behaviour. These admissible schedulers base their decision solely on the past behaviour of the system that is visible to the adversary. Using this, we propose a definition of anonymity: for all admissible schedulers the identity of the users and the observations of the adversary are independent stochastic variables. We also develop a proof technique for typical cases that can be used to proof anonymity: a system is anonymous if it is possible to `exchange' the behaviour of two...

  8. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.

    OpenAIRE

    1994-01-01

    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  9. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements

    Directory of Open Access Journals (Sweden)

    Pareja Eduardo

    2006-03-01

    Full Text Available Abstract Background Mobile elements are involved in genomic rearrangements and virulence acquisition, and hence, are important elements in bacterial genome evolution. The insertion of some specific Insertion Sequences had been associated with repetitive extragenic palindromic (REP elements. Considering that there are a sufficient number of available genomes with described REPs, and exploiting the advantage of the traceability of transposition events in genomes, we decided to exhaustively analyze the relationship between REP sequences and mobile elements. Results This global multigenome study highlights the importance of repetitive extragenic palindromic elements as target sequences for transposases. The study is based on the analysis of the DNA regions surrounding the 981 instances of Insertion Sequence elements with respect to the positioning of REP sequences in the 19 available annotated microbial genomes corresponding to species of bacteria with reported REP sequences. This analysis has allowed the detection of the specific insertion into REP sequences for ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01, ISPpu9 and ISPpu10 in P. putida KT2440, and ISRm22 and ISRm19 in Sinorhizobium meliloti 1021 genome. Preference for insertion in extragenic spaces with REP sequences has also been detected for ISPsy7 in P. syringae DC3000, ISRm5 in S. meliloti and ISNm1106 in Neisseria meningitidis MC58 and Z2491 genomes. Probably, the association with REP elements that we have detected analyzing genomes is only the tip of the iceberg, and this association could be even more frequent in natural isolates. Conclusion Our findings characterize REP elements as hot spots for transposition and reinforce the relationship between REP sequences and genomic plasticity mediated by mobile elements. In addition, this study defines a subset of REP-recognizer transposases with high target selectivity that can be useful in the development of new tools for

  10. Noncontinuously binding loop-out primers for avoiding problematic DNA sequences in PCR and sanger sequencing.

    Science.gov (United States)

    Sumner, Kelli; Swensen, Jeffrey J; Procter, Melinda; Jama, Mohamed; Wooderchak-Donahue, Whitney; Lewis, Tracey; Fong, Michael; Hubley, Lindsey; Schwarz, Monica; Ha, Youna; Paul, Eleri; Brulotte, Benjamin; Lyon, Elaine; Bayrak-Toydemir, Pinar; Mao, Rong; Pont-Kingdon, Genevieve; Best, D Hunter

    2014-09-01

    We present a method in which noncontinuously binding (loop-out) primers are used to exclude regions of DNA that typically interfere with PCR amplification and/or analysis by Sanger sequencing. Several scenarios were tested using this design principle, including M13-tagged PCR primers, non-M13-tagged PCR primers, and sequencing primers. With this technique, a single oligonucleotide is designed in two segments that flank, but do not include, a short region of problematic DNA sequence. During PCR amplification or sequencing, the problematic region is looped-out from the primer binding site, where it does not interfere with the reaction. Using this method, we successfully excluded regions of up to 46 nucleotides. Loop-out primers were longer than traditional primers (27 to 40 nucleotides) and had higher melting temperatures. This method allows the use of a standardized PCR protocol throughout an assay, keeps the number of PCRs to a minimum, reduces the chance for laboratory error, and, above all, does not interrupt the clinical laboratory workflow.

  11. Two Dimensional Yau-Hausdorff Distance with Applications on Comparison of DNA and Protein Sequences.

    Directory of Open Access Journals (Sweden)

    Kun Tian

    Full Text Available Comparing DNA or protein sequences plays an important role in the functional analysis of genomes. Despite many methods available for sequences comparison, few methods retain the information content of sequences. We propose a new approach, the Yau-Hausdorff method, which considers all translations and rotations when seeking the best match of graphical curves of DNA or protein sequences. The complexity of this method is lower than that of any other two dimensional minimum Hausdorff algorithm. The Yau-Hausdorff method can be used for measuring the similarity of DNA sequences based on two important tools: the Yau-Hausdorff distance and graphical representation of DNA sequences. The graphical representations of DNA sequences conserve all sequence information and the Yau-Hausdorff distance is mathematically proved as a true metric. Therefore, the proposed distance can preciously measure the similarity of DNA sequences. The phylogenetic analyses of DNA sequences by the Yau-Hausdorff distance show the accuracy and stability of our approach in similarity comparison of DNA or protein sequences. This study demonstrates that Yau-Hausdorff distance is a natural metric for DNA and protein sequences with high level of stability. The approach can be also applied to similarity analysis of protein sequences by graphic representations, as well as general two dimensional shape matching.

  12. Two Dimensional Yau-Hausdorff Distance with Applications on Comparison of DNA and Protein Sequences.

    Science.gov (United States)

    Tian, Kun; Yang, Xiaoqian; Kong, Qin; Yin, Changchuan; He, Rong L; Yau, Stephen S-T

    2015-01-01

    Comparing DNA or protein sequences plays an important role in the functional analysis of genomes. Despite many methods available for sequences comparison, few methods retain the information content of sequences. We propose a new approach, the Yau-Hausdorff method, which considers all translations and rotations when seeking the best match of graphical curves of DNA or protein sequences. The complexity of this method is lower than that of any other two dimensional minimum Hausdorff algorithm. The Yau-Hausdorff method can be used for measuring the similarity of DNA sequences based on two important tools: the Yau-Hausdorff distance and graphical representation of DNA sequences. The graphical representations of DNA sequences conserve all sequence information and the Yau-Hausdorff distance is mathematically proved as a true metric. Therefore, the proposed distance can preciously measure the similarity of DNA sequences. The phylogenetic analyses of DNA sequences by the Yau-Hausdorff distance show the accuracy and stability of our approach in similarity comparison of DNA or protein sequences. This study demonstrates that Yau-Hausdorff distance is a natural metric for DNA and protein sequences with high level of stability. The approach can be also applied to similarity analysis of protein sequences by graphic representations, as well as general two dimensional shape matching.

  13. Complete genome sequence of chloroplast DNA (cpDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Cusano, Roberto; Costelli, Cristina; Malavasi, Veronica; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete chloroplast genome sequence of Chlorella sorokiniana strain (SAG 111-8 k) is presented in this study. The genome consists of circular chromosomes of 109,811 bp, which encode a total of 109 genes, including 74 proteins, 3 rRNAs and 31 tRNAs. Moreover, introns are not detected and all genes are present in single copy. The overall AT contents of the C. sorokiniana cpDNA is 65.9%, the coding sequence is 59.1% and a large inverted repeat (IR) is not observed.

  14. Statistical methods for detecting periodic fragments in DNA sequence data

    Directory of Open Access Journals (Sweden)

    Ying Hua

    2011-04-01

    Full Text Available Abstract Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT, integer period discrete Fourier transform (IPDFT and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS. Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of

  15. Anti-DNA antibodies: Sequencing, cloning, and expression

    Energy Technology Data Exchange (ETDEWEB)

    Barry, M.M.

    1992-01-01

    To gain some insight into the mechanism of systemic lupus erythematosus, and the interactions involved in proteins binding to DNA four anti-DNA antibodies have been investigated. Two of the antibodies, Hed 10 and Jel 242, have previously been prepared from female NZB/NZW mice which develop an autoimmune disease resembling human SLE. The remaining two antibodies, Jel 72 and Jel 318, have previously been produced via immunization of C57BL/6 mice. The isotypes of the four antibodies investigated in this thesis were determined by an enzyme-linked-immunosorbent assay. All four antibodies contained [kappa] light chains and [gamma]2a heavy chains except Jel 318 which contains a [gamma]2b heavy chain. The complete variable regions of the heavy and light chains of these four antibodies were sequenced from their respective mRNAs. The gene segments and variable gene families expressed in each antibody were identified. Analysis of the genes used in the autoimmune anti-DNA antibodies and those produced by immunization indicated no obvious differences to account for their different origins. Examination of the amino acid residues present in the complementary-determining regions of these four antibodies indicates a preference for aromatic amino acids. Jel 72 and Jel 242 contain three arginine residues in the third complementary-determining region. A single-chain Fv and the variable region of the heavy chain of Hed 10 were expressed in Escherichia coli. Expression resulted in the production of a 26,000 M[sub r] protein and a 15,000 M[sub r] protein. An immunoblot indicated that the 26,000 M[sub r] protein was the Fv for Hed 10, while the 15,000 M[sub r] protein was shown to bind poly (dT). The contribution of the heavy chain to DNA binding was assessed.

  16. Determination of cDNA and genomic DNA sequences of hevamine, a chitinase from the rubber tree Hevea brasiliensis

    NARCIS (Netherlands)

    Bokma, E; Spiering, M; Chow, KS; Mulder, PPMFA; Subroto, T; Beintema, JJ

    2001-01-01

    Hevamine is a chitinase from the rubber tree Hevea brasiliensis and belongs to the family 18 glycosyl hydrolases. This paper describes the cloning of hevamine DNA and cDNA sequences. Hevamine contains a signal peptide at the N-terminus and a putative vacuolar targeting sequence at the C-terminus whi

  17. Polymorphic DNA sequences and their application in paternity testing; Polimorficzne sekwencje DNA i ich zastosowanie w dochodzeniu spornego ojcostwa

    Energy Technology Data Exchange (ETDEWEB)

    Slomski, R. [Polska Akademia Nauk, Poznan (Poland). Zaklad Genetyki Czlowieka]|[Akademia Rolnicza, Poznan (Poland)]|[Laboratorium Genetyki Molekularnej, Poznan (Poland); Kwiatkowska, J.; Chlebowska, H. [Polska Akademia Nauk, Poznan (Poland). Zaklad Genetyki Czlowieka; Siemieniallo, B. [Akademia Rolnicza, Poznan (Poland); Slomska, M. [Laboratorium Genetyki Molekularnej, Poznan (Poland)

    1994-12-31

    Characteristics of polymorphic sequences of DNA, especially satellite, mini satellite and micro satellite sequences are presented. Own experience from the use of multi and single locus analysis of DNA in paternity testing has been compared with the results of research in other laboratories. Critical points of both types of analysis are discussed. (author). 53 refs, 4 figs, 2 tabs.

  18. The DNA sequence of the human X chromosome.

    Science.gov (United States)

    Ross, Mark T; Grafham, Darren V; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R; Burrows, Christine; Bird, Christine P; Frankish, Adam; Lovell, Frances L; Howe, Kevin L; Ashurst, Jennifer L; Fulton, Robert S; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C; Hurles, Matthew E; Andrews, T Daniel; Scott, Carol E; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P; Hunt, Sarah E; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Ainscough, Rachael; Ambrose, Kerrie D; Ansari-Lari, M Ali; Aradhya, Swaroop; Ashwell, Robert I S; Babbage, Anne K; Bagguley, Claire L; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E; Barlow, Karen F; Barrett, Ian P; Bates, Karen N; Beare, David M; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M; Brown, Andrew J; Brown, Mary J; Bonnin, David; Bruford, Elspeth A; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y; Clarke, Graham; Clee, Chris M; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G; Conquer, Jen S; Corby, Nicole; Connor, Richard E; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; Deshazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A; Hawes, Alicia; Heath, Paul D; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J; Huckle, Elizabeth J; Hume, Jennifer; Hunt, Paul J; Hunt, Adrienne R; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J; Joseph, Shirin S; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M; Loulseged, Hermela; Loveland, Jane E; Lovell, Jamieson D; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O'Dell, Christopher N; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V; Pearson, Danita M; Pelan, Sarah E; Perez, Lesette; Porter, Keith M; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A; Schlessinger, David; Schueler, Mary G; Sehra, Harminder K; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M; Shownkeen, Ratna; Skuce, Carl D; Smith, Michelle L; Sotheran, Elizabeth C; Steingruber, Helen E; Steward, Charles A; Storey, Roy; Swann, R Mark; Swarbreck, David; Tabor, Paul E; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C; d'Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L; Whiteley, Mathew N; Wilkinson, Jane E; Willey, David L; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L; Wray, Paul W; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J; Hillier, Ladeana W; Willard, Huntington F; Wilson, Richard K; Waterston, Robert H; Rice, Catherine M; Vaudin, Mark; Coulson, Alan; Nelson, David L; Weinstock, George; Sulston, John E; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A; Beck, Stephan; Rogers, Jane; Bentley, David R

    2005-03-17

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.

  19. Construction of a Sequencing Library from Circulating Cell-Free DNA.

    Science.gov (United States)

    Fang, Nan; Löffert, Dirk; Akinci-Tolun, Rumeysa; Heitz, Katja; Wolf, Alexander

    2016-04-01

    Circulating DNA is cell-free DNA (cfDNA) in serum or plasma that can be used for non-invasive prenatal testing, as well as cancer diagnosis, prognosis, and stratification. High-throughput sequence analysis of the cfDNA with next-generation sequencing technologies has proven to be a highly sensitive and specific method in detecting and characterizing mutations in cancer and other diseases, as well as aneuploidy during pregnancy. This unit describes detailed procedures to extract circulating cfDNA from human serum and plasma and generate sequencing libraries from a wide concentration range of circulating DNA.

  20. Long-range correlations and charge transport properties of DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoliang, E-mail: xlliucsu@yahoo.com.c [College of Physical Science and Technology and College of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Ren, Yi [College of Physical Science and Technology and College of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Xie, Qiong-tao [Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education (Hunan Normal University), Changsha 410081 (China); Deng, Chao-sheng; Xu, Hui [College of Physical Science and Technology and College of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2010-04-26

    By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that lambda-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5sequence displays a transition from correlation behavior to anticorrelation behavior. The resonant peaks of the transmission coefficient in genomic sequences can survive in longer sequence length than in random sequences but in shorter sequence length than in quasiperiodic sequences. It is shown that the genomic sequences have long-range correlation properties to some extent but the correlations are not strong enough to maintain the scale invariance properties.

  1. Phylogeny of Pelargonium (Geraniaceae) based on DNA sequences from three genomes

    NARCIS (Netherlands)

    Bakker, F.T.; Culham, A.; Hettiarachi, P.; Touloumendidou, T.; Gibby, M.

    2004-01-01

    Phylogenetic hypotheses for the largely South African genus Pelargonium L'Hér. (Geraniaceae) were derived based on DNA sequence data from nuclear, chloroplast and mitochondrial encoded regions. The datasets were unequally represented and comprised cpDNA trnL-F sequences for 152 taxa, nrDNA ITS seque

  2. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima

    DEFF Research Database (Denmark)

    Worning, Peder; Jensen, Lars Juhl; Nelson, K. E.;

    2000-01-01

    The recently published complete DNA sequence of the bacterium Thermotoga maritima provides evidence, based on protein sequence conservation, for lateral gene transfer between Archaea and Bacteria. We introduce a new method of periodicity analysis of DNA sequences, based on structural parameters......, which brings independent evidence for the lateral gene transfer in the genome of T.maritima, The structural analysis relates the Archaea-like DNA sequences to the genome of Pyrococcus horikoshii. Analysis of 24 complete genomic DNA sequences shows different periodicity patterns for organisms...

  3. Thermochemical and kinetic evidence for nucleotide-sequence-dependent RecA-DNA interactions.

    Science.gov (United States)

    Wittung, P; Ellouze, C; Maraboeuf, F; Takahashi, M; Nordèn, B

    1997-05-01

    RecA catalyses homologous recombination in Escherichia coli by promoting pairing of homologous DNA molecules after formation of a helical nucleoprotein filament with single-stranded DNA. The primary reaction of RecA with DNA is generally assumed to be unspecific. We show here, by direct measurement of the interaction enthalpy by means of isothermal titration calorimetry, that the polymerisation of RecA on single-stranded DNA depends on the DNA sequence, with a high exothermic preference for thymine bases. This enthalpic sequence preference of thymines by RecA correlates with faster binding kinetics of RecA to thymine DNA. Furthermore, the enthalpy of interaction between the RecA x DNA filament and a second DNA strand is large only when the added DNA is complementary to the bound DNA in RecA. This result suggests a possibility for a rapid search mechanism by RecA x DNA filaments for homologous DNA molecules.

  4. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  5. mapDamage: testing for damage patterns in ancient DNA sequences

    DEFF Research Database (Denmark)

    Ginolhac, Aurelien; Rasmussen, Morten; Gilbert, M Thomas P;

    2011-01-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequenci...... of the SAMtools suite and R environment and has been validated on both GNU/Linux and MacOSX operating systems....

  6. Analysis of mitochondrial DNA sequences in patients with isolated or combined oxidative phosphorylation system deficiency.

    NARCIS (Netherlands)

    Hinttala, R.; Smeets, R.; Moilanen, J.S.; Ugalde, C.; Uusimaa, J.; Smeitink, J.A.M.; Majamaa, K.

    2006-01-01

    BACKGROUND: Enzyme deficiencies of the oxidative phosphorylation (OXPHOS) system may be caused by mutations in the mitochondrial DNA (mtDNA) or in the nuclear DNA. OBJECTIVE: To analyse the sequences of the mtDNA coding region in 25 patients with OXPHOS system deficiency to identify the underlying g

  7. A discriminative approach for unsupervised clustering of DNA sequence motifs.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities.

  8. How to Bootstrap Anonymous Communication

    DEFF Research Database (Denmark)

    Jakobsen, Sune K.; Orlandi, Claudio

    2015-01-01

    formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website...... (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short key k which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: { Introducing and formally dening...

  9. How to Bootstrap Anonymous Communication

    DEFF Research Database (Denmark)

    Jakobsen, Sune K.; Orlandi, Claudio

    2015-01-01

    formal study in this direction. To solve this problem, we introduce the concept of anonymous steganography: think of a leaker Lea who wants to leak a large document to Joe the journalist. Using anonymous steganography Lea can embed this document in innocent looking communication on some popular website...... (such as cat videos on YouTube or funny memes on 9GAG). Then Lea provides Joe with a short key $k$ which, when applied to the entire website, recovers the document while hiding the identity of Lea among the large number of users of the website. Our contributions include: - Introducing and formally...

  10. Generating Exome Enriched Sequencing Libraries from Formalin-Fixed, Paraffin-Embedded Tissue DNA for Next-Generation Sequencing.

    Science.gov (United States)

    Marosy, Beth A; Craig, Brian D; Hetrick, Kurt N; Witmer, P Dane; Ling, Hua; Griffith, Sean M; Myers, Benjamin; Ostrander, Elaine A; Stanford, Janet L; Brody, Lawrence C; Doheny, Kimberly F

    2017-01-11

    This unit describes a technique for generating exome-enriched sequencing libraries using DNA extracted from formalin-fixed paraffin-embedded (FFPE) samples. Utilizing commercially available kits, we present a low-input FFPE workflow starting with 50 ng of DNA. This procedure includes a repair step to address damage caused by FFPE preservation that improves sequence quality. Subsequently, libraries undergo an in-solution-targeted selection for exons, followed by sequencing using the Illumina next-generation short-read sequencing platform. © 2017 by John Wiley & Sons, Inc.

  11. True single-molecule DNA sequencing of a pleistocene horse bone

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Ginolhac, Aurélien; Raghavan, Maanasa

    2011-01-01

    -preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms, respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing...... to the standard Helicos DNA template preparation protocol further increase the proportion of horse DNA for this sample by 3-fold. Comparison of Helicos-specific biases and sequence errors in modern DNA with those in ancient DNA also reveals extensive cytosine deamination damage at the 3' ends of ancient templates...

  12. Sequence selective naked-eye detection of DNA harnessing extension of oligonucleotide-modified nucleotides.

    Science.gov (United States)

    Verga, Daniela; Welter, Moritz; Marx, Andreas

    2016-02-01

    DNA polymerases can efficiently and sequence selectively incorporate oligonucleotide (ODN)-modified nucleotides and the incorporated oligonucleotide strand can be employed as primer in rolling circle amplification (RCA). The effective amplification of the DNA primer by Φ29 DNA polymerase allows the sequence-selective hybridisation of the amplified strand with a G-quadruplex DNA sequence that has horse radish peroxidase-like activity. Based on these findings we develop a system that allows DNA detection with single-base resolution by naked eye.

  13. Cloning and molecular genetics analyses of Deschampsia antarctica Desv. chloroplast and mitochondrial DNA sequence

    Directory of Open Access Journals (Sweden)

    O.P. Savchuk

    2012-03-01

    Full Text Available Chloroplast and mitochondrial DNA sequences of Deschampsia antarctica were studied. We had made comparison analysis with completely sequenced genomes of other temperateness plants to find homology.

  14. Characterization of Expressed Sequence Tags From a Gallus gallus Pineal Gland cDNA Library

    OpenAIRE

    2005-01-01

    The pineal gland is the circadian oscillator in the chicken, regulating diverse functions ranging from egg laying to feeding. Here, we describe the isolation and characterization of expressed sequence tags (ESTs) isolated from a chicken pineal gland cDNA library. A total of 192 unique sequences were analysed and submitted to GenBank; 6% of the ESTs matched neither GenBank cDNA sequences nor the newly assembled chicken genomic DNA sequence, three ESTs aligned with sequences designated to be on...

  15. Sequences Characterization of Microsatellite DNA Sequences in Pacific Abalone (Haliotis discus hannat)

    Institute of Scientific and Technical Information of China (English)

    LI Qi; Kijima Akihiro

    2007-01-01

    The microsatellite-enriched library was constructed using magnetic bead hybridization selection method, and the microsatellite DNA sequences were analyzed in Pacific abalone Haliotis discus hannai. Three hundred and fifty white colonies were screened using PCR-based technique, and 84 clones were identified to potentially contain microsatellite repeat motif. The 84 clones were sequenced, and 42 microsatellites and 4 minisatellites with a minimum of five repeats were found (13.1% of white colonies screened). Besides the motif of CA contained in the oligoprobe, we also found other 16 types of microsatellite repeats including a dinucleotide repeat, two tetranucleotide repeats, twelve pentanucleotide repeats and a hexanucleotide repeat. According to Weber(1990), the microsatellite sequences obtained could be categorized structurally into perfect repeats (73.3%), imperfect repeats(13.3%), and compound repeats (13.4%). Among the microsatellite repeats, relatively short arrays (< 20 repeats) were most abundant,accounting for 75.0%. The largest length of microsatellites was 48 repeats, and the average number of repeats was 13.4. The data on the composition and length distribution of microsatellites obtained in the present study can be useful for choosing the repeat motifs for microsatetlite isolation in other abalone species.

  16. DUC-Curve, a highly compact 2D graphical representation of DNA sequences and its application in sequence alignment

    Science.gov (United States)

    Li, Yushuang; Liu, Qian; Zheng, Xiaoqi

    2016-08-01

    A highly compact and simple 2D graphical representation of DNA sequences, named DUC-Curve, is constructed through mapping four nucleotides to a unit circle with a cyclic order. DUC-Curve could directly detect nucleotide, di-nucleotide compositions and microsatellite structure from DNA sequences. Moreover, it also could be used for DNA sequence alignment. Taking geometric center vectors of DUC-Curves as sequence descriptor, we perform similarity analysis on the first exons of β-globin genes of 11 species, oncogene TP53 of 27 species and twenty-four Influenza A viruses, respectively. The obtained reasonable results illustrate that the proposed method is very effective in sequence comparison problems, and will at least play a complementary role in classification and clustering problems.

  17. Sequencing of megabase plus DNA by hybridization: Method development ENT. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Crkvenjakov, R.; Drmanac, R.

    1991-01-31

    Sequencing by hybridization (SBH) is the only sequencing method based on the experimental determination of the content of oligonucleotide sequences. The data acquisition relies on the natural process of base pairing. It is possible to determine the content of complementary oligosequences in the target DNA by the process of hybridization with oligonucleotide probes of known sequences.

  18. Movement Data Anonymity through Generalization

    Directory of Open Access Journals (Sweden)

    Anna Monreale

    2010-08-01

    Full Text Available Wireless networks and mobile devices, such as mobile phones and GPS receivers, sense and track the movements of people and vehicles, producing society-wide mobility databases. This is a challenging scenario for data analysis and mining. On the one hand, exciting opportunities arise out of discovering new knowledge about human mobile behavior, and thus fuel intelligent info-mobility applications. On other hand, new privacy concerns arise when mobility data are published. The risk is particularly high for GPS trajectories, which represent movement of a very high precision and spatio-temporal resolution: the de-identification of such trajectories (i.e., forgetting the ID of their associated owners is only a weak protection, as generally it is possible to re-identify a person by observing her routine movements. In this paper we propose a method for achieving true anonymity in a dataset of published trajectories, by defining a transformation of the original GPS trajectories based on spatial generalization and k-anonymity. The proposed method offers a formal data protection safeguard, quantified as a theoretical upper bound to the probability of re-identification. We conduct a thorough study on a real-life GPS trajectory dataset, and provide strong empirical evidence that the proposed anonymity techniques achieve the conflicting goals of data utility and data privacy. In practice, the achieved anonymity protection is much stronger than the theoretical worst case, while the quality of the cluster analysis on the trajectory data is preserved.

  19. A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences.

    Directory of Open Access Journals (Sweden)

    David Caramelli

    Full Text Available BACKGROUND: DNA sequences from ancient specimens may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal and early modern (Cro-Magnoid Europeans. METHODOLOGY/PRINCIPAL FINDINGS: We typed the mitochondrial DNA (mtDNA hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23 and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. CONCLUSIONS/SIGNIFICANCE: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.

  20. One-way sequencing of multiple amplicons from tandem repetitive mitochondrial DNA control region.

    Science.gov (United States)

    Xu, Jiawu; Fonseca, Dina M

    2011-10-01

    Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.

  1. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  2. SeeDNA: A Visualization Tool for K-string Content of Long DNA Sequences and Their Randomized Counterparts

    Institute of Scientific and Technical Information of China (English)

    Junjie Shen; Shuyu Zhang; Hoong-Chien Lee; Bailin Hao

    2004-01-01

    An interactive tool to visualize the K-string composition of long DNA sequences including bacterial complete genomes is described. It is especially useful for exploring short palindromic structures in the sequences. The SeeDNA program runs on Red Hat Linux with GTK+ support. It displays two-dimensional (2D) or one-dimensional (1D) histograms of the K-string distribution of a given sequence and/or its randomized counterpart. It is also capable of showing the difference of K-string distributions between two sequences. The C source code using the GTK+package is freely available.

  3. Analysis and location of a rice BAC clone containing telomeric DNA sequences

    Institute of Scientific and Technical Information of China (English)

    翟文学; 陈浩; 颜辉煌; 严长杰; 王国梁; 朱立煌

    1999-01-01

    BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG) n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescence in situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.

  4. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    Science.gov (United States)

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs.

  5. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  6. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Gordon, Laurie A.; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A.; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M.; Glavina, Tijana; Gomez, Maria; Gonzales, Eldelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Issac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P.; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S.; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E.; Pennacchio, Len A.; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S.; Myers, Richard M.; Rubin, Edward M.; Lucas, Susan M.

    2003-09-15

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G1C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9 percent of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25 percent of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, a nd segments of coding and non-coding conservation with the distant fish species Takifugu.

  7. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  8. Silicon Nanopore Devices for DNA Translocation and Sequencing Studies

    Science.gov (United States)

    Ling, Sean

    2005-03-01

    In this talk, I will discuss the recent progress [1-3] in developing solid-state nanopore devices using silicon technology. We have demonstrated a novel technique for shaping nanopores in the range of 1-10 nm, using surface-tension-driven mass flow with single nanometer precision. This technique overcomes a major technical challenge in silicon technology. I will also discuss the current effort [3] in developing integrated nanopore silicon chips with electrically addressable nanopores. These devices are used for DNA translocation and sequencing studies. This work was done in collaboration with the group of Cees Dekker at TU-Delft with partial support from FOM and Guggenheim Foundation. The work at Brown was supported by NSF-NER and NSF-NIRT. [1] A.J. Storm, J.H. Chen, X.S. Ling, H. Zandbergen, and C. Dekker, ``Fabrication of Solid-State Nanopores with Single Nanometer Precision'', Nature Materials, 2, 537 (2003). [2] A.J. Storm, J.H. Chen, X.S. Ling, H. Zandbergen, and C. Dekker, ``Electron-Beam-Induced Deformations of SiO2 Nanostructures'', Journal of Applied Physics (submitted, 2004). [3] X.S. Ling, "Addressable nanopores and micropores" (patent pending).

  9. [Patentability of DNA sequences: the debate remains open].

    Science.gov (United States)

    Martín Uranga, Amelia

    2013-01-01

    The patentability of human genes was from the beginning of the discussion concerning the Directive on the legal protection of biotechnological inventions, an issue that provoked debates among politicians, scientists, lawyers and civil society itself. Although Directive 98/44 tried to settle the matter by stating that to support the patentability of human genes, it should know what role they fulfill, which protein they encode, all of this as an essential requirement to test its industrial application. However, following the judgment of 13 June 2013 (Supreme Court of the United States of America in the case of Association for Molecular Pathology et al. versus Myriad Genetics Inc.) the debate on this issue has been reopened. There are several issues to be considered, taking into account that the patents on DNA & Gene Sequences have played an important incentive to increase the interest in biotechnology applied to human health. On the other hand, this is a paradigm shift in the R & D of biopharmaceutical companies, and it has moved from an in house research model to a model of open innovation, a model of collaboration between large corporations with biotech SMEs and public and private research centers. This model of innovation, impacts on the issue of the industrial property, and therefore it will be necessary to clearly define what each party brings to the relationship and how they are expected to share the results. But all of this, with the ultimate goal that the patients have access to treatments and medications most innovative, safe and effective.

  10. The DNA sequence and biology of human chromosome 19.

    Science.gov (United States)

    Grimwood, Jane; Gordon, Laurie A; Olsen, Anne; Terry, Astrid; Schmutz, Jeremy; Lamerdin, Jane; Hellsten, Uffe; Goodstein, David; Couronne, Olivier; Tran-Gyamfi, Mary; Aerts, Andrea; Altherr, Michael; Ashworth, Linda; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caenepeel, Sean; Carrano, Anthony; Caoile, Chenier; Chan, Yee Man; Christensen, Mari; Cleland, Catherine A; Copeland, Alex; Dalin, Eileen; Dehal, Paramvir; Denys, Mirian; Detter, John C; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Garcia, Carmen; Georgescu, Anca M; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Ho, Isaac; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Larionov, Vladimer; Leem, Sun-Hee; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Malfatti, Stephanie; Martinez, Diego; McCready, Paula; Medina, Catherine; Morgan, Jenna; Nelson, Kathryn; Nolan, Matt; Ovcharenko, Ivan; Pitluck, Sam; Pollard, Martin; Popkie, Anthony P; Predki, Paul; Quan, Glenda; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanine; Salamov, Asaf; Salazar, Angelica; She, Xinwei; Smith, Doug; Slezak, Tom; Solovyev, Victor; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wagner, Mark; Wheeler, Jeremy; Wu, Kevin; Xie, Gary; Yang, Joan; Dubchak, Inna; Furey, Terrence S; DeJong, Pieter; Dickson, Mark; Gordon, David; Eichler, Evan E; Pennacchio, Len A; Richardson, Paul; Stubbs, Lisa; Rokhsar, Daniel S; Myers, Richard M; Rubin, Edward M; Lucas, Susan M

    2004-04-01

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high G + C content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in mendelian disorders, including familial hypercholesterolaemia and insulin-resistant diabetes. Nearly one-quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  11. A pattern matching approach for the estimation of alignment between any two given DNA sequences.

    Science.gov (United States)

    Basu, K; Sriraam, N; Richard, R J A

    2007-08-01

    For a given DNA sequence, it is well known that pair wise alignment schemes are used to determine the similarity with the DNA sequences available in the databanks. The efficiency of the alignment decides the type of amino acids and its corresponding proteins. In order to evaluate the given DNA sequence for its proteomic identity, a pattern matching approach is proposed in this paper. A block based semi-global alignment scheme is introduced to determine the similarity between the DNA sequences (known and given). The two DNA sequences are divided into blocks of equal length and alignment is performed which minimizes the computational complexity. The efficiency of the alignment scheme is evaluated using the parameter, percentage of similarity (POS). Four essential DNA version of the amino acids that emphasize the importance of proteomic functionalities are chosen as patterns and matching is performed with the known and given DNA sequences to determine the similarity between them. The ratio of amino acid counts between the two sequences is estimated and the results are compared with that of the POS value. It is found from the experimental results that higher the POS value and the pattern matching higher are the similarity between the two DNA sequences. The optimal block is also identified based on the POS value and amino acids count.

  12. Sequencing strategy of mitochondrial HV1 and HV2 DNA with length heteroplasmy

    DEFF Research Database (Denmark)

    Rasmussen, Erik Michael; Sørensen, E; Eriksen, Birthe

    2002-01-01

    We describe a method to obtain reliable mitochondrial DNA (mtDNA) sequences downstream of the homopolymeric stretches with length heteroplasmy in the sequencing direction. The method is based on the use of junction primers that bind to a part of the homopolymeric stretch and the first 2-4 bases...

  13. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it po

  14. MSA-PAD: DNA multiple sequence alignment framework based on PFAM accessed domain information.

    Science.gov (United States)

    Balech, Bachir; Vicario, Saverio; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-08-01

    Here we present the MSA-PAD application, a DNA multiple sequence alignment framework that uses PFAM protein domain information to align DNA sequences encoding either single or multiple protein domains. MSA-PAD has two alignment options: gene and genome mode.

  15. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities

    NARCIS (Netherlands)

    Uil, T.G.; Haisma, H.J.; Rots, Marianne

    2003-01-01

    Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger protein

  16. Methods for sequencing GC-rich and CCT repeat DNA templates

    Science.gov (United States)

    Robinson, Donna L.

    2007-02-20

    The present invention is directed to a PCR-based method of cycle sequencing DNA and other polynucleotide sequences having high CG content and regions of high GC content, and includes for example DNA strands with a high Cytosine and/or Guanosine content and repeated motifs such as CCT repeats.

  17. Mapping and Use of a Sequence that Targets DNA Ligase I to Sites of DNA Replication In Vivo

    OpenAIRE

    Cardoso, M. Cristina; Joseph, Cuthbert; Rahn, Hans-Peter; Reusch, Regina; Nadal-Ginard, Bernardo; Leonhardt, Heinrich

    1997-01-01

    The mammalian nucleus is highly organized, and nuclear processes such as DNA replication occur in discrete nuclear foci, a phenomenon often termed “functional organization” of the nucleus. We describe the identification and characterization of a bipartite targeting sequence (amino acids 1–28 and 111–179) that is necessary and sufficient to direct DNA ligase I to nuclear replication foci during S phase. This targeting sequence is located within the regulatory, NH2-terminal domain of the protei...

  18. Structural biology of disease-associated repetitive DNA sequences and protein-DNA complexes involved in DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Santhana Mariappan, S.V.; Chen, X.; Catasti, P.; Silks, L.A. III; Moyzis, R.K.; Bradbury, E.M.; Garcia, A.E.

    1997-07-01

    This project is aimed at formulating the sequence-structure-function correlations of various microsatellites in the human (and other eukaryotic) genomes. Here the authors have been able to develop and apply structure biology tools to understand the following: the molecular mechanism of length polymorphism microsatellites; the molecular mechanism by which the microsatellites in the noncoding regions alter the regulation of the associated gene; and finally, the molecular mechanism by which the expansion of these microsatellites impairs gene expression and causes the disease. Their multidisciplinary structural biology approach is quantitative and can be applied to all coding and noncoding DNA sequences associated with any gene. Both NIH and DOE are interested in developing quantitative tools for understanding the function of various human genes for prevention against diseases caused by genetic and environmental effects.

  19. Sequence-Dependent Fluorescence of Cy3- and Cy5-Labeled Double-Stranded DNA.

    Science.gov (United States)

    Kretschy, Nicole; Sack, Matej; Somoza, Mark M

    2016-03-16

    The fluorescent intensity of Cy3 and Cy5 dyes is strongly dependent on the nucleobase sequence of the labeled oligonucleotides. Sequence-dependent fluorescence may significantly influence the data obtained from many common experimental methods based on fluorescence detection of nucleic acids, such as sequencing, PCR, FRET, and FISH. To quantify sequence dependent fluorescence, we have measured the fluorescence intensity of Cy3 and Cy5 bound to the 5' end of all 1024 possible double-stranded DNA 5mers. The fluorescence intensity was also determined for these dyes bound to the 5' end of fixed-sequence double-stranded DNA with a variable sequence 3' overhang adjacent to the dye. The labeled DNA oligonucleotides were made using light-directed, in situ microarray synthesis. The results indicate that the fluorescence intensity of both dyes is sensitive to all five bases or base pairs, that the sequence dependence is stronger for double- (vs single-) stranded DNA, and that the dyes are sensitive to both the adjacent dsDNA sequence and the 3'-ssDNA overhang. Purine-rich sequences result in higher fluorescence. The results can be used to estimate measurement error in experiments with fluorescent-labeled DNA, as well as to optimize the fluorescent signal by considering the nucleobase environment of the labeling cyanine dye.

  20. Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing.

    Science.gov (United States)

    Davis, Carey; Peters, Dixie; Warshauer, David; King, Jonathan; Budowle, Bruce

    2015-03-01

    Mitochondrial DNA testing is a useful tool in the analysis of forensic biological evidence. In cases where nuclear DNA is damaged or limited in quantity, the higher copy number of mitochondrial genomes available in a sample can provide information about the source of a sample. Currently, Sanger-type sequencing (STS) is the primary method to develop mitochondrial DNA profiles. This method is laborious and time consuming. Massively parallel sequencing (MPS) can increase the amount of information obtained from mitochondrial DNA samples while improving turnaround time by decreasing the numbers of manipulations and more so by exploiting high throughput analyses to obtain interpretable results. In this study 18 buccal swabs, three different tissue samples from five individuals, and four bones samples from casework were sequenced at hypervariable regions I and II using STS and MPS. Sample enrichment for STS and MPS was PCR-based. Library preparation for MPS was performed using Nextera® XT DNA Sample Preparation Kit and sequencing was performed on the MiSeq™ (Illumina, Inc.). MPS yielded full concordance of base calls with STS results, and the newer methodology was able to resolve length heteroplasmy in homopolymeric regions. This study demonstrates short amplicon MPS of mitochondrial DNA is feasible, can provide information not possible with STS, and lays the groundwork for development of a whole genome sequencing strategy for degraded samples.

  1. Phylogenetic relationships within Pelargonium section Peristera (Geraniaceae) inferred from nrDNA and cpDNA sequence comparisons.

    NARCIS (Netherlands)

    Bakker, F.T.; Helbrugge, D.; Culham, A.; Gibby, M.

    1998-01-01

    Phylogenetic analysis of nrDNA ITS and tmL (UAA) 5' exon-tmF (GAA) chloroplast DNA sequences from 17 species of Pelargonium sect. Peristera, together with nine putative outgroups, suggests paraphyly for the section and a close relationship between the highly disjurmt South African and Australian spe

  2. Carrier molecules and extraction of circulating tumor DNA for next generation sequencing in colorectal cancer.

    Science.gov (United States)

    Beránek, Martin; Sirák, Igor; Vošmik, Milan; Petera, Jiří; Drastíková, Monika; Palička, Vladimír

    The aims of the study were: i) to compare circulating tumor DNA (ctDNA) yields obtained by different manual extraction procedures, ii) to evaluate the addition of various carrier molecules into the plasma to improve ctDNA extraction recovery, and iii) to use next generation sequencing (NGS) technology to analyze KRAS, BRAF, and NRAS somatic mutations in ctDNA from patients with metastatic colorectal cancer. Venous blood was obtained from patients who suffered from metastatic colorectal carcinoma. For plasma ctDNA extraction, the following carriers were tested: carrier RNA, polyadenylic acid, glycogen, linear acrylamide, yeast tRNA, salmon sperm DNA, and herring sperm DNA. Each extract was characterized by quantitative real-time PCR and next generation sequencing. The addition of polyadenylic acid had a significant positive effect on the amount of ctDNA eluted. The sequencing data revealed five cases of ctDNA mutated in KRAS and one patient with a BRAF mutation. An agreement of 86% was found between tumor tissues and ctDNA. Testing somatic mutations in ctDNA seems to be a promising tool to monitor dynamically changing genotypes of tumor cells circulating in the body. The optimized process of ctDNA extraction should help to obtain more reliable sequencing data in patients with metastatic colorectal cancer.

  3. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Lescai, Francesco; Grove, Jakob;

    2016-01-01

    and WB vs WB sample types yielded similar concordance rates, with values close to 100%. WgaDNA of neonatal DBS samples performs with great accuracy and efficiency in exome sequencing. The wgaDNA performed similarly to matched high-quality reference--whole-blood DNA--based on concordance rates calculated...

  4. Impact of Knowledge on Election Time in Anonymous Networks

    OpenAIRE

    Dieudonné, Yoann; Pelc, Andrzej

    2016-01-01

    Leader election is one of the basic problems in distributed computing. For anonymous networks, the task of leader election is formulated as follows: every node v of the network must output a simple path, which is coded as a sequence of port numbers, such that all these paths end at a common node, the leader. In this paper, we study deterministic leader election in arbitrary anonymous networks. It is well known that leader election is impossible in some networks, regardless of the allocated am...

  5. True single-molecule DNA sequencing of a pleistocene horse bone

    DEFF Research Database (Denmark)

    Orlando, Ludovic Antoine Alexandre; Ginolhac, Aurélien; Raghavan, Maanasa;

    2011-01-01

    Second-generation sequencing platforms have revolutionized the field of ancient DNA, opening access to complete genomes of past individuals and extinct species. However, these platforms are dependent on library construction and amplification steps that may result in sequences that do not reflect......-preserved Pleistocene horse bone using the Helicos HeliScope and Illumina GAIIx platforms, respectively. We find that the percentage of endogenous DNA sequences derived from the horse is higher among the Helicos data than Illumina data. This result indicates that the molecular biology tools used to generate sequencing...... libraries of ancient DNA molecules as required for second-generation sequencing introduce biases into the data, that reduce the efficiency of the sequencing process and limit our ability to fully explore the molecular complexity of ancient DNA extracts. We demonstrate that simple modifications...

  6. Anonymous Boh avatud kunsti maastikul / Raivo Kelomees

    Index Scriptorium Estoniae

    Kelomees, Raivo, 1960-

    2010-01-01

    Anonymous Bohi näitus Tartu Kunstimajas, avatud 30. juulini 2010. Anonymous Boh on koos Non Grataga läbi viinud performance´id Euroopas, Ameerikas ja Aasias. Anonymous Bohi vastused oma näituse ja loominguga seotud küsimustele

  7. Anonymous Credential Schemes with Encrypted Attributes

    NARCIS (Netherlands)

    Guajardo Merchan, J.; Mennink, B.; Schoenmakers, B.

    2011-01-01

    In anonymous credential schemes, users obtain credentials on certain attributes from an issuer, and later show these credentials to a relying party anonymously and without fully disclosing the attributes. In this paper, we introduce the notion of (anonymous) credential schemes with encrypted attribu

  8. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Jesionek-Kupnicka Dorota

    2009-08-01

    Full Text Available Abstract Background Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. Methods To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. Results We found P53 gene mutations in 16 cases (15 missense and 1 nonsense. Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. Conclusion In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis.

  9. Molecular characterization and phylogeny of whipworm nematodes inferred from DNA sequences of cox1 mtDNA and 18S rDNA.

    Science.gov (United States)

    Callejón, Rocío; Nadler, Steven; De Rojas, Manuel; Zurita, Antonio; Petrášová, Jana; Cutillas, Cristina

    2013-11-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from the mitochondrial cytochrome c oxidase 1 (cox1) and ribosomal 18S genes. The taxa consisted of different described species and several host-associated isolates (undescribed taxa) of Trichuris collected from hosts from Spain. Sequence data from mitochondrial cox1 (partial gene) and nuclear 18S near-complete gene were analyzed by maximum likelihood and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. Phylogenetic results based on 18S ribosomal DNA (rDNA) were robust for relationships among species; cox1 sequences delimited species and revealed phylogeographic variation, but most relationships among Trichuris species were poorly resolved by mitochondrial sequences. The phylogenetic hypotheses for both genes strongly supported monophyly of Trichuris, and distinct genetic lineages corresponding to described species or nematodes associated with certain hosts were recognized based on cox1 sequences. Phylogenetic reconstructions based on concatenated sequences of the two loci, cox1 (mitochondrial DNA (mtDNA)) and 18S rDNA, were congruent with the overall topology inferred from 18S and previously published results based on internal transcribed spacer sequences. Our results demonstrate that the 18S rDNA and cox1 mtDNA genes provide resolution at different levels, but together resolve relationships among geographic populations and species in the genus Trichuris.

  10. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase.

    Science.gov (United States)

    Do, Hongdo; Dobrovic, Alexander

    2012-05-01

    Non-reproducible sequence artefacts are frequently detected in DNA from formalinfixed and paraffin-embedded (FFPE) tissues. However, no rational strategy has been developed for reduction of sequence artefacts from FFPE DNA as the underlying causes of the artefacts are poorly understood. As cytosine deamination to uracil is a common form of DNA damage in ancient DNA, we set out to examine whether treatment of FFPE DNA with uracil-DNA glycosylase (UDG) would lead to the reduction of C>T (and G>A) sequence artefacts. Heteroduplex formation in high resolution melting (HRM)-based assays was used for the detection of sequence variants in FFPE DNA samples. A set of samples that gave false positive HRM results for screening for the E17K mutation in exon 4 of the AKT1 gene were chosen for analysis. Sequencing of these samples showed multiple non-reproducible C:G>T:A artefacts. Treatment of the FFPE DNA with UDG prior to PCR amplification led to a very marked reduction of the sequence artefacts as indicated by both HRM and sequencing analysis, indicating that uracil lesions are the major cause of sequence artefacts. Similar results were shown for the BRAF V600 region in the same sample set and EGFR exon 19 in another sample set. UDG treatment specifically suppressed the formation of artefacts in FFPE DNA as it did not affect the detection of true KRAS codon 12 and true EGFR exon 19 and 20 mutations. We conclude that uracil in FFPE DNA leads to a significant proportion of sequence artefacts. These can be minimised by a simple UDG pretreatment which can be readily carried out, in the same tube, as the PCR immediately prior to commencing thermal cycling. HRM is a convenient way of monitoring both the degree of damage and the effectiveness of the UDG treatment. These findings have immediate and important implications for cancer diagnostics where FFPE DNA is used as the primary genetic material for mutational studies guiding personalised medicine strategies and where simple

  11. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing.

    Directory of Open Access Journals (Sweden)

    Chao Shi

    Full Text Available BACKGROUND: Chloroplast genomes supply valuable genetic information for evolutionary and functional studies in plants. The past five years have witnessed a dramatic increase in the number of completely sequenced chloroplast genomes with the application of second-generation sequencing technology in plastid genome sequencing projects. However, cost-effective high-throughput chloroplast DNA (cpDNA extraction becomes a major bottleneck restricting the application, as conventional methods are difficult to make a balance between the quality and yield of cpDNAs. METHODOLOGY/PRINCIPAL FINDINGS: We first tested two traditional methods to isolate cpDNA from the three species, Oryza brachyantha, Leersia japonica and Prinsepia utihis. Both of them failed to obtain properly defined cpDNA bands. However, we developed a simple but efficient method based on sucrose gradients and found that the modified protocol worked efficiently to isolate the cpDNA from the same three plant species. We sequenced the isolated DNA samples with Illumina (Solexa sequencing technology to test cpDNA purity according to aligning sequence reads to the reference chloroplast genomes, showing that the reference genome was properly covered. We show that 40-50% cpDNA purity is achieved with our method. CONCLUSION: Here we provide an improved method used to isolate cpDNA from angiosperms. The Illumina sequencing results suggest that the isolated cpDNA has reached enough yield and sufficient purity to perform subsequent genome assembly. The cpDNA isolation protocol thus will be widely applicable to the plant chloroplast genome sequencing projects.

  12. Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines

    Directory of Open Access Journals (Sweden)

    Joanne G. Bartlett

    2014-01-01

    Full Text Available Sequencing across the junction between an integrated transfer DNA (T-DNA and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.

  13. High-throughput sequencing of nematode communities from total soil DNA extractions

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    nematodes without the need for enrichment was developed. Using this strategy on DNA templates from a set of 22 agricultural soils, we obtained 64.4% sequences of nematode origin in total, whereas the remaining sequences were almost entirely from other metazoans. The nematode sequences were derived from...

  14. Numerical encoding of DNA sequences by chaos game representation with application in similarity comparison.

    Science.gov (United States)

    Hoang, Tung; Yin, Changchuan; Yau, Stephen S-T

    2016-10-01

    Numerical encoding plays an important role in DNA sequence analysis via computational methods, in which numerical values are associated with corresponding symbolic characters. After numerical representation, digital signal processing methods can be exploited to analyze DNA sequences. To reflect the biological properties of the original sequence, it is vital that the representation is one-to-one. Chaos Game Representation (CGR) is an iterative mapping technique that assigns each nucleotide in a DNA sequence to a respective position on the plane that allows the depiction of the DNA sequence in the form of image. Using CGR, a biological sequence can be transformed one-to-one to a numerical sequence that preserves the main features of the original sequence. In this research, we propose to encode DNA sequences by considering 2D CGR coordinates as complex numbers, and apply digital signal processing methods to analyze their evolutionary relationship. Computational experiments indicate that this approach gives comparable results to the state-of-the-art multiple sequence alignment method, Clustal Omega, and is significantly faster. The MATLAB code for our method can be accessed from: www.mathworks.com/matlabcentral/fileexchange/57152.

  15. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

    Science.gov (United States)

    Schloss, Patrick D; Jenior, Matthew L; Koumpouras, Charles C; Westcott, Sarah L; Highlander, Sarah K

    2016-01-01

    Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina's MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina's MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.

  16. Transgenerational inheritance: Models and mechanisms of non-DNA sequence-based inheritance.

    Science.gov (United States)

    Miska, Eric A; Ferguson-Smith, Anne C

    2016-10-07

    Heritability has traditionally been thought to be a characteristic feature of the genetic material of an organism-notably, its DNA. However, it is now clear that inheritance not based on DNA sequence exists in multiple organisms, with examples found in microbes, plants, and invertebrate and vertebrate animals. In mammals, the molecular mechanisms have been challenging to elucidate, in part due to difficulties in designing robust models and approaches. Here we review some of the evidence, concepts, and potential mechanisms of non-DNA sequence-based transgenerational inheritance. We highlight model systems and discuss whether phenotypes are replicated or reconstructed over successive generations, as well as whether mechanisms operate at transcriptional and/or posttranscriptional levels. Finally, we explore the short- and long-term implications of non-DNA sequence-based inheritance. Understanding the effects of non-DNA sequence-based mechanisms is key to a full appreciation of heritability in health and disease.

  17. High-throughput sequencing for the identification of binding molecules from DNA-encoded chemical libraries.

    Science.gov (United States)

    Buller, Fabian; Steiner, Martina; Scheuermann, Jörg; Mannocci, Luca; Nissen, Ina; Kohler, Manuel; Beisel, Christian; Neri, Dario

    2010-07-15

    DNA-encoded chemical libraries are large collections of small organic molecules, individually coupled to DNA fragments that serve as amplifiable identification bar codes. The isolation of specific binders requires a quantitative analysis of the distribution of DNA fragments in the library before and after capture on an immobilized target protein of interest. Here, we show how Illumina sequencing can be applied to the analysis of DNA-encoded chemical libraries, yielding over 10 million DNA sequence tags per flow-lane. The technology can be used in a multiplex format, allowing the encoding and subsequent sequencing of multiple selections in the same experiment. The sequence distributions in DNA-encoded chemical library selections were found to be similar to the ones obtained using 454 technology, thus reinforcing the concept that DNA sequencing is an appropriate avenue for the decoding of library selections. The large number of sequences obtained with the Illumina method now enables the study of very large DNA-encoded chemical libraries (>500,000 compounds) and reduces decoding costs.

  18. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  19. HMGA1a recognition candidate DNA sequences in humans.

    Directory of Open Access Journals (Sweden)

    Takayuki Manabe

    Full Text Available High mobility group protein A1a (HMGA1a acts as an architectural transcription factor and influences a diverse array of normal biological processes. It binds AT-rich sequences, and previous reports have demonstrated HMGA1a binding to the authentic promoters of various genes. However, the precise sequences that HMGA1a binds to remain to be clarified. Therefore, in this study, we searched for the sequences with the highest affinity for human HMGA1a using an existing SELEX method, and then compared the identified sequences with known human promoter sequences. Based on our results, we propose the sequences "-(G/A-G-(A/T-(A/T-A-T-T-T-" as HMGA1a-binding candidate sequences. Furthermore, these candidate sequences bound native human HMGA1a from SK-N-SH cells. When candidate sequences were analyzed by performing FASTAs against all known human promoter sequences, 500-900 sequences were hit by each one. Some of the extracted genes have already been proven or suggested as HMGA1a-binding promoters. The candidate sequences presented here represent important information for research into the various roles of HMGA1a, including cell differentiation, death, growth, proliferation, and the pathogenesis of cancer.

  20. Mitochondrial DNA variant discovery and evaluation in human Cardiomyopathies through next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Michael V Zaragoza

    Full Text Available Mutations in mitochondrial DNA (mtDNA may cause maternally-inherited cardiomyopathy and heart failure. In homoplasmy all mtDNA copies contain the mutation. In heteroplasmy there is a mixture of normal and mutant copies of mtDNA. The clinical phenotype of an affected individual depends on the type of genetic defect and the ratios of mutant and normal mtDNA in affected tissues. We aimed at determining the sensitivity of next-generation sequencing compared to Sanger sequencing for mutation detection in patients with mitochondrial cardiomyopathy. We studied 18 patients with mitochondrial cardiomyopathy and two with suspected mitochondrial disease. We "shotgun" sequenced PCR-amplified mtDNA and multiplexed using a single run on Roche's 454 Genome Sequencer. By mapping to the reference sequence, we obtained 1,300x average coverage per case and identified high-confidence variants. By comparing these to >400 mtDNA substitution variants detected by Sanger, we found 98% concordance in variant detection. Simulation studies showed that >95% of the homoplasmic variants were detected at a minimum sequence coverage of 20x while heteroplasmic variants required >200x coverage. Several Sanger "misses" were detected by 454 sequencing. These included the novel heteroplasmic 7501T>C in tRNA serine 1 in a patient with sudden cardiac death. These results support a potential role of next-generation sequencing in the discovery of novel mtDNA variants with heteroplasmy below the level reliably detected with Sanger sequencing. We hope that this will assist in the identification of mtDNA mutations and key genetic determinants for cardiomyopathy and mitochondrial disease.

  1. Nanopore DNA sequencing and epigenetic detection with a MspA nanopore

    Science.gov (United States)

    Laszlo, Andrew H.

    DNA forms the molecular basis for all known life. Widespread DNA sequencing has the potential to revolutionize healthcare and our understanding of the life sciences. Sequencing has already had a profound effect on our understanding of the molecular basis of life and underpinnings of disease. Current DNA sequencing technologies require costly reagents, can sequence only short DNA strands, and take too long to complete entire genomes. Furthermore, the required DNA sample size limits the types of experiments that can be run. For instance sequencing single cells is extremely difficult. New technologies are key to making DNA sequencing as cheap and accessible as possible and for making new experiments possible. One such new technology is nanopore sequencing. In nanopore sequencing, a thin membrane is used to divide a salt solution into two wells: cis and trans. This membrane contains a single nanometer sized hole that forms the only electrical connection between the two wells. When a voltage is applied across the membrane, ion current flows through the nanopore. This ion current is the primary signal for nanopore sequencing. DNA is negatively charged and can be pulled into the pore. When DNA is pulled into the pore, it occludes the pore and reduces the ion current that can pass through the pore. Individual DNA nucleotides along the DNA strand block the pore to varying degrees. One can measure the degree to which the pore is blocked as DNA passes through the pore and use the ion current signal to read off the DNA sequence. This thesis chronicles recent advances in the Gundlach laboratory in which I have played a leading role. It describes our work testing the biological nanopore Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. The thesis consists of five chapters and three appendices which contain supplemental information for Chapters 2, 3, and 4. Chapter 1 begins with some motivation and defines the current challenges in DNA sequencing. I also introduce

  2. A complexity measure for symbolic sequences and applications to DNA

    CERN Document Server

    Majtey, A P; Lamberti, P W; Majtey, Ana P.; Roman-Roldan, Ramon; Lamberti, Pedro W.

    2006-01-01

    We introduce a complexity measure for symbolic sequences. Starting from a segmentation procedure of the sequence, we define its complexity as the entropy of the distribution of lengths of the domains of relatively uniform composition in which the sequence is decomposed. We show that this quantity verifies the properties usually required for a ``good'' complexity measure. In particular it satisfies the one hump property, is super-additive and has the important property of being dependent of the level of detail in which the sequence is analyzed. Finally we apply it to the evaluation of the complexity profile of some genetic sequences.

  3. The Study of Correlation Structures of DNA Sequences A Critical Review

    CERN Document Server

    Li, W

    1997-01-01

    The study of correlation structure in the primary sequences of DNA is reviewed. The issues reviewed include: symmetries among 16 base-base correlation functions, accurate estimation of correlation measures, the relationship between $1/f$ and Lorentzian spectra, heterogeneity in DNA sequences, different modeling strategies of the correlation structure of DNA sequences, the difference of correlation structure between coding and non-coding regions (besides the period-3 pattern), and source of broad distribution of domain sizes. Although some of the results remain controversial, a body of work on this topic constitutes a good starting point for future studies.

  4. Sequence-specific Hydrolysis of Single-stranded DNA by PNA-Cerium (Ⅳ) Adduct

    Institute of Scientific and Technical Information of China (English)

    He Bai SHEN; Feng WANG; Yong Tao YANG

    2005-01-01

    A novel artificial site specific cleavage reagent, with peptide nucleic acid (PNA) as sequence-recognizing moiety and cerium (Ⅳ) ions as "scissors" for cleaving target DNA, was synthesized. Subsequently, it was employed in the cleavage of target 26-mer single-stranded DNA (ssDNA), which has 10-mer sequence complementary with PNA recognizer in the hybrids,under physiological conditions. Reversed-phase high-performance liquid chromatogram (RPHPLC) experiments indicated that the artificial site specific cleavage reagent could cleave the target DNA specifically.

  5. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Oliver Hawlitschek

    Full Text Available BACKGROUND: DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. METHODOLOGY/PRINCIPAL FINDINGS: The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. CONCLUSION/SIGNIFICANCE: In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  6. High-speed automated DNA sequencing utilizing from-the-side laser excitation

    Science.gov (United States)

    Westphall, Michael S.; Brumley, Robert L., Jr.; Buxton, Erin C.; Smith, Lloyd M.

    1995-04-01

    The Human Genome Initiative is an ambitious international effort to map and sequence the three billion bases of DNA encoded in the human genome. If successfully completed, the resultant sequence database will be a tool of unparalleled power for biomedical research. One of the major challenges of this project is in the area of DNA sequencing technology. At this time, virtually all DNA sequencing is based upon the separation of DNA fragments in high resolution polyacrylamide gels. This method, as generally practiced, is one to two orders of magnitude too slow and expensive for the successful completion of the Human Genome projection. One reasonable approach is improved sequencing of DNA fragments is to increase the performance of such gel-based sequencing methods. Decreased sequencing times may be obtained by increasing the magnitude of the electric field employed. This is not possible with conventional sequencing, due to the fact that the additional heat associated with the increased electric field cannot be adequately dissipated. Recent developments in the use of thin gels have addressed this problem. Performing electrophoresis in ultrathin (50 to 100 microns) gels greatly increases the heat transfer efficiency, thus allowing the benefits of larger electric fields to be obtained. An increase in separation speed of about an order of magnitude is readily achieved. Thin gels have successfully been used in capillary and slab formats. A detection system has been designed for use with a multiple fluorophore sequencing strategy in horizontal ultrathin slab gels. The system employs laser through-the-side excitation and a cooled CCD detector; this allows for the parallel detection of up to 24 sets of four fluorescently labeled DNA sequencing reactions during their electrophoretic separation in ultrathin (115 micrometers ) denaturing polyacrylamide gels. Four hundred bases of sequence information is obtained from 100 ng of M13 template DNA in an hour, corresponding to an

  7. Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA.

    Science.gov (United States)

    Zhao, Ya-E; Wu, Li-Ping; Hu, Li; Xu, Yang; Wang, Zheng-Hang; Liu, Wen-Yan

    2012-11-01

    Due to the difficulty of DNA extraction for Demodex, few studies dealt with the identification and the phyletic evolution of Demodex at molecular level. In this study, we amplified, sequenced, and analyzed a complete (Demodex folliculorum) and an almost complete (D12 missing) (Demodex brevis) ribosomal DNA (rDNA) sequence and also analyzed the primary sequences of divergent domains in small-subunit ribosomal RNA (rRNA) of 51 species and in large-subunit rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea, and Ixodoidea). The results revealed that 18S rDNA sequence was relatively conserved in rDNA-coding regions and was not evolving as rapidly as 28S rDNA sequence. The evolutionary rates of transcribed spacer regions were much higher than those of the coding regions. The maximum parsimony trees of 18S and 28S rDNA appeared to be almost identical, consistent with their morphological classification. Based on the fact that the resolution capability of sequence length and the divergence of the 13 segments (D1-D6, D7a, D7b, and D8-D12) of 28S rDNA were stronger than that of the nine variable regions (V1-V9) of 18S rDNA, we were able to identify Demodex (Cheyletoidea) by the indels occurring in D2, D6, and D8.

  8. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.

    Directory of Open Access Journals (Sweden)

    Si-Yang Liu

    Full Text Available Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.

  9. Recombinant human MDM2 oncoprotein shows sequence composition selectivity for binding to both RNA and DNA.

    Science.gov (United States)

    Challen, Christine; Anderson, John J; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Lunec, John

    2012-03-01

    MDM2 is a 90 kDa nucleo-phosphoprotein that binds p53 and other proteins contributing to its oncogenic properties. Its structure includes an amino proximal p53 binding site, a central acidic domain and a carboxy region which incorporates Zinc and Ring Finger domains suggestive of nucleic acid binding or transcription factor function. It has previously been reported that a bacculovirus expressed MDM2 protein binds RNA in a sequence-specific manner through the Ring Finger domain, however, its ability to bind DNA has yet to be examined. We report here that a bacterially expressed human MDM2 protein binds both DNA as well as the previously defined RNA consensus sequence. DNA binding appears selective and involves the carboxy-terminal domain of the molecule. RNA binding is inhibited by an MDM2 specific antibody, which recognises an epitope within the carboxy region of the protein. Selection cloning and sequence analysis of MDM2 DNA binding sequences, unlike RNA binding sequences, revealed no obvious DNA binding consensus sequence, but preferential binding to oligopurine:pyrimidine-rich stretches. Our results suggest that the observed preferential DNA binding may occur through the Zinc Finger or in a charge-charge interaction through the Ring Finger, thereby implying potentially different mechanisms for DNA and RNA MDM2 binding.

  10. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  11. Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA-DNA hybridization.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Rogalski, Jerzy; Wójcik, Magdalena

    2016-04-01

    In this study, the phylogenetic relationship and taxonomic status of six strains, representing different phenons and genomic groups of Astragalus glycyphyllos symbionts, originating from Poland, were established by comparative analysis of five concatenated housekeeping gene sequences (atpD, dnaK, glnA, recA and rpoB), DNA-DNA hybridization and total DNA G+C content. Maximum-likelihood phylogenetic analysis of combined atpD, dnaK, glnA, recA and rpoB sequence data placed the studied bacteria into the clade comprising the genus Mesorhizobium. In the core gene phylograms, four A. glycyphyllos nodule isolates (AG1, AG7, AG15 and AG27) formed a cluster common with Mesorhizobium ciceri, whereas the two other A. glycyphyllos symbionts (AG17 and AG22) were grouped together with Mesorhizobium amorphae and M. septentrionale. The species position of the studied bacteria was clarified by DNA-DNA hybridization. The DNA-DNA relatedness between isolates AG1, AG7, AG15 and AG27 and reference strain M. ciceri USDA 3383T was 76.4-84.2%, and all these A. glycyphyllos nodulators were defined as members of the genomospecies M. ciceri. DNA-DNA relatedness for isolates AG17 and AG22 and the reference strain M. amorphae ICMP 15022T was 77.5 and 80.1%, respectively. We propose that the nodule isolates AG17 and AG22 belong to the genomic species M. amorphae. Additionally, it was found that the total DNA G+C content of the six test A. glycyphyllos symbionts was 59.4-62.1 mol%, within the range for species of the genus Mesorhizobium.

  12. Mitochondrial DNA sequence and phylogenetic evaluation of geographically disparate Sus scrofa breeds.

    Science.gov (United States)

    Cannon, M V; Brandebourg, T D; Kohn, M C; Ðikić, D; Irwin, M H; Pinkert, C A

    2015-01-01

    Next generation sequencing of mitochondrial DNA (mtDNA) facilitates studies into the metabolic characteristics of production animals and their relation to production traits. Sequence analysis of mtDNA from pure-bred swine with highly disparate production characteristics (Mangalica Blonde, Mangalica Swallow-bellied, Meishan, Turopolje, and Yorkshire) was initiated to evaluate the influence of mtDNA polymorphisms on mitochondrial function. Herein, we report the complete mtDNA sequences of five Sus scrofa breeds and evaluate their position within the phylogeny of domestic swine. Phenotypic traits of Yorkshire, Mangalica Blonde, and Swallow-belly swine are presented to demonstrate their metabolic characteristics. Our data support the division of European and Asian breeds noted previously and confirm European ancestry of Mangalica and Turopolje breeds. Furthermore, mtDNA differences between breeds suggest function-altering changes in proteins involved in oxidative phosphorylation such as ATP synthase 6 (MT-ATP6), cytochrome oxidase I (MT-CO1), cytochrome oxidase III (MT-CO3), and cytochrome b (MT-CYB), supporting the hypothesis that mtDNA polymorphisms contribute to differences in metabolic traits between swine breeds. Our sequence data form the basis for future research into the roles of mtDNA in determining production traits in domestic animals. Additionally, such studies should provide insight into how mtDNA haplotype influences the extreme adiposity observed in Mangalica breeds.

  13. Fast mitochondrial DNA isolation from mammalian cells for next-generation sequencing.

    Science.gov (United States)

    Quispe-Tintaya, Wilber; White, Ryan R; Popov, Vasily N; Vijg, Jan; Maslov, Alexander Y

    2013-09-01

    Standard methods for mitochondrial DNA (mtDNA) extraction do not provide the level of enrichment for mtDNA sufficient for direct sequencing and must be followed by long-range-PCR amplification, which can bias the sequencing results. Here, we describe a fast, cost-effective, and reliable method for preparation of mtDNA enriched samples from eukaryotic cells ready for direct sequencing. Our protocol utilizes a conventional miniprep kit, paramagnetic bead-based purification, and an optional, limited PCR amplification of mtDNA. The first two steps alone provide more than 2000-fold enrichment for mtDNA when compared with total cellular DNA (~200-fold in comparison with current commercially available kits) as demonstrated by real-time PCR. The percentage of sequencing reads aligned to mtDNA was about 22% for non-amplified samples and greater than 99% for samples subjected to 10 cycles of long-range-PCR with mtDNA specific primers.

  14. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    Science.gov (United States)

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at.

  15. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud

    Science.gov (United States)

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-01-01

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. PMID:27084948

  16. Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments.

    Science.gov (United States)

    Saladin, Adrien; Amourda, Christopher; Poulain, Pierre; Férey, Nicolas; Baaden, Marc; Zacharias, Martin; Delalande, Olivier; Prévost, Chantal

    2010-10-01

    Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson-Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.

  17. Discriminative prediction of mammalian enhancers from DNA sequence.

    Science.gov (United States)

    Lee, Dongwon; Karchin, Rachel; Beer, Michael A

    2011-12-01

    Accurately predicting regulatory sequences and enhancers in entire genomes is an important but difficult problem, especially in large vertebrate genomes. With the advent of ChIP-seq technology, experimental detection of genome-wide EP300/CREBBP bound regions provides a powerful platform to develop predictive tools for regulatory sequences and to study their sequence properties. Here, we develop a support vector machine (SVM) framework which can accurately identify EP300-bound enhancers using only genomic sequence and an unbiased set of general sequence features. Moreover, we find that the predictive sequence features identified by the SVM classifier reveal biologically relevant sequence elements enriched in the enhancers, but we also identify other features that are significantly depleted in enhancers. The predictive sequence features are evolutionarily conserved and spatially clustered, providing further support of their functional significance. Although our SVM is trained on experimental data, we also predict novel enhancers and show that these putative enhancers are significantly enriched in both ChIP-seq signal and DNase I hypersensitivity signal in the mouse brain and are located near relevant genes. Finally, we present results of comparisons between other EP300/CREBBP data sets using our SVM and uncover sequence elements enriched and/or depleted in the different classes of enhancers. Many of these sequence features play a role in specifying tissue-specific or developmental-stage-specific enhancer activity, but our results indicate that some features operate in a general or tissue-independent manner. In addition to providing a high confidence list of enhancer targets for subsequent experimental investigation, these results contribute to our understanding of the general sequence structure of vertebrate enhancers.

  18. What Advances Are Being Made in DNA Sequencing?

    Science.gov (United States)

    ... Help Me Understand Genetics Home Help Me Understand Genetics Genomic Research What advances are being made in DNA ... Research Institute (NHGRI). The American College of Medical Genetics and Genomics (ACMG) has laid out their policies regarding whole ...

  19. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Directory of Open Access Journals (Sweden)

    Soichi Inagaki

    Full Text Available Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  20. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing

    DEFF Research Database (Denmark)

    Gamba, Cristina; Hanghøj, Kristian Ebbesen; Gaunitz, Charleen

    2016-01-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs...... of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning...... a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules...

  1. Accelerating DNA Sequence Analysis using Intel Xeon Phi

    OpenAIRE

    Memeti, Suejb; Pllana, Sabri

    2015-01-01

    Genetic information is increasing exponentially, doubling every 18 months. Analyzing this information within a reasonable amount of time requires parallel computing resources. While considerable research has addressed DNA analysis using GPUs, so far not much attention has been paid to the Intel Xeon Phi coprocessor. In this paper we present an algorithm for large-scale DNA analysis that exploits thread-level and the SIMD parallelism of the Intel Xeon Phi. We evaluate our approach for various ...

  2. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M;

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76......(s) of tetranectin. The sequence analysis revealed a difference in both sequence and size of the noncoding regions between mouse and human cDNAs. Northern analysis of the various tissues from mouse, rat, and cow showed the major transcript(s) to be approximately 1 kb, which is similar in size to that observed......, was determined to be on distal mouse Chromosome (Chr) 9 by analysis of two sets of multilocus crosses....

  3. Genomic Signal Processing Methods for Computation of Alignment-Free Distances from DNA Sequences

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E. Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P.; Morales, J. Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments. PMID:25393409

  4. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.

    Science.gov (United States)

    Borrayo, Ernesto; Mendizabal-Ruiz, E Gerardo; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Mendizabal, Adriana P; Morales, J Alejandro

    2014-01-01

    Genomic signal processing (GSP) refers to the use of digital signal processing (DSP) tools for analyzing genomic data such as DNA sequences. A possible application of GSP that has not been fully explored is the computation of the distance between a pair of sequences. In this work we present GAFD, a novel GSP alignment-free distance computation method. We introduce a DNA sequence-to-signal mapping function based on the employment of doublet values, which increases the number of possible amplitude values for the generated signal. Additionally, we explore the use of three DSP distance metrics as descriptors for categorizing DNA signal fragments. Our results indicate the feasibility of employing GAFD for computing sequence distances and the use of descriptors for characterizing DNA fragments.

  5. Strong physical constraints on sequence-specific target location by proteins on DNA molecules

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Keatch, S.A.; Dryden, D.T.F

    2006-01-01

    Sequence-specific binding to DNA in the presence of competing non-sequence-specific ligands is a problem faced by proteins in all organisms. It is akin to the problem of parking a truck at a loading bay by the side of a road in the presence of cars parked at random along the road. Cars even...... partially covering the loading bay prevent correct parking of the truck. Similarly on DNA, non-specific ligands interfere with the binding and function of sequence-specific proteins. We derive a formula for the probability that the loading bay is free from parked cars. The probability depends on the size...... of the loading bay and allows an estimation of the size of the footprint on the DNA of the sequence-specific protein by assaying protein binding or function in the presence of increasing concentrations of non-specific ligand. Assaying for function gives an 'activity footprint'; the minimum length of DNA required...

  6. Cytogenetic analysis of Populus trichocarpa--ribosomal DNA, telomere repeat sequence, and marker-selected BACs.

    Science.gov (United States)

    Islam-Faridi, M N; Nelson, C D; DiFazio, S P; Gunter, L E; Tuskan, G A

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  7. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Gunter, Lee E [ORNL; DiFazio, Stephen P [West Virginia University

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  8. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    Directory of Open Access Journals (Sweden)

    Zuiter Afnan

    2012-08-01

    Full Text Available Abstract Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.

  9. Sequence dependent charge transport through DNA molecules: The role of periodicity and long-range correlations

    Energy Technology Data Exchange (ETDEWEB)

    Guo Aimin [Department of Physics Science and Technology, Central South University, Changsha 410083 (China)]. E-mail: guoaimin1982@163.com; Xu Hui [Department of Physics Science and Technology, Central South University, Changsha 410083 (China)

    2007-04-01

    Understanding the intrinsic conduction properties in DNA plays a vital role in molecular electronic engineering. We use a tight-binding model to investigate the transmissivity, Lyapunov coefficient and localization length of DNA, including periodic poly(G)-poly(C), quasiperiodic Fibonacci polyGC and random sequences, as a function of sequence length and temperature. Our results show that the periodicity and long-range correlations in DNA can persist high transmittivity, and new transmission peaks can appear for whatever the sequence length or temperature increases, but the mean transmission coefficient decreases. Meanwhile, thermal enhancement of conductance is a generic feature in all these sequences and the asymptotic behaviors of localization length for random DNA are in good agreement with the mobility edge theory.

  10. Efficiency of ITS sequences for DNA barcoding in Passiflora (Passifloraceae).

    Science.gov (United States)

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-04-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using "best match" and "best close match" methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  11. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae

    Directory of Open Access Journals (Sweden)

    Giovanna Câmara Giudicelli

    2015-04-01

    Full Text Available DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1 region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species.

  12. Algorithms for mapping high-throughput DNA sequences

    DEFF Research Database (Denmark)

    Frellsen, Jes; Menzel, Peter; Krogh, Anders

    2014-01-01

    of data generation, new bioinformatics approaches have been developed to cope with the large amount of sequencing reads obtained in these experiments. In this chapter, we first introduce HTS technologies and their usage in molecular biology and discuss the problem of mapping sequencing reads...

  13. Solving the Curriculum Sequencing Problem with DNA Computing Approach

    Science.gov (United States)

    Debbah, Amina; Ben Ali, Yamina Mohamed

    2014-01-01

    In the e-learning systems, a learning path is known as a sequence of learning materials linked to each others to help learners achieving their learning goals. As it is impossible to have the same learning path that suits different learners, the Curriculum Sequencing problem (CS) consists of the generation of a personalized learning path for each…

  14. Computing on Anonymous Quantum Network

    CERN Document Server

    Kobayashi, Hirotada; Tani, Seiichiro

    2010-01-01

    This paper considers distributed computing on an anonymous quantum network, a network in which no party has a unique identifier and quantum communication and computation are available. It is proved that the leader election problem can exactly (i.e., without error in bounded time) be solved with at most the same complexity up to a constant factor as that of exactly computing symmetric functions (without intermediate measurements for a distributed and superposed input), if the number of parties is given to every party. A corollary of this result is a more efficient quantum leader election algorithm than existing ones: the new quantum algorithm runs in O(n) rounds with bit complexity O(mn^2), on an anonymous quantum network with n parties and m communication links. Another corollary is the first quantum algorithm that exactly computes any computable Boolean function with round complexity O(n) and with smaller bit complexity than that of existing classical algorithms in the worst case over all (computable) Boolea...

  15. Supported PCR: an efficient procedure to amplify sequences flanking a known DNA segment

    OpenAIRE

    Rudenko, George N.; Rommens, Caius M.T.; Nijkamp, H. John J.; Hille, Jacques

    1993-01-01

    We describe a novel modification of the polymerase chain reaction for efficient in vitro amplification of genomic DNA sequences flanking short stretches of known sequence. The technique utilizes a target enrichment step, based on the selective isolation of biotinylated fragments from the bulk of genomic DNA on streptavidin-containing support. Subsequently, following ligation with a second universal linker primer, the selected fragments can be amplified to amounts suitable for further molecula...

  16. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43% in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97 and lower for avian species (0.70. PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  17. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Science.gov (United States)

    Bertolini, Francesca; Ghionda, Marco Ciro; D'Alessandro, Enrico; Geraci, Claudia; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine) for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon) as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43%) in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97) and lower for avian species (0.70). PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  18. Draft versus finished sequence data for DNA and protein diagnostic signature development

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S N; Lam, M W; Smith, J R; Torres, C L; Slezak, T R

    2004-10-29

    Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors, or NNs) to sequence. We use SAP to assess whether draft data is sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high quality draft with error rates of 10{sup -3}-10{sup -5} ({approx} 8x coverage) of target organisms is suitable for DNA signature prediction. Low quality draft with error rates of {approx} 1% (3x to 6x coverage) of target isolates is inadequate for DNA signature prediction, although low quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high quality draft of target and low quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures.

  19. Methylated DNA is over-represented in whole-genome bisulfite sequencing data

    Directory of Open Access Journals (Sweden)

    Lexiang eJi

    2014-10-01

    Full Text Available The development of whole-genome bisulfite sequencing (WGBS has led to a number of exciting discoveries about the role of DNA methylation leading to a plethora of novel testable hypotheses. Methods for constructing sodium bisulfite-converted and amplified libraries have recently advanced to the point that the bottleneck for experiments that use WGBS has shifted to data analysis and interpretation. Here we present empirical evidence for an over-representation of reads from methylated DNA in WGBS. This enrichment for methylated DNA is exacerbated by higher cycles of PCR and is influenced by the type of uracil-insensitive DNA polymerase used for amplifying the sequencing library. Future efforts to computationally correct for this enrichment bias will be essential to increasing the accuracy of determining methylation levels for individual cytosines. It is especially critical for studies that seek to accurately quantify DNA methylation levels in populations that may segregate for allelic DNA methylation states.

  20. Construction of Agropyrum intermedium 2Ai-2 Chromosome DNA Library and Cloning of Species-Specific DNA Sequences

    Institute of Scientific and Technical Information of China (English)

    HE Cong-fen; MA You-zhi; XIN Zhi-yong; XU Qiong-fang; LI Lian-cheng

    2004-01-01

    The univalent from the meiosis-metaphase spreads of F1 (Z2× wheat variety Wan7107) was identified to be Agropyrum intermedium 2Ai-2 chromosome by GISH. The 2Ai-2 chromosomes were microisolated and collected. After two rounds of PCR amplification, the PCR products were ranged from 150 - 3 000 bp,with predominant fragments at about 200 - 2 000 bp. Using Ag.intermediumgenomic DNA as a probe, Southern blotting analysis confirmed the products originated from Ag. intermediumgenome. The products were purified, ligated to pUC18 and then transformed into competence E.coli DH5α to produce a 2Ai-2 chromosome DNA library. The microcloning experiments produced approximately 5×105 clones, the size range of the cloned inserts was 200- 1 500 bp, with an average of 580bp. Using Ag. intermediumgenomic DNA as a probe, dot blotting results showed that 56% clones are unique/low copy sequences, 44% are repetitive sequences in the library. Four Ag. intermedium clones were screened from the library by RFLP, and three clones(Mag065, Mag088, Mag139)belong to low/single sequences, one clone(Mag104)was repetitive sequence, and GISH results indicated that Mag104 was Ag.intermedium species-specific repetitive DNA sequence.

  1. Deep sequencing unearths nuclear mitochondrial sequences under Leber's hereditary optic neuropathy-associated false heteroplasmic mitochondrial DNA variants.

    Science.gov (United States)

    Petruzzella, Vittoria; Carrozzo, Rosalba; Calabrese, Claudia; Dell'Aglio, Rosa; Trentadue, Raffaella; Piredda, Roberta; Artuso, Lucia; Rizza, Teresa; Bianchi, Marzia; Porcelli, Anna Maria; Guerriero, Silvana; Gasparre, Giuseppe; Attimonelli, Marcella

    2012-09-01

    Leber's hereditary optic neuropathy (LHON) is associated with mitochondrial DNA (mtDNA) ND mutations that are mostly homoplasmic. However, these mutations are not sufficient to explain the peculiar features of penetrance and the tissue-specific expression of the disease and are believed to be causative in association with unknown environmental or other genetic factors. Discerning between clear-cut pathogenetic variants, such as those that appear to be heteroplasmic, and less penetrant variants, such as the homoplasmic, remains a challenging issue that we have addressed here using next-generation sequencing approach. We set up a protocol to quantify MTND5 heteroplasmy levels in a family in which the proband manifests a LHON phenotype. Furthermore, to study this mtDNA haplotype, we applied the cybridization protocol. The results demonstrate that the mutations are mostly homoplasmic, whereas the suspected heteroplasmic feature of the observed mutations is due to the co-amplification of Nuclear mitochondrial Sequences.

  2. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples.

    Directory of Open Access Journals (Sweden)

    Jessica Lüsebrink

    Full Text Available Parvoviruses are single stranded DNA viruses that replicate in a so called "rolling-hairpin" mechanism, a variant of the rolling circle replication known for bacteriophages like φX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus.

  3. Generating Multiple Base-Resolution DNA Methylomes Using Reduced Representation Bisulfite Sequencing.

    Science.gov (United States)

    Chatterjee, Aniruddha; Rodger, Euan J; Stockwell, Peter A; Le Mée, Gwenn; Morison, Ian M

    2017-01-01

    Reduced representation bisulfite sequencing (RRBS) is an effective technique for profiling genome-wide DNA methylation patterns in eukaryotes. RRBS couples size selection, bisulfite conversion, and second-generation sequencing to enrich for CpG-dense regions of the genome. The progressive improvement of second-generation sequencing technologies and reduction in cost provided an opportunity to examine the DNA methylation patterns of multiple genomes. Here, we describe a protocol for sequencing multiple RRBS libraries in a single sequencing reaction to generate base-resolution methylomes. Furthermore, we provide a brief guideline for base-calling and data analysis of multiplexed RRBS libraries. These strategies will be useful to perform large-scale, genome-wide DNA methylation analysis.

  4. How evolution of genomes is reflected in exact DNA sequence match statistics.

    Science.gov (United States)

    Massip, Florian; Sheinman, Michael; Schbath, Sophie; Arndt, Peter F

    2015-02-01

    Genome evolution is shaped by a multitude of mutational processes, including point mutations, insertions, and deletions of DNA sequences, as well as segmental duplications. These mutational processes can leave distinctive qualitative marks in the statistical features of genomic DNA sequences. One such feature is the match length distribution (MLD) of exactly matching sequence segments within an individual genome or between the genomes of related species. These have been observed to exhibit characteristic power law decays in many species. Here, we show that simple dynamical models consisting solely of duplication and mutation processes can already explain the characteristic features of MLDs observed in genomic sequences. Surprisingly, we find that these features are largely insensitive to details of the underlying mutational processes and do not necessarily rely on the action of natural selection. Our results demonstrate how analyzing statistical features of DNA sequences can help us reveal and quantify the different mutational processes that underlie genome evolution.

  5. CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVER REGENERATION FROM RAT

    Institute of Scientific and Technical Information of China (English)

    董菁; 成军; 王勤环; 施双双; 王刚; 斯崇文

    2002-01-01

    Objective.To search for genomic DNA sequence of the augmenter of liver regeneration (ALR) of rat.Methods.Polymerase chain reaction (PCR) with specific primers was used to amplify the sequence from the rat genome.Results.A piece of genomic DNA sequence and a piece of pseudogene of rat ALR were identified.The lengths of the gene and pseudogene are 1508 bp and 442 bp,respectively.The ALR gene of rat includes 3 exons and 2 introns.The 442 bp DNA sequence may represent a pseudogene or a ALR related peptide.Predicted amino acid sequence analysis showed that there were 14 different amino acid residues between the gene and pseudogene.ALR related peptide is 84 amino acid residues in length and relates closely to ALR protein.Conclusion.There might be a multigene family of ALR in rat.

  6. Noninvasive Prenatal Paternity Testing (NIPAT) through Maternal Plasma DNA Sequencing: A Pilot Study.

    Science.gov (United States)

    Jiang, Haojun; Xie, Yifan; Li, Xuchao; Ge, Huijuan; Deng, Yongqiang; Mu, Haofang; Feng, Xiaoli; Yin, Lu; Du, Zhou; Chen, Fang; He, Nongyue

    2016-01-01

    Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels in order to verify the performance in clinical cases. Combining targeted deep sequencing of selective SNP and informative bioinformatics pipeline, we calculated the combined paternity index (CPI) of 17 cases to determine paternity. Sequencing-based NIPAT results fully agreed with invasive prenatal paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future.

  7. Octopus: A Secure and Anonymous DHT Lookup

    CERN Document Server

    Wang, Qiyan

    2012-01-01

    Distributed Hash Table (DHT) lookup is a core technique in structured peer-to-peer (P2P) networks. Its decentralized nature introduces security and privacy vulnerabilities for applications built on top of them; we thus set out to design a lookup mechanism achieving both security and anonymity, heretofore an open problem. We present Octopus, a novel DHT lookup which provides strong guarantees for both security and anonymity. Octopus uses attacker identification mechanisms to discover and remove malicious nodes, severely limiting an adversary's ability to carry out active attacks, and splits lookup queries over separate anonymous paths and introduces dummy queries to achieve high levels of anonymity. We analyze the security of Octopus by developing an event-based simulator to show that the attacker discovery mechanisms can rapidly identify malicious nodes with low error rate. We calculate the anonymity of Octopus using probabilistic modeling and show that Octopus can achieve near-optimal anonymity. We evaluate ...

  8. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S. (Istituto Nazionale Neurologico C. Besta, Milan (Italy)); Rocchi, M. (Istituto G. Gaslini, Genoa (Italy))

    1991-01-15

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH{sub 2}-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH{sub 2}-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids.

  9. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.

    Directory of Open Access Journals (Sweden)

    Javier Estrada

    Full Text Available DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.

  10. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences.

    Science.gov (United States)

    Estrada, Javier; Ruiz-Herrero, Teresa; Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.

  11. SeqControl: process control for DNA sequencing.

    Science.gov (United States)

    Chong, Lauren C; Albuquerque, Marco A; Harding, Nicholas J; Caloian, Cristian; Chan-Seng-Yue, Michelle; de Borja, Richard; Fraser, Michael; Denroche, Robert E; Beck, Timothy A; van der Kwast, Theodorus; Bristow, Robert G; McPherson, John D; Boutros, Paul C

    2014-10-01

    As high-throughput sequencing continues to increase in speed and throughput, routine clinical and industrial application draws closer. These 'production' settings will require enhanced quality monitoring and quality control to optimize output and reduce costs. We developed SeqControl, a framework for predicting sequencing quality and coverage using a set of 15 metrics describing overall coverage, coverage distribution, basewise coverage and basewise quality. Using whole-genome sequences of 27 prostate cancers and 26 normal references, we derived multivariate models that predict sequencing quality and depth. SeqControl robustly predicted how much sequencing was required to reach a given coverage depth (area under the curve (AUC) = 0.993), accurately classified clinically relevant formalin-fixed, paraffin-embedded samples, and made predictions from as little as one-eighth of a sequencing lane (AUC = 0.967). These techniques can be immediately incorporated into existing sequencing pipelines to monitor data quality in real time. SeqControl is available at http://labs.oicr.on.ca/Boutros-lab/software/SeqControl/.

  12. DNA stretching and optimization of nucleobase recognition in enzymatic nanopore sequencing

    NARCIS (Netherlands)

    Stoddart, David; Franceschini, Lorenzo; Heron, Andrew; Bayley, Hagan; Maglia, Giovanni

    2015-01-01

    In nanopore sequencing, where single DNA strands are electrophoretically translocated through a nanopore and the resulting ionic signal is used to identify the four DNA bases, an enzyme has been used to ratchet the nucleic acid stepwise through the pore at a controlled speed. In this work, we invest

  13. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates.

    Science.gov (United States)

    Mosquera, Jesús; Sánchez, Mateo I; Valero, Julián; de Mendoza, Javier; Vázquez, M Eugenio; Mascareñas, José L

    2015-03-21

    Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract. In addition to stabilizing the complex with the target DNA, the oligoguanidinium unit also endows the conjugate with cell internalization properties.

  14. Cloning, sequencing and expression of cDNA encoding growth hormone from Indian catfish (Heteropneustes fossilis)

    Indian Academy of Sciences (India)

    Vikas Anathy; Thayanithy Venugopal; Ramanathan Koteeswaran; Thavamani J Pandian; Sinnakaruppan Mathavan

    2013-03-01

    A tissue-specific cDNA library was constructed using polyA+ RNA from pituitary glands of the Indian catfish Heteropneustes fossilis (Bloch) and a cDNA clone encoding growth hormone (GH) was isolated. Using polymerase chain reaction (PCR) primers representing the conserved regions of fish GH sequences the 3′ region of catfish GH cDNA (540 bp) was cloned by random amplification of cDNA ends and the clone was used as a probe to isolate recombinant phages carrying the full-length cDNA sequence. The full-length cDNA clone is 1132 bp in length, coding for an open reading frame (ORF) of 603 bp; the reading frame encodes a putative polypeptide of 200 amino acids including the signal sequence of 22 amino acids. The 5′ and 3′ untranslated regions of the cDNA are 58 bp and 456 bp long, respectively. The predicted amino acid sequence of H. fossils GH shared 98% homology with other catfishes. Mature GH protein was efficiently expressed in bacterial and zebrafish systems using appropriate expression vectors. The successful expression of the cloned GH cDNA of catfish confirms the functional viability of the clone.

  15. RevTrans: multiple alignment of coding DNA from aligned amino acid sequences

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Pedersen, Anders Gorm

    2003-01-01

    The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit...

  16. Complete Genome Sequence of the WHO International Standard for Hepatitis B Virus DNA

    Science.gov (United States)

    Jenkins, Adrian; Minhas, Rehan

    2017-01-01

    ABSTRACT   The World Health Organization (WHO) international standard (IS) for hepatitis B virus (HBV) DNA for use in nucleic acid amplification assays was characterized by determining the complete genome sequence, which was assigned genotype A. This information will aid the design, development, and evaluation of HBV DNA amplification assays. PMID:28209818

  17. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  18. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  19. High Interlaboratory Reprocucibility of DNA Sequence-based Typing of Bacteria in a Multicenter Study

    DEFF Research Database (Denmark)

    Sousa, MA de; Boye, Kit; Lencastre, H de;

    2006-01-01

    Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without...

  20. Cloning, sequencing and expression of cDNA encoding growth hormone from Indian catfish (Heteropneustes fossilis)

    Indian Academy of Sciences (India)

    Vikas Anathy; Thayanithy Venugopal; Ramanathan Koteeswaran; Thavamani J Pandian; Sinnakaruppan Mathavan

    2001-09-01

    A tissue-specific cDNA library was constructed using polyA+ RNA from pituitary glands of the Indian catfish Heteropneustes fossilis (Bloch) and a cDNA clone encoding growth hormone (GH) was isolated. Using polymerase chain reaction (PCR) primers representing the conserved regions of fish GH sequences the 3′ region of catfish GH cDNA (540 bp) was cloned by random amplification of cDNA ends and the clone was used as a probe to isolate recombinant phages carrying the full-length cDNA sequence. The full-length cDNA clone is 1132 bp in length, coding for an open reading frame (ORF) of 603 bp; the reading frame encodes a putative polypeptide of 200 amino acids including the signal sequence of 22 amino acids. The 5′ and 3′ untranslated regions of the cDNA are 58 bp and 456 bp long, respectively. The predicted amino acid sequence of H. fossils GH shared 98% homology with other catfishes. Mature GH protein was efficiently expressed in bacterial and zebrafish systems using appropriate expression vectors. The successful expression of the cloned GH cDNA of catfish confirms the functional viability of the clone.

  1. Budding yeast cDNA sequencing project: S03052-76_F01 [Budding yeast cDNA sequencing project

    Lifescience Database Archive (English)

    Full Text Available EST - Link to UCSC Genome Browser - Sequence >S03052-76_F01.phd NNNNNNNNNNNNNNNNNNNNNNNNNTNTAAAANNNNGANNNGANNNGTGGNTNTNTNTNT TNT...ANTTTNAANAAANAACNNNCCCTNNNNCNCNNNNNNNGAGNAAAAANNGGGTNTNNT NTTTTNNTNNTNTNTNNNNCNNN Qualit

  2. Protocols for 16S rDNA Array Analyses of Microbial Communities by Sequence-Specific Labeling of DNA Probes

    Directory of Open Access Journals (Sweden)

    Knut Rudi

    2003-01-01

    Full Text Available Analyses of complex microbial communities are becoming increasingly important. Bottlenecks in these analyses, however, are the tools to actually describe the biodiversity. Novel protocols for DNA array-based analyses of microbial communities are presented. In these protocols, the specificity obtained by sequence-specific labeling of DNA probes is combined with the possibility of detecting several different probes simultaneously by DNA array hybridization. The gene encoding 16S ribosomal RNA was chosen as the target in these analyses. This gene contains both universally conserved regions and regions with relatively high variability. The universally conserved regions are used for PCR amplification primers, while the variable regions are used for the specific probes. Protocols are presented for DNA purification, probe construction, probe labeling, and DNA array hybridizations.

  3. Polymorphisms and ambiguous sites present in DNA sequences of Leishmania clones: looking closer.

    Science.gov (United States)

    Boité, Mariana Côrtes; de Oliveira, Taíse Salgado; Ferreira, Gabriel Eduardo Melim; Trannin, Marcos; dos Santos, Barbara Neves; Porrozzi, Renato; Cupolillo, Elisa

    2014-07-01

    In genetic studies of Leishmania parasites, co-dominant markers are chosen for their ability to detect heterozygous polymorphisms, to infer the occurrence of inbreeding and to resolve genetic variability. The majority of DNA sequence based reports perform conventional dye terminator cycle sequencing where perfectly ambiguous sites or double peaks in the chromatogram are interpreted as heterozygous strains. However, molecular peculiarities of the parasite such as aneuploidy, mixed populations and homologous recombination advise that data from regular DNA sequence analysis should be carefully evaluated. We report here a closer look at ambiguous sites observed in 6pgd DNA sequences obtained for a multilocus sequence analysis project on Leishmania (Viannia) strains. After comparing 286 DNA sequences from biological and molecular clones of six L. (Viannia) strains we could distinguish events that contribute to genetic variation in Leishmania (recombination, mutation, chromosomal mosaics). Also, the results suggest how diversity might not be completely revealed through regular DNA sequence analysis and demonstrate the importance for molecular epidemiology research to be aware of such possibilities while choosing samples for studies.

  4. Sequence-specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipid-DNA) in capillary and microfluidic electrophoretic separations

    NARCIS (Netherlands)

    Wagler, Patrick; Minero, Gabriel Antonio S.; Tangen, Uwe; de Vries, Jan Willem; Prusty, Deepak; Kwak, Minseok; Herrmann, Andreas; McCaskill, John S.

    2015-01-01

    Reversible noncovalent but sequence-dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite-modified oligonucleotides has enabled sequence-specific mobility assays for DN

  5. DNA sequencing leads to genomics progress in China

    Institute of Scientific and Technical Information of China (English)

    WU JiaYan; XIAO JingFa; ZHANG RuoSi; YU Jun

    2011-01-01

    1 Science in the large-scale sequencing era Ten years ago,the first draft sequence assembly of the human genome was completed [1],bringing biomedical research one-step closer toward the goal of revolutionizing diagnosis,prevention,and treatment of human diseases.Recently,journalists from the journal Nature surveyed more than 1000 life scientists regarding this laudable aim [2],obtaining substantially negative responses [3].However,almost all of those surveyed had been influenced,in one way or another,by the availability of the human genome sequence,and they also agreed with the notion that the "sequence is the start." The complexity of genome biology and almost every aspect of human biology is far greater than previously thought [4].

  6. Sequence-specific DNA interactions with calixarene-based langmuir monolayers.

    Science.gov (United States)

    Rullaud, Vanessa; Moridi, Negar; Shahgaldian, Patrick

    2014-07-29

    The interactions of an amphiphilic calixarene, namely p-guanidino-dodecyloxy-calix[4]arene, 1, self-assembled as Langmuir monolayers, with short double stranded DNA, were investigated by surface pressure-area (π-A) isotherms, surface ellipsometry and Brewster angle microscopy (BAM). Three DNA 30mers were used as models, poly(AT), poly(GC) and a random DNA sequence with 50% of G:C base pairs. The interactions of these model DNA duplexes with 1-based Langmuir monolayers were studied by measuring compression isotherms using increasing DNA concentrations (10(-6), 10(-5), 10(-4), and 5 × 10(-4) g L(-1)) in the aqueous subphase. The isotherms of 1 showed an expansion of the monolayer with, interestingly, significant differences depending on the duplex DNA sequence studied. Indeed, the interactions of 1-based monolayers with poly(AT) led to an expansion of the monolayer that was significantly more pronounced that for monolayers on subphases of poly(GC) and the random DNA sequence. The structure and thickness of 1-based Langmuir monolayers were investigated by BAM and surface ellipsometry that showed differences in thickness and structure between a monolayer formed on pure water or on a DNA subphase, with here again relevant dissimilarities depending on the DNA composition.

  7. Algorithm of detecting structural variations in DNA sequences

    Science.gov (United States)

    Nałecz-Charkiewicz, Katarzyna; Nowak, Robert

    2014-11-01

    Whole genome sequencing enables to use the longest common subsequence algorithm to detect genetic structure variations. We propose to search position of short unique fragments, genetic markers, to achieve acceptable time and space complexity. The markers are generated by algorithms searching the genetic sequence or its Fourier transformation. The presented methods are checked on structural variations generated in silico on bacterial genomes giving the comparable or better results than other solutions.

  8. Complete mitochondrial DNA sequence of the Qianshao spotted pig.

    Science.gov (United States)

    Xu, Dong; Chai, Yu-Lan; Jiang, Juan; He, Chang-Qing; Ma, Hai-Ming

    2015-01-01

    The complete mitochondrial genome sequence of Qianshao spotted pig was first determined in this study. The mitogenome (16,700 bp) consists of 22 tRNA genes, 2 ribosomal RNA genes, 13 protein-coding genes and 1 control region (D-loop region). The complete mitochondrial genome sequence of the Qianshao spotted pig enriches data resource for further study in genetic mechanism.

  9. Practical anonymity hiding in plain sight online

    CERN Document Server

    Loshin, Peter

    2013-01-01

    For those with legitimate reason to use the Internet anonymously--diplomats, military and other government agencies, journalists, political activists, IT professionals, law enforcement personnel, political refugees and others--anonymous networking provides an invaluable tool, and many good reasons that anonymity can serve a very important purpose. Anonymous use of the Internet is made difficult by the many websites that know everything about us, by the cookies and ad networks, IP-logging ISPs, even nosy officials may get involved. It is no longer possible to turn off browser cookies to be l

  10. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    Science.gov (United States)

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  11. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  12. Distinguishing authentic mitochondrial and plastid DNAs from similar DNA sequences in the nucleus using the polymerase chain reaction.

    Science.gov (United States)

    Kumar, Rachana A; Bendich, Arnold J

    2011-08-01

    DNA sequences similar to those in the organellar genomes are also found in the nucleus. These non-coding sequences may be co-amplified by PCR with the authentic organellar DNA sequences, leading to erroneous conclusions. To avoid this problem, we describe an experimental procedure to prevent amplification of this "promiscuous" DNA when total tissue DNA is used with PCR. First, primers are designed for organelle-specific sequences using a bioinformatics method. These primers are then tested using methylation-sensitive PCR. The method is demonstrated for both end-point and real-time PCR with Zea mays, where most of the DNA sequences in the organellar genomes are also present in the nucleus. We use this procedure to quantify those nuclear DNA sequences that are near-perfect replicas of organellar DNA. This method should be useful for applications including phylogenetic analysis, organellar DNA quantification and clinical testing.

  13. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase.

    Directory of Open Access Journals (Sweden)

    Olivier Delelis

    Full Text Available BACKGROUND: HIV-1 integrase (IN catalyses the retroviral integration process, removing two nucleotides from each long terminal repeat and inserting the processed viral DNA into the target DNA. It is widely assumed that the strand transfer step has no sequence specificity. However, recently, it has been reported by several groups that integration sites display a preference for palindromic sequences, suggesting that a symmetry in the target DNA may stabilise the tetrameric organisation of IN in the synaptic complex. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the ability of several palindrome-containing sequences to organise tetrameric IN and investigated the ability of IN to catalyse DNA cleavage at internal positions. Only one palindromic sequence was successfully cleaved by IN. Interestingly, this symmetrical sequence corresponded to the 2-LTR junction of retroviral DNA circles-a palindrome similar but not identical to the consensus sequence found at integration sites. This reaction depended strictly on the cognate retroviral sequence of IN and required a full-length wild-type IN. Furthermore, the oligomeric state of IN responsible for this cleavage differed from that involved in the 3'-processing reaction. Palindromic cleavage strictly required the tetrameric form, whereas 3'-processing was efficiently catalysed by a dimer. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that the restriction-like cleavage of palindromic sequences may be a general physiological activity of retroviral INs and that IN tetramerisation is strongly favoured by DNA symmetry, either at the target site for the concerted integration or when the DNA contains the 2-LTR junction in the case of the palindromic internal cleavage.

  14. 2D-dynamic representation of DNA sequences as a graphical tool in bioinformatics

    Science.gov (United States)

    Bielińska-Wa̧Ż, D.; Wa̧Ż, P.

    2016-10-01

    2D-dynamic representation of DNA sequences is briefly reviewed. Some new examples of 2D-dynamic graphs which are the graphical tool of the method are shown. Using the examples of the complete genome sequences of the Zika virus it is shown that the present method can be applied for the study of the evolution of viral genomes.

  15. An intragenic distribution bias of DNA uptake sequences in Pasteurellaceae and Neisseriae

    NARCIS (Netherlands)

    Passel, van M.W.J.

    2008-01-01

    Most sequenced strains from Pasteurellaceae and Neisseriae contain hundreds to thousands of uptake sequence (US) motifs in their genome, which are associated with natural competence for DNA uptake. The mechanism of their recognition is still unclear, and I searched for intragenic location patterns o

  16. Supported PCR : an efficient procedure to amplify sequences flanking a known DNA segment

    NARCIS (Netherlands)

    Rudenko, George N.; Rommens, Caius M.T.; Nijkamp, H. John J.; Hille, Jacques

    1993-01-01

    We describe a novel modification of the polymerase chain reaction for efficient in vitro amplification of genomic DNA sequences flanking short stretches of known sequence. The technique utilizes a target enrichment step, based on the selective isolation of biotinylated fragments from the bulk of gen

  17. Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing.

    NARCIS (Netherlands)

    Chen, E.Z.; Chiu, R.W.; Sun, H.; Akolekar, R.; Chan, K.C.; Leung, T.Y.; Jiang, P.; Zheng, Y.W.; Lun, F.M.; Chan, L.Y.; Jin, Y.; Go, A.T.; Lau, E.T; To, W.W.; Leung, W.C.; Tang, R.Y.; Au-Yeung, S.K.; Lam, H.; Kung, Y.Y.; Zhang, X.; Vugt, J.M.G. van; Minekawa, R.; Tang, M.H.; Wang, J.; Oudejans, C.B.; Lau, T.K.; Nicolaides, K.H.; Lo, Y.M.

    2011-01-01

    Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due t

  18. Discovery and genotyping of existing and induced DNA sequence variation in potato

    NARCIS (Netherlands)

    Uitdewilligen, J.G.A.M.L.

    2012-01-01

    In this thesis natural and induced DNA sequence diversity in potato (Solanum tuberosum) for use in marker-trait analysis and potato breeding is assessed. The study addresses the challenges of reliable, high-throughput identification and genotyping of sequence variants in existing tetraploid potato c

  19. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xian; Wen-Ming Cong; Shu-Hui Zhang; Meng-Chao Wu

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments.METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD)with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated,purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data.RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size,histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene.CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcinogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis.

  20. Cloning and sequencing of dolphinfish (Coryphaena hippurus, Coryphaenidae) growth hormone-encoding cDNA.

    Science.gov (United States)

    Peduel, A D; Elizur, A; Knibb, W

    1994-01-01

    The cDNA encoding the preprotein growth hormone from the dolphinfish (Coryphaena hippurus) has been cloned and sequenced. The cDNA was derived by reverse transcription of RNA from the pituitary of a young fish using the method known as Rapid Amplification of cDNA Ends (RACE). An oligonucleotide primer corresponding to the 5' region of Pagrus major and the universal RACE primer enabled amplification using the Polymerase Chain Reaction (PCR). The dolphinfish and yellow-tail, Seriola quineqeradiata, are both members of the sub-order Percoidei (Perciforme) and their GH sequences show a high level of homology.

  1. DNA as a molecular wire: distance and sequence dependence.

    Science.gov (United States)

    Wohlgamuth, Chris H; McWilliams, Marc A; Slinker, Jason D

    2013-09-17

    Functional nanowires and nanoelectronics are sought for their use in next generation integrated circuits, but several challenges limit the use of most nanoscale devices on large scales. DNA has great potential for use as a molecular wire due to high yield synthesis, near-unity purification, and nanoscale self-organization. Nonetheless, a thorough understanding of ground state DNA charge transport (CT) in electronic configurations under biologically relevant conditions, where the fully base-paired, double-helical structure is preserved, is lacking. Here, we explore the fundamentals of CT through double-stranded DNA monolayers on gold by assessing 17 base pair bridges at discrete points with a redox active probe conjugated to a modified thymine. This assessment is performed under temperature-controlled and biologically relevant conditions with cyclic and square wave voltammetry, and redox peaks are analyzed to assess transfer rate and yield. We demonstrate that the yield of transport is strongly tied to the stability of the duplex, linearly correlating with the melting temperature. Transfer rate is found to be temperature-activated and to follow an inverse distance dependence, consistent with a hopping mechanism of transport. These results establish the governing factors of charge transfer speed and throughput in DNA molecular wires for device configurations, guiding subsequent application for nanoscale electronics.

  2. Anonymous Web Browsing and Hosting

    Directory of Open Access Journals (Sweden)

    MANOJ KUMAR

    2013-02-01

    Full Text Available In today’s high tech environment every organization, individual computer users use internet for accessing web data. To maintain high confidentiality and security of the data secure web solutions are required. In this paper we described dedicated anonymous web browsing solutions which makes our browsing faster and secure. Web application which play important role for transferring our secret information including like email need more and more security concerns. This paper also describes that how we can choose safe web hosting solutions and what the main functions are which provides more security over server data. With the browser security network security is also important which can be implemented using cryptography solutions, VPN and by implementing firewalls on the network. Hackers always try to steal our identity and data, they track our activities using the network application software’s and do harmful activities. So in this paper we described that how we can monitor them from security purposes.

  3. Evaluation of Anonymized ONS Queries

    CERN Document Server

    Garcia-Alfaro, Joaquin; Kranakis, Evangelos

    2009-01-01

    Electronic Product Code (EPC) is the basis of a pervasive infrastructure for the automatic identification of objects on supply chain applications (e.g., pharmaceutical or military applications). This infrastructure relies on the use of the (1) Radio Frequency Identification (RFID) technology to tag objects in motion and (2) distributed services providing information about objects via the Internet. A lookup service, called the Object Name Service (ONS) and based on the use of the Domain Name System (DNS), can be publicly accessed by EPC applications looking for information associated with tagged objects. Privacy issues may affect corporate infrastructures based on EPC technologies if their lookup service is not properly protected. A possible solution to mitigate these issues is the use of online anonymity. We present an evaluation experiment that compares the of use of Tor (The second generation Onion Router) on a global ONS/DNS setup, with respect to benefits, limitations, and latency.

  4. DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria

    Directory of Open Access Journals (Sweden)

    Sabin Robert

    2002-12-01

    Full Text Available Abstract Background Complete sequencing and annotation of the 96.2 kb Bacillus anthracis plasmid, pXO2, predicted 85 open reading frames (ORFs. Bacillus cereus and Bacillus thuringiensis isolates that ranged in genomic similarity to B. anthracis, as determined by amplified fragment length polymorphism (AFLP analysis, were examined by PCR for the presence of sequences similar to 47 pXO2 ORFs. Results The two most distantly related isolates examined, B. thuringiensis 33679 and B. thuringiensis AWO6, produced the greatest number of ORF sequences similar to pXO2; 10 detected in 33679 and 16 in AWO6. No more than two of the pXO2 ORFs were detected in any one of the remaining isolates. Dot-blot DNA hybridizations between pXO2 ORF fragments and total genomic DNA from AWO6 were consistent with the PCR assay results for this isolate and also revealed nine additional ORFs shared between these two bacteria. Sequences similar to the B. anthracis cap genes or their regulator, acpA, were not detected among any of the examined isolates. Conclusions The presence of pXO2 sequences in the other Bacillus isolates did not correlate with genomic relatedness established by AFLP analysis. The presence of pXO2 ORF sequences in other Bacillus species suggests the possibility that certain pXO2 plasmid gene functions may also be present in other closely related bacteria.

  5. Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats.

    Science.gov (United States)

    Burton, R S; Metz, E C; Flowers, J M; Willett, C S

    2005-01-03

    Eukaryotic nuclear ribosomal DNA (rDNA) is typically arranged as a series of tandem repeats coding for 18S, 5.8S, and 28S ribosomal RNAs. Transcription of rDNA repeats is initiated in the intergenic spacer (IGS) region upstream of the 18S gene. The IGS region itself typically consists of a set of subrepeats that function as transcriptional enhancers. Two important evolutionary forces have been proposed to act on the IGS region: first, selection may favor changes in the number of subrepeats that adaptively adjust rates of rDNA transcription, and second, coevolution of IGS sequence with RNA polymerase I transcription factors may lead to species specificity of the rDNA transcription machinery. To investigate the potential role of these forces on population differentiation and hybrid breakdown in the intertidal copepod Tigriopus californicus, we have characterized the rDNA of five T. californicus populations from the Pacific Coast of North America and one sample of T. brevicornicus from Scotland. Major findings are as follows: (1) the structural genes for 18S and 28S are highly conserved across T. californicus populations, in contrast to other nuclear and mitochondrial DNA (mtDNA) genes previously studied in these populations. (2) There is extensive differentiation among populations in the IGS region; in the extreme, no homology is observed across the IGS sequences (>2 kb) from the two Tigriopus species. (3) None of the Tigriopus IGS sequences have the subrepeat structure common to other eukaryotic IGS regions. (4) Segregation of rDNA in laboratory crosses indicates that rDNA is located on at least two separate chromosomes in T. californicus. These data suggest that although IGS length polymorphism does not appear to play the adaptive role hypothesized in some other eukaryotic systems, sequence divergence in the rDNA promoter region within the IGS could lead to population specificity of transcription in hybrids.

  6. Complete genome sequence of the mitochondrial DNA of the river lamprey, Lethenteron japonicum.

    Science.gov (United States)

    Kawai, Yuri L; Yura, Kei; Shindo, Miyuki; Kusakabe, Rie; Hayashi, Keiko; Hata, Kenichiro; Nakabayashi, Kazuhiko; Okamura, Kohji

    2015-01-01

    Lampreys are eel-like jawless fishes evolutionarily positioned between invertebrates and vertebrates, and have been used as model organisms to explore vertebrate evolution. In this study we determined the complete genome sequence of the mitochondrial DNA of the Japanese river lamprey, Lethenteron japonicum, using next-generation sequencers. The sequence was 16,272 bp in length. The gene content and order were identical to those of the sea lamprey, Petromyzon marinus, which has been the reference among lamprey species. However, the sequence similarity was less than 90%, suggesting the need for the whole-genome sequencing of L. japonicum.

  7. Characterization of human chromosomal DNA sequences which replicate autonomously in Saccharomyces cerevisiae.

    Science.gov (United States)

    Montiel, J F; Norbury, C J; Tuite, M F; Dobson, M J; Mills, J S; Kingsman, A J; Kingsman, S M

    1984-01-01

    We have characterised two restriction fragments, isolated from a "shotgun" collection of human DNA, which function as autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae. Functional domains of these fragments have been defined by subcloning and exonuclease (BAL 31) deletion analysis. Both fragments contain two spatially distinct domains. One is essential for high frequency transformation and is termed the Replication Sequence (RS) domain, the other, termed the Replication Enhancer (RE) domain, has no inherent replication competence but is essential for ensuring maximum function of the RS domain. The nucleotide sequence of these domains reveals several conserved sequences one of which is strikingly similar to the yeast ARS consensus sequence. PMID:6320114

  8. Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Wayne E Clarke

    Full Text Available Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38. The main goal of this project was to combine sequence capture with next generation sequencing (NGS to discover single nucleotide polymorphisms (SNPs in specific areas of the B. napus genome historically associated (via quantitative trait loci -QTL- analysis to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively. Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.

  9. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  10. A New Revised DNA Cramp Tool Based Approach of Chopping DNA Repetitive and Non-Repetitive Genome Sequences

    Directory of Open Access Journals (Sweden)

    V.Hari Prasad

    2012-11-01

    Full Text Available In vogue tremendous amount of data generated day by day by the living organism of genetic sequences and its accumulation in database, their size is growing in an exponential manner. Due to excessive storage of DNA sequences in public databases like NCBI, EMBL and DDBJ archival maintenance is tedious task. Transmission of information from one place to another place in network management systems is also a critical task. So To improve the efficiency and to reduce the overhead of the database need of compression arises in database optimization. In this connection different techniques were bloomed, but achieved results are not bountiful. Many classical algorithms are fails to compress genetic sequences due to the specificity of text encoded in dna and few of the existing techniques achieved positive results. DNA is repetitive and non repetitive in nature. Our proposed technique DNACRAMP is applicable on repetitive and non repetitive sequences of dna and it yields better compression ratio in terms of bits per bases. This is compared with existing techniques and observed that our one is the optimum technique and compression results are on par with existing techniques.

  11. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing.

    Science.gov (United States)

    Gamba, Cristina; Hanghøj, Kristian; Gaunitz, Charleen; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Bradley, Daniel G; Orlando, Ludovic

    2016-03-01

    The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost-effective solution for downstream applications, including DNA sequencing on HTS platforms.

  12. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  13. A Model of Sequence Dependent Rna-Polymerase Diffusion Along Dna

    CERN Document Server

    Barbi, M; Popkov, V; Salerno, M; Barbi, Maria; Place, Christophe; Popkov, Vladislav; Salerno, Mario

    2001-01-01

    We introduce a probabilistic model for the RNA-polymerase sliding motion along DNA during the promoter search. The model accounts for possible effects due to sequence-dependent interactions between the nonspecific DNA and the enzyme. We focus on T7 RNA-polymerase and exploit the available information about its interaction at the promoter site in order to investigate the influence of bacteriophage T7 DNA sequence on the dynamics of the sliding process. Hydrogen bonds in the major groove are used as the main sequence-dependent interaction between the RNA-polymerase and the DNA. The resulting dynamical properties and the possibility of an experimental validation are discussed in details. We show that, while at large times the process reaches a pure diffusive regime, it initially displays a sub-diffusive behavior. The crossover from anomalous to normal diffusion may occur at times large enough to be of biological interest.

  14. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    Science.gov (United States)

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-12-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences.

  15. Statistical analysis of nucleotide runs in coding and noncoding DNA sequences.

    Science.gov (United States)

    Sprizhitsky YuA; Nechipurenko YuD; Alexandrov, A A; Volkenstein, M V

    1988-10-01

    A statistical analysis of the occurrence of particular nucleotide runs in DNA sequences of different species has been carried out. There are considerable differences of run distributions in DNA sequences of procaryotes, invertebrates and vertebrates. There is an abundance of short runs (1-2 nucleotides long) in the coding sequences and there is a deficiency of such runs in the noncoding regions. However, some interesting exceptions from this rule exist for the run distribution of adenine in procaryotes and for the arrangement of purine-pyrimidine runs in eucaryotes. The similarity in the distributions of such runs in the coding and noncoding regions may be due to some structural features of the DNA molecule as a whole. Runs of guanine (or cytosine) of three to six nucleotides occur predominantly in noncoding DNA regions in eucaryotes, especially in vertebrates.

  16. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    Science.gov (United States)

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  17. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    Science.gov (United States)

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae.

  18. Sequence-selective targeting of duplex DNA by peptide nucleic acids

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide...... nucleic acid (PNA) can recognize duplex DNA with high sequence specificity and affinity in triplex, duplex and double-duplex invasive modes or non-invasive triplex modes. Novel PNA modification has improved the affinity for DNA recognition via duplex invasion, double-duplex invasion and triplex...... recognition considerably. Such modifications have also resulted in new approaches to targeted gene repair and sequence-selective double-strand cleavage of genomic DNA....

  19. Correcting sequencing errors in DNA coding regions using a dynamic programming approach.

    Science.gov (United States)

    Xu, Y; Mural, R J; Uberbacher, E C

    1995-04-01

    This paper presents an algorithm for detecting and 'correcting' sequencing errors that occur in DNA coding regions. The types of sequencing errors addressed are insertions and deletions (indels) of DNA bases. The goal is to provide a capability which makes single-pass or low-redundancy sequence data more informative, reducing the need for high-redundancy sequencing for gene identification and characterization purposes. This would permit improved sequencing efficiency and reduce genome sequencing costs. The algorithm detects sequencing errors by discovering changes in the statistically preferred reading frame within a putative coding region and then inserts a number of 'neutral' bases at a perceived reading frame transition point to make the putative exon candidate frame consistent. We have implemented the algorithm as a front-end subsystem of the GRAIL DNA sequence analysis system to construct a version which is very error tolerant and also intend to use this as a testbed for further development of sequencing error-correction technology. Preliminary test results have shown the usefulness of this algorithm and also exhibited some of its weakness, providing possible directions for further improvement. On a test set consisting of 68 human DNA sequences with 1% randomly generated indels in coding regions, the algorithm detected and corrected 76% of the indels. The average distance between the position of an indel and the predicted one was 9.4 bases. With this subsystem in place, GRAIL correctly predicted 89% of the coding messages with 10% false message on the 'corrected' sequences, compared to 69% correctly predicted coding messages and 11% falsely predicted messages on the 'corrupted' sequences using standard GRAIL II method (version 1.2).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Neural network predicts sequence of TP53 gene based on DNA chip

    DEFF Research Database (Denmark)

    Spicker, J.S.; Wikman, F.; Lu, M.L.;

    2002-01-01

    We have trained an artificial neural network to predict the sequence of the human TP53 tumor suppressor gene based on a p53 GeneChip. The trained neural network uses as input the fluorescence intensities of DNA hybridized to oligonucleotides on the surface of the chip and makes between zero...... and four errors in the predicted 1300 bp sequence when tested on wild-type TP53 sequence....

  1. [cDNA cloning and sequence analysis of pluripotency genes in tree shrews (Tupaia belangeri)].

    Science.gov (United States)

    Wang, Cai-Yun; Ma, Yun-Han; He, Da-Jian; Yang, Shi-Hua

    2013-04-01

    In this paper, partial sequences of the tree shrew (Tupaia belangeri) Klf4, Sox2, and c-Myc genes were cloned and sequenced, which were 382, 612, and 485 bp in length and encoded 127, 204, and 161 amino acids, respectively. Whereas, their cDNA sequence identities with those of human were 89%, 98%, and 89%, respectively. Their phylogenetic tree results indicated different topologies and suggested individual evolutional pathways. These results can facilitate further functional studies.

  2. Chromatin Isolation and DNA Sequence Analysis in Large Undergraduate Laboratory Sections

    Science.gov (United States)

    Hagerman, Ann E.

    1999-10-01

    A pair of exercises that introduce undergraduate students to basic techniques and concepts of molecular biology and that are appropriate for classes with large enrollments are described. One exercise is a simple laboratory experiment in which chromatin is isolated from chicken liver and is resolved into histone proteins and DNA by ion-exchange chromatography. The other is a series of computer simulations that introduce DNA sequencing, mapping, and sequence analysis to the students. The final step of the simulation is submission of a sequence to a database on the World Wide Web for identification of the protein product of the gene.

  3. [Statistical analysis of DNA sequences nearby splicing sites].

    Science.gov (United States)

    Korzinov, O M; Astakhova, T V; Vlasov, P K; Roĭtberg, M A

    2008-01-01

    Recognition of coding regions within eukaryotic genomes is one of oldest but yet not solved problems of bioinformatics. New high-accuracy methods of splicing sites recognition are needed to solve this problem. A question of current interest is to identify specific features of nucleotide sequences nearby splicing sites and recognize sites in sequence context. We performed a statistical analysis of human genes fragment database and revealed some characteristics of nucleotide sequences in splicing sites neighborhood. Frequencies of all nucleotides and dinucleotides in splicing sites environment were computed and nucleotides and dinucleotides with extremely high\\low occurrences were identified. Statistical information obtained in this work can be used in further development of the methods of splicing sites annotation and exon-intron structure recognition.

  4. DNA sequencing by two-dimensional materials: As theoretical modeling meets experiments.

    Science.gov (United States)

    Liang, Lijun; Shen, Jia-Wei; Zhang, Zhisen; Wang, Qi

    2017-03-15

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, two-dimensional (2D) materials (mainly including graphene, boron nitride, MoS2 etc.) have stimulated exploding interests in sensor applications. 2D-material based nanoscale DNA sequencing is a single-molecule technique with revolutionary potential. In this paper, we review the methodology of DNA sequencing based on the measurements of ionic current, force peak, and transverse electrical currents etc. by 2D materials. The advantages and disadvantages of DNA sequencing by 2D materials are discussed. Besides the recent development of experiments, we will focus on the theoretical calculations of DNA sequencing, which have been played a critical role in the development of this field. Special emphasis will focus on the disagreements between experiments and theoretical calculations, and the explanations for the discrepancy will be highlighted. Finally, some new plausible sequencing methods from computational studies will be discussed, which may be applied in the realistic DNA sequencing experiments in future.

  5. Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region.

    Science.gov (United States)

    Sindičić, Magda; Gomerčić, Tomislav; Galov, Ana; Polanc, Primož; Huber, Duro; Slavica, Alen

    2012-06-01

    Mitochondrial DNA (mtDNA) control region (CR) of numerous species is known to include up to five different repetitive sequences (RS1-RS5) that are found at various locations, involving motifs of different length and extensive length heteroplasmy. Two repetitive sequences (RS2 and RS3) on opposite sides of mtDNA central conserved region have been described in domestic cat (Felis catus) and some other felid species. However, the presence of repetitive sequence RS3 has not been detected in Eurasian lynx (Lynx lynx) yet. We analyzed mtDNA CR of 35 Eurasian lynx (L. lynx L.) samples to characterize repetitive sequences and to compare them with those found in other felid species. We confirmed the presence of 80 base pairs (bp) repetitive sequence (RS2) at the 5' end of the Eurasian lynx mtDNA CR L strand and for the first time we described RS3 repetitive sequence at its 3' end, consisting of an array of tandem repeats five to ten bp long. We found that felid species share similar RS3 repetitive pattern and fundamental repeat motif TACAC.

  6. Origin of noncoding DNA sequences: molecular fossils of genome evolution.

    OpenAIRE

    Naora, H.; MIYAHARA, K.; Curnow, R. N.

    1987-01-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. We propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approximately equal to 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The ...

  7. 5'-end sequences of budding yeast full-length cDNA clones and quality scores - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project 5'-end sequences of budding yeast full-length cDNA clones and quality ...scores Data detail Data name 5'-end sequences of budding yeast full-length cDNA clones and quality scores De...from the budding yeast full-length cDNA library by the vector-capping method, the sequence quality score gen...s accession only. Sequence 5'-end sequence data of budding yeast full-length cDNA clones. FASTA format. Quality Phred's quality... Update History of This Database Site Policy | Contact Us 5'-end sequences of budding yeast full-length cDNA clones and quality

  8. rDNA-ITS sequence analysis of pathogens of cucumber downy mildew and cucumber powdery mildew

    Institute of Scientific and Technical Information of China (English)

    Na WANG; Yajun MA; Cuiyun YANG; Guanghui DAI; Zhezhi WANG

    2008-01-01

    To determine the pathogens of cucumber downy mildew and cucumber powdery mildew by molecular marker,we amplified and sequenced the rDNA-ITS region of the pathogens of cucumber downy mildew and cucumber powdery mildew collected from the Shanghai region.The intra-/interspecific sequence difference was analyzed by rDNA-ITS sequence.The results show that the length of rDNA-ITS1 and rDNA-ITS2 of cucumber downy mildew's pathogen was 141 bp and 406 bp,respectively,with GC contents of 41.13% in ITS1 and 46.8% (Minhang and Jinshan District,sml and sm2) or 46.55% (Pudong District,sm3) in ITS2.The rDNA-ITS sequence was intraspecific conservation.The interspecific difference was related with their kin relationship.The pathogen of cucumber downy mildew was identified as Pseudoperonospora cubensis by molecular marker.The length of rDNA-ITS1 and rDNA-ITS2 of cucumber powdery mildew's pathogen was 136 bp and 89 bp,respectively,with GC contents being 59.56% and 66.29%,and rDNA-ITS sequence being highly conservative in this study that was the same as Sphaerotheca cucurbitae.But the sequence difference between the strains in the Shanghai region in this study with S.fuliginea was 4.5%,which was identified by morphology.It is suggested that the pathogen of cucumber powdery mildew should be further clarified and determined.

  9. Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA.

    Science.gov (United States)

    Bullard, Whitney; Cliffe, Laura; Wang, Pengcheng; Wang, Yinsheng; Sabatini, Robert

    2015-12-01

    Telomeric DNA of trypanosomatids possesses a modified thymine base, called base J, that is synthesized in a two-step process; the base is hydroxylated by a thymidine hydroxylase forming hydroxymethyluracil (hmU) and a glucose moiety is then attached by the J-associated glucosyltransferase (JGT). To examine the importance of JGT in modifiying specific thymine in DNA, we used a Leishmania episome system to demonstrate that the telomeric repeat (GGGTTA) stimulates J synthesis in vivo while mutant telomeric sequences (GGGTTT, GGGATT, and GGGAAA) do not. Utilizing an in vitro GT assay we find that JGT can glycosylate hmU within any sequence with no significant change in Km or kcat, even mutant telomeric sequences that are unable to be J-modified in vivo. The data suggests that JGT possesses no DNA sequence specificity in vitro, lending support to the hypothesis that the specificity of base J synthesis is not at the level of the JGT reaction.

  10. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  11. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Casaregola, S.; Ussery, David;

    2003-01-01

    mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S. servazzii contain, in total, five + 1 frameshifts. mtDNAs of S. castellii, S. servazzii and S. cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order......The complete sequences of mitochondrial DNA ( mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among...... Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S. cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S. cerevisiae...

  12. Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules.

    Science.gov (United States)

    Li, Yueqi; Xiang, Limin; Palma, Julio L; Asai, Yoshihiro; Tao, Nongjian

    2016-01-01

    Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either a hopping- or tunnelling-dominated regimes. The thermoelectric effect is small and insensitive to the molecular length in the hopping regime. In contrast, the thermoelectric effect is large and sensitive to the length in the tunnelling regime. These findings indicate that one may control the thermoelectric effect in DNA by varying its sequence and length. We describe the experimental results in terms of hopping and tunnelling charge transport models.

  13. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  14. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fung, N.

    1998-03-27

    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  15. [Application of rDNA-ITS sequence in entomology].

    Science.gov (United States)

    Liu, Yan-bin; Ji, Lan-zhu

    2007-05-01

    As an important complement of the information obtained from mtDNA, the internal transcribed spacer (ITS) of nuclear ribosomal DNA is being increasingly applied in entomological study. This paper introduced the structure and characters of ITS, and summarized its applications in identifying insect species and in studying their relative relationships and phylogenesis, evolution and spread, and relations with environment. ITS was mainly applied in identifying the species whose morphological differences were subtle. The research of relative relationships and phylogenesis was aimed to understand the species origin and evolution, while the study on the relations with environment was mainly focused on sociological and parasitic insects. The problems and their possible causes in ITS application were discussed.

  16. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  17. Multilocus sequence typing of Staphylococcus aureus with DNA array technology

    NARCIS (Netherlands)

    W.B. van Leeuwen (Willem); C. Jay (Corinne); S.V. Snijders (Susan); N. Durin (Nathalia); B. Lacroix (Bruno); H.A. Verbrugh (Henri); M.C. Enright (Mark); A. Troesch (Alain); A.F. van Belkum (Alex)

    2003-01-01

    textabstractA newly developed oligonucleotide array suited for multilocus sequence typing (MLST) of Staphylococcus aureus strains was analyzed with two strain collections in a two-center study. MLST allele identification for the first strain collection fully agreed with conventiona

  18. Targeted enrichment of genomic DNA regions for next generation sequencing

    NARCIS (Netherlands)

    Mertens, F.; El-Sharawy, A.; Sauer, S.; Van Helvoort, J.; Van der Zaag, P.J.; Franke, A.; Nilsson, M.; Lehrach. H.; Brookes, A.

    2011-01-01

    In this review we discuss the latest targeted enrichment methods, and aspects of their utilization along with second generation sequencing for complex genome analysis. In doing so we provide an overview of issues involved in detecting genetic variation, for which targeted enrichment has become a pow

  19. Is it OK to be an Anonymous?

    NARCIS (Netherlands)

    Serracino Inglott, P.

    2013-01-01

    Do the deviant acts carried out by the collective known as Anonymous qualify as vigilante activity, and if so, can they be justified? Addressing this question helps expose the difficulties of morally evaluating technologically enabled deviance. Anonymous is a complex, fluid actor but not as mysterio

  20. Anonymity-Preserving Public-Key Encryption

    DEFF Research Database (Denmark)

    Kohlweiss, Markulf; Maurer, Ueli; Onete, Cristina

    2013-01-01

    A receiver-anonymous channel allows a sender to send a message to a receiver without an adversary learning for whom the message is intended. Wireless broadcast channels naturally provide receiver anonymity, as does multi-casting one message to a receiver population containing the intended receive...

  1. Anonymity in Classroom Voting and Debating

    Science.gov (United States)

    Ainsworth, Shaaron; Gelmini-Hornsby, Giulia; Threapleton, Kate; Crook, Charles; O'Malley, Claire; Buda, Marie

    2011-01-01

    The advent of networked environments into the classroom is changing classroom debates in many ways. This article addresses one key attribute of these environments, namely anonymity, to explore its consequences for co-present adolescents anonymous, by virtue of the computer system, to peers not to teachers. Three studies with 16-17 year-olds used a…

  2. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes.

    Science.gov (United States)

    Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic

    2013-01-01

    Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.

  3. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes.

    Directory of Open Access Journals (Sweden)

    Andaine Seguin-Orlando

    Full Text Available Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.

  4. Recognizing a Single Base in an Individual DNA Strand: A Step Toward Nanopore DNA Sequencing**

    OpenAIRE

    Ashkenasy, N.; Sánchez-Quesada, J.; Ghadiri, M. R.; Bayley, H

    2005-01-01

    Functional supramolecular chemistry at the single-molecule level. Single strands of DNA can be captured inside α-hemolysin transmembrane pore protein to form single-species α-HL·DNA pseudorotaxanes. This process can be used to identify a single adenine nucleotide at a specific location on a strand of DNA by the characteristic reductions in the α-HL ion conductance. This study sug...

  5. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  6. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    Science.gov (United States)

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  7. Towards a Theory of Anonymous Networking

    CERN Document Server

    Ghaderi, J

    2009-01-01

    The problem of anonymous networking when an eavesdropper observes packet timings in a communication network is considered. The goal is to hide the identities of source-destination nodes, and paths of information flow in the network. One way to achieve such an anonymity is to use mixers. Mixers are nodes that receive packets from multiple sources and change the timing of packets, by mixing packets at the output links, to prevent the eavesdropper from finding sources of outgoing packets. In this paper, we consider two simple but fundamental scenarios: double input-single output mixer and double input-double output mixer. For the first case, we use the information-theoretic definition of the anonymity, based on average entropy per packet, and find an optimal mixing strategy under a strict latency constraint. For the second case, perfect anonymity is considered, and a maximal throughput strategy with perfect anonymity is found that minimizes the average delay.

  8. The nucleotide sequence of the dnaA gene and the first part of the dnaN gene of Escherichia coli K-12.

    Science.gov (United States)

    Hansen, E B; Hansen, F G; von Meyenburg, K

    1982-11-25

    The nucleotide sequence of the dnaA gene and the first 10% of the dnaN gene was determined. From the nucleotide sequence the amino acid sequence of the dnaA gene product was derived. It is a basic protein of 467 amino acid residues with a molecular weight of 52.5 kD. The expression of the dnaA gene is in the counterclockwise direction like the one of the dnaN gene, for which potential startsites were found.

  9. The DNA Sequence And Comparative Analysis Of Human Chromosome5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, Steve; Gordon, Laurie A.; Scott, Duncan; Xie,Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black,Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan,Yee Man; Denys, Mirian; Detter, John C.; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner,Kristen; Kimball, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou,Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar,Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Retterer, James; Rodriguez, Alex; Rogers,Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang,Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, SusanM.; Myers, Richard M.; Rubin, Edward M.

    2004-08-01

    Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.

  10. The finished DNA sequence of human chromosome 12.

    Science.gov (United States)

    Scherer, Steven E; Muzny, Donna M; Buhay, Christian J; Chen, Rui; Cree, Andrew; Ding, Yan; Dugan-Rocha, Shannon; Gill, Rachel; Gunaratne, Preethi; Harris, R Alan; Hawes, Alicia C; Hernandez, Judith; Hodgson, Anne V; Hume, Jennifer; Jackson, Andrew; Khan, Ziad Mohid; Kovar-Smith, Christie; Lewis, Lora R; Lozado, Ryan J; Metzker, Michael L; Milosavljevic, Aleksandar; Miner, George R; Montgomery, Kate T; Morgan, Margaret B; Nazareth, Lynne V; Scott, Graham; Sodergren, Erica; Song, Xing-Zhi; Steffen, David; Lovering, Ruth C; Wheeler, David A; Worley, Kim C; Yuan, Yi; Zhang, Zhengdong; Adams, Charles Q; Ansari-Lari, M Ali; Ayele, Mulu; Brown, Mary J; Chen, Guan; Chen, Zhijian; Clerc-Blankenburg, Kerstin P; Davis, Clay; Delgado, Oliver; Dinh, Huyen H; Draper, Heather; Gonzalez-Garay, Manuel L; Havlak, Paul; Jackson, Laronda R; Jacob, Leni S; Kelly, Susan H; Li, Li; Li, Zhangwan; Liu, Jing; Liu, Wen; Lu, Jing; Maheshwari, Manjula; Nguyen, Bao-Viet; Okwuonu, Geoffrey O; Pasternak, Shiran; Perez, Lesette M; Plopper, Farah J H; Santibanez, Jireh; Shen, Hua; Tabor, Paul E; Verduzco, Daniel; Waldron, Lenee; Wang, Qiaoyan; Williams, Gabrielle A; Zhang, Jingkun; Zhou, Jianling; Allen, Carlana C; Amin, Anita G; Anyalebechi, Vivian; Bailey, Michael; Barbaria, Joseph A; Bimage, Kesha E; Bryant, Nathaniel P; Burch, Paula E; Burkett, Carrie E; Burrell, Kevin L; Calderon, Eliana; Cardenas, Veronica; Carter, Kelvin; Casias, Kristal; Cavazos, Iracema; Cavazos, Sandra R; Ceasar, Heather; Chacko, Joseph; Chan, Sheryl N; Chavez, Dean; Christopoulos, Constantine; Chu, Joseph; Cockrell, Raynard; Cox, Caroline D; Dang, Michelle; Dathorne, Stephanie R; David, Robert; Davis, Candi Mon'Et; Davy-Carroll, Latarsha; Deshazo, Denise R; Donlin, Jeremy E; D'Souza, Lisa; Eaves, Kristy A; Egan, Amy; Emery-Cohen, Alexandra J; Escotto, Michael; Flagg, Nicole; Forbes, Lisa D; Gabisi, Abdul M; Garza, Melissa; Hamilton, Cerissa; Henderson, Nicholas; Hernandez, Omar; Hines, Sandra; Hogues, Marilyn E; Huang, Mei; Idlebird, DeVincent G; Johnson, Rudy; Jolivet, Angela; Jones, Sally; Kagan, Ryan; King, Laquisha M; Leal, Belita; Lebow, Heather; Lee, Sandra; LeVan, Jaclyn M; Lewis, Lakeshia C; London, Pamela; Lorensuhewa, Lorna M; Loulseged, Hermela; Lovett, Demetria A; Lucier, Alice; Lucier, Raymond L; Ma, Jie; Madu, Renita C; Mapua, Patricia; Martindale, Ashley D; Martinez, Evangelina; Massey, Elizabeth; Mawhiney, Samantha; Meador, Michael G; Mendez, Sylvia; Mercado, Christian; Mercado, Iracema C; Merritt, Christina E; Miner, Zachary L; Minja, Emmanuel; Mitchell, Teresa; Mohabbat, Farida; Mohabbat, Khatera; Montgomery, Baize; Moore, Niki; Morris, Sidney; Munidasa, Mala; Ngo, Robin N; Nguyen, Ngoc B; Nickerson, Elizabeth; Nwaokelemeh, Ogechi O; Nwokenkwo, Stanley; Obregon, Melissa; Oguh, Maryann; Oragunye, Njideka; Oviedo, Rodolfo J; Parish, Bridgette J; Parker, David N; Parrish, Julia; Parks, Kenya L; Paul, Heidie A; Payton, Brett A; Perez, Agapito; Perrin, William; Pickens, Adam; Primus, Eltrick L; Pu, Ling-Ling; Puazo, Maria; Quiles, Miyo M; Quiroz, Juana B; Rabata, Dina; Reeves, Kacy; Ruiz, San Juana; Shao, Hongmei; Sisson, Ida; Sonaike, Titilola; Sorelle, Richard P; Sutton, Angelica E; Svatek, Amanda F; Svetz, Leah Anne; Tamerisa, Kavitha S; Taylor, Tineace R; Teague, Brian; Thomas, Nicole; Thorn, Rachel D; Trejos, Zulma Y; Trevino, Brenda K; Ukegbu, Ogechi N; Urban, Jeremy B; Vasquez, Lydia I; Vera, Virginia A; Villasana, Donna M; Wang, Ling; Ward-Moore, Stephanie; Warren, James T; Wei, Xuehong; White, Flower; Williamson, Angela L; Wleczyk, Regina; Wooden, Hailey S; Wooden, Steven H; Yen, Jennifer; Yoon, Lillienne; Yoon, Vivienne; Zorrilla, Sara E; Nelson, David; Kucherlapati, Raju; Weinstock, George; Gibbs, Richard A

    2006-03-16

    Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.

  11. High penetrance of sequencing errors and interpretative shortcomings in mtDNA sequence analysis of LHON patients.

    Science.gov (United States)

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Salas, Antonio; Kivisild, Toomas; Bravi, Claudio M

    2007-01-12

    For identifying mutation(s) that are potentially pathogenic it is essential to determine the entire mitochondrial DNA (mtDNA) sequences from patients suffering from a particular mitochondrial disease, such as Leber hereditary optic neuropathy (LHON). However, such sequencing efforts can, in the worst case, be riddled with errors by imposing phantom mutations or misreporting variant nucleotides, and moreover, by inadvertently regarding some mutations as novel and pathogenic, which are actually known to define minor haplogroups. Under such circumstances it remains unclear whether the disease-associated mutations would have been determined adequately. Here, we re-analyse four problematic LHON studies and propose guidelines by which some of the pitfalls could be avoided.

  12. Multilocus sequence typing of Staphylococcus aureus with DNA array technology

    OpenAIRE

    2003-01-01

    textabstractA newly developed oligonucleotide array suited for multilocus sequence typing (MLST) of Staphylococcus aureus strains was analyzed with two strain collections in a two-center study. MLST allele identification for the first strain collection fully agreed with conventional strain typing. Analysis of strains from the second collection revealed that chip-defined MLST was concordant with conventional MLST. Array-mediated MLST data were reproducible, exchangeable, and epidemiologically ...

  13. [Sequence of the ITS region of nuclear ribosomal DNA(nrDNA) in Xinjiang wild Dianthus and its phylogenetic relationship].

    Science.gov (United States)

    Zhang, Lu; Cai, You-Ming; Zhuge, Qiang; Zou, Hui-Yu; Huang, Min-Ren

    2002-06-01

    Xinjiang is a center of distribution and differentiation of genus Dianthus in China, and has a great deal of species resources. The sequences of ITS region (including ITS-1, 5.8S rDNA and ITS-2) of nuclear ribosomal DNA from 8 species of genus Dianthus wildly distributed in Xinjiang were determined by direct sequencing of PCR products. The result showed that the size of the ITS of Dianthus is from 617 to 621 bp, and the length variation is only 4 bp. There are very high homogeneous (97.6%-99.8%) sequences between species, and about 80% homogeneous sequences between genus Dianthus and outgroup. The sequences of ITS in genus Dianthus are relatively conservative. In general, there are more conversion than transition in the variation sites among genus Dianthus. The conversion rates are relatively high, and the ratios of conversion/transition are 1.0-3.0. On the basis of phylogenetic analysis of nucleotide sequences the species of Dianthus in China would be divided into three sections. There is a distant relationship between sect. Barbulatum Williams and sect. Dianthus and between sect. Barbulatum Williams and sect. Fimbriatum Williams, and there is a close relationship between sect. Dianthus and sect. Fimbriatum Williams. From the phylogenetic tree of ITS it was found that the origin of sect. Dianthusis is earlier than that of sect. Fimbriatum Williams and sect. Barbulatum Williams.

  14. Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus (Digenea): Species Differentiation Based on mtDNA (Barcode) and Partial LSUrDNA Sequences

    Science.gov (United States)

    Bergmame, L.; Huffman, J.; Cole, R.; Dayanandan, S.; Tkach, V.; McLaughlin, J.D.

    2011-01-01

    Flukes belonging to Sphaeridiotrema are important parasites of waterfowl, and 2 morphologically similar species Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus, have been implicated in waterfowl mortality in North America. Cytochrome oxidase I (barcode region) and partial LSU-rDNA sequences from specimens of S. globulus and S. pseudoglobulus, obtained from naturally and experimentally infected hosts from New Jersey and Quebec, respectively, confirmed that these species were distinct. Barcode sequences of the 2 species differed at 92 of 590 nucleotide positions (15.6%) and the translated sequences differed by 13 amino acid residues. Partial LSU-rDNA sequences differed at 29 of 1,208 nucleotide positions (2.4%). Additional barcode sequences from specimens collected from waterfowl in Wisconsin and Minnesota and morphometric data obtained from specimens acquired along the north shore of Lake Superior revealed the presence of S. pseudoglobulus in these areas. Although morphometric data suggested the presence of S. globulus in the Lake Superior sample, it was not found among the specimens sequenced from Wisconsin or Minnesota. ?? 2011 American Society of Parasitologists.

  15. Characterization of a highly repeated DNA sequence family in five species of the genus Eulemur.

    Science.gov (United States)

    Ventura, M; Boniotto, M; Cardone, M F; Fulizio, L; Archidiacono, N; Rocchi, M; Crovella, S

    2001-09-19

    The karyotypes of Eulemur species exhibit a high degree of variation, as a consequence of the Robertsonian fusion and/or centromere fission. Centromeric and pericentromeric heterochromatin of eulemurs is constituted by highly repeated DNA sequences (including some telomeric TTAGGG repeats) which have so far been investigated and used for the study of the systematic relationships of the different species of the genus Eulemur. In our study, we have cloned a set of repetitive pericentromeric sequences of five Eulemur species: E. fulvus fulvus (EFU), E. mongoz (EMO), E. macaco (EMA), E. rubriventer (ERU), and E. coronatus (ECO). We have characterized these clones by sequence comparison and by comparative fluorescence in situ hybridization analysis in EMA and EFU. Our results showed a high degree of sequence similarity among Eulemur species, indicating a strong conservation, within the five species, of these pericentromeric highly repeated DNA sequences.

  16. Purpose-restricted Anonymous Mobile Communications Using Anonymous Signatures in Online Credential Systems

    DEFF Research Database (Denmark)

    Fathi, Hanane; Shin, SeongHan; Kobara, Kazukuni

    2010-01-01

    To avoid the risk of long-term storage of secrets on a portable device, an online credential system supports the roaming user in retrieving securely at various locations his private key and other material to generate anonymous signatures. The protocol proposed here allows a roaming mobile user...... to access anonymously services such as whistle blowing and net-counselling. Our approach: (1) allows a mobile user, remembering a short password, to anonymously and securely retrieve the credentials necessary for his anonymous communication without assuming a pre-established anonymous channel...

  17. Photoisomerization quantum yield of azobenzene-modified DNA depends on local sequence.

    Science.gov (United States)

    Yan, Yunqi; Wang, Xin; Chen, Jennifer I L; Ginger, David S

    2013-06-05

    Photoswitch-modified DNA is being studied for applications including light-harvesting molecular motors, photocontrolled drug delivery, gene regulation, and optically mediated assembly of plasmonic metal nanoparticles in DNA-hybridization assays. We study the sequence and hybridization dependence of the photoisomerization quantum yield of azobenzene attached to DNA via the popular d-threoninol linkage. Compared to free azobenzene we find that the quantum yield for photoisomerization from trans to cis form is decreased 3-fold (from 0.094 ± 0.004 to 0.036 ± 0.002) when the azobenzene is incorporated into ssDNA, and is further reduced 15-fold (to 0.0056 ± 0.0008) for azobenzene incorporated into dsDNA. In addition, we find that the quantum yield is sensitive to the local sequence including both specific mismatches and the overall sequence-dependent melting temperature (Tm). These results serve as design rules for efficient photoswitchable DNA sequences tailored for sensing, drug delivery, and energy-harvesting applications, while also providing a foundation for understanding phenomena such as photonically controlled hybridization stringency.

  18. Plasmid P1 replication: negative control by repeated DNA sequences.

    OpenAIRE

    Chattoraj, D; Cordes, K.; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pi...

  19. MAGIC-SPP: a database-driven DNA sequence processing package with associated management tools

    Directory of Open Access Journals (Sweden)

    Qu Junfeng

    2006-03-01

    Full Text Available Abstract Background Processing raw DNA sequence data is an especially challenging task for relatively small laboratories and core facilities that produce as many as 5000 or more DNA sequences per week from multiple projects in widely differing species. To meet this challenge, we have developed the flexible, scalable, and automated sequence processing package described here. Results MAGIC-SPP is a DNA sequence processing package consisting of an Oracle 9i relational database, a Perl pipeline, and user interfaces implemented either as JavaServer Pages (JSP or as a Java graphical user interface (GUI. The database not only serves as a data repository, but also controls processing of trace files. MAGIC-SPP includes an administrative interface, a laboratory information management system, and interfaces for exploring sequences, monitoring quality control, and troubleshooting problems related to sequencing activities. In the sequence trimming algorithm it employs new features designed to improve performance with respect to concerns such as concatenated linkers, identification of the expected start position of a vector insert, and extending the useful length of trimmed sequences by bridging short regions of low quality when the following high quality segment is sufficiently long to justify doing so. Conclusion MAGIC-SPP has been designed to minimize human error, while simultaneously being robust, versatile, flexible and automated. It offers a unique combination of features that permit administration by a biologist with little or no informatics background. It is well suited to both individual research programs and core facilities.

  20. Genome-scale DNA sequence recognition by hybridization to short oligomers.

    Science.gov (United States)

    Milosavljević, A; Savković, S; Crkvenjakov, R; Salbego, D; Serrato, H; Kreuzer, H; Gemmell, A; Batus, S; Grujić, D; Carnahan, S; Tepavcević, J

    1996-01-01

    Recently developed hybridization technology (Drmanac et al. 1994) enables economical large-scale detection of short oligomers within DNA fragments. The newly developed recognition method (Milosavljević 1995b) enables comparison of lists of oligomers detected within DNA fragments against known DNA sequences. We here describe an experiment involving a set of 4,513 distinct genomic E.coli clones of average length 2kb, each hybridized with 636 randomly selected short oligomer probes. High hybridization signal with a particular probe was used as an indication of the presence of a complementary oligomer in the particular clone. For each clone, a list of oligomers with highest hybridization signals was compiled. The database consisting of 4,513 oligomer lists was then searched using known E.coli sequences as queries in an attempt to identify the clones that match the query sequence. Out of a total of 11 clones that were recognized at highest significance level by our method, 8 were single-pass sequenced from both ends. The single-pass sequenced ends were then compared against the query sequences. The sequence comparisons confirmed 7 out of the total of 8 examined recognitions. This experiment represents the first successful example of genome-scale sequence recognition based on hybridization data.

  1. Origin of noncoding DNA sequences: molecular fossils of genome evolution.

    Science.gov (United States)

    Naora, H; Miyahara, K; Curnow, R N

    1987-09-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. We propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approximately equal to 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approximately equal to 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stop codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. We attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.

  2. Origin of noncoding DNA sequences: molecular fossils of genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Naora, H.; Miyahara, K.; Curnow, R.N.

    1987-09-01

    The total amount of noncoding sequences on chromosomes of contemporary organisms varies significantly from species to species. The authors propose a hypothesis for the origin of these noncoding sequences that assumes that (i) an approx. 0.55-kilobase (kb)-long reading frame composed the primordial gene and (ii) a 20-kb-long single-stranded polynucleotide is the longest molecule (as a genome) that was polymerized at random and without a specific template in the primordial soup/cell. The statistical distribution of stop codons allows examination of the probability of generating reading frames of approx. 0.55 kb in this primordial polynucleotide. This analysis reveals that with three stop codons, a run of at least 0.55-kb equivalent length of nonstop codons would occur in 4.6% of 20-kb-long polynucleotide molecules. They attempt to estimate the total amount of noncoding sequences that would be present on the chromosomes of contemporary species assuming that present-day chromosomes retain the prototype primordial genome structure. Theoretical estimates thus obtained for most eukaryotes do not differ significantly from those reported for these specific organisms, with only a few exceptions. Furthermore, analysis of possible stop-codon distributions suggests that life on earth would not exist, at least in its present form, had two or four stop codons been selected early in evolution.

  3. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.

    Science.gov (United States)

    Ley, Timothy J; Mardis, Elaine R; Ding, Li; Fulton, Bob; McLellan, Michael D; Chen, Ken; Dooling, David; Dunford-Shore, Brian H; McGrath, Sean; Hickenbotham, Matthew; Cook, Lisa; Abbott, Rachel; Larson, David E; Koboldt, Dan C; Pohl, Craig; Smith, Scott; Hawkins, Amy; Abbott, Scott; Locke, Devin; Hillier, Ladeana W; Miner, Tracie; Fulton, Lucinda; Magrini, Vincent; Wylie, Todd; Glasscock, Jarret; Conyers, Joshua; Sander, Nathan; Shi, Xiaoqi; Osborne, John R; Minx, Patrick; Gordon, David; Chinwalla, Asif; Zhao, Yu; Ries, Rhonda E; Payton, Jacqueline E; Westervelt, Peter; Tomasson, Michael H; Watson, Mark; Baty, Jack; Ivanovich, Jennifer; Heath, Sharon; Shannon, William D; Nagarajan, Rakesh; Walter, Matthew J; Link, Daniel C; Graubert, Timothy A; DiPersio, John F; Wilson, Richard K

    2008-11-06

    Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.

  4. Periodic power spectrum with applications in detection of latent periodicities in DNA sequences.

    Science.gov (United States)

    Yin, Changchuan; Wang, Jiasong

    2016-11-01

    Periodic elements play important roles in genomic structures and functions, yet some complex periodic elements in genomes are difficult to detect by conventional methods such as digital signal processing and statistical analysis. We propose a periodic power spectrum (PPS) method for analyzing periodicities of DNA sequences. The PPS method employs periodic nucleotide distributions of DNA sequences and directly calculates power spectra at specific periodicities. The magnitude of a PPS reflects the strength of a signal on periodic positions. In comparison with Fourier transform, the PPS method avoids spectral leakage, and reduces background noise that appears high in Fourier power spectrum. Thus, the PPS method can effectively capture hidden periodicities in DNA sequences. Using a sliding window approach, the PPS method can precisely locate periodic regions in DNA sequences. We apply the PPS method for detection of hidden periodicities in different genome elements, including exons, microsatellite DNA sequences, and whole genomes. The results show that the PPS method can minimize the impact of spectral leakage and thus capture true hidden periodicities in genomes. In addition, performance tests indicate that the PPS method is more effective and efficient than a fast Fourier transform. The computational complexity of the PPS algorithm is [Formula: see text]. Therefore, the PPS method may have a broad range of applications in genomic analysis. The MATLAB programs for implementing the PPS method are available from MATLAB Central ( http://www.mathworks.com/matlabcentral/fileexchange/55298 ).

  5. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  6. Consistent detection of Felis domesticus papillomavirus 2 DNA sequences within feline viral plaques.

    Science.gov (United States)

    Munday, John S; Peters-Kennedy, Jeanine

    2010-11-01

    Viral plaques are well recognized skin lesions of cats. They are thought to be caused by papillomavirus infection; however, the causative papillomavirus is uncertain. In the current study, polymerase chain reaction using 2 consensus primer sets and 1 primer set specific for Felis domesticus papillomavirus 2 (FdPV-2) was used to amplify DNA from a series of 14 feline viral plaques. The FdPV-2 sequences were detected in all 14 viral plaques by the specific primers but in only 1 of 14 feline cutaneous trichoblastomas. Papillomavirus DNA was amplified from 8 plaques using the consensus primers. Sequences from FdPV-2 were amplified using the consensus primers from 4 plaques. In addition, 3 plaques contained papillomavirus DNA sequences from Felis domesticus papillomavirus sequence MY1, and a previously unreported papillomavirus DNA sequence was amplified from 1 plaque. As FdPV-2 was consistently present within the plaques, this suggests that this papillomavirus is the likely etiologic agent. Feline viral plaques can undergo neoplastic transformation to Bowenoid in situ carcinomas (BISCs). As FdPV-2 DNA is frequently present within BISCs, this suggests that FdPV-2 induces viral plaque formation and then remains detectible after neoplastic transformation.

  7. Semi-Automated Library Preparation for High-Throughput DNA Sequencing Platforms

    Directory of Open Access Journals (Sweden)

    Eveline Farias-Hesson

    2010-01-01

    Full Text Available Next-generation sequencing platforms are powerful technologies, providing gigabases of genetic information in a single run. An important prerequisite for high-throughput DNA sequencing is the development of robust and cost-effective preprocessing protocols for DNA sample library construction. Here we report the development of a semi-automated sample preparation protocol to produce adaptor-ligated fragment libraries. Using a liquid-handling robot in conjunction with Carboxy Terminated Magnetic Beads, we labeled each library sample using a unique 6 bp DNA barcode, which allowed multiplex sample processing and sequencing of 32 libraries in a single run using Applied Biosystems' SOLiD sequencer. We applied our semi-automated pipeline to targeted medical resequencing of nuclear candidate genes in individuals affected by mitochondrial disorders. This novel method is capable of preparing as much as 32 DNA libraries in 2.01 days (8-hour workday for emulsion PCR/high throughput DNA sequencing, increasing sample preparation production by 8-fold.

  8. Detection of genetically modified DNA sequences in milk from the Italian market.

    Science.gov (United States)

    Agodi, Antonella; Barchitta, Martina; Grillo, Agata; Sciacca, Salvatore

    2006-01-01

    The possible transfer and accumulation of novel DNA and/or proteins in food for human consumption derived from animals receiving genetically modified (GM) feed is at present the object of scientific dispute. A number of studies failed to identify GM DNA in milk, meat, or eggs derived from livestock receiving GM feed ingredients. The present study was performed in order to: (i) develop a valid protocol by PCR and multicomponent analysis for the detection of specific DNA sequences in milk, focused on GM maize and GM soybean; (ii) assess the stability of transgenic DNA after pasteurization treatment and (iii) determine the presence of GM DNA sequences in milk samples collected from the Italian market. Results from the screening of 60 samples of 12 different milk brands demonstrated the presence of GM maize sequences in 15 (25%) and of GM soybean sequences in 7 samples (11.7%). Our screening methodology shows a very high sensitivity and the use of an automatic identification of the amplified products increases its specificity and reliability. Moreover, we demonstrated that the pasteurization process is not able to degrade the DNA sequences in spiked milk samples. The detection of GM DNA in milk can be interpreted as an indicator of fecal or airborne contamination, respectively, with feed DNA or feed particles, although an alternative source of contamination, possibly recognizable in the natural environment can be suggested. Further studies, performed on a larger number of milk samples, are needed to understand the likely source of contamination of milk collected from the Italian market.

  9. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA.

    Science.gov (United States)

    Yin, Ai-hua; Peng, Chun-fang; Zhao, Xin; Caughey, Bennett A; Yang, Jie-xia; Liu, Jian; Huang, Wei-wei; Liu, Chang; Luo, Dong-hong; Liu, Hai-liang; Chen, Yang-yi; Wu, Jing; Hou, Rui; Zhang, Mindy; Ai, Michael; Zheng, Lianghong; Xue, Rachel Q; Mai, Ming-qin; Guo, Fang-fang; Qi, Yi-ming; Wang, Dong-mei; Krawczyk, Michal; Zhang, Daniel; Wang, Yu-nan; Huang, Quan-fei; Karin, Michael; Zhang, Kang

    2015-11-24

    Noninvasive prenatal testing (NIPT) using sequencing of fetal cell-free DNA from maternal plasma has enabled accurate prenatal diagnosis of aneuploidy and become increasingly accepted in clinical practice. We investigated whether NIPT using semiconductor sequencing platform (SSP) could reliably detect subchromosomal deletions/duplications in women carrying high-risk fetuses. We first showed that increasing concentration of abnormal DNA and sequencing depth improved detection. Subsequently, we analyzed plasma from 1,456 pregnant women to develop a method for estimating fetal DNA concentration based on the size distribution of DNA fragments. Finally, we collected plasma from 1,476 pregnant women with fetal structural abnormalities detected on ultrasound who also underwent an invasive diagnostic procedure. We used SSP of maternal plasma DNA to detect subchromosomal abnormalities and validated our results with array comparative genomic hybridization (aCGH). With 3.5 million reads, SSP detected 56 of 78 (71.8%) subchromosomal abnormalities detected by aCGH. With increased sequencing depth up to 10 million reads and restriction of the size of abnormalities to more than 1 Mb, sensitivity improved to 69 of 73 (94.5%). Of 55 false-positive samples, 35 were caused by deletions/duplications present in maternal DNA, indicating the necessity of a validation test to exclude maternal karyotype abnormalities. This study shows that detection of fetal subchromosomal abnormalities is a viable extension of NIPT based on SSP. Although we focused on the application of cell-free DNA sequencing for NIPT, we believe that this method has broader applications for genetic diagnosis, such as analysis of circulating tumor DNA for detection of cancer.

  10. Sigma: multiple alignment of weakly-conserved non-coding DNA sequence

    Directory of Open Access Journals (Sweden)

    Siddharthan Rahul

    2006-03-01

    Full Text Available Abstract Background Existing tools for multiple-sequence alignment focus on aligning protein sequence or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring scheme designed specifically for non-coding DNA sequence. This problem acquires importance with the increasing number of published sequences of closely-related species. In particular, studies of gene regulation seek to take advantage of comparative genomics, and recent algorithms for finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local alignments (a strategy earlier used by DiAlign, at each step making the best possible alignment consistent with existing alignments, and scores the significance of the alignment based on the lengths of the aligned fragments and a background model which may be supplied or estimated from an auxiliary file of intergenic DNA. Results Comparative tests of sigma with five earlier algorithms on synthetic data generated to mimic real data show excellent performance, with Sigma balancing high "sensitivity" (more bases aligned with effective filtering of "incorrect" alignments. With real data, while "correctness" can't be directly quantified for the alignment, running the PhyloGibbs motif finder on pre-aligned sequence suggests that Sigma's alignments are superior. Conclusion By taking into account the peculiarities of non-coding DNA, Sigma fills a gap in the toolbox of bioinformatics.

  11. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  12. Sequence-specific interactions of drugs interfering with the topoisomerase-DNA cleavage complex.

    Science.gov (United States)

    Palumbo, Manlio; Gatto, Barbara; Moro, Stefano; Sissi, Claudia; Zagotto, Giuseppe

    2002-07-18

    DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells.

  13. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  14. Tomato protoplast DNA transformation : physical linkage and recombination of exogenous DNA sequences

    NARCIS (Netherlands)

    Jongsma, Maarten; Koornneef, Maarten; Zabel, Pim; Hille, Jacques

    1987-01-01

    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There w

  15. Pentaprobe: a comprehensive sequence for the one-step detection of DNA-binding activities.

    Science.gov (United States)

    Kwan, Ann H Y; Czolij, Robert; Mackay, Joel P; Crossley, Merlin

    2003-10-15

    The rapid increase in the number of novel proteins identified in genome projects necessitates simple and rapid methods for assigning function. We describe a strategy for determining whether novel proteins possess typical sequence-specific DNA-binding activity. Many proteins bind recognition sequences of 5 bp or less. Given that there are 4(5) possible 5 bp sites, one might expect the length of sequence required to cover all possibilities would be 4(5) x 5 or 5120 nt. But by allowing overlaps, utilising both strands and using a computer algorithm to generate the minimum sequence, we find the length required is only 516 base pairs. We generated this sequence as six overlapping double-stranded oligonucleotides, termed pentaprobe, and used it in gel retardation experiments to assess DNA binding by both known and putative DNA-binding proteins from several protein families. We have confirmed binding by the zinc finger proteins BKLF, Eos and Pegasus, the Ets domain protein PU.1 and the treble clef N- and C-terminal fingers of GATA-1. We also showed that the N-terminal zinc finger domain of FOG-1 does not behave as a typical DNA-binding domain. Our results suggest that pentaprobe, and related sequences such as hexaprobe, represent useful tools for probing protein function.

  16. DNA Sequencing by Capillary Electrophoresis Using Quasi-inter penetrating Network Formed by Polyacrylamide and Poly(N-hydroxymethylacrylamide)

    Institute of Scientific and Technical Information of China (English)

    Wen Long ZHANG; Yan Mei WANG

    2006-01-01

    Quasi-interpenetrating network formed by polyacrylamide and poly (N-hydroxymethylacrylamide) was designed, synthesized, and tested for DNA sequencing by capillary electrophoresis. The performance of quasi-IPN on DNA sequencing was determined by the acrylamide to N-hydroxymethylacrylamide molar ratio and sequencing temperature.

  17. The Grouping of DNA Sequences Model%DNA 分类模型

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a method to classify the DNA sequences is proposed. Mathematical methods such as statistics and optimization are used to build the model. The data is analysed sufficiently and the “critical words” is got, which can represent the characteristics of each group. According to this, a quantitative standard for grouping is brought forward. This model can properly classify the given data through testing. First, the strings which appear repeatedly (called words) in the given data are scanned out. The standard frequency and dispersion for each word are calculated. Second, using the Least Squares method, the priority function is fixed. Through stepwise optimization, the coefficients are made stable. Third, the key words are selected out and calculate the weight according to the priority function. At last, using the “analyse hierarchy process”,the undetermined data is classified. This method can classify the undetermined data (No.21—No.40) fairly well, it can also give good result for the last 182 sequences.%本模型充分利用了所给数据的特点,运用统计、最优化等数学方法,从已知样本序列中提炼出能较好代表两类特征的关键字符串,据此提出量化的分类标准,能较好的对任给DNA序列进行分类. 首先,从已知样本序列中用广度优先法选出所有重复出现的字符串,并计算其标准化频率及分散度. 然后,利用样本数据结合最小二乘法确定两类字符串各自的优先级函数,并且逐步优化其参数使之达到稳定,提高了可信度. 最后,根据优先级函数找出关键词,然后确定权数,用层次分析法对未知样本进行分类,并定出显著水平,从而得到了一个比较通用的分类方法. 经过检验,此方法对21—40号待测样本进行了很好的分类,对后面的182个DNA序列进行同样的操作,也有较好的效果.

  18. Temporal stability of epigenetic markers: sequence characteristics and predictors of short-term DNA methylation variations.

    Directory of Open Access Journals (Sweden)

    Hyang-Min Byun

    Full Text Available BACKGROUND: DNA methylation is an epigenetic mechanism that has been increasingly investigated in observational human studies, particularly on blood leukocyte DNA. Characterizing the degree and determinants of DNA methylation stability can provide critical information for the design and conduction of human epigenetic studies. METHODS: We measured DNA methylation in 12 gene-promoter regions (APC, p16, p53, RASSF1A, CDH13, eNOS, ET-1, IFNγ, IL-6, TNFα, iNOS, and hTERT and 2 of non-long terminal repeat elements, i.e., L1 and Alu in blood samples obtained from 63 healthy individuals at baseline (Day 1 and after three days (Day 4. DNA methylation was measured by bisulfite-PCR-Pyrosequencing. We calculated intraclass correlation coefficients (ICCs to measure the within-individual stability of DNA methylation between Day 1 and 4, subtracted of pyrosequencing error and adjusted for multiple covariates. RESULTS: Methylation markers showed different temporal behaviors ranging from high (IL-6, ICC = 0.89 to low stability (APC, ICC = 0.08 between Day 1 and 4. Multiple sequence and marker characteristics were associated with the degree of variation. Density of CpG dinucleotides nearby the sequence analyzed (measured as CpG(o/e or G+C content within ±200 bp was positively associated with DNA methylation stability. The 3' proximity to repeat elements and range of DNA methylation on Day 1 were also positively associated with methylation stability. An inverted U-shaped correlation was observed between mean DNA methylation on Day 1 and stability. CONCLUSIONS: The degree of short-term DNA methylation stability is marker-dependent and associated with sequence characteristics and methylation levels.

  19. Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.

    2007-07-01

    Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.

  20. The DNA sequence of the human X chromosome

    OpenAIRE

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L; Jennifer L Ashurst; Fulton, Robert S.

    2005-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a...

  1. Hyperrecombination at a specific DNA sequence in pneumococcal transformation.

    OpenAIRE

    Lefèvre, J C; Gasc, A M; Burger, A C; Mostachfi, P; Sicard, A M

    1984-01-01

    In pneumococcal transformation, recombination frequency between point mutations is usually proportional to physical distances. We have identified an aberrant marker belonging to the amiA locus that appeared to markedly enhance recombination frequency when crossed with any other markers of this gene. This mutation results from the C-to-A transversion in the sequence A-T-T-C-A-T----A-T-T-A-A-T. This effect is especially apparent for short distances as small as 27 base pairs. The hyperrecombinat...

  2. Anonymous-address-resolution model

    Institute of Scientific and Technical Information of China (English)

    Guang-jia SONG; Zhen-zhou JI

    2016-01-01

    Address-resolution protocol (ARP) is an important protocol of data link layers that aims to obtain the corresponding relationship between Internet Protocol (IP) and Media Access Control (MAC) addresses. Traditional ARPs (address-resolution and neighbor-discovery protocols) do not consider the existence of malicious nodes, which reveals destination addresses in the resolution process. Thus, these traditional protocols allow malicious nodes to easily carry out attacks, such as man-in-the-middle attack and denial-of-service attack. To overcome these weaknesses, we propose an anonymous-address-resolution (AS-AR) protocol. AS-AR does not publicize the destination address in the address-resolution process and hides the IP and MAC addresses of the source node. The malicious node cannot obtain the addresses of the destination and the node which initiates the address resolution; thus, it cannot attack. Analyses and experiments show that AS-AR has a higher security level than existing security methods, such as secure-neighbor discovery.

  3. Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA.

    Science.gov (United States)

    Miao, Xiangmin; Guo, Xiaoting; Xiao, Zhiyou; Ling, Liansheng

    2014-09-15

    Direct recognition of double-stranded DNA (dsDNA) was crucial to disease diagnosis and gene therapy, because DNA in its natural state is double stranded. Here, a novel sensor for the sequence-specific recognition of dsDNA was developed based on the structure change of ferrocene (Fc) redox probe modified molecular beacon (MB). For constructing such a sensor, gold nanoparticles (AuNPs) were initially electrochemical-deposited onto glass carbon electrode (GCE) surface to immobilize thiolated MB in their folded states with Au-S bond. Hybridization of MB with target dsDNA induced the formation of parallel triplex DNA and opened the stem-loop structure of it, which resulted in the redox probe (Fc) away from the electrode and triggered the decrease of current signals. Under optimal conditions, dsDNA detection could be realized in the range from 350 pM to 25 nM, with a detection limit of 275 pM. Moreover, the proposed method has good sequence-specificity for target dsDNA compared with single base pair mismatch and two base pairs mismatches.

  4. cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the indianmeal moth, Plodia interpunctella.

    Science.gov (United States)

    Zhu, Y C; Oppert, B; Kramer, K J; McGaughey, W H; Dowdy, A K

    2000-02-01

    Trypsin-like enzymes are major insect gut enzymes that digest dietary proteins and proteolytically activate insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). Resistance to Bt in a strain of the Indianmeal moth, Plodia interpunctella, was linked to the absence of a major trypsin-like proteinase (Oppert et al., 1997). In this study, trypsin-like proteinases, cDNA sequences, mRNA expression levels and genomic DNAs from Bt-susceptible and -resistant strains of the Indianmeal moth were compared. Proteinase activity blots of gut extracts indicated that the susceptible strain had two major trypsin-like proteinases, whereas the resistant strain had only one. Several trypsinogen-like cDNA clones were isolated and sequenced from cDNA libraries of both strains using a probe deduced from a conserved sequence for a serine proteinase active site. cDNAs of 852 nucleotides from the susceptible strain and 848 nucleotides from the resistant strain contained an open reading frame of 783 nucleotides which encoded a 261-amino acid trypsinogen-like protein. There was a single silent nucleotide difference between the two cDNAs in the open reading frame and the predicted amino acid sequence from the cDNA clones was most similar to sequences of trypsin-like proteinases from the spruce budworm, Choristoneura fumiferana, and the tobacco hornworm, Manduca sexta. The encoded protein included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Northern blotting analysis showed no major difference between the two strains in mRNA expression in fourth-instar larvae, indicating that transcription was similar in the strains. Southern blotting analysis revealed that the restriction sites for the trypsinogen genes from the susceptible and resistant strains were different. Based on an enzyme size comparison, the cDNA isolated in this study corresponded to the gene for the smaller of two

  5. DNA sequence-based analysis of the Pseudomonas species.

    Science.gov (United States)

    Mulet, Magdalena; Lalucat, Jorge; García-Valdés, Elena

    2010-06-01

    Partial sequences of four core 'housekeeping' genes (16S rRNA, gyrB, rpoB and rpoD) of the type strains of 107 Pseudomonas species were analysed in order to obtain a comprehensive view regarding the phylogenetic relationships within the Pseudomonas genus. Gene trees allowed the discrimination of two lineages or intrageneric groups (IG), called IG P. aeruginosa and IG P. fluorescens. The first IG P. aeruginosa, was divided into three main groups, represented by the species P. aeruginosa, P. stutzeri and P. oleovorans. The second IG was divided into six groups, represented by the species P. fluorescens, P. syringae, P. lutea, P. putida, P. anguilliseptica and P. straminea. The P. fluorescens group was the most complex and included nine subgroups, represented by the species P. fluorescens, P. gessardi, P. fragi, P. mandelii, P. jesseni, P. koreensis, P. corrugata, P. chlororaphis and P. asplenii. Pseudomonas rhizospherae was affiliated with the P. fluorescens IG in the phylogenetic analysis but was independent of any group. Some species were located on phylogenetic branches that were distant from defined clusters, such as those represented by the P. oryzihabitans group and the type strains P. pachastrellae, P. pertucinogena and P. luteola. Additionally, 17 strains of P. aeruginosa, 'P. entomophila', P. fluorescens, P. putida, P. syringae and P. stutzeri, for which genome sequences have been determined, have been included to compare the results obtained in the analysis of four housekeeping genes with those obtained from whole genome analyses.

  6. ADN-Viewer: a 3D approach for bioinformatic analyses of large DNA sequences.

    Science.gov (United States)

    Hérisson, Joan; Ferey, Nicolas; Gros, Pierre-Emmanuel; Gherbi, Rachid

    2007-01-20

    Most of biologists work on textual DNA sequences that are limited to the linear representation of DNA. In this paper, we address the potential offered by Virtual Reality for 3D modeling and immersive visualization of large genomic sequences. The representation of the 3D structure of naked DNA allows biologists to observe and analyze genomes in an interactive way at different levels. We developed a powerful software platform that provides a new point of view for sequences analysis: ADNViewer. Nevertheless, a classical eukaryotic chromosome of 40 million base pairs requires about 6 Gbytes of 3D data. In order to manage these huge amounts of data in real-time, we designed various scene management algorithms and immersive human-computer interaction for user-friendly data exploration. In addition, one bioinformatics study scenario is proposed.

  7. More of an Art than a Science: Using Microbial DNA Sequences to Compose Music†

    Science.gov (United States)

    Larsen, Peter E.

    2016-01-01

    Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information, however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances, easily generated on any computer and using only commonly available or freely available software and the ‘Microbial Bebop’ algorithm. Using this approach, citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth’s largest ecosystem. PMID:27047609

  8. More of an Art than a Science: Using Microbial DNA Sequences to Compose Music.

    Science.gov (United States)

    Larsen, Peter E

    2016-03-01

    Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information, however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances, easily generated on any computer and using only commonly available or freely available software and the 'Microbial Bebop' algorithm. Using this approach, citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth's largest ecosystem.

  9. More of an Art than a Science: Using Microbial DNA Sequences to Compose Music

    Directory of Open Access Journals (Sweden)

    Peter E. Larsen

    2015-12-01

    Full Text Available Bacteria are everywhere. Microbial ecology is emerging as a critical field for understanding the relationships between these ubiquitous bacterial communities, the environment, and human health. Next generation DNA sequencing technology provides us a powerful tool to indirectly observe the communities by sequencing and analyzing all of the bacterial DNA present in an environment. The results of the DNA sequencing experiments can generate gigabytes to terabytes of information, however, making it difficult for the citizen scientist to grasp and the educator to convey this data. Here, we present a method for interpreting massive amounts of microbial ecology data as musical performances, easily generated on any computer and using only commonly available or freely available software and the ‘Microbial Bebop’ algorithm. Using this approach, citizen scientists and biology educators can sonify complex data in a fun and interactive format, making it easier to communicate both the importance and the excitement of exploring the planet earth’s largest ecosystem.

  10. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, Alain, E-mail: alain.arneodo@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Vaillant, Cedric, E-mail: cedric.vaillant@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Audit, Benjamin, E-mail: benjamin.audit@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Argoul, Francoise, E-mail: francoise.argoul@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); D' Aubenton-Carafa, Yves, E-mail: daubenton@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France); Thermes, Claude, E-mail: claude.thermes@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France)

    2011-02-15

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  11. Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein.

    Directory of Open Access Journals (Sweden)

    Jaana M Jurvansuu

    Full Text Available Transmembrane protein 18 (TMEM18 has previously been connected to cell migration and obesity. However, the molecular function of the protein has not yet been described. Here we show that TMEM18 localises to the nuclear membrane and binds to DNA in a sequence-specific manner. The protein binds DNA with its positively charged C-terminus that contains also a nuclear localisation signal. Increase in the amount of TMEM18 in cells suppresses expression from a reporter vector with the TMEM18 target sequence. TMEM18 is a small protein of 140 residues and is predicted to be mostly alpha-helical with three transmembrane parts. As a consequence the DNA binding by TMEM18 would bring the chromatin very near to nuclear membrane. We speculate that this closed perinuclear localisation of TMEM18-bound DNA might repress transcription from it.

  12. A Real-Time de novo DNA Sequencing Assembly Platform Based on an FPGA Implementation.

    Science.gov (United States)

    Hu, Yuanqi; Georgiou, Pantelis

    2016-01-01

    This paper presents an FPGA based DNA comparison platform which can be run concurrently with the sensing phase of DNA sequencing and shortens the overall time needed for de novo DNA assembly. A hybrid overlap searching algorithm is applied which is scalable and can deal with incremental detection of new bases. To handle the incomplete data set which gradually increases during sequencing time, all-against-all comparisons are broken down into successive window-against-window comparison phases and executed using a novel dynamic suffix comparison algorithm combined with a partitioned dynamic programming method. The complete system has been designed to facilitate parallel processing in hardware, which allows real-time comparison and full scalability as well as a decrease in the number of computations required. A base pair comparison rate of 51.2 G/s is achieved when implemented on an FPGA with successful DNA comparison when using data sets from real genomes.

  13. AFM characterization of ss-DNA probes immobilization: a sequence effect on surface organization

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, D [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Rouillat, M H [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Dugas, V [BioTray, Ecole Normale Superieure de Lyon, 46 allee d' Italie, 69364 Lyon Cedex 07 (France); Chevolot, Y [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Souteyrand, E [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Phaner-Goutorbe, M [Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France)

    2007-03-15

    The biological sensitivity of a DNA chip depends on the molecular organization of the immobilized probe molecules, single stranded DNA (ss-DNA), on the substrate in terms of accessibility and non specific interactions between probes and substrate. In this article, Amplitude Modulation - Atomic Force Microscopy (AM-AFM) was used to characterize at a molecular scale, the morphological organization of different immobilized probes. In our system, three different ss-DNA were covalently grafted on a silicon substrate with the same deposit process. We studied the influence of probe length (25 bases, 12 bases) and sequence arrangement (two different 25 base oligoprobes) on the morphological organization. We showed that immobilized probes organize themselves in different structures depending on their sequence.

  14. Distribution of repetitive DNA sequences in chromosomes of five opisthorchid species (Trematoda, Opisthorchiidae).

    Science.gov (United States)

    Zadesenets, Kira S; Karamysheva, Tatyana V; Katokhin, Alexei V; Mordvinov, Viatcheslav A; Rubtsov, Nikolay B

    2012-03-01

    Genomes of opisthorchid species are characterized by small size, suggesting a reduced amount of repetitive DNA in their genomes. Distribution of repetitive DNA sequences in the chromosomes of five species of the family Opisthorchiidae (Opisthorchis felineus 2n = 14 (Rivolta, 1884), Opisthorchis viverrini 2n = 12 (Poirier, 1886), Metorchis xanthosomus 2n = 14 (Creplin, 1846), Metorchis bilis 2n = 14 (Braun, 1890), Clonorchis sinensis 2n = 14 (Cobbold, 1875)) was studied with C- and AgNOR-banding, generation of microdissected DNA probes from individual chromosomes and fluorescent in situ hybridization on mitotic and meiotic chromosomes. Small-sized C-bands were discovered in pericentric regions of chromosomes. Ag-NOR staining of opisthorchid chromosomes and FISH with ribosomal DNA probe showed that karyotypes of all studied species were characterized by the only nucleolus organizer region in one of small chromosomes. The generation of DNA probes from chromosomes 1 and 2 of O. felineus and M. xanthosomus was performed with chromosome microdissection followed by DOP-PCR. FISH of obtained microdissected DNA probes on chromosomes of these species revealed chromosome specific DNA repeats in pericentric C-bands. It was also shown that microdissected DNA probes generated from chromosomes could be used as the Whole Chromosome Painting Probes without suppression of repetitive DNA hybridization. Chromosome painting using microdissected chromosome specific DNA probes showed the overall repeat distribution in opisthorchid chromosomes.

  15. Gold electrode modified by self-assembled monolayers of thiols to determine DNA sequences hybridization

    Indian Academy of Sciences (India)

    Mízia M S Silva; Igor T Cavalcanti; M Fátima Barroso; M Goreti F Sales; Rosa Fireman Dutra

    2010-11-01

    The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.

  16. Interference of Co-Amplified Nuclear Mitochondrial DNA Sequences on the Determination of Human mtDNA Heteroplasmy by Using the SURVEYOR Nuclease and the WAVE HS System

    OpenAIRE

    Hsiu-Chuan Yen; Shiue-Li Li; Wei-Chien Hsu; Petrus Tang

    2014-01-01

    High-sensitivity and high-throughput mutation detection techniques are useful for screening the homoplasmy or heteroplasmy status of mitochondrial DNA (mtDNA), but might be susceptible to interference from nuclear mitochondrial DNA sequences (NUMTs) co-amplified during polymerase chain reaction (PCR). In this study, we first evaluated the platform of SURVEYOR Nuclease digestion of heteroduplexed DNA followed by the detection of cleaved DNA by using the WAVE HS System (SN/WAVE-HS) for detectin...

  17. Genomic MRI - a Public Resource for Studying Sequence Patterns within Genomic DNA

    Science.gov (United States)

    Prakash, Ashwin; Bechtel, Jason; Fedorov, Alexei

    2011-01-01

    Non-coding genomic regions in complex eukaryotes, including intergenic areas, introns, and untranslated segments of exons, are profoundly non-random in their nucleotide composition and consist of a complex mosaic of sequence patterns. These patterns include so-called Mid-Range Inhomogeneity (MRI) regions -- sequences 30-10000 nucleotides in length that are enriched by a particular base or combination of bases (e.g. (G+T)-rich, purine-rich, etc.). MRI regions are associated with unusual (non-B-form) DNA structures that are often involved in regulation of gene expression, recombination, and other genetic processes (Fedorova & Fedorov 2010). The existence of a strong fixation bias within MRI regions against mutations that tend to reduce their sequence inhomogeneity additionally supports the functionality and importance of these genomic sequences (Prakash et al. 2009). Here we demonstrate a freely available Internet resource -- the Genomic MRI program package -- designed for computational analysis of genomic sequences in order to find and characterize various MRI patterns within them (Bechtel et al. 2008). This package also allows generation of randomized sequences with various properties and level of correspondence to the natural input DNA sequences. The main goal of this resource is to facilitate examination of vast regions of non-coding DNA that are still scarcely investigated and await thorough exploration and recognition. PMID:21610667

  18. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    Science.gov (United States)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  19. Preserving Communities in Anonymized Social Networks

    Directory of Open Access Journals (Sweden)

    Alina Campan

    2015-04-01

    Full Text Available Social media and social networks are embedded in our society to a point that could not have been imagined only ten years ago. Facebook, LinkedIn, and Twitter are already well known social networks that have a large audience in all age groups. The amount of data that those social sites gather from their users is continually increasing and this data is very valuable for marketing, research, and various other purposes. At the same time, this data usually contain a significant amount of sensitive information which should be protected against unauthorized disclosure. To protect the privacy of individuals, this data must be anonymized such that the risk of re-identification of specific individuals is very low. In this paper we study if anonymized social networks preserve existing communities from the original social networks. To perform this study, we introduce two approaches to measure the community preservation between the initial network and its anonymized version. In the first approach we simply count how many nodes from the original communities remained in the same community after the processes of anonymization and de-anonymization. In the second approach we consider the community preservation for each node individually. Specifically, for each node, we compare the original and final communities to which the node belongs. To anonymize social networks we use two models, namely, k-anonymity for social networks and k-degree anonymity. To determine communities in social networks we use an existing community detection algorithm based on modularity quality function. Our experiments on publically available datasets show that anonymized social networks satisfactorily preserve the community structure of their original networks.

  20. DNA Sequence Evolution and Rare Homoeologous Conversion in Tetraploid Cotton.

    Directory of Open Access Journals (Sweden)

    Justin T Page

    2016-05-01

    Full Text Available Allotetraploid cotton species are a vital source of spinnable fiber for textiles. The polyploid nature of the cotton genome raises many evolutionary questions as to the relationships between duplicated genomes. We describe the evolution of the cotton genome (SNPs and structural variants with the greatly improved resolution of 34 deeply re-sequenced genomes. We also explore the evolution of homoeologous regions in the AT- and DT-genomes and especially the phenomenon of conversion between genomes. We did not find any compelling evidence for homoeologous conversion between genomes. These findings are very different from other recent reports of frequent conversion events between genomes. We also identified several distinct regions of the genome that have been introgressed between G. hirsutum and G. barbadense, which presumably resulted from breeding efforts targeting associated beneficial alleles. Finally, the genotypic data resulting from this study provides access to a wealth of diversity sorely needed in the narrow germplasm of cotton cultivars.

  1. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  2. Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex

    Science.gov (United States)

    Pavlos, G. P.; Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Xenakis, M. N.; Clark, Peter; Duke, Jamie; Monos, D. S.

    2015-11-01

    We analyze 4 Mb sequences of the Major Histocompatibility Complex (MHC), which is a DNA segment on chromosome 6 with high gene density, controlling many immunological functions and associated with many diseases. The analysis is based on modern theoretical and mathematical tools of complexity theory, such as nonlinear time series analysis and Tsallis non-extensive statistics. The results revealed that the DNA complexity and self-organization can be related to fractional dynamical nonlinear processes with low-dimensional deterministic chaotic and non-extensive statistical character, which generate the DNA sequences under the extremization of Tsallis q-entropy principle. While it still remains an open question as to whether the DNA walk is a fractional Brownian motion (FBM), a static anomalous diffusion process or a non-Gaussian dynamical fractional anomalous diffusion process, the results of this study testify for the latter, providing also a possible explanation for the previously observed long-range power law correlations of nucleotides, as well as the long-range correlation properties of coding and non-coding sequences present in DNA sequences.

  3. On nanopore DNA sequencing by signal and noise analysis of ionic current

    Science.gov (United States)

    Wen, Chenyu; Zeng, Shuangshuang; Zhang, Zhen; Hjort, Klas; Scheicher, Ralph; Zhang, Shi-Li

    2016-05-01

    DNA sequencing, i.e., the process of determining the succession of nucleotides on a DNA strand, has become a standard aid in biomedical research and is expected to revolutionize medicine. With the capability of handling single DNA molecules, nanopore technology holds high promises to become speedier in sequencing at lower cost than what are achievable with the commercially available optics- or semiconductor-based massively parallelized technologies. Despite tremendous progress made with biological and solid-state nanopores, high error rates and large uncertainties persist with the sequencing results. Here, we employ a nano-disk model to quantitatively analyze the sequencing process by examining the variations of ionic current when a DNA strand translocates a nanopore. Our focus is placed on signal-boosting and noise-suppressing strategies in order to attain the single-nucleotide resolution. Apart from decreasing pore diameter and thickness, it is crucial to also reduce the translocation speed and facilitate a stepwise translocation. Our best-case scenario analysis points to severe challenges with employing plain nanopore technology, i.e., without recourse to any signal amplification strategy, in achieving sequencing with the desired single-nucleotide resolution. A conceptual approach based on strand synthesis in the nanopore of the translocating DNA from single-stranded to double-stranded is shown to yield a 10-fold signal amplification. Although it involves no advanced physics and is very simple in mathematics, this simple model captures the essence of nanopore sequencing and is useful in guiding the design and operation of nanopore sequencing.

  4. A likelihood ratio test for species membership based on DNA sequence data

    DEFF Research Database (Denmark)

    Matz, Mikhail V.; Nielsen, Rasmus

    2005-01-01

    DNA barcoding as an approach for species identification is rapidly increasing in popularity. However, it remains unclear which statistical procedures should accompany the technique to provide a measure of uncertainty. Here we describe a likelihood ratio test which can be used to test if a sampled...... sequence is a member of an a priori specified species. We investigate the performance of the test using coalescence simulations, as well as using the real data from butterflies and frogs representing two kinds of challenge for DNA barcoding: extremely low and extremely high levels of sequence variability....

  5. A p-Adic Model of DNA Sequence and Genetic Code

    CERN Document Server

    Dragovich, Branko

    2007-01-01

    Using basic properties of p-adic numbers, we consider a simple new approach to describe main aspects of DNA sequence and genetic code. Central role in our investigation plays an ultrametric p-adic information space which basic elements are nucleotides, codons and genes. We show that a 5-adic model is appropriate for DNA sequence. This 5-adic model, combined with 2-adic distance, is also suitable for genetic code and for a more advanced employment in genomics. We find that genetic code degeneracy is related to the p-adic distance between codons.

  6. Download - Budding yeast cDNA sequencing project | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Budding yeast cDNA sequencing project Download First of all, please read the license of this database. Data ...names and data descriptions are about the downloadable data in this page. They might not correspond to the c...f the data. # Data name File Simple search and download 1 README README_e.html - 2 5'-end sequences of buddi...ng yeast full-length cDNA clones and quality scores yeast_seq_qual.zip (59.9MB) Simple search and download 3...Downlaod via FTP Joomla SEF URLs by Artio About This Database Database Description Download License Update H

  7. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing

    Science.gov (United States)

    Just, Rebecca S.; Irwin, Jodi A.; Parson, Walther

    2015-01-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  8. LZ Complexity Distance of DNA Sequences and Its Application in Phylogenetic Tree Reconstruction

    Institute of Scientific and Technical Information of China (English)

    Bin Li; Yi-Bing Li; Hong-Bo He

    2005-01-01

    DNA sequences can be treated as finite-length symbol strings over a four-letter alphabet (A, C, T, G). As a universal and computable complexity measure, LZ complexity is valid to describe the complexity of DNA sequences. In this study, a concept of conditional LZ complexity between two sequences is proposed according to the principle of LZ complexity measure. An LZ complexity distance metric between two nonnull sequences is defined by utilizing conditional LZ complexity.Based on LZ complexity distance, a phylogenetic tree of 26 species of placental mammals (Eutheria) with three outgroup species was reconstructed from their complete mitochondrial genomes. On the debate that which two of the three main groups of placental mammals, namely Primates, Ferungulates, and Rodents, are more closely related, the phylogenetic tree reconstructed based on LZ complexity distance supports the suggestion that Primates and Ferungulates are more closely related.

  9. A simple and rapid method for the preparation of homologous DNA oligonucleotide hybridization probes from heterologous gene sequences and probes.

    Science.gov (United States)

    Maxwell, E S; Sarge, K D

    1988-11-30

    We describe a simple and rapid method for the preparation of homologous DNA oligonucleotide probes for hybridization analysis and/or cDNA/genomic library screening. With this method, a synthetic DNA oligonucleotide derived from a known heterologous DNA/RNA/protein sequence is annealed to an RNA preparation containing the gene transcript of interest. Any unpaired 3'-terminal oligonucleotides of the heterologous DNA primer are then removed using the 3' exonuclease activity of the DNA Polymerase I Klenow fragment before primer extension/dideoxynucleotide sequencing of the annealed RNA species with AMV reverse transcriptase. From the determined RNA sequence, a completely homologous DNA oligonucleotide probe is then prepared. This approach has been used to prepare a homologous DNA oligonucleotide probe for the successful library screening of the yeast hybRNA gene starting with a heterologous mouse hybRNA DNA oligonucleotide probe.

  10. A novel class of small repetitive DNA sequences in Enterococcus faecalis.

    Science.gov (United States)

    Venditti, Rossella; De Gregorio, Eliana; Silvestro, Giustina; Bertocco, Tullia; Salza, Maria Francesca; Zarrilli, Raffaele; Di Nocera, Pier Paolo

    2007-06-01

    The structural organization of Enterococcus faecalis repeats (EFAR) is described, palindromic DNA sequences identified in the genome of the Enterococcus faecalis V583 strain by in silico analyses. EFAR are a novel type of miniature insertion sequences, which vary in size from 42 to 650 bp. Length heterogeneity results from the variable assembly of 16 different sequence types. Most elements measure 170 bp, and can fold into peculiar L-shaped structures resulting from the folding of two independent stem-loop structures (SLSs). Homologous chromosomal regions lacking or containing EFAR sequences were identified by PCR among 20 E. faecalis clinical isolates of different genotypes. Sequencing of a representative set of 'empty' sites revealed that 24-37 bp-long sequences, unrelated to each other but all able to fold into SLSs, functioned as targets for the integration of EFAR. In the process, most of the SLS had been deleted, but part of the targeted stems had been retained at EFAR termini.

  11. Cloning and sequencing of a DNA fragment encoding N37 apoptotic peptide derived from p53

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective It was reported that p53 apoptotic peptide (N37) could inhibit p73 gene through being bound with iASPP,which could induce tumor cell apoptosis. To further explore the function of N37,we constructed the cloning plasmid of DNA fragment encoding p53 (N37) apoptotic peptide by using DNA synthesis and molecular biology methods. Methods According to human p53 sequence from the GenBank database,the primer of p53(N37) gene was designed using Primer V7.0 software. The DNA fragment encoding p53 (N37) apopto...

  12. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    Energy Technology Data Exchange (ETDEWEB)

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles (Iowa); (Toronto)

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  13. Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA.

    Science.gov (United States)

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1997-10-01

    Fluorescence in situ hybridization (FISH) was used to localise two species-specific repetitive DNA sequences, A001-I and D32-13, and two highly conserved 25S and 5S rDNA sequences on the metaphase chromosomes of two species of Alstroemeria. The Chilean species, Alstroemeria aurea (2n = 16), has abundant constitutive heterochromatin, whereas the Brazilian species, Alstroemeria inodora, has hardly any heterochromatin. The A. aurea specific A001-I probe hybridized specifically to the C-band regions on all chromosomes. The FISH patterns on A. inodora chromosomes using species-specific probe D32-13 resembled the C-banding pattern and the A001-I pattern on A. aurea chromosomes. There were notable differences in number and distribution of rDNA sites between the two species. The 25S rDNA probe revealed 16 sites in A. aurea that closely colocalised with A001-I sites and 12 in A. inodora that were predominantly detected in the centromeric regions. FISH karyotypes of the two Alstroemeria species were constructed accordingly, enabling full identification of all individual chromosomes. These FISH karyotypes will be useful for monitoring the chromosomes of both Alstroemeria species in hybrids and backcross derivatives.

  14. An algorithm for the study of DNA sequence evolution based on the genetic code.

    Science.gov (United States)

    Sirakoulis, G Ch; Karafyllidis, I; Sandaltzopoulos, R; Tsalides, Ph; Thanailakis, A

    2004-11-01

    Recent studies of the quantum-mechanical processes in the DNA molecule have seriously challenged the principle that mutations occur randomly. The proton tunneling mechanism causes tautomeric transitions in base pairs resulting in mutations during DNA replication. The meticulous study of the quantum-mechanical phenomena in DNA may reveal that the process of mutagenesis is not completely random. We are still far away from a complete quantum-mechanical model of DNA sequence mutagenesis because of the complexity of the processes and the complex three-dimensional structure of the molecule. In this paper we have developed a quantum-mechanical description of DNA evolution and, following its outline, we have constructed a classical model for DNA evolution assuming that some aspects of the quantum-mechanical processes have influenced the determination of the genetic code. Conversely, our model assumes that the genetic code provides information about the quantum-mechanical mechanisms of mutagenesis, as the current code is the product of an evolutionary process that tries to minimize the spurious consequences of mutagenesis. Based on this model we develop an algorithm that can be used to study the accumulation of mutations in a DNA sequence. The algorithm has a user-friendly interface and the user can change key parameters in order to study relevant hypotheses.

  15. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    Science.gov (United States)

    Kasarda, D D; Okita, T W; Bernardin, J E; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with amino acid sequences derived from both cDNA clones and is virtually identical to one of them. On the basis of sequence information, after loss of the signal sequence, the mature alpha-type gliadins may be divided into five different domains, two of which may have evolved from an ancestral gliadin gene, whereas the remaining three contain repeating sequences that may have developed independently. Images PMID:6589619

  16. Hyperrecombination at a specific DNA sequence in pneumococcal transformation.

    Science.gov (United States)

    Lefèvre, J C; Gasc, A M; Burger, A C; Mostachfi, P; Sicard, A M

    1984-08-01

    In pneumococcal transformation, recombination frequency between point mutations is usually proportional to physical distances. We have identified an aberrant marker belonging to the amiA locus that appeared to markedly enhance recombination frequency when crossed with any other markers of this gene. This mutation results from the C-to-A transversion in the sequence A-T-T-C-A-T----A-T-T-A-A-T. This effect is especially apparent for short distances as small as 27 base pairs. The hyperrecombination does not require the wild-type function of the pneumococcal gene for an ATP-dependent DNase (which is homologous to the product of the Escherichia coli recBC genes) or of the hex genes, which correct certain mismatched bases in transformation. The hyperrecombination is affected by the presence of nearby mismatched bases that trigger an excision-repair system. It is proposed that the mutation that shows hyperrecombination is sometimes converted to the wild-type allele at the heteroduplex stage of transformation.

  17. Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA.

    Science.gov (United States)

    Parkinson, Nicholas J; Maslau, Siarhei; Ferneyhough, Ben; Zhang, Gang; Gregory, Lorna; Buck, David; Ragoussis, Jiannis; Ponting, Chris P; Fischer, Michael D

    2012-01-01

    New sequencing technologies can address diverse biomedical questions but are limited by a minimum required DNA input of typically 1 μg. We describe how sequencing libraries can be reproducibly created from 20 pg of input DNA using a modified transpososome-mediated fragmentation technique. Resulting libraries incorporate in-line bar-coding, which facilitates sample multiplexes that can be sequenced using Illumina platforms with the manufacturer's sequencing primer. We demonstrate this technique by providing deep coverage sequence of the Escherichia coli K-12 genome that shows equivalent target coverage to a 1-μg input library prepared using standard Illumina methods. Reducing template quantity does, however, increase the proportion of duplicate reads and enriches coverage in low-GC regions. This finding was confirmed with exhaustive resequencing of a mouse library constructed from 20 pg of gDNA input (about seven haploid genomes) resulting in ∼0.4-fold statistical coverage of uniquely mapped fragments. This implies that a near-complete coverage of the mouse genome is obtainable with this approach using 20 genomes as input. Application of this new method now allows genomic studies from low mass samples and routine preparation of sequencing libraries from enrichment procedures.

  18. jMOTU and Taxonerator: turning DNA Barcode sequences into annotated operational taxonomic units.

    Directory of Open Access Journals (Sweden)

    Martin Jones

    Full Text Available BACKGROUND: DNA barcoding and other DNA sequence-based techniques for investigating and estimating biodiversity require explicit methods for associating individual sequences with taxa, as it is at the taxon level that biodiversity is assessed. For many projects, the bioinformatic analyses required pose problems for laboratories whose prime expertise is not in bioinformatics. User-friendly tools are required for both clustering sequences into molecular operational taxonomic units (MOTU and for associating these MOTU with known organismal taxonomies. RESULTS: Here we present jMOTU, a Java program for the analysis of DNA barcode datasets that uses an explicit, determinate algorithm to define MOTU. We demonstrate its usefulness for both individual specimen-based Sanger sequencing surveys and bulk-environment metagenetic surveys using long-read next-generation sequencing data. jMOTU is driven through a graphical user interface, and can analyse tens of thousands of sequences in a short time on a desktop computer. A companion program, Taxonerator, that adds traditional taxonomic annotation to MOTU, is also presented. Clustering and taxonomic annotation data are stored in a relational database, and are thus amenable to subsequent data mining and web presentation. CONCLUSIONS: jMOTU efficiently and robustly identifies the molecular taxa present in survey datasets, and Taxonerator decorates the MOTU with putative identifications. jMOTU and Taxonerator are freely available from http://www.nematodes.org/.

  19. Mapping Protein-DNA Interactions Using ChIP-exo and Illumina-Based Sequencing.

    Science.gov (United States)

    Barfeld, Stefan J; Mills, Ian G

    2016-01-01

    Chromatin immunoprecipitation (ChIP) provides a means of enriching DNA associated with transcription factors, histone modifications, and indeed any other proteins for which suitably characterized antibodies are available. Over the years, sequence detection has progressed from quantitative real-time PCR and Southern blotting to microarrays (ChIP-chip) and now high-throughput sequencing (ChIP-seq). This progression has vastly increased the sequence coverage and data volumes generated. This in turn has enabled informaticians to predict the identity of multi-protein complexes on DNA based on the overrepresentation of sequence motifs in DNA enriched by ChIP with a single antibody against a single protein. In the course of the development of high-throughput sequencing, little has changed in the ChIP methodology until recently. In the last three years, a number of modifications have been made to the ChIP protocol with the goal of enhancing the sensitivity of the method and further reducing the levels of nonspecific background sequences in ChIPped samples. In this chapter, we provide a brief commentary on these methodological changes and describe a detailed ChIP-exo method able to generate narrower peaks and greater peak coverage from ChIPped material.

  20. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data.

    Directory of Open Access Journals (Sweden)

    Frederick E Dewey

    2015-10-01

    Full Text Available High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.