WorldWideScience

Sample records for anomalously high number

  1. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    Science.gov (United States)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  2. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst

    KAUST Repository

    Zheng, Yao

    2016-11-28

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  3. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    Science.gov (United States)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  4. On the Anomalous Weight Losses of High Voltage Symmetrical Capacitors

    CERN Document Server

    Porcelli, Elio B

    2015-01-01

    In this work, we analyzed an anomalous effect verified from symmetrical capacitor devices, working in very high electric potentials. The mastery of that effect could mean in the future the possible substitution of propulsion technology based on fuels by single electrical propulsion systems. From experimental measurements, we detected small variations of the device inertia that cannot be associated with known interactions, so that the raised force apparently has not been completely elucidated by current theories. We measured such variations within an accurate range and we proposed that the experimental results can be explained by relations like Clausius-Mossotti one, in order to quantify the dipole forces that appear in the devices. The values of the weight losses in the capacitors were calculated by means of the theoretical proposal and indicated good agreement with our experimental measurements for 7kV and with many other experimental works.

  5. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    Science.gov (United States)

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  6. Anomalously high Arabian Sea productivity conditions during MIS 13

    Directory of Open Access Journals (Sweden)

    M. Ziegler

    2009-07-01

    Full Text Available Marine isotope stage (MIS 13 (~500 000 years ago has been recognized as atypical in many paleoclimate records and, in particular, it has been connected to an exceptionally strong summer monsoon in East Asia. Here we present a multi-proxy study of a sediment core taken from the Murray Ridge at intermediate water depth in the northern Arabian Sea that covers the last 750 000 years. Our results indicate that upwelling driven primary productivity conditions were anomalously high during MIS 13 and led to extreme carbonate dissolution and glauconitization. We argue that an extreme summer monsoon circulation was probably not responsible for these aberrant conditions, because such an event does not show up in the Antarctic methane record and transient modeling results. As an alternative, we propose that high productivity was related to the onset of an intensive meridional overturning circulation in the Atlantic Ocean at the end of the Mid-Pleistocene transition. This led to an increased supply of nutrient-rich deep waters into the Indian Ocean euphotic zone, thereby triggering the observed productivity maximum.

  7. Anomalously high noise levels in a fibre Bragg grating semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, V D; Kurnosov, K V [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2015-01-31

    Taking into account gain nonlinearity allows one to obtain anomalously high noise levels in a fibre Bragg grating laser diode. This paper examines the effect of the gain nonlinearity due to spectral hole burning on noise characteristics. (lasers)

  8. Quasiperpendicular high Mach number Shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B

    2015-01-01

    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\\tau}c, where {\\tau}c is the ion gyroperio...

  9. Anomalous volatility scaling in high frequency financial data

    Science.gov (United States)

    Nava, Noemi; Di Matteo, T.; Aste, Tomaso

    2016-04-01

    Volatility of intra-day stock market indices computed at various time horizons exhibits a scaling behaviour that differs from what would be expected from fractional Brownian motion (fBm). We investigate this anomalous scaling by using empirical mode decomposition (EMD), a method which separates time series into a set of cyclical components at different time-scales. By applying the EMD to fBm, we retrieve a scaling law that relates the variance of the components to a power law of the oscillating period. In contrast, when analysing 22 different stock market indices, we observe deviations from the fBm and Brownian motion scaling behaviour. We discuss and quantify these deviations, associating them to the characteristics of financial markets, with larger deviations corresponding to less developed markets.

  10. Venus Express bistatic radar: High-elevation anomalous reflectivity

    Science.gov (United States)

    Simpson, Richard A.; Tyler, G. Leonard; Häusler, Bernd; Mattei, Riccardo; Pätzold, Martin

    2009-06-01

    Magellan (MGN) bistatic radar observations in 1994 confirmed earlier Pioneer Venus reports of unusual Venus surface reflectivity and emissivity at elevations above 6054 km radius. They also revealed that the anomalous values of surface dielectric constant $\\varepsilon$ near Cleopatra Patera included a large imaginary component ($\\varepsilon$ ≈ -i 100) at 13 cm wavelength, consistent with a semiconducting surface material. The MGN observations were conducted using a linearly polarized wave, canted at 45° with respect to the plane of incidence and radiated by the MGN synthetic aperture radar antenna toward the specularly reflecting region of the mean planetary surface. In 2006 similar experiments were conducted using 13 cm circularly polarized transmissions from Venus Express (VEX). The VEX signal-to-noise ratio (SNR) was lower than that of MGN, but elevated ∣$\\varepsilon$∣ has been inferred broadly over Maxwell Montes. A quasi-specular echo was detected near Cleopatra but with insufficient SNR to address the question of conductivity. An early failure of the VEX 13 cm radio system precludes further measurements with VEX.

  11. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Bordin, José Rafael, E-mail: josebordin@unipampa.edu.br [Campus Caçapava do Sul, Universidade Federal do Pampa, Caixa Postal 15051, CEP 96570-000, Caçapava do Sul, RS (Brazil); Krott, Leandro B., E-mail: leandro.krott@ufrgs.br; Barbosa, Marcia C., E-mail: marcia.barbosa@ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS (Brazil)

    2014-10-14

    The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales.

  12. Anomalous Photofragmentation of Fullerene Doped in Silica Aerogel-Enhanced Formation of Odd-Numbered "Fullerene" Fragments

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬; 王钰

    2001-01-01

    Photofragmentation of fullerene-doped silica aerogels has been investigated by the excimer laser ablation reflectron time-of-flight mass spectrometric technique. Great enhancement in the formation of odd-numbered 'fullerene' fragments has been observed in the negative-ion channel for the chemically doped aerogel sample. Generally, oddnumbered species C57, C55, C53 and C51 appeared in the mass spectra. Under optimM experimental conditions C55 can be even more intense than the neighbouring even-numbered carbon clusters. In contrast, for the physicallydoped sample, just like pristine C6o, only weak odd-numbered fragments were observed. In the positive-ion channel, the behaviour of all these samples is similar, no odd-numbered species was ever detected. A mechanism related to the interaction between the fullerene dopant and the silica aerogel host is suggested for the anomalous enhancement of the odd-numbered duster formation. A preliminary discussion on the structures of the oddnumbered 'fullerene' fragments is given.

  13. Anomalous state of a 2DEG in vicinal Si MOSFET in high magnetic fields

    OpenAIRE

    Kvon, Z. D.; Proskuryakov, Y. Y.; Savchenko, A. K.

    2003-01-01

    We report the observation of an anomalous state of a 2D electron gas near a vicinal surface of a silicon MOSFET in high magnetic fields. It is characterised by unusual behaviour of the conductivities $\\sigma_{xx}$ and $\\sigma_{xy}$, which can be described as a collapse of the Zeeman spin splitting accompanied by a large peak in $\\sigma_{xx}$ and an anomalous peak in $ \\sigma_{xy}$. It occurs at densities corresponding to the position of the Fermi level above the onset of the superlattice mini...

  14. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin

    2014-01-01

    A new high-energy pulse compressor uses self-defocusing spectral broadening in anomalously dispersive quadratic nonlinear crystals, followed by positive group-delay-dispersion compensation. Compression to sub-50 fs is possible from Joule-class 1.03 µm femtosecond amplifiers in large-aperture KDP....

  15. The (Anomalous) Hall Magnetometer as an Analysis Tool for High Density Recording Media

    NARCIS (Netherlands)

    Haan, de S.; Lodder, J.C.

    1991-01-01

    In this work an evaluation tool for the characterization of high-density recording thin film media is discussed. The measurement principles are based on the anomalous and the planar Hall effect. We used these Hall effects to characterize ferromagnetic Co-Cr films and Co/Pd multilayers having perpend

  16. Anomalous waiting times in high-frequency financial data

    CERN Document Server

    Scalas, E; Luckock, H; Mainardi, F; Mantelli, M; Raberto, M; Scalas, Enrico; Gorenflo, Rudolf; Luckock, Hugh; Mainardi, Francesco; Mantelli, Maurizio; Raberto, Marco

    2004-01-01

    In high-frequency financial data not only returns, but also waiting times between consecutive trades are random variables. Therefore, it is possible to apply continuous-time random walks (CTRWs) as phenomenological models of the high-frequency price dynamics. An empirical analysis performed on the 30 DJIA stocks shows that the waiting-time survival probability for high-frequency data is non-exponential. This fact imposes constraints on agent-based models of financial markets.

  17. Anomalous flow deflection at planetary bow shocks in the low Alfven Mach number regime

    Science.gov (United States)

    Nishino, Masaki N.; Fujimoto, Masaki; Tai, Phan-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz

    A planetary magnetosphere is an obstacle to the super-sonic solar wind and the bow shock is formed in the front-side of it. In ordinary hydro-dynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the planet-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low density solar wind in which duskward flow was observed in the dawnside magnetosheath of the Earth's magnetosphere. A Rankine-Hugoniot test across the bow shock shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional Magneto- Hydro-Dynamics (MHD) simulation of the situation in this previously unexplored parameter regime is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle. The magnetic effect at the bow shock should become more conspicuously around the Mercury's magnetosphere, because stronger interplanetary magnetic field and slower solar wind around the Mercury let the Alfven Mach number low. Resultant strong deformation of the magnetosphere induced by the "wrong flow" will cause more complex interaction between the solar wind and the Mercury.

  18. Anomalous needle numbers on dwarf shoots of Pinus mugo and P. uncinata (Pinaceae

    Directory of Open Access Journals (Sweden)

    Krystyna Boratyńska

    2011-01-01

    Full Text Available The frequency of occurrence of abnormal, three- (or more needle dwarf shoots of most southern and central European two-needle pine (Pinus species were studied. No specimens with more than two-needle dwarf shoots were found in a population of P. nigra Arnold subsp. salzmannii (Dunal Franco from the Iberian Peninsula and in two populations of P. uliginosa Neumann from the Sudeten Mountains in Central Europe. Single specimens were found within one population of P. pinaster Aiton from the Iberian Peninsula and among six populations of P. sylvestris L. from the Iberian Peninsula and Central Europe. Abnormal dwarf shoots mostly with three, but also four, five or six needles were found among 24 of 25 surveyed populations of P. mugo Turra and P. uncinata Ramond. The average frequency of specimens with at least one three-needle dwarf shoot was 24% for P. mugo and 20% for P. uncinata. The frequencies of occurrence varied significantly among studied populations and were highest in samples collected from the upper elevational range limits of the species in the mountains and near the northern limits of their ranges. The frequency of abnormal dwarf shoots in the same populations was significantly high in 2-3 consecutive years. Needles from three-needle dwarf shoots were not significantly shorter than those of two-needle shoots.

  19. INFLUENCE OF SOLVENT AND POLYMER SORT ON ANOMALOUS RHEOLOGICAL BEHAVIOR OF POLYMER SOLUTION AT HIGH DILUTION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rheological behavior of polyvinyl acetate (PVAc) in N,N'-dimethylformamide (DMF), methyl ethyl ketone (MEK), 1,2-dichloroethane (DCE), tetrahydrofuran (THF) and toluene (TOL), polystyrene (PS) in DMF, MEK, DCE, THF and cyclohexane (CYH), and random ethylene-vinyl acetate (EVA) copolymer in DCE, TOL, CYH with and without surfactant of Span80 and in the DCE/CYH solvent mixtures with surfactant of Span80 was examined at high dilution. It was shown that the extent and type of the upsweep or downsweep (anomalous rheological behavior) of the reduced viscosity-concentration curves of these different polymers at high dilution are markedly dependent on the dielectric constant of the solvent and the polarity of the polymer used. The experimental results indicated that the anomalous rheological behavior of EVA copolymer, widely used as a flow improver, is related to its efficiency in reducing viscosity and depressing pour point of crude oil and waxy solvents.

  20. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We show that the soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) can be explained as recently proposed highly magnetized white dwarfs (B-WDs). The radius and magnetic field of B-WDs are perfectly adequate to explain energies in SGRs/AXPs as the rotationally powered energy. While the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the magnetized white dwarfs, yet following Chandrasekhar's theory (C-WDs), exhibit large ultra-violet luminosity which is observationally constrained from a strict upper limit.

  1. Anomalous Response in Heteroacene-Based Organic Field Effect Transistors under High Pressure

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sakai

    2014-04-01

    Full Text Available Carrier transport properties of organic field effect transistors in dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene single crystals have been investigated under high pressure. In contrast to the typical pressure effect of monotonic increase in charge transfer rates according to the application of external hydrostatic pressure, it is clarified that the present organic semiconductor devices exhibit nonmonotonic pressure response, such as negative pressure effect. X-ray diffraction analysis under high pressure reveals that on-site molecular orientation and displacement in the heteroacene molecule is assumed to be the origin for the anomalous pressure effects.

  2. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  3. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  4. Anomalous properties of flavonoids in reversed phase high performance liquid chromatography

    Science.gov (United States)

    Zenkevich, I. G.; Gushchina, S. V.

    2011-09-01

    It is shown through reversed phase high performance liquid chromatography that a characteristic feature of such abundant natural flavonoids as flavon-3-ols is an anomalously strong antibate dependence of their retention indices ( RI) on the organic solvent concentration ( C) in the eluent, dRI/ dC < 0. In order to interpret this anomaly, the specific optical rotation values [α]{D/20} of natural (+)-(2 R,3 R)-dihydroquercetin in different solvents are compared, confirming the reverse formation of hydrated flavonoids in aqueous solutions.

  5. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  6. On quark number susceptibilities at high temperatures

    CERN Document Server

    Bazavov, A; Hegde, P; Karsch, F; Miao, C; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Velytsky, A

    2013-01-01

    We calculated second and fourth order quark number susceptibilities for 2+1 flavor QCD in the high temperature region using two improved staggered fermion formulations. The calculations are performed at several lattice spacing and we show that in the continuum limit the two formulations give consistent results. We compare our continuum extrapolated results on quark number susceptibilities with recent weak coupling calculations, and find that these cannot simultaneously explain the lattice results for second and fourth order quark number susceptibilities.

  7. Evidence of high-frequency/small-scale turbulence in the Cygnus region and anomalous Faraday rotation

    Science.gov (United States)

    Medvedev, Mikhail V.

    2017-01-01

    Faraday effect - a common and useful probe of cosmic magnetic fields - is the result of magnetically-induced birefringence in plasmas causing rotation of the polarization plane of a linearly polarized electromagnetic wave. Classically, the rotation angle scales with the wavelength as Δϕ =RMλ2 , where RM is the rotation measure. Although a typical RM in the Milky Way is of the order of a few hundred to a few thousand, a famous Cygnus region shows anomalously small, even negative rotation measures. Moreover, Faraday rotation measurements seem to be inconsistent with the standard λ2-law. We argue that fast micro-turbulence can cause this anomaly. We demonstrate that electromagnetic high-frequency and/or small-scale fluctuations can lead to effective plasma collisionality by scattering electrons over pitch-angle. We show that such quasi-collisionality radically alters Faraday rotation and other radiative transport properties, e.g., absorption, transmission and reflection. Thus, we explain the Cygnus puzzle by anomalous Faraday rotation in a thin ``blanket'' of highly turbulent plasma at the front of an interstellar bubble/shock. Supported by DOE grant DE-SC0016368.

  8. Anomalous compressibility effects and superconductivity of EuFe2As2 under high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Y. K. [University of Alabama, Birmingham; McGuire, Michael A [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL)

    2010-01-01

    The crystal structure and electrical resistance of structurally layered EuFe{sub 2}As{sub 2} have been studied up to 70 GPa and down to a temperature of 10 K, using a synchrotron x-ray source and designer diamond anvils. The room temperature compression of the tetragonal phase of EuFe{sub 2}As{sub 2} (I4/mmm) results in an increase in the a-axis length and a rapid decrease in the c-axis length with increasing pressure. This anomalous compression reaches a maximum at 8 GPa and the tetragonal lattice behaves normally above 10 GPa, with a nearly constant c/a axial ratio. The rapid rise in the superconducting transition temperature (T{sub c}) to 41 K with increasing pressure is correlated with this anomalous compression, and a decrease in T{sub c} is observed above 10 GPa. We present P-V data or the equation of state for EuFe{sub 2}As{sub 2} both in the ambient tetragonal phase and in the high pressure collapsed tetragonal phase up to 70 GPa.

  9. Pomozdino - An anomalous, high-MgO/FeO, yet REE-rich eucrite

    Science.gov (United States)

    Warren, P. H.; Jerde, E. A.; Migdisova, L. F.; Iaroshevskii, A. A.

    1990-01-01

    A new chemical analysis and petrographic data for the Pomozdino basaltic achondrite are presented. Earlier indications that Pomozdino is a eucrite and that it is a monomict breccia with an anomalous, REE-rich, yet high-MgO/FeO bulk composition, are confirmed. Characteristics such as texture, composition, and REE concentration are examined and compared to those in other publications. A model for the origin of this meteorite, as a partial cumulate with an uncommonly high content of trapped liquid, is found to be preferable. Two alternatives of the origin are suggested, one of which implies that the parent melt is roughly similar in composition to Stannern. The other considers Pomozdino as a possible primary partial melt, derived from a source region far more magnesian than generally envisaged for the sources of primary eucritic partial melts. It is concluded that at least some Stannern-like eucrites were involved in fractional crystallization, and thus do not represent primary partial melts.

  10. Chaotic behaviour of high Mach number flows

    Science.gov (United States)

    Varvoglis, H.; Ghosh, S.

    1985-01-01

    The stability of the super-Alfvenic flow of a two-fluid plasma model with respect to the Mach number and the angle between the flow direction and the magnetic field is investigated. It is found that, in general, a large scale chaotic region develops around the initial equilibrium of the laminar flow when the Mach number exceeds a certain threshold value. After reaching a maximum the size of this region begins shrinking and goes to zero as the Mach number tends to infinity. As a result high Mach number flows in time independent astrophysical plasmas may lead to the formation of 'quasi-shocks' in the presence of little or no dissipation.

  11. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime.

    Science.gov (United States)

    Ortaç, Bülend; Limpert, Jens; Tünnermann, Andreas

    2007-08-01

    We report on high-energy ultrashort pulse generation from a passively mode-locked ytterbium-doped large-mode-area photonic crystal fiber oscillator operating in the anomalous dispersion regime. In the single-pulse regime, the laser directly generates 880 mW of average power of sub-500 fs pulses at a repetition rate of 53.33 MHz, corresponding to a pulse energy of 16.5 nJ. Stable and self-starting operation is obtained by adapting the spot size at the saturable absorber mirror to the pulse evolution in the low-nonlinearity fiber. The approach presented demonstrates the scaling potential of fiber based short pulse oscillators towards the microJ-level.

  12. Anomalously high thermoelectric power factor in epitaxial ScN thin films

    DEFF Research Database (Denmark)

    Kerdsongpanya, Sit; Van Nong, Ngo; Pryds, Nini;

    2011-01-01

    Thermoelectric properties of ScN thin films grown by reactive magnetron sputtering on Al2O3(0001) wafers are reported. X-ray diffraction and elastic recoil detection analyses show that the composition of the films is close to stoichiometry with trace amounts (∼1 at. % in total) of C, O, and F. We...... found that the ScN thin-film exhibits a rather low electrical resistivity of ∼2.94 μΩm, while its Seebeck coefficient is approximately ∼−86 μV/K at 800 K, yielding a power factor of ∼2.5 × 10−3 W/mK2. This value is anomalously high for common transition-metal nitrides. © 2011 American Institute...

  13. Anomalously High Geothermal Gradients in the Buckman Well Field, Santa Fe County, New Mexico

    Science.gov (United States)

    Pollack, A.; Munda, R.; Farrell, T. F.; Kelley, S. A.; Frost, J.; Jiracek, G. R.

    2013-12-01

    Temperature as a function of depth was measured in ten wells in the Santa Fe, NM area as part of the Summer of Applied Geophysics Experience (SAGE) program. Eight of the wells are within 5.5 km of the city's Buckman municipal well field and two wells are at La Tierra, 16.5 km to the SE. Geothermal gradients increase from east to west towards the Buckman area, from 20°C/km at La Tierra to 76°C/km at Buckman. Within the Buckman well field, two wells on its eastern side were determined to have temperature gradients of 32°C/km and 42°C/km. Only 300 m west, the geothermal gradient sharply increases, and measured gradients reach 76 °C/km (well number SF4A), 62°C/km (SF4B), and 68°C/km (SF3A) in three shallow (<100 m) monitoring drill holes. Both local and regional causes may explain the geothermal anomaly. The short spatial wavelength of the horizontal gradient increase argues for a localized source. The unusually high gradients in three of the wells may be associated with fault-controlled, effective shallow-source, warm water upflow or with lateral flow in a shallow aquifer. On the regional level, the east to west increase in temperature gradients can be explained by deep circulating groundwater flow in the Espanola Basin and upwelling near the Rio Grande. Another possible explanation comes from gravity data gathered by SAGE over several years that shows a local NW-striking structural high in the area that could force localized convective upflow. Regional aeromag maps indicate magnetic lows exactly underneath the anomalous wells. These may be interpreted as buried volcanic plugs beneath the Buckman well field, acting as conduits for upwelling warmer waters. They may also indicate hydrothermally altered rock beneath the surface. A more nontraditional cause of the sharp thermal anomaly is also possible. The geothermal gradient anomaly coincides with the dramatic discovery by InSAR in 1993-2000 of localized ground subsidence due to excessive water well pumping

  14. Mechanism associated with the Space Shuttle main engine oxidizer valve/duct system anomalous high amplitude discrete acoustical excitation

    Science.gov (United States)

    Schutzenhofer, L. A.; Jones, J. H.; Jewell, R. E.; Ryan, R. S.

    1980-01-01

    Anomalous high frequency pressure fluctuations in the Space Shuttle main engine have been experienced during hot firings. Through diagnostic analysis of hot firing engine data, it was determined that this excitation originated at the main oxidizer valve. The intensity of these fluctuations was such that the main oxidizer valve was partially consumed in fire, experienced fretting, and had seal damage. Delineated in this paper are the associated dynamical phenomena and the methodologies leading toward understanding the excitation mechanism. The results presented demonstrate that the source of the anomalous frequencies was suppressed by a simple fix and all main oxidizer valve damage was terminated.

  15. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms.

    Science.gov (United States)

    Saidi, Wissam A; Norman, Patrick

    2016-07-14

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  16. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    Science.gov (United States)

    Saidi, Wissam A.; Norman, Patrick

    2016-07-01

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  17. High-temperature large-gap quantum anomalous Hall insulating state in ultrathin double perovskite films

    Science.gov (United States)

    Baidya, Santu; Waghmare, Umesh V.; Paramekanti, Arun; Saha-Dasgupta, Tanusri

    2016-10-01

    Towards the goal of realizing topological phases in thin films of correlated oxide and heterostructures, we propose here a quantum anomalous Hall insulator (QAHI) in ultrathin films of double perovskites based on mixed 3 d -5 d or 3 d -4 d transition-metal ions, grown along the [111] direction. Considering the specific case of ultrathin Ba2FeReO6 , we present a theoretical analysis of an effective Hamiltonian derived from first principles. We establish that a strong spin-orbit coupling at the Re site, t2 g symmetry of the low-energy d bands, polarity of its [111] orientation of perovskite structure, and mixed 3 d -5 d chemistry results in room temperature magnetism with a robust QAHI state of Chern number C =1 and a large band gap. We uncover and highlight a nonrelativistic orbital Rashba-type effect in addition to the spin-orbit coupling, that governs this QAHI state. With a band gap of ˜100 meV in electronic structure and magnetic transition temperature Tc˜300 K estimated by Monte Carlo simulations, our finding of the QAHI state in ultrathin Ba2FeReO6 is expected to stimulate experimental verification along with possible practical applications of its dissipationless edge currents.

  18. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  19. Anomalous results observed in magnetization of bulk high temperature superconductors—A windfall for applications

    Science.gov (United States)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Carpenter, Keith; Davey, Kent

    2016-04-01

    Recent experiments on pulsed-zero field cool magnetization of bulk high Jc YBCO (YBa2Cu3O7-δ) have shown unexpected results. For example, reproducible, non-destructive, rapid, giant field leaps (GFLs) to higher penetrated field are observed. The observations are inconsistent with the critical state model (CSM), in several aspects. Additional experiments have been pursued in an attempt to clarify the physics involved in the observed anomalies. Here, we present experimental results for the Jc dependence of the anomalous features. It is found that the sudden field increase in the GFL is a monotonically increasing function of Jc. The ratio of required pulsed field amplitude, BA,max, to obtain maximum trappable field, BT,max, which CSM predicts to be ≥2.0, gradually approaches 1.0 at high Jc. Tests using values of pulsed, applied field BA,max just below the GFL exhibit two additional anomalies: (i) At high Jc, the highest trapped field is up to ˜6 times lower than predicted by CSM, and (ii) the measured Lorentz force as a function of Jc deviates sharply from CSM predictions. The data rule out heating effects and pinning center geometry as possible physical causes of these anomalies. A speculative cause is considered.

  20. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, ...

  1. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds.

    Science.gov (United States)

    Griffin, Christopher T; Nesbitt, Sterling J

    2016-12-20

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  2. High-Temperature Quantum Anomalous Hall Effect in n-p Codoped Topological Insulators.

    Science.gov (United States)

    Qi, Shifei; Qiao, Zhenhua; Deng, Xinzhou; Cubuk, Ekin D; Chen, Hua; Zhu, Wenguang; Kaxiras, Efthimios; Zhang, S B; Xu, Xiaohong; Zhang, Zhenyu

    2016-07-29

    The quantum anomalous Hall effect (QAHE) is a fundamental quantum transport phenomenon that manifests as a quantized transverse conductance in response to a longitudinally applied electric field in the absence of an external magnetic field, and it promises to have immense application potential in future dissipationless quantum electronics. Here, we present a novel kinetic pathway to realize the QAHE at high temperatures by n-p codoping of three-dimensional topological insulators. We provide a proof-of-principle numerical demonstration of this approach using vanadium-iodine (V-I) codoped Sb_{2}Te_{3} and demonstrate that, strikingly, even at low concentrations of ∼2%  V and ∼1% I, the system exhibits a quantized Hall conductance, the telltale hallmark of QAHE, at temperatures of at least ∼50  K, which is 3 orders of magnitude higher than the typical temperatures at which it has been realized to date. The underlying physical factor enabling this dramatic improvement is tied to the largely preserved intrinsic band gap of the host system upon compensated n-p codoping. The proposed approach is conceptually general and may shed new light in experimental realization of high-temperature QAHE.

  3. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  4. The origin of compact galaxies with anomalously high black hole masses

    CERN Document Server

    Barber, Christopher; Bower, Richard G; Crain, Robert A; Schaller, Matthieu; Theuns, Tom

    2016-01-01

    Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, M_BH, relative to their stellar mass, M_star, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a LCDM context using the EAGLE cosmological, hydrodynamical simulation. We find 15 "M_BH(M_star)-outlier" galaxies, defined as having M_BH more than 1.5 dex above the median M_BH(M_star) relation in the simulation, M_{BH,med}. All M_BH(M_star)-outliers are satellite galaxies, typically with M_star ~ 10^10 M_sun and M_BH ~ 10^8 M_sun. They have all become outliers primarily due to tidal stripping of their outer stellar component acting over several Gyr, with a secondary effect of rapid BH growth at high-z causing some to lie approximately 1 dex above the z=0 relation prior to stripping. The same mechanisms also cause the M_BH(M_star)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal can...

  5. Search for anomalous production of events with a high energy lepton and photon at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Loginov, Andrey Borisovich [State Scientific Center of the Russian Federation. Inst. for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2006-01-01

    We present results of a search for the anomalous production of events containing a high-transverse momentum charged lepton (ℓ, either e or μ) and photon (γ), accompanied by missing transverse energy (ET), and/or additional leptons and photons, and jets (X). We use the same kinematic selection criteria as in a previous CDF search, but with a substantially larger data set, 305 pb-1, a p$\\bar{p}$ collision energy of 1.96 TeV, and the upgraded CDF II detector. We find 42 ℓγET events versus a standard model expectation of 37.3 ± 5.4 events. The level of excess observed in Run I, 16 events with an expectation of 7.6 ± 0.7 events (corresponding to a 2.7 σ effect), is not supported by the new data. In the signature of ℓℓγ + X we observe 31 events versus an expectation of 23.0 ± 2.7 events. In this sample we find no events with an extra photon or ET and so find no events like the one eeγγ ET event observed in Run I.

  6. The origin of compact galaxies with anomalously high black hole masses

    Science.gov (United States)

    Barber, Christopher; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom

    2016-07-01

    Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 `MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, MBH, med(M*). All MBH(M*)-outliers are satellite galaxies, typically with M* ˜ 1010 M⊙ and MBH ˜ 108 M⊙. They have all become outliers due to a combination of tidal stripping of their outer stellar component acting over several Gyr and early formation times leading to rapid BH growth at high redshift, with the former mechanism being most important for 67 per cent of these outliers. The same mechanisms also cause the MBH(M*)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal candidates for ultracompact dwarf galaxy progenitors. The 10 most extreme central galaxies found at z = 0 (with log10(MBH/MBH, med(M*)) ∈ [1.2, 1.5]) grow rapidly in MBH to lie well above the present-day MBH - M* relation at early times (z ≳ 2), and either continue to evolve parallel to the z = 0 relation or remain unchanged until the present day, making them `relics' of the high-redshift universe. This high-z formation mechanism may help to explain the origin of observed MBH(M*)-outliers with extended dark matter haloes and undisturbed morphologies.

  7. Pair separation in high Reynolds number turbulence

    CERN Document Server

    Bourgoin, M O; Xu, H; Joergensen, J B; Bodenschatz, E; Bourgoin, Mickael; Ouellette, Nicholas T.; Xu, Haitao; Joergensen, Jacob B.; Bodenschatz, Eberhard

    2005-01-01

    The separation of two nearby particles in a turbulent flow is fundamental in our everyday lives. Turbulent mixing is important everywhere from mundane applications like stirring milk into a cup of tea to technological processes such as the mixing of chemicals in reactors, combustion engines, or jet turbines. Environmental problems such as the spread of pollutants or bioagents in the atmosphere and oceans are fundamentally turbulent mixing processes. Even biological organisms use it to survive in marine ecosystems. Despite intense scientific inquiry, however, no convincing agreement has been found with the Richardson and Batchelor two-particle dispersion predictions over a wide range of timescales. Here we report measurements in a laboratory water flow at very high turbulence intensities (Taylor microscale Reynolds numbers of R_lambda = 690 and 815) that show excellent agreement with a refinement of Batchelor's prediction. We find that even for large initial spatial separations Batchelor scaling is fulfilled. ...

  8. Anomalous Dimensions of Conformal Baryons

    CERN Document Server

    Pica, Claudio

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.

  9. Mixing in High Schmidt Number Turbulent Jets.

    Science.gov (United States)

    Miller, Paul Lewis

    This thesis is an experimental investigation of the passive scalar (species concentration) field in the far-field of round, axisymmetric, high Schmidt number (liquid phase), turbulent jets issuing into a quiescent reservoir, by means of a quantitative laser-induced fluorescence technique. Single -point concentration measurements are made on the jet centerline, at axial locations from 100 to 305 nozzle diameters downstream, and Reynolds numbers of 3,000 to 102,000, yielding data with a resolved temporal dynamic range up to 2.5 times 10^5, and capturing as many as 504 large-scale structure passages. Long-time statistics of the jet concentration are found to converge slowly. Between 100 and 300 large-scale structure passages are required to reduce the uncertainty in the mean to 1%, or so. The behavior of the jet varies with Reynolds number. The centerline concentration pdf's become taller and narrower with increasing Re, and the normalized concentration variances correspondingly decrease with Re. The concentration power spectra also evolve with Re. The behavior of the spectral slopes is examined. No constant -1 (Batchelor) spectral slope range is present. Rather, in the viscous region, the power spectra exhibit log-normal behavior, over a range of scales exceeding a factor of 40, in some cases. The frequency of the beginning of this log-normal range scales like Re^{3/4} (Kolmogorov scaling). Mixing in the far-field is found to be susceptible to initial conditions. Disturbances in the jet plenum fluid and near the nozzle exit strongly influence the scalar variance, with larger disturbances causing larger variances, i.e., less homogeneous mixing. The plenum/nozzle geometry also influences the variance. These effects of initial conditions persist for hundreds of diameters from the nozzle exit, over hundreds of large scales. Mixing in these jets differs from gas-phase, order unity Sc, jet mixing. At low to moderate Re, the higher Sc jet is less well mixed. The difference

  10. High speed optical quantum random number generation.

    Science.gov (United States)

    Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald

    2010-06-07

    We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

  11. High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor.

    Science.gov (United States)

    Zhang, Ying-Tao; Deng, Xinzhou; Sun, Qing-Feng; Qiao, Zhenhua

    2015-01-01

    The quantum entanglement between two qubits is crucial for applications in the quantum communication. After the entanglement of photons was experimentally realized, much effort has been taken to exploit the entangled electrons in solid-state systems. Here, we propose a Cooper-pair splitter, which can generate spatially-separated but entangled electrons, in a quantum anomalous Hall insulator proximity-coupled with a superconductor. After coupling with a superconductor, the chiral edge states of the quantum anomalous Hall insulator can still survive, making the backscattering impossible. Thus, the local Andreev reflection becomes vanishing, while the crossed Andreev reflection becomes dominant in the scattering process. This indicates that our device can serve as an extremely high-efficiency Cooper-pair splitter. Furthermore, because of the chiral characteristic, our Cooper-pair splitter is robust against disorders and can work in a wide range of system parameters. Particularly, it can still function even if the system length exceeds the superconducting coherence length.

  12. Number theory meets high energy physics

    Science.gov (United States)

    Todorov, Ivan

    2017-03-01

    Feynman amplitudes in perturbative quantum field theory are being expressed in terms of an algebra of functions, extending the familiar logarithms, and associated numbers— periods. The study of these functions (including hyperlogarithms) and numbers (like the multiple zeta values), that dates back to Leibniz and Euler, has attracted anew the interest of algebraic geometers and number theorists during the last decades. The two originally independent developments are recently coming together in an unlikely collaboration between particle physics and what were regarded as the most abstruse branches of mathematics.

  13. Why "Anomalous" $J/\\psi$ Suppression in $Pb + Pb$ Collisions Signals High-density Parton Matter

    CERN Document Server

    Kinder-Geiger, Klaus; Geiger, Klaus; Mueller, Berndt

    1998-01-01

    We argue that the A-dependence of absorption of J/\\psi by (partonic) comovers is steeper than assumed in most phenomenological models, because the absorption process is dominated by quasi-perturbative QCD interactions. Our argument is supported by results recently obtained in the framework of the parton cascade model. We predict significant ``anomalous'' suppression for Pb+Pb collisions at the CERN-SPS, but not for S+U collisions.

  14. The Metastable Persistence of Vapor-Deposited Amorphous Ice at Anomalously High Temperatures

    Science.gov (United States)

    Blake, David F.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Studies of the gas release, vaporization behavior and infrared (IR) spectral properties of amorphous and crystalline water ice have direct application to cometary and planetary outgassing phenomena and contribute to an understanding of the physical properties of astrophysical ices. Several investigators report anomalous phenomena related to the warming of vapor-deposited astrophysical ice analogs. However gas release, ice volatilization and IR spectral features are secondary or tertiary manifestations of ice structure or morphology. These observations are useful in mimicking the bulk physical and chemical phenomena taking place in cometary and other extraterrestrial ices but do not directly reveal the structural changes which are their root cause. The phenomenological interpretation of spectral and gas release data is probably the cause of somewhat contradictory explanations invoked to account for differences in water ice behavior in similar temperature regimes. It is the microstructure, micromorphology and microchemical heterogeneity of astrophysical ices which must be characterized if the mechanisms underlying the observed phenomena are to be understood. We have been using a modified Transmission Electron Microscope to characterize the structure of vapor-deposited astrophysical ice analogs as a function of their deposition, temperature history and composition. For the present experiments, pure water vapor is deposited at high vacuum onto a 15 K amorphous carbon film inside an Hitachi H-500H TEM. The resulting ice film (approx. 0.05 micrometers thick) is warmed at the rate of 1 K per minute and diffraction patterns are collected at 1 K intervals. These patterns are converted into radial intensity distributions which are calibrated using patterns of crystalline gold deposited on a small part of the carbon substrate. The small intensity contributed by the amorphous substrate is removed by background subtraction. The proportions of amorphous and crystalline material

  15. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  16. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...

  17. Co-occurrence of Superparamagnetism and Anomalous Hall Effect in Highly Reduced Cobalt Doped Rutile TiO2 Films

    OpenAIRE

    2004-01-01

    We report a detailed magnetic and structural analysis of highly reduced Co doped rutile TiO2 films displaying an anomalous Hall effect (AHE). The temperature and field dependence of magnetization, and transmission electron microscopy clearly establish the presence of nano-sized superparamagnetic cobalt clusters of 8-10 nm size in the films at the interface. The co-occurrence of superparamagnetism and AHE raises questions regarding the use of the AHE as a test of the intrinsic nature of ferrom...

  18. Anomalous pion decay revisited

    CERN Document Server

    Battistel, O A; Nemes, M C; Hiller, B

    1999-01-01

    An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.

  19. Theory of the Muon Anomalous Magnetic Moment

    CERN Document Server

    Melnikov, Kirill

    2006-01-01

    The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.

  20. Possible Kondo-Lattice-Enhanced Magnetic Ordering at Anomalously High Temperature in Nd Metal under Extreme Compression

    Science.gov (United States)

    Schilling, James S.; Song, Jing; Soni, Vikas; Lim, Jinhyuk

    Most elemental lanthanides order magnetically at temperatures To well below ambient, the highest being 292 K for Gd. Sufficiently high pressure is expected to destabilize the well localized magnetic 4 f state of the heavy lanthanides, leading to increasing influence of Kondo physics on the RKKY interaction. For pressures above 80 GPa, To for Dy and Tb begins to increase dramatically, extrapolating for Dy to a record-high value near 400 K at 160 GPa. This anomalous increase may be an heretofore unrecognized feature of the Kondo lattice state; if so, one would expect To to pass through a maximum and fall rapidly at even higher pressures. A parallel is suggested to the ferromagnet CeRh3B2 where To = 115 K at ambient pressure, a temperature more than 100-times higher than anticipated from simple de Gennes scaling. Here we discuss recent experiments on Nd where anomalous behavior in To (P) is found to occur at lower pressures, perhaps reflecting the fact that Nd's 4 f wave function is less localized. Work at Washington University is supported by NSF Grant DMR-1104742 and CDAC through NNSA/DOE Grant DE-FC52-08NA28554.

  1. High Prandtl number effect on Rayleigh-Bénard convection heat transfer at high Rayleigh number

    Science.gov (United States)

    Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian

    2017-02-01

    This paper represents results of the Rayleigh-Bénard convection heat transfer in silicon oil confined by two horizontal plates, heated from below, and cooled from above. The Prandtl numbers considered as 100-10,000 corresponding to three types of silicon oil. The experiments covered a range of Rayleigh numbers from 2.14·109 to 2.27·1013. The data points that the Nusselt number dependents on the Rayleigh number, which is asymptotic to a 0.248 power. Furthermore, the experiment results can fit the data in low Rayleigh number well.

  2. High-resolution coronary MR angiography for evaluation of patients with anomalous coronary arteries: visualization of the intramural segment

    Energy Technology Data Exchange (ETDEWEB)

    Biko, David M. [UCSF Benioff Children' s Hospital Oakland, Department of Diagnostic Imaging, Oakland, CA (United States); The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Chung, Claudia; Chung, Taylor [UCSF Benioff Children' s Hospital Oakland, Department of Diagnostic Imaging, Oakland, CA (United States); Hitt, David M. [Philips Healthcare, Cleveland, OH (United States); Kurio, Gregory [UCSF Benioff Children' s Hospital Oakland, Department of Cardiology, Oakland, CA (United States); Reinhartz, Olaf [UCSF Benioff Children' s Hospital Oakland, Department of Cardiac Surgery, Oakland, CA (United States)

    2015-08-15

    Anomalous origin of the coronary artery from the contralateral coronary sinus is a rare coronary anomaly associated with sudden death. The inter-arterial course is most closely associated with sudden death, but it has been suggested that the presence of an intramural segment of a right anomalous coronary is associated with more symptoms and therefore may be an important criterion for intervention in these patients. To demonstrate that MR angiography can accurately determine the presence or absence of an intramural segment in an anomalous coronary artery. All studies of children who underwent MR angiography for the evaluation of an anomalous coronary artery were retrospectively reviewed by two pediatric radiologists in consensus. Criteria for an intramural anomalous coronary artery were the presence of a small or slit-like ostium and the relative smaller size of the proximal intramural portion of the coronary artery in relation to the more distal epicardial coronary artery. The anomalous coronary artery was classified as not intramural if these two findings were absent. These findings were correlated with operative reports confirming the presence or absence of an intramural segment. Twelve patients (86%) met MR angiography criteria for the presence of an intramural course. Only 2 patients (14%) met MR angiography criteria for a non-intramural course. When correlating with intraoperative findings, MR angiography was successful in distinguishing between intramural and non-intramural anomalous coronary arteries in all cases (P = 0.01). MR angiography may be able to reliably identify the intramural segment of an anomalous coronary artery in older children using the imaging criteria of a small or slit-like ostium and relative decrease in size of the proximal portion of the anomalous coronary artery compared to the distal portion of the anomalous coronary artery. Determining the presence of the intramural segment may help with surgical planning and may be an important

  3. Anomalous excited-state dynamics of lucifer yellow CH in solvents of high polarity: evidence for an intramolecular proton transfer.

    Science.gov (United States)

    Panda, Debashis; Mishra, Padmaja P; Khatua, Saumyakanti; Koner, Apurba L; Sunoj, Raghavan B; Datta, Anindya

    2006-05-04

    The photophysics of the fluorescent probe Lucifer yellow CH has been investigated using fluorescence spectroscopic and computational techniques. The nonradiative rate is found to pass through a minimum in solvents of intermediate empirical polarity. This apparently anomalous behavior is rationalized by considering the possibility of predominance of different kinds of nonradiative processes, viz. intersystem crossing (ISC) and excited-state proton transfer (ESPT), in solvents of low and high empirical polarity, respectively. The feasibility of the proton transfer is examined by the structure determined by the density functional theory (DFT) calculations. The predicted energy levels based on the time-dependent density functional theory (TD-DFT) method in the gas phase identifies the energy gap between the S(1) and nearest triplet state to be close enough to facilitate ISC. Photophysical investigation in solvent mixtures and in deuterated solvents clearly indicates the predominance of the solvent-mediated intramolecular proton transfer in the excited state of the fluorophore in protic solvents.

  4. Towards a high-speed quantum random number generator

    Science.gov (United States)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  5. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  6. Promoting Number Theory in High Schools or Birthday Problem and Number Theory

    Science.gov (United States)

    Srinivasan, V. K.

    2010-01-01

    The author introduces the birthday problem in this article. This can amuse willing members of any birthday party. This problem can also be used as the motivational first day lecture in number theory for the gifted students in high schools or in community colleges or in undergraduate classes in colleges.

  7. EVALUATION OF ERRORS IN PARAMETERS DETERMINATION FOR THE EARTH HIGHLY ANOMALOUS GRAVITY FIELD

    Directory of Open Access Journals (Sweden)

    L. P. Staroseltsev

    2016-05-01

    Full Text Available Subject of Research.The paper presents research results and the simulation of errors caused by determining the Earth gravity field parameters for regions with high segmentation of gravity field. The Kalman filtering estimation of determining errors is shown. Method. Simulation model for the realization of inertial geodetic method for determining the Earth gravity field parameters is proposed. The model is based on high-precision inertial navigation system (INS at the free gyro and high-accuracy satellite system. The possibility of finding the conformity between the determined and stochastic approaches in gravity potential modeling is shown with the example of a point-mass model. Main Results. Computer simulation shows that for determining the Earth gravity field parameters gyro error model can be reduced to two significant indexes, one for each gyro. It is also shown that for regions with high segmentation of gravity field point-mass model can be used. This model is a superposition of attractive and repulsive masses - the so-called gravitational dipole. Practical Relevance. The reduction of gyro error model can reduce the dimension of the Kalman filter used in the integrated system, which decreases the computation time and increases the visibility of the state vector. Finding the conformity between the determined and stochastic approaches allows the application of determined and statistical terminology. Also it helps to create a simulation model for regions with high segmentation of gravity field.

  8. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy.

    Science.gov (United States)

    Zaccone, Claudio; Lobianco, Daniela; Shotyk, William; Ciavatta, Claudio; Appleby, Peter G; Brugiapaglia, Elisabetta; Casella, Laura; Miano, Teodoro M; D'Orazio, Valeria

    2017-02-23

    Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m(2)/yr), OC (0.28 vs. 0.18 kg/m(2)/yr) and TN (3.7 vs. 6.1 g/m(2)/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using (14)C age dating, were confirmed using (210)Pb and (137)Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene.

  9. Anomalous perovskite PbRuO3 stabilized under high pressure.

    Science.gov (United States)

    Cheng, J-G; Kweon, K E; Zhou, J-S; Alonso, J A; Kong, P-P; Liu, Y; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S A; Yang, Wenge; Shen, Guoyin; MacDonald, A H; Manthiram, Arumugam; Hwang, G S; Goodenough, John B

    2013-12-10

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb-Ru bond length relative to the average Pb-Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru-Pb direction at P > Pc.

  10. Anomalously high charge/orbital ordering temperature in Bi{sub 0.5}Sr{sub 0.5}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Frontera, C.; Garcia-Munoz, J.L.; Carrillo, A.E. [ICMAB- CSIC, Campus de Bellaterra, 08193 Bellaterra (Spain); Aranda, M.A.G. [Depto. de Quimica Inorganica, Cristalografia y Mineralogia, Univ. de Malaga, 29071 Malaga (Spain); Ritter, C. [Institut Laue-Langevin, 38042 Grenoble-Cedex (France); Llobet, A. [Condensed Matter and Thermal Physics Group Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Ranno, L. [Lab. Louis Neel-CNRS, 38042-BP166, Grenoble Cedex 9 (France); Respaud, M.; Broto, J.M. [SNCMP and LPMC,INSA, Complexe Scientifique du Rangueil, 31077 Toulouse (France); Vanacken, J. [LVSM, Katholieke Universiteit Leuven, 3001 Leuven (Belgium); Calleja, A.; Garcia, J. [Dept. d' Enginyeria Quimica i Metallurgia, Facultat de Quimica, Univ. de Barcelona, 08028 Barcelona (Spain)

    2002-07-01

    Neutron/synchrotron diffraction data and magnetic measurements provide direct evidence of charge/orbital ordering at anomalously high temperatures in Bi{sub 0.5}Sr{sub 0.5}MnO{sub 3}, as well as in other (Bi,Sr)MnO{sub 3} manganites. We report on the electronic and magnetic transitions of these oxides. The origin of the high value of the charge/orbital ordering temperature is discussed. (orig.)

  11. Anomalous compressive behavior in CeO2 nanocubes under high pressure

    DEFF Research Database (Denmark)

    Ge, M. Y.; Fang, Y. Z.; Wang, H.;

    2008-01-01

    High-pressure angle-dispersive x-ray diffraction measurements have been performed on bulk and nanocrystalline cubic CeO2 with mean sizes of 4.7 and 5.6 nm. It is found that the compressibility of the nanocrystals is lower than the bulk when a threshold pressure is reached. This critical pressure ...

  12. Anomalous magnetic behaviour of NdCu 2 in high magnetic fields

    Science.gov (United States)

    Doerr, M.; Kramp, S.; Loewenhaupt, M.; Rotter, M.; Kratz, R.; Krug, H.; Eckert, D.; Siegel, H.; Verges, P.

    2001-01-01

    Some of the RCu 2 compounds (R=Ce,Pr,Tb,Dy) with easy a-axis show an irreversible change of the easy axis into the c-direction in high magnetic fields. This metamagnetic “axis conversion” is caused by a strong magneto-elastic coupling in the ac-plane. With NdCu 2 a similar magnetic behaviour was found for the first time in a system with an easy axis perpendicular to the ac-plane. We present results of magnetization in static magnetic fields up to 14 T. The minimum conversion field is μ0Hcrit=12.5 T which is higher than in the other compounds. At low temperatures the magnetic axis conversion coincides with the transition into the induced ferromagnetic state. Magnetization measurements were also carried out in pulsed fields up to 50 T. They show an almost linear increase of the conversion fields with temperature which gives a strong evidence that the conversion is caused by an effective quadrupolar coupling. In addition, comparing the results of static and pulsed field experiments, an influence of field duration on the conversion process was found. The high-precision pulsed field magnetization experiments were done in the Dresden high magnetic field facility (HLD).

  13. Magnetite with anomalously high Cr2O3 as a fingerprint to trace upper Yangtze sediments to the sea

    Science.gov (United States)

    Yue, Wei; Liu, James T.; Zhang, Dan; Wang, Zhanghua; Zhao, Baocheng; Chen, Zhongyuan; Chen, Jing

    2016-09-01

    This paper examines geochemical properties of detrital magnetite, in order to link sediments in a Plio-Quaternary core taken in the delta area to their sources in the Yangtze River basin. A total of 40 sediment samples were collected from both the main river channel/tributaries and a sediment core from the Yangtze delta. The geochemical compositions of detrital magnetite in these sediments were analyzed by electron microprobe, including FeO, TiO2, CoO, MgO, Cr2O3, MnO, ZnO, Al2O3 and V2O3. The results revealed that the detrital magnetite grains with anomalously high Cr2O3 occurred exclusively in the upper reaches of the Yangtze (upstream of the Three Gorges Dam), where the E'mei Basalt block is located. This type of magnetite could therefore be considered a unique sediment proxy of the upper river basin to help identify sediment source in the delta area. Our analysis found such magnetite grains with high Cr2O3 occurring throughout the core depth above 186.5 m, in contrast to the extremely low Cr2O3 below this depth. The boundary between high and low Cr2O3 in magnetite grains of the core sediments was dated by paleomagnetism at ca. ~ 1.2-1.0 Ma, signifying that the linkage between the Yangtze River course and the sea was before ~ 1.2-1.0 Ma. This demonstrates that the sediment provenance of the Yangtze delta has experienced a change from local to distal Yangtze River, which took place with the uplift of the Tibetan plateau and coastal subsidence during the Plio-Quaternary.

  14. Simulating High Reynolds Number Flow by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    KANG Xiu-Ying; LIU Da-He; ZHOU Jing; JIN Yong-Juan

    2005-01-01

    @@ A two-dimensional channel flow with different Reynolds numbers is tested by using the lattice Boltzmann method under different pressure and velocity boundary conditions. The results show that the simulation error increases,and the pressure and the flow rate become unstable under a high Reynolds number. To improve the simulation precision under a high Reynolds number, the number of fluid nodes should be enlarged. For a higher Reynoldsnumber flow, the velocity boundary with an approximately parabolic velocity profile is found to be more adaptive.Blood flow in an artery with cosine shape symmetrical narrowing is then simulated under a velocity boundary condition. Its velocity, pressure and wall shear stress distributions are consistent with previous studies.

  15. Frequency agile microwave photonic notch filter with anomalously-high stopband rejection

    CERN Document Server

    Marpaung, David; Pant, Ravi; Eggleton, Benjamin J

    2013-01-01

    We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (> 60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This record performance is enabled by a new concept of sidebands amplitude and phase controls using an electro-optic modulator and an optical filter. This new concept enables energy efficient operation in active MWP notch filters, and opens up the pathway to enable low-power nanophotonic devices as high performance RF filters.

  16. August Passenger and Cargo Numbers Set New Highs

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Passenger and cargo numbers set new highs in August, the second consecutive month that both areas of operation at Dragonair posted record figures. The airline flew 444,498 passengers in August to record its third consecutive monthly record. The number was 7.7%higher than in July, with travel in both months driven by holiday traffic. August 15 saw a new daily mark set, with 17,220passengers carried on the day.

  17. Anomalous electromagnetism of pions and magnons

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, U.-J. [Institute for Theoretical Physics, Bern University Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2005-04-15

    Pions and magnons - the Goldstone bosons of the strong interactions and of magnetism - share a number of common features. Pion and magnon fields couple anomalously to electromagnetism through the conserved Goldstone-Wilczek current of their topological Skyrmion excitations. In the pion case, this coupling gives rise to the decay of the neutral pion into two photons. In the magnon case, the anomalous coupling leads to photonmagnon conversion in an external magnetic field. A measurement of the conversion rate in quantum Hall ferromagnets determines the anyon statistics angle of baby-Skyrmions. If photon-magnon conversion also occurs in antiferromagnets, baby-Skyrmions carry electric charge and may represent the Cooper-pairs of high-temperature superconductors.

  18. Numerical simulation of LBGK model for high Reynolds number flow

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yang; Shi Bao-Chang; Wang Neng-Chao

    2004-01-01

    A principle of selecting relaxation parameter was proposed to observe the limit computational capability of the incompressible LBGK models developed by Guo ZL (Guo model) and He SY (He model) for high Reynolds number flow.To the two-dimensional driven cavity flow problem, the highest Reynolds numbers covered by Guo and He models are in the range 58000-52900 and 28000-29000, respectively, at 0.3 Mach number and 1/256 lattice space. The simulation results also show that the Guo model has stronger robustness due to its higher accuracy.

  19. Anomalous open-circuit voltage from a high-Tc superconducting dynamo

    Science.gov (United States)

    Bumby, C. W.; Jiang, Zhenan; Storey, J. G.; Pantoja, A. E.; Badcock, R. A.

    2016-03-01

    We report on the behavior of a high-Tc superconducting (HTS) homopolar dynamo which outputs a DC open-circuit voltage when the stator is in the superconducting state, but behaves as a conventional AC alternator when the stator is in the normal state. We observe that this time-averaged DC voltage arises from a change in the shape of the AC voltage waveform that is obtained from a normal conducting stator. The measured DC voltage is proportional to frequency, and decreases with increasing flux gap between the rotor magnet and the HTS stator wire. We observe that the DC output voltage decreases to zero at large flux gaps, although small differences between the normal-conducting and superconducting waveforms are still observed, which we attribute to screening currents in the HTS stator wire. Importantly, the normalised pulse shape is found to be a function of the rotor position angle only. Based on these observations, we suggest that the origin of this unexpected DC effect can be explained by a model first proposed by Giaever, which considers the impact of time-varying circulating eddy currents within the HTS stator wire. Such circulating currents form a superconducting shunt path which "short-circuits" the high field region directly beneath the rotor magnet, at those points in the cycle when the rotor magnet partially overlaps the superconducting stator wire. This reduces the output voltage from the device during these periods of the rotor cycle, leading to partial rectification of the output voltage waveform and hence the emergence of a time-averaged DC voltage.

  20. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe

    Science.gov (United States)

    Bandurin, Denis A.; Tyurnina, Anastasia V.; Yu, Geliang L.; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V.; Kumar, Roshan Krishna; Gorbachev, Roman V.; Kudrynskyi, Zakhar R.; Pezzini, Sergio; Kovalyuk, Zakhar D.; Zeitler, Uli; Novoselov, Konstantin S.; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V.; Fal'Ko, Vladimir I.; Geim, Andre K.; Cao, Yang

    2016-11-01

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V‑1 s‑1 and 104 cm2 V‑1 s‑1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

  1. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe.

    Science.gov (United States)

    Bandurin, Denis A; Tyurnina, Anastasia V; Yu, Geliang L; Mishchenko, Artem; Zólyomi, Viktor; Morozov, Sergey V; Kumar, Roshan Krishna; Gorbachev, Roman V; Kudrynskyi, Zakhar R; Pezzini, Sergio; Kovalyuk, Zakhar D; Zeitler, Uli; Novoselov, Konstantin S; Patanè, Amalia; Eaves, Laurence; Grigorieva, Irina V; Fal'ko, Vladimir I; Geim, Andre K; Cao, Yang

    2016-11-21

    A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 10(3) cm(2) V(-1) s(-1) and 10(4) cm(2) V(-1) s(-1) at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.

  2. Search for anomalous toverline t production in the highly-boosted all-hadronic final state

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cerny, K.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Junior, M. Correa Martins; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Júnior, W. L. Aldá; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Amaral, S. M. Silva Do; Jorge, L. Soares; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.; Avila, C.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.

    2012-09-01

    A search is presented for a massive particle, generically referred to as a Z', decaying into a {t}overline {t} pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 fb-1. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall-Sundrum Kaluza-Klein gluon. In addition, the result contrain any enhancement in {t}overline {t} production beyond expectations of the standard mode for tt invariant mass larger than 1 TeV/ c 2.

  3. Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity.

    Science.gov (United States)

    Paschinger, W; Rogl, G; Grytsiv, A; Michor, H; Heinrich, P R; Müller, H; Puchegger, S; Klobes, B; Hermann, R P; Reinecker, M; Eisenmenger-Sitter, Ch; Broz, P; Bauer, E; Giester, G; Zehetbauer, M; Rogl, P F

    2016-07-05

    Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers

  4. Anomalous water expulsion from carbon-based rods at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nune, Satish K.; Lao, David B.; Heldebrant, David J.; Liu, Jian; Olszta, Matthew J.; Kukkadapu, Ravi K.; Gordon, Lyle M.; Nandasiri, Manjula I.; Whyatt, Greg; Clayton, Chris; Gotthold, David W.; Engelhard, Mark H.; Schaef, Herbert T.

    2016-06-13

    Managing water is critical for industrial applications including CO2 capture, catalysis, bio-oil separations and energy storage. Various classes of materials have been designed for these applications, achieving specific water adsorption capacities at a given relative humidity (RH). Three water adsorption-desorption mechanisms are common to inorganic materials: (1) chemisorption, which may lead to the modification of the first coordination sphere; (2) simple adsorption, which is reversible in nature; or (3) capillary condensation, which is irreversible in nature. Regardless of sorption mechanism, all materials known today increase water adsorption capacity with increasing RH; none exhibit repeated adsorption of water at low humidity and release at high humidity. We present here a material that breaks from this convention: a new class of nitrogen containing carbon rods along with nonstoichiometric FeXSY that adsorb water at low humidity, and spontaneously expel half of the adsorbed water when the RH exceeds a 50–80% threshold. Monolayers of water form on the surfaces of the carbon rods, with the amount of water adsorbed directly linked to the aspect ratio of the rods and the available surface area. This unprecedented water expulsion is a reversible physical process. Once a complete monolayer is formed, adjacent rods in the bundles begin to adhere together via formation of a bridging monolayer, reducing the surface area available for water to adhere to. We believe the unique surface chemistry of these carbon rods can be used on other functionalized materials. Such behaviour offers a paradigm shift in water purification and separation: water could be repeatedly adsorbed from a low humidity vapour stream and then expelled into a pure water vapour stream, or humidity-responsive membranes could change their water permeance or selectivity as a function of RH.

  5. Anomalous electric field changes and high flash rate beneath a thunderstorm in northeast India

    Indian Academy of Sciences (India)

    S D Pawar; P Murugavel; V Gopalakrishnan

    2010-10-01

    In spite of many experimental and theoretical studies the relationships between storm dynamics, severe weather,and lightning activity have been least understood.Measurements of electric field made under a severe thunderstorm at a northeastern Indian station,Guwahati,India are reported. Lightning flash rate increases drastically to about 84 flashes per minute (fpm)during the active stage which lasted for about 7 minutes,from about 15 flashes per minute during the initial phase of thunderstorm.Sudden increase in lightning flash rate (‘lightning jump ’)of about 65 fpm/min is also observed in the beginning of the active stage.The dissipating stage is marked by slow and steady decrease in lightning frequency.Despite very high flash rate during the active stage, no severe weather conditions are observed at the ground.It is proposed that the short duration of the active stage might be the reason for the non-observance of severe weather conditions at the ground.Analysis of Skew-t graph at Guwahati suggests that vertical distribution of Convective Available Potential Energy (CAPE)also may play some role in non-occurrence of severe weather at ground in spite of large lightning flash rate and lightning jump observed in this thunderstorm.Further,all electric field changes after a lightning discharge indicates the presence of strong Lower Positive Charge Centers (LPCC)in the active and dissipation stages. This suggests that LPCC plays an important role in initiation of lightning discharges in these stages.

  6. The structure of the velocity and passive scalar fields in high Reynolds number and high Peclet number grid turbulence

    Science.gov (United States)

    Mydlarski, Laurent Bernard

    1998-10-01

    Turbulence theories are generally posed for isotropic turbulence in the limit of infinite turbulent Reynolds and Peclet numbers. Until now, it has been impossible to satisfy these constraints simultaneously in either experiments or simulations. By use of an active grid, devised by Makita, nearly isotropic turbulence with large turbulent Reynolds and Peclet numbers is generated. Turbulent Reynolds numbers based on the Taylor microscale, Rλ, in excess of 700 are achieved. The evolution of the velocity and passive scalar fields from low to high Reynolds and Peclet numbers is studied by generating turbulent fields in wind tunnels. The measurements are made by hot-wire anemometry and cold- wire thermometry. The passive scalar (generated by a mean scalar gradient) is temperature in air. The velocity field shows significant variation with Reynolds number. The slope of the inertial subrange is a function of Reynolds number and is noticeably below the Kolmogorov value of 5/3 for Rλconvective scaling range for the scalar (with slope close to 5/3) is observed for all Peclet numbers. The effects of the internal intermittency of the scalar are present at all Peclet numbers. The scalar field exhibits some (Peclet-number- independent) violations of local isotropy in the direction of the imposed gradient for odd-ordered statistics. The understanding of the 'ramp-cliff' structures (to which this anisotropy is attributed) is extended by describing it in terms of three-point statistics-the most fundamental order at which the odd- ordered statistics can be examined.

  7. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  8. Generation of high energy square-wave pulses in all anomalous dispersion Er:Yb passive mode locked fiber ring laser.

    Science.gov (United States)

    Semaan, Georges; Ben Braham, Fatma; Salhi, Mohamed; Meng, Yichang; Bahloul, Faouzi; Sanchez, François

    2016-04-18

    We have experimentally demonstrated square pulses emission from a co-doped Er:Yb double-clad fiber laser operating in anomalous dispersion DSR regime using the nonlinear polarization evolution technique. Stable mode-locked pulses have a repetition rate of 373 kHz with 2.27 µJ energy per pulse under a pumping power of 30 W in cavity. With the increase of pump power, both the duration and the energy of the output square pulses broaden. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.

  9. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  10. High cetane number paraffinic diesel fuels and emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Larmi, M.; Tilli, A.; Kaario, O.; Gong, Y.; Antila, E.; Sarjovaara, T.; Hillamo, H.; Hakkinen, K.; Lehto, K. [Helsinki Univ. of Technology, Helsinki (Finland); Brink, A. [Aalborg Univ., Aalborg (Finland); Aakko, P. [Saksa VTT, Espoo (Finland)

    2009-07-01

    This presentation discussed high cetane number (CN) paraffinic diesel fuels and emission reduction. The presentation outlined the synthetic and renewable fuels to be studied, including high CN paraffinic diesel fuels like hydrotreated vegetable oil (HVO) and FT-diesel fuel; high CN paraffinic diesel fuels with high concentration of oxygenates; biogas/NPG and dual fuel combustion in future projects; and neat oxygenates like dimethyl ether in future projects. Fatty acid methyl ester biodiesel and diesel fuel were used as reference fuels. The project objectives were to obtain a significant reduction of carbon dioxide, nitrogen oxide and particulate matter emissions of 70 per cent without drawbacks in efficiency or power output. The presentation also described combustion implementation; milestones at Aalto University School of Science and Technology (TKK); resources at TKK; the main research engine; LEO with EHVA; a literature study on previous research; fuel properties; HVO properties, density; high cetane number in the literature; and high CN effects. Previous studies that were discussed included direct comparisons with no calibrations; heavy duty engine performance; potential with engine calibration; exhaust gas recirculation; and room for new research. In general, standard test runs have been carried out with existing engines without considering the special properties of the fuels. tabs., figs.

  11. Turbulence measurements in high Reynolds number boundary layers

    Science.gov (United States)

    Vallikivi, Margit; Smits, Alexander

    2013-11-01

    Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  12. Distribution of plasmoids in high-Lundquist-number magnetic reconnection.

    Science.gov (United States)

    Huang, Yi-Min; Bhattacharjee, A

    2012-12-28

    The distribution function f(ψ) of magnetic flux ψ in plasmoids formed in high-Lundquist-number current sheets is studied by means of an analytic phenomenological model and direct numerical simulations. The distribution function is shown to follow a power law f(ψ)∼ψ(-1), which differs from other recent theoretical predictions. Physical explanations are given for the discrepant predictions of other theoretical models.

  13. Linear drag law for high-Reynolds-number flow past an oscillating body

    Science.gov (United States)

    Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif

    2016-07-01

    An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.

  14. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  15. Vortex Tubes in Turbulence Velocity Fields at High Reynolds Numbers

    CERN Document Server

    Mouri, H

    2008-01-01

    The elementary structures of turbulence, i.e., vortex tubes, are studied using velocity data obtained in laboratory experiments for boundary layers and duct flows at microscale Reynolds numbers 332-1934. While past experimental studies focused on intense vortex tubes, the present study focuses on all vortex tubes with various intensities. We obtain the mean velocity profile. The radius scales with the Kolmogorov length. The circulation velocity scales with the Kolmogorov velocity, in contrast to the case of intense vortex tubes alone where the circulation velocity scales with the rms velocity fluctuation. Since these scaling laws are independent of the configuration for turbulence production, they appear to be universal at high Reynolds numbers.

  16. Shear-driven dynamo waves at high magnetic Reynolds number.

    Science.gov (United States)

    Tobias, S M; Cattaneo, F

    2013-05-23

    Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.

  17. Detection of anomalous events

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  18. Anomalous ionic conductivity of Sc sub 2 (WO sub 4) sub 3 mediated by structural changes at high pressures and temperatures

    CERN Document Server

    Secco, R A; Imanaka, N; Adachi, G

    2002-01-01

    The ionic conductivity of Sc sub 2 (WO sub 4) sub 3 at 400 deg. C shows a normal decrease with increase in pressure up to 2.9 GPa but then increases anomalously at pressures up to 4.3 GPa. Synchrotron in situ x-ray diffraction results show that Sc sub 2 (WO sub 4) sub 3 undergoes pressure-induced amorphization at pressures coincident with the reversal in conductivity behaviour. The loss of crystal structure at high pressure may be associated with the property of negative thermal expansion in Sc sub 2 (WO sub 4) sub 3.

  19. High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.

    Science.gov (United States)

    Graham, J Pietarila; Mininni, P D; Pouquet, A

    2011-07-01

    With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.

  20. Hysteresis phenomenon of hypersonic inlet at high Mach number

    Science.gov (United States)

    Jiao, Xiaoliang; Chang, Juntao; Wang, Zhongqi; Yu, Daren

    2016-11-01

    When the hypersonic inlet works at a Mach number higher than the design value, the hypersonic inlet is started with a regular reflection of the external compression shock at the cowl, whereas a Mach reflection will result in the shock propagating forwards to cause a shock detachment at the cowl lip, which is called "local unstart of inlet". As there are two operation modes of hypersonic inlet at high Mach number, the mode transition may occur with the operation condition of hypersonic inlet changing. A cowl-angle-variation-induced hysteresis and a downstream-pressure-variation-induced hysteresis in the hypersonic inlet start↔local unstart transition are obtained by viscous numerical simulations in this paper. The interaction of the external compression shock and boundary layer on the cowl plays a key role in the hysteresis phenomenon. Affected by the transition of external compression shock reflection at the cowl and the transition between separated and attached flow on the cowl, a hysteresis exists in the hypersonic inlet start↔local unstart transition. The hysteresis makes the operation of a hypersonic inlet very difficult to control. In order to avoid hysteresis phenomenon and keep the hypersonic inlet operating in a started mode, the control route should never pass through the local unstarted boundary.

  1. DSMC Simulation of High Mach Number Taylor-Couette Flow

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma = (U_w /√{ kbT_w / m }) in the range 0.01 Taylor-Couette flow using DSMC method, wall slip in the temperature and the velocities are found to be significant. Slip occurs because the temperature/velocity of the molecules incident on the wall could be very different from that of the wall, even though the temperature/velocity of the reflected molecules is equal to that of the wall. Due to the high surface speed of the inner cylinder, significant heating of the gas is taking place. The gas temperature increases until the heat transfer to the surface equals the work done in moving the surface. The highest temperature is obtained near the moving surface of the inner cylinder at a radius of about (1.26 r_1).

  2. Turbomachinery for Low-to-High Mach Number Flight

    Science.gov (United States)

    Tan, Choon S.; Shah, Parthiv N.

    2004-01-01

    The thrust capability of turbojet cycles is reduced at high flight Mach number (3+) by the increase in inlet stagnation temperature. The 'hot section' temperature limit imposed by materials technology sets the maximum heat addition and, hence, sets the maximum flight Mach number of the operating envelope. Compressor pre-cooling, either via a heat exchanger or mass-injection, has been suggested as a means to reduce compressor inlet temperature and increase mass flow capability, thereby increasing thrust. To date, however, no research has looked at compressor cooling (i.e., using a compressor both to perform work on the gas path air and extract heat from it simultaneously). We wish to assess the feasibility of this novel concept for use in low-to-high Mach number flight. The results to-date show that an axial compressor with cooling: (1) relieves choking in rear stages (hence opening up operability), (2) yields higher-pressure ratio and (3) yields higher efficiency for a given corrected speed and mass flow. The performance benefit is driven: (i) at the blade passage level, by a decrease in the total pressure reduction coefficient and an increase in the flow turning; and (ii) by the reduction in temperature that results in less work required for a given pressure ratio. The latter is a thermodynamic effect. As an example, calculations were performed for an eight-stage compressor with an adiabatic design pressure ratio of 5. By defining non-dimensional cooling as the percentage of compressor inlet stagnation enthalpy removed by a heat sink, the model shows that a non-dimensional cooling of percent in each blade row of the first two stages can increase the compressor pressure ratio by as much as 10-20 percent. Maximum corrected mass flow at a given corrected speed may increase by as much as 5 percent. In addition, efficiency may increase by as much as 5 points. A framework for characterizing and generating the performance map for a cooled compressor has been developed

  3. Anomalous origin of the coronary artery from the wrong coronary sinus evaluated with computed tomography: ''High-risk'' anatomy and its clinical relevance

    Energy Technology Data Exchange (ETDEWEB)

    Krupinski, Maciej; Urbanczyk-Zawadzka, Malgorzata; Laskowicz, Bartosz; Irzyk, Malgorzata; Banys, Robert; Klimeczek, Piotr [John Paul II Hospital, Department of Radiology and Diagnostic Imaging, Krakow (Poland); Gruszczynska, Katarzyna; Baron, Jan [Medical University of Silesia, Department of Radiology and Nuclear Medicine, Katowice (Poland)

    2014-10-15

    The aim of the study was to assess coronary arteries arising from the wrong coronary sinus, including CT-evaluated high-risk anatomic features, clinical symptoms and cardiac events during follow-up. A total of 7,115 patients scheduled for 64-slice or dual-source cardiac CT were screened for the presence of isolated anomalous origin of the coronary artery from the wrong coronary sinus. Anomalous origin of the coronary artery was found in 54 (0.76 %) patients (29 men, 25 women, mean age 60.9 ± 11.6 years). Sixteen (30 %) patients with abnormal right coronary origin (ARCA) more commonly had a slit-like orifice (15 vs. 3; p < 0.001), intramural course (15 vs. 3; p < 0.001) and interarterial course (11 vs. 0; p < 0.001) than 22 (41 %) and 13 (24 %) individuals with abnormal circumflex artery (ALCx) and left coronary artery (ALCA) origin, respectively. Patients with ALCA presented less frequently with chest pain than subjects with ARCA and ALCx (25 vs. 3; p = 0.03). Patients with ARCA tended to show higher occurrence of cardiac events in the follow-up than individuals with ALCA and ALCx (5 vs. 4; p = NS). High-risk anatomy features are most common in patients with ARCA and these patients also have higher prevalence of chest pain and cardiac events in the follow-up than individuals with ALCA and ALCx. (orig.)

  4. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    Science.gov (United States)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  5. High accuracy semidefinite programming bounds for kissing numbers

    NARCIS (Netherlands)

    Mittelmann, H.D.; Vallentin, F.

    2009-01-01

    The kissing number in n-dimensional Euclidean space is the maximal number of non-overlapping unit spheres which simultaneously can touch a central unit sphere. Bachoc and Vallentin developed a method to find upper bounds for the kissing number based on semidefinite programming. This paper is a repor

  6. Super Continuum Generation at 1310nm in a Highly Nonlinear Photonic Crystal Fiber with a Minimum Anomalous Group Velocity Dispersion

    Directory of Open Access Journals (Sweden)

    Ashkan Ghanbari

    2014-12-01

    Full Text Available In the present study, we investigate the evolution of the super continuum generation (SCG through the triangular photonic crystal fiber (PCF at 1310nm by using both full-vector multi pole method (M.P.M and novel concrete algorithms: Symmetric Split-step Fourier (SSF and fourth order Runge Kutta(RK4 which is an accurate method to solve the general nonlinear Schrodinger equation (GNLSE. We propose an ideal solid-core PCF structure featuring a minimum anomalous group velocity dispersion (GVD, small higher order dispersions (HODs and enhanced nonlinearity for appropriate super continuum generation with low input pulse energies over discrete distances of the PCF. We also investigate the impact of the linear and nonlinear effects on the super continuum spectra in detail and compare the results with different status.

  7. Pseudosymmetry, high copy number and twinning complicate the structure determination of Desulfovibrio desulfuricans (ATCC 29577) flavodoxin.

    Science.gov (United States)

    Guelker, Megan; Stagg, Loren; Wittung-Stafshede, Pernilla; Shamoo, Yousif

    2009-06-01

    The crystal structure of oxidized flavodoxin from Desulfovibrio desulfuricans (ATCC 29577) was determined by molecular replacement in two crystal forms, P3(1)21 and P4(3), at 2.5 and 2.0 A resolution, respectively. Structure determination in space group P3(1)21 was challenging owing to the presence of pseudo-translational symmetry and a high copy number in the asymmetric unit (8). Initial phasing attempts in space group P3(1)21 by molecular replacement using a poor search model (46% identity) and multi-wavelength anomalous dispersion were unsuccessful. It was necessary to solve the structure in a second crystal form, space group P4(3), which was characterized by almost perfect twinning, in order to obtain a suitable search model for molecular replacement. This search model with complementary approaches to molecular replacement utilizing the pseudo-translational symmetry operators determined by analysis of the native Patterson map facilitated the selection and manual placement of molecules to generate an initial solution in the P3(1)21 crystal form. During the early stages of refinement, application of the appropriate twin law, (-h, -k, l), was required to converge to reasonable R-factor values despite the fact that in the final analysis the data were untwinned and the twin law could subsequently be removed. The approaches used in structure determination and refinement may be applicable to other crystal structures characterized by these complicating factors. The refined model shows flexibility of the flavin mononucleotide coordinating loops indicated by the isolation of two loop conformations and provides a starting point for the elucidation of the mechanism used for protein-partner recognition.

  8. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide

    Science.gov (United States)

    Mbotwe, Sthembile; Bester, Janette; Robinson, Christopher J.; Kell, Douglas B.

    2016-01-01

    It is well known that a variety of inflammatory diseases are accompanied by hypercoagulability, and a number of more-or-less longer-term signalling pathways have been shown to be involved. In recent work, we have suggested a direct and primary role for bacterial lipopolysaccharide (LPS) in this hypercoagulability, but it seems never to have been tested directly. Here, we show that the addition of tiny concentrations (0.2 ng l−1) of bacterial LPS to both whole blood and platelet-poor plasma of normal, healthy donors leads to marked changes in the nature of the fibrin fibres so formed, as observed by ultrastructural and fluorescence microscopy (the latter implying that the fibrin is actually in an amyloid β-sheet-rich form that on stoichiometric grounds must occur autocatalytically). They resemble those seen in a number of inflammatory (and also amyloid) diseases, consistent with an involvement of LPS in their aetiology. These changes are mirrored by changes in their viscoelastic properties as measured by thromboelastography. As the terminal stages of coagulation involve the polymerization of fibrinogen into fibrin fibres, we tested whether LPS would bind to fibrinogen directly. We demonstrated this using isothermal calorimetry. Finally, we show that these changes in fibre structure are mirrored when the experiment is done simply with purified fibrinogen and thrombin (±0.2 ng l−1 LPS). This ratio of concentrations of LPS : fibrinogen in vivo represents a molecular amplification by the LPS of more than 108-fold, a number that is probably unparalleled in biology. The observation of a direct effect of such highly substoichiometric amounts of LPS on both fibrinogen and coagulation can account for the role of very small numbers of dormant bacteria in disease progression in a great many inflammatory conditions, and opens up this process to further mechanistic analysis and possible treatment. PMID:27605168

  9. Universal decay of high Reynolds number Taylor-Couette turbulence

    CERN Document Server

    Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef

    2015-01-01

    We study the decay of high-Reynolds number Taylor-Couette turbulence, i.e. the turbulent flow between two coaxial rotating cylinders. To do so, the rotation of the inner cylinder ($Re_i = 2 \\cdot 10^6$, the outer cylinder is at rest) was suddenly stopped. Using a combination of laser Doppler anemometry and particle image velocimetry measurements, six decay decades of the kinetic energy could be captured. First, in the absence of cylinder rotation, the flow-velocity during the decay does not develop any height dependence in contrast to the well-known Taylor vortex state. Next, the radial profile of the azimuthal velocity is found to be self-similar, i.e. when normalizing it with the mean velocity, it is universal. Nonetheless, the decay of this wall-bounded inhomogeneous turbulent flow does not follow a strict power law as for decaying turbulent homogeneous isotropic flows, but it is faster, due to the strong viscous drag applied by the bounding walls. We theoretically describe the decay in a quantitative way ...

  10. Interaction of two high Reynolds number axisymmetric turbulent wakes

    Science.gov (United States)

    Obligado, M.; Klein, S.; Vassilicos, J. C.

    2015-11-01

    With the recent discovery of non-equilibrium high Reynolds number scalings in the wake of axisymmetric plates (Nedic et al., PRL, 2013), it has become of importance to develop an experimental technique that permits to easily discriminate between different wake scalings. We propose an experimental setup that tests the presence of non-equilibrium turbulence using the streamwise variation of velocity fluctuations between two bluff bodies facing a flow. We have studied two different sets of plates (one with regular and another with irregular peripheries) with Hot-Wire Anemometry in a wind tunnel. By acquiring streamwise profiles for different plate separations and identifying the wake interaction length for each separation it is possible to estimate the streamwise evolution of the single wake width. From this evolution it is also possible to deduce the turbulence dissipation scalings. This work generalizes previous studies on the interaction of plane wakes (see Gomes-Fernandes et al., JFM, 2012) to include axisymmetric wakes. We find that the wake interaction length proposed in this cited work and a constant anisotropy assumption can be used to collapse the streamwise developments of the first three moments.

  11. Statistics of High Atwood Number Turbulent Mixing Layers

    Science.gov (United States)

    Baltzer, Jon; Livescu, Daniel

    2015-11-01

    The statistical properties of incompressible shear-driven planar mixing layers between two miscible streams of fluids with different densities are investigated by means of Direct Numerical Simulations. The simulations begin from a thin interface perturbed by a thin broadband random disturbance, and the mixing layers are allowed to develop to self-similar states. The temporal simulations are performed in unprecedented domain sizes, with grid sizes up to 6144 x 2048 x 1536, which allows turbulent structures to grow and merge naturally. This allows the flow to reach states far-removed from the initial disturbances, thereby enabling high-quality statistics to be obtained for higher moments, pdfs, and other quantities critical to developing closure models. A wide range of Atwood numbers are explored, ranging from nearly constant density to At=0.87. The consequences of increasing the density contrast are investigated for global quantities, such as growth rates, and asymmetries that form in statistical profiles. Additional simulations in smaller domains are performed to study the effects of domain size.

  12. Anomalous behavior of B1g mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO thin films

    Directory of Open Access Journals (Sweden)

    Subodh K. Gautam

    2015-12-01

    Full Text Available The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO2 lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb+5 in the TiO2 lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR spectra of films with small size crystallites shows stiffening of about 4 cm−1 for the Eg(1 mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B1g mode exhibits a large anomalous softening of 20 cm−1 with asymmetrical broadening; which was not reported for the case of pure TiO2 crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb5+ doping induced reduction of Ti4+ ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  13. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  14. Helicon waves in uniform plasmas. II. High m numbers

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2015-09-15

    Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas. I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.

  15. Dissipation in dynamos at low and high magnetic Prandtl numbers

    CERN Document Server

    Brandenburg, A

    2010-01-01

    Using simulations of helically driven turbulence, it is shown that the ratio of kinetic to magnetic energy dissipation scales with the magnetic Prandtl number in power law fashion with an exponent of approximately 0.6. Over six orders of magnitude in the magnetic Prandtl number the magnetic field is found to be sustained by large-scale dynamo action of alpha-squared type. This work extends a similar finding for small magnetic Prandtl numbers to the regime of large magnetic Prandtl numbers. At large magnetic Prandtl numbers, most of the energy is dissipated viscously, lowering thus the amount of magnetic energy dissipation, which means that simulations can be performed at magnetic Reynolds numbers that are large compared to the usual limits imposed by a given resolution. This is analogous to an earlier finding that at small magnetic Prandtl numbers, most of the energy is dissipated resistively, lowering the amount of kinetic energy dissipation, so simulations can then be performed at much larger fluid Reynolds...

  16. The total chromatic number of regular graphs of high degree

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The total chromatic number χT (G) of a graph G is the minimum number of colors needed to color the edges and the vertices of G so that incident or adjacent elements have distinct colors. We show that if G is a regular graph and d(G) 32 |V (G)| + 263 , where d(G) denotes the degree of a vertex in G, then χT (G) d(G) + 2.

  17. Vortex Shedding from Tapered Cylinders at high Reynolds Numbers

    DEFF Research Database (Denmark)

    Johansson, Jens; Andersen, Michael Styrk; Christensen, Silas Sverre;

    2015-01-01

    percent for strakes of circular cross section. The present paper argues that this height can be reduced for structures where the critical wind velocity for vortex shedding is in the Supercritical Reynolds number regime. The present investigations are aimed for suppressing VIV on offshore wind turbine......^5 (Supercritical). Results indicate that circular strakes with a diameter corresponding to 3 percent of the structures mean diameter can be used to efficiently reduce VIV in the Supercritical Reynolds number regime....

  18. Resolving high Reynolds numbers in SPH simulations of subsonic turbulence

    CERN Document Server

    Price, Daniel J

    2011-01-01

    Accounting for the Reynolds number is critical in numerical simulations of turbulence, particularly for subsonic flow. For Smoothed Particle Hydrodynamics (SPH) with constant artificial viscosity coefficient alpha, it is shown that the effective Reynolds number in the absence of explicit physical viscosity terms scales linearly with the Mach number - compared to mesh schemes, where the effective Reynolds number is largely independent of the flow velocity. As a result, SPH simulations with alpha=1 will have low Reynolds numbers in the subsonic regime compared to mesh codes, which may be insufficient to resolve turbulent flow. This explains the failure of Bauer and Springel (2011, arXiv:1109.4413v1) to find agreement between the moving-mesh code AREPO and the GADGET SPH code on simulations of driven, subsonic (v ~ 0.3 c_s) turbulence appropriate to the intergalactic/intracluster medium, where it was alleged that SPH is somehow fundamentally incapable of producing a Kolmogorov-like turbulent cascade. We show tha...

  19. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo2O5.5+δ highly epitaxial thin films.

    Science.gov (United States)

    Ruiz-Zepeda, F; Ma, C; Bahena Uribe, D; Cantu-Valle, J; Wang, H; Xu, Xing; Yacaman, M J; Chen, C; Lorenz, B; Jacobson, A J; Chu, P C W; Ponce, A

    2014-01-14

    A giant magnetoresistance effect (∼46% at 20 K under 7 T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo2O5.5+δ (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100)LBCO || (001)MgO and [001]LBCO || [100]MgO or [010]MgO. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  20. High-Reynolds Number Taylor-Couette Turbulence

    NARCIS (Netherlands)

    Grossmann, Siegfried; Lohse, Detlef; Sun, Chao

    2016-01-01

    Taylor-Couette flow, the flow between two coaxial co- or counter-rotating cylinders, is one of the paradigmatic systems in the physics of fluids. The (dimensionless) control parameters are the Reynolds numbers of the inner and outer cylinders, the ratio of the cylinder radii, and the aspect ratio. O

  1. Crossover from High to Low Reynolds Number Turbulence

    NARCIS (Netherlands)

    Lohse, Detlef

    1994-01-01

    The Taylor-Reynolds and Reynolds number (Re lambda and Re) dependence of the dimensionless energy dissipation rate c epsilon = epsilon L / u31,rms is derived for statistically stationary isotropic turbulence, employing the results of a variable range mean field theory. Here epsilon is the energy di

  2. ANOMALOUS MAGNETIC FILMS,

    Science.gov (United States)

    Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’

  3. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com [Material Science Group, Inter University Accelerator Centre, New Delhi -110067 (India); Gautam, Naina [Department of Electronic Science, University of Delhi South Campus, New Delhi - 110023 (India); Singh, R. G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi– 110043 (India); Shukla, D. K. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Raman (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.

  4. High Reynolds number liquid layer flow with flexible walls

    Indian Academy of Sciences (India)

    J S B Gajjar

    2015-05-01

    The stability of liquid layer flow over an inclined flexible wall is studied using asymptotic methods based on the assumption that the Reynolds number is large. The flexible wall behaviour is described by a spring-plate model, and parameters chosen so that the wall flexibility affects the governing boundary layer problem. For the case of a rigid wall, the problem reverts to one studied by Gajjar. Asymptotic analysis of the governing equations leads to the triple-deck equations governing the interaction between the wall layer and the free-surface. The linearised and other solution properties of these set of equations are discussed.

  5. Azimuthal Magnetorotational Instability at low and high magnetic Prandtl numbers

    CERN Document Server

    Guseva, A; Willis, A P; Avila, M

    2016-01-01

    The magnetorotational instability (MRI) is considered to be one of the most powerful sources of turbulence in hydrodynamically stable quasi-Keplerian flows, such as those governing accretion disk flows. Although the linear stability of these flows with applied external magnetic field has been studied for decades, the influence of the instability on the outward angular momentum transport, necessary for the accretion of the disk, is still not well known. In this work we model Keplerian rotation with Taylor-Couette flow and imposed azimuthal magnetic field using both linear and nonlinear approaches. We present scalings of instability with Hartmann and Reynolds numbers via linear analysis and direct numerical simulations (DNS) for the two magnetic Prandtl numbers of $1.4 \\cdot 10^{-6}$ and $1$. Inside of the instability domains modes with different axial wavenumbers dominate, resulting in sub-domains of instabilities, which appear different for each $Pm$. The DNS show the emergence of 1- and 2-frequency spatio-te...

  6. High Reynolds number rough-wall turbulent boundary layers

    Science.gov (United States)

    Squire, Dougal; Morrill-Winter, Caleb; Schultz, Michael; Hutchins, Nicholas; Klewicki, Joseph; Marusic, Ivan

    2015-11-01

    In his review of turbulent flows over rough-walls, Jimenez (2004) concludes that there are gaps in the current database of relevant experiments. The author calls for measurements in which δ / k and k+ are both large--low blockage, fully-rough flow--and where δ / k is large and k+ is small--low blockage, transitionally-rough flow--to help clarify ongoing questions regarding the physics of rough-wall-bounded flows. The present contribution details results from a large set of measurements carried out above sandpaper in the Melbourne Wind Tunnel. The campaign spans 45 rough-wall measurements using single and multiple-wire hot-wire anemometry sensors and particle image velocimetry. A floating element drag balance is employed to obtain the rough-wall skin friction force. The data span 20 number range of 2800 < Reτ < 30000 , targeting areas in the parameter space identified by Jimenez (2004) as being sparsely populated by pre-existing data. Smooth-wall data are also obtained across a similar Reynolds number range to enable comparison of smooth- and rough-wall structural features. Generally, the data indicate similarity in the outer-layer of smooth- and fully-rough wall-bounded flows.

  7. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  8. Quasi-static magnetohydrodynamic turbulence at high Reynolds number

    CERN Document Server

    Favier, B F N; Cambon, C; Delache, A; Bos, W J T

    2011-01-01

    We analyse the anisotropy of homogeneous turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, in the quasi- static approximation. We interpret disagreeing previous predictions between linearized theory and simulations: in the linear limit, the kinetic energy of transverse velocity components, normal to the magnetic field, decays faster than the kinetic energy of the axial component, along the magnetic field (Moffatt (1967)); whereas many numerical studies predict a final state characterised by dominant energy of transverse velocity components. We investigate the corresponding nonlinear phenomenon using Direct Numerical Simulations of freely-decaying turbulence, and a two-point statistical spectral closure based on the Eddy Damped Quasi-Normal Markovian model. The transition from the three-dimensional turbulent flow to a "two-and-a-half-dimensional" flow (Montgomery & Turner (1982)) is a result of the combined effects of short-time linear J...

  9. Binary tree models of high-Reynolds-number turbulence

    Science.gov (United States)

    Aurell, Erik; Dormy, Emmanuel; Frick, Peter

    1997-08-01

    We consider hierarchical models for turbulence, that are simple generalizations of the standard Gledzer-Ohkitani-Yamada shell models (E. B. Gledzer, Dokl, Akad. Nauk SSSR 209, 5 (1973) [Sov. Phys. Dokl. 18, 216 (1973)]; M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn. 56, 4210 (1987)). The density of degrees of freedom is constant in wave-number space. Looking only at this behavior and at the quadratic invariants in the inviscid unforced limit, the models can be thought of as systems living naturally in one spatial dimension, but being qualitatively similar to hydrodynamics in two (2D) and three dimensions. We investigated cascade phenomena and intermittency in the different cases. We observed and studied a forward cascade of enstrophy in the 2D case.

  10. Numerical simulation of high Reynolds number bubble motion

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.B. [Clarkson Univ., Potsdam, NY (United States)

    1995-12-31

    This paper presents the results of numerical simulations of bubble motion. All the results are for single bubbles in unbounded fluids. The liquid phase is quiescent except for the motion created by the bubble, which is axisymmetric. The main focus of the paper is on bubbles that are of order 1 mm in diameter in water. Of particular interest is the effect of surfactant molecules on bubble motion. Results for the {open_quotes}insoluble surfactant{close_quotes} model will be presented. These results extend research by other investigators to finite Reynolds numbers. The results indicate that, by assuming complete coverage of the bubble surface, one obtains good agreement with experimental observations of bubble motion in tap water. The effect of surfactant concentration on the separation angle is discussed.

  11. On the Number of Galaxies at High Redshift

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2015-09-01

    Full Text Available The number of galaxies at a given flux as a function of the redshift, z, is derived when the z-distance relation is non-standard. In order to compare different models, the same formalism is also applied to the standard cosmology. The observed luminosity function for galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity function for galaxies, which is derived by the truncated beta probability density function. Three astronomical tests, which are the photometric maximum as a function of the redshift for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function for galaxies as a function of the redshift, compare the theoretical values of the standard and non-standard model with the observed value. The tests are performed on the FORS Deep Field (FDF catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending beyond z = 4. These three tests show minimal differences between the standard and the non-standard models.

  12. High-resolution copy number arrays in cancer and the problem of normal genome copy number variation.

    Science.gov (United States)

    Gorringe, Kylie L; Campbell, Ian G

    2008-11-01

    High-resolution techniques for analysis of genome copy number (CN) enable the analysis of complex cancer somatic genetics. However, the analysis of these data is difficult, and failure to consider a number of issues in depth may result in false leads or unnecessary rejection of true positives. First, segmental duplications may falsely generate CN breakpoints in aneuploid samples. Second, even when tumor data were each normalized to matching lymphocyte DNA, we still observed copy number polymorphisms masquerading as somatic alterations due to allelic imbalance. We investigated a number of different solutions and determined that evaluating matching normal DNA, or at least using locally derived normal baseline data, were preferable to relying on current online databases because of poor cross-platform compatibility and the likelihood of excluding genuine small somatic alterations.

  13. Petrology of Anomalous Eucrites

    Science.gov (United States)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  14. Anomalously High Isotope Ratio 3He/4He and Tritium in Deuterium-Loaded Metal: Evidence for Nuclear Reaction in Metal Hydrides at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    JIANG Song-Sheng; HE Ming; WU Shao-Yong; QI Bu-Jia

    2012-01-01

    Anomalous 3He/4He ratios in deuterium-loaded titanium samples are observed to be about 1-4x10-1, much greater than the values (<10~4) in natural objects. Control experiments with the deuterium-unloaded titanium sample and original industrial deuterium gas are also carried out, but no anomalous 3He/4He values are observed. In addition, anomalous tritium in deuterium-loaded titanium samples are also observed. To explain the excess 3He and tritium in the deuterium-loaded titanium samples, it is required that the deuteron-induced nuclear reaction occurs in the samples at low temperature.%Anomalous 3He/4He ratios in deuterium-loaded titanium samples are observed to be about 1-4×10-1,much greater than the values (≤10-4) in natural objects.Control experiments with the deuterium-unloaded titanium sample and original industrial deuterium gas are also carried out,but no anomalous 3He/4He values are observed.In addition,anomalous tritium in deuterium-loaded titanium samples are also observed.To explain the excess 3He and tritium in the deuterium-loaded titanium samples,it is required that the deuteron-induced nuclear reaction occurs in the samples at low temperature.

  15. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  16. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  17. Anomalous law of cooling.

    Science.gov (United States)

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  18. An analysis of the anomalous high-current cathode emission in pseudospark and back-of-the-cathode lighted thyratron switches

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1989-06-01

    An analysis of the anomalously large cathode emission recently observed in the superdense glow of pseudospark and back-lighted thyratrons is presented. These switches are low-pressure (27 PaH2) glow-discharge pulsed-power devices. After operating at peak discharge currents of 6 to 8 kA and pulse durations of 0.5 to 1 microsec., the surface surrounding the cathode hole was found to have been homogeneously melted within a radius of approx. 4 mm indicating that the discharge is a superdense glow discharge, not an arc, with a cross-sectional area on the order of 1 sq cm. This conclusion is also supported by streak camera measurements. The current density at the cathode surface under these conditions is 5 to 10 kA/sq cm, several orders of magnitude larger than that of thermionic cathodes in common thyratrons. This high-current density is explained by intense cathode heating from a high-current density ion beam produced in the cathode fall during the initial stage of current buildup. The surface heating resulting from this beam yields a significant field-enhanced thermionic emission of electrons.

  19. A Conceptual Model to Link Anomalously High Temperature Gradients in the Cerros del Rio Volcanic Field to Regional Flow in the Espanola Basin, New Mexico

    Science.gov (United States)

    Fillingham, E. J.; Keller, S. N.; McCullough, K. R.; Watters, J.; Weitering, B.; Wilce, A. M.; Folsom, M.; Kelley, S.; Pellerin, L.

    2015-12-01

    proposed conceptual model of the regional flow system in the Espanola Basin addresses the anomalously high geothermal gradients in the monitoring wells in and near the Cerros del Rio volcanic field in addition to the recovering water levels in the Buckman well field.

  20. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Directory of Open Access Journals (Sweden)

    Tom C L Bridge

    Full Text Available High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  1. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Science.gov (United States)

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  2. Study of the Energy Dependence of the Anomalous Mean Free Path Effect by Means of High-energy ($\\geq$12 GeV/nucleon) Helium Nuclei

    CERN Multimedia

    2002-01-01

    The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...

  3. Search for anomalous production of highly boosted Z bosons decaying to μ+μ- in proton-proton collisions at √{ s} = 7 TeV

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.

    2013-05-01

    Results are reported from a search for the anomalous production of highly boosted Z bosons with large transverse momentum and decaying to μ+μ-. Such Z bosons may be produced in the decays of new heavy particles. The search uses pp collision data at √{ s} = 7 TeV, corresponding to an integrated luminosity of 5.0fb-1 recorded with the CMS detector. The shape of the observed transverse momentum distribution of Z bosons is consistent with standard model expectations. Constraints are obtained on models predicting the production of excited quarks decaying via electroweak processes. Assuming a compositeness scale that is equal to the excited quark mass as well as transition coupling strengths between Z bosons and excited quarks that are equal to standard model couplings to quarks, masses of excited quarks below 1.94 TeV are excluded at the 95% confidence level. For excited quark production via a novel contact interaction, masses below 2.22 TeV are excluded, even if the excited quarks do not couple to gluons.

  4. Search for anomalous production of highly boosted Z bosons decaying to μ+μ− in proton–proton collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Scheurer, Armin; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Monika; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Michelotto, Michele; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Dattola, Domenico; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Brownson, Eric; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Johnston, Cody; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-01-01

    Results are reported from a search for the anomalous production of highly boosted Z bosons with large transverse momentum and decaying to the dimuon final state. Such Z bosons may be produced in the decays of new heavy particles. The search uses pp collision data at $\\sqrt{s}$ = 7 TeV, corresponding to an integrated luminosity of 5.0 inverse femtobarns recorded with the CMS detector. The shape of the observed transverse-momentum distribution of Z bosons is consistent with standard-model expectations. Constraints are obtained on models predicting the production of excited quarks decaying via electroweak processes. For excited-quark decays involving only standard-model gauge bosons and coupling strengths, masses of excited quarks below 1.94 TeV are excluded at the 95% confidence level, assuming a compositeness scale equal to the excited-quark mass. For excited-quark production via novel contact interactions, masses below 2.22 TeV are excluded, even if the excited quarks do not couple to gluons.

  5. Anomalous Transport Foundations and Applications

    CERN Document Server

    Klages, Rainer; Sokolov, Igor M

    2008-01-01

    This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma

  6. Drifting localization of ionization runaway: Unraveling the nature of anomalous transport in high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Pavel; Rauch, Albert

    2011-12-04

    The plasma over the magnetron’s erosion “racetrack” is not azimuthally uniform but concentrated in distinct dense plasma zones which move in the {vector E}×{vector B} direction with about 10% of the electrons’ {vector E}×{vector B}/B{sup 2} drift velocity. The plasma zones are investigated with a gated camera working in concert with a streak camera for Al, Nb, Cu, and W targets in Ar or Kr background gas. It is found that each plasma zone has a high density edge which is the origin of a plasma-generating electron jet leaving the target zone. Each region of strong azimuthal density gradient generates an azimuthal electric field which promotes the escape of magnetized electrons and the formation of electron jets and plasma flares. The phenomena are proposed to be caused by an ionization instability where each dense plasma zone exhibits a high stopping power for drifting high energy electrons, thereby enhancing itself.

  7. The anomalous low and high temperatures of 2012 over Greece: an explanation from a meteorological and climatological perspective

    Science.gov (United States)

    Tolika, K.; Maheras, P.; Pytharoulis, I.; Anagnostopoulou, C.

    2013-09-01

    The year of 2012 is characterized, for Greece, as the hottest one in the available record dating back to 1958, presenting also the widest annual temperature range. During the summer and autumn months, numerous regions in the domain of study experienced record-breaking maximum and minimum temperatures. Conversely, the winter period was particularly cold and January was one of the coldest months in the last 55 yr. The analysis of the cold period indicates that the synoptic conditions resemble the positive phase of the Eastern Mediterranean Pattern (EMP). The predominance of these cool conditions seems to be primarily related to an intense NNW or NNE atmospheric circulation, as a consequence of the positive EMP phase. Moreover, the reduction of the floating sea ice emerged as a key driver to the formation of a low pressure pattern and the reinforcement of the trough south of Scandinavia, which in turn strengthened the Siberia High east of the trough. This reinforcement resulted in a blocking pattern and in the favorable conditions for the EMP formation The atmospheric circulation during the prolonged high-temperature period resembles, respectively, the negative phase of North Sea-Caspian Pattern teleconnection. The observed positive pole, in conjunction with the strong southwestern circulation, results in temperature increases and in the development of a smooth pressure field that contributes to the weakening of the Etesian winds and therefore to calm conditions over the continental areas.

  8. The anomalous low and high temperatures of 2012 over Greece - an explanation from a meteorological and climatological perspective

    Science.gov (United States)

    Tolika, K.; Maheras, P.; Pytharoulis, I.; Anagnostopoulou, C.

    2014-03-01

    2012 was the hottest year in Greece on the basis of the available record dating back to 1958, displaying at the same time the widest annual temperature range. During the summer and autumn months, numerous regions in the domain of study experienced record-breaking maximum and minimum temperatures. Conversely, the winter period was particularly cold and January one of the coldest months over the last 55 yr. The analysis of the cold period indicates that the synoptic conditions resemble the positive phase of the Eastern Mediterranean Pattern (EMP). The predominance of these cool conditions seems to be related primarily to an intense NNW or NNE atmospheric circulation, as a consequence of the positive EMP phase. Moreover, the reduction in the floating sea ice emerges as a key driver of the formation of a low-pressure pattern and the reinforcement of the trough south of Scandinavia, which in turn strengthened the Siberia High east of the trough. This reinforcement resulted in a blocking pattern and in favorable conditions for the EMP formation. The atmospheric circulation during the prolonged high-temperature period resembles, respectively, the negative phase of North Sea-Caspian Pattern teleconnection. The observed positive pole, in conjunction with the strong southwestern circulation, results in temperature increases and in the development of a smooth pressure field that contributes to the weakening of the Etesian winds and therefore to calm conditions over the continental areas.

  9. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence- Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence- chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent...flames. Mixture fraction is an important variable in understanding and modeling turbulent mixing and turbulence- chemistry interaction, two key

  10. Search for anomalous $t \\bar{t}$ production in the highly-boosted all-hadronic final state

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Mazza, Giovanni; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Pela, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, any enhancement to t t-bar production for invariant masses above 1 TeV in the standard model is constrained.

  11. Anomalous mechanical behavior and crack growth of oxide glasses

    Science.gov (United States)

    Seaman, Jared Hilliard

    This thesis is concerned with analytically describing anomalous mechanical behaviors of glass. A new slow crack growth model is presented that considers a semi-elliptical crack in a cylindrical glass rod subjected to 4-point bending that is both loaded statically and under a time-dependent load. This model is used to explain a suppression of the loading-rate dependency of ion-exchanged strengthened glass. The stress relaxation behavior of an ion-exchanged strengthened glass is then analyzed in view of a newly observed water-assisted surface stress relaxation mechanism. By making refinements to a time-dependent Maxwell material model for stress buildup and relaxation, the anomalous subsurface compressive stress peak in ion-exchanged strengthened glass is explained. The notion of water-assisted stress relaxation is extended to the crack tip, where high tensile stresses exist. A toughening effect has historically been observed for cracks aged at subcritical stress intensity factors, where crack tip stress relaxation is hypothesized. A simple fracture mechanics model is developed that estimates a shielding stress intensity factor that is then superimposed with the far-field stress intensity factor. The model is used to estimate anomalous "restart" times for aged cracks. The same model predicts a non-linear crack growth rate for cracks loaded near the static fatigue limit. Double cantilever beam slow crack growth experiments were performed and new slow crack growth data for soda-lime silicate glass was collected. Interpretation of this new experimental slow crack growth data suggests that the origin of the static fatigue limit in glass is due to water-assisted stress relaxation. This thesis combines a number of studies that offer a new unified understanding of historical anomalous mechanical behaviors of glass. These anomalies are interpreted as simply the consequence of slow crack growth and water-assisted surface stress relaxation.

  12. Anomalous law of cooling

    OpenAIRE

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel

    2014-01-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...

  13. Anomalous diffusion of epicentres

    CERN Document Server

    Sotolongo-Costa, Oscar; Posadas, A; Luzon, F

    2007-01-01

    The classification of earthquakes in main shocks and aftershocks by a method recently proposed by M. Baiesi and M. Paczuski allows to the generation of a complex network composed of clusters that group the most correlated events. The spatial distribution of epicentres inside these structures corresponding to the catalogue of earthquakes in the eastern region of Cuba shows anomalous anti-diffusive behaviour evidencing the attractive nature of the main shock and the possible description in terms of fractional kinetics.

  14. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  15. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  16. Numerical analyses of high Reynolds number flow of high pressure fuel gas through rough pipes

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Margherita; Morini, Mirko; Pinelli, Michele [ENDIF - Engineering Department in Ferrara, University of Ferrara, Via Saragat, 1 - 44122 Ferrara (Italy)

    2010-07-15

    In this paper, a CFD commercial code is used to evaluate the pressure drop through pipes in a stream of high pressure gas. Both hexahedral and tetrahedral grids are considered. Preliminarily, a grid sensitivity analysis is carried out by comparing CFD results with analytical results. Each grid is characterized by a different number and thickness of layers in order to investigate the behavior of the grid with respect to the boundary layer. Then, the model is validated by using a literature test case, in which high pressure gas flow through a rough pipe is experimentally studied. Moreover, various equations of state (i.e., constant properties, Ideal Gas and Redlich-Kwong equations) and boundary conditions (e.g., pressure, mass flow, etc.) are taken into consideration and compared. Finally, the model is used to extrapolate the behavior of gaseous fuels (i.e., natural gas, biogas and hydrogen-methane mixture) flowing at high pressure through pipes of different roughness. The analyses show that the radial depth of the prism layers on pipe wall has to be controlled to allow the correct resolution of the boundary layer. Moreover, the results highlight that the first element height of the prism layer should be high enough to avoid inconsistencies in the rough model application. At the same time, the grid used for calculations does not strongly influence the numerical results and hence tune of the first element height to perfectly fit the roughness is not always justified. The final analysis on the different gaseous fuels put into evidence the capability of the CFD analysis to determine the energy performance of fuel transportation in gas pipeline. (author)

  17. A potassium Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  18. ACS SBC Recovery from Anomalous Shutdown

    Science.gov (United States)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.

  19. Search for anomalous electroweak production of $WW/WZ$ in association with a high-mass dijet system in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; López, Jorge Andrés; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-01-01

    A search is presented for anomalous quartic gauge boson couplings in vector-boson scattering. The data for the analysis correspond to $20.2$ fb$^{-1}$ of $\\sqrt{s}=8$ TeV $pp$ collisions, and were collected in 2012 by the ATLAS experiment at the Large Hadron Collider. The search looks for the production of $WW$ or $WZ$ boson pairs accompanied by a high-mass dijet system, with one $W$ decaying leptonically, and a $W$ or $Z$ decaying hadronically. The hadronically decaying $W/Z$ is reconstructed as either two small-radius jets or one large-radius jet using jet substructure techniques. Constraints on the anomalous quartic gauge boson coupling parameters $\\alpha_4$ and $\\alpha_5$ are set by fitting the transverse mass of the diboson system, and the resulting 95 % confidence intervals are $-0.024<\\alpha_4<0.030$ and $-0.028<\\alpha_5<0.033$.

  20. Beta Function and Anomalous Dimensions

    CERN Document Server

    Pica, Claudio

    2010-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  1. Anomalous radiative transitions

    CERN Document Server

    Ishikawa, Kenzo; Tobita, Yutaka

    2014-01-01

    Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \

  2. Irrecoverable pressure loss coefficients for two out-of-plane piping elbows at high Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Coffield, R.D.; Hammond, R.B.; McKeown, P.T.

    1999-02-08

    Pressure drops of multiple piping elbows were experimentally determined for high Reynolds number flows. The testing described has been performed in order to reduce uncertainties in the currently used methods for predicting irrecoverable pressure losses and also to provide a qualification database for computational fluid dynamics (CFD) computer codes. The earlier high Reynolds number correlations had been based on extrapolations over several orders of magnitude in Reynolds number from where the original database existed. Recent single elbow test data shows about a factor of two lower elbow pressure loss coefficient (at 40x 106 Reynolds number) than those from current correlations. This single piping elbow data has been extended in this study to a multiple elbow configuration of two elbows that are 90o out-of-plane relative to each other. The effects of separation distance and Reynolds number have been correlated and presented in a form that can be used for design application. Contrary to earlier extrapolations from low Reynolds numbers (Re c 1.0x 106), a strong Reynolds number dependence was found to exist. The combination of the high Reynolds number single elbow data with the multiple elbow interaction effects measured in this study shows that earlier design correlations are conservative by significant margins at high Reynolds numbers. Qualification of CFD predictions with this new high Reynolds number database will help guide the need for additional high Reynolds number testing of other piping configurations. The study also included velocity measurements at several positions downstream of the first and second test elbows using an ultrasonic flowmeter. Reasonable agreement after the first test elbow was found relative to flow fields that are known to exist from low Reynolds number visual tests and also from CFD predictions. This data should help to qualify CFD predictions of the three-dimensional flow stream downstream of the second test elbow.

  3. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  4. Large Eddy Simulations of Kelvin Helmholtz instabilities at high Reynolds number stratified flows

    Science.gov (United States)

    Brown, Dana; Goodman, Lou; Raessi, Mehdi

    2015-11-01

    Simulations of Kelvin Helmholtz Instabilities (KHI) at high Reynolds numbers are performed using the Large Eddy Simulation technique. Reynolds numbers up to 100,000 are achieved using our model. The resulting data set is used to examine the effect of Reynolds number on various statistics, including dissipation flux coefficient, turbulent kinetic energy budget, and Thorpe length scale. It is shown that KHI are qualitatively different at high Re, up to and including the onset of vortex pairing and billow collapse and quantitatively different afterward. The effect of Richardson number is also examined. The results are discussed as they apply to ocean experiments.

  5. High-Quality Random Number Generation Software for High-Performance Computing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Random number (RN) generation is the key software component that permits random sampling. Software for parallel RN generation (RNG) should be based on RNGs that are...

  6. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...

  7. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  8. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  9. Theoretical model for a Stark anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1993-01-01

    A theoretical model for the first atomic Stark anomalous dispersion optical filter is reported. The results show the filter may serve as a widely tunable narrow bandwidth and high throughput optical filter for freespace laser communications and remote sensing.

  10. Real time demonstration of high bitrate quantum random number generation with coherent laser light

    CERN Document Server

    Symul, T; Lam, P K; 10.1063/1.3597793

    2011-01-01

    We present a random number generation scheme that uses broadband measurements of the vacuum field contained in the radio-frequency sidebands of a single-mode laser. Even though the measurements may contain technical noise, we show that suitable algorithms can transform the digitized photocurrents into a string of random numbers that can be made arbitrarily correlated with a subset of the quantum fluctuations (high quantum correlation regime) or arbitrarily immune to environmental fluctuations (high environmental immunity). We demonstrate up to 2 Gbps of real time random number generation that were verified using standard randomness tests.

  11. Anomalous interactions at a linear collider

    Indian Academy of Sciences (India)

    Sudhansu S Biswal; Debajyoti Choudhury; Rohini M Godbole; Ritesh K Singh

    2007-11-01

    We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating at a center of mass energy of 500 GeV and with an integrated luminosity of 500 fb-1 is shown to be able to constrain the vertex at the few per cent level, with even higher sensitivity for some of the couplings. However, lack of sufficient number of observables as well as contamination from the vertex limits the precision to which anomalous part of the coupling can be probed.

  12. Is Ultra-High Reynolds Number Necessary for Comprehensive Log Scaling in a Turbulent Boundary Layer?

    CERN Document Server

    Dixit, Shivsai Ajit

    2015-01-01

    Experiments in an extraordinary turbulent boundary layer called the sink flow, displaying a perfect streamwise invariance, show a wide extent of logarithmic scaling for moments of streamwise velocity up to order 12, even at moderate Reynolds numbers. This is in striking contrast to canonical constant-pressure turbulent boundary layers that show such comprehensive log scaling only at ultra-high Reynolds numbers. This suggests that for comprehensive log scaling, ultra-high-Reynolds-number is not a necessary condition; while specific details of the sink flow are special, the relevance to general turbulent boundary layers is that the sink flow underscores the importance of the streamwise invariance condition that needs to be met in a general flow for obtaining log scaling. Indeed, a simple theory shows that, for log scaling in the inertial sublayer, the invariance of dimensionless mean velocity and higher-order moments along a mean streamline is a necessary and sufficient condition. Ultra-high Reynolds number pri...

  13. Multigrid solution of the convection-diffusion equation with high-Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [George Washington Univ., Washington, DC (United States)

    1996-12-31

    A fourth-order compact finite difference scheme is employed with the multigrid technique to solve the variable coefficient convection-diffusion equation with high-Reynolds number. Scaled inter-grid transfer operators and potential on vectorization and parallelization are discussed. The high-order multigrid method is unconditionally stable and produces solution of 4th-order accuracy. Numerical experiments are included.

  14. Spectroscopic diagnostics of superthermal electrons with high-number harmonic EC radiation in tokamak reactor plasmas

    Directory of Open Access Journals (Sweden)

    Minashin P.V.

    2015-01-01

    Full Text Available A method of spectroscopic diagnostics of the average perpendicular-to-magnetic-field momentum of the superthermal component of the electron velocity distribution (EVD, based on the high-number-harmonic electron cyclotron (EC radiation, is suggested for nuclear fusion-reactor plasmas under condition of a strong auxiliary heating (e.g. in tokamak DEMO, a next step after tokamak ITER. The method is based on solving an inverse problem for reconstruction of the EVD in parallel and perpendicular-to-magnetic-field components of electron momentum at high and moderate energies responsible for the emission of the high-number-harmonic EC radiation.

  15. The small-scale dynamo: Breaking universality at high Mach numbers

    CERN Document Server

    Schleicher, Dominik R G; Federrath, Christoph; Bovino, Stefano; Schmidt, Wolfram

    2013-01-01

    (Abridged) The small-scale dynamo may play a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may in particular lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this study, we explore whether in this large range of conditions, a universal behavior can be expected. Our starting point are previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current ...

  16. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high precission static compression study

    CERN Document Server

    Ullrich, A; Miletich, R; 10.1007/s00269-009-0300-8

    2010-01-01

    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around similar to 3.2 and similar to 7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/c-P2(1)/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pr...

  17. Estimation Prospects of the Source Number Density of Ultra-high-energy Cosmic Rays

    OpenAIRE

    Takami, Hajime; Sato, Katsuhiko

    2007-01-01

    We discuss the possibility of accurately estimating the source number density of ultra-high-energy cosmic rays (UHECRs) using small-scale anisotropy in their arrival distribution. The arrival distribution has information on their source and source distribution. We calculate the propagation of UHE protons in a structured extragalactic magnetic field (EGMF) and simulate their arrival distribution at the Earth using our previously developed method. The source number density that can best reprodu...

  18. Heat transfer for falling film evaporation of industrially relevant fluids up to very high Prandtl numbers

    Science.gov (United States)

    Gourdon, Mathias; Karlsson, Erik; Innings, Fredrik; Jongsma, Alfred; Vamling, Lennart

    2016-02-01

    In many industrial applications, falling film evaporation is an attractive technique for solvent removal due to high heat transfer and low residence times. Examples are the powder production in the dairy industry and in kraft pulp production process to remove water from so called black liquor. Common for both applications is that the fluids exhibit high viscosities in industrial practice. In this paper, results from experimental studies on both black liquor and a dairy product are reported for Prandtl numbers up to 800. The results are compared with several existing correlation in literature, and the need for a modified correlation is recognized especially to cover higher Prandtl-numbers. The following correlation for the turbulent flow region with 3 literature data from one additional study on two other fluids (propylene glycol and cyclohexanol) with fairly high Prandtl-numbers, from 40 to 58 and from 45 to 155 respectively and the agreement was within ±40 %.

  19. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    Science.gov (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-01-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585

  20. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  1. Neoclassical and anomalous flows in stellarators

    Science.gov (United States)

    Ware, A. S.; Marine, T.; Spong, D. A.

    2009-11-01

    The impact of magnetic geometry and plasma profiles on flows and viscosities in stellarators is investigated. This work examines both neoclassical and anomalous flows for a number of configurations including a particular focus on the Helically Symmetric Experiment (HSX) and other quasi-symmetric configurations. Neoclassical flows and viscosities are calculated using the PENTA code [1]. For anomalous flows, the neoclassical viscosities from PENTA are used in a transport code that includes Reynolds stress flow generation [2]. This is done for the standard quasi-helically symmetric configuration of HSX, a symmetry-breaking mirror configuration and a hill configuration. The impact of these changes in the magnetic geometry on neoclassical viscosities and flows in HSX are discussed. Due to variations in neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. These effects are shown to vary as the ratio of electron to ion temperature varies. In particular, as the ion temperature increases relative to the electron flow shear is shown to increase. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  2. The effects of nozzle geometry on waterjet breakup at high Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Vahedi Tafreshi, H.; Pourdeyhimi, B. [Nonwovens Cooperative Research Center, North Carolina State University, NC 27695-8301, Raleigh (United States)

    2003-10-01

    Waterjet breakup is traditionally considered to follow the Ohnesorge classification. In this classification, high Reynolds number waterjets are considered to atomize quickly after discharge. By generating a constricted waterjet where the water flow stays detached all the way through the nozzle, we have observed the first wind-induced breakup mode at high Reynolds numbers. Such a peculiar behavior, however, was not observed in non-constricted waterjets. Our results indicate that, constricted jets do not follow the Ohnesorge classification, in contrast to the non-constricted waterjets. We discuss the impact of nozzle geometry on the characteristics of waterjets and support our discussion by numerical simulations. (orig.)

  3. Dispersive nature of high mach number collisionless plasma shocks: Poynting flux of oblique whistler waves.

    Science.gov (United States)

    Sundkvist, David; Krasnoselskikh, V; Bale, S D; Schwartz, S J; Soucek, J; Mozer, F

    2012-01-13

    Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.

  4. Anomalous lattice deformation in GaN/SiC(0001) measured by high-speed in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takuo, E-mail: sasaki.takuo@jaea.go.jp; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Ishikawa, Fumitaro [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2016-01-04

    We report an anomalous lattice deformation of GaN layers grown on SiC(0001) by molecular beam epitaxy. The evolution of the lattice parameters during the growth of the GaN layers was measured by in situ synchrotron X-ray diffraction. The lattice parameters in the directions parallel and normal to the surface showed significant deviation from the elastic strains expected for lattice-mismatched films on substrates up to a thickness of 10 nm. The observed lattice deformation was well explained by the incorporation of hydrostatic strains due to point defects. The results indicate that the control of point defects in the initial stage of growth is important for fabricating GaN-based optoelectronic devices.

  5. Searching for the fourth family quarks through anomalous decays

    Science.gov (United States)

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2010-09-01

    The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

  6. Qualification of a Method to Calculate the Irrecoverable Pressure Loss in High Reynolds Number Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, K. C.; Coffield, R. D.

    2002-09-01

    High Reynolds number test data has recently been reported for both single and multiple piping elbow design configurations at earlier ASME Fluid Engineering Division conferences. The data of these studies ranged up to a Reynolds number of 42 x 10[sup]6 which is significantly greater than that used to establish design correlations before the data was available. Many of the accepted design correlations, based on the lower Reynolds number data, date back as much as fifty years. The new data shows that these earlier correlations are extremely conservative for high Reynolds number applications. Based on the recent high Reynolds number information a new recommended method has been developed for calculating irrecoverable pressure loses in piping systems for design considerations such as establishing pump sizing requirements. This paper describes the recommended design approach and additional testing that has been performed as part of the qualification of the method. This qualification testing determined the irrecoverable pressure loss of a piping configuration that would typify a limiting piping section in a complicated piping network, i.e., multiple, tightly coupled, out-of-plane elbows in series under high Reynolds number flow conditions. The overall pressure loss measurements were then compared to predictions, which used the new methodology to assure that conservative estimates for the pressure loss (of the type used for pump sizing) were obtained. The recommended design methodology, the qualification testing and the comparison between the predictions and the test data are presented. A major conclusion of this study is that the recommended method for calculating irrecoverable pressure loss in piping systems is conservative yet significantly lower than predicted by early design correlations that were based on the extrapolation of low Reynolds number test data.

  7. High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers.

    Science.gov (United States)

    Feuchter, C; Schleifenbaum, W

    2016-07-01

    We analyze a large number of high-order discrete velocity models for solving the Boltzmann-Bhatnagar-Gross-Krook equation for finite Knudsen number flows. Using the Chapman-Enskog formalism, we prove for isothermal flows a relation identifying the resolved flow regimes for low Mach numbers. Although high-order lattice Boltzmann models recover flow regimes beyond the Navier-Stokes level, we observe for several models significant deviations from reference results. We found this to be caused by their inability to recover the Maxwell boundary condition exactly. By using supplementary conditions for the gas-surface interaction it is shown how to systematically generate discrete velocity models of any order with the inherent ability to fulfill the diffuse Maxwell boundary condition accurately. Both high-order quadratures and an exact representation of the boundary condition turn out to be crucial for achieving reliable results. For Poiseuille flow, we can reproduce the mass flow and slip velocity up to the Knudsen number of 1. Moreover, for small Knudsen numbers, the Knudsen layer behavior is recovered.

  8. Prospectus: towards the development of high-fidelity models of wall turbulence at large Reynolds number

    Science.gov (United States)

    Klewicki, J. C.; Chini, G. P.; Gibson, J. F.

    2017-03-01

    Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier-Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted.

  9. Remote sensing and characterization of anomalous debris

    Science.gov (United States)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  10. High Reynolds Number Studies in the Wake of a Submarine Model

    Science.gov (United States)

    Jimenez, Juan; Reynolds, Ryan; Smits, Alexander

    2005-11-01

    Results are presented from submarine wake studies conducted in Princeton University's High Reynolds Number Test Facility (HRTF). Compressed air is used as a working fluid enabling Reynolds numbers based on length of up to 10^8, about 1/5 of full scale. Measurements at Reynolds numbers up to 3 x10^6 have been completed, and show that, for the model condition without fins, the wake mean velocity was self-similar at locations 6 and 9 diameters downstream. Also, PIV at Reynolds numbers near 10^4 showed that when the yaw angle was varied the sail-tip and sail-hull junction vortices increased in magnitude emphasizing the importance of fully understanding the flow characteristics of a maneuvering submarine.

  11. Convective heat transport in stratified atmospheres at low and high Mach number

    CERN Document Server

    Anders, Evan H

    2016-01-01

    Convection in astrophysical systems is stratified and often occurs at high Rayleigh number (Ra) and low Mach number (Ma). Here we study stratified convection in the context of plane-parallel, polytropically stratified atmospheres. We hold the density stratification ($n_{\\rho}$) and Prandtl number (Pr) constant while varying Ma and Ra to determine the behavior of the Nusselt number (Nu), which quantifies the efficiency of convective heat transport. As Ra increases and $\\text{Ma} \\rightarrow 1$, a scaling of Nu $\\propto$ Ra$^{0.45}$ is observed. As Ra increases to a regime where Ma $\\geq 1$, this scaling gives way to a weaker Nu $\\propto$ Ra$^{0.19}$. In the regime of Ma $\\ll 1$, a consistent Nu $\\propto$ Ra$^{0.31}$ is retrieved, reminiscent of the Nu $\\propto$ Ra$^{2/7}$ seen in Rayleigh-B\\'{e}nard convection.

  12. Wind Tunnel Tests of Wind Turbine Airfoils at High Reynolds Numbers

    Science.gov (United States)

    Llorente, E.; Gorostidi, A.; Jacobs, M.; Timmer, W. A.; Munduate, X.; Pires, O.

    2014-06-01

    Wind tunnel tests have been performed to measure the two-dimensional aerodynamic characteristics of two different airfoil families at high Reynolds numbers (from 3 to 12 millions) in the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. Also, tests at a Reynolds number of 3 millions have been performed in the Low-Speed Low- Turbulence Wind Tunnel of Delft University, The Netherlands. The airfoils tested belong to two wind turbine dedicated families: the TU-Delft DU family and the ACCIONA Windpower AWA family that was designed in collaboration with CENER. Reynolds number effects on airfoil performance have been obtained in the range of 3 to 12 millions. The availability of data from two different wind tunnels has brought the opportunity to cross compare the results from the two facilities.

  13. Unsteady Numerical Simulation of Flow around 2-D Circular Cylinder for High Reynolds Numbers

    Institute of Scientific and Technical Information of China (English)

    Yanhui Ai; Dakui Feng; Hengkui Ye; Lin Li

    2013-01-01

    In this paper,2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes,i.e.8.21×104<Re<l.54×106.The calculations were performed by means of solving the 2-D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a k-ε turbulence model.The calculated results,produced flow structure drag and lift coefficients,as well as Strouhal numbers.The findings were in good agreement with previous published data,which also supplied us with a good understanding of the flow across cylinders of different high Reynolds numbers.Meanwhile,an effective measure was presented to control the lift force on a cylinder,which points the way to decrease the vortex induced vibration of marine structure in future.

  14. Subsurface Signature of the Internal Wave Field Radiated by Submerged High Reynolds Number Stratified Wakes

    Science.gov (United States)

    2014-05-26

    parametric subharmonic instability. 15. SUBJECT TERMS Stratified turbulent wakes, high Reynolds numbers, internal waves, nonlinear effects, harmonics, mean...beam and the potential for parametric subharmonic instability. In all these efforts, a uniform linear stratification was considered. A subset of our...found for all simulated waves. c) For sufficiently high-amplitude beams, a parametric subharmonic instability is observed after a long enough time

  15. Diagonal and off-diagonal quark number susceptibilities at high temperatures

    CERN Document Server

    Ding, H -T; Ohno, H; Petreczky, P; Schadler, H -P

    2015-01-01

    We present continuum extrapolated lattice QCD results for up to fourth order diagonal and off-diagonal quark number susceptibilities in the high temperature region of 300-700 MeV. Lattice QCD calculations are performed using 2+1 flavors of highly improved staggered quarks with nearly physical quark masses and at four different lattice spacings. Comparisons of our results with recent weak coupling perturbative calculations yield reasonably good agreements for the entire temperature range.

  16. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers

    Science.gov (United States)

    Metzger, M. M.; Klewicki, J. C.

    2001-03-01

    The present study explores the effects of Reynolds number, over three orders of magnitude, in the viscous wall region of a turbulent boundary layer. Complementary experiments were conducted both in the boundary layer wind tunnel at the University of Utah and in the atmospheric surface layer which flows over the salt flats of the Great Salt Lake Desert in western Utah. The Reynolds numbers, based on momentum deficit thickness, of the two flows were Rθ=2×103 and Rθ≈5×106, respectively. High-resolution velocity measurements were obtained from a five-element vertical rake of hot-wires spanning the buffer region. In both the low and high Rθ flows, the length of the hot-wires measured less than 6 viscous units. To facilitate reliable comparisons, both the laboratory and field experiments employed the same instrumentation and procedures. Data indicate that, even in the immediate vicinity of the surface, strong influences from low-frequency motions at high Rθ produce noticeable Reynolds number differences in the streamwise velocity and velocity gradient statistics. In particular, the peak value in the root mean square streamwise velocity profile, when normalized by viscous scales, was found to exhibit a logarithmic dependence on Reynolds number. The mean streamwise velocity profile, on the other hand, appears to be essentially independent of Reynolds number. Spectra and spatial correlation data suggest that low-frequency motions at high Reynolds number engender intensified local convection velocities which affect the structure of both the velocity and velocity gradient fields. Implications for turbulent production mechanisms and coherent motions in the buffer layer are discussed.

  17. Dynamic unified RANS-LES simulations of high Reynolds number separated flows

    Science.gov (United States)

    Mokhtarpoor, Reza; Heinz, Stefan; Stoellinger, Michael

    2016-09-01

    The development of hybrid RANS-LES methods is seen to be a very promising approach to enable efficient simulations of high Reynolds number turbulent flows involving flow separation. To contribute to further advances, we present a new, theoretically well based, dynamic hybrid RANS-LES method, referred to as DLUM. It is applied to a high Reynolds number flow involving both attached and separated flow regimes: a periodic hill flow is simulated at a Reynolds number of 37 000. Its performance is compared to pure LES, pure RANS, other hybrid RANS-LES (given by DLUM modifications), and experimental observations. It is shown that the use of this computational method offers huge cost reductions (which scale with Re/200, Re refers to the Reynolds number) of very high Reynolds number flow simulations compared to LES, it is much more accurate than RANS, and more accurate than LES, which is not fully resolved. In particular, this conclusion does also apply to the comparison of DLUM and pure LES simulations on rather coarse grids, which are often simply required to deal with simulations of very high Reynolds number flows: the DLUM provides mean velocity fields which are hardly affected by the grid, whereas LES velocity fields reveal significant shortcomings. We identified the reason for the superior performance of our new dynamic hybrid RANS-LES method compared to LES: it is the model's ability to respond to a changing resolution with adequate turbulent viscosity changes by ensuring simultaneously a physically correct turbulence length scale specification under the presence of interacting RANS and LES modes.

  18. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp.

    NARCIS (Netherlands)

    Takano, Eriko; White, Janet; Thompson, Charles J.; Bibb, Mervyn J.

    1995-01-01

    A high-copy-number plasmid expression vector (pIJ6021) was constructed that contains a thiostrepton-inducible promoter, PtipA, from Streptomyces lividans 66. The promoter and ribosome-binding site of tipA lie immediately upstream from a multiple cloning site (MCS) which begins with a NdeI site (5'-C

  19. Self-similar decay of high Reynolds number Taylor-Couette turbulence

    NARCIS (Netherlands)

    Verschoof, R.A.; Huisman, S.G.; Veen, van der R.C.A.; Sun, C.; Lohse, D.

    2016-01-01

    We study the decay of high-Reynolds-number Taylor-Couette turbulence, i.e., the turbulent flow between two coaxial rotating cylinders. To do so, the rotation of the inner cylinder (Re i =2×10 6 , the outer cylinder is at rest) is stopped within 12 s, thus fully removing the energy input to the syst

  20. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    Science.gov (United States)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  1. Observation of photonic anomalous Floquet topological insulators

    Science.gov (United States)

    Maczewsky, Lukas J.; Zeuner, Julia M.; Nolte, Stefan; Szameit, Alexander

    2017-01-01

    Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges -- independently of the fine details of the system and of the edge -- due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specific bandgap is equal to the net number of chiral edge modes traversing this gap. However, this is strictly valid only in settings with static Hamiltonians. The Chern numbers do not give a full characterization of the topological properties of periodically driven systems. In our work, we implement a system where chiral edge modes exist although the Chern numbers of all bands are zero. We employ periodically driven photonic waveguide lattices and demonstrate topologically protected scatter-free edge transport in such anomalous Floquet topological insulators.

  2. Large scale dynamics in a turbulent compressible rotor/stator cavity flow at high Reynolds number

    Science.gov (United States)

    Lachize, C.; Verhille, G.; Le Gal, P.

    2016-08-01

    This paper reports an experimental investigation of a turbulent flow confined within a rotor/stator cavity of aspect ratio close to unity at high Reynolds number. The experiments have been driven by changing both the rotation rate of the disk and the thermodynamical properties of the working fluid. This fluid is sulfur hexafluoride (SF6) whose physical properties are adjusted by imposing the operating temperature and the absolute pressure in a pressurized vessel, especially near the critical point of SF6 reached for T c = 45.58 ◦C, P c = 37.55 bar. This original set-up allows to obtain Reynolds numbers as high as 2 × 107 together with compressibility effects as the Mach number can reach 0.5. Pressure measurements reveal that the resulting fully turbulent flow shows both a direct and an inverse cascade as observed in rotating turbulence and in accordance with Kraichnan conjecture for 2D-turbulence. The spectra are however dominated by low-frequency peaks, which are subharmonics of the rotating disk frequency, involving large scale structures at small azimuthal wavenumbers. These modes appear for a Reynolds number around 105 and experience a transition at a critical Reynolds number Re c ≈ 106. Moreover they show an unexpected nonlinear behavior that we understand with the help of a low dimensional amplitude equations.

  3. Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Johansen, Jeppe

    2007-01-01

    by LES. The wellknown high Reynolds number two-equation k - ǫ turbulence model is used in the RANS layer and the model automatically switches to a two-equation k - ǫ subgrid-scale stress model in the LES region. The approach can be used for flow over rough walls. To demonstrate the ability...... for flows at high Reynolds numbers. To reduce the computational cost of traditional LES a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls the flow is treated with the RANS-equations and this layer act as wall model for the outer flow handled...... of the proposed hybrid method, simulations of the wind flow over a complex terrain near Wellington in New Zealand are presented. Under certain conditions unsteady flow features have been measured at the site - flow features that could lead to high structural loads on a planned wind farm. These transient flow...

  4. All-optical random number generation using highly nonlinear fibers by numerical simulation

    Science.gov (United States)

    Wang, Juanfen; Liang, Junqiang; Li, Pu; Yang, Lingzhen; Wang, Yuncai

    2014-06-01

    A new scheme of all-optical random number generation based on the nonlinear effects in highly nonlinear fibers (HNLF) is proposed. The scheme is comprised of ultra-wide band chaotic entropy source, all-optical sampler, all-optical comparator and all-optical exclusive-or (XOR), which are mainly realized by four-wave mixing (FWM) and cross-phase modulation (XPM) in highly nonlinear fibers. And we achieve 10 Gbit/s random numbers through numerically simulating all the processes. The entire operations are completed in the all-optical domain, which may overcome the bottleneck problem of electronic devices, and apply directly in high-speed all-optical communication network.

  5. Two-dimensional energy spectra in a high Reynolds number turbulent boundary layer

    Science.gov (United States)

    Chandran, Dileep; Baidya, Rio; Monty, Jason; Marusic, Ivan

    2016-11-01

    The current study measures the two-dimensional (2D) spectra of streamwise velocity component (u) in a high Reynolds number turbulent boundary layer for the first time. A 2D spectra shows the contribution of streamwise (λx) and spanwise (λy) length scales to the streamwise variance at a given wall height (z). 2D spectra could be a better tool to analyse spectral scaling laws as it is devoid of energy aliasing errors that could be present in one-dimensional spectra. A novel method is used to calculate the 2D spectra from the 2D correlation of u which is obtained by measuring velocity time series at various spanwise locations using hot-wire anemometry. At low Reynolds number, the shape of the 2D spectra at a constant energy level shows λy √{ zλx } behaviour at larger scales which is in agreement with the literature. However, at high Reynolds number, it is observed that the square-root relationship gradually transforms into a linear relationship (λy λx) which could be caused by the large packets of eddies whose length grows proportionately to the growth of its width. Additionally, we will show that this linear relationship observed at high Reynolds number is consistent with attached eddy predictions. The authors gratefully acknowledge the support from the Australian Research Council.

  6. A TAILORED FINITE POINT METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS IN HETEROGENEOUS MEDIUM

    Institute of Scientific and Technical Information of China (English)

    Houde Han; Zhongyi Huang

    2008-01-01

    In this paper, we propose a tailored-finite-point method for the numerical simulation of the Helmholtz equation with high wave numbers in heterogeneous medium. Our finite point method has been tailored to some particular properties of the problem, which allows us to obtain approximate solutions with the same behaviors as that of the exact solution very naturally. Especially, when the coefficients are piecewise constant, we can get the exact solution with only one point in each subdomain. Our finite-point method has uniformly convergent rate with respect to wave number k in L2-norm.

  7. Magnus effects at high angles of attack and critical Reynolds numbers

    Science.gov (United States)

    Seginer, A.; Ringel, M.

    1983-01-01

    The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.

  8. [Number, viability, and diversity of the filterable forms of prokaryotes in sphagnous high-moor peat].

    Science.gov (United States)

    Lysak, L V; Lapygina, E V; Kadulin, M S; Konova, I A

    2014-01-01

    The number, potential viability, and taxonomic diversity (at the level of phylum) of the filterable forms of prokaryotes (FFP) are estimated in the main genetic horizons of high-moor peat. It was shown that the number of FFP reached 500 million cells in 1 g, i.e., up to 5% of the general size bacteria. The portion of viable cells among FFP (93-98%) was higher than that for the general size bacteria (60-68%). FISH-analysis (fluorescence in situ hybridization) showed that FFP contained the same phylogenetic groups as the population of general size bacteria (domain Archea and phylum Actinobacteria, Cytophaga, and Proteobacteria of the domain Bacteria).

  9. Significance of the Formal Quantum Number in the Highly Excited Vibration of the DCN Molecule

    Institute of Scientific and Technical Information of China (English)

    郑敦胜; 吴国祯

    2002-01-01

    For the eigenstates of the highly excited vibration of the simple molecule DCN with two stretching modes, a classical approach in a multi-dimensional coset phase space is employed to show that the formal quantum numbers are related to regular or 1east "irregular" trajectories, with zero or least Lyapunov exponents, and are always located in the inner regions of the phase space. This property reflects that they are the approximate constants of motion. It is also demonstrated that formal quantum numbers correspond to the significant phase space density.

  10. Numerical simulations of high Knudsen number gas flows and microchannel electrokinetic liquid flows

    Science.gov (United States)

    Yan, Fang

    Low pressure and microchannel gas flows are characterized by high Knudsen numbers. Liquid flows in microchannels are characterized by non-conventional driving potentials like electrokinetic forces. The main thrust of the dissertation is to investigate these two different kinds of flows in gases and liquids respectively. High Knudsen number (Kn) gas flows were characterized by 'rarified' or 'microscale' behavior. Because of significant non-continuum effect, traditional CFD techniques are often inaccurate for analyzing high Kn number gas flows. The direct simulation Monte Carlo (DSMC) method offers an alternative to traditional CFD which retains its validity in slip and transition flow regimes. To validate the DSMC code, comparisons of simulation results with theoretical analysis and experimental data are made. The DSMC method was first applied to compute low pressure, high Kn flow fields in partially heated two dimensional channels. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nusselt number, Nu) were examined. The DSMC method was employed to explore mixing gas flows in two dimensional microchannels. Mixing of two gas streams (H2 and O2) was considered within a microchannel. The effect of the inlet-outlet pressure difference, the pressure ratio of the incoming streams and the accommodation coefficient of the solid wall on mixing length were all examined. Parallelization of a three-dimensional DSMC code was implemented using OpenMP procedure on a shared memory multi-processor computer. The parallel code was used to simulate 3D high Kn number Couette flow and the flow characteristics are found to be very different from their continuum counterparts. A mathematical model describing electrokinetically driven mass transport phenomena in microfabricated chip devices will also be presented. The model accounts for the principal physical phenomena affecting

  11. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57

  12. Neutral pion number fluctuations at high multiplicity in pp-interactions at 50 GeV

    Directory of Open Access Journals (Sweden)

    Popov V. V.

    2012-12-01

    Full Text Available The results of E-190 experiment (project Thermalization with 50 GeV proton beam irradiation of SVD-2 setup are presented. MC simulation has shown the linear dependence of number of photons detected in electromagnetic calorimeter and the average number of neutral pions. Multiplicity distribution of neutral pion, N0, for total number of particles in the event, Ntot = Nch + N0, are obtained with corrections on the setup acceptance, triggering and efficiency of the event reconstruction. The scaled variance of neutral pion fluctuations, ω = D/ , versus total multiplicity is measured. The fluctuations increase at Ntot > 18. According to quantum statistics models this behavior can indicate a pion condensate formation in the high pion multiplicity system. This effect has been observed for the first time.

  13. On the high rank $\\pi/3$ and $2\\pi/3$-congruent number elliptic curves

    CERN Document Server

    Janfada, A S

    2011-01-01

    In this article, we try to find high rank elliptic curves in the family $E_{n,\\theta}$ defined over $\\mathbb Q$ by the equation $y^2=x^3+2snx-(r^2-s^2)n^2x$, where $0 < \\theta < \\pi$, $\\cos(\\theta) = s/r$ is rational with $0\\leq |s| number problem as a generalization of the classical congruent number problem. We consider two special cases $\\theta=\\pi/3$ and $\\theta=2\\pi/3$. Then by searching in a certain known family of $\\theta$-congruent numbers and using Mestre-Nagao sum as a sieving tool, we find some square free integers $n$ such that $E_{n, \\theta}(\\mathbb Q)$ has Mordell-Weil rank up to 7 in the first case and 6 in the second case.

  14. Noise-free high-efficiency photon-number-resolving detectors

    CERN Document Server

    Rosenberg, D; Miller, A J; Nam, S W; Rosenberg, Danna; Lita, Adriana E.; Miller, Aaron J.; Nam, Sae Woo

    2005-01-01

    High-efficiency optical detectors that can determine the number of photons in a pulse of monochromatic light have applications in a variety of physics studies, including post-selection-based entanglement protocols for linear optics quantum computing and experiments that simultaneously close the detection and communication loopholes of Bell's inequalities. Here we report on our demonstration of fiber-coupled, noise-free, photon-number-resolving transition-edge sensors with 88% efficiency at 1550 nm. The efficiency of these sensors could be made even higher at any wavelength in the visible and near-infrared spectrum without resulting in a higher dark-count rate or degraded photon-number resolution.

  15. The shock tube as a device for testing transonic airfoils at high Reynolds numbers

    Science.gov (United States)

    Cook, W. J.; Presley, L. L.; Chapman, G. T.

    1978-01-01

    A performance analysis of gas-driven shock tubes shows that transonic airfoil flows with chord Reynolds numbers in the range of 100 million can be generated behind the primary shock in a large shock tube. A study of flow over simple airfoils has been carried out at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photos and airfoil pressure measurements show that steady transonic flows similar to those observed for the airfoils in wind tunnels can be generated within the available testing time in a shock tube with either properly-contoured test section walls or a properly-designed slotted-wall test section. The study indicates that the shock tube is a useful facility for studying two-dimensional high Reynolds number transonic airfoil flows.

  16. On the motion of non-spherical particles at high Reynolds number

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse

    2010-01-01

    This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...... in between and usually based on semi-heuristic approaches utilizing concepts from airfoil theory such as profile lift. Even for regular particles there seems to be a long way before a complete theory can be formulated. For irregular particles with small aspect ratio, where the secondary motion...

  17. High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing

    CERN Document Server

    Calkins, Brice; Lita, Adriana E; Metcalf, Benjamin J; Kolthammer, W Steven; Linares, Antia Lamas; Spring, Justin B; Humphreys, Peter C; Mirin, Richard P; Gates, James C; Smith, Peter G R; Walmsley, Ian A; Gerrits, Thomas; Nam, Sae Woo

    2013-01-01

    The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40% efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79% +/- 2% detection efficiency with a single pass, and 88% +/- 3% at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficienc...

  18. A robust approach to the generation of high-quality random numbers

    Science.gov (United States)

    Bisadi, Zahra; Fontana, Giorgio; Moser, Enrico; Pucker, Georg; Pavesi, Lorenzo

    2016-10-01

    A random number generation approach comprising a silicon nanocrystals LED (Si-NCs LED), silicon single photon avalanche photodiode (Si SPAD) and a field-programmable gate array (FPGA) is introduced. The Si-NCs LED is the source of entropy with photon emission in the visible range detectable by silicon detectors allowing the fabrication of an all-silicon-based device. The proposed quantum random number generator (QRNG) is robust against variations of the internal and external parameters such as aging of the components, changing temperature, the ambient interferences and the silicon detector artifacts. The raw data show high quality of randomness and passed all the statistical tests in National Institute of Standards and Technology (NIST) tests suite without the application of a post-processing algorithm. The efficiency of random number generation is 4-bits per detected photon.

  19. Introducing a nano-scale crossed hot-wire for high Reynolds number measurements

    Science.gov (United States)

    Fan, Yuyang; Fu, Matthew; Hultmark, Marcus

    2016-11-01

    Hot-wire anemometry is commonly used for high Reynolds number flow measurements, mainly because of its continuous signal and high bandwidth. However, measuring two components of velocity in high Reynolds number wall-bounded flows has proven to be quite challenging with conventional crossed hot-wires, especially close to the wall, due to insufficient resolution and obstruction from the probe. The Nano-Scale Thermal Anemometry Probe (NSTAP) is a miniature hot-wire that drastically increased the spatial and temporal resolutions for single-component measurements by using a nano-scale platinum wire. Applying a novel combining method and reconfiguration of the NSTAP design, we created a sensor (x-NSTAP) that is capable of two-component velocity measurements with a sensing volume of approximately 50 × 50 × 50 μ m, providing spatial and temporal resolutions similar to the single component NSTAP. The x-NSTAP is deployed in the Superpipe facility for accurate measurements of the Reynolds stresses at very high Reynolds numbers. Supported under NSF Grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  20. The Dynamics of Very High Alfvén Mach Number Shocks in Space Plasmas

    Science.gov (United States)

    Sundberg, Torbjörn; Burgess, David; Scholer, Manfred; Masters, Adam; Sulaiman, Ali H.

    2017-02-01

    Astrophysical shocks, such as planetary bow shocks or supernova remnant shocks, are often in the high or very-high Mach number regime, and the structure of such shocks is crucial for understanding particle acceleration and plasma heating, as well inherently interesting. Recent magnetic field observations at Saturn’s bow shock, for Alfvén Mach numbers greater than about 25, have provided evidence for periodic non-stationarity, although the details of the ion- and electron-scale processes remain unclear due to limited plasma data. High-resolution, multi-spacecraft data are available for the terrestrial bow shock, but here the very high Mach number regime is only attained on extremely rare occasions. Here we present magnetic field and particle data from three such quasi-perpendicular shock crossings observed by the four-spacecraft Cluster mission. Although both ion reflection and the shock profile are modulated at the upstream ion gyroperiod timescale, the dominant wave growth in the foot takes place at sub-proton length scales and is consistent with being driven by the ion Weibel instability. The observed large-scale behavior depends strongly on cross-scale coupling between ion and electron processes, with ion reflection never fully suppressed, and this suggests a model of the shock dynamics that is in conflict with previous models of non-stationarity. Thus, the observations offer insight into the conditions prevalent in many inaccessible astrophysical environments, and provide important constraints for acceleration processes at such shocks.

  1. Regularized characteristic boundary conditions for the Lattice-Boltzmann methods at high Reynolds number flows

    Science.gov (United States)

    Wissocq, Gauthier; Gourdain, Nicolas; Malaspinas, Orestis; Eyssartier, Alexandre

    2017-02-01

    This paper reports the investigations done to adapt the Characteristic Boundary Conditions (CBC) to the Lattice-Boltzmann formalism for high Reynolds number applications. Three CBC formalisms are implemented and tested in an open source LBM code: the baseline local one-dimension inviscid (BL-LODI) approach, its extension including the effects of the transverse terms (CBC-2D) and a local streamline approach in which the problem is reformulated in the incident wave framework (LS-LODI). Then all implementations of the CBC methods are tested for a variety of test cases, ranging from canonical problems (such as 2D plane and spherical waves and 2D vortices) to a 2D NACA profile at high Reynolds number (Re =105), representative of aeronautic applications. The LS-LODI approach provides the best results for pure acoustics waves (plane and spherical waves). However, it is not well suited to the outflow of a convected vortex for which the CBC-2D associated with a relaxation on density and transverse waves provides the best results. As regards numerical stability, a regularized adaptation is necessary to simulate high Reynolds number flows. The so-called regularized FD (Finite Difference) adaptation, a modified regularized approach where the off-equilibrium part of the stress tensor is computed thanks to a finite difference scheme, is the only tested adaptation that can handle the high Reynolds computation.

  2. A distortion of very-high-redshift galaxy number counts by gravitational lensing.

    Science.gov (United States)

    Wyithe, J Stuart B; Yan, Haojing; Windhorst, Rogier A; Mao, Shude

    2011-01-13

    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.

  3. High-pressure study of the anomalous ferromagnet CeRh3B2 to 7 GPa: Comparison with substitutional experiments

    Science.gov (United States)

    Cornelius, A. L.; Schilling, J. S.

    1994-02-01

    The ferromagnet CeRh3B2 has a Curie temperature TC near 117 K, two orders of magnitude higher than anticipated from simple de Gennes scaling. To shed light on the nature of the anomalous magnetic state, the hydrostatic pressure dependence of TC was measured to 7.0 GPa using a diamond-anvil cell with dense He as pressure medium. As a function of pressure, TC(P) initially increases at the rate of 1.0 K/GPa but then passes through a maximum near 2.5 GPa and falls rapidly at higher pressures. This qualitative behavior can be accounted for by a simple phase diagram proposed some time ago by Doniach for dense Kondo systems. This diagram is also used to compare the evolution of magnetism in related substitutional compounds to that for CeRh3B2 under pressure. For selected Ce compounds, a universal relation between the coupling strength J and the ordering temperature TC is found.

  4. Measurements of Molecular Mixing in a High Schmidt Number Rayleigh-Taylor Mixing Layer

    Energy Technology Data Exchange (ETDEWEB)

    Mueschke, N J; Schilling, O; Youngs, D L; Andrews, M

    2007-12-03

    Molecular mixing measurements are performed for a high Schmidt number (Sc {approx} 10{sup 3}), small Atwood number (A {approx} 7.5 x 10{sup -4}) buoyancy-driven turbulent Rayleigh-Taylor mixing layer in a water channel facility. Salt was added to the top stream to create the desired density difference. The degree of molecular mixing was measured as a function of time by monitoring a diffusion-limited chemical reaction between the two fluid streams. The pH of each stream was modified by the addition of acid or alkali such that a local neutralization reaction occurred as the two fluids molecularly mixed. The progress of this neutralization reaction was tracked by the addition of phenolphthalein - a pH-sensitive chemical indicator - to the acidic stream. Accurately calibrated backlit optical techniques were used to measure the average concentration of the colored chemical indicator. Comparisons of chemical product formation for pre-transitional buoyancy- and shear-driven mixing layers are given. It is also shown that experiments performed at different equivalence ratios (acid/alkali concentration) can be combined to obtain a mathematical relationship between the colored product formed and the density variance. This relationship was used to obtain high-fidelity, quantitative measures of the degree of molecular mixing which are independent of probe resolution constraints. The dependence of such mixing parameters on the Schmidt and Reynolds numbers is examined by comparing the current Sc {approx} 10{sup 3} measurements with Sc = 0.7 gas-phase and Pr = 7 liquid-phase measurements. This comparison indicates that the Schmidt number has a large effect on the bulk quantity of mixed fluid at small Reynolds numbers Re{sub h} < 10{sup 3}. At late times, all mixing parameters indicated a greater degree of molecular mixing and a decreased Schmidt number dependence. Implications for the development and quantitative assessment of turbulent transport and mixing models appropriate for

  5. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  6. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    Science.gov (United States)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-11-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  7. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

    Science.gov (United States)

    Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan

    2016-08-01

    We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

  8. Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    Z. Jurányi

    2010-08-01

    Full Text Available Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS=0.12–1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m a.s.l.. In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using dry number size distribution (scanning particle mobility sizer, SMPS and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP in a simplified Köhler theory. The predicted and the measured CCN number concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation.

    Despite the high average organic mass fraction (~45% in the fine mode, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA, AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used to determine particle hygroscopicity required for CCN predictions if no suitable chemical composition data are available.

  9. Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch

    Science.gov (United States)

    Jurányi, Z.; Gysel, M.; Weingartner, E.; Decarlo, P. F.; Kammermann, L.; Baltensperger, U.

    2010-08-01

    Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN) and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS=0.12-1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m a.s.l.). In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using dry number size distribution (scanning particle mobility sizer, SMPS) and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP) in a simplified Köhler theory. The predicted and the measured CCN number concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation. Despite the high average organic mass fraction (~45%) in the fine mode, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA), AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used to determine particle hygroscopicity required for CCN predictions if no suitable chemical composition data are available.

  10. Note: A high Mach number arc-driven shock tube for turbulence studies.

    Science.gov (United States)

    Titus, J B; Alexander, A B; Johnson, J A

    2013-04-01

    A high Mach arc-driven shock tube has been built at the Center for Plasma Science and Technology of Florida A&M University to study shock waves. A larger apparatus with higher voltage was built to study more stable shock waves and subsequent plasmas. Initial measurements of the apparatus conclude that the desired Mach numbers can be reached using only two-thirds the maximum possible energy that the circuit can provide.

  11. The Simulation of High Reynolds Number Cavity Flow Based on Fractional Volumetric Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    HAN Shan-ling; ZHU Ping; LIN Zhong-qin

    2005-01-01

    The fractional volumetric lattice Boltzmann method with much better stability was used to simulate two dimensional cavity flows. Because the effective viscosity was reduced by the fraction factor, it is very effective forsimulating high Reynolds number flows. Simulations were carried out on a uniform grids system. The stream lines and the velocity profiles obtained from the simulations agree well with the standard lattice Boltzmann method simulations. Comparisons of detailed flow patterns with other studies via location of vortex centers are also satisfactory.

  12. Axisymmetric instability of the Poiseuille-Couette flow between concentric cylinders at high Reynolds numbers

    Science.gov (United States)

    Savenkov, I. V.

    2015-02-01

    For the pressure-driven flow in an annular channel with a wall moving in the axial direction, its linear instability with respect to axisymmetric perturbations at high Reynolds numbers is investigated within the framework of the triple-deck theory. When the gap between the cylinders is sufficiently small (as compared to the radii of the cylinders), it is shown that the perturbations can split into two wave packets, the first of which grows faster and moves at a higher velocity.

  13. Tomo-PIV Measurement of High Reynolds Number Dissipation Scale Structures

    Science.gov (United States)

    Worth, Nicholas; Nickels, Timothy

    2008-11-01

    Understanding the sources of dissipative intermittency in high Reynolds number turbulence is of significant interest, especially given the increasing affordability of LES. Coherent dissipation scale structures have been identified in numerous numerical and experiment investigations, although the latter are typically restricted by the need for accurate resolution of extremely small fast motions. These investigations are therefore often limited to one-dimensional measurements, making the study of these 3D structures and their relationship to the dissipation field difficult. The current investigation employs a very large water mixing tank (2m in diameter), which uses counter-rotating impellors to generate high Reynolds number turbulence (Rλ 1000) that is close to isotropic and homogeneous. The large scale of the tank brings the smallest scales within the resolution of Tomo-PIV, allowing full 3D realization of these structures. This unique experimental setup presents a number of challenges, which include: seeding density limitations imposed by optical attenuation through the tank; demanding light sheet intensity requirements; and the extremely high computational cost of Tomographic reconstruction for the thousands of velocity fields required for statistical analysis. Initial results will be presented along with future plans for measurement refinement.

  14. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up to 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.

  15. High-Energy String Scattering Amplitudes and Signless Stirling Number Identity

    Directory of Open Access Journals (Sweden)

    Jen-Chi Lee

    2012-07-01

    Full Text Available We give a complete proof of a set of identities (7 proposed recently from calculation of high-energy string scattering amplitudes. These identities allow one to extract ratios among high-energy string scattering amplitudes in the fixed angle regime from high-energy amplitudes in the Regge regime. The proof is based on a signless Stirling number identity in combinatorial theory. The results are valid for arbitrary real values L rather than only for L=0,1 proved previously. The identities for non-integer real value L were recently shown to be realized in high-energy compactified string scattering amplitudes [He S., Lee J.C., Yang Y., arXiv:1012.3158]. The parameter L is related to the mass level of an excited string state and can take non-integer values for Kaluza-Klein modes.

  16. LIFT FORCE ON ROTATING SPHERE AT LOW REYNOLDS NUMBERS AND HIGH ROTATIONAL SPEEDS

    Institute of Scientific and Technical Information of China (English)

    由长福; 祁海鹰; 徐旭常

    2003-01-01

    The lift force on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical simulation for low Reynolds numbers (based on the sphere diameter) (Re < 68.4) and high dimensionless rotational speeds (Γ< 5). The Navier-Stokes equations in Cartesian coordinate system were solved using a finite volume formulation based on SIMPLE procedure. The accuracy of the numerical simulation was tested through a comparison with available theoretical, numerical and experimental results at low Reynolds numbers, and it was found that they were in close agreement under the above mentioned ranges of the Reynolds number and rotational speed. From a detailed computation of the flow field around a rotational sphere in extended ranges of the Reynolds number and rotational speed, the results show that, with increasing the rotational speed or decreasing the Reynolds number, the lift coefficient increases. An empirical equation more accurate than those obtained by previous studies was obtained to describe both effects of the rotational speed and Reynolds number on the lift force on a sphere. It was found in calculations that the drag coefficient is not significantly affected by the rotation of the sphere. The ratio of the lift force to the drag force, both of which act on a sphere in a uniform flow at the same time, was investigated. For a small spherical particle such as one of about 100μm in diameter, even if the rotational speed reaches about 106 revolutions per minute, the lift force can be neglected as compared with the drag force.

  17. EXAMINATION OF NUMBERS OF STUDENTS APPLIED TO FINE ARTS HIGH SCHOOL: A PESSIMISTIC VIEW

    Directory of Open Access Journals (Sweden)

    Cahit AKSU

    2014-11-01

    Full Text Available This study, aiming to examine student quantities applied to Fine Arts high School according to various variables was implemented with General Scanning Technic among Scanning Model and documentary scanning from Descriptive Researches. When we examine applications made to Fine Arts High School Music Departments Special Talent Exams in 2014-2015 Semester we see that less than 30 applications were made to 45% of departments having 30 students quota and because significant numbers of students didn’t apply to necessitate making exams and nearly half of these departments couldn’t get qualified and quantified students and in general in talent exams 71% of Music Departments of Fine Arts High Schools couldn’t fill their student quotas, even in the second placement special talent exam made for 2014-2015 semester 22 GSL Music Departments couldn’t reach their student qouota and when examine this year’s applications to Music Departments of Fine Arts High Schools with the last year’s rate number of applications decreased between 3-70% and schools with such decrease were equal to 60% of study sampling. This situation gives important messages and implies that: success rate of students graduating from these schools will decrease year by year and this fact will reflect to higher education institutions giving professional music education.

  18. Vortex Clusters and Their Time Evolution in High- Reynolds-Number Turbulence

    Science.gov (United States)

    Ishihara, Takashi; Uno, Atsuya; Morishita, Koji; Yokokawa, Mitsuo; Kaneda, Yukio

    2016-11-01

    Time series data (with a time interval of 4τη) obtained by high-resolution direct numerical simulations (DNSs) of forced incompressible turbulence in a periodic box, with a maximum of 122883 grid points and Taylor micro-scale Reynolds numbers Rλ up to 2300, are used to study the vortex dynamics in high Reynolds number (Re) turbulent flows. Here τη is the Kolmogorov time scale. A visualization method to handle such large-scale data was developed for this study. In the high Re turbulence generated by the DNS, we observed the dynamics of tube-like vortex clusters of various sizes, which are constructed by strong micro vortices. For example, we observed the generation of the tube-like clusters of various sizes and the processes of their merging and breakdown. We also observed layer-like vortex clusters of the order of the integral length scale forming shear layers in the high Re turbulence. This research used computational resources of the K computer and other computers of the HPCI system provided by the AICS and the ITC of Nagoya University through the HPCI System Research Project (Project ID:hp150174, hp160102).

  19. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    Science.gov (United States)

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.

  20. Experimental investigation of late time Rayleigh-Taylor mixing at high Atwood number

    Science.gov (United States)

    Suchandra, Prasoon; Mikhaeil, Mark; Ranjan, Devesh

    2016-11-01

    Dynamics of late time, high Reynolds number (Re >20000) Rayleigh-Taylor (RT) mixing is studied using statistically steady experiments performed in a multi-layer gas tunnel. The density ratio of air and air-Helium mixture used in the present experiment results in an Atwood number 0.73. Three types of diagnostics - back-lit visualization, hot-wire anemometry and stereo particle image velocimetry (S-PIV) - are employed to obtain mixing width, velocity and density fields, with S-PIV employed for the first time for such experimental conditions. Velocity and density statistics, and their correlations (u', v', w',ρ' ,ρ'v') are presented. Calculations of probability density functions (p.d.f.s) and energy spectra are made to provide further insight into the flow physics. Energy budget of the flow is also discussed.

  1. High Throughput Pseudorandom Number Generator Based on Variable Argument Unified Hyperchaos

    Directory of Open Access Journals (Sweden)

    Kaiyu Wang

    2014-01-01

    Full Text Available This paper presents a new multioutput and high throughput pseudorandom number generator. The scheme is to make the homogenized Logistic chaotic sequence as unified hyperchaotic system parameter. So the unified hyperchaos can transfer in different chaotic systems and the output can be more complex with the changing of homogenized Logistic chaotic output. Through processing the unified hyperchaotic 4-way outputs, the output will be extended to 26 channels. In addition, the generated pseudorandom sequences have all passed NIST SP800-22 standard test and DIEHARD test. The system is designed in Verilog HDL and experimentally verified on a Xilinx Spartan 6 FPGA for a maximum throughput of 16.91 Gbits/s for the native chaotic output and 13.49 Gbits/s for the resulting pseudorandom number generators.

  2. High-speed quantum-random number generation by continuous measurement of arrival time of photons

    Science.gov (United States)

    Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao

    2015-07-01

    We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.

  3. Anatomy of a laminar starting thermal plume at high Prandtl number

    Science.gov (United States)

    Davaille, Anne; Limare, Angela; Touitou, Floriane; Kumagai, Ichiro; Vatteville, Judith

    2011-02-01

    We present an experimental study of the dynamics of a plume generated from a small heat source in a high Prandtl number fluid with a strongly temperature-dependent viscosity. The velocity field was determined with particle image velocimetry, while the temperature field was measured using differential interferometry and thermochromic liquid crystals. The combination of these different techniques run simultaneously allows us to identify the different stages of plume development, and to compare the positions of key-features of the velocity field (centers of rotation, maximum vorticity locations, stagnation points) respective to the plume thermal anomaly, for Prandtl numbers greater than 103. We further show that the thermal structure of the plume stem is well predicted by the constant viscosity model of Batchelor (Q J R Met Soc 80: 339-358, 1954) for viscosity ratios up to 50.

  4. Anomalous magnetic moment of anyons

    CERN Document Server

    Gat, G; Gat, Gil; Ray, Rashmi

    1994-01-01

    The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.

  5. Time resolved, near wall PIV measurements in a high Reynolds number turbulent pipe flow

    Science.gov (United States)

    Willert, C.; Soria, J.; Stanislas, M.; Amili, O.; Bellani, G.; Cuvier, C.; Eisfelder, M.; Fiorini, T.; Graf, N.; Klinner, J.

    2016-11-01

    We report on near wall measurements of a turbulent pipe flow at shear Reynolds numbers up to Reτ = 40000 acquired in the CICLoPE facility near Bologna, Italy. With 900 mm diameter and 110 m length the facility offers a well-established turbulent flow with viscous length scales ranging from y+ = 85 μ m at Reτ = 5000 to y+ = 11 μ m at Reτ = 40000 . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. For the measurement the light of a high-speed, double-pulse laser is focused into a 300 μ m thin light sheet that is introduced radially into the pipe. The light scattered by 1 μ m water-glycerol droplet seeding is observed from the side by the camera via a thin high-aspect ratio mirror with a field of view covering 20mm in wall-normal and 5mm in stream-wise direction. Statistically converged velocity profiles could be achieved using 70000 samples per sequence acquired at low laser repetition rates (100Hz). Higher sampling rates of 10 kHz provide temporally coherent data from which frequency spectra can be derived. Preliminary analysis of the data shows a well resolved inner peak that grows with increasing Reynolds number. (Project funding through EuHIT - www.euhit.org)

  6. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  7. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  8. Quantum anomalous Hall effect in magnetic insulator heterostructure.

    Science.gov (United States)

    Xu, Gang; Wang, Jing; Felser, Claudia; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-03-11

    On the basis of ab initio calculations, we predict that a monolayer of Cr-doped (Bi,Sb)2Te3 and GdI2 heterostructure is a quantum anomalous Hall insulator with a nontrivial band gap up to 38 meV. The principle behind our prediction is that the band inversion between two topologically trivial ferromagnetic insulators can result in a nonzero Chern number, which offers a better way to realize the quantum anomalous Hall state without random magnetic doping. In addition, a simple effective model is presented to describe the basic mechanism of spin polarized band inversion in this system. Moreover, we predict that 3D quantum anomalous Hall insulator could be realized in (Bi2/3Cr1/3)2Te3 /GdI2 superlattice.

  9. Turbulent Flow Physics and Noise in High Reynolds Number Compressible Jets

    Science.gov (United States)

    Glauser, Mark

    2016-11-01

    In this talk I will present a snapshot of our ongoing research in high Reynolds number turbulent compressible jets. The high speed axisymmetric jet work (Mach 0.6 - 1.1) has been jointly performed with Spectral Energies LLC through AFRL support and involves 10 kHz and large window PIV data extracted from the near field jet plume, simultaneously sampled with near field pressure and far field noise. We have learned from the simultaneously sampled 10 kHz PIV near field plume and far field noise data, using POD/OID and Wavelet filtering, that there are certain "loud" velocity modes that have low averaged turbulent kinetic energy content but strongly correlate with the far field noise. From the large window PIV data obtained at Mach 1.0 and 1.1, specific POD modes were found to contain important physics of the problem. For example, the large-scale structure of the jet, shock-related fluctuations, and turbulent mixing regions of the flow were isolated through POD. By computing cross correlations, particular POD modes were found to be related to particular noise spectra. I will conclude with a description of our complex nozzle work which uses the multi-stream supersonic single expansion rectangular nozzle (SERN) recently installed in our large anechoic chamber at SU. This work is funded from both AFOSR (joint with OSU with a primary focus on flow physics) and Spectral Energies LLC (via AFRL funds with a focus on noise). Particular emphasis will be on insight gained into this complex 3D flow field (and its relationship to the far field noise) from applications of POD, Wavelet filtering and DMD to various numerical (LES) and experimental (PIV, high speed schlieren, near and far field pressure) data sets, at a core nozzle Mach number of 1.6 and a second stream Mach number of 1.0.

  10. Effects of external environment on thermocapillary convection of high prandtl number fluid

    Directory of Open Access Journals (Sweden)

    Liang Ruquan

    2016-01-01

    Full Text Available Numerical simulations have been carried out to investigate the influence of external environment on thermocapillary convection in high Prandtl number (Pr=68 liquid. The geometric model of physical problem is that the the liquid bridge surrounded by ambient air under zero or ground gravity. The interface velocity, temperature, heat flux and flow pattern in the liquid bridge are presented and discussed under different conditions by changing the external environment. The buoyancy convection produces a symmetrical vortex in the liquid bridge. The ambient air affects the distributions of the temperature velocity and heat flux on the interface by changing the thermocapillary convection.

  11. Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context

    Science.gov (United States)

    2014-09-01

    of Turbulent Mixing ,” Phys. Scr ., T142, p. 014014. Fig. 4 Turbulent transport as a fraction of total transport plotted versus Re for each of four...Diffusion in Turbulent Mixing ,” Phys. Scr ., T142, p. 014062. [9] George, E., Glimm, J., Grove, J. W., Li, X.-L., Liu, Y.-J., Xu, Z.-L., and Zhao, N., 2003...ABSTRACT Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context Report Title Mix is a critical input to hydro

  12. Prandtl number of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka (National Inst. for Fusion Science, Nagoya (Japan)); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi; Azumi, Masafumi

    1993-12-01

    Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author).

  13. Efficient high speed communications over electrical powerlines for a large number of users

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Tripathi, K.; Latchman, H.A. [Florida Univ., Gainesville, FL (United States). Dept. of Electrical and Computer Engineering

    2007-07-01

    Affordable broadband Internet communication is currently available for residential use via cable modem and other forms of digital subscriber lines (DSL). Powerline communication (PLC) systems were never considered seriously for communications due to their low speed and high development cost. However, due to technological advances PLCs are now spreading to local area networks and broadband over power line systems. This paper presented a newly proposed modification to the standard HomePlug 1.0 MAC protocol to make it a constant contention window-based scheme. The HomePlug 1.0 was developed based on orthogonal frequency division multiplexing (OFDM) and carrier sense multiple access with collision avoidance (CSMA/CA). It is currently the most commonly used technology of power line communications, supporting a transmission rate of up to 14 Mbps on the power line. However, the throughput performance of this original scheme becomes critical when the number of users increases. For that reason, a constant contention window based medium access control protocol algorithm of HomePlug 1.0 was proposed under the assumption that the number of active stations is known. An analytical framework based on Markov Chains was developed in order to model this modified protocol under saturation conditions. Modeling results accurately matched the actual performance of the system. This paper revealed that the performance can be improved significantly if the variables were parameterized in terms of the number of active stations. 15 refs., 1 tab., 6 figs.

  14. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  15. Stability of High Rayleigh-Number Equilibrium Solutions of the Darcy-Oberbeck-Boussinesq Equations

    Science.gov (United States)

    Wen, Baole; Corson, Lindsey; Chini, Gregory

    2013-11-01

    There has been significant renewed interest in dissolution-driven convection in porous layers owing to the potential impact of this process on carbon dioxide storage in terrestrial aquifers. In this talk, we present some numerically-exact equilibrium solutions to the porous medium convection problem in small laterally-periodic domains at high Rayleigh number Ra . The ``uni-cellular'' equilibrium solutions first found by Corson and Chini (2011) by solving the steady Darcy-Oberbeck-Boussinesq equations are recovered and, in the interior (i.e. away from upper and lower boundary layers), are shown to have the same horizontal-mean structure as the ``heat-exchanger'' solutions identified by Hewitt et al. (2012). Secondary stability analysis of the steady solutions is performed, and implications for high-Ra porous medium convection are discussed. Funding from NSF Award 0928098 is gratefully acknowledged.

  16. High Reynolds Number Effects on Multi-Hole Probes and Hot Wire Anemometers

    Science.gov (United States)

    Ramachandran, N.; Smith, A.; Gerry, G.; Kauffman, W.

    1995-01-01

    The paper reports on the results from an experimental investigation of the response of multi-hole and hot wire probes at high flow Reynolds numbers (Re approx. 10(exp 6)). The limited results available in literature for 5-hole probes are restricted to Re approx. 10(exp 4). The experiment aims to investigate the probe response (in terms of dimensionless pressure ratios, characterizing pitch, and yaw angles and the total and static pressures) at high Re values and to gauge their effect on the calculated velocity vector. Hot wire calibrations were also undertaken with a parametric variation of the flow pressure, velocity and temperature. Different correction and calibration schemes are sought to be tested against the acquired data set. The data is in the analysis stage at the present time. The test provided good benchmark quality data that can be used to test future calibration and testing methods.

  17. Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number

    CERN Document Server

    Matsumoto, Y; Hoshino, M

    2013-01-01

    Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...

  18. Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature

    CERN Document Server

    Cheng, M; Jung, C; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Petreczky, P; Schmidt, C; Söldner, W

    2008-01-01

    We analyze baryon number, strangeness and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4-action) at two values of the lattice cut-off with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however show deviations from a resonance gas in the vicinity of the transition temperature.

  19. Opposing Shear-Induced Forces Dominate Inertial Focusing in Curved Channels and High Reynolds Numbers

    CERN Document Server

    Keinan, Eliezer; Nahmias, Yaakov

    2015-01-01

    Inertial focusing is the migration of particles in fluid toward equilibrium, where current theory predicts that shear-induced and wall-induced lift forces are balanced. First reported in 1961, this Segre-Silberberg effect is particularly useful for microfluidic isolation of cells and particles. Interestingly, recent work demonstrated particle focusing at high Reynolds numbers that cannot be explained by current theory. In this work, we show that non-monotonous velocity profiles, such as those developed in curved channels, create peripheral velocity maxima around which opposing shear-induced forces dominate over wall effects. Similarly, entry effects amplified in high Reynolds flow produce an equivalent trapping mechanism in short, straight channels. This new focusing mechanism in the developing flow regime enables a 10-fold miniaturization of inertial focusing devices, while our model corrects long-standing misconceptions about the nature of mechanical forces governing inertial focusing in curved channels.

  20. The high Reynolds number flow through an axial-flow pump

    Science.gov (United States)

    Zierke, W. C.; Straka, W. A.; Taylor, P. D.

    1993-11-01

    The high Reynolds number pump (HIREP) facility at ARL Penn State has been used to perform a low-speed, large-scale experiment of the incompressible flow of water through a two-blade-row turbomachine. HIREP can involve blade chord Reynolds numbers as high as 6,000,000 and can accommodate a variety of instrumentation in both a stationary and a rotating frame of reference. The objectives of this experiment were as follows: to provide a database for comparison with three-dimensional, viscous (turbulent) flow computations; to evaluate the engineering models; and to improve our physical understanding of many of the phenomena involved in this complex flow field. The experimental results include a large quantity of data acquired throughout HIREP. A five-hole probe survey of the inlet flow 37.0 percent chord upstream of the inlet guide vane (IGV) leading edge is sufficient to give information for the inflow boundary conditions, while some static-pressure information is available to help establish an outflow boundary condition.

  1. Specularly reflected He sup 2+ at high Mach number quasi-parallel shocks

    Energy Technology Data Exchange (ETDEWEB)

    Fuselier, S.A.; Lennartsson, O.W. (Lockheed Palo Alto Research Lab., CA (United States)); Thomsen, M.F. (Los Alamos National Lab., NM (United States)); Russell, C.T. (Univ. of California, Los Angeles (United States))

    1990-04-01

    Upstream from the Earth's quasi-parallel bow shock, the Lockheed Plasma Composition Experiment on ISEE 1 often observes two types of suprathermal He{sup 2+} distributions. Always present to some degree is an energetic (several keV/eto 17.4 keV/e, the maximum energy of the detector) diffuse He{sup 2+} distribution. Sometimes, apparently when the Alfven Mach number, M{sub A}, is high enough and the spacecraft is near the shock (within a few minutes of a crossing), a second type of suprathermal He{sup 2+} distribution is also observed. This nongyrotropic, gyrating He{sup 2+} distribution has velocity components parallel and perpendicular to the magnetic field that are consistent with near-specular reflection of a portion of the incident solar wind He{sup 2+} distribution off the shock. Specularly reflected and diffuse proton distributions are associated with these gyrating He{sup 2+} distributions. The presence of these gyrating He{sup 2+} distributions suggests that specular reflection is controlled primarily by magnetic forces in high Mach number quasi-parallel shocks and that these distributions may be a seed population for more energetic diffuse He{sup 2+} distributions.

  2. Cardiovascular and Renal Effects of High Salt Diet in GDNF+/- Mice with Low Nephron Number

    Directory of Open Access Journals (Sweden)

    Julia Schlote

    2013-09-01

    Full Text Available Aims: To test the suggested association of low nephron number and later development of renal and cardiovascular disease we investigated the effects of high sodium diet in heterozygous GDNF+/- mice. Methods: Aged wild type and GDNF+/- mice were grouped together according to high sodium (HS, 4% or low sodium (LS, 0.03% diet for 4 weeks. The heart, the aorta and the kidneys were processed for morphometric and stereological evaluations and TaqMan PCR. Results: On HS GDNF+/- mice showed significantly higher drinking volume and urine production than wt and mean arterial blood pressure tended to be higher. Heart weight was higher in GDNF+/- than in wt, but the difference was only significant for LS. HS significantly increased cardiac interstitial tissue in GDNF+/-, but not in wt. On LS GDNF+/- mice had significantly larger glomeruli than wt and HS led to an additional two fold increase of glomerular area compared to LS. On electron microscopy glomerular damage after HS was seen in GDNF+/-, but not in wt. Dietary salt intake modulated renal IL-10 gene expression in GDNF+/-. Conclusion: In the setting of 30% lower nephron number HS diet favoured maladaptive changes of the kidney as well as of the cardiovascular system.

  3. The effect of high frequency sound on Culicoides numbers collected with suction light traps

    Directory of Open Access Journals (Sweden)

    Gert J. Venter

    2012-04-01

    Full Text Available Culicoides midges (Diptera: Ceratopogonidae, are involved in the transmission of various pathogens that cause important diseases of livestock worldwide. The use of insect repellents to reduce the attack rate of these insects on livestock could play an important role as part of an integrated control programme against diseases transmitted by these midges. The objective of this study was to determine whether high frequency sound has any repellent effect on Culicoides midges. The number of midges collected with 220 V Onderstepoort white light traps fitted with electronic mosquito repellents (EMRs, emitting 5-20 KHz multi-frequency sound waves, was compared with that of two untreated traps. Treatments were rotated in two replicates of a 4 x 4 randomised Latin square design. Although fewer midges were collected in the two traps fitted with EMRs, the average number collected over eight consecutive nights was not significantly different. The EMRs also had no influence on any of the physiological groups of Culicoides imicola Kieffer or the species composition of the Culicoides population as determined with light traps. The results indicate that high frequency sound has no repellent effect on Culicoides midges. There is therefore no evidence to support their promotion or use in the protection of animals against pathogens transmitted by Culicoides midges.

  4. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    Science.gov (United States)

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change.

  5. First Numerical Simulations of Anomalous Hydrodynamics

    CERN Document Server

    Hongo, Masaru; Hirano, Tetsufumi

    2013-01-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.

  6. The anomalous dimension of spin-1/2 baryons in many flavors QCD

    CERN Document Server

    Vecchi, Luca

    2016-01-01

    We derive the anomalous dimension of spin-1/2 baryon operators in QCD at leading 1/Nf order. Within this approximation the complication resulting from the mixing with an infinite number of evanescent operators can be easily bypassed.

  7. Anomalous Thermalization in Ergodic Systems

    Science.gov (United States)

    Luitz, David J.; Bar Lev, Yevgeny

    2016-10-01

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  8. Faraday anomalous dispersion optical tuners

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  9. Improvements of a nano-scale crossed hot-wire for high Reynolds number measurements

    Science.gov (United States)

    Fan, Yuyang; Hultmark, Marcus

    2015-11-01

    Hot-wire anemometry, despite its limited spatial and temporal resolution, is still the preferred tool for high Reynolds number flow measurements, mainly due to the continuous signal. To address the resolution issues, the Nano-Scale Thermal Anemometry Probe (NSTAP) was developed at Princeton University. The NSTAP has a sensing volume more than one order of magnitude smaller than conventional hot-wires, and it has displayed superior performance. However, the NSTAP can only measure a single component of the velocity. Using a novel combining method, a probe that enables two-component velocity measurements has been created (the x-NSTAP). The measurement volume is approximately 50 × 50 × 50 μ m, more than one order of magnitude smaller in all directions compared to conventional crossed hot-wires. The x-NSTAP has been further improved to allow more accurate measurements with the help of flow visualization using a scaled model but matching Reynolds number. Results from turbulent flow measurements with the new x-NSTAP are also presented. Supported under NSF grant CBET-1510100 (program manager Dimitrios Papavassiliou).

  10. Fractal properties of isovelocity surfaces in high Reynolds number laboratory shear flows

    Science.gov (United States)

    Praskovsky, Alexander A.; Foss, John F.; Kleis, Stanley J.; Karyakin, Mikhail Yu.

    1993-08-01

    The fractal properties of isovelocity surfaces are studied in three high Reynolds number (Rλ≊2.0×102-3.2×103) laboratory shear flows using the standard box-counting method. The fractal dimension D=-d(log Nr)/d(log r) was estimated within the range of box sizes r from several Kolmogorov scales up to several integral scales (Nr is the number of boxes with size r required to cover the line intersection of an isovelocity surface). The inertial subrange was of particular interest in this investigation. Measurements were carried out for external intermittency factors γ≊0.6-1.0. The data were processed using threshold levels U±2.5u' (U and u' denote mean and rms values of longitudinal velocity). Over the parameters studied, no wide range of constant fractal dimension was found. On the other hand, the accuracy of constant fractal dimension approximation with D≊0.4 over the inertial subranges was shown to be similar to that of the Kolmogorov [Dokl. Akad. Nauk SSSR 30, 301 (1941)] ``two-thirds law.''

  11. Assessment of an Euler-Interacting Boundary Layer Method Using High Reynolds Number Transonic Flight Data

    Science.gov (United States)

    Bonhaus, Daryl L.; Maddalon, Dal V.

    1998-01-01

    Flight-measured high Reynolds number turbulent-flow pressure distributions on a transport wing in transonic flow are compared to unstructured-grid calculations to assess the predictive ability of a three-dimensional Euler code (USM3D) coupled to an interacting boundary layer module. The two experimental pressure distributions selected for comparative analysis with the calculations are complex and turbulent but typical of an advanced technology laminar flow wing. An advancing front method (VGRID) was used to generate several tetrahedral grids for each test case. Initial calculations left considerable room for improvement in accuracy. Studies were then made of experimental errors, transition location, viscous effects, nacelle flow modeling, number and placement of spanwise boundary layer stations, and grid resolution. The most significant improvements in the accuracy of the calculations were gained by improvement of the nacelle flow model and by refinement of the computational grid. Final calculations yield results in close agreement with the experiment. Indications are that further grid refinement would produce additional improvement but would require more computer memory than is available. The appendix data compare the experimental attachment line location with calculations for different grid sizes. Good agreement is obtained between the experimental and calculated attachment line locations.

  12. Apparatus for measuring pressure-driven transport through channels at high Knudsen numbers

    Science.gov (United States)

    Karakitsiou, S.; Holst, B.; Hoffmann, A. C.

    2016-12-01

    The pressure-driven gas flow through micro- and nano-porous structures is particularly interesting for innovative technologies such as microelectromechanical and nano-mechanical-electrical systems. The classical continuum assumption breaks down for rarefied flow through channels with a characteristic dimension comparable to the mean free path of the gas. Theories based on molecular interactions have been formulated to predict the flow at high Knudsen numbers. Measuring rarefied gas flow experimentally is a challenge since only a few studies have been able to determine flowrates in the molecular flow regime. Here we present the design of an experimental apparatus, which can be used to measure the flow of gases through nano- and microscale channels in the flow regimes where molecular effects are critical. The equations used to design the apparatus are given, focusing on the slip and transition flow regimes (together sometimes called "Intermediate flow regime"). A channel with a diameter of 325 μm ± 5μm and a length of 2 mm was tested experimentally with the apparatus for a wide range of Knudsen numbers (10-2 < Kn < 1 × 105) demonstrating its suitability through the slip and transition regime (2.23 × 10-2 < Kn < 2.26).

  13. Finite volume simulation of 2-D steady square lid driven cavity flow at high reynolds numbers

    Directory of Open Access Journals (Sweden)

    K. Yapici

    2013-12-01

    Full Text Available In this work, computer simulation results of steady incompressible flow in a 2-D square lid-driven cavity up to Reynolds number (Re 65000 are presented and compared with those of earlier studies. The governing flow equations are solved by using the finite volume approach. Quadratic upstream interpolation for convective kinematics (QUICK is used for the approximation of the convective terms in the flow equations. In the implementation of QUICK, the deferred correction technique is adopted. A non-uniform staggered grid arrangement of 768x768 is employed to discretize the flow geometry. Algebraic forms of the coupled flow equations are then solved through the iterative SIMPLE (Semi-Implicit Method for Pressure-Linked Equation algorithm. The outlined computational methodology allows one to meet the main objective of this work, which is to address the computational convergence and wiggled flow problems encountered at high Reynolds and Peclet (Pe numbers. Furthermore, after Re > 25000 additional vortexes appear at the bottom left and right corners that have not been observed in earlier studies.

  14. Topology induced anomalous plasmon modes in metallic Mobius nanorings

    CERN Document Server

    Yin, Yin; Engemaier, Vivienne; Naz, Ehsan Saei Ghareh; Giudicatti, Silvia; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    We report on the investigation of plasmonic resonances in metallic M\\"obius nanorings. Half-integer numbers of resonant modes are observed due to the presence of an extra phase {\\pi} provided by the topology of the M\\"obius nanostrip. Anomalous plasmon modes located at the non-orientable surface of the M\\"obius nanoring break the symmetry that exist in conventional ring cavities, thus enable far-field excitation and emission as bright modes. The far-field resonant wavelength as well as the feature of half-integer mode numbers is invariant to the change of charge distribution on the M\\"obius nanoring due to the nontrivial topology. Owing to the ultra-small mode volume induced by the remaining dark feature, an extremely high sensitivity as well as a remarkable figure of merit is obtained in sensing performance. The topological metallic nanostructure provides a novel platform for the investigation of localized surface plasmon modes exhibiting unique phenomena in plasmonic applications such as high sensitive dete...

  15. Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer

    Science.gov (United States)

    Coudert, S.; Foucaut, J. M.; Kostas, J.; Stanislas, M.; Braud, P.; Fourment, C.; Delville, J.; Tutkun, M.; Mehdi, F.; Johansson, P.; George, W. K.

    2011-01-01

    An experiment on a flat plate turbulent boundary layer at high Reynolds number has been carried out in the Laboratoire de Mecanique de Lille (LML, UMR CNRS 8107) wind tunnel. This experiment was performed jointly with LEA (UMR CNRS 6609) in Poitiers (France) and Chalmers University of Technology (Sweden), in the frame of the WALLTURB European project. The simultaneous recording of 143 hot wires in one transverse plane and of two perpendicular stereoscopic PIV fields was performed successfully. The first SPIV plane is 1 cm upstream of the hot wire rake and the second is both orthogonal to the first one and to the wall. The first PIV results show a blockage effect which based on both statistical results (i.e. mean, RMS and spatial correlation) and a potential model does not seem to affect the turbulence organization.

  16. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development

    Directory of Open Access Journals (Sweden)

    Nick D.L. Owens

    2016-01-01

    Full Text Available Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that “temporal synexpression” predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  17. Particle-number conserving analysis of the high-spin structure of $^{159}$Ho

    CERN Document Server

    Zhang, Zhen-Hua

    2016-01-01

    The high-spin rotational bands in odd-$Z$ nuclei $^{159}$Ho ($Z=67$) are investigated using the cranked shell model with the pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency $\\hbar\\omega$ are reproduced very well by the calculations. The splitting between the signature partners of the yrast band $7/2^-[523]$ is discussed and the splitting of the excited band $7/2^+[404]$ above $\\hbar\\omega \\sim 0.30$~MeV is predicted due to the level crossing with $1/2^+[411]$. The calculated $B(E2)$ transition probabilities are also suggested for future experiments.

  18. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    Science.gov (United States)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G.; Kauzlarić, David

    2016-06-01

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  19. Longitudinal and transverse structure functions in high Reynolds-number magneto-hydrodynamic turbulence

    CERN Document Server

    Friedrich, J; Schäfer, T; Grauer, R

    2016-01-01

    We investigate the scaling behavior of longitudinal and transverse structure functions in homogeneous and isotropic magneto-hydrodynamic (MHD) turbulence by means of an exact hierarchy of structure function equations as well as by direct numerical simulations of two- and three-dimensional MHD turbulence. In particular, rescaling relations between longitudinal and transverse structure functions are derived and utilized in order to compare different scaling behavior in the inertial range. It is found that there are no substantial differences between longitudinal and transverse structure functions in MHD turbulence. This finding stands in contrast to the case of hydrodynamic turbulence which shows persistent differences even at high Reynolds numbers. We propose a physical picture that is based on an effective reduction of pressure contributions due to local regions of same magnitude and alignment of velocity and magnetic field fluctuations. Finally, our findings underline the importance of the pressure term for ...

  20. Venus Highland Anomalous Reflectivity

    Science.gov (United States)

    Simpson, Richard A.; Tyler, G. L.; Häusler, B.; Mattei, R.; Patzold, M.

    2009-09-01

    Maxwell Montes was one of several unusually bright areas identified from early Venus radar backscatter observations. Pioneer Venus' orbiting radar associated low emissivity with the bright areas and established a correlation between reflectivity and altitude. Magellan, using an oblique bistatic geometry, showed that the bright surface dielectric constant was not only large but also imaginary -- i.e., the material was conducting, at least near Cleopatra Patera (Pettengill et al., Science, 272, 1996). Venus Express (VEX) repeated Magellan's bistatic observations over Maxwell, using the more conventional circular polarization carried by most spacecraft. Although VEX signal-to-noise ratio was lower than Magellan's, echoes were sufficiently strong to verify the Magellan conclusions near Cleopatra (see J. Geophys. Res., 114, E00B41, doi:10.1029/2008JE003156). Only about 40% of the surface at Cleopatra scatters specularly, opening the Fresnel (specular) interpretation model to question. Elsewhere in Maxwell, the specular percentage may be even lower. Nonetheless, the echo polarization is reversed throughout Maxwell, a result that is consistent with large dielectric constants and difficult to explain without resorting qualitatively (if not quantitatively) to specular models. VEX was scheduled to explore other high altitude regions when its S-Band (13-cm wavelength) radio system failed in late 2006, so further probing of high altitude targets awaits arrival of a new spacecraft.

  1. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability.

    Science.gov (United States)

    Rikanati, A; Oron, D; Sadot, O; Shvarts, D

    2003-02-01

    Effects of high-Mach numbers and high initial amplitudes on the evolution of the single-mode Richtmyer-Meshkov shock-wave induced hydrodynamic instability are studied using theoretical models, experiments, and numerical simulations. Two regimes in which there is a significant deviation from the linear dependence of the initial velocity on the initial perturbation amplitude are defined and characterized. In one, the observed reduction of the initial velocity is primarily due to large initial amplitudes. This effect is accurately modeled by a vorticity deposition model, quantifying both the effect of the initial perturbation amplitude and the exact shape of the interface. In the other, the reduction is dominated by the proximity of the shock wave to the interface. This effect is modeled by a modified incompressible model where the shock wave is mimicked by a moving bounding wall. These results are supplemented with high initial amplitude Mach 1.2 shock-tube experiments, enabling separation of the two effects. It is shown that in most of the previous experiments, the observed reduction is predominantly due to the effect of high initial amplitudes.

  2. The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers

    Science.gov (United States)

    Zhang, Lin; Ouyang, Jie; Zhang, Xiaohua

    2013-04-01

    The aim of the paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics (MHD) flow problems with either fully insulating walls or partially insulating and partially conducting walls. Toward this, we first extend the influence domain of the shape function for the element free Galerkin (EFG) method to have arbitrary shape. When the influence factor approaches 1, we find that the EFG shape function almost has the Delta property at the node (i.e. the value of the EFG shape function of the node is nearly equal to 1 at the position of this node) as well as the property of slices in the influence domain of the node (i.e. the EFG shape function in the influence domain of the node is nearly constructed by different functions defined in different slices). Therefore, for MHD flow problems at high Hartmann numbers we follow the idea of the variational multiscale finite element method (VMFEM) to combine the EFG method with the variational multiscale (VM) method, namely the variational multiscale element free Galerkin (VMEFG) method is proposed. Subsequently, in order to validate the proposed method, we compare the obtained approximate solutions with the exact solutions for some problems where such exact solutions are known. Finally, several benchmark problems of MHD flows are simulated and the numerical results indicate that the VMEFG method is stable at moderate and high values of Hartmann number. Another important feature of this method is that the stabilization parameter has appeared naturally via the solution of the fine scale problem. Meanwhile, because this proposed method is a type of meshless method, it can avoid the need for meshing, a very demanding task for complicated geometry problems.

  3. Mitigation of naphthenate related production upsets in high TAN (Total Acid Number) crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Ostojic, Nik [Maersk Oil, Copenhagen (Denmark); Vijn, Pieter; Reiners, Robert [Champion Technologies Europe BV, Delden (Netherlands)

    2012-07-01

    This paper describes a strategy for prediction, evaluation and mitigation of calcium naphthenate related production problems. Developing fields with acidic crude in the North Sea, West Africa, Bohai Bay (China) and Brazil is becoming more common in recent years. The high acid crude contains a considerable amount of naphthenic acids, typically having a Total Acid Number (TAN) higher than 0.5 mg KOH/g. Formation of either hard type 'calcium naphthenate precipitates' or soft type 'sodium carboxylate/emulsions' during crude oil production can lead to severe flow assurance and separation problems. In severe cases this may lead to production shutdowns to clean-up the equipment. A number of different naphthenate mitigation approaches have been published but no one particular approach is considered to be the most efficient as it depends significantly on the particular field conditions. Initially, this problem was addressed by deploying large volumes of (usually organic) acid, but more recently high efficiency low dose naphthenate inhibitors have been introduced. For predicting naphthenate scaling potential, methods were developed to determine the concentration of 1230 Dalton naphthenic tetra acid (ARN acids) in either deposit or crude oil and this information can be used to locate and potentially isolate the problem to a certain reservoir. Also, methods were developed to design suitable low dose naphthenate inhibitors. As these inhibitors are field tested, monitoring is required to ensure the product is performing most efficiently. In cases of tight emulsions however, this is less difficult as the oil dehydration and water quality is affected instantly. Methods were developed to allow monitoring of the calcium naphthenate deposition in field trails, thus allow trending and evaluation of the chemicals performance. After detailed analyses and discussions of the developed methods, a North Sea case history is presented reviewing several years of treating

  4. The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime

    Science.gov (United States)

    Featherstone, Nicholas A.; Hindman, Bradley W.

    2016-02-01

    Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.

  5. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    Science.gov (United States)

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material.

  6. High Reynolds number flows about bodies of revolution with application to submarines and torpedoes

    Science.gov (United States)

    Jimenez, Juan M.

    x 106, which seem to have collapsed. The sail wake experiments demonstrated the significance of the sail tip vortex when the submarine is at a nonzero yaw angle. As the yaw angle is increased the circulation of the sail tip vortex increases. As the yaw angle is further increased the boundary layer separates from the sail with an overall drop in circulation. A similar phenomenon is observed for the junction vortex with the exception that when the yaw angle is further increased to 17 degrees the circulation continues to increase at a slower rate. Also, the circulation values for the sail tip vortex are about an order of magnitude larger than those of the junction vortex. The effects of the support on the wake development are similar to the effects introduced by the sail on a submarine wake (except for the absence of the tip flow). The presence of the support affects the flow differently for different Reynolds numbers emphasizing the importance of high Reynolds number studies to better understand submarine flows.

  7. Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

    Science.gov (United States)

    Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Madsen, J.; Schepers, J. G.

    2016-09-01

    2D wind tunnel tests at high Reynolds numbers have been done within the EU FP7 AVATAR project (Advanced Aerodynamic Tools of lArge Rotors) on the DU00-W-212 airfoil and at two different test facilities: the DNW High Pressure Wind Tunnel in Gottingen (HDG) and the LM Wind Power in-house wind tunnel. Two conditions of Reynolds numbers have been performed in both tests: 3 and 6 million. The Mach number and turbulence intensity values are similar in both wind tunnels at the 3 million Reynolds number test, while they are significantly different at 6 million Reynolds number. The paper presents a comparison of the data obtained from the two wind tunnels, showing good repeatability at 3 million Reynolds number and differences at 6 million Reynolds number that are consistent with the different Mach number and turbulence intensity values.

  8. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  9. Anomalous absorption of laser light on ion acoustic fluctuations

    Science.gov (United States)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  10. Unsupervised Anomalous Vertices Detection Utilizing Link Prediction Algorithms

    CERN Document Server

    Kagan, Dima; Elovici, amd Yuval

    2016-01-01

    In the past decade, complex network structures have penetrated nearly every aspect of our lives. The detection of anomalous vertices in these networks can uncover important insights, such as exposing intruders in a computer network. In this study, we present a novel unsupervised two-layered meta classifier that can be employed to detect irregular vertices in complex networks using solely features extracted from the network topology. Our method is based on the hypothesis that a vertex having many links with low probabilities of existing has a higher likelihood of being anomalous. We evaluated our method on ten networks, using three fully simulated, five semi-simulated, and two real world datasets. In all the scenarios, our method was able to identify anomalous and irregular vertices with low false positive rates and high AUCs. Moreover, we demonstrated that our method can be applied to security-related use cases and is able to detect malicious profiles in online social networks.

  11. Anomalous flow behavior in nanochannels: A molecular dynamics study

    Science.gov (United States)

    Murad, Sohail; Luo, Lin; Chu, Liang-Yin

    2010-06-01

    We report molecular dynamics simulations of flow of water in nanochannels with a range of surface wettability characteristics (hydrophobic to strongly hydrophilic) and driving forces (pressures). Our results show apparently anomalous behavior. At low pressures, the rate is higher in nanochannels with hydrophilic surfaces than that with hydrophobic surfaces; however, with high pressure driven flow we observe opposite trends. This apparently anomalous behavior can be explained on the basis of molecular thermodynamics and fluid mechanics considerations. Understanding such behavior is important in many nanofluidic devices such as nanoreactors, nanosensors, and nanochips that are increasingly being designed and used.

  12. Wall-modeled large-eddy simulation of transonic airfoil buffet at high Reynolds number

    Science.gov (United States)

    Fukushima, Yuma; Kawai, Soshi

    2016-11-01

    In this study, we conduct the wall-modeled large-eddy simulation (LES) of transonic buffet phenomena over the OAT15A supercritical airfoil at high Reynolds number. The transonic airfoil buffet involves shock-turbulent boundary layer interactions and shock vibration associated with the flow separation downstream of the shock wave. The wall-modeled LES developed by Kawai and Larsson PoF (2012) is tuned on the K supercomputer for high-fidelity simulation. We first show the capability of the present wall-modeled LES on the transonic airfoil buffet phenomena and then investigate the detailed flow physics of unsteadiness of shock waves and separated boundary layer interaction phenomena. We also focus on the sustaining mechanism of the buffet phenomena, including the source of the pressure waves propagated from the trailing edge and the interactions between the shock wave and the generated sound waves. This work was supported in part by MEXT as a social and scientific priority issue to be tackled by using post-K computer. Computer resources of the K computer was provided by the RIKEN Advanced Institute for Computational Science (Project ID: hp150254).

  13. High numbers of heat-loving bacteria found in cold Arctic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-09-15

    This article reported on a study of subzero sediments in the Arctic Ocean off the Norwegian island of Spitsbergen where scientists from the University of Calgary detected high numbers of thermophilic bacteria. The spores may offer an opportunity to trace seepages of fluids from hot sub-seafloor habitats and potentially indicate undiscovered offshore petroleum reservoirs. The Arctic spores that appear to have been transported from deeper hot spots were revived during experimental incubations at 40 to 60 degrees Celsius. Ongoing surveys are expected to identify the source, or sources, of these misplaced microbes. Since these bacteria are anaerobic, their high abundance and steady supply into the sediments indicate they are coming from a large oxygen-free habitat. One possible source may be a deep pressurized oil reservoir from which upward-leaking hydrocarbons carry bacteria into overlying seawater. Another source could be related to fluid circulation through warm ocean crust at spreading ridges. The thermophiles may get carried out of the abyssal hot spots by ocean currents that disperse them to the cold sediments. The spores also offer insight for understanding how biodiversity is maintained by the passive dispersal of small cells over large distances.

  14. Extending the restricted nonlinear model for wall-turbulence to high Reynolds numbers

    Science.gov (United States)

    Bretheim, Joel; Meneveau, Charles; Gayme, Dennice

    2016-11-01

    The restricted nonlinear (RNL) model for wall-turbulence is motivated by the long-observed streamwise-coherent structures that play an important role in these flows. The RNL equations, derived by restricting the convective term in the Navier-Stokes equations, provide a computationally efficient approach due to fewer degrees of freedom in the underlying dynamics. Recent simulations of the RNL system have been conducted for turbulent channel flows at low Reynolds numbers (Re), yielding insights into the dynamical mechanisms and statistics of wall-turbulence. Despite the computational advantages of the RNL system, simulations at high Re remain out-of-reach. We present a new Large Eddy Simulation (LES) framework for the RNL system, enabling its use in engineering applications at high Re such as turbulent flows through wind farms. Initial results demonstrate that, as observed at moderate Re, restricting the range of streamwise varying structures present in the simulation (i.e., limiting the band of x Fourier components or kx modes) significantly affects the accuracy of the statistics. Our results show that only a few well-chosen kx modes lead to RNL turbulence with accurate statistics, including the mean profile and the well-known inner and outer peaks in energy spectra. This work is supported by NSF (WindInspire OISE-1243482).

  15. Radiative properties of high wire number tungsten arrays with implosion times up to 250 ns

    Science.gov (United States)

    Deeney, C.; Coverdale, C. A.; Douglas, M. R.; Struve, K. W.; Spielman, R. B.; Stygar, W. A.; Peterson, D. L.; Roderick, N. F.; Haines, M. G.; Beg, F. N.; Ruiz-Camacho, J.

    1999-09-01

    High wire number, 25-mm-diameter tungsten wire arrays have been imploded on the 8-MA Saturn generator [R. B. Spielman et al., AIP Conference Proceeding 195, 3 (American Institute of Physics, Woodbury, NY 1989)], operating in a long-pulse mode. By varying the mass of the arrays from 710 to 6140 μg/cm, implosion times of 130-250 ns have been obtained with implosion velocities of 50-25 cm/μs, respectively. These Z-pinch implosions produced plasmas with millimeter diameters that radiated 600-800 kJ of x-rays, with powers of 20-49 TW; the corresponding pulsewidths were 19-7.5 ns, with risetimes ranging from 6.5 to 4.0 ns. These powers and pulsewidths are similar to those achieved with 50-ns implosion times on Saturn. Two-dimensional, radiation-magnetohydrodynamic calculations indicate that the imploding shells in these long implosion time experiments are comparable in width to those in the short-pulse cases. This can be due to lower initial perturbations. A heuristic wire array model suggests that the reduced perturbations, in the long-pulse cases, may be due to the individual wire merger occurring well before the acceleration of the shell. The experiments and modeling suggest that 150-200 ns implosion time Z-pinches could be employed for high-power, x-ray source applications.

  16. DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH

    Directory of Open Access Journals (Sweden)

    Bjerkehagen Bodil

    2008-06-01

    Full Text Available Abstract Background Malignant peripheral nerve sheath tumors (MPNSTs are rare and highly aggressive soft tissue tumors showing complex chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, and thereby novel gene targets of potential importance for MPNST development and/or progression, we have analyzed DNA copy number changes in seven high-grade MPNSTs using microarray-based comparative genomic hybridization (array CGH. Results Considerable more gains than losses were observed, and the most frequent minimal recurrent regions of gain included 1q24.1-q24.2, 1q24.3-q25.1, 8p23.1-p12, 9q34.11-q34.13 and 17q23.2-q25.3, all gained in five of seven samples. The 17q23.2-q25.3 region was gained in all five patients with poor outcome and not in the two patients with disease-free survival. cDNA microarray analysis and quantitative real-time reverse transcription PCR were used to investigate expression of genes located within these regions. The gene lysyl oxidase-like 2 (LOXL2 was identified as a candidate target for the 8p23.1-p12 gain. Within 17q, the genes topoisomerase II-α (TOP2A, ets variant gene 4 (E1A enhancer binding protein, E1AF (ETV4 and baculoviral IAP repeat-containing 5 (survivin (BIRC5 showed increased expression in all samples compared to two benign tumors. Increased expression of these genes has previously been associated with poor survival in other malignancies, and for TOP2A, in MPNSTs as well. In addition, we have analyzed the expression of five micro RNAs located within the 17q23.2-q25.3 region, but none of them showed high expression levels compared to the benign tumors. Conclusion Our study shows the potential of using DNA copy number changes obtained by array CGH to predict the prognosis of MPNST patients. Although no clear correlations between the expression level and patient outcome were observed, the genes TOP2A, ETV4 and BIRC5 are interesting candidate targets for the 17q gain associated

  17. Chiral magnetic plasmons in anomalous relativistic matter

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  18. More Modular Invariant Anomalous U(1) Breaking

    CERN Document Server

    Gaillard, Mary Katherin; Gaillard, Mary K.; Giedt, Joel

    2002-01-01

    We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to an anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds upon previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kahler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated o...

  19. Minimal flavor violation and anomalous top decays

    Science.gov (United States)

    Faller, Sven; Mannel, Thomas; Gadatsch, Stefan

    2013-08-01

    Top-quark physics at the LHC may open a window to physics beyond the Standard Model and even lead us to an understanding of the phenomenon of “flavor.” However, current flavor data is a strong hint that no “new physics” with a generic flavor structure can be expected at the TeV scale. In turn, if there is “new physics” at the TeV scale, it must be “minimally flavor violating.” This has become a widely accepted assumption for “new physics” models. In this paper we propose a model-independent scheme to test minimal flavor violation for the anomalous charged Wtq, q∈{d,s,b} and flavor-changing Vtq, q∈{u,c} and V∈{Z,γ,g} couplings within an effective field theory framework, i.e., in a model-independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II, under the assumption that the top-quark is produced at a high-energy collision and decays as a quasi-free particle.

  20. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  1. Search for anomalous semileptonic decay of heavy flavor hadrons produced in association with a W boson at CDF II

    CERN Document Server

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas-Maestro, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Di Turo, P; Dorr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; García, J E; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Di Giovanni, G P; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitine, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; Van Remortel, N; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-01-01

    We present a search for anomalous semileptonic decays of heavy flavor hadrons produced in association with a $W$ boson, in proton-antiproton collisions at sqrt{s}=1.96 TeV. We use 162 pb-1 of data collected with the CDF II detector at the Fermilab Tevatron Collider. We select events with one W boson and at least one jet with an identified secondary vertex. In the jets with a secondary vertex we look for a semileptonic decay to a muon. We compare the number of jets with both a secondary vertex and a semileptonic decay, and the kinematic properties of these jets, with the standard model expectation of W plus heavy flavor production and decay. No discrepancy is seen between the observation and the expectation, and we set limits on the production cross section of a B-like hadron with an anomalously high semileptonic branching ratio.

  2. Using Computational Fluid Dynamics and Experiments to Design Sweeping Jets for High Reynolds Number Cruise Configurations

    Science.gov (United States)

    Jones, Gregory S.; Milholen, William E., II; Fell, Jared S.; Webb, Sandy R.; Cagle, C. Mark

    2016-01-01

    The application of a sweeping jet actuator to a circulation control system was initiated by a risk reduction series of experiments to optimize the authority of a single sweeping jet actuator. The sweeping jet design was integrated into the existing Fundamental Aerodynamic Subsonic Transonic- Modular Active Control (FAST-MAC) model by replacing the steady blowing system with an array of thirty-nine sweeping jet cartridges. A constant slot height to wing chord ratio was similar to the steady blowing configuration resulting in each actuator having a unique in size for the sweeping jet configuration. While this paper will describe the scaling and optimization of the actuators for future high Reynolds number applications, the major focus of this effort was to target the transonic flight regime by increasing the amplitude authority of the actuator. This was accomplished by modifying the diffuser of the sweeping jet actuator, and this paper highlights twelve different diffuser designs. The experimental portion of this work was completed in the NASA Langley National Transonic Facility.

  3. Structure Functions in Wall-bounded Flows at High Reynolds Number

    Science.gov (United States)

    Yang, Xiang; Marusic, Ivan; Johnson, Perry; Meneveau, Charles

    2016-11-01

    The scaling of the structure function Dij = (where i = 1,2,3 and r is the two-point displacement, ui is the velocity fluctuation in the xi direction), is studied in wall-bounded flows at high Reynolds number within the framework of the Townsend attached eddy model. While the scaling of Dij has been the subject of several studies, previous work focused on the scaling of D11 for r = (Δx ,0,0) (for streamwise velocity component and displacements only in the streamwise direction). Using the Hierarchical-Random-Additive formalism, a recently developed attached-eddy formalism, we propose closed-form formulae for the structure functionDij with two-point displacements in arbitrary directions, focusing on the log region . The work highlights new scalings that have received little attention, e.g. the scaling of Dij for r =(0, Δy, Δz) and for i ≠ j . As the knowledge on Dij leads directly to that of the Reynolds stress, statistics of the filtered flow field, etc., an analytical formula of Dij for arbitrary r can be quite useful for developing physics-based models for wall-bounded flows and validating existing LES and reduced order models.

  4. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  5. Magnetic characteristics of a high-layer-number NiFe/FeMn multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, G. W., E-mail: gary.paterson@glasgow.ac.uk; Gonçalves, F. J. T.; McFadzean, S.; Stamps, R. L. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); O' Reilly, S.; Bowman, R. [ANSIN, Department of Physics and Astronomy, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2015-11-28

    We report the static and dynamic magnetic characteristics of a high-layer-number NiFe/FeMn multilayer test structure with potential applications in broadband absorber and filter devices. To allow fine control over the absorption linewidths and to understand the mechanisms governing the resonances in a tailored structure similar to that expected to be used in real world applications, the multilayer was intentionally designed to have layer thickness and interface roughness variations. Magnetometry measurements show that the sample has complex hysteresis loops with features consistent with single ferromagnetic film reversals. Characterisation by transmission electron microscopy allows us to correlate the magnetic properties with structural features, including the film widths and interface roughnesses. Analysis of resonance frequencies from broadband ferromagnetic resonance measurements as a function of field magnitude and orientation provide values of the local exchange bias, rotatable anisotropy, and uniaxial anisotropy fields for specific layers in the stack and explain the observed mode softening. The linewidths of the multilayer are adjustable around the bias field, approaching twice that seen at larger fields, allowing control over the bandwidth of devices formed from the structure.

  6. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    Science.gov (United States)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  7. Triple-deck analysis of transonic high Reynolds number flow through slender channels.

    Science.gov (United States)

    Kluwick, A; Kornfeld, M

    2014-07-28

    In this work, laminar transonic weakly three-dimensional flows at high Reynolds numbers in slender channels, as found in microsupersonic nozzles and turbomachines of micro-electro-mechanical systems, are considered. The channel height is taken so small that the viscous wall layers forming at the channel walls start to interact strongly rather than weakly with the inviscid core flow and, therefore, the classical boundary layer approach fails. The resulting viscous-inviscid interaction problem is formulated using matched asymptotic expansions and found to be governed by a triple-deck structure. As a consequence, the properties of the predominantly inviscid core region and the viscous wall layers have to be calculated simultaneously in the interaction region. Weakly three-dimensional effects caused by surface roughness, upstream propagating flow perturbations, boundary layer separation as well as bifurcating solutions are discussed. Representative results for subsonic as well as supersonic conditions are presented, and the importance of these flow phenomena in technical applications as, for example, a means to reduce shock losses through the use of deformed geometry is addressed.

  8. High Reynolds number rough wall turbulent boundary layer experiments using Braille surfaces

    Science.gov (United States)

    Harris, Michael; Monty, Jason; Nova, Todd; Allen, James; Chong, Min

    2007-11-01

    This paper details smooth, transitional and fully rough turbulent boundary layer experiments in the New Mexico State high Reynolds number rough wall wind tunnel. The initial surface tested was generated with a Braille printer and consisted of an uniform array of Braille points. The average point height being 0.5mm, the spacing between the points in the span was 0.5mm and the surface consisted of span wise rows separated by 4mm. The wavelength to peak ratio was 8:1. The boundary layer thickness at the measurement location was 190mm giving a large separation of roughness height to layer thickness. The maximum friction velocity was uτ=1.5m/s at Rex=3.8 x10^7. Results for the skin friction co-efficient show that this surface follows a Nikuradse type inflectional curve and that Townsends outer layer similarity hypothesis is valid for rough wall flows with a large separation of scales. Mean flow and turbulence statistics will be presented.

  9. NUMERICAL SIMULATIONS OF FLOW BEHAVIOR IN DRIVEN CAVITY AT HIGH REYNOLDS NUMBERS

    Directory of Open Access Journals (Sweden)

    Fudhail Bin Abdul Munir

    2012-02-01

    Full Text Available In recent years, due to rapidly increasing computational power, computational methods have become the essential tools to conduct researches in various engineering fields.  In parallel to the development of ultra high speed digital computers, computational fluid dynamics (CFD has become the new third approach apart from theory and experiment in the philosophical study and development of fluid dynamics.  Lattice Boltzmann method (LBM is an alternative method to conventional CFD.  LBM is relatively new approach that uses simple microscopic models to simulate complicated microscopic behavior of transport phenomena.  In this paper, fluid flow behaviors of steady incompressible flow inside lid driven square cavity are studied.  Numerical calculations are conducted for different Reynolds numbers by using Lattice Boltzmann scheme.  The objective of the paper is to demonstrate the capability of this lattice Boltzmann scheme for engineering applications particularly in fluid transport phenomena. Keywords-component; lattice Boltzmann method, lid driven cavity, computational fluid dynamics.

  10. Navigation by anomalous random walks on complex networks

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  11. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  12. Two-loop anomalous dimensions of heavy baryon currents in heavy quark effective theory

    CERN Document Server

    Groote, S; Yakovlev, O I

    1996-01-01

    We present results on the two-loop anomalous dimensions of the heavy baryon HQET currents J=(q^TC\\Gamma\\tau q)\\Gamma'Q with arbitrary Dirac matrices \\Gamma and \\Gamma'. From our general result we obtain the two-loop anomalous dimensions for currents with quantum numbers of the ground state heavy baryons \\Lambda_Q, \\Sigma_Q and \\Sigma_Q^*. As a by-product of our calculation and as an additional check we rederive the known two-loop anomalous dimensions of mesonic scalar, pseudoscalar, vector, axial vector and tensor currents (J=\\bar q\\Gamma q) in massless QCD as well as in HQET.

  13. The Concept of Irrational Numbers in High-School Students and Prospective Teachers.

    Science.gov (United States)

    Fischbein, Efraim; And Others

    1995-01-01

    Investigation of the presence and effect of intuitive obstacles to the concept of irrational number in (n=30) ninth-grade, (n=32) tenth-grade, and (n=29) college students found that only some students manifest genuine intuitive biases. Most students were unable to classify numbers as rational, irrational, and/or real. (Author/MKR)

  14. Porous and Fluffy Grains in the Regions of Anomalous Extinction

    Indian Academy of Sciences (India)

    D. B. Vaidya; B. G. Anandarao; J. N. Desai; R. Gupta

    2000-06-01

    It has long been established that the ratio of total to selective extinction is anomalously large (≥ 5) in certain regions of the interstellar medium. In these regions of anomalous extinction the dust grains are likely to be irregular in shape and fluffy in structure. Using discrete dipole approximation (DDA) we calculate the extinction for porous and fluffy grains. We apply DDA first to solid spheroidal particles assumed to be made of a certain (large) number of dipoles. Then we systematically reduce the number of dipoles to model the porous grains. The aggregates of these particles are suggested to form the fluffy grains. We study the extinction for these particles as a function of grain size, porosity and wavelength. We apply these calculations to interpret the observed extinction data in the regions of star formation (e.g. the Orion complex).

  15. The Effect of Number and Presentation Order of High-Constraint Sentences on Second Language Word Learning

    Science.gov (United States)

    Ma, Tengfei; Chen, Ran; Dunlap, Susan; Chen, Baoguo

    2016-01-01

    This paper presents the results of an experiment that investigated the effects of number and presentation order of high-constraint sentences on semantic processing of unknown second language (L2) words (pseudowords) through reading. All participants were Chinese native speakers who learned English as a foreign language. In the experiment, sentence constraint and order of different constraint sentences were manipulated in English sentences, as well as L2 proficiency level of participants. We found that the number of high-constraint sentences was supportive for L2 word learning except in the condition in which high-constraint exposure was presented first. Moreover, when the number of high-constraint sentences was the same, learning was significantly better when the first exposure was a high-constraint exposure. And no proficiency level effects were found. Our results provided direct evidence that L2 word learning benefited from high quality language input and first presentations of high quality language input. PMID:27695432

  16. The Effect of Number and Presentation Order of High-Constraint Sentences on Second Language Word Learning.

    Science.gov (United States)

    Ma, Tengfei; Chen, Ran; Dunlap, Susan; Chen, Baoguo

    2016-01-01

    This paper presents the results of an experiment that investigated the effects of number and presentation order of high-constraint sentences on semantic processing of unknown second language (L2) words (pseudowords) through reading. All participants were Chinese native speakers who learned English as a foreign language. In the experiment, sentence constraint and order of different constraint sentences were manipulated in English sentences, as well as L2 proficiency level of participants. We found that the number of high-constraint sentences was supportive for L2 word learning except in the condition in which high-constraint exposure was presented first. Moreover, when the number of high-constraint sentences was the same, learning was significantly better when the first exposure was a high-constraint exposure. And no proficiency level effects were found. Our results provided direct evidence that L2 word learning benefited from high quality language input and first presentations of high quality language input.

  17. Spatial patterning of the neonatal EEG suggests a need for a high number of electrodes.

    Science.gov (United States)

    Odabaee, Maryam; Freeman, Walter J; Colditz, Paul B; Ramon, Ceon; Vanhatalo, Sampsa

    2013-03-01

    There is an increasing demand for source analysis of neonatal EEG, but currently there is inadequate knowledge about i) the spatial patterning of neonatal scalp EEG and hence ii) the number of electrodes needed to capture neonatal EEG in full spatial detail. This study addresses these issues by using a very high density (2.5mm interelectrode spacing) linear electrode array to assess the spatial power spectrum, by using a high density (64 electrodes) EEG cap to assess the spatial extent of the common oscillatory bouts in the neonatal EEG and by using a neonatal size spherical head model to assess the effects of source depth and skull conductivities on the spatial frequency spectrum. The linear array recordings show that the spatial power spectrum decays rapidly until about 0.5-0.8 cycles per centimeter. The dense array EEG recordings show that the amplitude of oscillatory events decays within 4-6 cm to the level of global background activity, and that the higher frequencies (12-20 Hz) show the most rapid spatial decline in amplitude. Simulation with spherical head model showed that realistic variation in skull conductivity and source depths can both introduce orders of magnitude difference in the spatial frequency of the scalp EEG. Calculation of spatial Nyquist frequencies from the spatial power spectra suggests that an interelectrode distance of about 6-10mm would suffice to capture the full spatial texture of the raw EEG signal at the neonatal scalp without spatial aliasing or under-sampling. The spatial decay of oscillatory events suggests that a full representation of their spatial characteristics requires an interelectrode distance of 10-20mm. The findings show that the conventional way of recording neonatal EEG with about 10 electrodes ignores most spatial EEG content, that increasing the electrode density is necessary to improve neonatal EEG source localization and information extraction, and that prospective source models will need to carefully consider the

  18. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice

    Science.gov (United States)

    Mukherjee, Sebabrata; Spracklen, Alexander; Valiente, Manuel; Andersson, Erika; Öhberg, Patrik; Goldman, Nathan; Thomson, Robert R.

    2017-01-01

    Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime.

  19. Anomalous asymmetry in the Fermi surface of the high-temperature superconductor YBa2Cu4O8 revealed by angle-resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Takeshi; Khasanov, R.; Sassa, Y.; Bendounan, A.; Paihes, S.; Chang, J.; Mesot, J.; Keller, H.; Zhigadlo, N.D.; Shi, M.; Bukowski, Z.; Karpinski, J.; Kaminski, A.

    2009-09-15

    We use microprobe angle-resolved photoemission spectroscopy to study the Fermi surface and band dispersion of the CuO{sub 2} planes in the high-temperature superconductor, YBa{sub 2}Cu{sub 4}O{sub 8}. We find a strong in-plane asymmetry of the electronic structure between directions along a and b axes. The saddle point of the antibonding band lies at a significantly higher energy in the a direction ({pi},0) than the b direction (0,{pi}), whereas the bonding band displays the opposite behavior. We demonstrate that the abnormal band shape is due to a strong asymmetry of the bilayer band splitting, likely caused by a nontrivial hybridization between the planes and chains. This asymmetry has an important implication for interpreting key properties of the Y-Ba-Cu-O family, especially the superconducting gap, transport, and results of inelastic neutron scattering.

  20. Searches for Magnetic Monopoles and Anomalously Charged Objects with ATLAS

    CERN Document Server

    Katre, Akshay; The ATLAS collaboration

    2016-01-01

    Results of searches for highly ionising particles and particles with anomalously high electric charge produced in proton-proton collisions in the ATLAS detector are presented. Such signatures, encompassing particles with charges from 10 to 60 times the electron charge, involve high levels of ionization in the ATLAS detector and can arise from magnetic monopoles or models involving technicolor, doubly charged Higgs bosons or composite dark matter models.

  1. Long-range lPIV to resolve the small scales in a jet at high Reynolds number

    NARCIS (Netherlands)

    Fiscaletti, D.; Westerweel, J.; Elsinga, G.E.

    2014-01-01

    The investigation of flows at high Reynolds number is of great interest for the theory of turbulence, in that the large and the small scales of turbulence show a clear separation. But, as the Reynolds number of the flow increases, the size of the Kolmogorov length scale ( η ) drops almost proportion

  2. The anomalous quadrupole collectivity in Te isotopes

    CERN Document Server

    Qi, Chong

    2016-01-01

    We present systematic calculations on the spectroscopy and transition properties of even-even Te isotopes by using the large-scale configuration interaction shell model approach with a realistic interaction. These nuclei are of particular interest since their yrast spectra show a vibrational-like equally-spaced pattern but the few known E2 transitions show anomalous rotational-like behavior, which cannot be reproduced by collective models. Our calculations reproduce well the equally-spaced spectra of those isotopes as well as the constant behavior of the $B(E2)$ values in $^{114}$Te. The calculated $B(E2)$ values for neutron-deficient and heavier Te isotopes show contrasting different behaviors along the yrast line. The $B(E2)$ of light isotopes can exhibit a nearly constant bevavior upto high spins. We show that this is related to the enhanced neutron-proton correlation when approaching $N=50$.

  3. Anomalous rectification in a purely electronic memristor

    Science.gov (United States)

    Wang, Jingrui; Pan, Ruobing; Cao, Hongtao; Wang, Yang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Zhuge, Fei

    2016-10-01

    An anomalous rectification was observed in a purely electronic memristive device Ti/ZnO/Pt. It could be due to (1) an Ohmic or quasi-Ohmic contact at the ZnO/Pt interface and (2) a Schottky contact at the Ti/ZnO interface. The Ohmic contact originates from the reduction of ZnO occurring in the whole film instead of only at the Ti/ZnO interface. The Schottky contact may come from moisture adsorbed in the nanoporous ZnO. The conduction in the electroformed device is controlled by the carrier trapping/detrapping of the trap sites, inducing a poor rectification and high nonlinearity. Furthermore, a complementary resistive switching was achieved.

  4. 44th Annual Anomalous Absorption Conference

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  5. Anomalous anisotropic magnetoresistance effects in graphene

    Directory of Open Access Journals (Sweden)

    Yiwei Liu

    2014-09-01

    Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

  6. Anomalously low Ga incorporation in high Al-content AlGaN grown on (11 anti 20) non-polar plane by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, Shunsaku; Horita, Masahiro; Suda, Jun [Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura Campus, Nishikyo-ku, Kyoto, 615-8510 (Japan); Kimoto, Tsunenobu [Department of Electronic Science and Engineering, Kyoto University, Kyoto University Katsura Campus, Nishikyo-ku, Kyoto, 615-8510 (Japan); Photonics and Electronics Science and Engineering Center (PESEC), Kyoto University Katsura Campus, Nishikyo-ku, Kyoto, 615-8510 (Japan)

    2011-07-15

    Crystalline orientation dependence of Ga incorporation in growth of high Al-content AlGaN was investigated. Growth was carried out by molecular-beam epitaxy (MBE) using elemental Al, Ga, and rf-plasma-excited nitrogen under various V/III ratios. 6H-SiC (0001), 4H-SiC and 4H-SiC were used as substrates. Ga incorporation increased with increase of V/III ratio in the layers grown on (0001) and planes. On the other hand, Ga was not incorporated in the layer grown on plane even when the layer was grown under a nitrogen rich condition, indicating much lower Ga incorporation on plane than those of other planes. AlGaN with good quality was successfully grown on plane. Utilization of plane is suitable in MBE growth of AlGaN-based deep-ultraviolet light emitting devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer...... was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet...... to about 100% were observed. Furthermore, the variation in stagnation point heat transfer was examined for jet Reynolds numbers in the range from 1.10 × 105 to 6.64 × 105. Based on the investigations, a correlation is suggested between the stagnation point Nusselt number, the jet Reynolds number...

  8. Reaching the Critical Mass: The Twenty Year Surge in High School Physics. Findings from the 2005 Nationwide Survey of High School Physics Teachers. AIP Report. Number R-442

    Science.gov (United States)

    Neuschatz, Michael; McFarling, Mark; White, Susan

    2008-01-01

    This report traces the growth of high school physics in American school over the past twenty years. Highlights of the report include: (1) Enrollments in high school physics continue to grow; (2) Increase in number and proportion of physics teachers; (3) Number of students taking honors, advance placement or second-year physics course has nearly…

  9. An autostereoscopic display with high resolution and large number of view zones

    Science.gov (United States)

    Chen, Wu-Li; Hsu, Wei-Liang; Tsai, Chao-Hsu; Wang, Chy-Lin; Wu, Chang-Shuo; Yang, Jinn-Cherng; Cheng, Shu-Chuan

    2008-02-01

    For a spatial-multiplexed 3D display, trade-off between resolution and number of view-zones are usually unavoidable due to the limited number of pixels on the screen. In this paper, we present a new autostereoscopic system, named as "integrated-screen system," to substantially increase the total number of pixels on the screen, which in turn increase both the resolution and number of view-zones. In the integrated-screen system, a large number of mini-projectors are arrayed and the images are tiled together without seams in between. For displaying 3D images, the lenticular screen with predesigned tilted angle is used for distributing different viewing zones. In order to achieve good performance, we design a brand-new projector with special lens set to meet the low-distortion requirement because the distortion of the image will induce serious crosstalk between view-zones. The proposed system has two advantages. One is the extensibility of the screen size. The size of the display can be chosen based on the applications we deal with, including the size of the projected pixel and the number of viewing zones. The other advantage is that the integrated-screen system provides projected pixels in great density to solve the major problem of the poor resolution that a lenticular-type 3D display has.

  10. Powder diffraction studies using anomalous dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.E. [Brookhaven National Lab., Upton, NY (United States); Wilkinson, A.P. [California Univ., Santa Barbara, CA (United States). Dept. of Materials

    1993-05-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f` for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high {Tc} superconductors, ternary alloys, FeCo{sub 2}(PO{sub 4}){sub 3}, FeNi{sub 2}BO{sub 5}), oxidation-state contrast (e.g. YBa{sub 2}Cu{sub 3}O{sub 6+x}, Eu{sub 3}O{sub 4}, GaCl{sub 2}, Fe{sub 2}PO{sub 5}), and the effect of coordination geometry (e.g. Y{sub 3}Ga{sub 5}O{sub l2}).

  11. Powder diffraction studies using anomalous dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.E. (Brookhaven National Lab., Upton, NY (United States)); Wilkinson, A.P. (California Univ., Santa Barbara, CA (United States). Dept. of Materials)

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high [Tc] superconductors, ternary alloys, FeCo[sub 2](PO[sub 4])[sub 3], FeNi[sub 2]BO[sub 5]), oxidation-state contrast (e.g. YBa[sub 2]Cu[sub 3]O[sub 6+x], Eu[sub 3]O[sub 4], GaCl[sub 2], Fe[sub 2]PO[sub 5]), and the effect of coordination geometry (e.g. Y[sub 3]Ga[sub 5]O[sub l2]).

  12. Influence of External Magnetic Field on Anomalous Skin Effects in Inductively Coupled Plasmas

    Institute of Scientific and Technical Information of China (English)

    MAO Ming; WANG You-Nian

    2004-01-01

    @@ Using a one-dimensional slab model, we study the influence of the external static magnetic field on the anomalous skin effects in the inductively coupled plasma. The rf electromagnetic field in the plasma is determined by solving the linearized Boltzmann equation incorporating with the Maxwell equations. The numerical results show that,due to the existence of the external magnetic field, the anomalous skin effects are greatly enhanced and the number of regions with negative absorption is decreased.

  13. Anomalous osmosis resulting from preferential absorption

    NARCIS (Netherlands)

    Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.

    1965-01-01

    An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly an

  14. Anomalous dispersion of sea ice in the Fram Strait region

    Science.gov (United States)

    Gabrielski, A.; Badin, G.; Kaleschke, L.

    2015-03-01

    The single-particle dispersion of sea ice in the Fram Strait region is investigated using ice drift buoys deployed from 2002 to 2009 within the Fram Strait Cyclones and the Arctic Climate System Study campaigns. A new method to estimate the direction of the mean flow, based on a satellite drift product, is introduced. As a result, the bias in the dispersion introduced by the mean flow is eliminated considering only the displacements of the buoys in the cross-stream direction. Results show an absolute dispersion growing quadratically in time for the first 3 days and an anomalous dispersion regime exhibiting a strongly self-similar scaling following a 5/4 power law for time scales larger than 6 days persisting over the whole time series of length 32 days. The non-Gaussian distribution of the velocity fluctuations with a skewness of -0.15 and a kurtosis of 7.33 as well as the slope of the Lagrangian frequency spectrum between -2 and -1 are in agreement with the anomalous diffusion regime. Comparison with data from the International Arctic Buoy Program yields similar results with an anomalous dispersion starting after 10 days and persisting over the whole time series of length 50 days. The results suggest the presence of deformation and shear acting on the sea ice dispersion. The high correlation between the cross-stream displacements and the cross-stream wind velocities shows the important role of the wind as a source for the anomalous dispersion.

  15. On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number

    CERN Document Server

    Favier, Benjamin F N; Cambon, Claude; 10.1080/03091929.2010.544655

    2011-01-01

    This article is focused on the dynamics of a rotating electrically conducting fluid in a turbulent state. As inside the Earth's core or in various industrial processes, a flow is altered by the presence of both background rotation and a large scale magnetic field. In this context, we present a set of 3D direct numerical simulations of incompressible decaying turbulence. We focus on parameters similar to the ones encountered in geophysical and astrophysical flows, so that the Rossby number is small, the interaction parameter is large, but the Elsasser number, defining the ratio between Coriolis and Lorentz forces, is about unity. These simulations allow to quantify the effect of rotation and thus inertial waves on the growth of magnetic fluctuations due to Alfv\\'en waves. Rotation prevents the occurrence of equipartition between kinetic and magnetic energies, with a reduction of magnetic energy at decreasing Elsasser number {\\Lambda}. It also causes a decrease of energy transfer mediated by cubic correlations....

  16. Experimental Study of High Moisture Content Gas Flow Across a Cylinder at Moderate Reynolds Numbers

    Institute of Scientific and Technical Information of China (English)

    D. M. Christopher; GUO Liang(郭亮)

    2003-01-01

    The Nusselt number for cross flow of a mixture of air and vapor over a cylinder was measured at moderate Reynolds numbers (3000-7000) for temperatures from 300℃ to 700℃ and for vapor mass fractions of 0.18-0.35. Results are also presented for a set of three cylinders aligned perpendicular to the flow for the same range of conditions. The effect of the vapor concentration and temperature on the convection coefficients was investigated to develop a modified Zhukauskas correlation. The results show that the Nusselt number increases as the moisture content increases and that the increase is more than could be accounted for by typical models for the property variations of mixtures. The exponent of the vapor concentration term in the modified correlation is 0.145 for the entire data set indicating the importance of the property variation due to the moisture content.

  17. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  18. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  19. Anomalous diffraction in hyperbolic materials

    CERN Document Server

    Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano

    2016-01-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  20. Anomalous diffraction in hyperbolic materials

    Science.gov (United States)

    Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano

    2016-09-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  1. FOCUSING BY A HIGH-POWER, LOW-FRESNEL-NUMBER LENS - THE FLY FACET LENS

    NARCIS (Netherlands)

    STAVENGA, DG; VANHATEREN, JH

    1991-01-01

    Diffraction by fly facet lenses has been investigated by photographing the diffraction patterns at various distances from a facet lens whose power was estimated to be 2.03 x 10(4) D. We studied three different aperture diameters with Fresnel numbers of the order of unity. A large focal shift was pro

  2. Focusing by a high-power, low-Fresnel-number lens : the fly facet lens

    NARCIS (Netherlands)

    Stavenga, D.G.; Hateren, J.H. van

    1991-01-01

    Diffraction by fly facet lenses has been investigated by photographing the diffraction patterns at various distances from a facet lens whose power was estimated to be 2.03 x 10(4) D. We studied three different aperture diameters with Fresnel numbers of the order of unity. A large focal shift was pro

  3. Status and future prospects of using numerical methods to study complex flows at High Reynolds numbers

    Science.gov (United States)

    Maccormack, R. W.

    1978-01-01

    The calculation of flow fields past aircraft configuration at flight Reynolds numbers is considered. Progress in devising accurate and efficient numerical methods, in understanding and modeling the physics of turbulence, and in developing reliable and powerful computer hardware is discussed. Emphasis is placed on efficient solutions to the Navier-Stokes equations.

  4. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

    NARCIS (Netherlands)

    Elsinga, G.E.; Adrian, R.J.; Van Oudheusden, B.W.; Scarano, F.

    2010-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity f

  5. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration, [No Value

    2015-01-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detecto

  6. High and Low Reynolds number Measurements in a Room with an Impinging Isothermal Jet

    DEFF Research Database (Denmark)

    Skovgaard, M.; Hyldgaard, C. E.; Nielsen, Peter V.

    The present paper, which is within the work of the lEA - annex 20, presents a series of full-scale velocity measurements in a room with isothermal mixing ventilation. The measurements are in the Reynolds number range 1000 - 7000 based on inlet dimensions. This means that a transition from laminar...

  7. High Resolution Ultrasound Imaging Using Adaptive Beamforming with Reduced Number of Active Elements

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2009-01-01

    is proposed. By reducing the number of active sensor elements, an increased resolution can be obtained with the MV beamformer. This observation is directly opposite the well-known relation between the spatial extent of the aperture and the achievable resolution. The investigations are based on Field II...

  8. Enumeration of high numbers of bacteria using hydrophobic grid-membrane filters.

    Science.gov (United States)

    Sharpe, A N; Michaud, G L

    1975-10-01

    Printing a wax grid on a conventional membrane filter yields a device functioning as a most probable number apparatus (MPN), used at a single dilution but with a very large number of growth compartments (e.g., 3,650). By restraining the lateral spread and confluence of colonies, the hydrophobic grid-membrane filter (HGMF) allows growth- or colony-forming units (GU) to be resolved at levels far above those which produce an uncountable lawn on a conventional membrane filter. It also eliminates the size variation of normal bacterial colonies. As a result, the HGMF can give more accurate estimates of the concentration of GU. The method by which grid-cell count observations can be used to obtain MPN estimates of the number of GUs is described, and estimates obtained using the MPN method on the HGMF are compared with those resulting from conventional colony count procedures on membrane filters. A linear relation was observed between MPNGU and the number of GUs, at levels up to 30,000 GUs, for pure cultures of bacteria and for samples of natural waters. The HGMF has great potential for reducing the labor required in quantitative microbiology, since it allows, with one filter, enumeration of microorganisms over a very large concentration range and therefore reduces the need to make dilutions.

  9. Robust simulations of viscoelastic flows at high Weissenberg numbers with the streamfunction/log-conformation formulation

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-01-01

    the robustness and the efficiency of the solver. The two-dimensional flow of an Oldroyd-B fluid inside the lid-driven cavity is simulated for a large range of Weissenberg numbers. The numerical results demonstrate the second-order accuracy of our scheme, and our solutions are in good agreement with the available...

  10. A portable high-quality random number generator for lattice field theory simulations

    CERN Document Server

    Lüscher, Martin

    1994-01-01

    The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE--754 standard for single precision floating point arithmetic.

  11. A Portable High-Quality Random Number Generator for Lattice Field Theory Simulations

    OpenAIRE

    Luescher, Martin

    1993-01-01

    The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE--754 standard for single precision floating point arithmetic.

  12. First record of an anomalously colored franciscana dolphin, Pontoporia blainvillei

    Directory of Open Access Journals (Sweden)

    MARTA J. CREMER

    2014-09-01

    Full Text Available On October 2011, a newborn franciscana dolphin with an anomalously coloration was sighted in Babitonga Bay, southern Brazil. The calf was totally white. Besides the potential mother and newborn, the group also had the presence of another adult, who always was swimming behind the pair. Both adults had the typical coloration of the species, with the back in grayish brown. The group, composed by the white franciscana calf, his pontential mother and one more adult, was reported in five occasions. The group was always in the same area where it was first recorded and showed the same position during swimming. Between first and last sighting of the white calf (113 days the color has not changed. This is the first case of a white franciscana dolphin. This coloration has never been reported despite the high number of dead franciscanas recovered each year along the distribution of the species, resulting from accidental capture in fishing nets. This fact leads us to believe that this is a very rare characteristic for this species. We considered the possibility that this franciscana could be an albino dolphin.

  13. Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells.

    Science.gov (United States)

    Yamano, Noriko; Takahashi, Mai; Ali Haghparast, Seyed Mohammad; Onitsuka, Masayoshi; Kumamoto, Toshitaka; Frank, Jana; Omasa, Takeshi

    2016-08-01

    Chromosomal instability is a characteristic of Chinese hamster ovary (CHO) cells. Cultures of these cells gradually develop heterogeneity even if established from a single cell clone. We isolated cells containing different numbers of chromosomes from a CHO-DG44-based human granulocyte-macrophage colony stimulating factor (hGM-CSF)-producing cell line and found that high chromosome number cells showed higher hGM-CSF productivity. Therefore, we focused on the relationship between chromosome aneuploidy of CHO cells and high recombinant protein-producing cell lines. Distribution and stability of chromosomes were examined in CHO-DG44 cells, and two cell lines expressing different numbers of chromosomes were isolated from the original CHO-DG44 cell line to investigate the effect of aneuploid cells on recombinant protein production. Both cell lines were stably transfected with a vector that expresses immunoglobulin G3 (IgG3), and specific antibody production rates were compared. Cells containing more than 30 chromosomes had higher specific antibody production rates than those with normal chromosome number. Single cell analysis of enhanced green fluorescent protein (Egfp)-gene transfected cells revealed that increased GFP expression was relative to the number of gene integration sites rather than the difference in chromosome numbers or vector locations. Our results suggest that CHO cells with high numbers of chromosomes contain more sites for vector integration, a characteristic that could be advantageous in biopharmaceutical production.

  14. High School Timetabling: Modeling and solving a large number of cases in Denmark

    DEFF Research Database (Denmark)

    Sørensen, Matias; Stidsen, Thomas Riis

    2012-01-01

    A general model for the timetabling problem of high schools in Denmark is introduced, as seen from the perspective of the commercial system Lectio1, and an Adaptive Large Neighborhood Search (ALNS) algorithm is proposed for producing solutions. Lectio is a general-purpose cloud-based system...... for high school administration (available only for Danish high schools), which includes an embedded application for creating a weekly timetable. Currently, 230 high schools are customers of Lectio, and 191 have bought access to the timetabling software. This constitutes the majority of high schools...

  15. Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows

    Science.gov (United States)

    Sammy, Mo

    2010-01-01

    Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).

  16. Performance of High-pressure-ratio Axial-flow Compressor Using Highly Cambered NACA 65-series Blower Blades at High Mach Numbers

    Science.gov (United States)

    Voit, Charles H; Guentert, Donald C; Dugan, James F

    1950-01-01

    A complete stage of an axial-flow compressor was designed and built to investigate the possibility of obtaining a high pressure ratio with an acceptable efficiency through the use of the optimum combination of high blade loading and high relative inlet Mach number. Over-all stage performance was investigated over a range of flows at equivalent tip speeds of 418 to 836 feet per second. At design speed (836 ft/sec), a peak total-pressure ration of 1.445 was obtained with an adiabatic efficiency of 0.89. For design angle of attack at the mean radius, a total-pressure ratio of 1.392 was obtained.

  17. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Multimedia

    Schweikhard, L C; Herfurth, F; Boehm, C; Manea, V; Blaum, K; Beck, D; Kowalska, M; Kreim, K D; Stanja, J; Audi, G; Rosenbusch, M; Wienholtz, F; Litvinov, Y

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disappearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measurements of N = 34 isotones $^{58}$Cr (Z = 24), $^{55}$Sc (Z = 21) and $^{54}$Ca (Z = 20), as well as the N = 32 isotones $^{53}$Sc and $^{52}$Ca. We also propose measuring the mass of $^{60}$Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-reflection time-of-flight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  18. COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEMES FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS

    Institute of Scientific and Technical Information of China (English)

    Yiping Fu

    2008-01-01

    In this paper,two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large.The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term,namely,the O(h4) term,is independent of the wave number and the sohrtion of the Helmholtz equation.The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered.Numerical results are presented,which support our theoretical predictions.Mathematics subject classification:65M06,65N12.

  19. Application of shock tubes to transonic airfoil testing at high Reynolds numbers

    Science.gov (United States)

    Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.

    1978-01-01

    Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.

  20. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Document Server

    Kreim, S; Blaum, K; Bohm, Ch; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; Herfurth, F; Kowalska, M; Litvinov, Y; Lunney, D; Manea, V; Naimi, S; Neidherr, D; Rosenbusch, M; Schweikhard, L; Stanja, J; Stora, Th; Wienholtz, F; Wolf, R N; Zuber, K

    2011-01-01

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies o er a clear signature for the presence (or dis- appearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measure- ments of N = 34 isotones 58 Cr ( Z = 24), 55 Sc ( Z = 21) and 54 Ca ( Z = 20), as well as the N = 32 isotones 53 Sc and 52 Ca. We also propose measuring the mass of 60 Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-re ection time-of- ight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  1. A comment on the average foil-hit number for a high-intensity proton ring

    CERN Document Server

    Yamane, I

    2002-01-01

    The minimum value of the average foil-hit number is derived for H sup - charge-exchange injection using a stripping foil, in which the H sup - beam is injected at a corner of the stripper foil and the cross-sectional area of the ring beam is increased as a function of time, kt sup 1 sup / sup n , where k and n are constants.

  2. A portable high-quality random number generator for lattice field theory simulations

    Science.gov (United States)

    Lüscher, Martin

    1994-02-01

    The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE-754 standard for single-precision floating-point arithmetic.

  3. An upper bound on the number of high-dimensional permutations

    CERN Document Server

    Linial, Nathan

    2011-01-01

    What is the higher-dimensional analog of a permutation? If we think of a permutation as given by a permutation matrix, then the following definition suggests itself: A d-dimensional permutation of order n is an [n]^(d+1) array of zeros and ones in which every "line" contains a unique 1 entry. A line here is a set of entries of the form {(x_1,...,x_{i-1},y,x_{i+1},...,x_{d+1})}, for y between 1 and n, some index i between 1 and d+1 and some choice of x_j in [n] for all j except i. It is easy to observe that a one-dimensional permutation is simply a permutation matrix and that a two-dimensional permutation is synonymous with an order-n Latin square. We seek an estimate for the number of d-dimensional permutations. Our main result is the following upper bound on their number: ((1+o(1))(n/e^d))^(n^d). We tend to believe that this is actually the correct number, but the problem of proving the complementary lower bound remains open. Our main tool is an adaptation of Bregman's proof of the Minc conjecture on permane...

  4. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    Science.gov (United States)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  5. Temperature variance profiles of turbulent thermal convection at high Rayleigh numbers

    Science.gov (United States)

    He, Xiaozhou; Bodenschatz, Eberhard; Ahlers, Guenter

    2016-11-01

    We present measurements of the Nusselt number Nu , and of the temperature variance σ2 as a function of vertical position z, in turbulent Rayleigh-Bénard convection of two cylindrical samples with aspect ratios (diameter D/height L) Γ = 0 . 50 and 0 . 33 . Both samples had D = 1 . 12 m but different L. We used compressed SF6 gas at pressures up to 19 bars as the fluid. The measurements covered the Rayleigh-number range 1013 < Ra < 5 ×1015 at a Prandtl number Pr = 0 . 80 . Near the side wall we found that σ2 is independent of Ra when plotted as a function of z / λ where λ ≡ L / (2 Nu) is a thermal boundary-layer thickness. The profiles σ2 (z / λ) for the two Γ values overlapped and followed a logarithmic function for 20 z / λ 120 . With the observed "-1"-scaling of the temperature power spectra and on the basis of the Perry-Townsend similarity hypothesis, we derived a fitting function σ2 =p1 ln (z / λ) +p2 +p3(z / λ) - 0 . 5 which describes the σ2 data up to z / λ = 1500 . Supported by the Max Planck Society, the Volkswagenstiftung, the DFD Sonderforschungsbereich SFB963, and NSF Grant DMR11-58514.

  6. Formation of Microelement Composition and Hydrogeochemical Anomalous Zones of Ground-water of the Kama PreUrals Region

    Directory of Open Access Journals (Sweden)

    I. S. Kopylov

    2014-09-01

    Full Text Available The results of hydrogeochemical studies and groundwater mapping in the Kama PreUrals are given in the article. Analytical data (more than 2000 spectral analyses of water samples, mainly from the springs are analyzed. Regularities of distribution of the background values of basic geochemical parameters (macro – and microelements in groundwater has been studied. Hydrogeochemical particularities are revealed. Hydro-geochemical zoning was conducted and the geochemical anomalous zones were deter-mined. Studies provided for the first time an integrated assessment of microelements hydrogeochemistry of the Western Urals and the PreUrals at the regional level. A large number of hydrogeochemical anomalies are located on the territory of the Perm region. It was established that concentration for 18 elements exceeds a legislation admissible limit. The large anomalous zones are characteristic for high concentrations of Br, B, Ba, Mn, and Ti, but anomalies of Sb, Be, Cd, V, Cr, Ni, Pb, Sr, F, Zn, Co, Mo, and P are observed locally. Anomalies in the zone of active water exchange form 14 complex geochemical anomalous zones of areas from 2 000 up to 9 000 km2. The natural environments of formation of hydrogeochemical fields are the main factors of generation of the geochemical anomalies with predominant role of structural, tectonic conditions, and geodynamic (neotectonic activity. The major hydrogeochemical anomalies spatially coincide with litho-geochemical, geophysical anomalies, and geodynamic active zones.

  7. Plasma Sensor for High Bandwidth Mass-Flow Measurements at High Mach Numbers with RF Link Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal is aimed at the development of a miniature high bandwidth (1 MHz class) plasma sensor for flow measurements at high enthalpies. This device uses a...

  8. Number Sense-Based Strategies Used by High-Achieving Sixth Grade Students Who Experienced Reform Textbooks

    Science.gov (United States)

    Alsawaie, Othman N.

    2012-01-01

    The purpose of this study was to explore strategies used by high-achieving 6th grade students in the United Arab Emirates (UAE) to solve basic arithmetic problems involving number sense. The sample for the study consisted of 15 high-achieving boys and 15 high-achieving girls in grade 6 from 2 schools in the Emirate of Abu Dhabi, UAE. Data for the…

  9. HOME ADVANTAGE IN HIGH-LEVEL VOLLEYBALL VARIES ACCORDING TO SET NUMBER

    Directory of Open Access Journals (Sweden)

    Rui Marcelino

    2009-09-01

    Full Text Available The aim of the present study was to identify the probability of winning each Volleyball set according to game location (home, away. Archival data was obtained from 275 sets in the 2005 Men's Senior World League and 65,949 actions were analysed. Set result (win, loss, game location (home, away, set number (first, second, third, fourth and fifth and performance indicators (serve, reception, set, attack, dig and block were the variables considered in this study. In a first moment, performance indicators were used in a logistic model of set result, by binary logistic regression analysis. After finding the adjusted logistic model, the log-odds of winning the set were analysed according to game location and set number. The results showed that winning a set is significantly related to performance indicators (Chi-square(18=660.97, p<0.01. Analyses of log-odds of winning a set demonstrate that home teams always have more probability of winning the game than away teams, regardless of the set number. Home teams have more advantage at the beginning of the game (first set and in the two last sets of the game (fourth and fifth sets, probably due to facilities familiarity and crowd effects. Different game actions explain these advantages and showed that to win the first set is more important to take risk, through a better performance in the attack and block, and to win the final set is important to manage the risk through a better performance on the reception. These results may suggest intra-game variation in home advantage and can be most useful to better prepare and direct the competition

  10. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    Science.gov (United States)

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  11. Block-diagonal representations for covariance-based anomalous change detectors

    Energy Technology Data Exchange (ETDEWEB)

    Matsekh, Anna M [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory

    2010-01-01

    We use singular vectors of the whitened cross-covariance matrix of two hyper-spectral images and the Golub-Kahan permutations in order to obtain equivalent tridiagonal representations of the coefficient matrices for a family of covariance-based quadratic Anomalous Change Detection (ACD) algorithms. Due to the nature of the problem these tridiagonal matrices have block-diagonal structure, which we exploit to derive analytical expressions for the eigenvalues of the coefficient matrices in terms of the singular values of the whitened cross-covariance matrix. The block-diagonal structure of the matrices of the RX, Chronochrome, symmetrized Chronochrome, Whitened Total Least Squares, Hyperbolic and Subpixel Hyperbolic Anomalous Change Detectors are revealed by the white singular value decomposition and Golub-Kahan transformations. Similarities and differences in the properties of these change detectors are illuminated by their eigenvalue spectra. We presented a methodology that provides the eigenvalue spectrum for a wide range of quadratic anomalous change detectors. Table I summarizes these results, and Fig. I illustrates them. Although their eigenvalues differ, we find that RX, HACD, Subpixel HACD, symmetrized Chronochrome, and WTLSQ share the same eigenvectors. The eigen vectors for the two variants of Chronochrome defined in (18) are different, and are different from each other, even though they share many (but not all, unless d{sub x} = d{sub y}) eigenvalues. We demonstrated that it is sufficient to compute SVD of the whitened cross covariance matrix of the data in order to almost immediately obtain highly structured sparse matrices (and their eigenvalue spectra) of the coefficient matrices of these ACD algorithms in the white SVD-transformed coordinates. Converting to the original non-white coordinates, these eigenvalues will be modified in magnitude but not in sign. That is, the number of positive, zero-valued, and negative eigenvalues will be conserved.

  12. Generation and Evolution of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks in the Laboratory

    CERN Document Server

    Schaeffer, Derek; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2016-01-01

    Shocks act to convert incoming supersonic flows to heat, and in collisionless plasmas the shock layer forms on kinetic plasma scales through collective electromagnetic effects. These collisionless shocks have been observed in many space and astrophysical systems [Smith 1975, Smith 1980, Burlaga 2008, Sulaiman 2015], and are believed to accelerate particles, including cosmic rays, to extremely high energies [Kazanas 1986, Loeb 2000, Bamba 2003, Masters 2013, Ackermann 2013]. Of particular importance are the class of high-Mach number, supercritical shocks [Balogh 2013] ($M_A\\gtrsim4$), which must reflect significant numbers of particles back into the upstream to accommodate entropy production, and in doing so seed proposed particle acceleration mechanisms [Blandford 1978, McClements 2001, Caprioli 2014, Matsumoto 2015]. Here we present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient ...

  13. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary la...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible........ The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas......Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...

  14. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  15. Curling dynamics of naturally curved ribbons from high to low Reynolds numbers

    Science.gov (United States)

    Albarran Arriagada, Octavio; Massiera, Gladys; Abkarian, Manouk

    2012-11-01

    Curling deformation of thin elastic sheets appears in numerous structures in nature, such as membranes of red blood cells, epithelial tissues or green algae colonies to cite just a few examples. However, despite its ubiquity, the dynamics of curling propagation in a naturally curved material remains still poorly investigated. Here, we present a coupled experimental and theoretical study of the dynamical curling deformation of naturally curved ribbons. Using thermoplastic and metallic ribbons molded on cylinders of different radii, we tune separately the natural curvature and the geometry to study curling dynamics in air, water and in viscous oils, thus spanning a wide range of Reynolds numbers. Our theoretical and experimental approaches separate the role of elasticity, gravity and hydrodynamic dissipation from inertia and emphasize the fundamental differences between the curling of a naturally curved ribbon and a rod described by the classical Elastica. Our work shows evidence for the propagation of a single instability front, selected by a local buckling condition. We show that depending on gravity, and both the Reynolds and the Cauchy numbers, the curling speed and shape are modified by the large scale drag and the local lubrication forces. This work was supported by the French Ministry of Research, the CNRS Physics-Chemistry-Biology Interdisciplinary Pro- gram, the University Montpellier 2 Interdisciplinary Program and the Region Languedoc-Roussillon.

  16. Home advantage in high-level volleyball varies according to set number.

    Science.gov (United States)

    Marcelino, Rui; Mesquita, Isabel; Palao Andrés, José Manuel; Sampaio, Jaime

    2009-01-01

    The aim of the present study was to identify the probability of winning each Volleyball set according to game location (home, away). Archival data was obtained from 275 sets in the 2005 Men's Senior World League and 65,949 actions were analysed. Set result (win, loss), game location (home, away), set number (first, second, third, fourth and fifth) and performance indicators (serve, reception, set, attack, dig and block) were the variables considered in this study. In a first moment, performance indicators were used in a logistic model of set result, by binary logistic regression analysis. After finding the adjusted logistic model, the log-odds of winning the set were analysed according to game location and set number. The results showed that winning a set is significantly related to performance indicators (Chisquare(18)=660.97, pteams always have more probability of winning the game than away teams, regardless of the set number. Home teams have more advantage at the beginning of the game (first set) and in the two last sets of the game (fourth and fifth sets), probably due to facilities familiarity and crowd effects. Different game actions explain these advantages and showed that to win the first set is more important to take risk, through a better performance in the attack and block, and to win the final set is important to manage the risk through a better performance on the reception. These results may suggest intra-game variation in home advantage and can be most useful to better prepare and direct the competition. Key pointsHome teams always have more probability of winning the game than away teams.Home teams have higher performance in reception, set and attack in the total of the sets.The advantage of home teams is more pronounced at the beginning of the game (first set) and in two last sets of the game (fourth and fifth sets) suggesting intra-game variation in home advantage.Analysis by sets showed that home teams have a better performance in the attack and

  17. Optimization design study of low-Reynolds-number high-lift airfoils for the high-efficiency propeller of low-dynamic vehicles in stratosphere

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Aerodynamic performance of low-Reynolds-number high-lift airfoil makes a great impact on designing a high-efficiency propeller for low-dynamic vehicles in stratosphere. At high altitude,low-Reynolds-number airfoils are supposed to have high lift-drag ratio or high endurance factor at cruising attack angle along with good stall characteristics. To design such a high-performance low-Reynolds-number high-lift airfoil,the paper established a hierarchical multi-objective optimization platform by combing direct search optimization algorithm EXTREM and airfoil flow field solver XFOIL to automatically and quickly calculate aerodynamic performance function of airfoil by computer. It provides an effective solution to multi-point design problem of low-speed low-Reynolds-number airfoil. It can be seen from the results of three typical optimization examples,the new airfoil E387_OPT2,FX63-137_OPT2 and S1223_OPT2 based on hot low-Reynolds-number high-lift airfoils (Eppler 387 airfoil,Wortmann FX63-137 airfoil and S1223 airfoil) can meet the optimization design requirements and have very good aerodynamic characteristics in both design state and non-design state. Thus,the applicability and effectiveness of hierarchical multi-objective optimization platform are verified.

  18. Relaminarization of wall turbulence by high-pressure ramps at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Song Kwonyul

    2016-01-01

    Full Text Available Reverse transition from the turbulent towards the laminar flow regime was investigated experimentally by progressively increasing the pressure up to 400 MPa in a fully developed pipe flow operated with silicone oil as the working fluid. Using hot-wire anemometry, it is shown indirectly that at low Reynolds numbers a rapid increase in pressure modifies the turbulence dynamics owing to the processes which induce the effects caused by fluid compressibility in the region very close to the wall. The experimental results confirm that under such circumstances, the traditional mechanism responsible for self-maintenance of turbulence in wall-bounded flows is altered in such a way as to lead towards a state in which turbulence cannot persist any longer.

  19. Control of mean and fluctuating forces on a circular cylinder at high Reynolds numbers

    Institute of Scientific and Technical Information of China (English)

    Chuanping Shao; Jianming Wang

    2007-01-01

    A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 x 104 to 1.0 x 105. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.

  20. Connecting Neutrino Masses and Dark Matter by High-dimensional Lepton Number Violation Operator

    CERN Document Server

    Geng, Chao-Qiang; Tsai, Lu-Hsing; Wang, Qing

    2015-01-01

    We propose a new model with the Majorana neutrino masses generated at two-loop level, in which the lepton number violation (LNV) processes, such as neutrinoless double beta decays, are mainly induced by the dimension-7 LNV effective operator O_7=\\bar l_R^c \\gamma^\\mu L_L(D_mu \\Phi) \\Phi \\Phi. Note that it is necessary to impose an Z_2 symmetry in order that O_7 dominates over the conventional dimension-5 Weinberg operator, which naturally results in a stable Z_2-odd neutral particle to be the cold dark matter candidate. More interestingly, due to the non-trivial dependence of the charged lepton masses, the model predicts the neutrino mass matrix to be in the form of the normal hierarchy. We also focus on a specific parameter region of great phenomenological interests, such as electroweak precision tests, dark matter direct searches along with its relic abundance, and lepton flavor violation processes.

  1. Tests of Full-Scale Helicopter Rotors at High Advancing Tip Mach Numbers and Advance Ratios

    Science.gov (United States)

    Biggers, James C.; McCloud, John L., III; Stroub, Robert H.

    2015-01-01

    As a continuation of the studies of reference 1, three full-scale helicopter rotors have been tested in the Ames Research Center 40- by SO-foot wind tunnel. All three of them were two-bladed, teetering rotors. One of the rotors incorporated the NACA 0012 airfoil section over the entire length of the blade. This rotor was tested at advance ratios up to 1.05. Both of the other rotors were tapered in thickness and incorporated leading-edge camber over the outer 20 percent of the blade radius. The larger of these rotors was tested at advancing tip Mach numbers up to 1.02. Data were obtained for a wide range of lift and propulsive force, and are presented without discussion.

  2. Transition of effective hydraulic properties from low to high Reynolds number flow in porous media

    Science.gov (United States)

    Sivanesapillai, R.; Steeb, H.; Hartmaier, A.

    2014-07-01

    We numerically analyze fluid flow through porous media up to a limiting Reynolds number of O(103). Due to inertial effects, such processes exhibit a gradual transition from laminar to turbulent flow for increasing magnitudes of Re. On the macroscopic scale, inertial transition implies nonlinearities in the relationship between the effective macroscopic pressure gradient and the filter velocity, typically accounted for in terms of the quadratic Forchheimer equation. However, various inertia-based extensions to the linear Darcy equation have been discussed in the literature; most prominently cubic polynomials in velocity. The numerical results presented in this contribution indicate that inertial transition, as observed in the apparent permeability, hydraulic tortuosity, and interfacial drag, is inherently of sigmoidal shape. Based on this observation, we derive a novel filtration law which is consistent with Darcy's law at small Re, reproduces Forchheimer's law at large Re, and exhibits higher-order leading terms in the weak inertia regime.

  3. Total Chromatic Number of Graphs of High Degree%高度图的全色数

    Institute of Scientific and Technical Information of China (English)

    谢德政; 邱远

    2001-01-01

    证明了:如果图G的最大度顶点数r(G)满足r(G)≤|V(G)|-Δ(G)-1,且δ(G)+2Δ(G)≥(5)/(2)|V(G)|+(3. 则G的全色数xT(G)=Δ(G)+1.%It is proved that if the number r(G) of vertices with maximum degree Δ(G) in a graph G satisfies r(G)≤|V(G)|-Δ(G)- 1 and δ(G)+2Δ(G)≥(5)/(2)|V(G)|+(3)/(2), t hen xT(G)=δ(g)+1.

  4. Is High School Economically Relevant for Noncollege Youth? Number 95-19.

    Science.gov (United States)

    Stull, William J.

    A rational apathy (RAP) model has been proposed that divides high school students into groups that face different sets of short-term rewards for school involvement. Students bound for competitive and less competitive colleges make up the first two groups, but those who do not intend to pursue higher education are the third group. The RAP model…

  5. Achievement Motivation Training for Potential High School Dropouts. Achievement Motivation Development Project Working Paper Number 4.

    Science.gov (United States)

    McClelland, David C.

    This pilot project sought to determine if instruction in achievement motivation would help potential dropouts to complete their schooling. Subjects were tenth grade students in a suburban Boston high school. A one-week residential course during winter and spring vacations was taken by one group of six boys and a second group of four. Equated…

  6. Analysis on anomalous degradation in silicon solar cell designed for space use

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Takeshi; Morita, Yousuke; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawasaki, Osamu; Hisamatsu, Tadashi; Yamamoto, Yasunari; Matsuda, Sumio; Nakao, Tetsuya; Wakow, Yoshihito

    1997-03-01

    Recently, we have found the anomalous degradation of electrical performance in silicon solar cells irradiated with charged particles in a high-fluence region. This anomalous phenomenon has two typical features, which are sudden-drop-down of electrical performances in a high-fluence region and slight recovery of the short circuit current I{sub SC} just before the sudden-drop-down. These features cannot be understood by a conventional model coming from the decrease of minority-carriers life-time. We introduce this anomalous degradation of the electrical performance in Si solar cells irradiated with electrons or protons. We also report the result of simulation for the fluence dependence of the I{sub SC}, and discuss the mechanism of this anomalous phenomenon. (author)

  7. Investigation into High Barmah Forest Virus Disease Case Numbers Reported in the Northern Territory, Australia in 2012-2013.

    Science.gov (United States)

    Kurucz, Nina; Markey, Peter; Draper, Anthony; Melville, Lorna; Weir, Richard; Davis, Steven; Warchot, Allan; Boyd, Rowena; Stokeld, Danielle

    2016-02-01

    Between October 2012 and October 2013, unprecedented high numbers of Barmah Forest virus (BFV) disease cases were reported in the Northern Territory (NT). An investigation was launched by the NT Department of Health in cooperation with the Department of Primary Industry and Fisheries and the Department of Land Resource Management to investigate possible causes for this phenomenon. The investigation included virus isolations from mosquitoes collected in Darwin urban areas, BFV antibody testing in peri-urban small mammals and a human BFV disease case series investigation of recent cases. No BFV was isolated from the 4641 mosquitoes tested, none of the mammals tested positive for BFV antibodies, and the high BFV disease case numbers did not correlate with the relatively low mosquito vector numbers trapped in 2012-2013. It was estimated that up to 89% of the 79 human cases investigated did not have an acute arboviral illness and therefore had tested falsely positive. An Alere PanBio BFV immunoglobulin M enzyme-linked immunosorbent assay test kit is generally used to test for BFV, with the BFV disease case definition based on immunoglobulin M positives only. Other jurisdictions in Australia also reported high numbers of BFV disease cases, with the majority of the cases suspected to be false positives. Therefore, current testing methods need to be revised to reflect the true numbers of BFV disease cases occurring in Australia and to provide correct diagnoses for patients.

  8. The charmonium dissociation in an "anomalous wind"

    CERN Document Server

    Sadofyev, Andrey V

    2016-01-01

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.

  9. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  10. Anomalous Fractional Diffusion Equation for Transport Phenomena

    Institute of Scientific and Technical Information of China (English)

    QiuhuaZENG; HouqiangLI; 等

    1999-01-01

    We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.

  11. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2014-02-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  12. Anomalous magnetic moment with heavy virtual leptons

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2013-01-01

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  13. Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Y.; Baydar, E. [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey)

    2008-09-15

    The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1-10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu{sub st}{proportional_to}Re {sup 0.69}(H/D){sup 0.019}. (orig.)

  14. GPU Implementation of Two-Dimensional Rayleigh-Benard Code with High Resolution and Extremely High Rayleigh Number

    Science.gov (United States)

    Gonzalez, C. M.; Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.

    2010-12-01

    As computational modeling became prolific throughout the physical sciences community, newer and more efficient ways of processing large amounts of data needed to be devised. One particular method for processing such large amounts of data arose in the form of using a graphics processing unit (GPU) for calculations. Computational scientists were attracted to the GPU as a computational tool as the performance, growth, and availability of GPUs over the past decade increased. Scientists began to utilize the GPU as the sole workhorse for their brute force calculations and modeling. The GPUs, however, were not originally designed for this style of use. As a result, difficulty arose when trying to find a use for the GPU from a scientific standpoint. A lack of parallel programming routines was the main culprit behind the difficulty in programming with a GPU, but with time and a rise in popularity, NVIDIA released a proprietary architecture named Fermi. The Fermi architecture, when used in conjunction with development tools such as CUDA, allowed the programmer easier access to routines that made parallel programming with the NVIDIA GPUs an ease. This new architecture enabled the programmer full access to faster memory, double-precision support, and large amounts of global memory at their fingertips. Our model was based on using a second-order, spatially correct finite difference method and a third order Runge-Kutta time-stepping scheme for studying the 2D Rayleigh-Benard code. The code extensively used the CUBLAS routines to do the heavy linear algebra calculations. The calculations themselves were completed using a single GPU, the NVDIA C2070 Fermi, which boasts 6 GB of global memory. The overall scientific goal of our work was to apply the Tesla C2070's computing potential to achieve an onset of flow reversals as a function of increasing large Rayleigh numbers. Previous investigations were successful using a smaller grid size of 1000x1999 and a Rayleigh number of 10^9. The

  15. Navigation by anomalous random walks on complex networks

    CERN Document Server

    Weng, Tongfeng; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-01-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Levy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Levy walks and the underlying network structure. Interestingly, applying our framework to the famous PageRank search, we can explain why its damping factor empirically chosen to be around 0.85. The framework for analyzing anomalous random walks on complex networks offers a new us...

  16. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))

    1983-03-11

    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  17. Anomalous transport due to scale anomaly

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.

  18. Subsurface Signature of the Internal Wave Field Radiation by Submerged High Reynolds Number Stratified Wakes

    Science.gov (United States)

    2014-05-26

    primary beam and the potential for parametric subharmonic instability. In all these efforts, a uniform linear stratification was considered. A subset of...243) is found for all simulated waves. c) For sufficiently high-amplitude beams, a parametric subharmonic instability is observed after a long... subharmonic instability (PSI) manifests itself in the form of more horizontal like isophase lines at //7>50. (b) jcz-contour plot of horizontal velocity

  19. High Frontier - The Journal for Space, Cyberspace & Missile Professionals. Volume 6, Number 1, November 2009

    Science.gov (United States)

    2009-11-01

    United States Air Force, or any other government agency. Editorial content is edited, prepared, and provided by the High Frontier staff. All...most in reviewing these documents was the statement by the company president on the transmittal letter for the final proposal. It proudly proclaimed...John T., “Joint Staff officials will ‘tweak’ JCIDS to better address urgent needs.” Inside the Air Force. February 2006. 13 Ibid. 14 Antonie

  20. High Frontier: The Journal for Space and Missile Professionals. Volume 7, Number 4, August 2011

    Science.gov (United States)

    2011-08-01

    galvanized President Dwight D. Eisenhower and the Congress to give the US the ability to operate in and from space. On the civilian side, these...August 1958, after concluding the first ever submerged voyage under the North Pole ). U S N av y High Frontier 24 Initial Criteria and Screening...causing the project to revert to the heavier stainless steel gear system with wet lubricant used by prior projects. To keep the lubricant from

  1. Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas

    KAUST Repository

    Loureiro, N. F.

    2012-04-13

    A numerical study of magnetic reconnection in the large-Lundquist-number (S), plasmoid-dominated regime is carried out for S up to 10 7. The theoretical model of Uzdensky [Phys. Rev. Lett. 105, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is Ẽ eff ∼ 0.02 independently of S for S ≫ 10 4. The plasmoid flux (ψ) and half-width (w x) distribution functions scale as f (ψ) ∼ - ψ -2 and f (w x) ∼ w x -2. The joint distribution of ψ and w x shows that plasmoids populate a triangular region w x ≲ψ/B 0, where B 0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with w x ∼ 10 % of the system size are shown to emerge in just a few Alfvén times, independently of S, suggesting that large disruptive events are an inevitable feature of large-S reconnection. © 2012 American Institute of Physics.

  2. Interaction-induced quantum anomalous Hall phase in bilayers of 3d transition-metal oxide

    Science.gov (United States)

    Wang, Yilin; Fang, Zhong; Dai, Xi

    2014-03-01

    In the present paper, we have studied the electronic structure of 3d transition-metal oxide LaCoO3 thin film grown on the [111] surface of SrTiO3. By using first-principles calculation under local density approximation implemented with Gutzwiller variational method (LDA+G), we have studied the bilayer systems of LaCoO3 thin films grown along the [111] direction on SrTiO3. The LDA results show that two nearly flat bands locate at the top and bottom of eg bands of Co atoms, and the Fermi level crosses the lower one, which is almost half-filled. After including both the spin-orbit coupling and the rotational invariant Coulomb interaction in the LDA+G method, we found that the Coulomb interaction will enhance the effective spin-orbit coupling, and a ferromagnetic insulator phase with a gap as large as 0.15 eV will be stabilized. Further calculations indicate that such a ferromagnetic insulator phase will have non zero Chern number one leading to quantum anomalous Hall effect. Increasing Hund's rule coupling in this system will generate a low spin to high spin transition and destroy the quantum anomalous Hall phase.

  3. Pseudo-critical point in anomalous phase diagrams of simple plasma models

    Science.gov (United States)

    Chigvintsev, A. Yu; Iosilevskiy, I. L.; Noginova, L. Yu

    2016-11-01

    Anomalous phase diagrams in subclass of simplified (“non-associative”) Coulomb models is under discussion. The common feature of this subclass is absence on definition of individual correlations for charges of opposite sign. It is e.g. modified OCP of ions on uniformly compressible background of ideal Fermi-gas of electrons OCP(∼), or a superposition of two non-ideal OCP(∼) models of ions and electrons etc. In contrast to the ordinary OCP model on non-compressible (“rigid”) background OCP(#) two new phase transitions with upper critical point, boiling and sublimation, appear in OCP(∼) phase diagram in addition to the well-known Wigner crystallization. The point is that the topology of phase diagram in OCP(∼) becomes anomalous at high enough value of ionic charge number Z. Namely, the only one unified crystal- fluid phase transition without critical point exists as continuous superposition of melting and sublimation in OCP(∼) at the interval (Z 1 equation of state provided by Chabrier and Potekhin (1998 Phys. Rev. E 58 4941).

  4. Organotin-catalyzed highly regioselective thiocarbonylation of nonprotected carbohydrates and synthesis of deoxy carbohydrates in a minimum number of steps.

    Science.gov (United States)

    Muramatsu, Wataru; Tanigawa, Satoko; Takemoto, Yuki; Yoshimatsu, Hirofumi; Onomura, Osamu

    2012-04-16

    Nonprotected carbohydrates: The catalytic regioselective thiocarbonylation of carbohydrates by using organotin dichloride under mild conditions was demonstrated. The reaction afforded various deoxy saccharides in high yields and excellent regioselectivity in a minimum number of steps. The regioselectivity of the thiocarbonylation is attributed to the intrinsic character of the carbohydrates based on the stereorelationship of their hydroxy groups (see scheme).

  5. Methods of Minimization of Calculations in High Energy Physics: 2. Minimization of number of vectors in problem

    OpenAIRE

    Bondarev, Alexander L.

    1997-01-01

    The various ways to reduce number of vectors describing condition of particles for high energy physics problems are presented. In particular decomposition of any vector with respect to the basis, consisting of any four linearly independent vectors, including the orthonormal basis; construction of orthonormal bases from vectors of a problem; expression of one vector of problem through other is considered.

  6. Summary of the Blind Test Campaign to predict the High Reynolds number performance of DU00-W-210 airfoil

    DEFF Research Database (Denmark)

    Yilmaz, Özlem Ceyhan; Pires, Oscar; Munduate, Xabier;

    2017-01-01

    This paper summarizes the results of a blind test campaign organized in the AVATAR project to predict the high Reynolds number performance of a wind turbine airfoil for wind turbine applications. The DU00-W-210 airfoil was tested in the DNW-HDG pressurized wind tunnel in order to investigate the ...

  7. Long-range μPIV in the turbulent region of a jet, at high Reynolds numbers

    NARCIS (Netherlands)

    Fiscaletti, D.; Elsinga, G.E.; Westerweel, J.

    The present work involves the investigation of the fine scale motions in the turbulent region of a high Reynolds number air jet. In the fully developed region of the jets, the small scales of turbulence are assumed to be isotropic, and expected to contain elongated vortices (worms), whose diameter s

  8. Lagrangian and Eulerian statistics of pipe flows measured with 3D-PTV at moderate and high Reynolds numbers

    NARCIS (Netherlands)

    Oliveira, J.L.G.; Geld, van der C.W.M.; Kuerten, J.G.M.

    2013-01-01

    Three-dimensional particle tracking velocimetry (3D-PTV) measurements have provided accurate Eulerian and Lagrangian high-order statistics of velocity and acceleration fluctuations and correlations at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. Spatial resolution requir

  9. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence

    Science.gov (United States)

    Dogan, Eda; Hearst, R. Jason; Ganapathisubramani, Bharathram

    2017-03-01

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to `simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.

  10. Observed anomalous atmospheric patterns in summers of unusual Arctic sea ice melt

    OpenAIRE

    Knudsen, Erlend M.; Orsolini, Yvan J.; Furevik, Tore; Hodges, Kevin I.

    2015-01-01

    The Arctic sea ice retreat has accelerated over the last decade. The negative trend is largest in summer, but substantial interannual variability still remains. Here we explore observed atmospheric conditions and feedback mechanisms during summer months of anomalous sea ice melt in the Arctic. Compositing months of anomalous low and high sea ice melt over 1979–2013, we find distinct patterns in atmospheric circulation, precipitation, radiation, and temperature. Compared to summer months of\\ud...

  11. Anomalous flows in a sunspot penumbra

    CERN Document Server

    Louis, Rohan E; Mathew, Shibu K; Venkatakrishnan, P

    2014-01-01

    High-resolution spectropolarimetric observations of active region NOAA 11271 were obtained with the spectro-polarimeter on board Hinode to analyze the properties of an anomalous flow in the photosphere in a sunspot penumbra. We detect a blue-shifted feature that appeared on the limb-side penumbra of a sunspot and that was present intermittently during the next two hours. It exhibited a maximum blue-shift of 1.6 km/s, an area of 5.2 arcsec^2, and an uninterrupted lifetime of 1 hr. The blue-shifted feature, when present, lies parallel to red-shifts. Both blue and red shifts flank a highly inclined/horizontal magnetic structure that is radially oriented in the penumbra. The low-cadence SP maps reveal changes in size, radial position in the penumbra and line-of-sight velocity of the blue-shifted feature, from one scan to the other. There was an increase of nearly 500 G in the field strength and a marginal reduction in the field inclination of about 10 deg with the onset of the blue-shifts. In the chromosphere, in...

  12. Turbulent mixing at high Schmidt number: new results from a hybrid spectral compact finite difference and dual grid resolution approach

    Science.gov (United States)

    Clay, M. P.; Yeung, P. K.; Gotoh, T.

    2016-11-01

    Turbulent mixing at high Schmidt number (Sc) (low molecular diffusivity) is characterized by fluctuations that arise at sub-Kolmogorov scales and are hence difficult to resolve or measure. Simulations in the recent past have provided some basic results but were still limited in either the Reynolds number or the Schmidt number. We have developed a massively parallel implementation of a hybrid pseudo-spectral and combined compact finite difference technique where the velocity and scalar fields are computed at different grid resolutions (the latter up to 81923). A specific target is the scalar field maintained by a uniform mean gradient at Taylor-scale Reynolds number 140 and Sc = 512 , which is comparable to the value (700) for salinity in the ocean. Preliminary results at moderately high Sc are in support of Batchelor (k-1) scaling for the spectrum in the viscous-convective range, followed by exponential fall-off in the viscous-diffusive range. Data over a wide range of Reynolds and Schmidt numbers are used to examine the approach to local isotropy and a saturation of intermittency suggested by previous work. Supported by NSF Grant ACI-1036170 and a subaward via UIUC.

  13. An efficient compact fourth order FD method for simulating 3-D mantle convection at high Rayleigh number

    Science.gov (United States)

    Wright, G. B.; Barnett, G. A.; Yuen, D. A.

    2009-12-01

    We present an efficient method based on fourth order compact finite-differences for simulating three dimensional mantle convection (i.e. Rayleigh-Bénard convection in the infinite Prandtl number limit) with constant viscosity in a rectangular box. In the high Rayleigh number regime, this thermal convection model has recently been shown to exhibit many of the features of turbulent flow that are typically identified with high Reynolds number flow [1]. High order compact finite schemes are known to be particularly good for simulating turbulent flows because of their spectral like resolution [2], which ameliorates dispersion and anisotropy errors. They have also been shown to be much less susceptible than second order schemes to spurious oscillations for transient convection diffusion equations at large Péclet number (as occurs for the temperature equation in the mantle convection model at high Rayleigh number). Finally, high order schemes have been shown to be more efficient than low order methods in terms of degrees of freedom required to attain a specified error level, which is important for reducing memory requirements so simulations can be performed on emerging low-cost high performance computational platforms like graphics processing units (GPUs). We demonstrate the capabilities of our compact fourth order scheme at accurately capturing such phenomena as transient periods of double layered convection[3] (see Figure 1) and flow reversals using far fewer degrees of freedom than required for traditional second order methods. Finally, we discuss the computational cost of the scheme and its efficient implementation on GPUs. References: [1] M. Breuer and U. Hansen, Turbulent convection in the zero Reynolds number limit, EPL, 86, 24004, 2009. [2] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16, 1992. [3] A. P. Boss and I. S. Sacks, Time-dependent models of single- and double-layer mantle convection, Nature, 308

  14. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  15. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  16. Convective heat transfer studies at high temperatures with pressure gradient for inlet flow Mach number of 0.45

    Science.gov (United States)

    Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.

    1984-01-01

    Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.

  17. Effects of Pressure and Number of Turns on Microstructural Homogeneity Developed in High-Pressure Double Torsion

    Science.gov (United States)

    Jahedi, Mohammad; Beyerlein, Irene J.; Paydar, Mohammad Hossein; Zheng, Shijian; Xiong, Ting; Knezevic, Marko

    2017-01-01

    With electron backscatter diffraction and transmission electron microscopy, we study the rate of grain refinement and the uniformity in the evolution of microstructure in commercial purity Cu samples during high-pressure double torsion (HPDT). We aim to identify the processing conditions that would produce a microstructure that is both refined and uniform across the sample in grain size, texture, and intra-granular misorientation with minimal energy input. Two processing variables, pressure and number of turns, are probed. To provide a reference for HPDT, the investigation is also carried out using the standard high-pressure torsion (HPT) technique. For both processes, grain sizes decrease with the number of turns and applied pressure. Under pressure of 600 MPa and 4 torsional turns, HPDT provided a more homogeneous grain structure than HPT. Likewise, we also demonstrate that for the same processing condition, HPDT again produces the more homogeneous grain structure. It is found that a more homogeneous grain structure is achieved after doubling number of turns than doubling the pressure amount to 1.2 GPa. However, the rate of grain refinement substantially increases with doubling the pressure. Considering these results, the HPDT process, compared to HPT, takes better advantage of the role that high pressure plays in shear strain-induced grain refinement and homogenizing the microstructure. Last, analysis of the applied work finds that the least amount of work required for achieving fine and homogeneous microstructure occurs when the applied pressure is maximized and number of turns is minimized.

  18. The effects of an algal biofilm on the turbulent boundary layer at high Reynolds number

    Science.gov (United States)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Flack, Karen; Steppe, Cecily; Reidenbach, Matthew

    2016-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to increased drag. As with other types of roughness on aquatic surfaces, biofilms increase skin friction and thus induce severe drag penalties. In fact, slime layers appear to induce greater drag than would be predicted by the roughness height alone. Our work indicates that this is likely due to two characteristics of algal biofilms: i) flexible streamers that protrude into the flow, and ii) the compliant nature of a biofilm layer. High resolution PIV was used to measure the turbulent boundary layer flow over diatomaceous biofilm grown under dynamic conditions. Local mean streamwise velocity profiles were used to estimate the local wall shear stresses and to determine the similarity between the inner and outer layers of the boundary layer and those of a smooth wall. Spatially explicit turbulent kinetic energy (TKE), Reynolds shear stress (RSS), swirling strength and quadrant analyses over the biofilm were compared to those over a smooth wall and a rigid mesh roughness. We found that the combination of canopy flow due to streamers coupled with compliant wall-flow interactions result in large wall shear stresses and higher turbulence. Funding provided by the ONR NURP program and the NSF GRIP program.

  19. Simulation of three-dimensional nonideal MHD flow at high magnetic Reynolds number

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A conservative TVD scheme is adopted to solve the equations governing the three-dimensional flow of a nonideal compressible conducting fluid in a magnetic field.The eight-wave equations for magnetohydrodynamics(MHD) are proved to be a non-strict hyperbolic system,therefore it is difficult to develop its eigenstructure.Powell developed a new set of equations which cannot be numerically simulated by conservative TVD scheme directly due to its non-conservative form.A conservative TVD scheme augmented with a new set of eigenvectors is proposed in the paper.To validate this scheme,1-D MHD shock tube,unsteady MHD Rayleigh problem and steady MHD Hartmann problem for different flow conditions are simulated.The simulated results are in good agreement with the existing analytical results.So this scheme can be used to effectively simulate high-conductivity fluids such as cosmic MHD problem and hypersonic MHD flow over a blunt body,etc.

  20. Co-firing high sulfur coal with refuse derived fuels. Technical report {number_sign}4

    Energy Technology Data Exchange (ETDEWEB)

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1995-08-03

    In order to study combustion performance under conditions similar to that in the AFBC system, the authors conducted a series of experiments at a heating rate of 100 C/min using the TGA/FTIR/MS system. Results indicate that more hydrocarbons are evolved at the faster heating rate, owing to incomplete combustion of the fuel. Chlorinated organic compounds can be formed at high heating rates. Certain oxidation products such as organic acids and alcohols are obtained at the slow heating rate. To simulate the conditions used in the atmospheric fluidized bed combustor (AFBC) at Western Kentucky University, studies were also conducted using a quartz tube in a tube furnace. The temperature conditions were kept identical to those of the combustor. The products evolved from the combustion of coal, PVC, and mixtures of the two were trapped in suitable solvents at different temperatures, and analyzed using the Shimadzu GC/MS system. The detection limits and the GC/MS analytical parameters were also established. The experiments were conducted keeping in mind the broader perspective; that of studying conditions conducive to the formation of chlorinated organic compounds from the combustion of coal/MSW blends. 32 figs., 16 tabs.

  1. Chromosomal evolution of the Canidae. I. Species with high diploid numbers.

    Science.gov (United States)

    Wayne, R K; Nash, W G; O'Brien, S J

    1987-01-01

    The Giemsa banding patterns of seven canid species, including the grey wolf (Canis lupus), the maned wolf (Chrysocyon brachyurus), the bush dog (Speothos venaticus), the crab-eating fox (Cerdocyon thous), the grey fox (Urocyon cinereoargenteus), the bat-eared fox (Otocyon megalotis), and the fennec (Fennecus zerda), are presented and compared. Relative to other members of Canidae, these species have high diploid complements (2n greater than 64) consisting of largely acrocentric chromosomes. They show a considerable degree of chromosome homoeology, but relative to the grey wolf, each species is either missing chromosomes or has unique chromosomal additions and rearrangements. Differences in chromosome morphology among the seven species were used to reconstruct their phylogenetic history. The results suggest that the South American canids are closely related to each other and are derived from a wolf-like progenitor. The fennec and the bat-eared fox seem to be recent derivatives of a lineage that branched early from the wolf-like canids and which also includes the grey fox.

  2. High resolution spectroscopy of a small number of particles in a solid

    CERN Document Server

    Murray, T A

    2000-01-01

    The technique of single molecule spectroscopy in solids is investigated, with the view to extending this technique to the detection of single ions of titanium in sapphire. High-resolution experimental apparatus was set-up to study single particles in solids and to allow hole-burning experiments to be carried out. Hole-burning processes were investigated in samples of uranium doped strontium tungstate with concentrations of 500 ppm and 200 ppm. Hole-burning at different laser intensities revealed a homogeneous linewidth of (6.3 +- 0.1) MHz for the stronger doped sample. The weaker doped sample was determined to have a homogeneous linewidth less than the laser linewidth. The relaxation behaviour of holes, monitored between 10-20 K, was also examined. The relaxation process was found to be similar to an activated process with an attempt frequency of 309 s sup - sup 1 and it was concluded that the process was some form of tunnelling with strong phonon coupling. Repeatable, stable single molecules of terrylene in ...

  3. Coexistence and efficiency of normal and anomalous transport by molecular motors in living cells

    CERN Document Server

    Goychuk, Igor; Metzler, R

    2013-01-01

    Recent experiments reveal both passive subdiffusion of various nanoparticles and anomalous active transport of such particles by molecular motors in the molecularly crowded environment of living biological cells. Passive and active microrheology reveals that the origin of this anomalous dynamics is due to the viscoelasticity of the intracellular fluid. How do molecular motors perform in such a highly viscous, dissipative environment? Can we explain the observed co-existence of the anomalous transport of relatively large particles of 100 to 500 nm in size by kinesin motors with the normal transport of smaller particles by the same molecular motors? What is the efficiency of molecular motors in the anomalous transport regime? Here we answer these seemingly conflicting questions and consistently explain experimental findings in a generalization of the well-known continuous diffusion model for molecular motors with two conformational states in which viscoelastic effects are included.

  4. Study on lattice Boltzmann method/large eddy simulation and its application at high Reynolds number flow

    Directory of Open Access Journals (Sweden)

    Haiqing Si

    2015-03-01

    Full Text Available Lattice Boltzmann method combined with large eddy simulation is developed in the article to simulate fluid flow at high Reynolds numbers. A subgrid model is used as a large eddy simulation model in the numerical simulation for high Reynolds flow. The idea of subgrid model is based on an assumption to include the physical effects that the unresolved motion has on the resolved fluid motion. It takes a simple form of eddy viscosity models for the Reynolds stress. Lift and drag evaluation in the lattice Boltzmann equation takes momentum-exchange method for curved body surface. First of all, the present numerical method is validated at low Reynolds numbers. Second, the developed lattice Boltzmann method/large eddy simulation method is performed to solve flow problems at high Reynolds numbers. Some detailed quantitative comparisons are implemented to show the effectiveness of the present method. It is demonstrated that lattice Boltzmann method combined with large eddy simulation model can efficiently simulate high Reynolds numbers’ flows.

  5. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light.

    Science.gov (United States)

    Königer, Martina; Delamaide, Joy A; Marlow, Elizabeth D; Harris, Gary C

    2008-01-01

    The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.

  6. Quantum anomalous Hall effect in real materials

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-11-01

    Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field. Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.

  7. Anomalous human behavior detection: an adaptive approach

    Science.gov (United States)

    van Leeuwen, Coen; Halma, Arvid; Schutte, Klamer

    2013-05-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.

  8. High fat feeding affects the number of GPR120 cells and enteroendocrine cells in the mouse stomach

    Directory of Open Access Journals (Sweden)

    Patricia eWidmayer

    2015-02-01

    Full Text Available Long-term intake of dietary fat is supposed to be associated with adaptive reactions of the organism and it is assumptive that this is particularly true for fat responsive epithelial cells in the mucosa of the gastrointestinal tract. Recent studies suggest that epithelial cells expressing the receptor for medium and long chain fatty acids, GPR120 (FFAR4, may operate as fat sensors. Changes in expression level and/or cell density are supposed to be accompanied with a consumption of high fat (HF diet. To assess whether feeding a HF diet might impact on the expression of fatty acid receptors or the number of lipid sensing cells as well as enteroendocrine cell populations, gastric tissue samples of non-obese and obese mice were compared using a real time PCR and immunohistochemical approach. In this study, we have identified GPR120 cells in the corpus region of the mouse stomach which appeared to be brush cells. Monitoring the effect of HF diet on the expression of GPR120 revealed that after 3 weeks and 6 months the level of mRNA for GPR120 in the tissue was significantly increased which coincided with and probably reflected a significant increase in the number of GPR120 positive cells in the corpus region; in contrast, within the antrum region, the number of GPR120 cells decreased. Furthermore, dietary fat intake also led to changes in the number of enteroendocrine cells producing either ghrelin or gastrin. After 3 weeks and even more pronounced after 6 months the number of ghrelin cells and gastrin cells was significantly increased. These results imply that a HF diet leads to significant changes in the cellular repertoire of the stomach mucosa. Whether these changes are a consequence of the direct exposure to high fat in the luminal content or a physiological response to the high level of fat in the body remains elusive.

  9. Pulse number controlled laser annealing for GeSn on insulator structure with high substitutional Sn concentration

    Science.gov (United States)

    Moto, Kenta; Matsumura, Ryo; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2016-06-01

    Crystalline GeSn-on-insulator structures with high Sn concentration (>8%), which exceeds thermal equilibrium solid-solubility (˜2%) of Sn in Ge, are essential to achieve high-speed thin film transistors and high-efficiency optical devices. We investigate non-thermal equilibrium growth of Ge1-xSnx (0 ≤ x ≤ 0.2) on quartz substrates by using pulsed laser annealing (PLA). The window of laser fluence enabling complete crystallization without film ablation is drastically expanded (˜5 times) by Sn doping above 5% into Ge. Substitutional Sn concentration in grown layers is found to be increased with decreasing irradiation pulse number. This phenomenon can be explained on the basis of significant thermal non-equilibrium growth achieved by higher cooling rate after PLA with a lower pulse number. As a result, GeSn crystals with substitutional Sn concentration of ˜12% are realized at pulse irradiation of single shot for the samples with the initial Sn concentration of 15%. Raman spectroscopy and electron microscopy measurements reveal the high quality of the grown layer. This technique will be useful to fabricate high-speed thin film transistors and high-efficiency optical devices on insulating substrates.

  10. Anomalous transport in low-dimensional systems with correlated disorder

    Energy Technology Data Exchange (ETDEWEB)

    Izrailev, F M [Instituto de Fisica, Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla, Pue., 72570 (Mexico); Makarov, N M [Instituto de Ciencias, Universidad Autonoma de Puebla, Priv. 17 Norte No 3417, Col. San Miguel Hueyotlipan, Puebla, Pue., 72050 (Mexico)

    2005-12-09

    We review recent results on the anomalous transport in one-dimensional and quasi-one-dimensional systems with bulk and surface disorder. Principal attention is paid to the role of long-range correlations in random potentials for the bulk scattering and in corrugated profiles for the surface scattering. It is shown that with the proper type of correlations one can construct such a disorder that results in a selective transport with given properties. Of particular interest is the possibility to arrange windows of a complete transparency (or reflection) with dependence on the wave number of incoming classical waves or electrons.

  11. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    Science.gov (United States)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  12. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  13. On the Source of Astrometric Anomalous Refraction

    Science.gov (United States)

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-01

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed "anomalous refraction" by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale (~2°) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  14. Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers

    Indian Academy of Sciences (India)

    Sharanya Subramanian; P K Swain; A V Deshpande; P Satyamurthy

    2015-05-01

    Conventionally, obtaining a converged solution for a MagnetoHydro-Dynamic problem entails a highly resolved Hartmann boundary layer, leading to excessive time and computational requirements. For high Hartmann number flows through electrically conducting channels, majority of the current loops close through the walls and the Hartmann layer contributes only a small fraction of the global current path. Hence, the effect on flow parameters due to coarsening the mesh of the Hartmann Layer was investigated using the ANSYS FLUENT code. Numerical simulations have been carried out in square and rectangular ducts with wall conductance ratio of 0.156 and 0.078 respectively. Magnetic field was varied from 1T to 4T to obtain solution for Hartmann numbers $(Ha = Ba \\sqrt{\\sigma/\\mu})$ in the range of 260–1040 for the square duct, and 520–2080 for the rectangular duct. B, $\\alpha$, $\\mu$, and $\\sigma$ are the strength of applied magnetic field, characteristic length of the channel, dynamic viscosity and electrical conductivity of the fluid respectively. The errors in estimating core and side layer peak velocity and fully developed pressure gradient were found to be low even for a grid system having 46% coarser grid than a well-resolved system. The analysis indicated that for high Hartmann number flows through thick, conducting ducts, coarsening the mesh in the Hartmann boundary layer reduced computational time, not compromising on the solution accuracy and appears to be a promising option for complex geometry MHD simulation.

  15. Wall-resolved LES of high Reynolds number airfoil flow near stall condition for wall modeling in LES: LESFOIL revisited

    Science.gov (United States)

    Asada, Kengo; Kawai, Soshi

    2016-11-01

    Wall-resolved large-eddy simulation (LES) of an airfoil flow involving a turbulent transition and separations near stall condition at a high Reynolds number 2.1 x 106 (based on the freestream velocity and the airfoil chord length) is conducted by using K computer. This study aims to provide the wall-resolved LES database including detailed turbulence statistics for near-wall modeling in LES and also to investigate the flow physics of the high Reynolds number airfoil flow near stall condition. The LES well predicts the laminar separation bubble, turbulent reattachment and turbulent separation. The LES also clarified unsteady flow features associated with shear-layer instabilities: high frequency unsteadiness at St = 130 at the laminar separation bubble near the leading edge and low frequency unsteadiness at St = 1.5 at the separated turbulent shear-layer near the trailing edge. Regarding the near-wall modeling in LES, the database indicates that the pressure term in the mean streamwise-momentum equation is not negligible at the laminar and turbulent separated regions. This fact suggests that widely used equilibrium wall model is not sufficient and the inclusion of the pressure term is necessary for wall modeling in LES of such flow. This research used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140028). This work was supported by KAKENHI (Grant Number: 16K18309).

  16. Analysis of Causes Leading to High Bromine Number of C8+Aromatics and Short Clay Service Life and Countermeasures Proposed

    Institute of Scientific and Technical Information of China (English)

    Li Yousong; Ni Xiaoliang; Yan Jun

    2007-01-01

    After comparing the operating status of other catalytic reforming units and evaluation of the side-cut stream tests,the refinery investigated the influence of the feedstock property,clay types,and operating regime of the clay tower and catalytic reforming unit on the service life of the clay.Test results had revealed that the low potential aromatic content of the reformer feed and high operating severity were the critical causes leading to high bromine number of the C8+ aromatics feed for the PX unit and the shortened service life of clay.This article also puts forward the corresponding remedial measures.

  17. Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation

    Science.gov (United States)

    Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.

    2017-03-01

    This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.

  18. High Reynolds Number Turbulence

    Science.gov (United States)

    2009-05-07

    developed a new Nano-Scale Thermal Anemometry Probe (NSTAP), with a sensing wire over an order of magnitude smaller than current commercial hot - wires ...concern is the accuracy of our hot wire measurements. In this respect, the primary issues are the temporal and spatial response of the probes. The...is the local mean velocity and/is the frequency in Hz. In each case, the range of wavenumbers corresponding to the hot wire length lw is shown as

  19. High fat feeding affects the number of GPR120 cells and enteroendocrine cells in the mouse stomach.

    Science.gov (United States)

    Widmayer, Patricia; Goldschmid, Hannah; Henkel, Helena; Küper, Markus; Königsrainer, Alfred; Breer, Heinz

    2015-01-01

    Long-term intake of dietary fat is supposed to be associated with adaptive reactions of the organism and it is assumptive that this is particularly true for fat responsive epithelial cells in the mucosa of the gastrointestinal tract. Recent studies suggest that epithelial cells expressing the receptor for medium and long chain fatty acids, GPR120 (FFAR4), may operate as fat sensors. Changes in expression level and/or cell density are supposed to be accompanied with a consumption of high fat (HF) diet. To assess whether feeding a HF diet might impact on the expression of fatty acid receptors or the number of lipid sensing cells as well as enteroendocrine cell populations, gastric tissue samples of non-obese and obese mice were compared using a real time PCR and immunohistochemical approach. In this study, we have identified GPR120 cells in the corpus region of the mouse stomach which appeared to be brush cells. Monitoring the effect of HF diet on the expression of GPR120 revealed that after 3 weeks and 6 months the level of mRNA for GPR120 in the tissue was significantly increased which coincided with and probably reflected a significant increase in the number of GPR120 positive cells in the corpus region; in contrast, within the antrum region, the number of GPR120 cells decreased. Furthermore, dietary fat intake also led to changes in the number of enteroendocrine cells producing either ghrelin or gastrin. After 3 weeks and even more pronounced after 6 months the number of ghrelin cells and gastrin cells was significantly increased. These results imply that a HF diet leads to significant changes in the cellular repertoire of the stomach mucosa. Whether these changes are a consequence of the direct exposure to HF in the luminal content or a physiological response to the high level of fat in the body remains elusive.

  20. Higher numbers of memory B-cells and Th2-cytokine skewing in high responders to hepatitis B vaccination.

    Science.gov (United States)

    Doedée, A M C M; Kannegieter, N; Öztürk, K; van Loveren, H; Janssen, R; Buisman, A M

    2016-04-27

    In the present study, differences in hepatitis B surface antigen (HBsAg)-specific memory B-cell responses between low and high responders to hepatitis B vaccine (HepB), based on levels of antibodies against HBsAg (anti-HBs), were determined. In addition, HBsAg specific T-cell responses between high (anti-HBs level >20,000 IU/L) and low (anti-HBs level Numbers of HBsAg-specific B-cells, plasma immunoglobulin G (Ig) levels, and T-cell cytokine concentrations were measured in low and high responders directly before and one month after the second booster vaccination. In advance, an Enzyme-linked Immunosorbent Spot (ELISpot) Assay was optimized for the determination of HBsAg-specific B-cell responses. The number of HBsAg-specific B-cells was significantly higher (pnumbers of HBsAg-specific B-cells were significantly correlated (RS=0.66, psignificant correlation (RS=0.6975, p=0.007) between the IL-13 levels and the plasma IgG levels post-booster was found. Subsequently, the IL-13 level in the high-responder group post-booster was significantly higher compared to the low-responder group. Since activation of the B-cell response after vaccination is induced by Th2 cells and IL-13 is produced by these cells, we conclude that the difference in HBsAg-specific Th2 cells is involved in determining the differences in anti-HBs level and memory B-cell numbers between low and high responders.

  1. The Structure of Anomalous Oceanic Circulation In The Indian Ocean Dipole

    Science.gov (United States)

    Zhao, Qigeng

    Using an Indian-Pacific Ocean Circulation Model with high resolution a simulation study on the Indian Ocean dipole (IOD) has been done. Forcing the mdel with monthly observational wind stress in 1990-1999 the main characteristics of sea temperature variations in the two IODs (in 1997 and 1994) have been reproduced well. The pat- terns and center positions of sea temperature anomalies in the tropical Indian Ocean surface and in the section of equator-depth during the IOD from the simulation are basically consistent with that from observation. The physical image of anomalous circulation during IOD is revealed from the simulation. We find that an anomalous easterly current along the equator in the upper layer of the eastern Indian Ocean dur- ing IOD period. It is very strong, narrow band and is divergent from equator to both sides. It represents a Rossby wave propagated westwards. During IOD phase there a significant anomalous current cell in the section of equator-depth: the easterly current in the upper layer; westerly compensated current below it; a strong upwelling to the east of 80 E; a weak downwelling to the west of 55 E. Meanwhile two anomalous meridian cells are in the both sides of equator in the eastern Indian Ocean. The com- mon upwelling of them is near equator. The patterns of anomalous current in the out of IOD phase are basically opposite to that in the IOD phase, besides the absolute value of the anomalous current is weaker. Therefore the anomalous sea temperature in the tropical Indian Ocean during IOD could be interpreted with anomalous horizontal and vertical current, especially large-scale upwelling and downwelling.

  2. Anomalous transport in the H-mode pedestal of Alcator C-Mod discharges

    Science.gov (United States)

    Pankin, A. Y.; Hughes, J. W.; Greenwald, M. J.; Kritz, A. H.; Rafiq, T.

    2017-02-01

    Anomalous transport in the H-mode pedestal region of five Alcator C-Mod discharges, representing a collisionality scan is analyzed. The understanding of anomalous transport in the pedestal region is important for the development of a comprehensive model for the H-mode pedestal slope. In this research, a possible role of the drift resistive inertial ballooning modes (Rafiq et al 2010 Phys. Plasmas 17 082511) in the edge of Alcator C-Mod discharges is analyzed. The stability analysis, carried out using the TRANSP code, indicates that the DRIBM modes are strongly unstable in Alcator C-Mod discharges with large electron collisionality. An improved interpretive analysis of H-mode pedestal experimental data is carried out utilizing the additive flux minimization technique (Pankin et al 2013 Phys. Plasmas 20 102501) together with the guiding-center neoclassical kinetic XGC0 code. The neoclassical and neutral physics are simulated in the XGC0 code and the anomalous fluxes are computed using the additive flux minimization technique. The anomalous fluxes are reconstructed and compared with each other for the collisionality scan Alcator C-Mod discharges. It is found that the electron thermal anomalous diffusivities at the pedestal top increase with the electron collisionality. This dependence can also point to the drift resistive inertial ballooning modes as the modes that drive the anomalous transport in the plasma edge of highly collisional discharges.

  3. Soft-/rapidity- anomalous dimensions correspondence

    CERN Document Server

    Vladimirov, Alexey A

    2016-01-01

    We establish a correspondence between ultraviolet singularities of soft factors for multi-particle production and rapidity singularities of soft factors for multi-parton scattering. This correspondence is a consequence of a conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way provides a proof of rapidity renormalization procedure for multi-parton scattering soft factors (including the transverse momentum dependent (TMD) soft factor as a special case). As a by-product we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop rapidity anomalous dimensions for TMD and a general multi-parton scattering are derived.

  4. Minimal flavour violation and anomalous top decays

    Energy Technology Data Exchange (ETDEWEB)

    Faller, Sven; Mannel, Thomas [Theoretische Physik 1, Department Physik, Universitaet Siegen, D-57068 Siegen (Germany); Gadatsch, Stefan [Nikhef, National Institute for Subatomatic Physics, P.O. Box 41882, 1009 Amsterdam (Netherlands)

    2013-07-01

    Any experimental evidence of anomalous top-quark couplings will open a window to study physics beyond the standard model (SM). However, all current flavour data indicate that nature is close to ''minimal flavour violation'', i.e. the pattern of flavour violation is given by the CKM matrix, including the hierarchy of parameters. In this talk we present results of the conceptual test of minimal flavour violation for the anomalous charged as well as flavour changing top-quark couplings. Our analysis is embedded in two-Higgs doublet model of type II (2HDM-II). Including renormalization effects, we calculate the top decay rates taking into account anomalous couplings constrained by minimal flavour violation.

  5. Neoclassical Viscosities and Anomalous Flows in Stellarators

    Science.gov (United States)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  6. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  7. Electroweak Baryogenesis with Anomalous Higgs Couplings

    CERN Document Server

    Kobakhidze, Archil; Yue, Jason

    2015-01-01

    We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the 'symmetric' phase and are suppressed in the 'broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomal...

  8. High Training Volumes are Associated with a Low Number of Self-Reported Sick Days in Elite Endurance Athletes

    Directory of Open Access Journals (Sweden)

    Sandra Mårtensson, Kristina Nordebo, Christer Malm

    2014-12-01

    Full Text Available It has been proposed that high exercise loads increase the risk of infection, most frequently reported as upper respiratory tract infections, by suppressing the immune system. Most athletes will not train when experiencing sickness due to the fear of health complications. However, high training volumes are incompatible with high rates of non-training days, regardless of the cause. The purpose of this observational study was to examine the relationship between self-reported, exercise-constraining days of sickness (days when the athlete decided not to train due to symptoms of disease, either self-reported or by a physician and the volumes of exercise training in elite endurance athletes by analyzing data from training logs kept for several years. The subjects included 11 elite endurance athletes (8 male, 3 female competing at national and international levels in cross-country skiing, biathlon and long-distance running. Training logs available from these 11 subjects added to a total of 61 training years. The number of training hours per year (462, 79-856; median, range was significantly and negatively correlated to the reported number of days not training due to sickness (15, 0-164 by a 3rd degree polynomial regression (R2 = 0.48, F ratio = 18, p < 0.0001. We conclude that elite endurance athletes can achieve high training volumes only if they also experience few sick-days.

  9. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing.

    Science.gov (United States)

    Park, Hansoo; Kim, Jong-Il; Ju, Young Seok; Gokcumen, Omer; Mills, Ryan E; Kim, Sheehyun; Lee, Seungbok; Suh, Dongwhan; Hong, Dongwan; Kang, Hyunseok Peter; Yoo, Yun Joo; Shin, Jong-Yeon; Kim, Hyun-Jin; Yavartanoo, Maryam; Chang, Young Wha; Ha, Jung-Sook; Chong, Wilson; Hwang, Ga-Ram; Darvishi, Katayoon; Kim, Hyeran; Yang, Song Ju; Yang, Kap-Seok; Kim, Hyungtae; Hurles, Matthew E; Scherer, Stephen W; Carter, Nigel P; Tyler-Smith, Chris; Lee, Charles; Seo, Jeong-Sun

    2010-05-01

    Copy number variants (CNVs) account for the majority of human genomic diversity in terms of base coverage. Here, we have developed and applied a new method to combine high-resolution array comparative genomic hybridization (CGH) data with whole-genome DNA sequencing data to obtain a comprehensive catalog of common CNVs in Asian individuals. The genomes of 30 individuals from three Asian populations (Korean, Chinese and Japanese) were interrogated with an ultra-high-resolution array CGH platform containing 24 million probes. Whole-genome sequencing data from a reference genome (NA10851, with 28.3x coverage) and two Asian genomes (AK1, with 27.8x coverage and AK2, with 32.0x coverage) were used to transform the relative copy number information obtained from array CGH experiments into absolute copy number values. We discovered 5,177 CNVs, of which 3,547 were putative Asian-specific CNVs. These common CNVs in Asian populations will be a useful resource for subsequent genetic studies in these populations, and the new method of calling absolute CNVs will be essential for applying CNV data to personalized medicine.

  10. Study of supported platinum catalysts by anomalous scattering

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, P.; Cohen, J.B.

    1985-01-01

    Platinum metal catalysts supported on silica gel and alumina were examined by wide-angle anomalous x-ray scattering at the Cornell High Energy Synchrotron Source. Complete removal of the support background features is achieved by this method, eliminating errors due to inaccurate background estimation. Platinum diffraction patterns from very-high-percentage metal-exposed catalysts were obtained for the first time, as well as from platinum supported on alumina. This technique is suitable for examining catalysts under working conditions and is superior to EXAFS for determinations of particle morphology and size distribution. 10 references, 8 figures.

  11. Quarks with unit charge: a search for anomalous hydrogen.

    Science.gov (United States)

    Muller, R A; Alvarez, L W; Holley, W R; Stephenson, E J

    1977-04-29

    Quarks of charge +1 and other anomalous hydrogen have been sought by using the 88-inch cyclotron at Berkeley as a high-energy mass spectrometer, with natural hydrogen and deuterium as the sources of ions. No quarks were observed, and limits were placed on their ratio to protons on the earth that vary from < 2 x 10(-19)for high masses (3 to 8.2 atomic mass units) to 10(-13) for the lowest masses (< (1/3) atomic mass unit).

  12. Anomalous X-ray Diffraction Studies for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-22

    Anomalous X-ray Diffraction (AXRD) has become a useful technique in characterizing bulk and nanomaterials as it provides specific information about the crystal structure of materials. In this project we present the results of AXRD applied to materials for photovoltaic applications: ZnO loaded with Ga and ZnCo{sub 2}O{sub 4} spinel. The X-ray diffraction data collected for various energies were plotted in Origin software. The peaks were fitted using different functions including Pseudo Voigt, Gaussian, and Lorentzian. This fitting provided the integrated intensity data (peaks area values), which when plotted as a function of X-ray energies determined the material structure. For the first analyzed sample, Ga was not incorporated into the ZnO crystal structure. For the ZnCo{sub 2}O{sub 4} spinel Co was found in one or both tetrahedral and octahedral sites. The use of anomalous X-ray diffraction (AXRD) provides element and site specific information for the crystal structure of a material. This technique lets us correlate the structure to the electronic properties of the materials as it allows us to probe precise locations of cations in the spinel structure. What makes it possible is that in AXRD the diffraction pattern is measured at a number of energies near an X-ray absorption edge of an element of interest. The atomic scattering strength of an element varies near its absorption edge and hence the total intensity of the diffraction peak changes by changing the X-ray energy. Thus AXRD provides element specific structural information. This method can be applied to both crystalline and liquid materials. One of the advantages of AXRD in crystallography experiments is its sensitivity to neighboring elements in the periodic tables. This method is also sensitive to specific crystallographic phases and to a specific site in a phase. The main use of AXRD in this study is for transparent conductors (TCs) analysis. TCs are considered to be important materials because of their

  13. Anomalous Feeding of the Left Upper Lobe.

    Science.gov (United States)

    Hazzard, Christopher; Itagaki, Shinobu; Lajam, Fouad; Flores, Raja M

    2016-09-01

    We report the case of a 53-year-old woman who presented with massive hemoptysis. Computed tomographic angiography revealed an anomalous vessel arising from the abdominal aorta, coursing anteriorly and through the diaphragm, and feeding the left upper lobe. At operation the vessel was found to anastomose to the left upper lobe lingula, which contained multiple vascular abnormalities and arteriovenous fistulas. The vessel was ligated, and the affected portion of the left upper lobe was resected. Anomalous systemic arterial supply of an upper lobe is an especially rare form of a Pryce type 1 abnormality. Recognition of these unusual anatomic variants is crucial to successful treatment and avoidance of adverse events.

  14. Anomalous mass dimension in multiflavor QCD

    Science.gov (United States)

    Doff, A.; Natale, A. A.

    2016-10-01

    Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.

  15. On the flow and thermal characteristics of high Reynolds numbers (2800-17000) dye cell: simulation and experiment

    CERN Document Server

    Mishra, G K; Prakash, O; Biswal, R; Dixit, S K; Nakhe, S V

    2014-01-01

    This paper presents computational and experimental studies on wavelength/frequency fluctuation characteristics of high pulse repetition rate (PRR: 18 kHz) dye laser pumped by frequency doubled Nd:YAG laser (532 nm). The temperature gradient in the dye solution is found to be responsible for wavelength fluctuations of the dye laser at low flow rates (2800number (ReT) and the range of eddy sizes present in the turbulent flow are found to be responsible for the fluctuations at high flow rates (8400high PRR pumping.

  16. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    Science.gov (United States)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  17. Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modelling

    Directory of Open Access Journals (Sweden)

    Prasun Dutta

    2016-06-01

    Full Text Available The present paper makes an effort to find the flow separation characteristics under high Reynolds number in pipe bends. Single phase turbulent flow through pipe bends is investigated using k-ε turbulence model. After the validation of present model against existing experimental results, a detailed study has been performed to study the influence of Reynolds number on flow separation and reattachment. The separation region and the velocity field of the primary and the secondary flows in different sections have been illustrated. Numerical results show that flow separation can be clearly visualized for bend with low curvature ratio. Distributions of the velocity vector show the secondary motion clearly induced by the movement of fluid from inner to outer wall of the bend leading to flow separation. This paper provides numerical results to understand the flow characteristics of fluid flow in 90° bend pipe.

  18. Wall-modeled large eddy simulation of turbulent channel flow at high Reynolds number using the von Karman length scale

    Science.gov (United States)

    Xu, Jinglei; Li, Meng; Zhang, Yang; Chen, Longfei

    2016-12-01

    The von Karman length scale is able to reflect the size of the local turbulence structure. However, it is not suitable for the near wall region of wall-bounded flows, for its value is almost infinite there. In the present study, a simple and novel length scale combining the wall distance and the von Karman length scale is proposed by introducing a structural function. The new length scale becomes the von Karman length scale once local unsteady structures are detected. The proposed method is adopted in a series of turbulent channel flows at different Reynolds numbers. The results show that the proposed length scale with the structural function can precisely simulate turbulence at high Reynolds numbers, even with a coarse grid resolution.

  19. High Training Volumes are Associated with a Low Number of Self-Reported Sick Days in Elite Endurance Athletes.

    Science.gov (United States)

    Mårtensson, Sandra; Nordebo, Kristina; Malm, Christer

    2014-12-01

    It has been proposed that high exercise loads increase the risk of infection, most frequently reported as upper respiratory tract infections, by suppressing the immune system. Most athletes will not train when experiencing sickness due to the fear of health complications. However, high training volumes are incompatible with high rates of non-training days, regardless of the cause. The purpose of this observational study was to examine the relationship between self-reported, exercise-constraining days of sickness (days when the athlete decided not to train due to symptoms of disease, either self-reported or by a physician) and the volumes of exercise training in elite endurance athletes by analyzing data from training logs kept for several years. The subjects included 11 elite endurance athletes (8 male, 3 female) competing at national and international levels in cross-country skiing, biathlon and long-distance running. Training logs available from these 11 subjects added to a total of 61 training years. The number of training hours per year (462, 79-856; median, range) was significantly and negatively correlated to the reported number of days not training due to sickness (15, 0-164) by a 3(rd) degree polynomial regression (R(2) = 0.48, F ratio = 18, p athletes can achieve high training volumes only if they also experience few sick-days. Key pointsTop level performance demands high training volumes and intensities, which may compromise immune function.Elite athletes must have an immune system capable of intact function also when under sever physiological and psychological stress.Elite performance, especially in endurance sports, is therefore incompatible with a high rate of infections.A negative correlation between infections and exercise training load among elite athletes is consequently observed - the less sick you are the more you can train.

  20. High numbers of IL-2-producing CD8+ T cells during viral infection: correlation with stable memory development

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2002-01-01

    Using infections with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus in mice as model systems, we have investigated the ability of antigen-primed CD8+ T cells generated in the context of viral infections to produce IL-2. Our results indicate that acute immunizing infection...... normally leads to generation of high numbers of IL-2-producing antigen-specific CD8+ T cells. By costaining for IL-2 and IFN-gamma intracellularly, we found that IL-2-producing cells predominantly constitute a subset of cells also producing IFN-gamma. Comparison of the kinetics of generation revealed...

  1. Preparation of Pt-GO composites with high-number-density Pt nanoparticles dispersed uniformly on GO nanosheets

    Institute of Scientific and Technical Information of China (English)

    Nanting Li; Shaochun Tang; Xiangkang Meng

    2016-01-01

    Pt–GO composites with high-number-density Pt nanoparticles dispersed uniformly on GO nanosheets were prepared using ethylene glycol as reducer at 180 °C. The nanoparticles had an average size of 12 nm with corners and edges on their surfaces. The composites had electrochemically active surface area of 31.7 m2 g ? 1 with a ratio (If/Ir ¼ 0.96) of the forward anodic peak current (If) to the reverse anodic peak current (Ir) in cyclic voltammetry curves, which is much higher than those of the reported Pt nano-dendrites/reduced graphene oxide composites.

  2. Preparation of Pt–GO composites with high-number-density Pt nanoparticles dispersed uniformly on GO nanosheets

    Directory of Open Access Journals (Sweden)

    Nanting Li

    2016-04-01

    Full Text Available Pt–GO composites with high-number-density Pt nanoparticles dispersed uniformly on GO nanosheets were prepared using ethylene glycol as reducer at 180 °C. The nanoparticles had an average size of 12 nm with corners and edges on their surfaces. The composites had electrochemically active surface area of 31.7 m2 g−1 with a ratio (If/Ir=0.96 of the forward anodic peak current (If to the reverse anodic peak current (Ir in cyclic voltammetry curves, which is much higher than those of the reported Pt nanodendrites/reduced graphene oxide composites.

  3. Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition

    Science.gov (United States)

    Bertrand, Corentin L.; García-García, Antonio M.

    2016-10-01

    We study a one-dimensional XXZ spin chain in a random field on the metallic side of the many-body localization transition by level statistics. For a fixed interaction, and intermediate disorder below the many-body localization transition, we find that, asymptotically, the number variance grows faster than linear with a disorder-dependent exponent. This is consistent with the existence of an anomalous Thouless energy in the spectrum. In noninteracting disordered metals, this is an energy scale related to the typical time for a particle to diffuse across the sample. In the interacting case, it seems related to a more intricate anomalous diffusion process. This interpretation is not fully consistent with recent claims that for intermediate disorder, level statistics are described by a plasma model with power-law decaying interactions whose number variance grows slower than linear. As disorder is further increased, still on the metallic side, the Thouless energy is gradually washed out. In the range of sizes we can explore, level statistics are scale invariant and approach Poisson statistics at the many-body localization transition. Slightly below the many-body localization transition, spectral correlations, well described by critical statistics, are quantitatively similar to those of a high-dimensional, noninteracting, disordered conductor at the Anderson transition.

  4. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow

    Science.gov (United States)

    Kunkel, Gary J.; Marusic, Ivan

    2006-02-01

    Data from the near-wall-turbulent region of the high-Reynolds-number atmospheric surface layer are used to analyse the attached-eddy model of wall turbulence. All data were acquired during near-neutral conditions at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility located in the western Utah Great Salt Lake Desert. Instantaneous streamwise and wall-normal components of velocity were collected with a wall-normal array of two-component hot wires within the first 2 m above the surface of the salt flats. Streamwise and wall-normal turbulence intensities and spectra are directly compared to corresponding laboratory data and similarity formulations hypothesized from the attached-eddy model of wall turbulence. This affords the opportunity to compare results with Reynolds numbers varying over three orders of magnitude. The wall-normal turbulence-intensity similarity formulation is extended. The results show good support for the similarity arguments forwarded by the attached-eddy model as well as Townsend's (1956) Reynolds-number similarity hypothesis and lack of the ‘inactive’ motion influence on the wall-normal velocity component. The effects of wall roughness and the spread in the convection velocity due to this roughness are also discussed.

  5. Numerical study of cavitation inception in the near field of an axisymmetric jet at high Reynolds number

    Science.gov (United States)

    Cerutti, Stefano; Knio, Omar M.; Katz, Joseph

    2000-10-01

    Cavitation inception in the near field of high Reynolds number axisymmetric jets is analyzed using a simplified computational model. The model combines a vorticity-stream-function finite-difference scheme for the simulation of the unsteady flow field with a simplified representation for microscopic bubbles that are injected at the jet inlet. The motion of the bubbles is tracked in a Lagrangian reference frame by integrating a semiempirical dynamical equation which accounts for pressure, drag, and lift forces. The likelihood of cavitation inception is estimated based on the distributions of pressure and microscopic bubbles. The computations are used to examine the role of jet slenderness ratio, Reynolds number, bubble size, and bubble injection location on the cavitation inception indices. The results indicate that, for all bubble sizes considered, the cavitation inception index increases as the jet slenderness ratio decreases. Larger bubbles entrain more rapidly into the cores of concentrated vortices than smaller bubbles, and the corresponding inception indices are generally higher than those of smaller bubbles. The inception indices for larger bubbles are insensitive to the injection location, while the inception indices of smaller bubbles tend to increase when they are injected inside the shear layer near the nozzle lip. Although it affects the bubble distributions, variation of the Reynolds number leads to insignificant changes in pressure minima and in the inception indices of larger bubbles, having noticeable effect only on the inception indices of smaller bubbles. Computed results are consistent with, and provide plausible explanations for, several trends observed in recent jet cavitation experiments.

  6. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  7. Anomalous human behavior detection: An Adaptive approach

    NARCIS (Netherlands)

    Leeuwen, C. van; Halma, A.; Schutte, K.

    2013-01-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous b

  8. Anomalous pulmonary venous return: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Min; Kang, MinJin; Lee, Han Bee; Bae, Kyung Eun; Lee, Jaehe; Kim, Jae Hyung; Jeong, Myeong Ja; Kang, Tae Kyung [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2013-10-15

    Partial anomalous pulmonary venous return is a type of congenital pulmonary venous anomaly. We present a rare type of partial pulmonary venous return, subaortic vertical vein drains left lung to superior vena cava, accompanying hypoplasia of the ipsilateral lung and pulmonary artery. We also review the previous report and relationship of these structures.

  9. Anomalous Hall Effect for chiral fermions

    CERN Document Server

    Zhang, P -M

    2014-01-01

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.

  10. Total least squares for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Matsekh, Anna M [Los Alamos National Laboratory

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  11. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    .3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  12. Similarity Solution for High Weissenberg Number Flow of Upper-Convected Maxwell Fluid on a Linearly Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Meysam Mohamadali

    2016-01-01

    Full Text Available High Weissenberg boundary layer flow of viscoelastic fluids on a stretching surface has been studied. The flow is considered to be steady, low inertial, and two-dimensional. Upon proper scaling and by means of an exact similarity transformation, the nonlinear momentum and constitutive equations of each layer transform into the respective system of highly nonlinear and coupled ordinary differential equations. Numerical solutions to the resulting boundary value problem are obtained using an efficient shooti