Anomalous anisotropic magnetoresistance effects in graphene
Directory of Open Access Journals (Sweden)
Yiwei Liu
2014-09-01
Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.
Anomalous Positive Refraction in an Anisotropic Left-Handed Medium
Institute of Scientific and Technical Information of China (English)
HU Wei; LUO Hai-Lu; CAO Jing-Xiao
2005-01-01
@@ We investigate the refraction phenomena of extraordinary light at a planar interface associated with a uniaxial left-handed medium. It is found that the anomalous positive refraction can occur at the interface from anisotropic right-handed medium to a uniaxially anisotropic left-handed medium. When the optical axis of a uniaxial left-handed medium is not normal or parallel to the interface, the refraction of the Poynting vector for the extraordinary waves can be either positive or negative depending on the incident angles, while the refraction of the wave vector is always negative. The physical essential of the anomalous positive refraction results from the anisotropy of uniaxial crystals.
Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator
Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin
2015-07-01
When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2-xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer-Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization.
Anomalous breaking of anisotropic scaling symmetry in the quantum lifshitz model
Baggio, M.; de Boer, J.; Holsheimer, K.
2012-01-01
In this note we investigate the anomalous breaking of anisotropic scaling symmetry (t, x) → (λ z t, λ x) in a non-relativistic field theory with dynamical exponent z = 2. On general grounds, one can show that there exist two possible "central charges" which characterize the breaking of scale invaria
Anomalous Nernst and anisotropic magnetoresistive heating in a lateral spin valve
Slachter, Abraham; Bakker, Frank Lennart; van Wees, Bart Jan
2011-01-01
We measured the anomalous Nernst effect and anisotropic magnetoresistive heating in a lateral multiterminal permalloy/copper spin valve using all-electrical lock-in measurements. To interpret the results, a threedimensional thermoelectric finite-element model is developed. Using this model, we extra
Universal anomalous dimensions at large spin and large twist
Kaviraj, Apratim; Sinha, Aninda
2015-01-01
In this paper we consider anomalous dimensions of double trace operators at large spin ($\\ell$) and large twist ($\\tau$) in CFTs in arbitrary dimensions ($d\\geq 3$). Using analytic conformal bootstrap methods, we show that the anomalous dimensions are universal in the limit $\\ell\\gg \\tau\\gg 1$. In the course of the derivation, we extract an approximate closed form expression for the conformal blocks arising in the four point function of identical scalars in any dimension. We compare our results with two different calculations in holography and find perfect agreement.
Computation of Large Anisotropic Seismic Heterogeneities (CLASH)
Beucler, Éric; Montagner, Jean-Paul
2006-05-01
A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.
Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media
Toner, John; Löwen, Hartmut; Wensink, Henricus H.
2016-06-01
Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.
Zhang, Yang; Sun, Yan; Yang, Hao; Železný, Jakub; Parkin, Stuart P. P.; Felser, Claudia; Yan, Binghai
2017-02-01
We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that we show are essential to determine the AHC and SHC, are compared for these different compounds. We point out that Mn3Ga shows a large SHC of about 600 (ℏ /e ) (Ωcm) -1 . Our work provides insights into the realization of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.
Energy Technology Data Exchange (ETDEWEB)
Brandl, F.; Grundler, D., E-mail: grundler@ph.tum.de [Lehrstuhl für Physik funktionaler Schichtsysteme, Physik-Department E10, Technische Universität München, James-Franck-Str. 1, D-85748 Garching b. München (Germany)
2014-04-28
In spin caloritronics, ferromagnetic samples subject to relatively large in-plane temperature gradients ∇T have turned out to be extremely interesting. We report on a preparation technique that allows us to create freely suspended permalloy/Pt hybrid structures where a scanning laser induces ∇T on the order of a few K/μm. We observe both the anisotropic magnetoresistance at room temperature and the magnetic field dependent anomalous Nernst effect under laser heating. The technique is promising for the realization of device concepts considered in spin caloritronics based on suspended ferromagnetic nanostructures with electrical contacts.
Lifting a large object from an anisotropic porous bed
Karmakar, Timir; Raja Sekhar, G. P.
2016-09-01
An analytical study of two dimensional problem of lifting an object from the top of a fully saturated rigid porous bed is discussed. It is assumed that the porous bed is anisotropic in nature. The flow within the gap region between the object and the porous bed is assumed to be governed by Stokes equation while the flow within the porous bed is governed by Brinkman equation. The breakout phenomenon for different kinds of soil is reported. The effect of mechanical properties like anisotropic permeability, grain diameter size, and porosity on streamlines, velocity, and force is analyzed. Relevant comparison with C. C. Mei, R. W. Yeung, and K. F. Liu ["Lifting a large object from a porous bed," J. Fluid. Mech. 152, 203-215 (1985)] and Y. Chang, L. H. Huang and F. P. Y. Yang ["Two-dimensional lift-up problem for a rigid porous bed," Phys. Fluids, 27, 053101 (2015)] is done.
Is there evidence for anomalous dipole anisotropy in the large-scale structure?
Bengaly,, C A P; Alcaniz, J S; Xavier, H S; Novaes, C P
2016-01-01
We probe the anisotropy of the large-scale structure (LSS) with the WISE-2MASS catalogue. This analysis is performed by a directional comparison of the galaxy number counts through the entire celestial sphere once systematic effects, such as star-galaxy separation and foregrounds contamination, are properly taken into account. We find a maximal hemispherical asymmetry whose dipolar component is $A = 0.0507 \\pm 0.0014$ toward the $(l,b) = (323^{\\circ},-5^{\\circ})$ direction. This result is consistent with previous estimations of our proper motion in low and intermediate redshifts, as those carried out with Type Ia Supernovae and similar LSS catalogues.Furthermore, this dipole amplitude obtained is statistically consistent with mock catalogues simulated according to the $\\Lambda$CDM matter density expected fluctuations, in addition to observational biases such as the incomplete celestial coverage, anisotropic sky exposure. Our results suggest, therefore, that there is no strong evidence for anomalous anisotropy...
Anisotropic flow and flow fluctuations at the large hadron collider
Zhou, You
One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.
Institute of Scientific and Technical Information of China (English)
SHU Wei-Xing; LUO Hai-Lu; LI Fei; REN Zhong-Zhou
2006-01-01
@@ We investigate the propagation of electromagnetic waves at the interface between an isotropic material and the anisotropic medium with a unique dispersion relation. We show that the refraction behaviour of E-polarized waves is opposite to that of H-polarized waves, though the dispersion relations for E- and H-polarized waves are the same. It is found that waves exhibit different propagation properties in anisotropic media with different sign combinations of the permittivity and permeability tensors. Some interesting properties of propagation are also found in the special anisotropic media, leading to potential applications.
Yasuda, Shinya; Todo, Synge
2013-12-01
We present a method that optimizes the aspect ratio of a spatially anisotropic quantum lattice model during the quantum Monte Carlo simulation, and realizes the virtually isotropic lattice automatically. The anisotropy is removed by using the Robbins-Monro algorithm based on the correlation length in each direction. The method allows for comparing directly the value of the critical amplitude among different anisotropic models, and identifying the universality more precisely. We apply our method to the staggered dimer antiferromagnetic Heisenberg model and demonstrate that the apparent nonuniversal behavior is attributed mainly to the strong size correction of the effective aspect ratio due to the existence of the cubic interaction.
Anisotropic Anomalous Diffusion assessed in the human brain by scalar invariant indices
De Santis, S; Bozzali, M; Maraviglia, B; Macaluso, E; Capuani, S
2010-01-01
A new method to investigate anomalous diffusion in human brain is proposed. The method has been inspired by both the stretched-exponential model proposed by Hall and Barrick (HB) and DTI. Quantities extracted using HB method were able to discriminate different cerebral tissues on the basis of their complexity, expressed by the stretching exponent gamma and of the anisotropy of gamma across different directions. Nevertheless, these quantities were not defined as scalar invariants like mean diffusivity and fractional anisotropy, which are eigenvalues of the diffusion tensor. We hypotesize instead that the signal may be espressed as a simple stretched-exponential only along the principal axes of diffusion, while in a generic direction the signal is modeled as a combination of three different stretched-exponentials. In this way, we derived indices to quantify both the tissue anomalous diffusion and its anisotropy, independently of the reference frame of the experiment. We tested and compare our new method with DT...
Anisotropic Flow Measurements in ALICE at the Large Hadron Collider
Bilandzic, A.
2012-01-01
Anisotropic ﬂow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy
Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang
2015-02-18
Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ'-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ'-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ'-Fe4N layer and interfacial spin scattering.
Sürgers, Christoph; Wolf, Thomas; Adelmann, Peter; Kittler, Wolfram; Fischer, Gerda; Löhneysen, Hilbert v.
2017-01-01
The anomalous Hall effect (AHE), which in long-range ordered ferromagnets appears as a voltage transverse to the current and usually is proportional to the magnetization, often is believed to be of negligible size in antiferromagnets due to their low uniform magnetization. However, recent experiments and theory have demonstrated that certain antiferromagnets with a non-collinear arrangement of magnetic moments exhibit a sizeable spontaneous AHE at zero field due to a non-vanishing Berry curvature arising from the quantum mechanical phase of the electron’s wave functions. Here we show that antiferromagnetic Mn5Si3 single crystals exibit a large AHE which is strongly anisotropic and shows multiple transitions with sign changes at different magnetic fields due to field-induced rearrangements of the magnetic structure despite only tiny variations of the total magnetization. The presence of multiple non-collinear magnetic phases offers the unique possiblity to explore the details of the AHE and the sensitivity of the Hall effect on the details of the magnetic texture. PMID:28218287
Sürgers, Christoph; Wolf, Thomas; Adelmann, Peter; Kittler, Wolfram; Fischer, Gerda; Löhneysen, Hilbert V
2017-02-20
The anomalous Hall effect (AHE), which in long-range ordered ferromagnets appears as a voltage transverse to the current and usually is proportional to the magnetization, often is believed to be of negligible size in antiferromagnets due to their low uniform magnetization. However, recent experiments and theory have demonstrated that certain antiferromagnets with a non-collinear arrangement of magnetic moments exhibit a sizeable spontaneous AHE at zero field due to a non-vanishing Berry curvature arising from the quantum mechanical phase of the electron's wave functions. Here we show that antiferromagnetic Mn5Si3 single crystals exibit a large AHE which is strongly anisotropic and shows multiple transitions with sign changes at different magnetic fields due to field-induced rearrangements of the magnetic structure despite only tiny variations of the total magnetization. The presence of multiple non-collinear magnetic phases offers the unique possiblity to explore the details of the AHE and the sensitivity of the Hall effect on the details of the magnetic texture.
Is there evidence for anomalous dipole anisotropy in the large-scale structure?
Bengaly, C. A. P., Jr.; Bernui, A.; Alcaniz, J. S.; Xavier, H. S.; Novaes, C. P.
2017-01-01
We probe the anisotropy of the large-scale structure (LSS) with the WISE-2MASS catalogue. This analysis is performed by a directional comparison of the galaxy number counts through the entire celestial sphere once systematic effects, such as star-galaxy separation and foregrounds contamination, are properly taken into account. We find a maximal hemispherical asymmetry whose dipolar component is A = 0.0507 ± 0.0014 towards the (l, b) = (323°, -5°) direction, whose result is consistent with previous estimations of our proper motion in low and intermediate redshifts, as those carried out with Type Ia Supernovae and similar LSS catalogues. Furthermore, this dipole amplitude is statistically consistent (p-value = 0.061) with mock catalogues simulated according to the expected Λ cold dark matter density fluctuations, in addition to observational biases such as the incomplete celestial coverage and anisotropic sky exposure. Our results suggest, therefore, that there is no strong evidence for anomalous anisotropy in the LSS, given the limitations and systematics of current data, in the concordance model scenario.
Is there evidence for anomalous dipole anisotropy in the large-scale structure?
Bengaly, C. A. P.; Bernui, A.; Alcaniz, J. S.; Xavier, H. S.; Novaes, C. P.
2016-09-01
We probe the anisotropy of the large-scale structure (LSS) with the WISE-2MASS catalogue. This analysis is performed by a directional comparison of the galaxy number counts through the entire celestial sphere once systematic effects, such as star-galaxy separation and foregrounds contamination, are properly taken into account. We find a maximal hemispherical asymmetry whose dipolar component is A = 0.0507 ± 0.0014 toward the (l, b) = (323°, -5°) direction, whose result is consistent with previous estimations of our proper motion in low and intermediate redshifts, as those carried out with Type Ia Supernovae and similar LSS catalogues. Furthermore, this dipole amplitude is statistically consistent (p-value = 0.061) with mock catalogues simulated according to the expected ΛCDM matter density fluctuations, in addition to observational biases such as the incomplete celestial coverage and anisotropic sky exposure. Our results suggest, therefore, that there is no strong evidence for anomalous anisotropy in the LSS, given the limitations and systematics of current data, in the concordance model scenario.
Anomalous dimensions of higher spin currents in large N CFTs
Hikida, Yasuaki
2016-01-01
We examine anomalous dimensions of higher spin currents in the critical O(N) scalar model and the Gross-Neveu model in arbitrary d dimensions. These two models are proposed to be dual to the type A and type B Vasiliev theories, respectively. We reproduce the known results on the anomalous dimensions to the leading order in 1/N by using conformal perturbation theory. This work can be regarded as an extension of previous work on the critical O(N) scalars in 3 dimensions, where it was shown that the bulk computation for the masses of higher spin fields on AdS_4 can be mapped to the boundary one in conformal perturbation theory. The anomalous dimensions of the both theories agree with each other up to an overall factor depending only on d, and the coincidence is explained for d=3 by making use of N=2 supersymmetry.
Thije, ten R.H.W.; Akkerman, R.; Huetink, J.
2007-01-01
Large deformation finite element (FE) simulations of anisotropic material often show slow convergence or break down with increasing anisotropy and deformation. Large deformations are generally approximated by multiple small linearised steps. This leads to poor performance and contradicting formulati
Anisotropic viscoelastic models in large deformation for architectured membranes
Rebouah, Marie; Chagnon, Gregory; Heuillet, Patrick
2016-08-01
Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.
Large anomalous Hall effect in a half-Heusler antiferromagnet
Suzuki, T.; Chisnell, R.; Devarakonda, A.; Liu, Y.-T.; Feng, W.; Xiao, D.; Lynn, J. W.; Checkelsky, J. G.
2016-12-01
The quantum mechanical (Berry) phase of the electronic wavefunction plays a critical role in the anomalous and spin Hall effects, including their quantized limits. While progress has been made in understanding these effects in ferromagnets, less is known in antiferromagnetic systems. Here we present a study of antiferromagnet GdPtBi, whose electronic structure is similar to that of the topologically non-trivial HgTe (refs ,,), and where the Gd ions offer the possibility to tune the Berry phase via control of the spin texture. We show that this system supports an anomalous Hall angle ΘAH > 0.1, comparable to the largest observed in bulk ferromagnets and significantly larger than in other antiferromagnets. Neutron scattering measurements and electronic structure calculations suggest that this effect originates from avoided crossing or Weyl points that develop near the Fermi level due to a breaking of combined time-reversal and lattice symmetries. Berry phase effects associated with such symmetry breaking have recently been explored in kagome networks; our results extend this to half-Heusler systems with non-trivial band topology. The magnetic textures indicated here may also provide pathways towards realizing the topological insulating and semimetallic states predicted in this material class.
Large Radio Telescopes for Anomalous Microwave Emission Observations
Battistelli, E S; de Bernardis, P; Masi, S
2013-01-01
We discuss in this paper the problem of the Anomalous Microwave Emission (AME) in the light of ongoing or future observations to be performed with the largest fully steerable radio telescope in the world. High angular resolution observations of the AME will enable astronomers to drastically improve the knowledge of the AME mechanisms as well as the interplay between the different constituents of the interstellar medium in our galaxy. Extragalactic observations of the AME have started as well, and high resolution is even more important in this kind of observations. When cross-correlating with IR-dust emission, high angular resolution is also of fundamental importance in order to obtain unbiased results. The choice of the observational frequency is also of key importance in continuum observation. We calculate a merit function that accounts for the signal-to-noise ratio (SNR) in AME observation given the current state-of-the-art knowledge and technology. We also include in our merit functions the frequency depen...
Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature.
Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya
2015-11-12
In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics--for example, to develop a memory device that produces almost no perturbing stray fields.
The large-scale anomalous microwave emission revisited by WMAP
Lagache, G
2003-01-01
We present a new study of the high latitude galactic contributions to the millimeter sky, based on an analysis of the WMAP data combined with several templates of dust emission (DIRBE/COBE and FIRAS/COBE) and gas tracers (HI and Halpha). To study the IR to millimeter properties of the diffuse sky at high galactic latitude, we concentrate on the emission correlated with the HI gas. We compute the emission spectrum of the dust/free-free/synchrotron components associated with HI gas from low to large column densities. A significant residual WMAP emission over the free-free, synchrotron and the dust contribution is found from 3.2 to 9.1 mm. We show that this residual WMAP emission (normalised to 10$^{20}$ atoms/cm$^2$) (1) exhibits a constant spectrum from 3.2 to 9.1 mm and (2) significantly decreases in amplitude when N$_{HI}$ increases, contrary to the HI-normalised far-infrared emission which stays rather constant. It is thus very likely that the residual WMAP emission is not associated with the Large Grain du...
Antonov, N V; Gulitskiy, N M
2012-06-01
The field theoretic renormalization group and operator product expansion are applied to the Kazantsev-Kraichnan kinematic model for the magnetohydrodynamic turbulence. The anomalous scaling emerges as a consequence of the existence of certain composite fields ("operators") with negative dimensions. The anomalous exponents for the correlation functions of arbitrary order are calculated in the two-loop approximation (second order of the renormalization-group expansion), including the anisotropic sectors. The anomalous scaling and the hierarchy of anisotropic contributions become stronger due to those second-order contributions.
Generation of large-scale winds in horizontally anisotropic convection
von Hardenberg, J; Provenzale, A; Spiegel, E A
2015-01-01
We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.
Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"
Energy Technology Data Exchange (ETDEWEB)
Zikanov, Oleg
2008-06-23
To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.
Fingerprints of Anomalous Primordial Universe on the Abundance of Large Scale Structures
Baghram, Shant; Firouzjahi, Hassan; Namjoo, Mohammad Hossein
2014-01-01
We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures and, using the quasars data, we find the upper bound $n_A M_c)$ the enhancement in variance induced from anomalo...
Li, Zirun
2015-02-02
Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.
Tanto, B.; Doiron, C. F.; Lu, T.-M.
2011-01-01
On-lattice particle simulation is one of the most common types of Monte Carlo simulations used in studying the dynamics of film growth. We report the observation of a large artificial anisotropic growth rate variation owing to the fixed arrangement of particles in an on-lattice simulation of oblique angle deposition. This unexpectedly large anisotropy is not reported in previous literatures and substantially affects the simulation outcomes such as column angle and porosity, two of the most essential quantities in obliquely deposited nanostructures. The result of our finding is of interest to all on-lattice simulations in obliquely deposited films or nanostructures.
HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays
Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.
1993-01-01
The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.
Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P
2016-04-01
It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.
Kulkarni, Abhishek P; Munechika, Keiko; Noone, Kevin M; Smith, Jessica M; Ginger, David S
2009-07-21
We describe the phase transfer of large, anisotropic, silver nanoparticles (approximately 50-100 nm edge length) from water to polar organics such as alcohols, acetone, dimethylformamide and to nonpolar hexanes. We transferred the silver nanoparticles to the polar organic solvents via their precipitation in water by centrifugation and redispersion in organics. Using scanning electron microscopy (SEM) imaging and UV-vis extinction spectra, we confirmed that there was little to no shape change in the nanoparticles upon transfer to the polar solvents. The nanoparticles were stable for months in the polar organics. We also transferred the nanoparticles to hexanes with up to 75% phase transfer efficiency by using sodium oleate as a surfactant. We found the extinction spectra and transmission electron microscopy (TEM) images of the nanoparticles were similar in water and hexanes, indicating that exchange into hexanes resulted in an only slight change in shape. The nanoparticles were stable for at least 10 days in hexanes under appropriate conditions. The phase transfer efficiency decreased with an increase in the size of the nanoparticles. These results open the possibility for the conjugation of large, anisotropic plasmon resonant silver nanoparticles with organic dyes or their blends with conjugated polyelectrolytes for fundamental optical studies and applications.
Directory of Open Access Journals (Sweden)
M. Kawamura
2013-03-01
Full Text Available For revealing the preparatory processes of large inland earthquakes, we systematically applied the Pattern Informatics method (PI method to the earthquake data of Japan. We focused on 12 large earthquakes with magnitudes larger than M = 6.4 (an official magnitude of the Japan Meteorological Agency that occurred at depths shallower than 30 km between 2000 and 2010. We examined the relation between the spatiotemporal locations of such large shallow earthquakes and those of PI hotspots, which correspond to the grid cells of anomalous seismic activities in a designated time span. Based on a statistical test using Molchan's error diagram, we inquired into the existence of precursory anomalous seismic activities of the large earthquakes and, if any, their characteristic time span. The test indicated that the Japanese M ≧ 6.4 inland earthquakes tend to be preceded by anomalous seismic activities of 8-to-10-yr time scales.
Levitas, Valery I.; Warren, James A.
2016-06-01
A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics
Hwang, Kyusung; Kim, Yong Baek
2016-07-15
We theoretically investigate emergent quantum phases in the thin film geometries of the pyrochore iridates, where a number of exotic quantum ground states are proposed to occur in bulk materials as a result of the interplay between electron correlation and strong spin-orbit coupling. The fate of these bulk phases as well as novel quantum states that may arise only in the thin film platforms, are studied via a theoretical model that allows layer-dependent magnetic structures. It is found that the magnetic order develop in inhomogeneous fashions in the thin film geometries. This leads to a variety of magnetic metal phases with modulated magnetic ordering patterns across different layers. Both the bulk and boundary electronic states in these phases conspire to promote unusual electronic properties. In particular, such phases are akin to the Weyl semimetal phase in the bulk system and they would exhibit an unusually large anomalous Hall effect.
Sanya, Arthur S O; Akowanou, Christian; Sanya, Emile A; Degan, Gerard
2014-01-01
The problems of steady film condensation on a vertical surface embedded in a thin porous medium with anisotropic permeability filled with pure saturated vapour are studied analytically by using the Brinkman-Darcy flow model. The principal axes of anisotropic permeability are oriented in a direction that non-coincident with the gravity force. On the basis of the flow permeability tensor due to the anisotropic properties and the Brinkman-Darcy flow model adopted by considering negligible macros...
Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2015-01-27
Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field.
Baidya, Santu; Waghmare, Umesh V.; Paramekanti, Arun; Saha-Dasgupta, Tanusri
2016-10-01
Towards the goal of realizing topological phases in thin films of correlated oxide and heterostructures, we propose here a quantum anomalous Hall insulator (QAHI) in ultrathin films of double perovskites based on mixed 3 d -5 d or 3 d -4 d transition-metal ions, grown along the [111] direction. Considering the specific case of ultrathin Ba2FeReO6 , we present a theoretical analysis of an effective Hamiltonian derived from first principles. We establish that a strong spin-orbit coupling at the Re site, t2 g symmetry of the low-energy d bands, polarity of its [111] orientation of perovskite structure, and mixed 3 d -5 d chemistry results in room temperature magnetism with a robust QAHI state of Chern number C =1 and a large band gap. We uncover and highlight a nonrelativistic orbital Rashba-type effect in addition to the spin-orbit coupling, that governs this QAHI state. With a band gap of ˜100 meV in electronic structure and magnetic transition temperature Tc˜300 K estimated by Monte Carlo simulations, our finding of the QAHI state in ultrathin Ba2FeReO6 is expected to stimulate experimental verification along with possible practical applications of its dissipationless edge currents.
Disordered strictly jammed binary sphere packings attain an anomalously large range of densities.
Hopkins, Adam B; Stillinger, Frank H; Torquato, Salvatore
2013-08-01
Previous attempts to simulate disordered binary sphere packings have been limited in producing mechanically stable, isostatic packings across a broad spectrum of packing fractions. Here we report that disordered strictly jammed binary packings (packings that remain mechanically stable under general shear deformations and compressions) can be produced with an anomalously large range of average packing fractions 0.634≤φ≤0.829 for small to large sphere radius ratios α restricted to α≥0.100. Surprisingly, this range of average packing fractions is obtained for packings containing a subset of spheres (called the backbone) that are exactly strictly jammed, exactly isostatic, and also generated from random initial conditions. Additionally, the average packing fractions of these packings at certain α and small sphere relative number concentrations x approach those of the corresponding densest known ordered packings. These findings suggest for entropic reasons that these high-density disordered packings should be good glass formers and that they may be easy to prepare experimentally. We also identify an unusual feature of the packing fraction of jammed backbones (packings with rattlers excluded). The backbone packing fraction is about 0.624 over the majority of the α-x plane, even when large numbers of small spheres are present in the backbone. Over the (relatively small) area of the α-x plane where the backbone is not roughly constant, we find that backbone packing fractions range from about 0.606 to 0.829, with the volume of rattler spheres comprising between 1.6% and 26.9% of total sphere volume. To generate isostatic strictly jammed packings, we use an implementation of the Torquato-Jiao sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)], which is an efficient producer of inherent structures (mechanically stable configurations at the local maxima in the density landscape). The identification and explicit construction of binary packings
Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals
van der Wurff, E. C. I.; Stoof, H. T. C.
2016-10-01
We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the relativisticlike quasiparticles in the semimetal. In the case of nonzero doping, the anomalous magnetic moment is finite at long wavelengths and typically orders of magnitude larger than Schwinger's result. We also find interesting effects of one of the three new Hamiltonian terms on the topological surface states at the interface between vacuum and a Weyl semimetal. We conclude that observation of these effects should be within experimental reach.
Sanya, Arthur S O; Akowanou, Christian; Sanya, Emile A; Degan, Gerard
2014-01-01
The problems of steady film condensation on a vertical surface embedded in a thin porous medium with anisotropic permeability filled with pure saturated vapour are studied analytically by using the Brinkman-Darcy flow model. The principal axes of anisotropic permeability are oriented in a direction that non-coincident with the gravity force. On the basis of the flow permeability tensor due to the anisotropic properties and the Brinkman-Darcy flow model adopted by considering negligible macroscopic and microscopic inertial terms, boundary-layer approximations in the porous liquid film momentum equation is solved analytically. Scale analysis is applied to predict the order-of-magnitudes involved in the boundary layer regime. The first novel contribution in the mathematics consists in the use of the anisotropic permeability tensor inside the expression of the mathematical formulation of the film condensation problem along a vertical surface embedded in a porous medium. The present analytical study reveals that the anisotropic permeability properties have a strong influence on the liquid film thickness, condensate mass flow rate and surface heat transfer rate. The comparison between thin and thick porous media is also presented.
Gyasi-Agyei, Yeboah
2016-04-01
It has been established that daily rainfall gauged network density is not adequate for the level of hydrological modelling required of large catchments involving pollutant and sediment transport, such as the catchments draining the coastal regions of Queensland, Australia, to the sensitive Great Barrier Reef. This paper seeks to establish a link between the spatial structure of radar and gauge rainfall for improved interpolation of the limited gauged data over a grid or functional units of catchments in regions with or without radar records. The study area is within Mt. Stapylton weather radar station range, a 128 km square region for calibration and validation, and the Brisbane river catchment for validation only. Two time periods (2000-01-01 to 2008-12-31 and 2009-01-01 to 2015-06-30) were considered, the later period for calibration when radar records were available and both time periods for validation without regard to radar information. Anisotropic correlograms of both the gauged and radar data were developed and used to establish the linkage required for areas without radar records. The maximum daily temperature significantly influenced the distributional parameters of the linkage. While the gauged, radar and sampled correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of Ordinary Kriging, the gauged parameters overestimated the standard deviation (SD) which reflects uncertainty by over 91% of cases compared with the radar or the sampled parameter sets. However, the distribution of the SD generated by the radar and the sampled correlogram parameters could not be distinguished, with a Kolmogorov-Smirnov test p-value of 0.52. For the validation case with the catchment, the percentage overestimation of SD by the gauged parameter sets decreased to 81.2% and 87.1% for the earlier and later time periods, respectively. It is observed that the extreme wet days' parameters and statistics were fairly widely distributed
Aggarwal, Sanjeev; Delius, Ralph E; Pettersen, Michael D
2013-01-01
We present an infant who had an anomalous left coronary artery arising from the pulmonary artery (ALCAPA) and a large patent ductus arteriosus (PDA), who was diagnosed before a potentially catastrophic closure of PDA. In the presence of normal left ventricular function and the absence of coronary artery collaterals, it is difficult to diagnose ALCAPA. A disproportionate degree of left ventricular dilation and severity of mitral valve regurgitation relative to the degree of PDA shunt, and echogenic papillary muscles on an echocardiogram should raise a suspicion of coronary artery anomalies. The infant underwent surgical ligation of PDA with translocation of coronary arteries and had an uneventful recovery.
Morlino, G; Vietri, M
2007-01-01
A mathematical approach to investigate particle acceleration at shock waves moving at arbitrary speed in a medium with arbitrary scattering properties was first discussed in (Vietri 2003) and (Blasi & Vietri 2005}. We use this method and somewhat extend it in order to include the effect of a large scale magnetic field in the upstream plasma, with arbitrary orientation with respect to the direction of motion of the shock. We also use this approach to investigate the effects of anisotropic scattering on spectra and anisotropies of the distribution function of the accelerated particles.
Large Positive and Negative Lateral Shifts from an Anisotropic Metamaterial Slab Backed by a Metal
Institute of Scientific and Technical Information of China (English)
CHENG Min; CHEN Rong
2009-01-01
The lateral shift of a light beam at the surface of an anisotropic metamaterial (AMM) slab backed by a metal is investigated. Analytical expressions of the lateral shifts are derived using the stationary-phase method, in the case that total reflection does and does not occur at the first interface. The sign of the lateral shift in two situations is discussed, and the necessary conditions for the lateral shift to be positive or negative are given. It is shown that the thickness and physical parameters of the AMM slab and the incident angle of the light beam strongly affect the properties of the lateral shift. Numerical results validate these conclusions. The lossy effect of the metamaterial on the lateral shift is also investigated.
Anomalous Hall Effect in a Kagome Ferromagnet
Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team
The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.
Energy Technology Data Exchange (ETDEWEB)
Shen, Xi; Shigematsu, Kei [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Fukumura, Tomoteru [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)
2014-08-18
We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.
Institute of Scientific and Technical Information of China (English)
庄飞; 吴良; 等
2002-01-01
The plane-wave expansion method is used to calculate the band structure of a two-dimensional photonic crystal formed by a hexagonal structure of anisotropic cylinders.Two cylindrical inclusions in the unit cell have two different radii,R1 and R2(R1
Anomalous absorption of laser light on ion acoustic fluctuations
Rozmus, Wojciech; Bychenkov, Valery Yu.
2016-10-01
Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.
Anomalously large capacitance of an ionic liquid described by the restricted primitive model
Loth, M S; Shklovskii, B I
2010-01-01
We use Monte Carlo simulations to examine the simplest model of an ionic liquid, called the restricted primitive model, at a metal surface. We find that at moderately low temperatures the capacitance of the metal/ionic liquid interface is so large that the effective thickness of the electrostatic double-layer is smaller than the ion radius. We suggest a semi-quantitative theory to describe these results.
Grozin, Andrey
2016-01-01
I discuss 3 related quantities: the cusp anomalous dimension, the HQET heavy-quark field anomalous dimension, and the quark-antiquark potential. Leading large $n_f$ terms can be calculated to all orders in $\\alpha_s$. Next to leading terms with the abelian color structure $C_F^2$ also can be found to all orders (but not non-abelian $C_F C_A$ terms). This talk is based on Appendices C and D in [arXiv:1510.07803].
Anomalously Large Chiral Sensitivity in the Dissociative Electron Attachment of 10-Iodocamphor
Dreiling, J. M.; Lewis, F. W.; Mills, J. D.; Gay, T. J.
2016-03-01
We have studied dissociative electron attachment (DEA) between low energy (≤0.6 eV ) longitudinally polarized electrons and gas-phase chiral targets of 3-bromocamphor (C10 H15 BrO ), 3-iodocamphor (C10 H15 IO ), and 10-iodocamphor. The DEA rate depends on the sign of the incident electron helicity for a given target handedness, and it varies with both the atomic number (Z ) and location of the heaviest atom in the molecule. While simple dynamic mechanisms can account for the asymmetry dependence on Z , they fail to explain the large asymmetry variation with the heavy atom location.
Identifying anomalously early spring onsets in the CESM large ensemble project
Labe, Zachary; Ault, Toby; Zurita-Milla, Raul
2016-08-01
Seasonal transitions from winter to spring impact a wide variety of ecological and physical systems. While the effects of early springs across North America are widely documented, changes in their frequency and likelihood under the combined influences of climate change and natural variability are poorly understood. Extremely early springs, such as March 2012, can lead to severe economical losses and agricultural damage when these are followed by hard freeze events. Here we use the new Community Earth System Model Large Ensemble project and Extended Spring Indices to simulate historical and future spring onsets across the United States and in the particular the Great Lakes region. We found a marked increase in the frequency of March 2012-like springs by midcentury in addition to an overall trend towards earlier spring onsets, which nearly doubles that of observational records. However, changes in the date of last freeze do not occur at the same rate, therefore, causing a potential increase in the threat of plant tissue damage. Although large-scale climate modes, such as the Pacific Decadal Oscillation, have previously dominated decadal to multidecadal spring onset trends, our results indicate a decreased role in natural climate variability and hence a greater forced response by the end of the century for modulating trends. Without a major reduction in greenhouse gas emissions, our study suggests that years like 2012 in the US could become normal by mid-century.
Nadykto, Alexey B; Yu, Fangqun
2008-08-07
Sulfuric acid is a primary atmospheric nucleation precursor, with the ability to form stable aqueous hydrogen-bonded clusters/complexes. The electrical dipole moment of such clusters/complexes is important for ion-induced nucleation, largely controlled by dipole-charge interaction of airborne ions with vapor monomers and pre-existing clusters. Although experiments typically trace a single lowest energy conformer at low temperatures, the present study shows that the immediate vicinity (dipole moments. The difference in the dipole moment of mono-, di-, and trihydrates of the sulfuric acid exceeds 1.3-1.5 Debyes ( approximately 50-60%), 1.4-2.6 Debyes ( approximately 50-90%), and 3.8-4.2 Debyes ( approximately 370-550%), respectively. Being driven by the temperature dependence of the Boltzmann distribution, the difference between the Boltzmann-Gibbs average dipole moment and the dipole moment of the most stable isomer increases with the ambient temperature, leading to large variations in the dipole-ion interaction strength, which may have important implications for the ion-mediated production of ultrafine aerosol particles associated with various climatic and health impacts.
Large anisotropic normal-state magnetoresistance in clean MgB2 thin films.
Li, Qi; Liu, B T; Hu, Y F; Chen, J; Gao, H; Shan, L; Wen, H H; Pogrebnyakov, A V; Redwing, J M; Xi, X X
2006-04-28
We report a large normal-state magnetoresistance with temperature-dependent anisotropy in very clean epitaxial MgB2 thin films (residual resistivity much smaller than 1 microOmega cm) grown by hybrid physical-chemical vapor deposition. The magnetoresistance shows a complex dependence on the orientation of the applied magnetic field, with a large magnetoresistance (Delta(rho)/(rho)0=136%) observed for the field H perpendicular ab plane. The angular dependence changes dramatically as the temperature is increased, and at high temperatures the magnetoresistance maximum changes to H||ab. We attribute the large magnetoresistance and the evolution of its angular dependence with temperature to the multiple bands with different Fermi surface topology in MgB2 and the relative scattering rates of the sigma and pi bands, which vary with temperature due to stronger electron-phonon coupling for the sigma bands.
Effects of the anomalous Higgs couplings on the Higgs boson production at the Large Hadron Collider
Kanemura, Shinya
2008-01-01
We study the impact of dimension-six operators on single- and double-Higgs production via gluon fusion at the Large Hadron Collider (LHC). If the top-Yukawa coupling is modified by some new physics whose scale is of the TeV scale, its effect changes the cross sections of single-Higgs production $gg\\to H$ and double-Higgs production $gg\\to HH$ through the top-loop diagram. In particular, double-Higgs production can receive significant enhancement from the effective top-Yukawa coupling and the new dimension-five coupling $t{\\bar t}HH$ which are induced by the dimension-six operator. Comparing these results to the forthcoming data at the LHC, one can extract information of the dimension-six operators relevant to the top quark and the Higgs boson.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Orlov, A. A.;
2014-01-01
Optics of hyperbolic metamaterials is revisited in terms of large-wavevector waves, evanescent in isotropic media but propagating in presence of extreme anisotropy. Identifying the physical nature of these waves as Bloch volume plasmon polaritons, we derive their existence conditions and outline ...
Direct numerical simulation of the very large anisotropic scales in a turbulent channel
del Alamo, Juan C
2013-01-01
Over the last decades the knowledge on the small scales of turbulent wall flows has experienced a significant advance, especially in the near-wall region where the highest production of turbulent energy and the maximum turbulence intensity occur. The development of computers has played an important role in this progress, making direct numerical simulations affordable (Kim, Moin & Moser, 1987), and offering wider observational possibilities than most laboratory experiments. The large scales have received less attention, and it has not been until recently that their significance and their real size have been widely recognized, thanks in part to the experiments by Hites (1997) and Kim & Adrian (1999), and to the compilation of experimental and numerical data by Jimenez (1998). The requirements of both a very large box and a high Reynolds number has made direct numerical simulation of the VLAS unapproachable until today. The purpose of this report is to serve as a preliminary description of a newly compil...
Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films.
Cho, N; Li, F; Turedi, B; Sinatra, L; Sarmah, SP; Parida,, B.; Saidaminov, MI; Murali, B; Burlakov, VM; Goriely, Alain; Mohammed, OF; Wu, T; Bakr, OM
2016-01-01
Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microa...
Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films
Cho, Namchul; LI Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F; Wu, Tom; Bakr, Osman M.
2016-01-01
Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microa...
Mathematical model of fiber orientation in anisotropic fascia layers at large displacements.
Chaudhry, Hans; Max, Roman; Antonio, Stecco; Findley, Thomas
2012-04-01
A mathematical model is developed to determine the relationship between stretch and the orientation of fibers in the fascia. The transversely isotropic stress- strain relation for large displacements valid for the human fascia reinforced by the collagen fibers is employed. The relation between the orientation of fibers in the un-deformed and deformed state depending upon the stretch is plotted. It is observed that for greater fiber angle orientation, the fibers are more resistant to reorientation as the fascia is stretched longitudinally. It is also concluded that the reinforced fascia will always be in tension as the stretch is applied. However, we suggest future research to resolve the tension and compression issues in fascia.
Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films
Cho, Namchul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tom; Bakr, Osman M.
2016-11-01
Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm-3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.
Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films
Cho, Nam Chul
2016-11-10
Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.
Limits on anomalous trilinear gauge couplings at the CMS with 7TeV Large Hadron Collider data
Indian Academy of Sciences (India)
Bhawana Gomber
2012-10-01
Diboson production in proton–proton collisions presents an opportunity to study the self-interaction between gauge bosons via anomalous trilinear gauge couplings (aTGC). The values of these couplings are fully fixed in the SM by the gauge structure. Thus, any deviation of the observed strength of the TGC from the SM prediction would indicate new physics. This paper presents the limits on anomalous , and trilinear gauge couplings in proton–proton collisions at the centre of mass energy of 7 TeV with the CMS detector.
Yamaguchi, K.; Namatame, H.; Fujimori, A.; Koide, T.; Shidara, T.; Nakamura, M.; Misu, A.; Fukutani, H.; Yuri, M.; Kasaya, M.; Suzuki, H.; Kasuya, T.
1995-05-01
CeRh3B2 shows an anomalously high Curie temperature (Tc=115 K) for a Ce compound with nonmagnetic constituents, strong anisotropy in the magnetic susceptibility, and ferromagnetic ordering. We have studied its electronic structure by measuring linear dichroism (LD) and magnetic circular dichroism (MCD) in the Ce 4d core-level x-ray-absorption spectra. The result for LD indicates a highly anisotropic distribution of Ce 4f electrons along the hexagonal c axis, while the MCD result shows that the magnetic moment of the Ce 4f electron is dominated by the orbital moment as in the case of a small crystal field. Using the Anderson-impurity model including the axial crystal field, the strong interatomic Ce 4f-Ce 5d hybridization and the Ce 4f-Rh 4d hybridization, we show that there is a range of parameter sets for the axial crystal field and the Ce 4f-valence-band transfer integral which explains the results of the LD and MCD experiments. Using the same parameter set, we have also attempted to explain the Kondo temperature and the unusually high Curie temperature.
Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan
2015-08-01
A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.
Anisotropic hydrodynamics -- basic concepts
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2013-01-01
Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.
Quasiparticle anisotropic hydrodynamics
Alqahtani, Mubarak
2016-01-01
We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.
Anisotropic Power-law Inflation
Kanno, Sugumi; Watanabe, Masa-aki
2010-01-01
We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.
Role of In-segregation in anomalously large band-gap bowings of (In,Al,Ga)N
DEFF Research Database (Denmark)
Gorczyka, I.; Suski, T.; Christensen, Niels Egede;
2011-01-01
Large bowings of the band gap and its pressure coefficient in In-containing nitride semiconductor alloys are observed. Photoluminescence measurements for InxGa1-xN and InxAl1-xN combined with other experimental data show large scatter of the results. A comparison with ab-initio calculations sugge...
CeRh3B2: A ferromagnet with anomalously large Ce 5d spin and orbital magnetic moments
Yaouanc, A.; Dalmas de Réotier, P.; Sanchez, J.-P.; Tschentscher, Th.; Lejay, P.
1998-01-01
We report a high-energy magnetic-Compton-scattering study performed on the ferromagnet CeRh3B2. This technique solely measures the electron spin magnetic moments. In contrast to a number of Ce intermetallics with nonmagnetic elements, the Ce 5d spin moment is found to be large and parallel to the Ce 4f spin moment. Therefore the Kondo effect does not play a key role for CeRh3B2. The inferred large Ce 5d orbital magnetic moment is a signature of the strong spin-orbit interaction for the Ce 5d band.
Melzer, Alexander; Stoeckinger, Dominik
In this bachelor thesis was an analysis with RIVET on truth level with and without unitarization performed to study compliance or disparity in kinematic distributions, interference terms and pure anomalous coupling terms of the total cross sections which result from the conversion of dierent parametrizations of anomalous couplings, used by the simulation programs WHIZARD and VBFNLO.
Non-collinear antiferromagnets and the anomalous Hall effect
Kübler, J.; Felser, C.
2014-12-01
The anomalous Hall effect is investigated theoretically by employing density functional calculations for the non-collinear antiferromagnetic order of the hexagonal compounds Mn3Ge and Mn3Sn using various planar triangular magnetic configurations as well as unexpected non-planar configurations. The former give rise to anomalous Hall conductivities (AHC) that are found to be extremely anisotropic. For the planar cases the AHC is connected with Weyl points in the energy-band structure. If this case were observable in Mn3Ge, a large AHC of about σzx≈ 900 (Ω \\text{cm})-1 should be expected. However, in Mn3Ge it is the non-planar configuration that is energetically favored, in which case it gives rise to an AHC of σxy≈ 100 (Ω \\text{cm})-1 . The non-planar configuration allows a quantitative evaluation of the topological Hall effect that is seen to determine this value of σxy to a large extent. For Mn3Sn it is the planar configurations that are predicted to be observable. In this case the AHC can be as large as σyz≈250 (Ω \\text{cm})-1 .
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Anisotropically structured magnetic aerogel monoliths
Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus
2014-10-01
Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and
Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.
Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G
2015-09-08
This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Inhomogeneous anisotropic cosmology
Energy Technology Data Exchange (ETDEWEB)
Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip
2016-09-21
Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.
Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip
2016-09-01
Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.
Giant Anomalous Hall Effect in the Chiral Antiferromagnet Mn3Ge
Kiyohara, Naoki; Tomita, Takahiro; Nakatsuji, Satoru
2016-06-01
The external field control of antiferromagnetism is a significant subject both for basic science and technological applications. As a useful macroscopic response to detect magnetic states, the anomalous Hall effect (AHE) is known for ferromagnets, but it has never been observed in antiferromagnets until the recent discovery in Mn3Sn . Here we report another example of the AHE in a related antiferromagnet, namely, in the hexagonal chiral antiferromagnet Mn3Ge . Our single-crystal study reveals that Mn3Ge exhibits a giant anomalous Hall conductivity |σx z|˜60 Ω-1 cm-1 at room temperature and approximately 380 Ω-1 cm-1 at 5 K in zero field, reaching nearly half of the value expected for the quantum Hall effect per atomic layer with Chern number of unity. Our detailed analyses on the anisotropic Hall conductivity indicate that in comparison with the in-plane-field components |σx z| and |σz y|, which are very large and nearly comparable in size, we find |σy x| obtained in the field along the c axis to be much smaller. The anomalous Hall effect shows a sign reversal with the rotation of a small magnetic field less than 0.1 T. The soft response of the AHE to magnetic field should be useful for applications, for example, to develop switching and memory devices based on antiferromagnets.
Anisotropic inflation in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Lahiri, Sayantani [ZARM, University of Bremen,Am Falltrum, 28359 Bremen (Germany)
2016-09-19
We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.
Placidi, Luca; Seddik, Hakime; Faria, Sergio H
2009-01-01
A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...
Fast Anisotropic Gauss Filtering
Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.
2002-01-01
We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin
Fast Anisotropic Gauss Filters
Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.
2003-01-01
We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal covolution and f
Rowan-Robinson, Michael; Wardlow, Julie; Farrah, Duncan; Oliver, Seb; Bock, Jamie; Clarke, Charlotte; Clements, David; Ibar, Edo; Gonzalez-Solares, Eduardo; Marchetti, Lucia; Scott, Douglas; Smith, Anthony; Vaccari, Mattia; Valtchanov, Ivan
2014-01-01
We have studied in detail a sample of 967 SPIRE sources with 5-sigma detections at 350 and 500 micron and associations with Spitzer-SWIRE 24 micron galaxies in the HerMES-Lockman survey area, fitting their mid- and far-infrared, and submillimetre, SEDs in an automatic search with a set of six infrared templates. For almost 300 galaxies we have modelled their SEDs individually to ensure the physicality of the fits. We confirm the need for the new cool and cold cirrus templates, and also of the young starburst template, introduced in earlier work. We also identify 109 lensing candidates via their anomalous SEDs and provide a set of colour-redshift constraints which allow lensing candidates to be identified from combined Herschel and Spitzer data. The picture that emerges of the submillimetre galaxy population is complex, comprising ultraluminous and hyperluminous starbursts, lower luminosity galaxies dominated by interstellar dust emission, lensed galaxies and galaxies with surprisingly cold (10-13K) dust. 11 %...
The charmonium dissociation in an "anomalous wind"
Sadofyev, Andrey V
2016-01-01
We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.
Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’
Anisotropic Contrast Optical Microscope
Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-01-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...
Constraining anisotropic models of early Universe with WMAP9 data
Ramazanov, Sabir
2013-01-01
We constrain several models of the early Universe that predict statistical anisotropy of the CMB sky. We make use of WMAP9 maps deconvolved with beam asymmetries. As compared to previous releases of WMAP data, they do not exhibit the anomalously large quadrupole of the statistical anisotropy. This allows to strengthen limits on parameters of models established earlier in literature. In particular, the amplitude of the special quadrupole, whose direction is aligned with ecliptic poles, is now constrained as g_* =0.002 \\pm 0.041 at 95% CL (\\pm 0.020 at 68% CL). The upper limit is obtained on the total number of e-folds in anisotropic inflation with the Maxwellian term non-minimally coupled to the inflaton, namely N_{tot}
DECAY OF ENERGY FOR A DISSIPATIVE ANISOTROPIC ELASTIC SYSTEM
Institute of Scientific and Technical Information of China (English)
Qin Yuming; Liu Xin; Deng Shuxian
2011-01-01
In this article, we study the large-time behavior of energy for a N-dimensional dissipative anisotropic elastic system. By means of multiplicative techniques, energy method, and Zuazua's estimate technique, we prove the decay property of energy for anisotropic elastic system.
Comments on inhomogeneous anisotropic cosmology
Kaya, Ali
2016-01-01
Recently a new no-global-recollapse argument is given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this note we point out a few important issues about the proposed deformations and in particular indicate that in the presence of large spatial variations the mean curvature flow may deform an initially spacelike surface to a surface with null or timelike portions. The time evolution of the spatial scalar curvature that prevents recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis also indicates a possible caveat in numerical solutions that give rise to inflation.
3D time-domain airborne EM modeling for an arbitrarily anisotropic earth
Yin, Changchun; Qi, Yanfu; Liu, Yunhe
2016-08-01
Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.
2015-03-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A
2015-03-14
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.
Statistical Anisotropy from Anisotropic Inflation
Soda, Jiro
2012-01-01
We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).
Anomalous pion decay revisited
Battistel, O A; Nemes, M C; Hiller, B
1999-01-01
An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.
Anomalous atomic volume of alpha-Pu
DEFF Research Database (Denmark)
Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt
1997-01-01
.3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...
Anomalous mass dimension in multiflavor QCD
Doff, A.; Natale, A. A.
2016-10-01
Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.
Anisotropic contrast optical microscope
Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
Pérez-Nadal, Guillem
2016-01-01
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.
Molecular anisotropic magnetoresistance
Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy
2015-12-01
Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.
Florkowski, W.; Maj, R.
The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.
Florkowski, Wojciech
2013-01-01
The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Nanjo, K. Z.; Yoshida, A.
2017-01-01
The 2016 Kumamoto earthquakes in Kyushu, Japan, started with a magnitude ( M) 6.5 quake on April 14 on the Hinagu fault zone (FZ), followed by active seismicity including an M6.4 quake. Eventually, an M7.3 quake occurred on April 16 on the Futagawa FZ. We investigated if any sign indicative of the M7.3 quake could be found in the space-time changes in seismicity after the M6.5 quake. As a quality control, we determined in advance the threshold magnitude, above which all earthquakes are completely recorded. We then showed that the occurrence rate of relatively large ( M ≥ 3) earthquakes significantly decreased 1 day before the M7.3 quake. Significance of this decrease was evaluated by one standard deviation of sampled changes in the rate of occurrence. We next confirmed that seismicity with M ≥ 3 was well modeled by the Omori-Utsu law with p 1.5 ± 0.3, which indicates that the temporal decay of seismicity was significantly faster than a typical decay with p = 1. The larger p value was obtained when we used data of the longer time period in the analysis. This significance was confirmed by a bootstrapping approach. Our detailed analysis shows that the large p value was caused by the rapid decay of the seismicity in the northern area around the Futagawa FZ. Application of the slope (the b value) of the Gutenberg-Richter frequency-magnitude distribution to the spatiotemporal change in the seismicity revealed that the b value in the northern area increased significantly, the increase being Δ b = 0.3-0.5. Significance was verified by a statistical test of Δ b and a test using bootstrapping errors. Based on our findings, combined with the results obtained by a stress inversion analysis performed by the National Research Institute for Earth Science and Disaster Resilience, we suggested that stress near the Futagawa FZ had reduced just prior to the occurrence of the M7.3 quake. We proposed, with some other observations, that a reduction in stress might have been
Raman Tensor Formalism for Optically Anisotropic Crystals.
Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius
2016-03-25
We present a formalism for calculating the Raman scattering intensity dependent on the polarization configuration for optically anisotropic crystals. It can be applied to crystals of arbitrary orientation and crystal symmetry measured in normal incidence backscattering geometry. The classical Raman tensor formalism cannot be used for optically anisotropic materials due to birefringence causing the polarization within the crystal to be depth dependent. We show that in the limit of averaging over a sufficiently large scattering depth, the observed Raman intensities converge and can be described by an effective Raman tensor given here. Full agreement with experimental results for uniaxial and biaxial crystals is demonstrated.
Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study
Energy Technology Data Exchange (ETDEWEB)
Fan, B.B. [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Yang, X.B. [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Zhang, R., E-mail: zhangray@zzu.edu.c [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Zhengzhou Institute of Aeronautical Industry Management, Henan 450046 (China)
2010-06-14
We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp{sup 2} hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.
ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION
Energy Technology Data Exchange (ETDEWEB)
Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)
2013-03-15
More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.
On the Source of Astrometric Anomalous Refraction
Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.
2013-03-01
More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed "anomalous refraction" by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale (~2°) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.
Anisotropic models for compact stars
Maurya, S K; Ray, Saibal; Dayanandan, Baiju
2015-01-01
In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\
Theory of the Muon Anomalous Magnetic Moment
Melnikov, Kirill
2006-01-01
The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.
Anisotropic matching principle for the hydrodynamic expansion
Tinti, Leonardo
2016-10-01
Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.
Quasiparticle anisotropic hydrodynamics for central collisions
Alqahtani, Mubarak; Strickland, Michael
2016-01-01
We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...
Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji
2013-09-01
Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.
Indian Academy of Sciences (India)
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel
2014-01-01
We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...
Anomalous diffusion of epicentres
Sotolongo-Costa, Oscar; Posadas, A; Luzon, F
2007-01-01
The classification of earthquakes in main shocks and aftershocks by a method recently proposed by M. Baiesi and M. Paczuski allows to the generation of a complex network composed of clusters that group the most correlated events. The spatial distribution of epicentres inside these structures corresponding to the catalogue of earthquakes in the eastern region of Cuba shows anomalous anti-diffusive behaviour evidencing the attractive nature of the main shock and the possible description in terms of fractional kinetics.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Fractures in anisotropic media
Shao, Siyi
Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The
Spatially anisotropic Heisenberg kagome antiferromagnet
Apel, W.; Yavors'kii, T.; Everts, H.-U.
2007-04-01
In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.
Beta Function and Anomalous Dimensions
Pica, Claudio
2010-01-01
We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
Anomalous radiative transitions
Ishikawa, Kenzo; Tobita, Yutaka
2014-01-01
Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \
Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media
Institute of Scientific and Technical Information of China (English)
PAN Wei-Tao; LIU Song-Hua; QIU Zhi-Liang
2012-01-01
Propagation characteristics of electromagnetic waves at the interface between an isotropic regular medium and a biaxially anisotropic gyrotropic medium are investigated.The results indicate that the reflection and refract ionproperties of electromagnetic waves are closely dependent on the dispersion relation of the gyrotropic media,and that anomalous total reflection and negative refraction may occur.The existence conditions of total transmission are also considered.It is found that total transmission arises when the TE-polarized incident waves are normal to the interface and the physical parameters of the two media are chosen properly,which are quite different from the existence conditions of total transmission at the anisotropic left-handed material interface.Numerical resul tsare given to validate our theoretical analysis.
Optical measurement of anisotropic magnetic susceptibility for diamagnetic fine particles
Kitamura, Naoyuki; Takahashi, Kohki; Mogi, Iwao; Awaji, Satoshi; Watanabe, Kazuo
2016-01-01
We have developed an apparatus that allows the observation of the transient rotational motion of fine particles under a high magnetic field in order to determine anisotropic magnetic susceptibility. The anisotropic susceptibilities of spherical nanoparticles of bismuth and commercially available carbon nanofibers were determined. The estimated Δχ = 3.9 × 10-5 of spherical bismuth nanoparticles with a diameter of 370 nm was fairly consistent with the value determined previously by the magnetic field dependence of diffraction peak intensity in the X-ray diffraction (XRD) pattern, but was slightly smaller than the value for the bulk crystal. In contrast, the transient behavior of carbon nanofibers did not obey the theoretical motion of a single crystal. The wide distribution of fiber lengths, the irregularity of the structure in the fiber, and the connections between the fibers are suggested for the anomalous behavior.
Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates
Energy Technology Data Exchange (ETDEWEB)
Jayathilaka, P.B. [Department of Physical Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale (Sri Lanka); Belyea, D.D. [Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Fawcett, T.J. [College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Miller, Casey W. [School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 (United States)
2015-05-15
We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry. - Highlights: • Unintentional thermal gradients along surface normal mitigated via butt-mounting. • Longitudinal/transverse magnetothermopower measured on many systems. • Anomalous Nernst Effect reduced. • Importance of magnetic anisotropy identified with angle-dependent measurements.
Kogut, A J
1999-01-01
Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.
Fickian dispersion is anomalous
Cushman, John H.; O'Malley, Dan
2015-12-01
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
On the relativistic anisotropic configurations
Energy Technology Data Exchange (ETDEWEB)
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)
2016-06-15
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...
Beta Function and Anomalous Dimensions
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2011-01-01
We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Gardiner, Thomas
2013-10-01
Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.
Energy Technology Data Exchange (ETDEWEB)
Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.
2016-06-07
A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.
Shtukenberg, Alexander; Kahr, Bart
2007-01-01
Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...
Institute of Scientific and Technical Information of China (English)
王黎; 姚启盛; 王晓康; 陈从波; 龚小新; 杨勇
2011-01-01
Objective To evaluate the effect and safety of minimally invasive percutaneous nephrolithotomy (mPCNL) for large calculi in anomalous kidneys. Methods A total of 41 kidney calculi patients with renal abnormalities were performed mPCNL. Of the 41 patients, 23 had a horseshoe kidney, 16 had a solitary kidney (9 patients were anatomical and 7 patients were functional), and 2 had a duplex kidney. Results 49 times mPCNL were performed with single channel. 40 cases were reconstructed the channel on stage Ⅰ except one pyonephrosis case were performed selective operation after drainage. The mean operating time of mPCNL was (81.9±10.6) min (ranged 70 to 105 min). 27 cases cleared stones by one-stage mPCNL, 8 received two-stage mPCNL,and 6 perfonne ESWL 1 month after discharge. The first and total stone-free rate of mPCNL was 65.9％ (27/41)and 85.4％ (35/41)respectively. 2 patients was found severe infection and recovered after active treatment and 1 patient had severe postoperative hemorrhage which was controlled by hyperselective angioembolization. All changes of the hemoglobin count and the plasma creatinine were not significant between pre- and post-operation.No adjacent organs injury or urosepsis was observed. Conclusion mPCNL is a safe and effective treatment for large stones in anomalous kidneys, although it demands skilled technique and careful performation.%目的 探讨微创经皮肾镜取石术(minimally invasive percutaneous nephrolithotomy,mPCNL)治疗异常肾肾结石的疗效与安全性.方法 异常肾肾结石患者共41例,其中马蹄肾23例,解剖性孤立肾9例(其中合并脓肾、双J管遗留并巨大结石1例),功能性孤立肾7例,重复肾畸形并上肾结石2例.均采用实时B超引导mPCNL治疗.结果 共进行49次mPCNL,均为单通道取石.除1例脓肾患者先穿刺引流后择期手术,其余均一期建立通道.手术时间70～105 min,平均(81.9±10.6)min.27例一期取石成功,首次手术净石率65.9%(27/41),8
Weibel instability driven by spatially anisotropic density structures
Tomita, Sara
2016-01-01
Observations of afterglows of gamma-ray bursts suggest (GRBs) that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating of the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron--positron plasmas with the spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by the spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that the temperature ...
Observation of an Anisotropic Wigner Crystal
Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
2016-09-01
We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.
Anisotropic silica mesostructures for DNA encapsulation
Indian Academy of Sciences (India)
Aparna Ganguly; Ashok K Ganguli
2013-04-01
The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.
Dynamics of anisotropic f(R) cosmology
Leon, Genly
2010-01-01
We construct general anisotropic cosmological scenarios governed by an f(R) gravitational sector. Focusing then on Kantowski-Sachs geometries in the case of $R^n$-gravity we perform a detailed phase-space analysis. We find that at late times the universe can result to a state of accelerating expansion, and additionally, for a particular n-range (2
van Kats, C. M.
2008-10-01
The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with
Anisotropic Inflation with General Potentials
Shi, Jiaming; Qiu, Taotao
2015-01-01
Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.
Longitudinal fluctuations and decorrelation of anisotropic flow
Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian
2016-12-01
We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał
2016-12-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Photon states in anisotropic media
Indian Academy of Sciences (India)
Deepak Kumar
2002-08-01
Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.
Petrology of Anomalous Eucrites
Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.
2015-01-01
Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.
Anisotropic assembly and pattern formation
von Brecht, James H.; Uminsky, David T.
2017-01-01
We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.
Weibel Instability Driven by Spatially Anisotropic Density Structures
Tomita, Sara; Ohira, Yutaka
2016-07-01
Observations of afterglows of gamma-ray bursts (GRBs) suggest that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron-positron plasmas with spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that a temperature anisotropy is generated and the Weibel instability becomes unstable. Our simulation results suggest that the Weibel instability driven by an anisotropic density structure can generate sufficiently large magnetic fields and they can cover sufficiently large regions to explain the afterglow emission of GRBs.
Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Lu, Guang-Hong; Liu, Feng
2012-09-28
When an impurity is doped in a solid, it inevitably induces a local stress, tending to expand or contract the lattice. Consequently, strain can be applied to change the solubility of impurity in a solid. Generally, the solubility responds to strain "monotonically," increasing (decreasing) with the tensile (compressive) strain if the impurity induces a compressive stress or vice versa. Using first-principles calculations, however, we discovered that the H solubility can be enhanced by anisotropic strain in some bcc metals, almost independent of the sign of strain. This anomalous behavior is found to be caused by a continuous change of H location induced by anisotropic strain. Our finding suggests a cascading effect of H bubble formation in bcc metals: the H solution leads to H bubble formation that induces anisotropic strain that in turn enhances H solubility to further facilitate bubble growth.
Anisotropic non-perturbative zero modes for passively advected magnetic fields
Lanotte, A
1999-01-01
A first analytical assessment of the role of anisotropic corrections to the isotropic anomalous scaling exponents is given for the $d$-dimensional kinematic dynamo problem in the presence of a mean magnetic field. The velocity advecting the magnetic field changes very rapidly in time and scales with a positive exponent $\\xi$. Inertial-range anisotropic contributions to the scaling exponents of magnetic correlations are associated to zero modes and have been calculated non-perturbatively. For $d=3$, the limits $\\xi\\mapsto 0$ yelds $\\zeta_n=n+ \\xi [(n+2) (2 n^2-7 n-3)]/[2 (3+2 n) (1+2 n)]$ where $n$ is the order in the Legendre polynomial decomposition. Conjectures on the fact that anisotropic components cannot change the isotropic threshold to the dynamo effect are also made.
Relativistic Cyclotron Instability in Anisotropic Plasmas
López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.
2016-11-01
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Light propagation through anisotropic turbulence.
Toselli, Italo; Agrawal, Brij; Restaino, Sergio
2011-03-01
A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).
Hyperspherical theory of anisotropic exciton
Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772
2012-01-01
A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.
Anisotropic inflation in Finsler spacetime
Li, Xin; Chang, Zhe
2015-01-01
We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for quantum fluctuation of the inflation field. It depends not only on the magnitude of wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in angular correlation coefficients if $l'=l+1$. The numerical results of the angular correlation coefficients are given to describe the anisotropic effect.
Anomalous propagation of Omega VLF waves near the geomagnetic equator
Ohtani, A.; Kikuchi, T.; Nozaki, K.; Kurihara, N.; Kuratani, Y.; Ohse, M.
1983-09-01
Omega HAIKU, REUNION, and LIBERIA signals were received and anomalous propagation characteristics were obtained near the geomagnetic equator. Short-period fluctuations were found in the phase of the HAIKU 10.2 kHz signal in November 1979 and in the phase and amplitude of the HAIKU 13.6 kHz signal in November 1981. These cyclic fluctuations are in close correlation with the phase cycle slippings, which occur most frequently when the receiver is located at 6 S geomagnetic latitude. On the basis of anisotropic waveguide mode theory indicating much less attenuation in WE propagation than in EW propagation at the geomagnetic equator, it is concluded that the short-period fluctuations in the phase and amplitude are due to interference between the short-path and the long-path signals.
Anomalous magnetic moment of anyons
Gat, G; Gat, Gil; Ray, Rashmi
1994-01-01
The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.
Plasma resonance in anisotropic layered high-Tc superconductors
DEFF Research Database (Denmark)
Sakai, Shigeki; Pedersen, Niels Falsig
1999-01-01
The plasma resonance is described theoretically by the inductive coupling model for a large stacked Josephson-junction system such as the intrinsic Josephson-junction array in anisotropic high- T-c superconductors. Eigenmodes of the plasma oscillation are analytically described and a numerical...
Laser ceramics with rare-earth-doped anisotropic materials.
Akiyama, Jun; Sato, Yoichi; Taira, Takunori
2010-11-01
The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).
Anisotropic magnetotransport in Dirac-Weyl magnetic junctions
Ominato, Yuya; Kobayashi, Koji; Nomura, Kentaro
2017-02-01
We theoretically study the anisotropic magnetotransport in Dirac-Weyl magnetic junctions where a doped ferromagnetic Weyl semimetal is sandwiched between doped Dirac semimetals. We calculate the conductance using the Landauer formula and find that the system exhibits extraordinarily large anisotropic magnetoresistance (AMR). The AMR depends on the ratio of the Fermi energy to the strength of the exchange interaction. The origin of the AMR is the shift of the Fermi surface in the Weyl semimetal, and the mechanism is completely different from the conventional AMR originating from the spin dependent scattering and the spin-orbit interaction.
Stopping power of an electron gas with anisotropic temperature
Khelemelia, O. V.; Kholodov, R. I.
2016-04-01
A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.
Anomalous Dimensions from a Spinning D5-Brane
Armoni, A
2006-01-01
We consider the anomalous dimension of a certain twist two operator in N=4 super Yang-Mills theory. At strong coupling and large-N it is captured by the classical dynamics of a spinning D5-brane. The present calculation generalizes the result of Gubser, Klebanov and Polyakov (hep-th/0204051): in order to calculate the anomalous dimension of a bound state of k coincident strings, the spinning closed string is replaced by a spinning D5 brane that wraps an S4 inside the S5 part of the AdS5 times S5 metric.
Anomalous mass dimension of multi-flavor QCD
Doff, A
2016-01-01
Models of strongly interacting theories with a large mass anomalous dimension ($\\gamma_m$) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a non-trivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss $\\gamma_m$ values of multi-flavor QCD exhibiting a non-trivial fixed point and affected by relevant four-fermion interactions.
Anomalous single top quark production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Mohammadi Najafabadi, M [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Pooya, G, E-mail: mojtaba@ipm.i [Physics Department, Sharif University of Technology (SUT), PO Box 11365-9161, Tehran (Iran, Islamic Republic of)
2010-09-15
The anomalous top quark interactions with gluon (tug, tcg) allow the production of single top quarks at the Large Hadron Collider (LHC). Using the angular distribution of the charged lepton from the W boson in the top decay, we show that with the data of 10 fb{sup -1} of integrated luminosity and in the collisions with the center of mass energy of 14 TeV, the anomalous up and charm quarks coupling parameters {kappa}{sub u,c}/{Lambda} can be measured down to 0.005 and 0.007 TeV{sup -1}, respectively.
Broken current anomalous dimensions, conformal manifolds and RG flows
Bashmakov, Vladimir; Raj, Himanshu
2016-01-01
We consider deformations of a conformal field theory explicitly breaking some global symmetries of the theory, addressing both cases of marginal and relevant deformations. Exploiting the constraints put by conformal symmetry, we compute anomalous dimensions of broken currents. Our analysis is done using field theory techniques and also holographic ones, where necessary. Field theoretical methods suffice to discuss e.g. symmetry-breaking deformations of the $O(N )$ model in $d=4-\\epsilon$ dimensions. Holography is instrumental, instead, to compute current anomalous dimensions in $\\beta$-deformed superconformal field theories, and in a class of $N = 1$ RG flows at large 't Hooft coupling.
Electrically Anisotropic Layered Perovskite Single Crystal
Li, Ting-You
2016-04-01
Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.
Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection
DuBois, Ami M.; Almagri, Abdulgader F.; Anderson, Jay K.; Den Hartog, Daniel J.; Lee, John David; Sarff, John S.
2017-02-01
The first experimental evidence of anisotropic electron energization during magnetic reconnection that favors a direction perpendicular to the guide magnetic field in a toroidal, magnetically confined plasma is reported in this Letter. Magnetic reconnection plays an important role in particle heating, energization, and transport in space and laboratory plasmas. In toroidal devices like the Madison Symmetric Torus, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field. Fast x-ray measurements imply a non-Maxwellian, anisotropic energetic electron tail is formed at the time of reconnection. The tail is well described by a power-law energy dependence. The expected bremsstrahlung from an electron distribution with an anisotropic energetic tail (v⊥>v∥ ) spatially localized in the core region is consistent with x-ray emission measurements. A turbulent process related to tearing fluctuations is the most likely cause for the energetic electron tail formation.
Strongly interacting particles on an anisotropic kagome lattice
Energy Technology Data Exchange (ETDEWEB)
Hotta, Chisa; Pollmann, Frank, E-mail: chisa@cc.kyoto-su.ac.j [Kyoto Sangyo University, Department of Physics, Faculty of Science, Kyoto 603-8555, Japan Department of Physics, University of California, Berkeley, CA94720 (United States)
2009-01-01
We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.
Strongly interacting particles on an anisotropic kagome lattice
Hotta, Chisa; Pollmann, Frank
2009-01-01
We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.
Observations of Anomalous Refraction with Co-housed Telescopes
Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.
2013-01-01
Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.
Anisotropic hydrodynamics, holography and the chiral magnetic effect
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik
2012-03-15
We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)
Anisotropic expansion and SNIa: An open issue
Directory of Open Access Journals (Sweden)
Jose Beltrán Jiménez
2015-02-01
Full Text Available We review the appropriateness of using SNIa observations to detect potential signatures of anisotropic expansion in the Universe. We focus on Union2 and SNLS3 SNIa datasets and use the hemispherical comparison method to detect possible anisotropic features. Unlike some previous works where non-diagonal elements of the covariance matrix were neglected, we use the full covariance matrix of the SNIa data, thus obtaining more realistic and not underestimated errors. As a matter of fact, the significance of previously claimed detections of a preferred direction in the Union2 dataset completely disappears once we include the effects of using the full covariance matrix. Moreover, we also find that such a preferred direction is aligned with the orthogonal direction of the SDSS observational plane and this suggests a clear indication that the SDSS subsample of the Union2 dataset introduces a significant bias, making the detected preferred direction unphysical. We thus find that current SNIa surveys are inappropriate to test anisotropic features due to their highly non-homogeneous angular distribution in the sky. In addition, after removal of the highest inhomogeneous sub-samples, the number of SNIa is too low. Finally, we take advantage of the particular distribution of SNLS SNIa sub-sample in the SNLS3 data set, in which the observations were taken along four different directions. We fit each direction independently and find consistent results at the 1σ level. Although the likelihoods peak at relatively different values of Ωm, the low number of data along each direction gives rise to large errors so that the likelihoods are sufficiently broad as to overlap within 1σ.
Heterogeneous anomalous diffusion in view of superstatistics
Itto, Yuichi
2014-01-01
It is experimentally known that virus exhibits stochastic motion in cytoplasm of a living cell in the free form as well as the form being contained in the endosome and the exponent of anomalous diffusion of the virus fluctuates depending on localized areas of the cytoplasm. Here, a theory is developed for establishing a generalized fractional kinetics for the infection pathway of the virus in the cytoplasm in view of superstatistics, which offers a general framework for describing nonequilibrium complex systems with two largely separated time scales. In the present theory, the existence of a large time-scale separation in the infection pathway is explicitly taken into account. A comment is also made on scaling nature of the motion of the virus that is suggested by the theory.
Anisotropic Poisson Processes of Cylinders
Spiess, Malte
2010-01-01
Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...
Failure in imperfect anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...
Venus Highland Anomalous Reflectivity
Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.
2009-09-01
Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.
Anomalous Temperature Dependence of the Band Gap in Black Phosphorus.
Villegas, Cesar E P; Rocha, A R; Marini, Andrea
2016-08-10
Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases. This anomalous thermal dependence has also been observed recently in its monolayer counterpart. In this work, based on ab initio calculations, we present an explanation for this long known and yet not fully explained effect. We show that it arises from a combination of harmonic and lattice thermal expansion contributions, which are in fact highly interwined. We clearly narrow down the mechanisms that cause this gap opening by identifying the peculiar atomic vibrations that drive the anomaly. The final picture we give explains both the BP anomalous band gap opening and the frequency increase with increasing volume (tension effect).
Mean field magnetization of gapped anisotropic multiplet
Paixão, L. S.; Reis, M. S.
2014-06-01
Some materials have a large gap between the ground and first excited states. At temperatures smaller than the gap value, the thermodynamic properties of such materials are mainly ruled by the ground state. It is also common to find materials with magnetocrystalline anisotropy, which arises due to interatomic interactions. The present paper uses a classical approach to deal large angular momenta in such materials. Based on analytical expressions for the thermodynamics of paramagnetic gapped anisotropic multiplets, we use mean field theory to study the influence of the anisotropy upon the properties of interacting systems. We also use Landau theory to determine the influence of the anisotropy in first and second order phase transitions. It is found that the anisotropy increases the critical temperature, and enlarges the hysteresis of first order transitions. We present analytical expressions for the quantities analyzed.
First Numerical Simulations of Anomalous Hydrodynamics
Hongo, Masaru; Hirano, Tetsufumi
2013-01-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.
Anomalous Thermalization in Ergodic Systems
Luitz, David J.; Bar Lev, Yevgeny
2016-10-01
It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.
Faraday anomalous dispersion optical tuners
Wanninger, P.; Valdez, E. C.; Shay, T. M.
1992-01-01
Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.
Scaling Argument of Anisotropic Random Walk
Institute of Scientific and Technical Information of China (English)
XU Bing-Zhen; JIN Guo-Jun; WANG Fei-Feng
2005-01-01
In this paper, we analytically discuss the scaling properties of the average square end-to-end distance for anisotropic random walk in D-dimensional space ( D ≥ 2), and the returning probability Pn(ro) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for and Pn (ro), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain ～ n, where ⊥ refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have ～ n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than the dimensions of the space, we must have ～ n2 for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood.
Finite-difference schemes for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
Faraday anomalous dispersion optical filters
Shay, T. M.; Yin, B.; Alvarez, L. S.
1993-01-01
The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.
Aieta, Francesco; Genevet, Patrice; Yu, Nanfang; Kats, Mikhail A; Gaburro, Zeno; Capasso, Federico
2012-03-14
Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array.
Decorrelation of anisotropic flow along the longitudinal direction
Energy Technology Data Exchange (ETDEWEB)
Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Qin, Guang-You [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Roy, Victor [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Wang, Xin-Nian [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Lawrence Berkeley National Laboratory, Nuclear Science Division MS70R0319, Berkeley, CA (United States)
2016-04-15
The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity (η). Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations. (orig.)
Decorrelation of anisotropic flow along the longitudinal direction
Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian
2016-04-01
The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity ( η . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.
Lee, M.W.; Collett, T.S.; Lewis, K.A.
2012-01-01
Through the use of 3-D seismic amplitude mapping, several gashydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of MexicoGasHydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ~2 ohm-m and P-wave velocity in the range of ~1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gashydrate in the logged sand interval, mainly because largewashouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gashydratesaturations in the sedimentary section drilled in the Alaminos Canyon 21B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gashydratesaturation in the target sand section in the AC21-Bwell can be constrained to the range of 8–28%, with 20% being our best estimate.
Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers
Guo, Z. B.
2012-09-27
In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.
Recent progress in anisotropic hydrodynamics
Strickland, Michael
2016-01-01
The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Conductivities in an anisotropic medium
Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong
2016-10-01
In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.
Anisotropic Inflation and Cosmological Observations
Emami, Razieh
2015-01-01
Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...
Conductivities in an anisotropic medium
Khimphun, Sunly; Park, Chanyong
2016-01-01
In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.
Anomalous magnetoresistance in magnetized topological insulator cylinders
Energy Technology Data Exchange (ETDEWEB)
Siu, Zhuo Bin, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)
2015-05-07
The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.
The anomalous quadrupole collectivity in Te isotopes
Qi, Chong
2016-01-01
We present systematic calculations on the spectroscopy and transition properties of even-even Te isotopes by using the large-scale configuration interaction shell model approach with a realistic interaction. These nuclei are of particular interest since their yrast spectra show a vibrational-like equally-spaced pattern but the few known E2 transitions show anomalous rotational-like behavior, which cannot be reproduced by collective models. Our calculations reproduce well the equally-spaced spectra of those isotopes as well as the constant behavior of the $B(E2)$ values in $^{114}$Te. The calculated $B(E2)$ values for neutron-deficient and heavier Te isotopes show contrasting different behaviors along the yrast line. The $B(E2)$ of light isotopes can exhibit a nearly constant bevavior upto high spins. We show that this is related to the enhanced neutron-proton correlation when approaching $N=50$.
Neirotti, Juan
2016-07-01
We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B ) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged.
Anisotropic plasmas from axion and dilaton deformations
Donos, Aristomenis; Sosa-Rodriguez, Omar
2016-01-01
We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to $AdS_5\\times X_5$, where $X_5$ is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same $AdS_5\\times X_5$ solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.
Anisotropic plasmas from axion and dilaton deformations
Donos, Aristomenis; Gauntlett, Jerome P.; Sosa-Rodriguez, Omar
2016-11-01
We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to AdS 5 × X 5, where X 5 is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same AdS 5 × X 5 solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.
Crossover from normal to anomalous diffusion in systems of field-aligned dipolar particles.
Jordanovic, Jelena; Jäger, Sebastian; Klapp, Sabine H L
2011-01-21
Using molecular dynamics simulations we investigate the translational dynamics of particles with dipolar interactions in homogenous external fields. For a broad range of concentrations, we find that the anisotropic, yet normal diffusive behavior characterizing weakly coupled systems becomes anomalous both parallel and perpendicular to the field at sufficiently high dipolar coupling and field strength. After the ballistic regime, chain formation first yields cagelike motion in all directions, followed by transient, mixed diffusive-superdiffusive behavior resulting from cooperative motion of the chains. The enhanced dynamics disappears only at higher densities close to crystallization.
Anomalous Hall effects in pseudo-single-crystal γ'-Fe4N thin films
Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi
2016-05-01
The anomalous Hall effects (AHE) were investigated at various temperatures for the pseudo-single-crystal Fe4N films, deposited on MgO substrates with changing the degree of order (S) of the nitrogen site. Both the anomalous Hall resistivity and the longitudinal resistivity simply decrease with lowering temperature for all the specimens. The AHE of the Fe4N films is presumed to arise from an intrinsic mechanism because of the relationship between the anomalous Hall resistivity and longitudinal resistivity. The anomalous Hall conductivity, σAH, exhibits a specific behavior at low temperature. In the case of the film with S = 0.93, the σAH drastically drops below 50 K, while it simply increases with lowering temperature in the range of 50-300 K. This low-temperature anomaly decays with decreasing S of the film and nearly vanishes in the films with low S. The threshold temperature and the dependence on S of the low-temperature anomaly of the σAH well correspond to those of the anisotropic magnetoresistance effects in the Fe4N films, reported in the literatures. From these results, it is suggested that the low-temperature anomaly of the σAH originates from the crystal field effect which reflects the structural transformation from a cubic to a tetragonal symmetry below 50 K and provides a modulation of the orbital angular momentum of the 3d orbitals at the Fermi level.
Anomalous Transport Foundations and Applications
Klages, Rainer; Sokolov, Igor M
2008-01-01
This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma
Anomalous Hall effect in polycrystalline Ni films
Guo, Zaibing
2012-02-01
We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.
Measuring anomalous Wtb couplings at e{sup -}p collider
Energy Technology Data Exchange (ETDEWEB)
Dutta, Sukanta [University of Delhi, SGTB Khalsa College, Delhi (India); Goyal, Ashok [University of Delhi, Department of Physics and Astrophysics, Delhi (India); Kumar, Mukesh [University of the Witwatersrand, National Institute for Theoretical Physics, School of Physics, School of Physics and Mandelstam Institute for Theoretical Physics, Johannesburg (South Africa); Mellado, Bruce [University of the Witwatersrand, Private Bag 3, Johannesburg (South Africa)
2015-12-15
We study the accuracy with which the lowest order CP conserving anomalous Wtb couplings in the single top-quark production at the proposed large hadron electron collider can be probed. The one-dimensional distribution of various kinematic observables at the parton level MC and their asymmetries arising due to the presence of anomalous couplings both in the hadronic and leptonic W decay is examined. We find that at 95 % CL the anomalous coupling associated with the left-handed vector current can be measured at an accuracy of the order of ∝ 10{sup -2}-10{sup -3}, while those associated with the right-handed vector and left- as well as right-handed tensor currents have a sensitivity at the order of ∝ 10{sup -1}-10{sup -2} for the systematic uncertainty varying between 10-1 % at an integrated luminosity of 100 fb{sup -1}. A comprehensive analysis of the combined covariance matrix derived from all one-dimensional distributions of kinematical observables is used to compute the errors in the anomalous couplings. (orig.)
Measuring anomalous Wtb couplings at e{sup -}p collider
Energy Technology Data Exchange (ETDEWEB)
Dutta, Sukanta, E-mail: sukanta.dutta@gmail.com [SGTB Khalsa College, University of Delhi, 110007, Delhi (India); Goyal, Ashok, E-mail: agoyal45@yahoo.com [Department of Physics and Astrophysics, University of Delhi, 110007, Delhi (India); Kumar, Mukesh, E-mail: mukesh.kumar@cern.ch [National Institute for Theoretical Physics, School of Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, Johannesburg (South Africa); Mellado, Bruce, E-mail: bmellado@mail.cern.ch [University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg (South Africa)
2015-12-07
We study the accuracy with which the lowest order CP conserving anomalous Wtb couplings in the single top-quark production at the proposed large hadron electron collider can be probed. The one-dimensional distribution of various kinematic observables at the parton level MC and their asymmetries arising due to the presence of anomalous couplings both in the hadronic and leptonic W decay is examined. We find that at 95 % CL the anomalous coupling associated with the left-handed vector current can be measured at an accuracy of the order of ∼10{sup -2}–10{sup -3}, while those associated with the right-handed vector and left- as well as right-handed tensor currents have a sensitivity at the order of ∼10{sup -1}–10{sup -2} for the systematic uncertainty varying between 10–1 % at an integrated luminosity of 100 fb{sup -1}. A comprehensive analysis of the combined covariance matrix derived from all one-dimensional distributions of kinematical observables is used to compute the errors in the anomalous couplings.
Decorrelation of anisotropic flows along the longitudinal direction
Pang, Long-Gang; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian
2015-01-01
The initial energy density distribution and fluctuation in the transverse direction lead to anisotropic flows of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flows in different regions of pseudo rapidity ($\\eta$). Decorrelation of the $2$nd and $3$rd order anisotropic flows with different $\\eta$ gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flows of final hadrons with large $\\eta$ gaps are found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event-plane angles. The agreement between our r...
Directory of Open Access Journals (Sweden)
Sebastián Bustingorry
2010-02-01
Full Text Available We numerically study the geometry of a driven elastic string at its sample-dependent depinning threshold in random-periodic media. We find that the anisotropic finite-size scaling of the average square width $overline{w^2}$ and of its associated probability distribution are both controlled by the ratio $k=M/L^{zeta_{dep}}$, where $zeta_{dep}$ is the random-manifold depinning roughness exponent, $L$ is the longitudinal size of the string and $M$ the transverse periodicity of the random medium. The rescaled average square width $overline{w^2}/L^{2zeta_{dep}}$ displays a non-trivial single minimum for a finite value of $k$. We show that the initial decrease for small $k$ reflects the crossover at $k sim 1$ from the random-periodic to the random-manifold roughness. The increase for very large $k$ implies that the increasingly rare critical configurations, accompanying the crossover to Gumbel critical-force statistics, display anomalous roughness properties: a transverse-periodicity scaling in spite that $overline{w^2} ll M$, and subleading corrections to the standard random-manifold longitudinal-size scaling. Our results are relevant tounderstanding the dimensional crossover from interface to particle depinning. Received: 20 October 2010, Accepted: 1 December 2010; Edited by: A. Vindigni; Reviewed by: A. A. Fedorenko, CNRS-Lab. de Physique, ENS de Lyon, France; DOI: 10.4279/PIP.020008
Biferale, Luca; Toschi, Federico
2001-01-01
We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flo
PHENOMENOLOGICAL DAMAGE MODELS OF ANISOTROPIC STRUCTURAL MATERIALS
Bobyr, M.; Khalimon, O.; Bondarets, O.
2015-01-01
Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...
Porous and Fluffy Grains in the Regions of Anomalous Extinction
Indian Academy of Sciences (India)
D. B. Vaidya; B. G. Anandarao; J. N. Desai; R. Gupta
2000-06-01
It has long been established that the ratio of total to selective extinction is anomalously large (≥ 5) in certain regions of the interstellar medium. In these regions of anomalous extinction the dust grains are likely to be irregular in shape and fluffy in structure. Using discrete dipole approximation (DDA) we calculate the extinction for porous and fluffy grains. We apply DDA first to solid spheroidal particles assumed to be made of a certain (large) number of dipoles. Then we systematically reduce the number of dipoles to model the porous grains. The aggregates of these particles are suggested to form the fluffy grains. We study the extinction for these particles as a function of grain size, porosity and wavelength. We apply these calculations to interpret the observed extinction data in the regions of star formation (e.g. the Orion complex).
Taniguchi, Tomohiro; Grollier, Julie; Stiles, M. D.
2016-10-01
We propose an experimental scheme to determine the spin-transfer torque efficiency excited by the spin-orbit interaction in ferromagnetic bilayers from the measurement of the longitudinal magnetoresistace. Solving a diffusive spin-transport theory with appropriate boundary conditions gives an analytical formula of the longitudinal charge current density. The longitudinal charge current has a term that is proportional to the square of the spin-transfer torque efficiency and that also depends on the ratio of the film thickness to the spin diffusion length of the ferromagnet. Extracting this contribution from measurements of the longitudinal resistivity as a function of the thickness can give the spin-transfer torque efficiency.
Anomalous Magnetic Excitations of Cooperative Tetrahedral Spin Clusters
DEFF Research Database (Denmark)
Prsa, K.; Rønnow, H.M.; Zaharko, O.;
2009-01-01
An inelastic neutron scattering study of Cu2Te2O5X2 (X=Cl, Br) shows strong dispersive modes with large energy gaps persisting far above T-N, notably in Cu2Te2O5Br2. The anomalous features: a coexisting unusually weak Goldstone-like mode observed in Cu2Te2O5Cl2 and the size of the energy gaps can...
Remarks on inhomogeneous anisotropic cosmology
Kaya, Ali
2016-08-01
Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.
Spin precession in anisotropic cosmologies
Energy Technology Data Exchange (ETDEWEB)
Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)
2016-05-15
We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Axially symmetric volume constrained anisotropic mean curvature flow
Palmer, Bennett
2011-01-01
We study the long time existence theory for a non local flow associated to a free boundary problem for a trapped non liquid drop. The drop has free boundary components on two horizontal plates and its free energy is anisotropic and axially symmetric. For axially symmetric initial surfaces with sufficiently large volume, we show that the flow exists for all time. Numerical simulations of the curvature flow are presented.
Anomalous osmosis resulting from preferential absorption
Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.
1965-01-01
An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly an
44th Annual Anomalous Absorption Conference
Energy Technology Data Exchange (ETDEWEB)
Beg, Farhat
2014-03-03
Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded
Multitracing Anisotropic Non-Gaussianity with Galaxy Shapes
Chisari, Nora Elisa; Schmidt, Fabian; Spergel, David
2016-01-01
Correlations between intrinsic galaxy shapes on large-scales arise due to the effect of the tidal field of the large-scale structure. Anisotropic primordial non-Gaussianity induces a distinct scale-dependent imprint in these tidal alignments on large scales. Motivated by the observational finding that the alignment strength of luminous red galaxies depends on how galaxy shapes are measured, we study the use of two different shape estimators as a multi-tracer probe of intrinsic alignments. We show, by means of a Fisher analysis, that this technique promises a significant improvement on anisotropic non-Gaussianity constraints over a single-tracer method. For future weak lensing surveys, the uncertainty in the anisotropic non-Gaussianity parameter, $A_2$, is forecast to be $\\sigma(A_2)\\approx 50$, $\\sim 40\\%$ smaller than currently available constraints from the bispectrum of the Cosmic Microwave Background. This corresponds to an improvement of a factor of $4-5$ over the uncertainty from a single-tracer analysi...
Carlier, F S
While linear LHC dynamics are mostly understood and under control, non-linear beam dynamics will play an increasingly important role in the challenging regimes of future LHC operation. In 2012, turn-by-turn measurements of large betatron excitations of LHC Beam 2 at injection energy were carried out. These measurements revealed an unexpectedly large spectral line in the horizontal motion with frequency $-Q_x-2Q_y$. Detailed analyses and simulations are presented to understand the nature of this spectral line. -- ABSTRACT II -- The future regimes of operation of the LHC will require improved control of $\\beta^*$ measurements to succesfully level the luminosities in the interaction points. The method of K-modulation has been widely used in other machines such as, LEP, HERA, Tevatron and ALBA to measure lattice beta functions. In the LHC, K-modulation of the last quadrupoles of the IP is the method to measure $\\beta^*$ in the IP. This paper highlights the challenge of high precision tune measurements (up to $10...
Recent progress in anisotropic hydrodynamics
Directory of Open Access Journals (Sweden)
Strickland Michael
2017-01-01
Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Institute of Scientific and Technical Information of China (English)
Wenbin Shen; Dijin Wang; Cheinway Hwang
2011-01-01
Using 1 Hz sampling records at one superconducting gravimeter (SG) station and 11 broadband seismometer stations,we found anomalous signals prior to the 2008 Wenchuan(汶川)earthquake event.The tides are removed from the original SG records to obtain the gravity residuals.Applying the Hilbert-Huang transform (HHT) and the wavelet analysis to the SG gravity residuals leads to time-frequency spectra,which suggests that there is an anomalous signal series around 39 h prior to the event.The period and the magnitude of the anomalous signal series are about 8 s and 3×10-8 m/s2 (3 μGal),respectively.In another aspect,applying HHT analysis technique to 11 records at broadband seismometer stations shows that most of them contain anomalous signals prior to the Wenchuan event,and the marginal spectra of 8 inland stations show an apparent characteristic of double peaks in anomalous days compared to the only one peak of the marginal spectra in quiet days.Preliminary investigations suggest that the anomalous signals prior to the earthquake are closely related to the low-frequency earthquake (LFE).We concluded that the SG data as well as the broadband seismometers records might be significant information sources in detecting the anomalous signals prior to large earthquakes.
Anomalous diffraction in hyperbolic materials
Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano
2016-01-01
We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.
Anomalous diffraction in hyperbolic materials
Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano
2016-09-01
We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.
Modelling of CMUTs with Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt;
2012-01-01
Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...
ANISOTROPIC BIQUADRATIC ELEMENT WITH SUPERCLOSE RESULT
Institute of Scientific and Technical Information of China (English)
Dongyang SHI; Shipeng MAO; Hui LIANG
2006-01-01
The main aim of this paper is to study the convergence of biquadratic finite element for the second order problem on anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates are obtained. At the same time, the anisotropic superclose results are also achieved. Furthermore, the numerical results are given to demonstrate our theoretical analysis.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Designing Anisotropic Inflation with Form Fields
Ito, Asuka
2015-01-01
We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.
Directory of Open Access Journals (Sweden)
Xingtuan Yang
2015-01-01
Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.
Chun, Sehun
2012-01-01
In cardiac electrophysiology, it is important to predict the necessary conditions for conduction failure, the failure of the cardiac excitation propagation even in the presence of normal excitable tissue, in high-dimensional anisotropic space because these conditions may provide feasible mechanisms for abnormal excitation propagations such as atrial re-entry and, subsequently, atrial fibrillation even without taking into account the time-dependent refractory region. Some conditions of conduction failure have been studied for anisotropy or simple curved surfaces, but the general conditions on anisotropic curved surfaces (anisotropic and curved surface) remain unknown. To predict and analyze conduction failure on anisotropic curved surfaces, a new analytic approach is proposed, called the relative acceleration approach borrowed from spacetime physics. Motivated by a discrete model of cardiac excitation propagation, this approach is based on the hypothesis that a large relative acceleration can translate to a dr...
Strong anisotropic thermal conductivity of monolayer WTe2
Ma, Jinlong; Chen, Yani; Han, Zheng; Li, Wu
2016-12-01
Tungsten ditelluride (WTe2) has attracted increasing attention due to its large magnetoresistance and pressure-induced superconductivity. In this work, we investigate the thermal conductivity (κ) of monolayer WTe2 by performing first-principles calculations, and find strong anisotropic κ with predicted room-temperature values of 9 and 20 W m-1 K-1 along two principal lattice directions, respectively. Such strong anisotropy suggests the importance of orientation when engineering thermal-related applications based on WTe2. The anisotropy of κ is attributed to the in-plane linear acoustic phonon branches, while the out-of-plane quadratic acoustic phonon branch is almost isotropic. The size dependence of κ shows that the size effect can persists up to 10 μm, and the anisotropy decreases with decreasing sample size due to the suppression of low-frequency anisotropic phonons by boundary scattering.
Warm anisotropic inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm Anisotropic Inflationary Universe Model
Sharif, M
2014-01-01
This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.
Gravitational Baryogenesis after Anisotropic Inflation
Fukushima, Mitsuhiro; Maeda, Kei-ichi
2016-01-01
The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.
Anisotropic inflation from extra dimensions
Litterio, M; Amendola, L; Dyrek, A; Litterio, Marco; Amendola, Luca; Dyrek, Andrzej
1995-01-01
Vacuum multidimensional cosmological models with internal spaces being compact n-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.
Gravitational baryogenesis after anisotropic inflation
Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi
2016-05-01
The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.
Anisotropic grid adaptation in LES
Toosi, Siavash; Larsson, Johan
2016-11-01
The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.
Yagi, Kent
2015-01-01
Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...
Guo, Wenlong; Wang, Guangming; Li, Tangjing; Li, Haipeng; Zhuang, Yaqiang; Hou, Haisheng
2016-10-01
In this paper, we propose a polarization beam splitter utilizing an ultra-thin anisotropic metasurface. The proposed anisotropic element is composed of triple-layered rectangular patches spaced with double-layered dielectric isolators. By tailoring the metallic patches, the cell is capable of transmitting x-polarized waves efficiently and reflecting y-polarized beams with almost 100% efficiency at 15 GHz. In addition to this, the reflected phases can be modulated by adjusting the size of the element, which contributes to beam steering in reflection mode. By assigning gradient phases on the metasurface, the constructed sample has the ability to refract x-polarized waves normally and reflect y-polarized beams anomalously. For verification, a sample with a size of 240 × 240 mm2 is fabricated and measured. Consistent numerical and experimental results have both validated the efficiently anomalous reflection for y-polarized waves and normal refraction for x-polarized beams operating from 14.6-15.4 GHz. Furthermore, the proposed sample has a thickness of 0.1λ at 15 GHz, which provides a promising approach for steering and splitting beams in a compact size.
Coexistence and efficiency of normal and anomalous transport by molecular motors in living cells
Goychuk, Igor; Metzler, R
2013-01-01
Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.
Anisotropic microstructure near the sun
Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.
1996-07-01
Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar
Institute of Scientific and Technical Information of China (English)
刘建影; 路秀真; 曹立强
2007-01-01
Anisotropic conductive adhesive technology for electronics packaging and interconnect application has significantly been developed during the last few years. It is time to make a summary of what has been done in this field. The present paper reviews the technology development, especially from the reliability point of view. It is pointed out that anisotropic conductive adhesives are now widely used in many applications and the reliability data and models have been developed to a large extent for anisotropic conductive adhesives in various applications.
Shaped beam scattering by an anisotropic particle
Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang
2017-03-01
An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.
Research on anisotropic parameters by synthetic seismogram
Institute of Scientific and Technical Information of China (English)
FAN Xiao-ping; LI Qing-he; YANG Cong-jie
2005-01-01
ased on the extensive-dilatancy anisotropy theory, the method of synthetic seismogram is used to estimate the anisotropic parameters. The advantages of the method lie in that it avoids the singularity resolution and saves calculation time of computer by using the eigenvalue and eigenvector analytical expressions of Christoffel equation, at the same time, the result is tested by coherence function. The test result reveals there exists a fine linear relation between original records and synthetic records, indicating the anisotropic parameters estimated by synthetic seismogram can reflect and describe the anisotropic characteristics of the given region medium.
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
A new algorithm for anisotropic solutions
Indian Academy of Sciences (India)
M Chaisi; S D Maharaj
2006-02-01
We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.
Imprints of Anisotropic Inflation on the CMB
Watanabe, Masa-aki; Soda, Jiro
2010-01-01
We study the imprints of anisotropic inflation on the CMB temperature fluctuations and polarizations. The statistical anisotropy stems not only from the direction dependence of curvature and tensor perturbations, but also from the cross correlation between curvature and tensor perturbations, and the linear polarization of tensor perturbations. We show that off-diagonal $TB$ and $EB$ spectrum as well as on- and off-diagonal $TT, EE, BB, TE$ spectrum are induced from anisotropic inflation. We emphasize that the off-diagonal spectrum induced by the cross correlation could be a characteristic signature of anisotropic inflation.
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Anomalous Fractional Diffusion Equation for Transport Phenomena
Institute of Scientific and Technical Information of China (English)
QiuhuaZENG; HouqiangLI; 等
1999-01-01
We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)
2014-02-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Anomalous magnetic moment with heavy virtual leptons
Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias
2013-01-01
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Signal velocity for anomalous dispersive waves
Energy Technology Data Exchange (ETDEWEB)
Mainardi, F. (Bologna Univ. (Italy))
1983-03-11
The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.
Anomalous transport due to scale anomaly
Chernodub, M N
2016-01-01
We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.
Stueckelberg Axions and Anomalous Abelian Extensions of the Standard Model
Morelli, Simone
2009-01-01
This thesis work analyzes basic field theoretical aspects of a class of models motivated by orientifold vacua of string theory and some of their phenomenological applications at the Large Hadron Collider. They extend the gauge structure of the Standard Model by anomalous extra U(1) symmetries, which involve Stuckelberg axions for anomaly cancellation and are accompanied by Chern-Simons interactions. In particular, these effective actions are characterized by a physical pseudoscalar (the axi-Higgs) in the CP-odd spectrum, which has the properties of a generalized Peccei-Quinn axion, with independent mass and couplings to the gauge fields. Amplitudes mediated by anomalous gauge interactions are studied at the new collider in some specific channels such as Drell-Yan and double prompt-photon and shown to be small. Finally, we address the problem of the relation between the Green-Schwarz and the Wess-Zumino mechanism(s) for anomaly cancellations in effective lagrangeans involving anomalous gauge interactions, with...
Spatial interpolation approach based on IDW with anisotropic spatial structures
Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang
2015-12-01
In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.
Anisotropic diffusion of volatile pollutants at air-water interface
Institute of Scientific and Technical Information of China (English)
Li-ping CHEN; Jing-tao CHENG; Guang-fa DENG
2013-01-01
The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Phenomenological Anisotropic Study of Surface Finish in Pack Rolling
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A phenomenological anisotropic model has been presented for the surface roughness modeling of pack rolling. The model is an assembly of grains in different orientations and sizes. The grain size is assumed to be in log-normal distribution. To model the macro anisotropic mechanical behavior of the grains induced by the slip deformation, the grains are assumed as isolated anisotropic units. The units have different mechanic behavior, and depend on the crystallographic orientations and the external loading as well as the interaction of the adjunctive grains. In the paper,the material properties of the grains are assumed as uniform distributions. The roughness of the contact surfaces depends on the distribution types and the scatters of the distributions. It is found that the initial roughness of the contact surfaces has a little influence on the surface roughness when the rolling deformation is large. The comparison between the phenomenological model and crystallographic model shows that the phenomenological model can also give out a reasonable result, while it only takes much less CPU time. The agreement between the single sheet model and the pack rolling model shows that in a certain degree the pack rolling model can be replaced by the single sheet model to decrease the CPU time.
Anisotropic diffusion of volatile pollutants at air-water interface
Directory of Open Access Journals (Sweden)
Li-ping CHEN
2013-04-01
Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Anomalous transport in the crowded world of biological cells.
Höfling, Felix; Franosch, Thomas
2013-04-01
A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important
Ogurtani, Tarik Omer; Celik, Aytac; Oren, Ersin Emre
2010-11-01
A systematic study based on self-consistent dynamical simulations is presented for the spontaneous evolution of an isolated thin solid droplet on a rigid substrate, which is driven by the surface drift diffusion induced by the anisotropic capillary forces (surface stiffness) and mismatch stresses. In this work, we studied the effect of surface free energy anisotropies [weak and strong (anomalous)] on the development kinetics of the "Stranski-Krastanow" island type morphologies. The anisotropic surface free energy and the surface stiffness were treated with well accepted trigonometric functions. Although, various tilt angles and anisotropy constants were considered during simulations, the main emphasis was given on the effect of rotational symmetries associated with the surface Helmholtz free energy topography in two-dimensional space. Our computer simulations revealed the formation of an extremely thin wetting layer during the development of the bell-shaped Stranski-Krastanow island through the mass accumulation at the central region of the droplet via surface drift-diffusion. For weak anisotropy constant levels, instead of singlet islanding, we observed formation of doublet islanding, separated by a shallow wetting layer, for a set of specific tilt angles, ϕ =90° and ϕ =45°, respectively, for the twofold and fourfold rotational symmetry axis. No such formation has been detected for the sixfold symmetry. In the strong (anomalous) anisotropy constant domain, we demonstrated the existence of two distinct morphological modes: (i) the complete stability of the initial Cosine-shaped droplet just above a certain anisotropy constant threshold level by spontaneous slight readjustments of the base and the height of the cluster; (ii) the Frank-van der Merwe mode of thin film formation for very large values of the anisotropy constant by the spreading and coalescence of the droplets over the substrate surface. During the course of the simulations, we continuously tracked
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Overview of anisotropic flow measurements from ALICE
Directory of Open Access Journals (Sweden)
Zhou You
2016-01-01
Full Text Available Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP, created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb–Pb, p–Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.
Inflation in anisotropic scalar-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Pimentel, L.O.; Stein-Schabes, J.
1989-01-05
The existence of an inflationary phase in anisotropic scalar-tensor theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a non-trivial potential. We then use the explicit form of the potential and the no hair theorem to conclude that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Inflation in anisotropic scalar-tensor theories
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges
Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.
2017-02-01
Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.
Radar velocity tomography in anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Kim, Jung Ho; Cho, Seong Jun; Yi Myeong Jong; Chung, Seung Hwan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)
1996-12-01
Radar tomography inversion method was developed in the elliptic anisotropic environment with the parametrization of maximum, minimum velocity, and the direction of symmetry axis. Nonlinear least-square method with smoothness constraint was adopted as inversion scheme. Newly developed algorithm was successfully tested with the 2-D numerical cross-borehole data in isotropic environment. Seismic data from physical modelling in partially anisotropic environment was also inverted and compared with the reconstruction technique assuming isotropic media. We could confirm the effectiveness of our algorithm, even though the tested data were generated from isotropic or partially anisotropic media. Cross-hole radar field data in limestone area in Korea was analyzed that the limestone bedrock is systematically anisotropic in the sense of radar application. The data set was inverted with the new anisotropy algorithm. The anisotropic effect in the data was corrected and also inverted for the comparison through the algorithm with isotropic assumption. Applying two different algorithm and comparing the various images, the tomographic image of maximum velocity from anisotropic inversion could give the most excellent way to visualize underground. An addition to the high resolution image, we could grasp some information on the material type from the feature of maximum velocity distribution the degree of anisotropy which can be inferred from the ratio of maximum and minimum velocity. The newly developed algorithm will be expected to provide a good way to image underground, especially in sedimentary or metamorphosed bedrock. (author). 9 refs., 21 figs.
The Structure of Anomalous Oceanic Circulation In The Indian Ocean Dipole
Zhao, Qigeng
Using an Indian-Pacific Ocean Circulation Model with high resolution a simulation study on the Indian Ocean dipole (IOD) has been done. Forcing the mdel with monthly observational wind stress in 1990-1999 the main characteristics of sea temperature variations in the two IODs (in 1997 and 1994) have been reproduced well. The pat- terns and center positions of sea temperature anomalies in the tropical Indian Ocean surface and in the section of equator-depth during the IOD from the simulation are basically consistent with that from observation. The physical image of anomalous circulation during IOD is revealed from the simulation. We find that an anomalous easterly current along the equator in the upper layer of the eastern Indian Ocean dur- ing IOD period. It is very strong, narrow band and is divergent from equator to both sides. It represents a Rossby wave propagated westwards. During IOD phase there a significant anomalous current cell in the section of equator-depth: the easterly current in the upper layer; westerly compensated current below it; a strong upwelling to the east of 80 E; a weak downwelling to the west of 55 E. Meanwhile two anomalous meridian cells are in the both sides of equator in the eastern Indian Ocean. The com- mon upwelling of them is near equator. The patterns of anomalous current in the out of IOD phase are basically opposite to that in the IOD phase, besides the absolute value of the anomalous current is weaker. Therefore the anomalous sea temperature in the tropical Indian Ocean during IOD could be interpreted with anomalous horizontal and vertical current, especially large-scale upwelling and downwelling.
Progress in Anisotropic Plasma Physics
Romatschke, P; Romatschke, Paul; Strickland, Michael
2004-01-01
In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...
Spin precession in anisotropic media
Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.
2017-02-01
We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.
Observation of anomalous slow-mode shock and reconnection layer in the dayside magnetospause
Walthour, D. W.; Gosling, J. T.; Sonnerup, B. U. O.; Russell, C. T.
1994-12-01
Plasma and magnetic field data from the International Sun-Earth Explorer ISEE 2 spacecraft recorded during an outbound crossing of the dayside, northern hemisphere magnetopause in October 29, 1979, provide evidence for a slow shock (SS) in the observed reconnection layer. This layer is found to be bounded on the magnetosheath side by the SS; near the magnetospheric side of the layer, a second current sheet is found that may have been rotational discontinuity (RD). The direction of the accelerated plasma flow, the earthward sense of the normal magnetic filed across the SS and RD, and the relative orientation of the SS and the RD all indicate that the reconection site was located south of the spacecraft. Quantitative tests show that, allowing for experiemental uncertanties, data taken upstream and downstream of the SS are consistent with coplanarity and other Rankine-Hugoniot (RH) conditions. Examiniations of the flow parameters indicates two anomalous properties of the SS: the upstream flow, viewed in the deHoffmann-Teller frame, is superalfvenic and the downstream plasma is firehose unstable. In comparison to the long-wavelength slow-mode phase speed, however, the flow in the upstream region is super slow, while in the downstream region it is subslow, as requeired for a slow-mode shock. Further properties of the shock include a large decrease in total enthalpy across it, indicating the escape of a sizable heat flux from the shock structure, and the occurrence of a polarization reversal of the tangential magnetic field within the shock layer, a feature that is predicted by linear double-polytropic Hall-MHD and results from a large increase in pressure anistropy from the upstream region, where p(sub parallel) approximately equal to p(sub perp), to the downstream region, where p(sub parrallel) greater than p(sub perp). Quantitative tests of the RD-like discontinuity show that it satisfies the necessary RH conditions within experimental uncertainties and indicate that
Anisotropic Flow and flow fluctuations at the Large Hadron Collider
Zhou, Y.
2016-01-01
One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at t
PURCELL EFFECT IN EXTREMELY ANISOTROPIC ELLIPTIC METAMATERIALS
Directory of Open Access Journals (Sweden)
Alexander V. Chebykin
2014-11-01
Full Text Available The paper deals with theoretical demonstration of Purcell effect in extremely anisotropic metamaterials with elliptical isofrequency surface. This effect is free from association with divergence in density of states unlike the case of hyperbolic metamaterials. It is shown that a large Purcell factor can be observed without excitation of modes with large wave vectors in one direction, and the component of the wave vector normal to the layers is less than k0. For these materials the possibility is given for increasing of the power radiated in the medium, as well as the power radiated from material into free space across the medium border situated transversely to the layers. We have investigated isofrequency contours and the dependence of Purcell factor from the frequency for infinite layered metamaterial structure. In the visible light range strong spatial dispersion gives no possibility to obtain enhancement of spontaneous emission in metamaterial with unit cell which consists of two layers. This effect can be achieved in periodic metal-dielectric layered nanostructures with a unit cell containing two different metallic layers and two dielectric ones. Analysis of the dependences for Purcell factor from the frequency shows that the spontaneous emission is enhanced by a factor of ten or more only for dipole orientation along metamaterial layers, but in the case of the transverse orientation radiation can be enhanced only 2-3 times at most. The results can be used to create a new type of metamaterials with elliptical isofrequency contours, providing a more efficient light emission in the far field.
Anomalous dimensions in deformed WZW models on supergroups
Energy Technology Data Exchange (ETDEWEB)
Candu, Constantin [Institut fuer Theoretische Physik, Zuerich (Switzerland); Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2012-11-15
We investigate a class of current-current, Gross-Neveu like, perturbations of WZW models in which the full left-right affine symmetry is broken to the diagonal global algebra only. Our analysis focuses on those supergroups for which such a perturbation preserves conformal invariance. A detailed calculation of the 2-point functions of affine primary operators to 3-loops is presented. Furthermore, we derive an exact formula for the anomalous dimensions of a large subset of fields to all orders in perturbation theory. Possible applications of our results, including the study of non-perturbative dualities, are outlined.
Origin of anomalous anharmonic lattice dynamics of lead telluride
Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro
2015-01-01
The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.
Blue Spectra of Kalb-Ramond Axions and Fully Anisotropic String Cosmologies
Giovannini, Massimo
1999-01-01
The inhomogeneities associated with massless Kalb-Ramond axions can be amplified not only in isotropic (four-dimensional) string cosmological models but also in the fully anisotropic case. If the background geometry is isotropic, the axions (which are not part of the homogeneous background) develop, outside the horizon, growing modes leading, ultimately, to logarithmic energy spectra which are "red" in frequency and increase at large distance scales. We show that this conclusion can be evaded not only in the case of higher dimensional backgrounds with contracting internal dimensions but also in the case of string cosmological scenarios which are completely anisotropic in four dimensions. In this case the logarithmic energy spectra turn out to be "blue" in frequency and, consequently, decreasing at large distance scales. We elaborate on anisotropic dilaton-driven models and we argue that, incidentally, the background models leading to (or flat) logarithmic energy spectra for axionic fluctuations are likely to ...
Climatic regime shift and decadal anomalous events in China
Energy Technology Data Exchange (ETDEWEB)
Qian, Weihong [Department of Atmospheric Sciences, Peking University, Beijing, 100871 (China); Lin, Xiang; Zhu, Yafen; Xu, Yuan; Fu, Jiaolan [Monsoon and Environment Research Group, School of Physics, Peking University, Beijing, 100871 (China)
2007-09-15
Climatic time series from historical documents and instrumental records from China showed temporal and regional patterns in the last two to three centuries, including two multidecadal oscillations at quasi-20-year and quasi-70-year timescales revealed by signal analysis from wavelet transform. Climatic anomalous events on the decadal timescale were identified based on the two oscillations when their positive (or negative) phases coincide with each other to amplify amplitude. The coldest event occurred in the decade of 1965-1975 in eastern China, while the periods of 1920-1930, 1940-1950, and 1988-2000 appeared to be warmer in most parts of China. For the precipitation series in northern China, the dry anomalous event was found in the late 1920s, while the wet anomalous event occurred in the 1950s. A severe drought in 1927-1929 in northern China coincided with the anomalous warm and dry decade, caused large-scale famine in nine provinces over northern China. Climatic anomalous events with a warm-dry or cold-wet association in the physical climate system would potentially cause severe negative impacts on natural ecosystem in the key vulnerable region over northern China. The spatial pattern of summer rainfall anomalies in the eastern China monsoon region showed an opposite variations in phase between the Yellow River Valley (North China) and the mid-low Yangtze River Valley as well as accompanied the shift of the northernmost monsoon boundary. Climatic regime shifts for different time points in the last 200 years were identified. In North China, transitions from dry to wet periods occurred around 1800, 1875, and 1940 while the transitions from wet to dry periods appeared around 1840, 1910, and the late 1970s. The reversal transition in these time points can also be found in the lower Yangtze River. Climatic regime shifts in China were linked to the interaction of mid- and low latitude atmospheric circulations (the westerly flow and the monsoon flow) when they cross
Instability of anisotropic cosmological solutions supported by vector fields.
Himmetoglu, Burak; Contaldi, Carlo R; Peloso, Marco
2009-03-20
Models with vector fields acquiring a nonvanishing vacuum expectation value along one spatial direction have been proposed to sustain a prolonged stage of anisotropic accelerated expansion. Such models have been used for realizations of early time inflation, with a possible relation to the large scale cosmic microwave background anomalies, or of the late time dark energy. We show that, quite generally, the concrete realizations proposed so far are plagued by instabilities (either ghosts or unstable growth of the linearized perturbations) which can be ultimately related to the longitudinal vector polarization present in them. Phenomenological results based on these models are therefore unreliable.
Soft-/rapidity- anomalous dimensions correspondence
Vladimirov, Alexey A
2016-01-01
We establish a correspondence between ultraviolet singularities of soft factors for multi-particle production and rapidity singularities of soft factors for multi-parton scattering. This correspondence is a consequence of a conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way provides a proof of rapidity renormalization procedure for multi-parton scattering soft factors (including the transverse momentum dependent (TMD) soft factor as a special case). As a by-product we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop rapidity anomalous dimensions for TMD and a general multi-parton scattering are derived.
Minimal flavour violation and anomalous top decays
Energy Technology Data Exchange (ETDEWEB)
Faller, Sven; Mannel, Thomas [Theoretische Physik 1, Department Physik, Universitaet Siegen, D-57068 Siegen (Germany); Gadatsch, Stefan [Nikhef, National Institute for Subatomatic Physics, P.O. Box 41882, 1009 Amsterdam (Netherlands)
2013-07-01
Any experimental evidence of anomalous top-quark couplings will open a window to study physics beyond the standard model (SM). However, all current flavour data indicate that nature is close to ''minimal flavour violation'', i.e. the pattern of flavour violation is given by the CKM matrix, including the hierarchy of parameters. In this talk we present results of the conceptual test of minimal flavour violation for the anomalous charged as well as flavour changing top-quark couplings. Our analysis is embedded in two-Higgs doublet model of type II (2HDM-II). Including renormalization effects, we calculate the top decay rates taking into account anomalous couplings constrained by minimal flavour violation.
Neoclassical Viscosities and Anomalous Flows in Stellarators
Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.
2009-05-01
We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).
Anomalous magnetohydrodynamics in the extreme relativistic domain
Giovannini, Massimo
2016-01-01
The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...
Electroweak Baryogenesis with Anomalous Higgs Couplings
Kobakhidze, Archil; Yue, Jason
2015-01-01
We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the 'symmetric' phase and are suppressed in the 'broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomal...
Anisotropic thermal conductivity of magnetic fluids
Institute of Scientific and Technical Information of China (English)
Xiaopeng Fang; Yimin Xuan; Qiang Li
2009-01-01
Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan
2015-01-20
Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.
Anisotropic nanomaterials: structure, growth, assembly, and functions.
Sajanlal, Panikkanvalappil R; Sreeprasad, Theruvakkattil S; Samal, Akshaya K; Pradeep, Thalappil
2011-01-01
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.
Anisotropic nanomaterials: structure, growth, assembly, and functions
Directory of Open Access Journals (Sweden)
Panikkanvalappil R. Sajanlal
2011-02-01
Full Text Available Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D, two-dimensional (2D, and three-dimensional (3D arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.
Anomalous Feeding of the Left Upper Lobe.
Hazzard, Christopher; Itagaki, Shinobu; Lajam, Fouad; Flores, Raja M
2016-09-01
We report the case of a 53-year-old woman who presented with massive hemoptysis. Computed tomographic angiography revealed an anomalous vessel arising from the abdominal aorta, coursing anteriorly and through the diaphragm, and feeding the left upper lobe. At operation the vessel was found to anastomose to the left upper lobe lingula, which contained multiple vascular abnormalities and arteriovenous fistulas. The vessel was ligated, and the affected portion of the left upper lobe was resected. Anomalous systemic arterial supply of an upper lobe is an especially rare form of a Pryce type 1 abnormality. Recognition of these unusual anatomic variants is crucial to successful treatment and avoidance of adverse events.
A potassium Faraday anomalous dispersion optical filter
Yin, B.; Shay, T. M.
1992-01-01
The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.
Gravitational stresses in anisotropic rock masses
Amadei, B.; Savage, W.Z.; Swolfs, H.S.
1987-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Directory of Open Access Journals (Sweden)
Harry H. Hilton
2012-01-01
Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Anisotropic non-gaussianity with noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Nautiyal, Akhilesh
2014-01-20
We study single field inflation in noncommutative spacetime and compute two-point and three-point correlation functions for the curvature perturbation. We find that both power spectrum and bispectrum for comoving curvature perturbation are statistically anisotropic and the bispectrum is also modified by a phase factor depending upon the noncommutative parameters. The non-linearity parameter f{sub NL} is small for small statistical anisotropic corrections to the bispectrum coming from the noncommutative geometry and is consistent with the recent PLANCK bounds. There is a scale dependence of f{sub NL} due to the noncommutative spacetime which is different from the standard single field inflation models and statistically anisotropic vector field inflation models. Deviations from statistical isotropy of CMB, observed by PLANCK can tightly constraint the effects due to noncommutative geometry on power spectrum and bispectrum.
Leith diffusion model for homogeneous anisotropic turbulence
Rubinstein, Robert; Clark, Timothy; Kurien, Susan
2016-11-01
A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.
Theory of Compton scattering by anisotropic electrons
Poutanen, Juri
2010-01-01
Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...
Anisotropic inflation in the Finsler spacetime
Energy Technology Data Exchange (ETDEWEB)
Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Wang, Sai [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Chang, Zhe [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China)
2015-06-15
We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for the quantum fluctuation of the inflation field. It depends not only on the magnitude of the wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and we obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in the angular correlation coefficients if l' = l + 1. The numerical results of the angular correlation coefficients are given describing the anisotropic effect. (orig.)
Anisotropic Hanle line shape via magnetothermoelectric phenomena
Das, K. S.; Dejene, F. K.; van Wees, B. J.; Vera-Marun, I. J.
2016-11-01
We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times for in-plane and out-of-plane spin orientations as for the case of two-dimensional materials like graphene, but it is unexpected in a polycrystalline metallic channel. Systematic measurements as a function of temperature and channel length, combined with both analytical and numerical thermoelectric transport models, demonstrate that the anisotropy in the Hanle line shape is magnetothermal in origin, caused by the anisotropic modulation of the Peltier and Seebeck coefficients of the ferromagnetic electrodes. Our results call for the consideration of such magnetothermoelectric effects in the study of anisotropic spin relaxation.
Convective dissolution in anisotropic porous media
de Paoli, Marco; Zonta, Francesco; Soldati, Alfredo
2016-11-01
Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability γ (the vertical-to-horizontal permeability ratio) on the distribution of solutal concentration in fluid saturated porous medium. Interestingly, we find that the finite-time (short-term) amount of solute that can be dissolved in anisotropic sedimentary rocks (γ < 1 , i.e. vertical permeability smaller than horizontal permeability) is much larger than in isotropic rocks. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. CINECA Supercomputing Centre and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from Regione Autonoma Friuli Venezia Giulia under Grant PAR FSC 2007/2013 is also gratefully acknowledged.
Anisotropic selection in cellular genetic algorithms
Simoncini, David; Collard, Philippe; Clergue, Manuel
2008-01-01
In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.
Micromechanics and dislocation theory in anisotropic elasticity
Lazar, Markus
2016-01-01
In this work, dislocation master-equations valid for anisotropic materials are derived in terms of kernel functions using the framework of micromechanics. The second derivative of the anisotropic Green tensor is calculated in the sense of generalized functions and decomposed into a sum of a $1/R^3$-term plus a Dirac $\\delta$-term. The first term is the so-called "Barnett-term" and the latter is important for the definition of the Green tensor as fundamental solution of the Navier equation. In addition, all dislocation master-equations are specified for Somigliana dislocations with application to 3D crack modeling. Also the interior Eshelby tensor for a spherical inclusion in an anisotropic material is derived as line integral over the unit circle.
Obtuse triangle suppression in anisotropic meshes
Sun, Feng
2011-12-01
Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
Constraining the Anisotropic Expansion of Universe
Cai, Rong-Gen; Tang, Bo; Tuo, Zhong-Liang
2013-01-01
We study the possibly existing anisotropy in the accelerating expansion Universe with the Union2 Type Ia supernovae data and Gamma-ray burst data. We construct a direction-dependent dark energy model and constrain the anisotropy direction and strength of modulation. We find that the maximum anisotropic deviation direction is $(l,\\,b)=(126^{\\circ},\\,13^{\\circ})$ (or equivalently $(l,\\,b)=(306^{\\circ},\\,-13^{\\circ})$), and the anisotropy level is $g_0=0.030_{+0.010}^{-0.030}$ (obtained using Union2 data, at $1\\sigma$ confidence level). Our results do not show strong evidence for the anisotropic dark energy model. We also discuss potential methods that may distinguish the peculiar velocity field from the anisotropic dark energy model.
Pratt, J; Mueller, W -C; Chapman, S C; Watkins, N W
2014-01-01
Local regions of anomalous particle dispersion, and intermittent events that occur in turbulent flows can greatly influence the global statistical description of the flow. These local behaviors can be identified and analyzed by comparing the growth of neighboring convex hulls of Lagrangian tracer particles. Although in our simulations of homogeneous turbulence the convex hulls generally grow in size, after the Lagrangian particles that define the convex hulls begin to disperse, our analysis reveals short periods when the convex hulls of the Lagrangian particles shrink, evidence that particles are not dispersing simply. Shrinkage can be associated with anisotropic flows, since it occurs most frequently in the presence of a mean magnetic field or thermal convection. We compare dispersion between a wide range of statistically homogeneous and stationary turbulent flows ranging from homogeneous isotropic Navier-Stokes turbulence over different configurations of magnetohydrodynamic turbulence and Boussinesq convect...
Analytic bootstrap at large spin
Kaviraj, Apratim; Sinha, Aninda
2015-01-01
We use analytic conformal bootstrap methods to determine the anomalous dimensions and OPE coefficients for large spin operators in general conformal field theories in four dimensions containing a scalar operator of conformal dimension $\\Delta_\\phi$. It is known that such theories will contain an infinite sequence of large spin operators with twists approaching $2\\Delta_\\phi+2n$ for each integer $n$. By considering the case where such operators are separated by a twist gap from other operators at large spin, we analytically determine the $n$, $\\Delta_\\phi$ dependence of the anomalous dimensions. We find that for all $n$, the anomalous dimensions are negative for $\\Delta_\\phi$ satisfying the unitarity bound, thus extending the Nachtmann theorem to non-zero $n$. In the limit when $n$ is large, we find agreement with the AdS/CFT prediction corresponding to the Eikonal limit of a 2-2 scattering with dominant graviton exchange.
Anisotropic Heisenberg model in thin film geometry
Energy Technology Data Exchange (ETDEWEB)
Akıncı, Ümit
2014-01-01
The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.
Enhanced-transmission metamaterials as anisotropic plates
Baida, F. I.; Boutria, M.; Oussaid, R.; van Labeke, D.
2011-07-01
We present an original design of anisotropic metamaterial plates exhibiting extraordinary transmission through perfectly conductor metallic screens perforated by a subwavelength double-pattern rectangular aperture array. The polarization properties of the fundamental guided mode inside the apertures are at the origin of the anisotropy. The metal thickness is a key parameter that is adjusted in order to get the desired value of the phase difference between the two transversal electromagnetic field components. As an example, we treat the case of a half-wave plate having 92% transmission coefficient. Such a study can be easily extended to design anisotropic plates operating in terahertz or microwave domains.
One-Dimensional Anisotropic Band Gap Structure
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.
Anisotropic Gold Nanocrystals:. Synthesis and Characterization
Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.
In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.
Anisotropic strange star with de Sitter spacetime
Kalam, Mehedi; Rahaman, Farook; Ray, Saibal; Hossein, Sk. Monowar; Karar, Indrani; Naskar, Jayanta
2012-12-01
Stars can be treated as self-gravitating fluid. Krori and Barua (J. Phys. A., Math. Gen. 8:508, 1975) gave an analytical solution to that kind of fluids. In this connection, we propose a de Sitter model for an anisotropic strange star with the Krori-Barua spacetime. We incorporate the existence of the cosmological constant on a small scale to study the structure of anisotropic strange stars and come to the conclusion that this doping is very well compatible with the well-known physical features of strange stars.
Relativistic Solutions of Anisotropic Compact Objects
Paul, Bikash Chandra
2016-01-01
We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.
Anisotropic nanomaterials preparation, properties, and applications
Li, Quan
2015-01-01
In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi
An anisotropic constitutive model with biaxial-tension coupling for woven composite reinforcements
Yao, Yuan; Huang, Xiaoshuang; Peng, Xiongqi; Gong, Youkun
2016-10-01
Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model with biaxial tension coupling for woven composite reinforcements is developed. Experimental data from literature are used to identify material parameters in the constitutive model for a specific balanced plain woven fabric. The developed model is validated by comparing numerical results with experimental biaxial tension data under different stretch ratios and picture-frame shear data, demonstrating that the developed constitutive model is highly suitable to characterize the highly non-linear and strongly anisotropic mechanical behaviors of woven composite reinforcements under large deformation.
Membrane-mediated interaction between strongly anisotropic protein scaffolds.
Directory of Open Access Journals (Sweden)
Yonatan Schweitzer
2015-02-01
Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.
Anomalous human behavior detection: An Adaptive approach
Leeuwen, C. van; Halma, A.; Schutte, K.
2013-01-01
Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous b
Anomalous pulmonary venous return: A case report
Energy Technology Data Exchange (ETDEWEB)
Park, Gyeong Min; Kang, MinJin; Lee, Han Bee; Bae, Kyung Eun; Lee, Jaehe; Kim, Jae Hyung; Jeong, Myeong Ja; Kang, Tae Kyung [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)
2013-10-15
Partial anomalous pulmonary venous return is a type of congenital pulmonary venous anomaly. We present a rare type of partial pulmonary venous return, subaortic vertical vein drains left lung to superior vena cava, accompanying hypoplasia of the ipsilateral lung and pulmonary artery. We also review the previous report and relationship of these structures.
Anomalous Hall Effect for chiral fermions
Zhang, P -M
2014-01-01
Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.
ACS SBC Recovery from Anomalous Shutdown
Wheeler, Thomas
2013-10-01
This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.
Total least squares for anomalous change detection
Energy Technology Data Exchange (ETDEWEB)
Theiler, James P [Los Alamos National Laboratory; Matsekh, Anna M [Los Alamos National Laboratory
2010-01-01
A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin
2014-01-01
A new high-energy pulse compressor uses self-defocusing spectral broadening in anomalously dispersive quadratic nonlinear crystals, followed by positive group-delay-dispersion compensation. Compression to sub-50 fs is possible from Joule-class 1.03 µm femtosecond amplifiers in large-aperture KDP....
Search for anomalous $W \\;tb$ couplings in single top quark production at D0
Indian Academy of Sciences (India)
Jyoti Joshi; Suman Beri; for the D0 Collaboration
2012-11-01
The large mass of the top quark, close to the electroweak symmetry-breaking scale, makes it a good candidate for probing physics beyond the Standard Model, including possible anomalous couplings. D0 has made measurements of single top quark production using 5.4 fb-1 of integrated luminosity. The data are examined to study the Lorentz structure of the $W tb$ coupling. It is found that the data prefer the left-handed vector coupling and set upper limits on the anomalous couplings.
Anomalous state of a 2DEG in vicinal Si MOSFET in high magnetic fields
Kvon, Z. D.; Proskuryakov, Y. Y.; Savchenko, A. K.
2003-01-01
We report the observation of an anomalous state of a 2D electron gas near a vicinal surface of a silicon MOSFET in high magnetic fields. It is characterised by unusual behaviour of the conductivities $\\sigma_{xx}$ and $\\sigma_{xy}$, which can be described as a collapse of the Zeeman spin splitting accompanied by a large peak in $\\sigma_{xx}$ and an anomalous peak in $ \\sigma_{xy}$. It occurs at densities corresponding to the position of the Fermi level above the onset of the superlattice mini...
QCD radiation patterns in WH and WZ production and anomalous coupling measurements
Energy Technology Data Exchange (ETDEWEB)
Campanario, Francisco [Theory Division, IFIC, University of Valencia-CSIC, E-46980 Paterna, Valencia (Spain); Roth, Robin; Zeppenfeld, Dieter [Institute for Theoretical Physics, KIT, 76128 Karlsruhe (Germany)
2015-07-01
We present a study of QCD radiation for WH and WZ production at the LHC. Regions with high sensitivity to anomalous couplings are identified by considering the contribution of jet activity to the transverse energy. For this, WHj and WZj production cross sections are calculated at NLO QCD using the Monte Carlo program VBFNLO. Based on the observations, we propose a dynamical jet veto to enhance the sensitivity to anomalous couplings, especially in WZ production. The dynamical jet veto avoids large logarithms, which are typical for a fixed jet veto, hence, it provides more reliable predictions.
Anomalous transports in a time-delayed system subjected to anomalous diffusion
Chen, Ru-Yin; Tong, Lu-Mei; Nie, Lin-Ru; Wang, Chaojie; Pan, Wanli
2017-02-01
We investigate anomalous transports of an inertial Brownian particle in a time-delayed periodic potential subjected to an external time-periodic force, a constant bias force, and the Lévy noise. By means of numerical calculations, effect of the time delay and the Lévy noise on its mean velocity are discussed. The results indicate that: (i) The time delay can induce both multiple current reversals (CRs) and absolute negative mobility (ANM) phenomena in the system; (ii) The CRs and ANM phenomena only take place in the region of superdiffusion, while disappear in the regions of normal diffusion; (iii) The time delay can cause state transition of the system from anomalous →normal →anomalous →normal →anomalous →normal transport in the case of superdiffusion.
Barakat, A. R.; Schunk, R. W.
1982-01-01
A wide variety of plasma flow conditions is found in aeronomy and space plasma physics. Transport equations based on an isotropic Maxwellian vilecity distribution function can be used to describe plasma flows which contain 'small' temperature anisotropies. However, for plasma flows characterized by large temperature anisotropies, transport equations based on an anisotropic bi-Maxwellian (or two-temperature) velocity distribution function are expected to provide a much better description of the plasma transport properties. The present investigation is concerned with the extent to which transport equations based on both Maxwellian and bi-Maxwellian series expansions can describe plasma flows characterized by non-Maxwellian velocity distributions, giving particular attention to a modelling of the anisotropic character of the distribution function. The obtained results should provide clues as to the extent to which a given series expansion can account for the anisotropic character of a plasma.
Anisotropic electron-beam damage and the collapse of carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Crespi, V.H.; Chopra, N.G.; Cohen, M.L.; Zettl, A.; Louie, S.G. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States)]|[Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
1996-08-01
Irradiation of multiwalled carbon nanotubes with the 800-keV electron beam of a transmission electron microscope induces anisotropic collapse of the nanotube. Tight-binding molecular-dynamics simulations of tube response following momentum transfer from large-angle electron-nuclear collisions reveal a strongly anisotropic threshold for atomic displacement. The theoretical displacement threshold for an impulse perpendicular to the local tangent plane of a single-walled tube is roughly half the damage threshold for impulses within the tangent plane. The electron beam preferentially damages the front and back of the nanotube, producing the observed anisotropic collapse perpendicular to the direction of the beam. The attraction of opposite faces of the inner wall then accelerates the collapse. {copyright} {ital 1996 The American Physical Society.}
Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films
Energy Technology Data Exchange (ETDEWEB)
Althammer, Matthias; Krupp, Alexander T.; Brenninger, Thomas; Venkateshvaran, Deepak; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm, Ulm (Germany)
2011-07-01
In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.
Towards a Better Understanding of the Anomalous Hall Effect
Yue, Di; Jin, Xiaofeng
2017-01-01
Recent experimental efforts to identify the intrinsic and extrinsic contributions in the anomalous Hall effect are reviewed. Benefited from the experimental control of artificial impurity density in single crystalline magnetic thin films, a comprehensive physical picture of the anomalous Hall effect involving multiple competing scattering processes has been established. Some new insights into the microscopic mechanisms of the anomalous Hall effect are discussed.
Guo, Kai; Liu, Jianlong; Zhang, Yan; Liu, Shutian
2012-12-17
The dispersion of a hyperbolic anisotropic metamaterial (HAM) and the chromatic aberration of light focusing in this kind of HAM are studied. The HAM is formed by alternately stacking metal and dielectric layers. The rules of materials and filling factors affecting the optical property of HAM are given. The chromatic aberration of light focusing is demonstrated both theoretically and numerically. By comparing the theory with the simulation results, the factors influencing the focal length, including the heat loss of material and low spatial frequency modes, are discussed. The investigation emphasizes the anomalous properties, such as chromatic aberration and low spatial frequency modes influencing focus position, of HAM compared with that in conventional lens. Based on the analysis, the possibility of using HAM to focus light with two different wavelengths at the same point is studied.
Twist angle effect on anisotropic mobility of hexagonal dislocation networks in {110} of alpha-iron
Energy Technology Data Exchange (ETDEWEB)
Yang, Jinbo [ORNL; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL
2012-01-01
Atomistic studies of anisotropic mobility of hexagonal dislocation networks (HDNs) in a series of twist boundaries (1 -1 0) has been performed in alpha-iron. In contrast with previous work that neglected the twist angle effect, we find when the twist angle approaches to 0, the resistance to the HDN motion could become much lower than Peierls stress of edge dislocations <1 1 1>/2 when the HDN moves along [0 0 1], but beyond Peierls stress of screw dislocations <1 1 1>/2 when the HDN moves along other directions. Vector form of Orowan equation and differential displacement map of dislocation core are used to analyse the behaviour of these boundary dislocations. This work seems favourable for understanding the absence of anomalous slip in alpha-iron.
Perpendicular magnetic anisotropy in Co2MnGa and its anomalous Hall effect
Ludbrook, B. M.; Ruck, B. J.; Granville, S.
2017-02-01
We report perpendicular magnetic anisotropy in the ferromagnetic Heusler alloy Co2MnGa in a MgO/Co2MnGa/Pd trilayer stack for Co2MnGa thicknesses up to 3.5 nm. There is a thickness- and temperature-dependent spin reorientation transition from perpendicular to in-plane magnetic anisotropy, which we study through the anomalous Hall effect. From the temperature dependence of the anomalous Hall effect, we observe the expected scaling of ρx y A H E with ρxx, suggesting that the intrinsic and side-jump mechanisms are largely responsible for the anomalous Hall effect in this material.
Numerical investigation of nanoparticles transport in anisotropic porous media.
Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu
2015-10-01
In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties is an essential feature that exists almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.
Numerical investigation of nanoparticles transport in anisotropic porous media
Salama, Amgad
2015-07-13
In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.
Observational signatures of anisotropic inflationary models
Ohashi, Junko; Tsujikawa, Shinji
2013-01-01
We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F_{mu nu}F^{mu nu} and (ii) a two-form kinetic term H_{mu nu lambda}H^{mu nu lambda}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g_* are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n_s in both models. In the light of the recent Planck bounds of n_s and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector ...
Spin Wave Theory of Strongly Anisotropic Magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1977-01-01
A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...
ANISOTROPIC PARABOLIC EQUATIONS WITH MEASURE DATA
Institute of Scientific and Technical Information of China (English)
Li Fengquan; Zhao Huixiu
2001-01-01
In this paper, we prove the existence of solutions to anisotropic parabolic equations with right hand side term in the bounded Radon measure M(Q) and the initial condition in M(Ω) or in Lm space (with m "small").
Orphan-Free Anisotropic Voronoi Diagrams
Canas, Guillermo D
2011-01-01
We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.
Anisotropic Interactions between Cold Rydberg Atoms
2015-09-28
AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the
Frontiers in Anisotropic Shock-Wave Modeling
2012-02-01
contact info: Tel.: +44 07840355383, Fax: +44 (0) 1234 758217. Studies of anisotropic materials and the discovery of various novel and unexpected phenomena...19 Figure 4. The Kevlar ...Epoxy IFPT simulated and experimental back surface velocities for 572, 788, and 1015 m/s. The experimental data Kevlar /Epoxy materials recovered after
Surface instabilities during straining of anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang; Richelsen, Ann Bettina
2006-01-01
The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...
The Kepler Problem with Anisotropic Perturbations
Diacu, Florin; Santoprete, Manuele
2009-01-01
We study a 2-body problem given by the sum of the Newtonian potential and an anisotropic perturbation that is a homogeneous function of degree $-\\beta$, $\\beta\\ge 2$. For $\\beta>2$, the sets of initial conditions leading to collisions/ejections and the one leading to escapes/captures have positive measure. For $\\beta>2$ and $\\beta\
A discrete anisotropic model for Scheibe aggregates
Directory of Open Access Journals (Sweden)
O. Bang
1991-05-01
Full Text Available A discrete anisotropic nonlinear model for the dynamics of Scheibe aggregates is investigated. The collapse of the collective excitations found by Möbius and Kuhn is described as a shrinking ring wave, which is eventually absorbed by an acceptor molecule. An optimal acceptor loss is found.
Anomalous Dissipative Quantum Harmonic Oscillator
Institute of Scientific and Technical Information of China (English)
CHEN Dian-Yong; BAI Zhan-Wu; DONG Yu-Bing
2008-01-01
We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as r-4and r-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.
Anomalous radon emanation linked to preseismic electromagnetic phenomena
Directory of Open Access Journals (Sweden)
Y. Omori
2007-10-01
Full Text Available Anomalous emanation of radon (^{222}Rn was observed preceding large earthquakes and is considered to be linked to preseismic electromagnetic phenomena (e.g. great changes of atmospheric electric field and ionospheric disturbances. Here we analyze atmospheric radon concentration and estimate changes of electrical conditions in atmosphere due to preseismic radon anomaly. The increase of radon emanation obeys crustal damage evolution, following a power-law of time-to-earthquake. Moreover, the radon emanation decreases the atmospheric electric field by 40%, besides influencing the maximum strength of atmospheric electric field by 10^{4}–10^{5} V/m enough to trigger ionospheric disturbances. These changes are within the ranges observed or explaining electromagnetic phenomena associated with large earthquakes.
Using support vector machines for anomalous change detonation
Energy Technology Data Exchange (ETDEWEB)
Theiler, James P [Los Alamos National Laboratory; Steinwart, Ingo [UNIV STUTTGART; Llamocca, Daniel [UNM
2010-01-01
We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at
Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces
Zhu, Hongfei; Semperlotti, Fabio
2016-07-01
The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.
Antonov, N V; Kostenko, M M
2015-11-01
The field-theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝ δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant.
Goychuk, Igor; Kharchenko, Vasyl O; Metzler, Ralf
2014-01-01
Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.
[Anomalous pregnancies in ancient medicine].
Gazzaniga, Valentina
2010-01-01
In ancient Greek medicine female physiology is determined by a particular state of non-steady equilibrium, largely based on pregnancy and lactation, presented as the only balanced and healthy periods in women's life. Nonetheless, pregnancy can be also a pathological moment, in particular referring to specific alterations of its 'normal time' ('seven-months', 'eight-months' and 'ten-months' children). The article analyzes the well-known case of myle, an abnormal pregnancy developing in three and sometimes four years, non resolving in a normal delivery, but often in a dramatic haemorrhagic flux. The author compares Hippocratic and Aristotelic testimonies about myle and abnormal pregnancies with the evidence fournished by the historical-religious recent studies about Hera and her parthenogenetic, monstrous children.
Anomalous/Fractional Diffusion in Particle Acceleration Processes.
Bian, Nicolas
2016-07-01
This talk is aimed at reviewing a certain number of theoretical aspects concerning the relation between stochastic acceleration and anomalous/fractional transport of particles. As a matter of fact, anomalous velocity-space diffusion is required within any stochastic acceleration scenario to explain the formation of the ubiquitous power-law tail of non-thermal particles, as observed e.g. in the accelerated distribution of electrons during solar flares. I will establish a classification scheme for stochastic acceleration models involving turbulence in magnetized plasmas. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the spatial transport (possibly fractional) of charged particles in the acceleration region. I will also discuss recent attempts to obtain spatially non-local and fractional diffusion equations directly from first principles, starting either from the Fokker-Planck equation in the large mean free-path regime or the Boltzmann equation involving velocity-space relaxation toward the kappa distribution instead of the standard Maxwellian distribution.
Indication of anomalous heat energy production in a reactor device
Levi, Giuseppe; Hartman, Torbjörn; Höistad, Bo; Pettersson, Roland; Tegnér, Lars; Essén, Hanno
2013-01-01
An experimental investigation of possible anomalous heat production in a special type of reactor tube named E-Cat HT is carried out. The reactor tube is charged with a small amount of hydrogen loaded nickel powder plus some additives. The reaction is primarily initiated by heat from resistor coils inside the reactor tube. Measurement of the produced heat was performed with high-resolution thermal imaging cameras, recording data every second from the hot reactor tube. The measurements of electrical power input were performed with a large bandwidth three-phase power analyzer. Data were collected in two experimental runs lasting 96 and 116 hours, respectively. An anomalous heat production was indicated in both experiments. The 116-hour experiment also included a calibration of the experimental set-up without the active charge present in the E-Cat HT. In this case, no extra heat was generated beyond the expected heat from the electric input. Computed volumetric and gravimetric energy densities were found to be fa...
Anomalous behaviour of the Indian summer monsoon 2009
Indian Academy of Sciences (India)
B Preethi; J V Revadekar; R H Kripalani
2011-10-01
The Indian subcontinent witnessed a severe monsoon drought in the year 2009. India as a whole received 77% of its long period average during summer monsoon season (1 June to 30 September) of 2009, which is the third highest deficient all India monsoon season rainfall year during the period 1901–2009. Therefore, an attempt is made in this paper to study the characteristic features of summer monsoon rainfall of 2009 over the country and to investigate some of the possible causes behind the anomalous behaviour of the monsoon. Presence of El Niño like conditions in the Pacific and warming over the equatorial Indian Ocean altered the circulation patterns and produced an anomalous low level convergence and ascending motion over the Indian Ocean region and large scale subsidence over the Indian landmass. Furthermore, the crossequatorial flow was weak, the monsoon was dominated by the slower 30–60 day mode, and the synoptic systems, which formed over the Bay of Bengal and the Arabian Sea, did not move inland. All the above features resulted in less moisture supply over the Indian landmass, resulting in subdued rainfall activity leading to a severe monsoon drought during 2009.
Laser-ion acceleration via anomalous electron heating
Yogo, A; Iwata, N; Tosaki, S; Morace, A; Arikawa, Y; Fujioka, S; Nishimura, H; Sagisaka, A; Johzaki, T; Matsuo, K; Kamitsukasa, N; Kojima, S; Nagatomo, H; Nakai, M; Shiraga, H; Murakami, M; Tokita, S; Kawanaka, J; Miyanaga, N; Yamanoi, K; Norimatsu, T; Sakagami, H; Bulanov, S V; Kondo, K; Azechi, H
2016-01-01
Using a kilojoule class laser, we demonstrate for the first time that high-contrast picosecond pulses are advantageous for ion acceleration. We show that a laser pulse with optimum duration and a large focal spot accelerates electrons beyond the ponderomotive energy. This anomalous electron heating enables efficient ion acceleration reaching 52 MeV at an intensity of 1.2X10^19 Wcm^-2. The proton energy observed agrees quantitatively with a one-dimensional plasma expansion model newly developed by taking the anomalous heating effect into account. The heating process is confirmed by both measurements with an electron spectrometer and a one-dimensional particle-in-cell simulation. By extending the pulse duration to 6 ps, 5% energy conversion efficiency to protons (50 J out of 1 kJ laser energy) is achieved with an intensity of 10^18-Wcm^-2. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.
Anomalous thermal expansion in $\\alpha$-titanium
Souvatzis, P.; O. Eriksson; M. I. Katsnelson
2007-01-01
We provide a complete quantitative explanation for the anisotropic thermal expansion of hcp Ti at low temperature. The observed negative thermal expansion along the c-axis is reproduced theoretically by means of a parameter free theory which involves both the electron and phonon contributions to the free energy. The thermal expansion of titanium is calculated and found to be negative along the c-axis for temperatures below $\\sim$ 170 K, in good agreement with observations. We have identified ...
An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets
Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo
2015-01-01
Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.
Gaussian covariance matrices for anisotropic galaxy clustering measurements
Grieb, Jan Niklas; Sánchez, Ariel G.; Salazar-Albornoz, Salvador; Dalla Vecchia, Claudio
2016-04-01
Measurements of the redshift-space galaxy clustering have been a prolific source of cosmological information in recent years. Accurate covariance estimates are an essential step for the validation of galaxy clustering models of the redshift-space two-point statistics. Usually, only a limited set of accurate N-body simulations is available. Thus, assessing the data covariance is not possible or only leads to a noisy estimate. Further, relying on simulated realizations of the survey data means that tests of the cosmology dependence of the covariance are expensive. With these points in mind, this work presents a simple theoretical model for the linear covariance of anisotropic galaxy clustering observations with synthetic catalogues. Considering the Legendre moments (`multipoles') of the two-point statistics and projections into wide bins of the line-of-sight parameter (`clustering wedges'), we describe the modelling of the covariance for these anisotropic clustering measurements for galaxy samples with a trivial geometry in the case of a Gaussian approximation of the clustering likelihood. As main result of this paper, we give the explicit formulae for Fourier and configuration space covariance matrices. To validate our model, we create synthetic halo occupation distribution galaxy catalogues by populating the haloes of an ensemble of large-volume N-body simulations. Using linear and non-linear input power spectra, we find very good agreement between the model predictions and the measurements on the synthetic catalogues in the quasi-linear regime.
Anisotropic Elastic Properties of Muscle-like Nematic Elastomers
Ratna, Banahalii; Thomseniii, Donald L.; Shenoy, Devanand; Srinivasan, Amritha; Keller, Patrick
2001-03-01
De Gennes suggested in 1997 that the liquid crystal elastomers are an excellent framework to mimic muscular action. We have prepared anisotropic freestanding films of nematic elastomers from laterally attached side-chain polymers that show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When the order parameter drops at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. Dynamic mechanical data along directions parallel and perpendicular to the optic axis, show anisotropic stress-strain behavior. The film exhibits soft elasticity when strained in the perpendicular direction when the liquid crystal mesogens reorient without appreciable stress build up. Thermostrictive studies in the parallel direction show 40constriction at the nematic-isotropic phase transition. Isometric studies show that the elastic energy stored is purely entropic in origin and the elastomer acts like a spring with unusually large spring constant at the NI transition. The maximum stress measured is 300kPa. A strain rate of 5s-1 is estimated from shear relaxation studies.
Effect of Interplanetary Transients on Cosmic Ray Anisotropic Variations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the present work the cosmic ray intensity data recorded with ground-based neutron monitor at Deep River has investigated taking into account the associated interplanetary magnetic field and solar wind plasma data during 1981-1994. A large number of days having abnormally high/low amplitudes for successive number of five or more days as compared to annual average amplitude of diurnal anisotropy have been taken as high/low amplitude anisotropic wave train events (HAE/LAE). The amplitude of the diurnal anisotropy of these events is found to increase on the days of magnetic cloud as compared to the days prior to the event and it found to decrease during the later period of the event as the cloud passes the Earth. The High-Speed Solar Wind Streams (HSSWS) do not play any significant role in causing these types of events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic ray decreases. Hα solar flares have a good positive correlation with both amplitude and direction of the anisotropy for HAEs,whereas PMSs have a good positive correlation with both amplitude and direction of the anisotropy for LAEs.The source responsible for these unusual anisotropic wave trains in CR has been proposed.
Roughness kinetic and multiaffinity of anisotropic etched silicon
Hosseinabadi, S.; Rajabi, M.
2017-02-01
The effect of etching time (20-200 min) on surface roughness, statistical and fractal properties of silicon wafers during anisotropic chemical etching by KOH is investigated experimentally and theoretically. The evolution of surface morphology of silicon wafers during an anisotropic chemical etching is investigated by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and statistical methods. FESEM investigation shows the formation of pyramid like silicon micro structures that disappear in large time scales. The surface roughness increases and decreases periodically in time with a decreasing exponentially trend. The statistical analysis were performed by calculating the roughness and correlation length, distribution of height fluctuations and two-dimensional multifractal detrending moving average (MFDMA). The fractal nature of silicon wafer changes from mono fractal to multi fractal scaling by etching process and formation of pyramid like silicon nanostructures on it. The strength of multi-fractallity has not an increasing monotonic behavior. The enhancement of irregularities could be a reason for reduction of surface roughness and structure downfall.
The TT, TB, EB and BB correlations in anisotropic inflation
Chen, Xingang; Firouzjahi, Hassan; Wang, Yi
2014-01-01
Recently the BICEP2 experiment has detected the B-mode in the CMB polarization map. The ongoing and future experiments will measure the B-mode from different sky coverage and frequency bands, with the potential to reveal non-trivial features in polarization map. In this work we study the TT, TB, EB and BB correlations associated with the B-mode polarization of CMB map in models of charged anisotropic inflation. The model contains a complex inflaton field which is charged under the $U(1)$ gauge. We calculate the statistical anisotropies generated in the power spectra of the curvature perturbation, the tensor perturbation and their cross-correlation. It is shown that the asymmetry in tensor power spectrum is a very sensitive probe of the gauge coupling. While the level of statistical anisotropy in temperature power spectrum can be small and satisfy the observational bounds, the interactions from the gauge coupling can induce large directional dependence in tensor modes. This will leave interesting anisotropic f...
Wang, Zhaojun; Zhou, Xiaoming
2016-12-01
The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.
Anisotropic shrinkage characteristics of tape cast alumina
Patwardhan, Jaideep Suresh
Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and
Anomalous feedback and negative domain wall resistance
Cheng, Ran; Zhu, Jian-Gang; Xiao, Di
2016-11-01
Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.
Anomalous electromagnetism of pions and magnons
Energy Technology Data Exchange (ETDEWEB)
Wiese, U.-J. [Institute for Theoretical Physics, Bern University Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2005-04-15
Pions and magnons - the Goldstone bosons of the strong interactions and of magnetism - share a number of common features. Pion and magnon fields couple anomalously to electromagnetism through the conserved Goldstone-Wilczek current of their topological Skyrmion excitations. In the pion case, this coupling gives rise to the decay of the neutral pion into two photons. In the magnon case, the anomalous coupling leads to photonmagnon conversion in an external magnetic field. A measurement of the conversion rate in quantum Hall ferromagnets determines the anyon statistics angle of baby-Skyrmions. If photon-magnon conversion also occurs in antiferromagnets, baby-Skyrmions carry electric charge and may represent the Cooper-pairs of high-temperature superconductors.
Remote sensing and characterization of anomalous debris
Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.
1997-01-01
The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.
Anomalous Coronary Artery: Run of a Lifetime.
Green, Michael Stuart; Sehgal, Sankalp; Smukler, Naomi; Suber, LaDouglas Jarod; Saththasivam, Pooven
2016-09-01
The anatomy of the coronary circulation is well described with incidence of congenital anomalies of approximately 0.3% to 1.0%. Although often incidental, 20% are life-threatening. A 25-year-old woman with syncopal episodes collapsed following a 10-km run. Coronary anatomy evaluation showed an anomalous left main coronary artery originating from the right sinus of valsalva and following a course between the aorta and the pulmonary outflow tract. Percutaneous coronary intervention was followed by eventual surgical revascularization. Abnormal course of coronary arteries plays a role in the pathogenesis of sudden death on exertion. Origin of the left main coronary from the right sinus of valsalva is a rare congenital anomaly. The expansion of the roots of the aorta and pulmonary trunk with exertion lead to compression of the coronary artery and syncope. Our patient raises awareness of a potentially fatal coronary artery path. Intraoperative identification of anomalous coronaries by utilizing intraoperative transesophageal echocardiography was critical.
Anomalous interactions at a linear collider
Indian Academy of Sciences (India)
Sudhansu S Biswal; Debajyoti Choudhury; Rohini M Godbole; Ritesh K Singh
2007-11-01
We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating at a center of mass energy of 500 GeV and with an integrated luminosity of 500 fb-1 is shown to be able to constrain the vertex at the few per cent level, with even higher sensitivity for some of the couplings. However, lack of sufficient number of observables as well as contamination from the vertex limits the precision to which anomalous part of the coupling can be probed.
Views on the Anisotropic Nature of Ilva Valley Region
Directory of Open Access Journals (Sweden)
GABRIELA-ALINA MUREŞAN
2012-01-01
Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.
Anomalous CMB polarization and gravitational chirality
Contaldi, Carlo R.; Magueijo, Joao; Smolin, Lee
2008-01-01
We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB ...
The Discovery of Anomalous Microwave Emission
Leitch, Erik M.; Readhead, A. C. R.
2013-01-01
We discuss the first detection of anomalous microwave emission, in the Owens Valley RING5M experiment, and its interpretation in the context of the ground-based cosmic microwave background (CMB) experiments of the early 1990s. The RING5M experiment was one of the first attempts to constrain the anisotropy power on sub-horizon scales, by observing a set of -size fields around the North Celestial Pole (NCP). Fields were selected close to the NCP to allow continuous integrati...
Blow up Analysis for Anomalous Granular Gases
Rey, Thomas
2012-01-01
20 p.; International audience; We investigate in this article the long-time behaviour of the solutions to the energy-dependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is ''anomalous'', in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. W...
Anomalous Mirror Symmetry Generated by Optical Illusion
Directory of Open Access Journals (Sweden)
Kokichi Sugihara
2016-04-01
Full Text Available This paper introduces a new concept of mirror symmetry, called “anomalous mirror symmetry”, which is physically impossible but can be perceived by human vision systems because of optical illusion. This symmetry is characterized geometrically and a method for creating cylindrical surfaces that create this symmetry is constructed. Examples of solid objects constructed by a 3D printer are also shown.
Anomalous enthalpy relaxation in vitreous silica
DEFF Research Database (Denmark)
Yue, Yuanzheng
2015-01-01
scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....
Anomalous dominance, immune parameters, and spatial ability.
Hassler, M
1993-02-01
In a sample of male and female subjects in late adolescence, we investigated the relationship of spatial abilities to anomalous dominance and immune parameters as suggested by Geschwind's model of cerebral lateralization (Geschwind & Galaburda, 1985) In addition to the behavioral markers asthma/allergies, migraine, and myopia, we measured IgE and Ig total in blood serum. Atypical handedness, atypical language dominance, and atypical visuospatial dominance were found to be connected with spatial giftedness, and atypical handedness was related to immune vulnerability in males. This outcome provided some support for the Geschwind model in men. In women, spatial giftedness was related to immune vulnerability, but no indicator of anomalous dominance was connected with either giftedness, or immune parameters. Thus, the central thesis of the Geschwind model, i.e., elevated prenatal testosterone effects on the developing brain cause anomalous dominance and, as side effects, spatial giftedness and immune vulnerability, and all these consequences should be related to each other, was not confirmed by our data for females.
Neoclassical and anomalous flows in stellarators
Ware, A. S.; Marine, T.; Spong, D. A.
2009-11-01
The impact of magnetic geometry and plasma profiles on flows and viscosities in stellarators is investigated. This work examines both neoclassical and anomalous flows for a number of configurations including a particular focus on the Helically Symmetric Experiment (HSX) and other quasi-symmetric configurations. Neoclassical flows and viscosities are calculated using the PENTA code [1]. For anomalous flows, the neoclassical viscosities from PENTA are used in a transport code that includes Reynolds stress flow generation [2]. This is done for the standard quasi-helically symmetric configuration of HSX, a symmetry-breaking mirror configuration and a hill configuration. The impact of these changes in the magnetic geometry on neoclassical viscosities and flows in HSX are discussed. Due to variations in neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. These effects are shown to vary as the ratio of electron to ion temperature varies. In particular, as the ion temperature increases relative to the electron flow shear is shown to increase. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).
The Anomalous Magnetic Moment of the Muon
Jegerlehner, Friedrich
2008-01-01
This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...
Anomalous dissolution of metals and chemical corrosion
Directory of Open Access Journals (Sweden)
DRAGUTIN M. DRAZIC
2005-03-01
Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.
Anomalous Increase of Apparent Mass in a Silo due to Percolation
Institute of Scientific and Technical Information of China (English)
Ram Chand; Abdul Qadir; SHI Qing-Fan; ZHENG Ning; SUN Gang
2011-01-01
The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing. We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead. This anomalous behavior occurs when small granules are stacked on the large ones. In the case of anomalous increase, a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column. Finally, the results are qualitatively explained by using the Janssen model.%@@ The apparent mass at the bottom of a granular pile confined in a vertical tube decreases for denser granular packing.We report that the denser granular packing comprising two different diameters of granules augments the apparent mass instead.This anomalous behavior occurs when small granules are stacked on the large ones.In the case of anomalous increase,a percolation effect is found and correlated with the augment of apparent mass at the bottom of the granular column.Finally,the results are qualitatively explained by using the Janssen model.
Crowgey, Benjamin Reid
for characterization of a sample filling the cross-section of a waveguide. Due to the rectangular nature of the waveguide, typically three different samples are manufactured from the same material in order to characterize the six complex material parameters. The second technique for measuring the electromagnetic properties of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder designed to accommodate a cubical sample. All the tensor material parameters can then be determined by measuring the reflection and transmission coefficients of a single sample placed into several orientations. The parameters are obtained using a root-searching algorithm by comparing theoretically computed and measured reflection and transmission coefficients. The theoretical coefficients are determined using a mode matching technique. The first technique for characterizing the electromagnetic properties of gyromagnetic materials considers requires filling the cross-section of a waveguide. The material parameters are extracted from the measured reflection and transmission coefficients. Since the cross-sectional dimensions of waveguides become prohibitively large at low frequencies, and it is at these frequencies that the gyromagnetic properties are most pronounced, sufficiently large samples may not be available. Therefore, the second technique uses a reduced-aperture sample holder that does not require the sample to fill the entire cross section of the guide. The theoretical reflection and transmission coefficients for both methods are determined using a mode matching technique. A nonlinear least squares method is employed to extract the gyromagnetic material parameters. Finally, this dissertation introduces a waveguide standard that acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the NRW technique. A genetic algorithm is used to optimize the all
Designing novel anisotropic lenses with transformation optics
Jiang, Wei Xiang; Bao, Di; Cui, Tie Jun
2016-04-01
Transformation optics (TO), based on the formally invariant property of Maxwell’s equations, has provided a powerful strategy to design anisotropic or nearly-isotropic devices, in both time-varied and static fields. In this paper, we present and investigate the negative refraction or reflection phenomena by positive-index anisotropic materials based on transformation-optics design. First, we propose and design an inhomogeneous transformed planar lens, in which we will show the negative-refraction-like properties of transformation media. Secondly, we present a homogeneous transformed lens based on linear spatial transformation, in which we will reveal the negative-reflection properties of positive transformation media. Both transformed lenses have unusual properties which are different from those in natural materials.
Formation of Anisotropic Block Copolymer Gels
Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk
2011-03-01
Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.
Anisotropic Spin Splitting in Step Quantum Wells
Institute of Scientific and Technical Information of China (English)
HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo
2009-01-01
By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.
Bond diluted anisotropic quantum Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Akıncı, Ümit, E-mail: umit.akinci@deu.edu.tr
2013-10-15
Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigation has been made on a honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase diagrams have been found. - Highlights: • Anisotropic quantum Heisenberg model with bond dilution investigated. • Bond percolation threshold values given for 2D and 3D lattices in isotropic case. • Phase diagrams and ground state magnetizations investigated in detail. • Variation of the bond percolation threshold values with anisotropy determined.
Rainbow metric from quantum gravity: anisotropic cosmology
Assanioussi, Mehdi
2016-01-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.
Rainbow metric from quantum gravity: Anisotropic cosmology
Assanioussi, Mehdi; Dapor, Andrea
2017-03-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter β in the modified dispersion relation of the modes, hence, inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015), 10.1016/j.physletb.2015.10.043], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.
On Cracking of Charged Anisotropic Polytropes
Azam, M
2016-01-01
Recently in \\cite{34}, the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways $(i)$ by perturbing polytropic constant, anisotropy and charge parameter $(ii)$ by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to \\cite{33} in the absence of charge.
Anisotropic dark energy and CMB anomalies
Battye, Richard
2009-01-01
We investigate the breaking of global statistical isotropy caused by a dark energy component with an energy-momentum tensor which has point symmetry, that could represent a cubic or hexagonal crystalline lattice. In such models Gaussian, adiabatic initial conditions created during inflation can lead to anisotropies in the cosmic microwave background whose spherical harmonic coefficients are correlated, contrary to the standard assumption. We develop an adaptation of the line of sight integration method that can be applied to models where the background energy-momentum tensor is isotropic, but whose linearized perturbations are anisotropic. We then show how this can be applied to the cases of cubic and hexagonal symmetry. We compute quantities which show that such models are indistinguishable from isotropic models even in the most extreme parameter choices, in stark contrast to models with anisotropic initial conditions based on inflation. The reason for this is that the dark energy based models contribute to ...
Anisotropic permeability in deterministic lateral displacement arrays
Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David
2016-01-01
We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...
Comparing anisotropic displacement parameters in protein structures.
Merritt, E A
1999-12-01
The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.
Anisotropic singularities and modified gravity
Herfray, Yannick; Shtanov, Yuri
2015-01-01
In four space-time dimensions, there exists a special infinite-parameter family of chiral modified gravity theories. All these theories describe just two propagating polarisations of the graviton. General Relativity with an arbitrary cosmological constant is the only parity-invariant member of this family. Modifications of General Relativity can be arranged so as to become important in regions with large Weyl curvature. We review how these modified gravity theories arise within the framework of pure-connection formulation. We introduce a new parametrisation of this family of theories that, apart from the fundamental connection field, uses certain set of auxiliary fields. We show how the Kasner singularity of General Relativity is resolved in a particular modified gravity theory of this type. There arises a new asymptotically De Sitter region "behind" the would-be singularity, the complete solution thus being of a bounce type. Although the effective metric based on this solution still contains singularities an...
Electromagnetic effects on cracking of anisotropic polytropes
Energy Technology Data Exchange (ETDEWEB)
Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-10-15
In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)
Crossing Statistics of Anisotropic Stochastic Surface
Nezhadhaghighi, M Ghasemi; Yasseri, T; Allaei, S M Vaez
2015-01-01
We use crossing statistics and its generalization to determine the anisotropic direction imposed on a stochastic fields in $(2+1)$Dimension. This approach enables us to examine not only the rotational invariance of morphology but also we can determine the Gaussianity of underlying stochastic field in various dimensions. Theoretical prediction of up-crossing statistics (crossing with positive slope at a given threshold $\\alpha$ of height fluctuation), $\
Symmetry analysis for anisotropic field theories
Energy Technology Data Exchange (ETDEWEB)
Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Electromagnetic field representation in inhomogeneous anisotropic media
Mohsen, A.
1973-01-01
Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.
Effect of inflation on anisotropic cosmologies
Energy Technology Data Exchange (ETDEWEB)
Jensen, L.G.; Stein-Schabes, J.A.
1986-03-01
The effects of anisotropic cosmologies on inflation are studied. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi Model and of the initial anisotropy. 6 refs.
Electromagnetic Effects on Cracking of Anisotropic Polytropes
Sharif, M
2016-01-01
In this paper, we study the electromagnetic effects on stability of spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman Oppenheimer Volkoff equations. We apply perturbations on matter variables via polytropic constant as well as polytropic index and formulate the force distribution function. It is found that the compact object is stable for feasible choice of perturbed polytropic index in the presence of charge.
On anisotropic black branes with Lifshitz scaling
Directory of Open Access Journals (Sweden)
Dibakar Roychowdhury
2016-08-01
Full Text Available In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.
Anisotropic magnetocapacitance in ferromagnetic-plate capacitors
Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.
2015-04-01
The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.
Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.
Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G
2015-12-22
The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.
Effect of inflation on anisotropic cosmologies
Energy Technology Data Exchange (ETDEWEB)
Jensen, L.G.; Stein-Schabes, J.A.
1986-08-15
We study the effects of anisotropic cosmologies on inflation. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi model and of the initial anisotropy.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
Anisotropic cosmological solutions in massive vector theories
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-11-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/H decreases with the decrease of v. As long as the conditions |Σ| ll H and v2 ll phi2 are satisfied around the onset of late-time cosmic acceleration, where phi is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state wDE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value wDE(iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Anisotropic nanomaterials: structure, growth, assembly, and functions
Panikkanvalappil R. Sajanlal; Theruvakkattil S. Sreeprasad; Samal, Akshaya K.; Thalappil Pradeep
2011-01-01
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates...
Anisotropic cosmological solutions in massive vector theories
Heisenberg, Lavinia; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...
Anisotropic properties of TaS2
Institute of Scientific and Technical Information of China (English)
Qiao Yan-Bin; Li Yan-Ling; Zhong Guo-Hua; Zeng Zhi; Qin Xiao-Ying
2007-01-01
The anisotropic properties of 1T- and 2H-TaS2 are investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the εxx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.
Anisotropic Optical Properties of Layered Germanium Sulfide
Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari
2016-01-01
Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...
Anisotropic power-law k-inflation
Ohashi, Junko; Tsujikawa, Shinji
2013-01-01
It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(\\partial \\phi)^2/2$ is the kinetic energy of a scalar field $\\phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{\\lambda \\phi/M_{pl}}$ ($\\lambda$ is a constant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(\\phi) \\propto e^{\\mu \\phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $\\Sigma/H=constant$, where $\\Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $\\Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge...
ARTc: Anisotropic reflectivity and transmissivity calculator
Malehmir, Reza; Schmitt, Douglas R.
2016-08-01
While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.
Anisotropic and Hierarchical Porosity in Multifunctional Ceramics
Lichtner, Aaron Zev
The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.
The anomalous $^{14}$C-dating $\\beta$ decay problem revisited
Qi, Chong
2010-01-01
The anomalous inhibition of $^{14}$C-dating $\\beta$ decay rate is restudied in terms of shell-model calculations in the $jj$ coupling scheme with both realistic and empirical Hamiltonians. It is seen that the accidental cancellation of the decay strength is dominated by the mixing effect of two configurations of the final state wave function, $|0p^{-2}_{1/2}>$ and $|0p_{3/2}^{-1}0p_{1/2}^{-1}>$. By decomposing the effective interactions into different tensor components, it is clearly seen that the mixing is largely induced by the tensor force. The failure of realistic calculations in reproducing the inhibition may be related to its ill description of the monopole component rather than the tensor force.
Anomalous dimensions in CFT with weakly broken higher spin symmetry
Giombi, Simone; Kirilin, Vladimir
2016-11-01
In a conformal field theory with weakly broken higher spin symmetry, the leading order anomalous dimensions of the broken currents can be efficiently determined from the structure of the classical non-conservation equations. We apply this method to the explicit example of O( N) invariant scalar field theories in various dimensions, including the large N critical O( N) model in general d, the Wilson-Fisher fixed point in d = 4 - ɛ, cubic scalar models in d = 6 - ɛ and the nonlinear sigma model in d = 2 + ɛ. Using information from the d = 4 - ɛ and d = 2 + ɛ expansions, we obtain some estimates for the dimensions of the higher spin operators in the critical 3d O( N) models for a few low values of N and spin.
Energy Technology Data Exchange (ETDEWEB)
Kumekawa, Y.; Miura, Y.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Arai, E. [Metal Mining Agency of Japan, Tokyo (Japan)
1996-05-01
An examination was made by a model analysis on sensitivity and the like against a resistive anomalous body, in connection with an electromagnetic tomography system with surface earthquake sources and underground receiver arrangements. A resistivity model was of a three-dimensional structure, and built with a 5 ohm{center_dot}m low resistivity anomalous body assembled in a 100 ohm{center_dot}m homogeneous medium. As a result of the examination, it was shown that the size limitation of an analyzable anomalous body was 50{times}50{times}20m at a frequency of 8 to 10kHz and that a system with high precision in a high frequency range was necessary. The examination of effects under a shallow anomalous body revealed, for example, that the fluctuation of a low frequency response was large compared with a deep anomalous body and that, where a second anomalous body existed under it, the effect also appeared with a surface earthquake source positioned in the opposite side from the anomalous body. The examination of effects under the three dimensional structure revealed, for example, that a remarkable change appeared in the data with the change in the inclined angle of the transmission line against the strike of the anomalous body. 4 refs., 7 figs.
The Initial State of a Primordial Anisotropic Stage of Inflation
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J. [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,Maria Diaz de Haro 3, 48013 Bilbao (Spain); Minamitsuji, Masato [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan); CENTRA, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2015-06-12
We investigate the possibility that the inflationary period in the early universe was preceded by a primordial stage of strong anisotropy. In particular we focus on the simplest model of this kind, where the spacetime is described by a non-singular Kasner solution that quickly evolves into an isotropic de Sitter space, the so-called Kasner-de Sitter solution. The initial Big Bang singularity is replaced, in this case, by a horizon. We show that the extension of this metric to the region behind the horizon contains a timelike singularity which will be visible by cosmological observers. This makes it impossible to have a reliable prediction of the quantum state of the cosmological perturbations in the region of interest. In this paper we consider the possibility that this Kasner-de Sitter universe is obtained as a result of a quantum tunneling process effectively substituting the region behind the horizon by an anisotropic parent vacuum state, namely a 1+1 dimensional spacetime compactified over an internal flat torus, T{sub 2}, which we take it to be of the form de Sitter{sub 2}×T{sub 2} or Minkowski{sub 2}×T{sub 2}. As a first approximation to understand the effects of this anisotropic initial state, we compute the power spectrum of a massless scalar field in these backgrounds. In both cases, the spectrum converges at small scales to the isotropic scale invariant form and only present important deviations from it at the largest possible scales. We find that the decompactification scenario from M{sub 2}×T{sub 2} leads to a suppressed and slightly anisotropic power spectrum at large scales which could be related to some of the anomalies present in the current CMB data. On the other hand, the spectrum of the universe with a dS{sub 2}×T{sub 2} parent vacuum presents an enhancement in power at large scales not consistent with observations.
Entanglement in an anisotropic spin-1 Heisenberg chain
Institute of Scientific and Technical Information of China (English)
Zhu Yan; Zhu Shi-Qun; Hao Xiang
2007-01-01
The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearest-neighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.
A fast algorithm for 3D azimuthally anisotropic velocity scan
Hu, Jingwei
2014-11-11
© 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.
A finite difference method of solving anisotropic scattering problems
Barkstrom, B. R.
1976-01-01
A new method of solving radiative transfer problems is described including a comparison of its speed with that of the doubling method, and a discussion of its accuracy and suitability for computations involving variable optical properties. The method uses a discretization in angle to produce a coupled set of first-order differential equations which are integrated between discrete depth points to produce a set of recursion relations for symmetric and anti-symmetric angular sums of the radiation field at alternate depth points. The formulation given here includes depth-dependent anisotropic scattering, absorption, and internal sources, and allows arbitrary combinations of specular and non-Lambertian diffuse reflection at either or both boundaries. Numerical tests of the method show that it can return accurate emergent intensities even for large optical depths. The method is also shown to conserve flux to machine accuracy in conservative atmospheres
Li, Xianping
2010-01-01
Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...
Modelling of a compact anisotropic star as an anisotropic fluid sphere in $f(T)$ gravity
Momeni, D; Qaisar, S; Zaz, Zaid; Myrzakulov, R
2016-01-01
In this paper, we have studied the new exact model of anisotropic star in $f(T)$ theory of gravity. The dynamical equations in $f(T)$ theory with the anisotropic fluid have been solved by using Krori-Barua solution. We have determined that all the obtained solutions are free from central singularity and potentially stable. The observed values of mass and radius of the different strange stars RX J 1856-37, Her X-1, and Vela X-12 have been used to calculate the values of unknown constants in Krori and Barua metric. The physical parameters like anisotropy, stability and redshift of the stars have been investigated in detail.
Conformal Sigma Models with Anomalous Dimensions and Ricci Solitons
Nitta, M
2004-01-01
We present new non-Ricci-flat Kahler metrics with U(N) and O(N) isometries as target manifolds of conformally invariant sigma models with an anomalous dimension. They are so-called Ricci solitons, special solutions to a Ricci-flow equation. These metrics explicitly contain the anomalous dimension and reduce to Ricci-flat Kahler metrics on the canonical line bundles over certain coset spaces in the limit of vanishing anomalous dimension.
Enhancement of non-resonant dielectric cloaks using anisotropic composites
Takezawa, Akihiro
2014-01-01
The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...
Energy Technology Data Exchange (ETDEWEB)
Cornelius, A. L.; Arko, A. J.; Sarrao, J. L.; Hundley, M. F.; Fisk, Z.
2000-12-01
We have used high pulsed magnetic fields to 50 T to observe de Haas--van Alphen oscillations in the tetragonal antiferromagnet CeRhIn{sub 5}, which has an enhanced value of the electronic specific heat coefficient {gamma}{approx}>420 mJ/molK{sup 2}. For T
Anomalous Redshift of Some Galactic Objects
Zheng, Yi-Jia
2013-01-01
Anomalous redshifts of some galactic objects such as binary stars, early-type stars in the solar neighborhood, and O stars in a star clusters are discussed. It is shown that all these phenomena have a common characteristic, that is, the redshifts of stars increase as the temperature rises. This characteristic cannot be explained by means of the Doppler Effect but can by means of the soft-photon process proposed by Yijia Zheng (arXiv:1305.0427 [astro-ph.HE]).
Anomalous CMB polarization and gravitational chirality
Contaldi, Carlo R; Smolin, Lee
2008-01-01
We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.
The anomalous magnetic moment of the muon
Hughes, V W; Earle, W; Efstathiadis, E F; Hare, M; Hazen, E S; Krienen, F; Miller, J P; Rind, O; Roberts, B L; Sulak, Lawrence R; Trofimov, A V; Brown, H N; Bunce, G M; Danby, G T; Larsen, R; Lee, Y Y; Meng, W; Mi, J L; Morse, W M; Pai, C; Prigl, R; Sanders, R; Semertzidis, Y K; Tanaka, M; Warburton, D; Orlov, Yu F; Winn, D; Grossmann, A; Jungmann, Klaus; zu Putlitz, Gisbert; Debevec, P T; Deninger, W; Hertzog, D W; Polly, C; Sedykh, S; Urner, D; Haeberlen, U; Cushman, P B; Duong, L; Giron, S; Kindem, J; McNabb, R; Miller, D; Timmermans, C; Zimmerman, D; Druzhinin, V P; Fedotovich, G V; Khazin, B I; Logashenko, I B; Ryskulov, N M; Serednyakov, S I; Shatunov, Yu M; Solodov, E P; Yamamoto, A; Iwasaki, M; Kawamura, M; Deng, H; Dhawan, S K; Farley, Francis J M; Grosse-Perdekamp, M; Hughes, V W; Kawall, D; Redin, S I; Steinmetz, A
1998-01-01
A new experiment is underway at Brookhaven National Laboratory to measure the g-2 value of the muon to a precision of 0.35 ppm, which would improve our present knowledge by a factor of 20. In its initial run the muon anomalous g-value was found to be a/sub mu //sup + /=1165925(15)*10/sup -9/ [13 ppm], in good agreement with the previous CERN measurements and with approximately the same uncertainty. The current scientific motivations for this experiment are discussed, and the experiment is described. (30 refs).
Hic Sunt Leones: Anomalous Scaling In Rainfall
Ferraris, L.; Gabellani, S.; Provenzale, A.; Rebora, N.
In recent years the spatio-temporal intermittency of precipitation fields has often been quantified in terms of scaling and/or multifractal behaviour. In this work we anal- yse the spatial scaling properties of precipitation intensity fields measured during the GATE radar experiment, and compare the results with those obtained from surrogate data generated by nonlinearly filtered, linear stochastic processes and from random shuffling of the original data. The results of the study suggest a spurious nature of the spatial multifractal behaviour of the GATE fields and indicate that claims of multifrac- tality and anomalous scaling in rainfall may have to be reconsidered.
Anomalous Double-Mode RR Lyrae Stars in the Magellanic Clouds
Soszyński, I; Dziembowski, W A; Udalski, A; Szymański, M K; Wyrzykowski, L; Ulaczyk, K; Poleski, R; Pietrukowicz, P; Kozlowski, S; Skowron, D; Skowron, J; Mróz, P; Pawlak, M
2016-01-01
We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars have been extracted from the latest edition of the OGLE collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The $P_{1O}/P_F$ period ratios of our anomalous RRd stars are within a range 0.725-0.738, while "classical" double-mode RR Lyrae variables have period ratios in the range 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the ampl...
Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers
Energy Technology Data Exchange (ETDEWEB)
Zhang, Peng; Wu, Di; Jiang, Zhengsheng; Sang, Hai, E-mail: weiwei.lin@u-psud.fr, E-mail: haisang@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Lin, Weiwei, E-mail: weiwei.lin@u-psud.fr, E-mail: haisang@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Institut d' Electronique Fondamentale, Université Paris-Sud, Orsay 91405 (France)
2014-02-14
Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperature of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.
Antonov; Lanotte; Mazzino
2000-06-01
The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. The velocity field is Gaussian, delta-correlated in time, and scales with a positive exponent xi. Explicit inertial-range expressions for the magnetic correlation functions are obtained; they are represented by superpositions of power laws with nonuniversal amplitudes and universal (independent of the anisotropy and forcing) anomalous exponents. The complete set of anomalous exponents for the pair correlation function is found nonperturbatively, in any space dimension d, using the zero-mode technique. For higher-order correlation functions, the anomalous exponents are calculated to O(xi) using the renormalization group. The exponents exhibit a hierarchy related to the degree of anisotropy; the leading contributions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with the idea of restored small-scale isotropy. Conversely, the small-scale anisotropy reveals itself in the odd correlation functions: the skewness factor is slowly decreasing going down to small scales and higher odd dimensionless ratios (hyperskewness, etc.) dramatically increase, thus diverging in the r-->0 limit.
Grooved organogel surfaces towards anisotropic sliding of water droplets.
Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei
2014-05-21
Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.
Fronts of Stress Wave in Anisotropic Piezoelectric Media
Institute of Scientific and Technical Information of China (English)
刘颖; 刘凯欣; 高凌天
2004-01-01
The characteristic of wave fronts in anisotropic piezoelectric media is analysed by adopting the generalized characteristic theory. Analytical expressions for wave velocities and wave fronts are formulated. Apart from the ordinary characteristics, a new phenomenon, energy velocity funnel, is formed on the wave fronts of quasitransverse waves in anisotropic piezoelectric materials. A three-dimensional representation of wave fronts in anisotropic piezoelectric materials is given for a better understanding of the new phenomena.
Orthonormal bases for anisotropic α-modulation spaces
DEFF Research Database (Denmark)
Rasmussen, Kenneth Niemann
2012-01-01
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....
Orthonormal bases for anisotropic α-modulation spaces
DEFF Research Database (Denmark)
Rasmussen, Kenneth Niemann
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....
An eigen theory of static electromagnetic field for anisotropic media
Institute of Scientific and Technical Information of China (English)
Shao-hua GUO
2009-01-01
Static electromagnetic fields are studied based on standard spaces of the physical presentation,and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions,several novel theoretical results are obtained. It is found that,for isotropic media,electric or magnetic potentials are scalar; while for anisotropic media,they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results,we discuss the laws of static electromagnetic fields for anisotropic media.
Unified nonlinear analysis for nonhomogeneous anisotropic beams with closed cross sections
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
A unified methodology for geometrically nonlinear analysis of nonhomogeneous, anisotropic beams is presented. A 2D cross-sectional analysis and a nonlinear 1D global deformation analysis are derived from the common framework of a 3D, geometrically nonlinear theory of elasticity. The only restrictions are that the strain and local rotation are small compared to unity and that warping displacements are small relative to the cross-sectional dimensions. It is concluded that the warping solutions can be affected by large deformation and that this could alter the incremental stiffnes of the section. It is shown that sectional constants derived from the published, linear analysis can be used in the present nonlinear, 1D analysis governing the global deformation of the beam, which is based on intrinsic equations for nonlinear beam behavior. Excellent correlation is obtained with published experimental results for both isotropic and anisotropic beams undergoing large deflections.
Minimal flavor violation and anomalous top decays
Faller, Sven; Mannel, Thomas; Gadatsch, Stefan
2013-08-01
Top-quark physics at the LHC may open a window to physics beyond the Standard Model and even lead us to an understanding of the phenomenon of “flavor.” However, current flavor data is a strong hint that no “new physics” with a generic flavor structure can be expected at the TeV scale. In turn, if there is “new physics” at the TeV scale, it must be “minimally flavor violating.” This has become a widely accepted assumption for “new physics” models. In this paper we propose a model-independent scheme to test minimal flavor violation for the anomalous charged Wtq, q∈{d,s,b} and flavor-changing Vtq, q∈{u,c} and V∈{Z,γ,g} couplings within an effective field theory framework, i.e., in a model-independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II, under the assumption that the top-quark is produced at a high-energy collision and decays as a quasi-free particle.
Minimal Flavour Violation and Anomalous Top Decays
Faller, Sven; Mannel, Thomas
2013-01-01
Top quark physics at the LHC may open a window to physics beyond the standard model and even lead us to an understanding of the phenomenon "flavour". However, current flavour data is a strong hint that no "new physics" with a generic flavour structure can be expected in the TeV scale. In turn, if there is "new physics" at the TeV scale, it must be "minimally flavour violating". This has become a widely accepted assumption for "new physics" models. In this paper we propose a way to test the concept of minimal flavour violation for the anomalous charged $Wtq$, $q\\in\\{d,s,b\\}$, and flavour-changing $Vtq$, $q\\in\\{u,c\\}$ and $V\\in\\{Z,\\gamma,g\\}$, couplings within an effective field theory framework, i.e. in a model independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II (2HDM-II), under the assumption that the top-q...
Hydrodynamic Waves in an Anomalous Charged Fluid
Abbasi, Navid; Rezaei, Zahra
2015-01-01
We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...
Diffraction Anomalous Near-Edge Structure
Moltaji, Habib O., Jr.
1995-11-01
To determine the atomic structure about atom of an element in a sample of a condensed multicomponent single crystal, contrast radiation is proposed with the use of Diffraction Anomalous Near-Edge Structure (DANES), which combines the long-range order sensitivity of the x-ray diffraction and short-range order of the x-ray absorption near-edge techniques. This is achieved by modulating the photon energy of the x-ray beam incident on the sample over a range of energies near an absorption edge of the selected element. Due to anomalous dispersion, x-ray diffraction, and x-ray absorption, the DANES intensity with respect to the selected element is obtained in a single experiment. I demonstrate that synchrotron DANES measurements for the single crystal of thin film and the powder samples and provide the same local atomic structural information as the x-ray absorption near-edge with diffraction condition and can be used to provide enhanced site selectivity. I demonstrate calculations of DAFS intensity and measurements of polarized DANES and XANES intensity.
Anomalous Enthalpy Relaxation in Vitreous Silica
Directory of Open Access Journals (Sweden)
Yuanzheng eYue
2015-08-01
Full Text Available It is a challenge to calorimetrically determine the glass transition temperature (Tg of vitreous silica. Here we demonstrate that this challenge mainly arises from the extreme sensitivity of the Tg to the hydroxyl content in vitreous silica, but also from the irreversibility of its glass transition when repeating the calorimetric scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling has impact on enthalpy relaxation in glass. Here we find that vitreous silica (as a strong system exhibits striking anomalies in both glass transition and enthalpy relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica.
Ultrasonic Linear Motor with Anisotropic Composite
Institute of Scientific and Technical Information of China (English)
曾周末; 王新辉; 赵伯雷
2004-01-01
An idea to make up the vibrating body of ultrasonic motor with anisotropic composite is proposed and a linear piezoelectric motor is developed in this paper. Relative problems such as actuating mechanism, resonant frequency are discussed theoretically. According to the feature that impulse exists between the elastic body of composite ultrasonic linear motor and the base, an impulse analysis is presented to calculate the motor′s friction driving force and frictional conversion efficiency. The impulse analysis essentially explains the reason why the ultrasonic motor has great driving force, and can be applied to analyze the non-linear ultrasonic motor.
Wireless energy transfer between anisotropic metamaterials shells
Diaz-Rubio, Ana; Sanchez-Dehesa, Jose
2013-01-01
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.
Anisotropic Density Estimation in Global Illumination
DEFF Research Database (Denmark)
Schjøth, Lars
2009-01-01
Density estimation employed in multi-pass global illumination algorithms gives cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. This thesis addresses the problem, presenting four methods that reduce both noise...... and bias in estimates. Good results are obtained by the use of anisotropic filtering. Two methods handles the most common cases; filtering illumination reflected from object surfaces. One methods extends filtering to the temporal domain and one performs filtering on illumination from participating media...
On Radiative Fluids in Anisotropic Spacetimes
Shogin, Dmitry
2016-01-01
We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the Universe. Also, we show that, in constrast to the mathematical fluid models widely used before, the radiative fluid does approach local thermal equilibrium at late times, although very slowly, due to the cosmological expansion.
Multichannel image regularization using anisotropic geodesic filtering
Energy Technology Data Exchange (ETDEWEB)
Grazzini, Jacopo A [Los Alamos National Laboratory
2010-01-01
This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.
Temperature and Polarization Patterns in Anisotropic Cosmologies
Sung, Rockhee
2010-01-01
We study the coherent temperature and polarization patterns produced in homogeneous but anisotropic cosmological models. We show results for all Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V, VII$_{0}$, VII$_{h}$ and IX) to illustrate the range of possible behaviour. We discuss the role of spatial curvature, shear and rotation in the geodesic equations for each model and establish some basic results concerning the symmetries of the patterns produced. We also give examples of the time-evolution of these patterns in terms of the Stokes parameters $I$, $Q$ and $U$.
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael
2013-03-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2012-01-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Anisotropic Spin Cluster as a Qubit
Institute of Scientific and Technical Information of China (English)
YAN Xiao-Bo; WANG Ming-Ji
2007-01-01
We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interaction with non-uniform coupling constants. A time-dependent magnetic field is applied to control the time evolution of the cluster. It is well known that for an odd number og sites a spin cluster qubit can be defined in terms of the ground state doublet. The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomous many-body system, and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magnetic field.
Silicon as an anisotropic mechanical material
DEFF Research Database (Denmark)
Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik
2014-01-01
While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...... analytical models involving crystalline plates, such as those often found in the field of micro electro mechanical systems. The effect of elastic boundary conditions is taken into account by using an effective radius of the plate....
Generalized Jones matrices for anisotropic media.
Ortega-Quijano, Noé; Arce-Diego, José Luis
2013-03-25
The interaction of arbitrary three-dimensional light beams with optical elements is described by the generalized Jones calculus, which has been formally proposed recently [Azzam, J. Opt. Soc. Am. A 28, 2279 (2011)]. In this work we obtain the parametric expression of the 3×3 differential generalized Jones matrix (dGJM) for arbitrary optical media assuming transverse light waves. The dGJM is intimately connected to the Gell-Mann matrices, and we show that it provides a versatile method for obtaining the macroscopic GJM of media with either sequential or simultaneous anisotropic effects. Explicit parametric expressions of the GJM for some relevant optical elements are provided.
Charged Anisotropic Star on Paraboloidal Spacetime
Ratanpal, B S
2015-01-01
The charged anisotropic star on paraboloidal spacetime is reported by choosing particular form of radial pressure and electric field intensity. The non-singular solution of Einstein-Maxwell system of equation have been derived and it is shown that model satisfy all the physical plausibility conditions. It is observed that in the absence of electric field intensity, model reduces to particular case of uncharged Sharma \\& Ratanpal model. It is also observed that the parameter used in electric field intensity directly effects the mass of the star.
Self-organized motion in anisotropic swarms
Institute of Scientific and Technical Information of China (English)
Tianguang CHU; Long WANG; Tongwen CHEN
2003-01-01
This paper considers an anisotropic swarm model with a class of attraction and repulsion functions. It is shown that the members of the swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover,It is also proved that under certain conditions, the swarm system can be completely stable, i. e., every solution converges to the equilibrium points of the system. The model and results of this paper extend a recent work on isotropic swarms to more general cases and provide further insight into the effect of the interaction pattern on self-organized motion in a swarm system.
Anomalous temperature dependence of H{sub c2} in BiSrCuO
Energy Technology Data Exchange (ETDEWEB)
Broto, J.M. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Rakoto, H. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Ousset, J.C. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Coffe, G. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Askenazy, S. [Service National Des Champs Magnetiques Pulses, 31077 Toulouse Cedex (France); Osofsky, M.S. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Soulen, R.J. Jr. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Wolf, S.A. [Naval Research Laboratory, Washington, DC 20375-5000 (United States); Pari, P. [Centre d`Etudes de Saclay, Service de Physique de l`Etat Condense, Laboratoire des Basses Temperatures, 91191 Gif-sur-Yvette (France); Bozovic, I. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States); Eckstein, J.N. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States); Virshup, G.F. [Edward L. Ginzton Research Center, Varian Associates, Palo Alto, CA 94304-1025 (United States)
1995-05-01
H{sub c2}(T) has been measured for thin BSCO films at temperatures down to 65 mK and pulsed fields up to 35 T. H{sub c2}(T) diverged anomalously as the temperature decreased: at the lowest temperature, it was five times that expected for a conventional superconductor. Although deviations from the conventional behavior have been observed in other superconductors, such strong divergence over such a large range of reduced temperature has not been seen before. (orig.).
Arita, Ken-ichiro
2014-01-01
Shell structures in single-particle energy spectra are investigated against regular tetrahedral type deformation using radial power-law potential model. Employing a natural way of shape parametrization which interpolate sphere and regular tetrahedron, we find prominent shell effects at rather large tetrahedral deformations, which bring about shell energies much larger than the cases of spherical and quadrupole type shapes. We discuss the semiclassical origin of these anomalous shell structures using periodic orbit theory.
Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates
Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.
2003-01-01
We previously reported on a thermal regime where pure, polycrystalline methane hydrate is preserved metastably in bulk at up to 75 K above its nominal temperature stability limit of 193 K at 0.1 MPa, following rapid release of the sample pore pressure. Large fractions (>50 vol.%) of methane hydrate can be preserved for 2-3 weeks by this method, reflecting the greatly suppressed rates of dissociation that characterize this "anomalous preservation" regime. This behavior contrasts that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) isothermal test conditions, where dissociation rates increase monotonically with increasing temperature. Here, we report on recent experiments that further investigate the effects of temperature, pressure, and composition on anomalous preservation behavior. All tests conducted on sI methane hydrate yielded self-consistent results that confirm the highly temperature-sensitive but reproducible nature of anomalous preservation behavior. Temperature-stepping experiments conducted between 250 and 268 K corroborate the relative rates measured previously in isothermal preservation tests, and elevated pore-pressure tests showed that, as expected, dissociation rates are further reduced with increasing pressure. Surprisingly, sII methane-ethane hydrate was found to exhibit no comparable preservation effect when rapidly depressurized at 268 K, even though it is thermodynamically stable at higher temperatures and lower pressures than sI methane hydrate. These results, coupled with SEM imaging of quenched sample material from a variety of dissociation tests, strongly support our earlier arguments that ice-"shielding" effects provided by partial dissociation along hydrate grain surfaces do not serve as the primary mechanism for anomalous preservation. The underlying physical-chemistry mechanism(s) of anomalous preservation remains elusive, but appears to be based more on textural or morphological changes within the hydrate
Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials.
Wu, Shu-Chun; Shan, Guangcun; Yan, Binghai
2014-12-19
Recently, the long-sough quantum anomalous Hall effect was realized in a magnetic topological insulator. However, the requirement of an extremely low temperature (approximately 30 mK) hinders realistic applications. Based on ab initio band structure calculations, we propose a quantum anomalous Hall platform with a large energy gap of 0.34 and 0.06 eV on honeycomb lattices comprised of Sn and Ge, respectively. The ferromagnetic (FM) order forms in one sublattice of the honeycomb structure by controlling the surface functionalization rather than dilute magnetic doping, which is expected to be visualized by spin polarized STM in experiment. Strong coupling between the inherent quantum spin Hall state and ferromagnetism results in considerable exchange splitting and, consequently, an FM insulator with a large energy gap. The estimated mean-field Curie temperature is 243 and 509 K for Sn and Ge lattices, respectively. The large energy gap and high Curie temperature indicate the feasibility of the quantum anomalous Hall effect in the near-room-temperature and even room-temperature regions.
Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation
Energy Technology Data Exchange (ETDEWEB)
Li, Ye; Zhu, Hua Xing
2017-01-01
Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.
Bootstrapping Rapidity Anomalous Dimension for Transverse-Momentum Resummation
Energy Technology Data Exchange (ETDEWEB)
Li, Ye [Fermilab; Zhu, Hua Xing [MIT, Cambridge, CTP
2016-04-05
Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.
An algorithm for DLP on anomalous elliptic curves over Fp
Institute of Scientific and Technical Information of China (English)
祝跃飞; 裴定一
2002-01-01
This paper improves the method of discrete logarithm on anomalous elliptic curves, and establishes an isomorphism from E(Fp) to Fp which can be more easily implemented. Fruthermore, we give an optimized algorithm for discrete logarithm on anomalous elliptic curves E(Fp).
Radial stability of anisotropic strange quark stars
Arbañil, José D. V.; Malheiro, M.
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Quantum electrodynamics of inhomogeneous anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)
Derkachov, S E
1995-01-01
The spectrum of the anomalous dimensions of the composite operators (with arbitrary number of fields n and derivatives l) in the scalar \\phi^4 - theory in the first order of the \\epsilon -expansion is investigated. The exact solution for the operators with number of fields \\leq 4 is presented. The behaviour of the anomalous dimensions in the large l limit has been analyzed. It is given the qualitative description of the structure of the spectrum for the arbitrary n.
Anisotropic artificial substrates for microwave applications
Shahvarpour, Attieh
The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle
Detecting quark anomalous electroweak couplings at the LHC
Zhao, Sheng-Zhi
2015-01-01
We study the dimension-6 quark anomalous electroweak couplings in the formulation of linearly realized effective Lagrangian. We investigate the constraints on these anomalous couplings from the $pp \\rightarrow W^+W^-$ process in detail at the LHC. With additional kinematic cuts, we find that the 14 TeV LHC can provide a test of anomalous couplings of $O(0.1-1)\\,{\\rm TeV}^{-2}$. The $pp \\rightarrow ZZ/Z\\gamma/\\gamma\\gamma$ processes can provide a good complement as they are sensitive to those anomalous couplings which do not affect the $pp \\rightarrow W^+W^-$ process. Those processes that only contain anomalous triple vertices, like $p p \\to W^* \\to l \
Anomalous Evidence, Confidence Change, and Theory Change.
Hemmerich, Joshua A; Van Voorhis, Kellie; Wiley, Jennifer
2016-08-01
A novel experimental paradigm that measured theory change and confidence in participants' theories was used in three experiments to test the effects of anomalous evidence. Experiment 1 varied the amount of anomalous evidence to see if "dose size" made incremental changes in confidence toward theory change. Experiment 2 varied whether anomalous evidence was convergent (of multiple types) or replicating (similar finding repeated). Experiment 3 varied whether participants were provided with an alternative theory that explained the anomalous evidence. All experiments showed that participants' confidence changes were commensurate with the amount of anomalous evidence presented, and that larger decreases in confidence predicted theory changes. Convergent evidence and the presentation of an alternative theory led to larger confidence change. Convergent evidence also caused more theory changes. Even when people do not change theories, factors pertinent to the evidence and alternative theories decrease their confidence in their current theory and move them incrementally closer to theory change.
Some Weighted Hardy-Type Inequalities on Anisotropic Heisenberg Groups
Directory of Open Access Journals (Sweden)
Yang Qiao-Hua
2011-01-01
Full Text Available We prove some weighted Hardy type inequalities associated with a class of nonisotropic Greiner-type vector fields on anisotropic Heisenberg groups. As an application, we get some new Hardy type inequalities on anisotropic Heisenberg groups which generalize a result of Yongyang Jin and Yazhou Han.
SUPERCONVERGENCE ANALYSIS OF A NONCONFORMING TRIANGULAR ELEMENT ON ANISOTROPIC MESHES
Institute of Scientific and Technical Information of China (English)
Dongyang SHI; Hui LIANG; Caixia WANG
2007-01-01
The class of anisotropic meshes we conceived abandons the regular assumption. Some distinct properties of Carey's element are used to deal with the superconvergence for a class of twodimensional second-order elliptic boundary value problems on anisotropic meshes. The optimal results are obtained and numerical examples are given to confirm our theoretical analysis.
Optical anisotropic reflectance from W720 LIPSS surface
Silvennoinen, Martti; Penttinen, Niko; Hasoň, Stanislav; Silvennoinen, Raimo
2013-05-01
Optical anisotropic reflectance from laser induced periodic surface structures (LIPSS) of stainless steel (W720LIPSS), which were produced by a femtosecond laser, were investigated by using polarized probe beam in a spectrophotometer. Remarkable repeatability in optical anisotropic reflectance was recognized.
Holographic Wilson loops in anisotropic quark-gluon plasma.
Ageev, Dmitry
2016-10-01
The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
Holographic Wilson loops in anisotropic quark-gluon plasma.
Directory of Open Access Journals (Sweden)
Ageev Dmitry
2016-01-01
Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.
Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics
2015-03-01
Clayton JD, McDowell DL. Homogenized finite elastoplasticity and damage : theory and computations. Mechanics of Materials. 2004;36:799–824. 23. Clayton...ARL-TR-7231 ● MAR 2015 US Army Research Laboratory Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
2008-01-01
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
Symmetric Periodic Solutions of the Anisotropic Manev Problem
Santoprete, Manuele
2002-01-01
We consider the Manev Potential in an anisotropic space, i.e., such that the force acts differently in each direction. Using a generalization of the Poincare' continuation method we study the existence of periodic solutions for weak anisotropy. In particular we find that the symmetric periodic orbits of the Manev system are perturbed to periodic orbits in the anisotropic problem.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
CHEN ShaoChun; XIAO LiuChao
2008-01-01
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
SHI Dongyang; ZHU Huiqing
2005-01-01
This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.
Institute of Scientific and Technical Information of China (English)
柳玉起; 王锦程; 胡平
2002-01-01
Flange earrings of strong anisotropic sheet metals in deep-drawingprocess are numerically analyzed by the elastic-plastic large deformation finite ele-ment formulation based on a discrete Kirchhoff triangle plate shell element model.A Barlat-Lian anisotropic yield function and a quasi-flow corner theory are used inthe present formulation. The numerical results are compared with the experimentalones of cylindrical cup drawing process. The focus of the present researches is on thenumerical analysis and the constraining scheme of the flange earring of circular sheetswith strong anisotropy in square cup drawing process.
Energy Technology Data Exchange (ETDEWEB)
Gelinas, R.J.; Doss, S.K.; Carlson, N.N.
1985-01-01
This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.
Anomalous Abelian symmetry in the standard model
Energy Technology Data Exchange (ETDEWEB)
Ramond, P.
1995-12-31
The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.
Communication: Probing anomalous diffusion in frequency space
Energy Technology Data Exchange (ETDEWEB)
Stachura, Sławomir [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Université d’Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans (France)
2015-11-21
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.
Anomalous conductances in an ultracold quantum wire
Kanász-Nagy, Márton; Esslinger, Tilman; Demler, Eugene A
2016-01-01
We analyze the recently measured anomalous transport properties of an ultracold gas through a ballistic constriction [S. Krinner et al., PNAS 201601812 (2016)]. The quantized conductance observed at weak interactions increases several-fold as the gas is made strongly interacting, which cannot be explained by the Landauer theory of single-channel transport. We show that this phenomenon is due to the multichannel Andreev reflections at the edges of the constriction, where the interaction and confinement result in a superconducting state. Andreev processes convert atoms of otherwise reflecting channels into the condensate propagating through the constriction, leading to a significant excess conductance. Furthermore, we find the spin conductance being suppressed by superconductivity; the agreement with experiment provides an additional support for our model.
Latest results on $J/$ anomalous suppression
Indian Academy of Sciences (India)
Sérgio Ramos; NA50 Collaboration; B Allessandro; C Alexa; R Arnaldi; M Atayan; C Baglin; A Baldit; M Bedjidian; S Beolè; V Boldea; P Bordalo; S R Borenstein; G Borges; A Bussière; L Capelli; C Castanier; J Castor; B Chaurand; B Cheynis; E Chiavassa; C Cicalo; T Claudino; M P Comets; S Constantinescu; P Cortese; J Cruz; A DeFalco; N DeMarco; G Dellacasa; A Devaux; S Dita; O Drapier; B Espagnon; J Fargeix; P Force; M Gallio; Y K Gavrilov; C Gerschel; P Giubellino; M B Golubeva; M Gonin; A A Grigorian; S Grigorian; J Y Grossiord; F F Guber; A Guichard; H Gulkanyan; R Hakobyan; R Haroutunian; M Idzik; D Jouan; T L Karavitcheva; L Kluberg; A B Kurepin; Y Le Bornée; C Lourenço; P Macciotta; M Mac Cormick; A Marzari-Chiesa; M Masera; A Masoni; M Monteno; A Musso; P Petiau; A Piccotti; J R Pizzi; W L Prado da Silva; F Prino; G Puddu; C Quintans; L Ramello; S Ramos; P Rato Mendes; L Riccati; A Romana; H Santos; P Saturnini; E Scalas; E Scomparin; S Serci; R Shahoyan; F Sigaudo; M Sitta; P Sonderegger; X Tarrago; N S Topilskaya; G L Usai; E Vercellin; L Villatte; N Willis; T Wu
2004-03-01
The NA50 experiment deals with Pb–Pb collisions at 158 GeV/nucleon at the CERN SPS accelerator. The $J/$ production is studied through the muon decay channel, using the Drell–Yan dimuons as a reference. New results based on recent analyses, from data taken with improved experimental conditions and using different centrality estimators, are presented and compared to an update of those already obtained from previous data samples. The stepwise pattern of the anomalous $J/$ suppression as a function of centrality, already present in these previous results, is confirmed. This observation could be a fingerprint of the theoretically predicted melting of charmonia resonances in a deconfined quark–gluon plasma.
Chiral magnetic plasmons in anomalous relativistic matter
Gorbar, E V; Shovkovy, I A; Sukhachov, P O
2016-01-01
The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.
Anomalous transport from holography: Part I
Bu, Yanyan; Sharon, Amir
2016-01-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations...
The Anomalous Acceleration of the Pioneer Spacecrafts
de Diego, Jose A
2008-01-01
Radiometric data from the Pioneer 10 and 11 spacecrafts have revealed an unexplained constant acceleration of a_A = (8.74 +/- 1.33) x 10^(-10) m s^(-2) towards the Sun, also known as the Pioneer anomaly. Different groups have analyzed the Pioneer data and have got the same results, which rules out computer programming and handling errors. Attempts to explain this phenomenon arguing intrinsic causes on-board the spacecrafts failed or have lead to inconclusive results. Therefore, the Pioneer anomalous acceleration has motivated the interest of researchers to find out explanations that could bring insight upon the forces acting in the outer Solar Systems or a hint to discover new natural laws.
Observation of photonic anomalous Floquet topological insulators
Maczewsky, Lukas J.; Zeuner, Julia M.; Nolte, Stefan; Szameit, Alexander
2017-01-01
Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges -- independently of the fine details of the system and of the edge -- due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specific bandgap is equal to the net number of chiral edge modes traversing this gap. However, this is strictly valid only in settings with static Hamiltonians. The Chern numbers do not give a full characterization of the topological properties of periodically driven systems. In our work, we implement a system where chiral edge modes exist although the Chern numbers of all bands are zero. We employ periodically driven photonic waveguide lattices and demonstrate topologically protected scatter-free edge transport in such anomalous Floquet topological insulators.
Anomalous Dynamical Responses in a Driven System
Dutta, Suman
2016-01-01
The interplay between structure and dynamics in non-equilibrium steady-state is far from understood. We address this interplay by tracking Brownian Dynamics trajectories of particles in a binary colloid of opposite charges in an external electric field, undergoing cross-over from homogeneous to lane state, a prototype of heterogeneous structure formation in non-equilibrium systems. We show that the length scale of structural correlations controls heterogeneity in diffusion and consequent anomalous dynamic responses, like the exponential tail in probability distributions of particle displacements and stretched exponential structural relaxation. We generalise our observations using equations for steady state density which may aid to understand microscopic basis of heterogeneous diffusion in condensed matter systems.
More Modular Invariant Anomalous U(1) Breaking
Gaillard, Mary Katherin; Gaillard, Mary K.; Giedt, Joel
2002-01-01
We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to an anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds upon previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kahler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated o...
Blow up Analysis for Anomalous Granular Gases
Rey, Thomas
2011-01-01
We investigate in this article the long-time behaviour of the solutions to the energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that the energy dissipation increases when the temperature decreases. This allows the gas to cool down in finite time. We study the existence, uniqueness and attractiveness of blow up profiles for this model and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we give some new estimates about the third order moment of the inelastic Boltzmann equation with drift term and we introduce new strongly "non-linear" self-similar variables
Anomalous rectification in a purely electronic memristor
Wang, Jingrui; Pan, Ruobing; Cao, Hongtao; Wang, Yang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Zhuge, Fei
2016-10-01
An anomalous rectification was observed in a purely electronic memristive device Ti/ZnO/Pt. It could be due to (1) an Ohmic or quasi-Ohmic contact at the ZnO/Pt interface and (2) a Schottky contact at the Ti/ZnO interface. The Ohmic contact originates from the reduction of ZnO occurring in the whole film instead of only at the Ti/ZnO interface. The Schottky contact may come from moisture adsorbed in the nanoporous ZnO. The conduction in the electroformed device is controlled by the carrier trapping/detrapping of the trap sites, inducing a poor rectification and high nonlinearity. Furthermore, a complementary resistive switching was achieved.
Examination of anomalous self-experience
DEFF Research Database (Denmark)
Raballo, Andrea; Parnas, Josef
2012-01-01
-disorders [SDs]), has been shown to constitute a core feature of both clinically overt and latent (schizotaxic) spectrum phenotypes. However, a major limitation for the translational implementation of this research evidence has been a lack of assessment tools capable of encompassing the clinical richness of SDs....... Here, we present the initial normative data and psychometric properties of a newly developed instrument (Examination of Anomalous Self-experience [EASE]), specifically designed to support the psychopathological exploration of SDs in both research and "real world" clinical settings. Our results support...... the clinical validity of the EASE as a tool for assessing anomalies of self-awareness (SDs) and lend credit to the translational potential of a phenomenological exploration of the subjective experience of vulnerability to schizophrenia....
Can Anomalous Amplification be Attained Without Postselection?
Martínez-Rincón, Julián; Viza, Gerardo I; Howell, John C
2015-01-01
We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without the need of postselection, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected, and a phase controls the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. The effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique...
Anisotropic Diffusion in Mesh-Free Numerical Magnetohydrodynamics
Hopkins, Philip F
2016-01-01
We extend recently-developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect), and turbulent 'eddy diffusion.' We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV) as well as smoothed-particle hydrodynamics (SPH). We show the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behavior even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators ...