WorldWideScience

Sample records for anomodonts tetrapoda therapsida

  1. Tiarajudens eccentricus and Anomocephalus africanus, two bizarre anomodonts (Synapsida, Therapsida) with dental occlusion from the Permian of Gondwana

    Science.gov (United States)

    Cisneros, Juan Carlos; Abdala, Fernando; Jashashvili, Tea; de Oliveira Bueno, Ana; Dentzien-Dias, Paula

    2015-01-01

    Anomodontia was a highly successful tetrapod clade during the Permian and the Triassic. New morphological information regarding two bizarre basal anomodonts is provided and their palaeoecological significance is explored. The osteology of the recently discovered Tiarajudens eccentricus Cisneros et al. 2011, from the Brazilian Permian, is described in detail. The taxon exhibits unusual postcranial features, including the presence of gastralia. Additional preparation and computed tomography scans of the holotype of Anomocephalus africanus Modesto et al. 1999 discovered in the Karoo Basin of South Africa allow a reappraisal of this genus. Anomocephalus is similar to Tiarajudens with regard to several traits, including a battery of large, transversally expanded, palatal teeth. Molariform teeth are present in the mandible of the African taxon, providing additional insight into the function of the earliest tooth-occlusion mechanism known in therapsids. At least two waves of tooth replacement can be recognized in the palate of Anomocephalus. The outsized, blade-like caniniforms of the herbivorous Tiarajudens allow several non-exclusive ecological interpretations, among which we favour intraspecific display or combat. This behaviour was an alternative to the head-butting practised by the contemporary dinocephalians. Combat specializations that are considered typical of Cenozoic herbivores likely evolved during the Middle Permian, at the time the first communities with diverse, abundant tetrapod herbivores were being assembled. PMID:26587266

  2. Bone-conduction hearing and seismic sensitivity of the Late Permian anomodont Kawingasaurus fossilis.

    Science.gov (United States)

    Laaß, Michael

    2015-02-01

    An investigation of the internal cranial anatomy of the anomodont Kawingasaurus from the Upper Permian Usili Formation in Tanzania by means of neutron tomography revealed an unusual inner and middle ear anatomy such as extraordinarily inflated vestibules, lateroventrally orientated stapes with large footplates, and a small angle between the planes of the anterior and lateral semicircular canals. The vestibule has a volume, which is about 25 times larger than the human vestibule, although Kawingasaurus has only a skull length of approximately 40 mm. Vestibule inflation and enlarged stapes footplates are thought to be functionally correlated with bone-conduction hearing; both morphologies have been observed in fossorial vertebrates using seismic signals for communication. The firmly fused triangular head with spatulate snout was probably used for digging and preadapted to seismic signal detection. The quadrate-quadratojugal complex was able to transmit sound from the articular to the stapes by small vibrations of the quadrate process, which formed a ball and socket joint with the squamosal. Mechanical considerations suggest that the ventrolaterally orientated stapes of Kawingasaurus was mechanically better suited to transmit seismic sound from the ground to the fenestra vestibuli than a horizontal orientated stapes. The low sound pressure level transformer ratio of 2-3 in Kawingasaurus points to a seismic sensitivity of the middle ear and a vestigial or reduced sensitivity to airborne sound. Three hypothetical pathways of bone conduction in Kawingasaurus are discussed: 1) sound transmission via the spatulate snout and skull roof to the otic capsules, 2) relative movements resulting from the inertia of the mandible if sound is percepted with the skull, and 3) bone conduction from the substrate via mandible, jaw articulation, and stapes to the inner ear. © 2014 Wiley Periodicals, Inc.

  3. Higher ribosomal RNA substitution rates in Bacillariophyceae and Dasycladales than in Mollusca, Echinodermata, and Actinistia-Tetrapoda.

    Science.gov (United States)

    Sorhannus, U

    1996-09-01

    Molecular evolutionary rates within two protistan and three metazoan taxa were estimated using divergence times derived from fossil records. The results indicate that the small-subunit rRNA sequences within Dasycladales (Chlorophyta) and Bacillariophyceae evolved at a rate approximately two to three times faster than that estimated within Echinodermata, Mollusca, and Actinistia-Tetrapoda. It was concluded that this twofold discrepancy demonstrates actual taxonomic differences in the fixation rate of mutations in the small-subunit rRNA.

  4. Homology and architecture of the caudal basket of Pachycephalosauria (Dinosauria: Ornithischia): the first occurrence of myorhabdoi in Tetrapoda.

    Science.gov (United States)

    Brown, Caleb Marshall; Russell, Anthony P

    2012-01-01

    Associated postcranial skeletons of pachycephalosaurids, most notably those of Stegoceras and Homalocephale, reveal enigmatic osseous structures not present in other tetrapod clades. The homology and functional significance of these structures have remained elusive as they were originally interpreted to be abdominal ribs or gastralia, and more recently have been interpreted as de novo structures in the tail. Analysis of these structures in nearly all pachycephalosaurid skeletons has facilitated a complete description of their architecture, and the establishment of patterns consistent with those of myorhabdoid ossifications--ossifications of the myoseptal tendons associated with myomeres. The presence and structure of myorhabdoid ossifications are well established for teleost fish, but this marks their first recognition within Tetrapoda. These elements are both structurally and histologically distinct from the deep, paraxial ossified tendon bundles of other ornithischian clades, although they may have performed a similar function in the stiffening of the tail. These myorhabdoi are not de novo structures, but are instead ossifications (and therefore more amenable to fossilization) of the normally unossified plesiomorphic caudal myosepta of vertebrates. The ubiquitous ossification of these structures in pachycephalosaurids (all specimens preserving the tail also exhibit myorhabdoid ossifications) suggests it is a likely synapomorphic condition for Pachycephalosauria.

  5. Homology and architecture of the caudal basket of Pachycephalosauria (Dinosauria: Ornithischia: the first occurrence of myorhabdoi in Tetrapoda.

    Directory of Open Access Journals (Sweden)

    Caleb Marshall Brown

    Full Text Available BACKGROUND: Associated postcranial skeletons of pachycephalosaurids, most notably those of Stegoceras and Homalocephale, reveal enigmatic osseous structures not present in other tetrapod clades. The homology and functional significance of these structures have remained elusive as they were originally interpreted to be abdominal ribs or gastralia, and more recently have been interpreted as de novo structures in the tail. PRINCIPAL FINDINGS: Analysis of these structures in nearly all pachycephalosaurid skeletons has facilitated a complete description of their architecture, and the establishment of patterns consistent with those of myorhabdoid ossifications--ossifications of the myoseptal tendons associated with myomeres. The presence and structure of myorhabdoid ossifications are well established for teleost fish, but this marks their first recognition within Tetrapoda. These elements are both structurally and histologically distinct from the deep, paraxial ossified tendon bundles of other ornithischian clades, although they may have performed a similar function in the stiffening of the tail. CONCLUSIONS/SIGNIFICANCE: These myorhabdoi are not de novo structures, but are instead ossifications (and therefore more amenable to fossilization of the normally unossified plesiomorphic caudal myosepta of vertebrates. The ubiquitous ossification of these structures in pachycephalosaurids (all specimens preserving the tail also exhibit myorhabdoid ossifications suggests it is a likely synapomorphic condition for Pachycephalosauria.

  6. The higher-level phylogeny of Archosauria (Tetrapoda:Diapsida)

    OpenAIRE

    Brusatte, S.L.; Benton, M.J.; Desojo, J.B.; Langer, M.C.

    2010-01-01

    Crown group Archosauria, which includes birds, dinosaurs, crocodylomorphs, and several extinct Mesozoic groups, is a primary division of the vertebrate tree of life. However, the higher-level phylogenetic relationships within Archosauria are poorly resolved and controversial, despite years of study. The phylogeny of crocodile-line archosaurs (Crurotarsi) is particularly contentious, and has been plagued by problematic taxon and character sampling. Recent discoveries and renewed focus on archo...

  7. Evolutionary development of the neurocranium in Dissorophoidea (Tetrapoda: Temnospondyli), an integrative approach.

    Science.gov (United States)

    Maddin, Hillary C; Reisz, Robert R; Anderson, Jason S

    2010-01-01

    Ontogenetic data can play a prominent role in addressing questions in tetrapod evolution, but such evidence from the fossil record is often incompletely considered because it is limited to initiation of ossification, or allometric changes with increasing size. In the present study, specimens of a new species of an archaic amphibian (280 Myr old), Acheloma n. sp., a member of the temnospondyl superfamily Dissorophoidea and the sister group to Amphibamidae, which is thought to include at least two of our modern amphibian clades, anurans and caudatans (Batrachia), provides us with new developmental data. We identify five ontogenetic events, enabling us to construct a partial ontogenetic trajectory (integration of developmental and transformation sequence data) related to the relative timing of completion of neurocranial structures. Comparison of the adult amphibamid morphology with this partial ontogeny identifies a heterochronic event that occurred within the neurocranium at some point in time between the two taxa, which is consistent with the predictions of miniaturization in amphibamids, providing the first insights into the influence of miniaturization on the neurocranium in a fossil tetrapod group. This study refines hypotheses of large-scale evolutionary trends within Dissorophoidea that may have facilitated the radiation of amphibamids and, projected forward, the origin of the generalized batrachian skull. Most importantly, this study highlights the importance of integrating developmental and transformation sequence data, instead of onset of ossification alone, into investigations of major events in tetrapod evolution using evidence provided by the fossil record, and highlights the value of even highly incomplete growth series comprised of relatively late-stage individuals.

  8. The anatomy of the bifurcated neural spine and its occurrence within Tetrapoda.

    Science.gov (United States)

    Woodruff, D Cary

    2014-09-01

    Vertebral neural spine bifurcation has been historically treated as largely restrictive to sauropodomorph dinosaurs; wherein it is inferred to be an adaptation in response to the increasing weight from the horizontally extended cervical column. Because no extant terrestrial vertebrates have massive, horizontally extended necks, extant forms with large cranial masses were examined for the presence of neural spine bifurcation. Here, I report for the first time on the soft tissue surrounding neural spine bifurcation in a terrestrial quadruped through the dissection of three Ankole-Watusi cattle. With horns weighing up to a combined 90 kg, the Ankole-Watusi is unlike any other breed of cattle in terms of cranial weight and presence of neural spine bifurcation. Using the Ankole-Watusi as a model, it appears that neural spine bifurcation plays a critical role in supporting a large mobile weight adjacent to the girdles. In addition to neural spine bifurcation being recognized within nonavian dinosaurs, this vertebral feature is also documented within many members of temnospondyls, captorhinids, seymouriamorphs, diadectomorphs, Aves, marsupials, artiodactyls, perissodactyls, and Primates, amongst others. This phylogenetic distribution indicates that spine bifurcation is more common than previously thought, and that this vertebral adaptation has contributed throughout the evolutionary history of tetrapods. Neural spine bifurcation should now be recognized as an anatomical component adapted by some vertebrates to deal with massive, horizontal, mobile weights adjacent the girdles. © 2014 Wiley Periodicals, Inc.

  9. Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia using μCT-scanning techniques.

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    Full Text Available Euchambersia mirabilis is an iconic species of Permo-Triassic therapsid because of its unusually large external maxillary fossa linked through a sulcus to a ridged canine. This anatomy led to the commonly accepted conclusion that the large fossa accommodated a venom gland. However, this hypothesis remains untested so far. Here, we conducted a μCT scan assisted reappraisal of the envenoming capacity of Euchambersia, with a special focus on the anatomy of the maxillary fossa and canines. This study shows that the fossa, presumably for the venom-producing gland, is directly linked to the maxillary canal, which carries the trigeminal nerve (responsible for the sensitivity of the face. The peculiar anatomy of the maxillary canal suggests important reorganisation in the somatosensory system and that a ganglion could possibly have been present in the maxillary fossa instead of a venom gland. Nevertheless, the venom gland hypothesis is still preferred since we describe, for the first time, the complete crown morphology of the incisiform teeth of Euchambersia, which strongly suggests that the complete dentition was ridged. Therefore Euchambersia manifests evidence of all characteristics of venomous animals: a venom gland (in the maxillary fossa, a mechanism to deliver the venom (the maxillary canal and/or the sulcus located ventrally to the fossa; and an apparatus with which to inflict a wound for venom delivery (the ridged dentition.

  10. Cranial Bosses of Choerosaurus dejageri (Therapsida, Therocephalia: Earliest Evidence of Cranial Display Structures in Eutheriodonts.

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    Full Text Available Choerosaurus dejageri, a non-mammalian eutheriodont therapsid from the South African late Permian (~259 Ma, has conspicuous hemispheric cranial bosses on the maxilla and the mandible. These bosses, the earliest of this nature in a eutheriodont, potentially make C. dejageri a key species for understanding the evolutionary origins of sexually selective behaviours (intraspecific competition, ritualized sexual and intimidation displays associated with cranial outgrowths at the root of the clade that eventually led to extant mammals. Comparison with the tapinocephalid dinocephalian Moschops capensis, a therapsid in which head butting is strongly supported, shows that the delicate structure of the cranial bosses and the gracile structure of the skull of Choerosaurus would be more suitable for display and low energy combat than vigorous head butting. Thus, despite the fact that Choerosaurus is represented by only one skull (which makes it impossible to address the question of sexual dimorphism, its cranial bosses are better interpreted as structures involved in intraspecific selection, i.e. low-energy fighting or display. Display structures, such as enlarged canines and cranial bosses, are widespread among basal therapsid clades and are also present in the putative basal therapsid Tetraceratops insignis. This suggests that sexual selection may have played a more important role in the distant origin and evolution of mammals earlier than previously thought. Sexual selection may explain the subsequent independent evolution of cranial outgrowths and pachyostosis in different therapsid lineages (Biarmosuchia, Dinocephalia, Gorgonopsia and Dicynodontia.

  11. Middle ear structures in the Permian Glanosuchus sp. (Therocephalia, Therapsida, based on thin sections

    Directory of Open Access Journals (Sweden)

    W. Maier

    2002-01-01

    Full Text Available Transverse sections of the skull of the Permian therocephalian Glanosuchus sp. were studied with regard to the structures of the middle ear region. It is generally accepted that most of the skeletal elements of the mammalian middle ear are derived from the postdentary bones of the lower jaw. During synapsid evolution there is a gradual transition from a primitive amniote condition to derived mammalian condition; the latter is characterized by the decoupling of the remaining middle ear elements (angular, prearticular, articular from the dentary, which forms a secondary jaw articulation with the squamosal. Morganucodon from the Triassic-Jurassic boundary represents an evolutionary stage, where both jaw articulations are present in a coaxial position and where the primary joint is a Pready a fully effective sound transmitter. Therocephalians are considered to be a good representation of the transitory state of this evolutionary process; this may be especially true for primitive taxa such as the lycosuchid Glanosuchus, whose anatomy may represent the "groundplan" (ancestral morphotype of Lower to Middle Permian eutheriodonts. We studied a complete sectional series of a young specimen of Glanosuchus sp. prepared using the grind-and peel-technique. This showed that the reflected lamina of Glanosuchus is in major parts an extremely thin bony plate, which is best interpreted as a sound-receiving element overlying an air-filled recessus of the pharynx. In this specimen, the vestibular foramen and the stapes are preserved in situ; it is likely, however, that both structures were framed by cartilage which fixed the anular ligament. Both the stapes and the quadrate process of the pterygoid are in direct contact with the quadrate. Comparison of the area of the reflected lamina and the vestibular foramen shows that impedance matching was still very ineffective in Therocephalia when compared to extant mammals. In dieser Arbeit wurden Transversalschnitte des Schädels von dem Therocephalen Glanosuchus sp. im Hinblick auf die Anatomie der Mittelohrregion untersucht. Allgemein wird angenommen, dass die meisten Skelettelemente des Mittelohres der Säuger aus den postdentalen Knochen des Unterkiefers hervorgegangen sind. Der abgeleitete Zustand des Säuger-Mittelohres entstand demnach durch graduelle Abwandlung der ursprünglichen Amniotenkonstruktion. Der abgeleitete Zustand besteht darin, dass u. a. die drei postdentalen Elemente Angulare, Präartikulare und Artikulare aus dem Verband des Unterkiefers herausgelöst wurden, wobei das Dentale nun das Kiefergelenk mit dem Squamosum bildet. In der permotriassischen Gattung Morganucodon existieren beide Kiefergelenke nebeneinander, obwohl das primäre Kiefergelenk bereits die impedanzwandelnde Funktion übernommen hatte. Die Therocephalen sind ein weiteres Beispiel für eine solche evolutionäre Zwischenstellung, und unter diesen ist die ursprüngliche Gattung Glanosuchus besonders interessant. Sie gilt als beispielhaft für den Zustand unter- bis mittelpermischer Eutheriodonten. In der vorliegenden Arbeit untersuchten wir eine vollständige Schnittserie ("Grind-and-peel-Methode" eines juvenilen Glanosuchus sp. Die Lamina reflexa des untersuchten Stückes bildet eine sehr dünne Knochenlamelle, die sich am ehesten als schallübertragendes Element deuten läßt, das eine luftgefüllte Ausstülpung des Pharynx nach außen hin abschloss. Der Stapes und die Fenestra vestibuli des untersuchten Exemplares sind in situ erhalten, doch ist aufgrund fehlender Knochenränder wahrscheinlich, dass beide Strukturen sich knorpelig fortsetzten und durch ein Anularligament verbunden waren. Sowohl der Stapes als auch der Quadratfortsatz des Pterygoids hatten unmittelbaren Kontakt mit dem Quadratum. Das Flächenverhältnis zwischen der Lamina reflexa und der Fenestra vestibuli bei Glanosuchus laßt auf eine noch nicht sehr effektive Schallübertragung schließen. doi:10.1002/mmng.20020050119

  12. Synchrotron scanning reveals the palaeoneurology of the head-butting Moschops capensis (Therapsida, Dinocephalia

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    2017-08-01

    Full Text Available Dinocephalian therapsids are renowned for their massive, pachyostotic and ornamented skulls adapted for head-to-head fighting during intraspecific combat. Synchrotron scanning of the tapinocephalid Moschops capensis reveals, for the first time, numerous anatomical adaptations of the central nervous system related to this combative behaviour. Many neural structures (such as the brain, inner ear and ophthalmic branch of the trigeminal nerve were completely enclosed and protected by bones, which is unusual for non-mammaliaform therapsids. The nearly complete ossification of the braincase enables precise determination of the brain cavity volume and encephalization quotient, which appears greater than expected for such a large and early herbivore. The practice of head butting is often associated with complex social behaviours and gregariousness in extant species, which are known to influence brain size evolution. Additionally, the plane of the lateral (horizontal semicircular canal of the bony labyrinth is oriented nearly vertically if the skull is held horizontally, which suggests that the natural position of the head was inclined about 60–65°to the horizontal. This is consistent with the fighting position inferred from osteology, as well as ground-level browsing. Finally, the unusually large parietal tube may have been filled with thick conjunctive tissue to protect the delicate pineal eye from injury sustained during head butting.

  13. Masticatory jaw movement of Exaeretodon argentinus (Therapsida: Cynodontia inferred from its dental microwear.

    Directory of Open Access Journals (Sweden)

    Tai Kubo

    Full Text Available Dental microwear of four postcanine teeth of Exaeretodon argentinus was analyzed using both two dimensional (2D and three dimensional (3D methods to infer their masticatory jaw movements. Results of both methods were congruent, showing that linear microwear features (scratches were well aligned and mostly directed to the antero-posterior direction in all four teeth examined. These findings support the palinal masticatory jaw movement, which was inferred in previous studies based on the observation of gross morphology of wear facets. In contrast, the lack of detection of lateral scratches confirmed the absence of the lateral jaw movement that was also proposed by a previous study. Considering previous microwear studies on cynodonts, palinal jaw movements observed in Exaeretodon evolved within cynognathian cynodonts from the fully orthal jaw movement of its basal member. Although there are currently only three studies of dental microwear of non-mammalian cynodonts including the present study, microwear analysis is a useful tool for the reconstruction of masticatory jaw movement and its future application to various cynodonts will shed light on the evolutionary process of jaw movement towards the mammalian condition in more detail.

  14. Skeletal Morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli), and Implications for the Developmental Patterns of Extinct, Early Tetrapods.

    Science.gov (United States)

    Olori, Jennifer C

    2015-01-01

    The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg.

  15. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the lepospondyli (Vertebrata, Tetrapoda).

    Science.gov (United States)

    Anderson, J S

    2001-04-01

    The importance of fossils to phylogenetic reconstruction is well established. However, analyses of fossil data sets are confounded by problems related to the less complete nature of the specimens. Taxa that are incompletely known are problematic because of the uncertainty of their placement within a tree, leading to a proliferation of most-parsimonious solutions and "wild card" behavior. Problematic taxa are commonly deleted based on a priori criteria of completeness. Paradoxically, a taxon's problematic behavior is tree dependent, and levels of completeness are not directly associated with problematic behavior. Exclusion of taxa on the basis of completeness eliminates real character conflict and, by not allowing incomplete taxa to determine tree topology, diminishes the phylogenetic hypothesis. Here, the phylogenetic trunk approach is proposed to allow optimization of taxonomic inclusion and tree stability. The use of this method in an analysis of the Paleozoic Lepospondyli finds a single most-parsimonious tree, or trunk, after the removal of one taxon identified as being problematic. Moreover, the 38 trees found at one additional step from this primary trunk were reduced to 2 by removal of one additional taxon. These trunks are compared with the trees that were found by excluding taxa with various degrees of completeness, and the effects of incomplete taxa are explored with regard to use of the trunk. Correlated characters associated with limblessness are discussed regarding the assumption of character independence; however, inclusion of intermediate taxa is found to be the single best method for breaking down long branches.

  16. Skeletal Morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli, and Implications for the Developmental Patterns of Extinct, Early Tetrapods.

    Directory of Open Access Journals (Sweden)

    Jennifer C Olori

    Full Text Available The ontogeny of extant amphibians often is used as a model for that of extinct early tetrapods, despite evidence for a spectrum of developmental modes in temnospondyls and a paucity of ontogenetic data for lepospondyls. I describe the skeletal morphogenesis of the extinct lepospondyls Microbrachis pelikani and Hyloplesion longicostatum using the largest samples examined for either taxon. Nearly all known specimens were re-examined, allowing for substantial anatomical revisions that affect the scoring of characters commonly used in phylogenetic analyses of early tetrapods. The palate of H. longicostatum is re-interpreted and suggested to be more similar to that of M. pelikani, especially in the nature of the contact between the pterygoids. Both taxa possess lateral lines, and M. pelikani additionally exhibits branchial plates. However, early and rapid ossification of the postcranial skeleton, including a well-developed pubis and ossified epipodials, suggests that neither taxon metamorphosed nor were they neotenic in the sense of branchiosaurids and salamanders. Morphogenetic patterns in the foot suggest that digit 5 was developmentally delayed and the final digit to ossify in M. pelikani and H. longicostatum. Overall patterns of postcranial ossification may indicate postaxial dominance in limb and digit formation, but also more developmental variation in early tetrapods than has been appreciated. The phylogenetic position and developmental patterns of M. pelikani and H. longicostatum are congruent with the hypothesis that early tetrapods lacked metamorphosis ancestrally and that stem-amniotes exhibited derived features of development, such as rapid and complete ossification of the skeleton, potentially prior to the evolution of the amniotic egg.

  17. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.

  18. The mystery of a missing bone: revealing the orbitosphenoid in basal Epicynodontia (Cynodontia, Therapsida) through computed tomography

    Science.gov (United States)

    Benoit, Julien; Jasinoski, Sandra C.; Fernandez, Vincent; Abdala, Fernando

    2017-08-01

    The basal non-mammaliaform cynodonts from the late Permian (Lopingian) and Early Triassic are a major source of information for the understanding of the evolutionary origin of mammals. Detailed knowledge of their anatomy is critical for understanding the phylogenetic transition toward mammalness and the paleobiological reconstruction of mammalian precursors. Using micro-computed tomography (μCT), we describe the internal morphology of the interorbital region that includes the rarely fossilized orbitosphenoid elements in four basal cynodonts. These paired bones, which are positioned relatively dorsally in the skull, contribute to the wall of the anterior part of the braincase and form the floor for the olfactory lobes. Unlike procynosuchids and the more basal therapsids in which the orbitosphenoids are well developed, dense, and bear a ventral keel, the basal epicynodonts Cynosaurus, Galesaurus, and Thrinaxodon display cancellous, reduced, and loosely articulated orbitosphenoids, a condition shared with many eucynodonts. The hemi-cylindrical orbitosphenoid from which the mammalian condition is derived re-evolved convergently in traversodontid and some probainognathian cynodonts.

  19. Bone microstructure and the evolution of growth patterns in Permo-Triassic therocephalians (Amniota, Therapsida of South Africa

    Directory of Open Access Journals (Sweden)

    Adam K. Huttenlocker

    2014-04-01

    Full Text Available Therocephalians were a speciose clade of nonmammalian therapsids whose ecological diversity and survivorship of the end-Permian mass extinction offer the potential to investigate the evolution of growth patterns across the clade and their underlying influences on post-extinction body size reductions, or ‘Lilliput effects’. We present a phylogenetic survey of limb bone histology and growth patterns in therocephalians from the Middle Permian through Middle Triassic of the Karoo Basin, South Africa. Histologic sections were prepared from 80 limb bones representing 11 genera of therocephalians. Histologic indicators of skeletal growth, including cortical vascularity (%CV and mean primary osteon diameters (POD, were evaluated in a phylogenetic framework and assessed for correlations with other biologically significant variables (e.g., size and robusticity. Changes in %CV and POD correlated strongly with evolutionary changes in body size (i.e., smaller-bodied descendants tended to have lower %CV than their larger-bodied ancestors across the tree. Bone wall thickness tended to be high in early therocephalians and lower in the gracile-limbed baurioids, but showed no general correlation with cross-sectional area or degree of vascularity (and, thus, growth. Clade-level patterns, however, deviated from previously studied within-lineage patterns. For example, Moschorhinus, one of few therapsid genera to have survived the extinction boundary, demonstrated higher %CV in the Triassic than in the Permian despite its smaller size in the extinction aftermath. Results support a synergistic model of size reductions for Triassic therocephalians, influenced both by within-lineage heterochronic shifts in survivor taxa (as reported in Moschorhinus and the dicynodont Lystrosaurus and phylogenetically inferred survival of small-bodied taxa that had evolved short growth durations (e.g., baurioids. These findings mirror the multi-causal Lilliput patterns described in marine faunas, but contrast with skeletochronologic studies that suggest slow, prolonged shell secretion over several years in marine benthos. Applications of phylogenetic comparative methods to new histologic data will continue to improve our understanding of the evolutionary dynamics of growth and body size shifts during mass extinctions and recoveries.

  20. Geometry and evolutionary parallelism in the long bones of cavioid ...

    Indian Academy of Sciences (India)

    Laboratório de Zoologia de Vertebrados (Tetrapoda) (LAZOVERTE), DZ, IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524 – Maracanã –CEP: 20550-013 –Rio de Janeiro, RJ, Brazil; Departament de Biologia Animal (Vertebrats), Universitat de Barcelona, Diagonal, 645( 08028 Barcelona, ...

  1. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratório de Zoologia de Vertebrados (Tetrapoda) (LAZOVERTE), DZ, IBRAG, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524 – Maracanã –CEP: 20550-013 –Rio de Janeiro, RJ, Brazil; Departament de Biologia Animal (Vertebrats), Universitat de Barcelona, Diagonal, 645( 08028 Barcelona, ...

  2. Osteognathostomata

    Science.gov (United States)

    Schultze, Hans-Peter

    Noch häufig, vor allem im englischen Sprachraum, wird für die fischartigen Wirbeltiere mit Knochenskelett, also die Actinopterygii und Sarcopterygii, der Begriff "Osteichthyes" (Knochenfische) verwendet. Da sich jedoch aus einem Subtaxon der Sarcopterygier die Tet rapoda entwickelten (S. 322), würde diese Gruppierung ein paraphyletisches Taxon darstellen. Hier wird daher dem Vorschlag W. Hennigs (1983) gefolgt und die Schwestergruppe der Chondrichthyes Osteognathostomata genannt: Sie enthält alle weiteren kiefertragenden Wirbeltiere mit Knochenskelett (Name!) (Abb. 201). Die Sarcopterygii umfassen demnach verschiedene fossile Gruppen, die rezenten Reliktgruppen der Dipnoi (Lungenfische) und Actinistia (Hohlstachler) sowie die Tetrapoda und ihre Stammgruppenvertreter. (Neuerdings wird in der Literatur aus denselben Gründen einer konsequent phylogenetischen Systematisierung wieder die Gruppierung Osteichthyes, aber unter Einschluss der Tetrapoda, verwendet!).

  3. Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia.

    Science.gov (United States)

    Lovsin, N; Gubensek, F; Kordi, D

    2001-12-01

    The evolution of the novel L2 clade of non-long terminal repeat (LTR) retrotransposons and their evolutionary dynamics in Deuterostomia has been examined. The short-term evolution of long interspersed nuclear element 2s (LINE2s) has been studied in 18 reptilian species by analysis of a PCR amplified 0.7-kb fragment encoding the palm/fingers subdomain of reverse transcriptase (RT). Most of the reptilian LINE2s examined are inactive since they contain multiple stop codons, indels, or frameshift mutations that disrupt the RT. Analysis of reptilian LINE2s has shown a high degree of sequence divergence and an unexpectedly large number of deletions. The evolutionary dynamics of LINE2s in reptiles has been found to be complex. LINE2s are shown to form a novel clade of non-LTR retrotransposons that is well separated from the CR1 clade. This novel L2 clade is more widely distributed than previously thought, and new representatives have been discovered in echinoderms, insects, teleost fishes, Xenopus, Squamata, and marsupials. There is an apparent absence of LINE2s from different vertebrate classes, such as cartilaginous fishes, Archosauria (birds and crocodiles), and turtles. Whereas the LINE2s are present in echinoderms and teleost fishes in a conserved form, in most tetrapods only highly degenerated pseudogenes can be found. The predominance of inactive LINE2s in Tetrapoda indicates that, in the host genomes, only inactive copies are still present. The present data indicate that the vertical inactivation of LINE2s might have begun at the time of Tetrapoda origin, 400 MYA. The evolutionary dynamics of the L2 clade in Deuterostomia can be described as a gradual vertical inactivation in Tetrapoda, stochastic loss in Archosauria and turtles, and strict vertical transmission in echinoderms and teleost fishes.

  4. Otolithic apparatus of tetrapods after space flight

    Science.gov (United States)

    Lychakov, Dmitri

    In vertebrates the otolithic membrane is formed of three components: the gelatinous layer, the subcupular meshwork and the otolithic apparatus (Fermin et al., 1998; Lim, 1974; Lindeman, 1969; Lychakov, 1988, 2002). The otolithic apparatus consists of a set of small crystalline otoconia (Tetrapoda), or a single large crystalline otolith (Teleostei). Despite similar functions, the otoconia (Tetrapoda) and otolith otolithic apparatus differ significantly in their embryogenesis, postembryonic growth, chemical composition, etc. It may be suggested that the gravitational challenges may have different effects on otoconia or otoliths. Unfortunately, we have only a few quantitative data on structural adaptation of tetrapod otolithic apparatus to microgravity (Lychakov, 2002; Lychakov, Lavrova,1985; Wiederhold et al., 1997). The BION-M1 provides an opportunity for a quantitative morphological analysis of otolithic apparatus of adult mice exposed to 30 days in a biosatellite on orbit. We expect to analyse otoconia of utriculus and sacculus. Our principal aims are to investigate the morphological characteristics of otoconia. We expect to get novel insights in microgravity induced otoconia adaptation of tetrapods. This work was partly supported by Russian grant RFFI 14-04-00601.

  5. Prevalence and intensity of pentastomid infection in two species of snakes from northeastern Brazil

    Directory of Open Access Journals (Sweden)

    WO Almeida

    Full Text Available This study aimed to evaluate the infection rates of snakes by pentastomids in the semi-arid region of Brazil. Fifteen snakes (four Micrurus ibiboboca (Merrem, 1820 and eleven Philodryas nattereri Steindachner, 1870 were collected between January and April of 2005, in the municipality of Crato (07° 14' S and 39° 24' W, State of Ceará, Brazil. Laboratorial analysis of the respiratory tracts of the sampled snakes indicated differences in host infection rates: four individuals of P. nattereri (36.4% were infected by Cephalobaena tetrapoda Heymons, 1922 (mean infection intensity 1.5 ± 0.28, 1-2 and three specimens (27.3% by Raillietiella furcocerca (Diesing, 1863 (2.3 ± 1.32, 1-5. Only one individual of M. ibiboboca (25% was infected by a non-identified species of Raillietiella sp. These are the first data on pentastomid infection in snakes in Northeastern Brazil and both snake species comprise new host records for the pentastomids. The results also indicate that the generalist parasites C. tetrapoda and R. furcocerca share their definitive hosts.

  6. Prevalence and intensity of pentastomid infection in two species of snakes from northeastern Brazil.

    Science.gov (United States)

    Almeida, W O; Vasconcellos, A; Lopes, S G; Freire, E M X

    2007-11-01

    This study aimed to evaluate the infection rates of snakes by pentastomids in the semi-arid region of Brazil. Fifteen snakes (four Micrurus ibiboboca (Merrem, 1820) and eleven Philodryas nattereri Steindachner, 1870) were collected between January and April of 2005, in the municipality of Crato (07 degrees 14' S and 39 degrees 24' W), State of Ceará, Brazil. Laboratorial analysis of the respiratory tracts of the sampled snakes indicated differences in host infection rates: four individuals of P. nattereri (36.4%) were infected by Cephalobaena tetrapoda Heymons, 1922 (mean infection intensity 1.5 +/- 0.28, 1-2) and three specimens (27.3%) by Raillietiella furcocerca (Diesing, 1863) (2.3 +/- 1.32, 1-5). Only one individual of M. ibiboboca (25%) was infected by a non-identified species of Raillietiella sp. These are the first data on pentastomid infection in snakes in Northeastern Brazil and both snake species comprise new host records for the pentastomids. The results also indicate that the generalist parasites C. tetrapoda and R. furcocerca share their definitive hosts.

  7. The sixth sense in mammalian forerunners: Variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids

    Directory of Open Access Journals (Sweden)

    Julien Benoit

    2016-12-01

    Full Text Available In some extant ectotherms, the third eye (or pineal eye is a photosensitive organ located in the parietal foramen on the midline of the skull roof. The pineal eye sends information regarding exposure to sunlight to the pineal complex, a region of the brain devoted to the regulation of body temperature, reproductive synchrony, and biological rhythms. The parietal foramen is absent in mammals but present in most of the closest extinct relatives of mammals, the Therapsida. A broad ranging survey of the occurrence and size of the parietal foramen in different South African therapsid taxa demonstrates that through time the parietal foramen tends, in a convergent manner, to become smaller and is absent more frequently in eutherocephalians (Akidnognathiidae, Whaitsiidae, and Baurioidea and non-mammaliaform eucynodonts. Among the latter, the Probainognathia, the lineage leading to mammaliaforms, are the only one to achieve the complete loss of the parietal foramen. These results suggest a gradual and convergent loss of the photoreceptive function of the pineal organ and degeneration of the third eye. Given the role of the pineal organ to achieve fine-tuned thermoregulation in ectotherms (i.e., “cold-blooded” vertebrates, the gradual loss of the parietal foramen through time in the Karoo stratigraphic succession may be correlated with the transition from a mesothermic metabolism to a high metabolic rate (endothermy in mammalian ancestry. The appearance in the eye of melanopsin-containing retinal ganglion cells replacing the photoreceptive role of the pineal eye could also have accompanied its loss.

  8. Neutron Tomography and X-ray Tomography as Tools for the Morphological Investigation of Non-mammalian Synapsids

    Science.gov (United States)

    Laaß, Michael; Schillinger, Burkhard; Werneburg, Ingmar

    As having evolved on the stem line of mammals, the taxonomy and phylogeny of therapsids (Synapsida) are of special interest with respect to early mammalian evolution. Due to the fact that in most cases soft tissue of fossil vertebrates is not preserved, species can only be distinguished by diagnosis of morphological features of the skeleton. Moreover, investigations of vertebrate fossils are often obstructed, because internal cranial anatomy is usually hidden and parts of the fossils may be embedded in stone matrix. As a consequence, most species of non-mammalian synapsids were only defined on the basis of external skeletal features. Our investigations on Diictodon skulls (Therapsida, Anomodontia) show that non-destructive methods are very useful to clearly distinguish fossil species. We, therefore, propose using modern non-destructive techniques such as neutron tomography, synchrotron tomography, and micro-computed tomography (μCT) as standard tools for the investigation and virtual reconstruction of fossils and to include features of the internal cranial anatomy into morphological descriptions and phylogenetic analyses of fossil vertebrates.

  9. The ultrastructure of the spermatozoon of the lizard Iguana iguana (Reptilia, Squamata, Iguanidae) and the variability of sperm morphology among iguanian lizards

    Science.gov (United States)

    Vieira, Gustavo H C; Colli, Guarino R; Báo, Sônia N

    2004-01-01

    The spermatozoon of Iguana iguana is filiform and resembles that of other iguanian lizards, being most similar to Tropidurus. All sperm synapomorphies of Tetrapoda, Amniota and Squamata are present in the sperm of Iguana iguana. By reconstructing the evolution of 30 sperm characters we identified a novel synapomorphy of Iguania: the presence of a well-developed acrosomal ridge at the level of the epinuclear lucent zone. Because of the poor topological resolution among iguanian clades we could not discount the possibility of convergence or neutral selection as determinant of the variability in characteristics of the sperm cell. In agreement with previous studies, we identified heterogeneous rates of evolution among the three main regions of the sperm cell, namely the head, midpiece and tail. PMID:15198687

  10. An early geikiid dicynodont from the Tropidostoma Assemblage Zone (late Permian of South Africa

    Directory of Open Access Journals (Sweden)

    Christian F. Kammerer

    2017-01-01

    Full Text Available Based on specimens previously identified as Tropidostoma, a new taxon of dicynodont (Bulbasaurus phylloxyron gen. et sp. nov. from the Karoo Basin of South Africa is described. Bulbasaurus is a medium-sized dicynodont (maximum dorsal skull length 16.0 cm restricted to the Tropidostoma Assemblage Zone (early Lopingian of the Beaufort Group. Bulbasaurus can be distinguished from Tropidostoma by an array of characters including the presence of a tall, sharp premaxillary ridge, large, rugose, nearly-confluent nasal bosses, a nasofrontal ridge, massive tusks, robust pterygoids, prominently twisted subtemporal bar, and absence of a distinct postfrontal. Inclusion of Bulbasaurus in a phylogenetic analysis of anomodont therapsids recovers it as a member of Geikiidae, a clade of otherwise later Permian dicynodonts such as Aulacephalodon and Pelanomodon. Bulbasaurus exhibits many of the characters typical of adult Aulacephalodon, but at substantially smaller skull size (these characters are absent in comparably-sized Aulacephalodon juveniles, suggesting that the evolution of typical geikiid morphology preceded gigantism in the clade. Bulbasaurus is the earliest known geikiid and the only member of the group known from the Tropidostoma Assemblage Zone; discovery of this taxon shortens a perplexing ghost lineage and indicates that abundant clades from the later Permian of South Africa (e.g., Geikiidae, Dicynodontoidea may have originated as rare components of earlier Karoo assemblage zones.

  11. Bringing Dicynodonts Back to Life: Paleobiology and Anatomy of a New Emydopoid Genus from the Upper Permian of Mozambique

    Science.gov (United States)

    Júnior, Luís C.; Angielczyk, Kenneth D.; Martins, Gabriel G.; Martins, Rui M. S.; Chaouiya, Claudine; Beckmann, Felix; Wilde, Fabian

    2013-01-01

    Dicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia) from northern Mozambique: Niassodon mfumukasi gen. et sp. nov. The holotype ML1620 was collected from the Late Permian K5 formation, Metangula Graben, Niassa Province northern Mozambique, an almost completely unexplored basin and country for vertebrate paleontology. Synchrotron radiation based micro-computed tomography (SRµCT), combined with a phylogenetic analysis, demonstrates a set of characters shared with Emydopoidea. All individual bones were digitally segmented allowing a 3D visualization of each element. In addition, we reconstructed the osseous labyrinth, endocast, cranial nerves and vasculature. The brain is narrow and the cerebellum is broader than the forebrain, resembling the conservative, “reptilian-grade” morphology of other non-mammalian therapsids, but the enlarged paraflocculi occupy the same relative volume as in birds. The orientation of the horizontal semicircular canals indicates a slightly more dorsally tilted head posture than previously assumed in other dicynodonts. In addition, synchrotron data shows a secondary center of ossification in the femur. Thus ML1620 represents, to our knowledge, the oldest fossil evidence of a secondary center of ossification, pushing back the evolutionary origins of this feature. The fact that the specimen represents a new species indicates that the Late Permian tetrapod fauna of east Africa is still incompletely known. PMID:24324653

  12. Bringing dicynodonts back to life: paleobiology and anatomy of a new emydopoid genus from the Upper Permian of Mozambique.

    Directory of Open Access Journals (Sweden)

    Rui Castanhinha

    Full Text Available Dicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia from northern Mozambique: Niassodon mfumukasi gen. et sp. nov. The holotype ML1620 was collected from the Late Permian K5 formation, Metangula Graben, Niassa Province northern Mozambique, an almost completely unexplored basin and country for vertebrate paleontology. Synchrotron radiation based micro-computed tomography (SRµCT, combined with a phylogenetic analysis, demonstrates a set of characters shared with Emydopoidea. All individual bones were digitally segmented allowing a 3D visualization of each element. In addition, we reconstructed the osseous labyrinth, endocast, cranial nerves and vasculature. The brain is narrow and the cerebellum is broader than the forebrain, resembling the conservative, "reptilian-grade" morphology of other non-mammalian therapsids, but the enlarged paraflocculi occupy the same relative volume as in birds. The orientation of the horizontal semicircular canals indicates a slightly more dorsally tilted head posture than previously assumed in other dicynodonts. In addition, synchrotron data shows a secondary center of ossification in the femur. Thus ML1620 represents, to our knowledge, the oldest fossil evidence of a secondary center of ossification, pushing back the evolutionary origins of this feature. The fact that the specimen represents a new species indicates that the Late Permian tetrapod fauna of east Africa is still incompletely known.

  13. Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus.

    Science.gov (United States)

    Kim, Keun-Yong; Lee, Sang Yoon; Cho, Young Sun; Bang, In Chul; Kim, Ki Hong; Kim, Dong Soo; Nam, Yoon Kwon

    2007-11-01

    Complementary DNAs encoding copper/zinc superoxide dismutase (Cu/Zn-SOD; SOD1) and manganese superoxide dismutase (Mn-SOD; SOD2) were isolated from disk abalone, Haliotis discus discus. The open reading frame sequences of Cu/Zn- and Mn-SODs encoded 154 and 226 amino acids, respectively. Multiple sequence alignments using the deduced amino acid sequences revealed that both abalone SODs showed considerable sequence similarities with their orthologues from diverse aerobic organisms, in which the amino acid residues forming metal ligands were highly conserved. All phylogenetic trees for both SOD genes inferred from maximum likelihood and Bayesian inference analyses presented the monophyletic status of Teleostei and Aves/Tetrapoda clades, and recovered relatively close genetic affiliation of H. discus discus with some molluscan species. Expression of both SODs at mRNA levels were highly modulated in various tissues (gill, muscle and hepatopancreas from juveniles, and haemocytes from adults) by experimental exposures to heavy metals (copper, zinc and cadmium) and also by thermal treatments (elevation of temperature). The mRNA levels of both SODs were increased in general during the metal or thermal treatments; however, the transcriptional responses of SOD genes were quite variable depending upon isoforms and tissues based on semi-quantitative and/or real-time RT-PCR assays.

  14. Confusing dinosaurs with mammals: tetrapod phylogenetics and anatomical terminology in the world of homology.

    Science.gov (United States)

    Harris, Jerald D

    2004-12-01

    At present, three different systems of anatomical nomenclature are available to researchers describing new tetrapod taxa: a nonstandardized traditional system erected in part by Sir Richard Owen and subsequently elaborated by Alfred Romer; a standardized system created for avians, the Nomina Anatomica Avium (NAA); and a standardized system for extant (crown-group) mammals, the Nomina Anatomica Veterinaria (NAV). Conserved homologous structures widely distributed within the Tetrapoda are often granted different names in each system. The recent shift toward a phylogenetic system based on homology requires a concomitant shift toward a single nomenclatural system also based on both evolutionary and functional morphological homology. Standardized terms employed in the NAA and NAV should be perpetuated as far as possible basally in their respective phylogenies. Thus, NAA terms apply to nonavian archosaurs (or even all diapsids) and NAV terms apply to noncrown-group mammals and more basal synapsids. Taxa equally distant from both avians and crown-group mammals may maintain the traditional nonstandardized terminology until a universal anatomical nomenclature for all tetrapods is constructed. (c) 2004 Wiley-Liss, Inc.

  15. Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development.

    Science.gov (United States)

    Fröbisch, Nadia B; Carroll, Robert L; Schoch, Rainer R

    2007-01-01

    Despite the wide range of shapes and sizes that accompany a vast variety of functions, the development of tetrapod limbs follows a conservative pattern of de novo condensation, branching, and segmentation. Development of the zeugopodium and digital arch typically occurs in a posterior to anterior sequence, referred to as postaxial dominance, with a digital sequence of 4-3-5-2-1. The only exception to this pattern in all of living Tetrapoda can be found in salamanders, which display a preaxial dominance in limb development, a de novo condensation of a basale commune (distal carpal/tarsal 1+2) and a precoccial development of digits I and II. These divergent patterns have puzzled researchers for over a century leading to various explanatory hypotheses. Despite many advances in research on tetrapod limb development, the divergent evolution of these two pathways and its causes are still not understood. Based on an extensive ontogenetic series we investigated the pattern of limb development of the 300 Ma old branchiosaurid amphibian Apateon. This revealed a preaxial dominance in limb development that was previously believed to be unique and derived for modern salamanders. The Branchiosauridae are favored as close relatives of extant salamanders in most phylogenetic hypotheses of the highly controversial origins and relationships of extant amphibians. The findings provide new insights into the evolution of developmental pathways in tetrapod limb development, the relationships of modern amphibians with possible Paleozoic antecedents, and their initial timing of divergence.

  16. Coelacanths as 'almost living fossils’

    Directory of Open Access Journals (Sweden)

    Lionel eCavin

    2014-08-01

    Full Text Available Since its usage by Darwin in 1859, the concept of ‘living fossil’ has undergone multiple definitions and has been much discussed and criticized. Soon after its discovery in 1938, the coelacanth Latimeria was regarded as the iconic example of a ‘living fossil’. Several morphological studies have shown that the coelacanth lineage (Actinistia has not displayed critical morphological transformation during its evolutionary history and molecular studies have revealed a low substitution rate for Latimeria, indicating a slow genetic evolution. This statement, however, has been recently questioned by arguing that the low substitution rate was not real, and that the slow morphological evolution of actinistians was not supported by paleontological evidence. The assessment of morphological transformation among three vertebrate lineages during a time interval of circa 400 million years shows that the morphological disparity of coelacanths is much more reduced than the morphological disparity of Actinopterygii and Tetrapoda. These results support the idea that living coelacanths are singular organisms among the living world.

  17. Comparative anatomy, homologies and evolution of the pectoral and forelimb musculature of tetrapods with special attention to extant limbed amphibians and reptiles.

    Science.gov (United States)

    Abdala, Virginia; Diogo, Rui

    2010-11-01

    The main aim of the present work is to synthesize the information obtained from our dissections of the pectoral and forelimb muscles of representative members of the major extant taxa of limbed amphibians and reptiles and from our review of the literature, in order to provide an account of the comparative anatomy, homologies and evolution of these muscles in the Tetrapoda. The pectoral and forelimb musculature of all these major taxa conform to a general pattern that seems to have been acquired very early in the evolutionary history of tetrapods. Although some muscles are missing in certain taxa, and a clear departure from this general pattern is obviously present in derived groups such as birds, the same overall configuration is easily distinguishable in these taxa. Among the most notable anatomical differences between the groups, one that seems to have relevant evolutionary and functional implications, concerns the distal insertion points of the forearm musculature. In tetrapods, the muscles of the radial and ulnar complexes of the forearm are pleisomorphically mainly inserted onto the radius/ulna or onto the more proximal carpal bones, but in mammals some of these muscles insert more distally onto bones such as the metacarpals. Interestingly, a similar trend towards a more distal insertion of these muscles is also found in some non-mammalian tetrapod taxa, such as some anurans (e.g. Phyllomedusa). This may be correlated with the acquisition of more subtle digital movement abilities in these latter taxa. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.

  18. PRIMITIVISME IKAN POLYPTERUS SEBAGAI WARISAN MANUSIA MODERN

    Directory of Open Access Journals (Sweden)

    Media Fitri Isma Nugraha

    2010-12-01

    Full Text Available Tinjauan ini mensintesa historis dan diversitas ikan purba Polypterus yang berasal dari Afrika sebagai komoditi budidaya ikan hias. Sejarah evolusinya sangat unik, muncul sejak pertengahan Miocen (10 juta tahun, hubungan parentalnya berada pada posisi transisional sister-takson antara Teleostei dan Tetrapoda. Primitivismenya menyisakan divergensi momental sains hampir satu abad dalam determinasi dimorfisme seksualnya. Bersifat nokturnal, tahan terhadap kondisi habitat ekstrim tetapi mudah dibudidayakan. Polypterus jantan memiliki sirip anal tebal dan condong ke hipural konjungsi sirip ekor. Seekor betina mampu bertelur 100–300 butir dan menetas kurang dari 3 hari. Benih Polypterus sudah dapat beradaptasi dengan pakan tambahan sekitar 10 hari pasca menetas, dan dalam perkembangan gonad jantan dan betina akan terbentuk sempurna setelah berumur 10 bulan. Fosil hidup Polypterus telah menjadi warisan dunia, adopsi dan asuhan penggemarnya tersebar ke-5 benua, dapat dilaporkan bahwa harga per ekor dipatok variatif antara US$40–US$70. Kegemaran kita membudidayakannya, berarti telah menyelamatkan populasi ikan ini agar terhindar dari kepunahan. Atas dasar konsesi dan semangat terhadap warisan spesies dunia itu, BRBIH Depok telah mengoleksi dan sukses memproduksi satu sub spesies, satu varian intergenetik-albino dari populasi Polypterus senegalus senegalus dan 3 spesies intragenerik lainnya.

  19. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca2+-ATPase

    International Nuclear Information System (INIS)

    Pestov, Nikolay B.; Dmitriev, Ruslan I.; Kostina, Maria B.; Korneenko, Tatyana V.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.

    2012-01-01

    Highlights: ► Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. ► ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. ► Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. ► Subcellular localization of SPCA2 may depend on tissue type. ► In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2 gene radiated from ATP2C1 (encoding SPCA1) during adaptation of tetrapod ancestors to terrestrial habitats.

  20. Is evolutionary biology becoming too politically correct? A reflection on the scala naturae, phylogenetically basal clades, anatomically plesiomorphic taxa, and 'lower' animals.

    Science.gov (United States)

    Diogo, Rui; Ziermann, Janine M; Linde-Medina, Marta

    2015-05-01

    The notion of scala naturae dates back to thinkers such as Aristotle, who placed plants below animals and ranked the latter along a graded scale of complexity from 'lower' to 'higher' animals, such as humans. In the last decades, evolutionary biologists have tended to move from one extreme (i.e. the idea of scala naturae or the existence of a general evolutionary trend in complexity from 'lower' to "higher" taxa, with Homo sapiens as the end stage) to the other, opposite, extreme (i.e. to avoid using terms such as 'phylogenetically basal' and 'anatomically plesiomorphic' taxa, which are seen as the undesired vestige of old teleological theories). The latter view tries to avoid any possible connotations with the original anthropocentric idea of a scala naturae crowned by man and, in that sense, it can be regarded as a more politically correct view. In the past years and months there has been renewed interest in these topics, which have been discussed in various papers and monographs that tend to subscribe, in general, to the points defended in the more politically correct view. Importantly, most evolutionary and phylogenetic studies of tetrapods and other vertebrates, and therefore most discussions on the scala naturae and related issues have been based on hard tissue and, more recently, on molecular data. Here we provide the first discussion of these topics based on a comparative myological study of all the major vertebrate clades and of myological cladistic and Bayesian phylogenetic analyses of bony fish and tetrapods, including Primates. We specifically (i) contradict the notions of a scala naturae or evolutionary progressive trends leading to more complexity in 'higher' animals and culminating in Homo sapiens, and (ii) stress that the refutation of these old notions does not necessarily mean that one should not keep using the terms 'phylogenetically basal' and particularly 'anatomically plesiomorphic' to refer to groups such as the urodeles within the Tetrapoda

  1. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Dmitriev, Ruslan I.; Kostina, Maria B. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Korneenko, Tatyana V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shakhparonov, Mikhail I. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  2. Early tetrapod relationships revisited.

    Science.gov (United States)

    Ruta, Marcello; Coates, Michael I; Quicke, Donald L J

    2003-05-01

    In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aïstopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scut collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown-group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti; (5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run--as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data; character reweighting; reverse weighting)--indicate a deep split of early tetrapods between lissamphibian- and amniote-related taxa. Colosteids, Crassigyrinus

  3. Programa de Pós-Graduação em Geologia - Dissertações Defendidas 1998 - Mestrado - Instituto de Geociências - Universidade Federal do Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    1998-01-01

    Anuário do Instituto de Geociências - UFRJ Volume 21 / 1998 do Paraná, localizada na região de Pinheiros, pertencentes ao município de Candelária, Rio Grande do Sul. Os coprólitos estudados estão relacionados à paleoherpetofauna da cenozona Therapsida e permitem inferir sobre paleoecologia e o paleoclima da região durante este momento do Triássico. As 22 amostras são compostas por um conjunto de 50 massas aglomeradas ou isoladas, classificadas em tipos ovóides e cilíndricos. Os coprólitos foram coletados em quatro afloramentos, que pertencem ao conjunto de ravinas denominadas regionalmente de sangas. Nestes afloramentos os restos de répteis mamaliformes (dicinodontes e cinodontes e arcosssauros (tecodontes encontram-se fartamente distribuídos em vários níveis do perfil, sem qualquer zona preferencial de concentração. As amostras foram classificadas pelas formas e descritas pelos aspectos externos (cor, polaridade e textura da superfície e internos, através da utilização de diferentes análises de raios-x (emissão, difratometria e fluorescência e corte de lâmina. A avaliação dos aspectos quantitativos das amostras foram realizados através da aplicação estatística do cálculo da freqüência de classes e do coeficiente de variação, necessários na caracterização e investigação das afinidades dos grupamentos. Entre os aspectos apresentados em superfície, os resultados de agretamento e de coprofagia, informam sobre condições paleobiológicas e paleoclimáticas no momento em que os coprólitos foram produzidos. Os coprólitos de forma ovóide caracterizados pela maior variação do tamanho, gretas e estruturas vegetais, confirmam aspectos de afinidade com excrementos de dieta herbívora. As formas cilíndricas de peso e tamanho mais uniformes são caracterizadas pelo alto grau de compactação interna, relacionando estes excrementos como provenientes de dieta carnívora ou omnívora. A composição mineralógica apresentada na an