WorldWideScience

Sample records for anomalous x-ray pulsars

  1. Glitches in Anomalous X-ray Pulsars

    CERN Document Server

    Dib, Rim; Gavriil, Fotis P

    2007-01-01

    (Abridged). We report on 8.7 and 7.6yr of RXTE observations of the Anomalous X-ray Pulsars (AXPs) RXS J170849.0-400910 and 1E 1841-045, respectively. These observations, part of a larger RXTE AXP monitoring program, have allowed us to study the long-term timing, pulsed flux, and pulse profile evolution of these objects. We report on four new glitches, one from RXS J170849.0-400910 and three from 1E 1841-045. One of the glitches from 1E 1841-045 is among the largest ever seen in a neutron star, having fractional frequency jump (delta nu)/nu=1.6E-5. With nearly all known persistent AXPs now seen to glitch, such behavior is clearly generic to this source class. We compare AXP glitches with those in radio pulsars. We show that in terms of fractional frequency change, AXPs are among the most actively glitching neutron stars, with glitch amplitudes in general larger than in radio pulsars. However, in terms of absolute glitch amplitude, AXP glitches are unremarkable. We show that the largest observed AXP glitches sh...

  2. Magnetar-like X-ray bursts from an anomalous X-ray pulsar.

    Science.gov (United States)

    Gavriil, F P; Kaspi, V M; Woods, P M

    2002-09-12

    Anomalous X-ray pulsars (AXPs) are a class of rare X-ray emitting pulsars whose energy source has been perplexing for some 20 years. Unlike other X-ray emitting pulsars, AXPs cannot be powered by rotational energy or by accretion of matter from a binary companion star, hence the designation 'anomalous'. Many of the rotational and radiative properties of the AXPs are strikingly similar to those of another class of exotic objects, the soft-gamma-ray repeaters (SGRs). But the defining property of the SGRs--their low-energy-gamma-ray and X-ray bursts--has not hitherto been observed for AXPs. Soft-gamma-ray repeaters are thought to be 'magnetars', which are young neutron stars whose emission is powered by the decay of an ultra-high magnetic field; the suggestion that AXPs might also be magnetars has been controversial. Here we report two X-ray bursts, with properties similar to those of SGRs, from the direction of the anomalous X-ray pulsar 1E1048.1 - 5937. These events imply a close relationship (perhaps evolutionary) between AXPs and SGRs, with both being magnetars.

  3. On the X-ray Spectra of Anomalous X-ray Pulsars and Soft Gamma Repeaters

    OpenAIRE

    Kaspi, Victoria M.; Boydstun, Kristen

    2010-01-01

    We revisit the apparent correlation between soft X-ray band photon index and spin-down rate ύ previously reported for Anomalous X-ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs) by Marsden & White. Our analysis, improved thanks to new source discoveries, better spectral parameter measurements in previously known sources, and the requirement of source quiescence for parameter inclusion, shows evidence for the previously noted trend, although with greater scatter. This trend supp...

  4. Long-Term Monitoring of Anomalous X-ray Pulsars

    CERN Document Server

    Gavriil, F P; Chakraborty, D; Gavriil, Fotis P.; Kaspi, Victoria M.; Chakrabarty, Deepto

    2001-01-01

    We report on long-term monitoring of anomalous X-ray pulsars (AXPs) using the Rossi X-ray Timing Explorer. Using phase-coherent timing, we find a wide variety of behaviors among the sources, ranging from high stability (in 1E 2259.1+586 and 4U 0142+61), to instabilities so severe that phase-coherent timing is not possible (in 1E 1048.1-5937). We note a correlation in which timing stability in AXPs decreases with increasing spin-down rate. The timing stability of soft gamma repeaters in quiescence is consistent with this trend, which is similar to one seen in radio pulsars. We consider high signal-to-noise ratio average pulse profiles as a function of energy for each AXP, and find a variety of behaviors. We find no large variability in pulse morphology nor in pulsed flux as a function of time.

  5. Spectral Properties of Anomalous X-ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    Ye Lu; Wei Wang; Yong-Heng Zhao

    2003-01-01

    We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate Ω. Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate M. The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing M. A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.

  6. Precision Timing of Two Anomalous X-Ray Pulsars.

    Science.gov (United States)

    Kaspi; Chakrabarty; Steinberger

    1999-11-01

    We report on long-term X-ray timing of two anomalous X-ray pulsars, 1RXS J170849.0-400910 and 1E 2259+586, using the Rossi X-Ray Timing Explorer. In monthly observations made over 1.4 and 2.6 yr for the two pulsars, respectively, we have obtained phase-coherent timing solutions which imply that these objects have been rotating with great stability throughout the course of our observations. For 1RXS J170849.0-400910, we find a rotation frequency of 0.0909169331(5) Hz and frequency derivative -15.687&parl0;4&parr0;x10-14 Hz s-1 for epoch MJD 51215.931. For 1E 2259+586, we find a rotation frequency of 0.1432880613(2) Hz and frequency derivative -1.0026&parl0;7&parr0;x10-14 Hz s-1 for epoch MJD 51195.583. The rms phase residuals from these simple models are only approximately 0.01 cycles for both sources. We show that the frequency derivative for 1E 2259+586 is inconsistent with that inferred from incoherent frequency observations made over the last 20 yr. Our observations are consistent with the magnetar hypothesis and make binary accretion scenarios appear unlikely.

  7. A new look at Anomalous X-ray Pulsars

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2014-01-01

    We explore a possibility to explain the phenomenon of the Anomalous X-ray Pulsars (AXP) and Soft Gamma-ray Repeaters (SGR) within the scenario of fall-back magnetic accretion onto a young isolated neutron star. The X-ray emission of the pulsar in this case is originated due to accretion of matter onto the surface of the neutron star from the magnetic slab surrounding its magnetosphere. The expected spin-down rate of the neutron star within this approach is close to the observed value. We show that these neutron stars are relatively young and are going through a transition from the propeller state to the accretor state. The pulsars activity in the gamma-rays is connected with their relative youth and is provided by the energy stored in the non-equilibrium layer located in the crust of low-mass neutron stars. This energy can be released due to mixing of matter in the neutron star crust with super heavy nuclei approaching its surface and getting unstable. The nuclei fission in the low-density region initiates ch...

  8. Period clustering of the anomalous X-ray pulsars

    CERN Document Server

    Bisnovatyi-Kogan, G S

    2014-01-01

    In this paper we address the question of why the observed periods of the Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) are clustered in the range 2-12s. We explore a possibility to answer this question assuming that AXPs and SGRs are the descendants of High Mass X-ray Binaries (HMXBs) which have been disintegrated in the core-collapse supernova explosion. The spin period of neutron stars in HMXBs evolves towards the equilibrium period, P_eq. For a wide range of relevant accretion parameters, its value falls in the interval of observed periods of AXPs and SGRs. After the explosion of its massive companion, the neutron star turns out to be embedded into a dense gaseous envelope, the accretion from which leads to the formation of a residual magnetically levitating (ML) disk. We show that the expected mass of a disk in this case is 10^-7 - 10^-8 M_sun which is sufficient to maintain the process of accretion at the rate 10^14 - 10^15 g/s over a time span of a few thousand years. During this pe...

  9. On Fossil Disk Models of Anomalous X-Ray Pulsars

    CERN Document Server

    Francischelli, G J

    2002-01-01

    Currently, two competing models are invoked in order to explain the observable properties of Anomalous X-ray Pulsars (AXPs). One model assumes that AXP emission is powered by a strongly magnetized neutron star - i.e., a magnetar. Other groups have postulated that the unusually long spin periods associated with AXPs could, instead, be due to accretion. As there are severe observational constraints on any binary accretion model, fossil disk models have been suggested as a plausible alternative. Here we analyze fossil disk models of AXPs in some detail, and point out some of their inherent inconsistencies. For example, we find that, unless it has an exceptionally high magnetic field strength, a neutron star in a fossil disk cannot be observed as an AXP if the disk opacity is dominated by Kramers' law. However, standard alpha-disk models show that a Kramers opacity must dominate for the case log B > 12, making it unlikely that a fossil disk scenario can successfully produce AXPs. Additionally, we find that in ord...

  10. On the X-ray Spectra of Anomalous X-ray Pulsars and Soft Gamma Repeaters

    CERN Document Server

    Kaspi, Victoria M

    2010-01-01

    We revisit the apparent correlation between soft X-ray band photon index and spin-down rate nudot previously reported for Anomalous X-ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs) by Marsden & White (2001). Our analysis, improved thanks to new source discoveries, better spectral parameter measurements in previously known sources, and the requirement of source quiescence for parameter inclusion, shows evidence for the previously noted trend, although with greater scatter. This trend supports the twisted magnetosphere model of magnetars although the scatter suggests that factors other than nudot are also important. We also note possible correlations involving the spectra of AXPs and SGRs in the hard X-ray band. Specifically, the hard-band photon index shows a possible correlation with inferred nudot and B, as does the degree of spectral turnover. If the former trend is correct, then the hard-band photon index for AXP 1E 1048.1-5937 should be ~0--1. This may be testable with long integrations by INTEGRA...

  11. Long-Term RXTE Monitoring of Anomalous X-ray Pulsars

    CERN Document Server

    Gavriil, F P; Gavriil, Fotis P.; Kaspi, Victoria M.

    2001-01-01

    We report on the long-term monitoring of three anomalous X-ray pulsars using the Rossi X-ray Timing Explorer (RXTE). We present a phase-coherent timing ephemeris for 4U 0142+61, and show that it has rotated with high stability over 4.4 yr, with RMS phase deviations of 7% of the pulse period from a simple fit including only $\

  12. Soft Gamma Repeaters and Anomalous X-ray Pulsars: Magnetar Candidates

    Science.gov (United States)

    Woods, P. M.; Thompson, C.

    2005-01-01

    This article is a review of Soft Gamma Repeaters and Anomalous X-ray Pulsars. It contains a brief historical record of the emergence of these classes of neutron stars, a thorough overview of the observational data, a succinct summary of the magnetar model, and suggested directions for future research in this field.

  13. A Two-Temperature Supernova Fallback Disk Model for Anomalous X-ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6 - 10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.

  14. Long-term evolution of anomalous X-ray pulsars and soft gamma repeaters

    OpenAIRE

    Benli, Onur; Ertan, Unal

    2016-01-01

    We have investigated the long-term evolution of individual anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) with relatively well constrained X-ray luminosity and rotational properties. In the frame of the fallback disc model, we have obtained the ranges of disc mass and dipole field strength that can produce the observed source properties. We have compared our results with those obtained earlier for dim isolated neutron stars (XDINs). Our results show that (1) the X-ray luminosi...

  15. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    International Nuclear Information System (INIS)

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849−400910, 1E 1547.0−5408, SGR 1806−20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ∼200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. (paper)

  16. An optical counterpart to the anomalous X-ray pulsar 4U0142+61.

    Science.gov (United States)

    Hulleman, F; van Kerkwijk, M H; Kulkarni, S R

    2000-12-01

    The energy source of the anomalous X-ray pulsars (AXPs) is not understood, hence their designation as anomalous. Unlike binary X-ray pulsars, no companions are seen, so the energy cannot be supplied by accretion of matter from a companion star. The loss of rotational energy, which powers radio pulsars, is insufficient to power AXPs. Two models are generally considered: accretion from a large disk left over from the birth process, or decay of a very strong magnetic field (10(15) G) associated with a 'magnetar'. The lack of counterparts at other wavelengths has hampered progress in our understanding of these objects. Here we report deep optical observations of the field around 4U0142+61, which is the brightest AXP in X-rays. The source has no associated supernova remnant, which, together with its spin-down timescale of approximately 10(5) yr (ref. 5), suggests that it may be relatively old. We find an object with peculiar optical colours at the position of the X-ray source, and argue that it is the optical counterpart. The optical emission is too faint to admit the presence of a large accretion disk, but may be consistent with magnetospheric emission from a magnetar.

  17. Astrophysics of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars

    OpenAIRE

    Thompson, Christopher

    2000-01-01

    I summarize the recent advances in our understanding of the Soft Gamma Repeaters: in particular their spin behavior, persistent emission and hyper-Eddington outbursts. The giant flares on 5 March 1979 and 27 August 1998 provide compelling physical evidence for magnetic fields stronger than 10 B_{QED} = 4.4 x 10^{14} G, consistent with the rapid spindown detected in two of these sources. The persistent X-ray emission and variable spindown of the 6-12 s Anomalous X-ray Pulsars are compared and ...

  18. Period Clustering of the Anomalous X-Ray Pulsars and Magnetic Field Decay in Magnetars.

    Science.gov (United States)

    Colpi; Geppert; Page

    2000-01-20

    We confront theoretical models for the rotational, magnetic, and thermal evolution of an ultramagnetized neutron star, or magnetar, with available data on the anomalous X-ray pulsars (AXPs). We argue that, if the AXPs are interpreted as magnetars, their clustering of spin periods between 6 and 12 s (observed at present in this class of objects), their period derivatives, their thermal X-ray luminosities, and the association of two of them with young supernova remnants can only be understood globally if the magnetic field in magnetars decays significantly on a timescale of the order of 104 yr.

  19. The Fading of Transient Anomalous X-Ray Pulsar XTE J1810-197

    Science.gov (United States)

    Halpern, J. P.; Gotthelf, E. V.

    2005-01-01

    Three observations of the 5.54 s transient anomalous X-ray pulsar XTE J1810-197 obtained over 6 months with the Newton X-ray Multi-Mirror (XMM-Newton) mission are used to study its spectrum and pulsed light curve as the source fades from outburst. The decay is consistent with an exponential of time constant ~300 days but not a power law as predicted in some models of sudden deep crustal heating events. All spectra are well fitted by a blackbody plus a steep power law, a problematic model that is commonly fitted to anomalous X-ray pulsars (AXPs). A two-temperature blackbody fit is also acceptable and better motivated physically in view of the faint optical/IR fluxes, the X-ray pulse shapes that weakly depend on energy in XTE J1810-197, and the inferred emitting areas that are less than or equal to the surface area of a neutron star. The fitted temperatures remained the same while the flux declined by 46%, which can be interpreted as a decrease in area of the emitting regions. The pulsar continues to spin down, albeit at a reduced rate of (5.1+/-1.6)×10-12 s s-1. The inferred characteristic age τc≡P/2P~17,000 yr, magnetic field strength Bs~1.7×1014 G, and outburst properties are consistent with both the outburst and quiescent X-ray luminosities being powered by magnetic field decay, i.e., XTE J1810-197 is a magnetar.

  20. Optical pulsations from the anomalous X-ray pulsar 4U0142+61.

    Science.gov (United States)

    Kern, B; Martin, C

    2002-05-30

    Anomalous X-ray pulsars (AXPs) differ from ordinary radio pulsars in that their X-ray luminosity is orders of magnitude greater than their rate of rotational energy loss, and so they require an additional energy source. One possibility is that AXPs are highly magnetized neuron stars or 'magnetars' having surface magnetic fields greater than 10(14) G. This would make them similar to the soft gamma-ray repeaters (SGRs), but alternative models that do not require extreme magnetic fields also exist. An optical counterpart to the AXP 4U0142+61 was recently discovered, consistent with emission from a magnetar, but also from a magnetized hot white dwarf, or an accreting isolated neutron star. Here we report the detection of optical pulsations from 4U0142+61. The pulsed fraction of optical light (27 per cent) is five to ten times greater than that of soft X-rays, from which we conclude that 4U0142+61 is a magnetar. Although this establishes a direct relationship between AXPs and the soft gamma-ray repeaters, the evolutionary connection between AXPs, SGRs and radio pulsars remains controversial.

  1. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We show that the soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) can be explained as recently proposed highly magnetized white dwarfs (B-WDs). The radius and magnetic field of B-WDs are perfectly adequate to explain energies in SGRs/AXPs as the rotationally powered energy. While the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the magnetized white dwarfs, yet following Chandrasekhar's theory (C-WDs), exhibit large ultra-violet luminosity which is observationally constrained from a strict upper limit.

  2. Long-term evolution of anomalous X-ray pulsars and soft gamma repeaters

    CERN Document Server

    Benli, Onur

    2016-01-01

    We have investigated the long-term evolution of individual anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) with relatively well constrained X-ray luminosity and rotational properties. In the frame of the fallback disc model, we have obtained the ranges of disc mass and dipole field strength that can produce the observed source properties. We have compared our results with those obtained earlier for dim isolated neutron stars (XDINs). Our results show that (1) the X-ray luminosity, period and period derivative of the individual AXP/SGR sources can be produced self-consistently in the fallback disc model with very similar basic disc parameters to those used earlier in the same model to explain the long-term evolution of XDINs, (2) except two sources, AXP/SGRs are evolving in the accretion phase; these two exceptional sources, like XDINs, completed their accretion phase in the past and are now evolving in the final propeller phase and still slowing down with the disc torques, (3) the dipole field ...

  3. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, ...

  4. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.

    2016-05-01

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a white dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.

  5. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  6. Bumpy Spin-Down of Anomalous X-Ray Pulsars The Link with Magnetars

    CERN Document Server

    Melatos, A

    1999-01-01

    The two anomalous X-ray pulsars (AXPs) with well-sampled timing histories, 1E 1048.1-5937 and 1E 2259+586, are known to spin down irregularly, with `bumps' superimposed on an overall linear trend. Here we show that if AXPs are non-accreting magnetars, i.e. isolated neutron stars with surface magnetic fields B_0 > 10^{10} T, then they spin down electromagnetically in exactly the manner observed, due to an effect called `radiative precession'. Internal hydromagnetic stresses deform the star, creating a fractional difference epsilon=(I_3-I_1)/I_1 ~ 10^{-8} between the principal moments of inertia I_1 and I_3; the resulting Eulerian precession couples to an oscillating component of the electromagnetic torque associated with the near-zone radiation fields, and the star executes an anharmonic wobble with period tau_pr ~ 2 pi / epsilon Omega(t) ~ 10 yr, where Omega(t) is the rotation frequency as a function of time t. We solve Euler's equations for a biaxial magnet rotating in vacuo; show that the computed Omega(t) ...

  7. Exceptional flaring activity of the anomalous X-ray pulsar 1E 1547.0-5408

    CERN Document Server

    Savchenko, V; Beckmann, V; Produit, N; Walter, R

    2009-01-01

    (Abridged) We studied an exceptional period of activity of the anomalous X-ray pulsar 1E 1547.0-5408 in January 2009, during which about 200 bursts were detected by INTEGRAL. The major activity episode happened when the source was outside the field of view of all the INTEGRAL instruments. But we were still able to study the properties of 84 bursts detected simultaneously by the anti-coincidence shield of the spectrometer SPI and by the detector of the imager ISGRI. We find that the luminosity of the 22 January 2009 bursts of 1E 1547.0-5408 was > 1e42 erg/s. This luminosity is comparable to that of the bursts of soft gamma repeaters (SGR) and is at least two orders of magnitude larger than the luminosity of the previously reported bursts from AXPs. Similarly to the SGR bursts, the brightest bursts of 1E 1547.0-5408 consist of a short spike of ~100 ms duration with a hard spectrum, followed by a softer extended tail of 1-10 s duration, which occasionally exhibits pulsations with the source spin period of ~2 s. ...

  8. The Magnetar Nature and the Outburst Mechanism of a Transient Anomalous X-ray Pulsar

    Science.gov (United States)

    Guver, Tolga; Ozel, Feryal; Gogus, Ersin; Kouveliotou, Chryssa

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  9. Detailed Physical Modeling Reveals the Magnetar Nature of a Transient Anomalous X-ray Pulsar

    Science.gov (United States)

    Guever, T.; Oezel, F.; Goegues, E.; Kouveliotou, C.

    2007-01-01

    Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.

  10. A scenario of the formation of isolated X-ray pulsars with anomalously long period

    CERN Document Server

    Ikhsanov, N R; Beskrovnaya, N G

    2014-01-01

    A scenario of the formation of isolated X-ray pulsars is discussed with an application to one of the best studied objects of this class 1E 161348-5055. This moderately luminous, 10^33 - 10^35 erg/s, pulsar with a relatively soft spectrum, kT ~ 0.6-0.8 keV, is associated with an isolated neutron star, which is located near the center of the young (~2000 yr) compact supernova remnant RCW 103 and rotates steadily (|d\

  11. X-ray and Near-IR Variability of the Anomalous X-ray Pulsar 1E 1048.1-5937: From Quiescence Back to Activity

    CERN Document Server

    Tam, Cindy R; Dib, Rim; Kaspi, Victoria M; Woods, Peter M; Bassa, Cees

    2007-01-01

    (Abridged) Monitoring of the anomalous X-ray pulsar 1E 1048.1-5937 in 2005-2006 with the RXTE, CXO, and HST has revealed that the source entered a phase of X-ray and near-IR radiative quiescence, simultaneous with timing stability. During its ~2001-2004 active period, the source exhibited two large, long-term X-ray pulsed-flux flares as well as short bursts, and large (>10x) torque changes. A series of four simultaneous observations with CXO and HST approximately equispaced in 2006 showed that its X-ray flux and spectrum and near-IR flux, both variable prior to 2005, stabilized. The near-IR flux (m_{F110W} > 24.8 mag, m_{F160W} ~ 22.70 mag) is considerably fainter in 2006 than previously measured. Recently, in 2007 March, this newfound quiescence was interrupted by a sudden flux enhancement, spectral changes and a pulse morphology change, simultaneous with a large spin-up glitch and near-IR enhancement. Specifically, our RXTE observations revealed a sudden pulsed flux increase by a factor of ~3 in the 2-10 ke...

  12. Long-Term RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937

    CERN Document Server

    Kaspi, V M; Chakraborty, D; Lackey, J R; Muno, M P; Kaspi, Victoria M.; Gavriil, Fotis P.; Chakrabarty, Deepto; Lackey, Jessica R.; Muno, Michael P.

    2000-01-01

    We report on long-term monitoring of the anomalous X-ray pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). The timing behavior of this pulsar is different from that of other AXPs being monitored with RXTE. In particular, we show that the pulsar shows significant deviations from simple spin-down such that phase-coherent timing has not been possible over time spans longer than a few months. We find that the deviations from simple spin down are not consistent with single "glitch" type events, nor are they consistent with radiative precession. We show that in spite of the rotational irregularities, the pulsar exhibits neither pulse profile changes nor large pulsed flux variations. We discuss the implications of our results for AXP models. In the context of the magnetar model, we suggest that 1E 1048.1-5937 may be a transition object between the soft gamma-ray repeater and AXP populations, and the AXP most likely to one day undergo an outburst.

  13. Long-Term Spectral and Temporal Evolution of Anomalous X-Ray Pulsar XTE J1810-197

    Science.gov (United States)

    Vurgun, Eda; Gogus, Ersin; Chakraborty, Manoneeta; Guver, Tolga

    2016-07-01

    We present spectral and timing studies of the first transient Anomalous X-ray Pulsar XTE J1810-197, a 5.54 s pulsar discovered in 2003, when its X-ray luminosity increased ~100 fold. We investigate the long-term behaviour of the surface temperature,emitting area, and the pulsed fraction. X-ray spectra are well fitted by a two-component blackbody model in which the cool component is most likely arising from the whole surface of star and the hot component is arising from a relatively small hot spot on it. The spectral analysis has also shown evidence for the presence of an absorbtion line feature around 1.2 keV in almost all observations. We fit this absorption feature with an asymmetric gaussian component since it shows an asymmetric structure. The pulse fraction exhibits slightly different temporal evolution in higher and lower energy bands. We will discuss correlative behaviour between the spectral and timing parameters in order to constrain magnetar cooling models.

  14. 10 Years of RXTE Monitoring of Anomalous X-ray Pulsar 4U 0142+61: Long-Term Variability

    CERN Document Server

    Dib, R; Gavriil, F P; Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2006-01-01

    We report on 10 yr of monitoring of the 8.7-s Anomalous X-ray Pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 until February 2006: the RMS phase residual for a spin-down model which includes nu, nudot, and nuddot is 2.3%. We report a possible phase-coherent timing solution valid over a 10-yr span extending back to March 1996. A glitch may have occured between 1998 and 2000, but it is not required by the existing data. We also report that the source's pulse profile has been evolving in the past 6 years, such that the dip of emission between its two peaks has been getting shallower since 2000, almost as if the profile is recovering to its pre-2000 morphology, in which there was no clear distinction between the peaks. These profile variations are seen in the 2-4 keV band but not in 6-8 keV. Finally, we present the pulsed flux time series of the source in 2-10 keV. There is evidence of a slow but steady increase in the source's pulsed flux since 2000...

  15. A glitch and an anti-glitch in the anomalous X-ray pulsar 1E 1841-045

    CERN Document Server

    Mus, Sinem Sasmaz; Gogus, Ersin

    2014-01-01

    We investigated the long-term spin properties of the anomalous X-ray pulsar (AXP) 1E 1841-045 by performing a temporal analysis of archival RXTE observations spanning about 5.2 yr from 2006 September to 2011 December. We identified two peculiar timing anomalies within ~1 yr of each other: a glitch with Delta(nu)/nu ~ 4.8 x 10^{-6} near MJD 54303; and an anti-glitch with Delta(nu)/nu ~ -5.8 x 10^{-7} near MJD 54656. The glitch that we identified, which is the fourth glitch seen in this source in the 13 yr of RXTE monitoring, is similar to the last two detected glitches. The anti-glitch from 1E 1841-045, however, is the first to be identified. The amplitude of the anti-glitch was comparable with that recently observed in AXP 1E 2259+586. We found no significant variations in the pulsed X-ray output of the source during either the glitch or the anti-glitch. We discuss our results in relation to the standard pulsar glitch mechanisms for the glitch, and to plausible magnetospheric scenarios for the anti-glitch.

  16. X-ray pulsar rush in 1998

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, K.; Tsujimoto, K.; Nishiuchi, Mamiko; Yokogawa, J.; Koyama, K. [Kyoto Univ., Faculty of Science, Kyoto (Japan)

    1999-08-01

    We present recent remarkable topics about discoveries of X-ray pulsars. 1. Pulsations from two Soft Gamma-ray Repeaters: These pulsars have enormously strong magnetic field (B {approx} 10{sup 15} G), thus these are called as 'magnetar', new type of X-ray pulsars. 2. New Crab-like pulsars: These discoveries lead to suggesting universality of Crab-like pulsars. 3. An X-ray bursting millisecond pulsar: This is strong evidence for the recycle theory of generating radio millisecond pulsars. 4. X-ray pulsar rush in the SMC: This indicates the younger star formation history in the SMC. (author)

  17. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    Energy Technology Data Exchange (ETDEWEB)

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Loren-Aguilar, P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Kuelebi, B. [Institut de Ciencies de l' Espai (CSIC), Facultat de Ciencies, Campus UAB, Torre C5-parell, E-08193 Bellaterra (Spain); Aznar-Siguan, G.; Garcia-Berro, E., E-mail: jorge.rueda@icra.it, E-mail: enrique.garcia-berro@upc.edu [Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, E-08034 Barcelona (Spain)

    2013-08-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M{sub Sun} white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M{sub Sun} and 1.0 M{sub Sun }. Finally, we infer a post-merging age {tau}{sub WD} Almost-Equal-To 64 kyr and a magnetic field B Almost-Equal-To 2 Multiplication-Sign 10{sup 8} G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at Almost-Equal-To 10{sup 15} Hz in the spectrum of 4U 0142+61.

  18. A white dwarf merger as progenitor of the anomalous X-ray pulsar 4U 0142+61?

    CERN Document Server

    Rueda, J A; Izzo, L; Ruffini, R; Aguilar, P Loren; Kulebi, B; Siguan, G Aznar; Berro, E Garcia

    2013-01-01

    It has been recently proposed that massive fast-rotating highly-magnetized white dwarfs could describe the observational properties of some of Soft Gamma-Ray Repeaters (SGRs) and Anomalous X-Ray Pulsars (AXPs). Moreover, it has also been shown that high-field magnetic (HFMWDs) can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately $1.2 M_{\\sun}$ white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses $0.6\\, M_{\\sun}$ and $1.0\\, M_{\\sun}$. Finally, we infer a post-merging age $\\tau_{\\rm WD}\\approx 64$ kyr, and a magnetic field $B\\approx 2\\times 10^8$ G. Evidence for such a magnetic field may come from th...

  19. The 2006-2007 Active Phase of Anomalous X-ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts, and Burst Spectral Features

    CERN Document Server

    Gavriil, Fotis P; Kaspi, Victoria M

    2009-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 8-3x10^3 s. The first five burst spectra are well modeled by blackbodies, with temperatures kT ~ 2-6 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus three emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of 1.9+/-0.4 x 10^-7 Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a n...

  20. The Long-term Radiative Evolution of Anomalous X-ray Pulsar 1E~2259+586 after its 2002 Outburst

    CERN Document Server

    Zhu, Weiwei; Woods, Peter M; Gavriil, Fotis P; Dib, Rim

    2007-01-01

    We present an analysis of five X-ray Multi-Mirror Mission (XMM) observations of the Anomalous X-ray Pulsar (AXP) 1E 2259+586 taken in 2004 and 2005 during its relaxation following its 2002 outburst. We compare these data with those of five previous XMM observations taken in 2002 and 2003, and find the observed flux decay is well described by a power-law of index -0.69+/-0.03. As of mid-2005, the source may still have been brighter than pre-outburst, and was certainly hotter. We find a strong correlation between hardness and flux, as seen in other AXP outbursts. We discuss the implications of these results for the magnetar model.

  1. X-ray pulsars: a review

    CERN Document Server

    Caballero, I

    2012-01-01

    Accreting X-ray pulsars are among the most luminous objects in the X-ray sky. In highly magnetized neutron stars (B~10^12 G), the flow of matter is dominated by the strong magnetic field. The general properties of accreting X-ray binaries are presented, focusing on the spectral characteristics of the systems. The use of cyclotron lines as a tool to directly measure a neutron star's magnetic field and to test the theory of accretion are discussed. We conclude with the current and future prospects for accreting X-ray binary studies.

  2. Precise Localization of the Soft Gamma Repeater SGR 1627-41 with Chandra and the Anomalous X-Ray Pulsar AXP 1E1841-045 with Chandra

    Science.gov (United States)

    Wachter, Stefanie; Patel, Sandeep K.; Kouveliotou, Chryssa; Bouchet, Patrice; Ozel, Feryal; Tennant, Allyn F.; Woods, Peter M.; Hurley, Kevin; Becker, Werner; Slane, Patrick

    2004-01-01

    We present precise localizations of AXP 1E184-045 and SGR 1627-41 with Chandra. We obtained new infrared observations of SGR 1627-41 and reanalyzed archival observations of AXP 1E1841-045 in order to refine their positions and search for infrared counterparts. A faint source is detected inside the error circle of AXP 1E1841-045. In the case of SGR 1627-41, several sources are located within the error radius of the X-ray position, and we discuss the likelihood of one of them being the counterpart. We compare the properties of our candidates to those of other known anomalous X-ray pulsar (AXP) and soft gamma repeater (SGR) counterparts. We find that the counterpart candidates for SGR 1627-41 and SGR 1806-20 would have to be intrinsically much brighter than AXPs in order to have counterparts detectable with the observational limits currently available for these sources. To confirm the reported counterpart of SGR 1806-20, we obtained new infrared observations during the 2003 July burst activation of the source. No brightening of the suggested counterpart is detected, implying that the counterpart of SGR 1806-20 remains yet to be identified.

  3. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    CERN Document Server

    Dib, Rim; Gavriil, Fotis P

    2008-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (Delta(nu)/nu =1.63(2)X~10^{-5}) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (Delta(nu)/nu =2.91(9)X10^{-6}) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three fla...

  4. X-Ray Pulsar Based Navigation and Time Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will build on the Phase I X-ray pulsar-based navigation and timing (XNAV) feasibility assessment to develop a detailed XNAV simulation capability to...

  5. X-Ray Emission from Rotation-Powered Pulsars

    Institute of Scientific and Technical Information of China (English)

    LIN Gui-Fang; ZHANG Li

    2005-01-01

    @@ We study the properties of pulsed component of hard (2-10keV) x-ray emission from pulsars based on the new version of outer gap model we proposed previously [Astrophys.J.604 (2004) 317].On the frame of this outer gap model, we derive an expression of non-thermal pulsed x-ray luminosity of rotation-powered pulsars, and then apply it to the pulsars whose pulsed x-rays are detected by ASCA.Using the Kolmogorov-Smirnov test,we determine the model parameter.The present results indicate LX ∝ L1.15sd for these x-ray pulsars, which is consistent with the observed data.

  6. RXTE Observations of Anomalous X-ray Pulsar 1E 1547.0-5408 During and After its 2008 and 2009 Outbursts

    CERN Document Server

    Dib, Rim; Scholz, Paul; Gavriil, Fotis P

    2012-01-01

    We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. We show that the pulsed flux decrease which followed an initial rise in the 2008 outburst was interrupted by a spike ~9 days after the initial outburst. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative nudot, such that the second derivative was a factor of ~60 larger than that reported in data from 2007. This nudot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, the second derivative was consistent with zero, and nudot had re...

  7. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  8. X-ray Counterparts of Millisecond Pulsars in Globular Clusters

    CERN Document Server

    Becker, W; Prinz, T

    2010-01-01

    We have systematically studied the X-ray emission properties of globular cluster millisecond pulsars in order to evaluate their spectral properties and luminosities in a uniform way. Cross-correlating the radio timing positions of the cluster pulsars with the high resolution Chandra images revealed 31 X-ray counterparts identified in nine different globular cluster systems, including those in 47 Tuc. Timing analysis has been performed for all sources corresponding to the temporal resolution available in the archival Chandra data. Making use of unpublished data on M28, M4 and NGC 6752 allowed us to obtain further constraints for the millisecond pulsar counterparts located in these clusters. Counting rate and energy flux upper limits were computed for those 36 pulsars for which no X-ray counterparts could be detected. Comparing the X-ray and radio pulse profiles of PSR J1821-2452 in M28 and the 47 Tuc pulsars PSR J0024-7204D,O,R indicated some correspondence between both wavebands. The X-ray efficiency of the g...

  9. X-ray states of redback millisecond pulsars

    CERN Document Server

    Linares, Manuel

    2014-01-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as "redbacks", constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars, and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback which showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L$_\\mathrm{X}$), between [6-9]$\\times$10$^{32}$ erg s$^{-1}$ (disk-passive state) and [3-5]$\\times$10$^{33}$ erg s$^{-1}$ (disk-active state). This strongly suggests that mode switching $-$which has not been observed in quiescent low-mass X-ray binaries$-$ is universal among redback millisecond pulsars in the disk ...

  10. A Search for X-ray Counterparts of Radio Pulsars

    CERN Document Server

    Prinz, Tobias

    2015-01-01

    We describe a systematic search for X-ray counterparts of radio pulsars. The search was accomplished by cross-correlating the radio timing positions of all radio pulsars from the ATNF pulsar database (version 1.54) with archival XMM-Newton and Chandra observations publicly released by August 1st 2015. In total, 171 of the archival XMM-Newton observations and 215 of the archival Chandra datasets where found to have a radio pulsar serendipitously in the field of view. From the 283 radio pulsars covered by these datasets we identified 19 previously undetected X-ray counterparts. For 6 of them the statistics was sufficient to model the energy spectrum with one- or two-component models. For the remaining new detections and for those pulsars for which we determined an upper limit to their counting rate we computed the energy flux by assuming a Crab-like spectrum. Additionally, we derived upper limits on the neutron stars' surface temperature and on the non-thermal X-ray efficiency for those pulsars for which the sp...

  11. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  12. X-ray states of redback millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M. [Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    Compact binary millisecond pulsars with main-sequence donors, often referred to as 'redbacks', constitute the long-sought link between low-mass X-ray binaries and millisecond radio pulsars and offer a unique probe of the interaction between pulsar winds and accretion flows. We present a systematic study of eight nearby redbacks, using more than 100 observations obtained with Swift's X-ray Telescope. We distinguish between three main states: pulsar, disk, and outburst states. We find X-ray mode switching in the disk state of PSR J1023+0038 and XSS J12270-4859, similar to what was found in the other redback that showed evidence for accretion: rapid, recurrent changes in X-ray luminosity (0.5-10 keV, L {sub X}), between (6-9) × 10{sup 32} erg s{sup –1} (disk-passive state) and (3-5) × 10{sup 33} erg s{sup –1} (disk-active state). This strongly suggests that mode switching—which has not been observed in quiescent low-mass X-ray binaries—is universal among redback millisecond pulsars in the disk state. We briefly explore the implications for accretion disk truncation and find that the inferred magnetospheric radius in the disk state of PSR J1023+0038 and XSS J12270-4859 lies outside the light cylinder. Finally, we note that all three redbacks that have developed accretion disks have relatively high L {sub X} in the pulsar state (>10{sup 32} erg s{sup –1}).

  13. A search for pulsed radio emission from anomalous X-ray pulsar 4U 0142+61 at the frequency of 111 MHz

    CERN Document Server

    Ershov, Alexander A

    2007-01-01

    We have searched for pulsed radio emission from magnetar 4U 0142+61 at the frequency of 111 MHz. No pulsed signal was detected from this source. Upper limits for mean flux density are 0.9 - 9 mJy depending on assumed duty cycle (.05 - .5) of the pulsar.

  14. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    Science.gov (United States)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; Burgess, J. Michael; Chaplin, Vandiver; Gehrels, Neil; Goldstein, Adam; Granot, Jonathan; Guiriec, Sylvain; Mcenery, Julie; Preece, Robert D.; Tierney, David; van der Klis, Michiel; von Kienlin, Andreas; Zhang, Shuang Nan

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  15. On time transfer in X-ray pulsar navigation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    X-ray pulsar navigation(XPNAV) is a new approach for spacecraft autonomous navigation.The system gets position information utilizing accurate timing methods.Among the timing models,the high-order relativistic effects on the propagated signal must be incorporated to attain precise timing.The time transfer model is provided in detail here in two parts:the time frame transformation and the relativistic effects.

  16. Quasi-spherical accretion in X-ray pulsars

    CERN Document Server

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    Quasi-spherical accretion in wind-fed X-ray pulsars is discussed. At X-ray luminosities <4 10^{36} erg/s, a hot convective shell is formed around the neutron star magnetosphere, and subsonic settling accretion regime sets in. In this regime, accretion rate onto neutron star is determined by the ability of plasma to enter magnetosphere via Rayleigh-Taylor instability. A gas-dynamic theory of settling accretion is constructed taking into account anisotropic turbulence. The angular momentum can be transferred through the quasi-static shell via large-scale convective motions initiating turbulence cascade. The angular velocity distribution in the shell is found depending on the turbulent viscosity prescription. Comparison with observations of long-period X-ray wind-fed pulsars shows that an almost iso-angular-momentum distribution is most likely realized in their shells. The theory explains long-term spin-down in wind- fed accreting pulsars (e.g. GX 1+4) and properties of short-term torque-luminosity correlatio...

  17. Be/X-Ray Pulsar Binary Science with LOFT

    Science.gov (United States)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  18. X-ray pulsar signal detection using photon interarrival time

    Institute of Scientific and Technical Information of China (English)

    Qiang Xie; Luping Xu; Hua Zhang

    2013-01-01

    The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detec-tion algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is stu-died, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft ve-locity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the X-ray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.

  19. Unusual Braking Indices in Young X-ray Pulsars

    Science.gov (United States)

    Frederic Archibald, Robert; Kaspi, Victoria M.; Beardmore, Andrew P.; Gehrels, Neil; Kennea, Jamie; Gotthelf, Eric V.; Ferdman, Robert; Guillot, Sebastien; Harrison, Fiona; Keane, Evan; Pivovaroff, Michael; Stern, Daniel; Tendulkar, Shriharsh P.; Tomsick, John

    2016-04-01

    Pulsars spin down over time. By measuring braking indices of pulsars, effectively the change in the spin-down rate over time, we can probe the underlying driving engine of the spin-down. For a magnetic dipole in a vacuum, n is predicted to be 3. To date, all measured braking indices are less than 3, which can be explained, e.g. by particle winds, changes in the magnetic field. In all models of braking indices, n should be nearly constant on year time-scales. Here, I will discuss two recent observation results that challenge this model, interestingly both coming from young X-ray pulsars with no detected radio emission. The first, a long-lived decrease in the braking index of PSR J1846-0258 following a burst of magnetar-like activity, and secondly, the first stationary braking index greater than three. Understanding neutron-star spin evolution is key to constraining these objects' long-term energy output and has relevance to topics ranging from pulsar wind nebulae and supernova remnants to core-collapse supernova rates, physics, and expected outcomes.

  20. The Variable X-ray and Near-IR Behavior of the Particularly Anomaloux X-ray Pulsar 1E 1048.1-5937

    CERN Document Server

    Tam, Cindy R; Dib, Rim; Kaspi, Victoria M; Woods, Peter M; Bassa, Cees

    2007-01-01

    We present the results of X-ray and near-IR observations of the anomalous X-ray pulsar 1E 1048.1-5937, believed to be a magnetar. This AXP underwent a period of extreme variability during 2001-2004, but subsequently entered an extended and unexpected quiescence in 2004-2006, during which we monitored it with RXTE, CXO, and HST. Its timing properties were stable for >3 years throughout the quiescent period. 1E 1048.1-5937 again went into outburst in March 2007, which saw a factor of >7 total X-ray flux increase which was anti-correlated with a pulsed fraction decrease, and correlated with spectral hardening, among other effects. The near-IR counterpart also brightened following the 2007 event. We discuss our findings in the context of the magnetar and other models.

  1. Modification of gravitational redshift of x-ray burst produced by pulsar surface magnetoplasma

    Institute of Scientific and Technical Information of China (English)

    Zhu Jun; Ji Pei-Yong

    2008-01-01

    In this paper,the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed.The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry.The electromagnetic effects of surface superstrong magnetic field and dynamic effects of outflowing magnetoplasma of pulsars are treated as an optical metric.The Gordon metric is introduced to represent the gravitational metric and optical metric.So the propagation of x-ray bursts in magnetoplasma of pulsars can be described as x-ray bursts transmitting in an effective space characterized by Gordon metric.The modification of gravitational redshift,attributed to the flowing magnetoplasma of pulsars,is obtained and it is shown that the modification is of redshift and can reach the same magnitude as the gravitational redshift for ordinary pulsars.

  2. Detectability of rotation-powered pulsars in future hard X-ray surveys

    Institute of Scientific and Technical Information of China (English)

    Wei Wang

    2009-01-01

    Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars.We show hard X-ray properties of these 10 young pulsars,which have a luminosity of 10~(33)-10~(37) erg s~(-1) and a photon index of 1.6-2.1 in the energy range of 20-100 keV.The correlation between X-ray luminosity and spin-down power of L_X∝ L_(sd)~(1.31) suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component.Assuming spectral properties are similar in 20-100keV and 2-10 keV for both the pulsar and PWN components,the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained,and a correlation of L_X ∝ L_(sd)~(1.5) is derived.About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys.We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt,assuming values for the pulsar birth rate,initial position,proper motion velocity,period,and magnetic field distribution and evolution based on observational statistics and the L_X - L_(sd) relations: L_X∝ L_(sd)~(1.31) and L_X∝ L_(sd)~(1.5).More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT.So,the young pulsars would be a significant part of the hard X-ray source population in the sky,and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.

  3. X-ray observations and the search for Fermi-LAT gamma-ray pulsars

    OpenAIRE

    Saz Parkinson, PM; Belfiore, A.; Caraveo, P.; De Luca, A; Marelli, M.

    2013-01-01

    The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $\\gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, th...

  4. X-ray observations of the Crab Pulsar and Nebula with JEM-X on INTEGRAL

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Budtz-Jørgensen, Carl; Lund, Niels;

    2003-01-01

    The Crab pulsar is the best studied rotation powered pulsar. We report the results obtained in the 3-35 keV energy band with the X-ray monitor, JEM-X, on ESAs recently launched gamma-ray mission, INTEGRAL.......The Crab pulsar is the best studied rotation powered pulsar. We report the results obtained in the 3-35 keV energy band with the X-ray monitor, JEM-X, on ESAs recently launched gamma-ray mission, INTEGRAL....

  5. Pulsar Polar Cap Heating and Surface Thermal X-ray Emission. 1; Curvature Radiation Pair Fronts

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alexander G.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational x-ray data and suggest that the effect of PC heating should significantly contribute to the thermal x-ray fluxes from middle-aged and old pulsars. The implications for current and future x-ray observations of pulsars are briefly outlined.

  6. X-ray and $\\gamma$-ray Studies of the Millisecond Pulsar and PossibleX-ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    CERN Document Server

    Bogdanov, Slavko; Crawford, Fronefield; Possenti, Andrea; McLaughlin, Maura A; Freire, Paulo

    2013-01-01

    We present X-ray observations of the ``redback'' eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $\\gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $\\gamma$-ray point source, due to the strong Galactic diffuse emission at i...

  7. Pulsar B2224+65 and Jets: A Two Epoch X-ray Analysis

    CERN Document Server

    Johnson, S P

    2010-01-01

    We present an X-ray morphological and spectroscopic study of the pulsar B2224+65 and its apparent jet-like X-ray features based on two epoch Chandra observations. The main X-ray feature, which shows a large directional offset from the ram-pressure confined pulsar wind nebula (Guitar Nebula), is broader in apparent width and more luminous in the second epoch than the first. Furthermore, the sharp leading edge is found to have a proper motion consistent with that of the pulsar (~180 mas/yr). The combined data set also provides evidence for the presence of a counter feature, albeit substantially fainter and shorter than the main one. These results are consistent with a simple model of relativistic jet outflow originating from the pulsar and ram-pressure confined by the unusually rapid motion of the pulsar.

  8. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    NARCIS (Netherlands)

    N. Degenaar; A. Patruno; R. Wijnands

    2012-01-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a s

  9. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    CERN Document Server

    Postnov, K A; Klochkov, D; Laplace, E; Lukin, V V; Shakura, N I

    2015-01-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as $F_{5-12\\mathrm{keV}}/ F_{1.33-3\\mathrm{keV}}$ increases with the ASM flux (1.33--12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range $\\sim(3-7)\\times10^{37}$~erg~s$^{-1}$. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates $\\dot M$ ranging from $10^{17}$ to 1.2$\\times 10^{18}$~g s$^{-1}$. The observed spectral behaviour in the transient X-ray pulsars with increasing $\\dot M$ can be reproduced by a Compton saturated sidewall emission from optically thick magnetized accretion columns with taking into a...

  10. On the disruption of pulsar and X-ray binaries in globular clusters

    CERN Document Server

    Verbunt, Frank

    2013-01-01

    The stellar encounter rate Gamma has been shown to be strongly correlated with the number of X-ray binaries in clusters and also to the number of radio pulsars. However, the pulsar populations in different clusters show remarkably different characteristics: in some GCs the population is dominated by binary systems, in others by single pulsars and exotic systems that result from exchange encounters. In this paper, we describe a second dynamical parameter for globular clusters, the encounter rate for a single binary, gamma. We find that this parameter provides a good characterization of the differences between the pulsar populations of different globular clusters. The higher gamma is for any particular globular cluster the more isolated pulsars and products of exchange interactions are observed. Furthermore, we also find that slow and "young" pulsars are found almost exclusively in clusters with a high gamma; this suggests that these kinds of objects are formed by the disruption of X-ray binaries, thus halting ...

  11. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, Slavko [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Esposito, Paolo [INAF-IASF Milano, via East Bassini 15, I-20133 Milano (Italy); Crawford III, Fronefield [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Possenti, Andrea [INAF-Osservatorio Astronomico di Cagliari, Loc. Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); McLaughlin, Maura A. [Department of Physics and Astronomy, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Freire, Paulo, E-mail: slavko@astro.columbia.edu [Max-Planck-Institut für Radioastronomie, D-53121 Bonn (Germany)

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  12. Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars?

    CERN Document Server

    Tong, H

    2014-01-01

    Magnetars and many of the magnetar-related objects are summarized together and discussed. It is shown that there is an abuse of language in the use of "magnetar". Anomalous X-ray pulsars and soft gamma-ray repeaters are well-known magnetar candidates. The current so called anti-magnetar (for central compact objects), accreting magnetar (for superslow X-ray pulsars in high mass X-ray binaries), and millisecond magnetar (for the central engine of some gamma-ray bursts), they may not be real magnetars in present understandings. Their observational behaviors are not caused by the magnetic energy. Many of them are just neutron stars with strong surface dipole field. A neutron star plus strong dipole field is not a magnetar. The characteristic parameters of the neutron stars for the central engine of some gamma-ray bursts are atypical from the neutron stars in the Galaxy. Possible signature of magnetic activities in accreting systems are discussed, including repeated bursts and a hard X-ray tail. China's future har...

  13. On the connection between accreting X-ray and radio millisecond pulsars

    CERN Document Server

    Tauris, T M

    2012-01-01

    For many years it has been recognized that the terminal stages of mass transfer in a low-mass X-ray binary (LMXB) should cause the magnetosphere of the accreting neutron star to expand, leading to a braking torque acting on the spinning pulsar. After the discovery of radio millisecond pulsars (MSPs) it was therefore somewhat a paradox (e.g. Ruderman et al. 1989) how these pulsars could retain their fast spins following the Roche-lobe decoupling phase, RLDP. Here I present a solution to this so-called "turn-off problem" which was recently found by combining binary stellar evolution models with torque computations (Tauris 2012). The solution is that during the RLDP the spin equilibrium of the pulsar is broken and therefore it remains a fast spinning object. I briefly discuss these findings in view of the two observed spin distributions in the populations of accreting X-ray millisecond pulsars (AXMSPs) and radio MSPs.

  14. Suzaku view of Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    CERN Document Server

    Jaisawal, Gaurava K; Epili, Prahlad

    2016-01-01

    We report the timing and spectral properties of Be/X-ray binary pulsar GX 304-1 by using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ~275 s were clearly detected in the light curves from both the observations. Pulse profiles were found to be strongly energy-dependent. During 2010 observation, prominent dips seen in soft X-ray ($\\leq$10 keV) pulse profiles were found to be absent at higher energies. However, during 2012 observation, the pulse profiles were complex due to the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies ($>$35 keV). A phase shift of $\\sim$0.3 was detected while comparing the phase of main dip in pulse profiles below and above $\\sim$35 keV. Broad-band energy spectrum of pulsar was well described by a partially absorbed Negative and Positive power-law with Exponential cutoff (NPEX) model with 6.4 keV iron line and a cyclotron absorption feature. Energy of cyclotron absorption line...

  15. Orbit determination using incremental phase and TDOA of X-ray pulsar

    Institute of Scientific and Technical Information of China (English)

    Rong JIAO; Lu-ping XU‡; Hua ZHANG; Cong LI

    2016-01-01

    X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time dif-ference of arrival (TDOA). Then, a weighted least squares (WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.

  16. On the dependence of the X-ray continuum variations with luminosity in accreting X-ray pulsars

    Science.gov (United States)

    Postnov, K. A.; Gornostaev, M. I.; Klochkov, D.; Laplace, E.; Lukin, V. V.; Shakura, N. I.

    2015-09-01

    Using RXTE/ASM archival data, we investigate the behaviour of the spectral hardness ratio as a function of X-ray luminosity in a sample of six transient X-ray pulsars (EXO 2030+375, GX 304-1, 4U 0115+63, V 0332+63, A 0535+26 and MXB 0656-072). In all sources we find that the spectral hardness ratio defined as F5-12 keV/F1.33-3 keV increases with the ASM flux (1.33-12 keV) at low luminosities and then saturates or even slightly decreases above some critical X-ray luminosity falling into the range ˜(3-7) × 1037 erg s-1. Two-dimensional structure of accretion columns in the radiation-diffusion limit is calculated for two possible geometries (filled and hollow cylinder) for mass accretion rates dot{M} ranging from 1017 to 1.2 × 1018 g s-1. The observed spectral behaviour in the transient X-ray pulsars with increasing dot{M} can be reproduced by a Compton-saturated sidewall emission from optically thick magnetized accretion columns with taking into account the emission reflected from the neutron star atmosphere. At dot{M} above some critical value dot{M}_cr˜ (6-8)× 10^{17} g s-1, the height of the column becomes such that the contribution of the reflected component to the total emission starts decreasing, which leads to the saturation and even slight decrease of the spectral hardness. Hollow-cylinder columns have a smaller height than the filled-cylinder ones, and the contribution of the reflected component in the total emission does not virtually change with dot{M} (and hence the hardness of the continuum monotonically increases) up to higher mass accretion rates than dot{M}_cr for the filled columns.

  17. Towards Practical Deep-Space Navigation using X-ray Pulsar Timing

    Science.gov (United States)

    Shemar, Setnam; Fraser, George; Heil, Lucy; Hindley, David; Martindale, Adrian; Molyneux, Philippa; Pye, John P.; Warwick, Robert; Lamb, Andrew

    2015-08-01

    We describe a recent study, conducted by the National Physical Laboratory and the University of Leicester for the European Space Agency, on the feasibility of using X-ray timing observations of pulsars for deep space navigation, a technique commonly referred to as ‘XNAV’. We have considered all primary aspects of the ‘system’, i.e. suitable pulsars and their sky distribution, available and future instrumentation, navigation methods and algorithms, and overall performance (e.g. position accuracy). We have used simulations to identify the best combinations of navigation method and X-ray pulsars with respect to predicted performance, taking account of current and future X-ray instrumentation. The XNAV technique would allow increased spacecraft autonomy, improved position accuracies and lower mission operating costs compared to the NASA and ESA Deep Space Networks (DSN). We have also used a high-level navigation algorithm together with real data (from the RXTE mission archive) for the Crab pulsar to demonstrate key elements of XNAV. X-ray instrumentation suitable for use as a spacecraft operational subsystem must be designed to use only modest spacecraft resources. We show that instrumentation designed for the Mercury Imaging X-ray Spectrometer, in production for the ESA/JAXA BepiColombo mission to Mercury, offers a roadmap for a practical XNAV system. We identify key areas for future study.

  18. X-ray Observations of Disrupted Recycled Pulsars: No Refuge for Orphaned Central Compact Objects

    CERN Document Server

    Gotthelf, E V; Allen, B; Knispel, B

    2013-01-01

    We present a Chandra X-ray survey of the disrupted recycled pulsars (DRPs), isolated radio pulsars with P > 20 ms and B_s 1E4 - 1E5 yr, roughly 10 times the ages of the approximately 10 known CCOs in a similar volume of the Galaxy. The order of a hundred CCO descendants that could be detected by this method are thus either intrinsically radio quiet, or occupy a different region of (P,B_s) parameter space from the DRPs. This motivates a new X-ray search for orphaned CCOs among radio pulsars with larger B-fields, which could verify the theory that their fields are buried by fall-back of supernova ejecta, but quickly regrow to join the normal pulsar population.

  19. Long-Term X-ray Monitoring of the Young Pulsar PSR B1509-58

    CERN Document Server

    Livingstone, Margaret A

    2011-01-01

    It has long been thought that the pulsed X-ray properties of rotation-powered pulsars are stable on long time scales. However, long-term, systematic studies of individual sources have been lacking. Furthermore, dramatic X-ray variability has now been observed from two pulsars having inferred sub-critical dipole magnetic fields. Here we present an analysis of the long-term pulsed X-ray properties of the young, energetic pulsar PSR B1509-58 using data from the Rossi X-ray Timing Explorer. We measured the 2-50 keV pulsed flux for 14.7 yr of X-ray observations and found that it is consistent with being constant on all relevant time scales, and place a 3 sigma upper limit on day-to-week variability of <28%. In addition, we searched for magnetar-like X-ray bursts in all observations and found none, which we use to constrain the measurable burst rate to less than one per 750 ks of observations. We also searched for variability in the pulse profile and found that it is consistent with being stable on time scales o...

  20. X-ray observations and the search for Fermi-LAT gamma-ray pulsars

    CERN Document Server

    Parkinson, P M Saz; Caraveo, P; De Luca, A; Marelli, M

    2013-01-01

    The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $\\gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.

  1. UV emission from young and middle-aged pulsars: Connecting X-rays with the optical

    CERN Document Server

    Kargaltsev, O

    2006-01-01

    We present the UV spectroscopy and timing of three nearby pulsars (Vela, B0656+14 and Geminga) recently observed with the Space Telescope Imaging Spectrograph. We also review the optical and X-ray properties of these pulsars and establish their connection with the UV properties. We show that the multiwavelengths properties of neutron stars (NSs) vary significantly within the sample of middle-aged pulsars. Even larger differences are found between the thermal components of Ge-minga and B0656+14 as compared to those of radio-quiet isolated NSs. These differences could be attributed to different properties of the NS surface layers.

  2. X-RAY OBSERVATIONS OF DISRUPTED RECYCLED PULSARS: NO REFUGE FOR ORPHANED CENTRAL COMPACT OBJECTS

    International Nuclear Information System (INIS)

    We present a Chandra X-ray survey of the disrupted recycled pulsars (DRPs), isolated radio pulsars with P > 20 ms and Bs 10 G. These observations were motivated as a search for the immediate descendants of the ≈10 central compact objects (CCOs) in supernova remnants (SNRs), 3 of which have similar timing and magnetic properties as the DRPs, but are bright, thermal X-ray sources consistent with minimal neutron star (NS) cooling curves. Since none of the DPRs were detected in this survey, there is no evidence that they are ''orphaned'' CCOs, NSs whose SNRs has dissipated. Upper limits on their thermal X-ray luminosities are in the range of log Lx [erg s–1] = 31.8-32.8, which implies cooling ages >104-105 yr, roughly 10 times the ages of the ≈10 known CCOs in a similar volume of the Galaxy. The order of a hundred CCO descendants that could be detected by this method are thus either intrinsically radio quiet or occupy a different region of (P, Bs ) parameter space from the DRPs. This motivates a new X-ray search for orphaned CCOs among radio pulsars with larger B-fields, which could verify the theory that their fields are buried by the fall-back of supernova ejecta, but quickly regrow to join the normal pulsar population

  3. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  4. Denoising of X-ray pulsar observed profile in the undecimated wavelet domain

    Science.gov (United States)

    Xue, Meng-fan; Li, Xiao-ping; Fu, Ling-zhong; Liu, Xiu-ping; Sun, Hai-feng; Shen, Li-rong

    2016-01-01

    The low intensity of the X-ray pulsar signal and the strong X-ray background radiation lead to low signal-to-noise ratio (SNR) of the X-ray pulsar observed profile obtained through epoch folding, especially when the observation time is not long enough. This signifies the necessity of denoising of the observed profile. In this paper, the statistical characteristics of the X-ray pulsar signal are studied, and a signal-dependent noise model is established for the observed profile. Based on this, a profile noise reduction method by performing a local linear minimum mean square error filtering in the un-decimated wavelet domain is developed. The detail wavelet coefficients are rescaled by multiplying their amplitudes by a locally adaptive factor, which is the local variance ratio of the noiseless coefficients to the noisy ones. All the nonstationary statistics needed in the algorithm are calculated from the observed profile, without a priori information. The results of experim! ents, carried out on simulated data obtained by the ground-based simulation system and real data obtained by Rossi X-Ray Timing Explorer satellite, indicate that the proposed method is excellent in both noise suppression and preservation of peak sharpness, and it also clearly outperforms four widely accepted and used wavelet denoising methods, in terms of SNR, Pearson correlation coefficient and root mean square error.

  5. The soft quiescent spectrum of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on the quiescent X-ray properties of the recently discovered transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5. Using two archival Chandra observations, we demonstrate that the quiescent spectrum of this neutron star low-mass X-ray binary is soft and can be fit to a

  6. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from milli-second pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar lightcurve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  7. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  8. Identification of the Periodic Hard X-Ray Transient GRO J1849-03 with the X-Ray Pulsar GS 1843-02 = X1845-024 - a New Be/X-Ray Binary

    OpenAIRE

    Soffitta, P.; Tomsick, J. A.; Harmon, B.A.; Costa, E.; Ford, E. C.; M. Tavani(IASF of Rome/INAF); Zhang, S.N.; Kaaret, P.

    1997-01-01

    We identify the periodic transient hard X-ray source GRO J1849-03 with the transient x-ray pulsar GS 1843-02 = X1845-024 based on the detection of x-ray outbursts from X1845-024 coincident with hard x-ray outbursts of GRO J1849--03. Based on its spin period of 94.8 s and its orbital period of 241 days, we classify the system as a Be/X-ray binary.

  9. The dynamic X-ray nebula powered by the pulsar B1259-63

    Energy Technology Data Exchange (ETDEWEB)

    Kargaltsev, Oleg; Volkov, Igor; Hare, Jeremy [George Washington University, Washington, DC 20052 (United States); Pavlov, George G. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16801 (United States); Durant, Martin, E-mail: kargaltsev@gwu.edu [Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 2J7 (Canada)

    2014-04-01

    We present observations of the eccentric γ-ray binary B1259-63/LS 2883 with the Chandra X-ray Observatory. The images reveal a variable, extended (about 4'', or ∼1000 times the binary orbit size) structure, which appears to be moving away from the binary with the velocity of 0.05 of the speed of light. The observed emission is interpreted as synchrotron radiation from relativistic particles supplied by the pulsar. However, the fast motion through the circumbinary medium would require the emitting cloud to be loaded with a large amount of baryonic matter. Alternatively, the extended emission can be interpreted as a variable extrabinary shock in the pulsar wind outflow launched near binary apastron. The resolved variable X-ray nebula provides an opportunity to probe pulsar winds and their interaction with stellar winds in a previously inaccessible way.

  10. Why are millisecond pulsar magnetic fields low and how do their X-rays arise?

    Science.gov (United States)

    Webb, Natalie

    2006-10-01

    Binary millisecond pulsars (MSPs) found in the field are thought to be recycled from accreting pulsars. These MSPs have short periods, low spindown rates (Pdot) and consequently low surface magnetic fields (Bs) as Bs is proportional to (Pdot P)^0.5. It is unclear, however, how the MSP surface magnetic field can evolve from the high fields observed in pulsars to the low MSP values. Two models have been proposed to explain this. Also, the origin of the high energy emission is unclear as too few MSP X-ray observations have been made to differentiate between competing models. With these XMM-Newton observations of four MSPs previously unobserved in X-rays, we will discriminate between differing models describing the magnetic field evolution and the high energy emission origin.

  11. Method and simulation for spacecraft clock correction based on x-ray pulsars signal

    Science.gov (United States)

    Gui, Xianzhou; Sun, Chen; Huang, Senlin

    2015-07-01

    X-ray pulsar-based spacecraft navigation comes to be a new kind of autonomous navigation technology with high potential, for the advantages of high reliability, good autonomy, high precision and wide applicability. Timing, determination of position and attitude are main prospects of using X-ray pulsars [1,2]. To realize the pulse signal timing, in this paper, a Phase-Locked Loop circuit for tracking pulsar signal frequency is designed; PLL is built in the Simulink environment and tested by using simple pulse signal to get circuit parameters with good track effect. The Crab Nebula pulse profile, which is used as the simulation signal source, is modelled by using the mathematical method [3]. The simulation results show that the PLL circuit designed in the paper can track the frequency of pulse signal precisely and can be used for spacecraft clock correction.

  12. On pulsar-driven mass ejection in low-mass X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Lei Fu; Xiang-Dong Li

    2011-01-01

    There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence.We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar,and the gas pressure at the inner Lagrange point or at the surrounding accretion disk.We calculate the critical spin period of the pulsar below which mass ejection is allowed.Combining with the evolution of the mass transfer rate,we present constraints on the orbital periods of the systems.We show that mass ejection could happen in both wide and compact LMXBs.It may be caused by transient accretion due to thermal instability in the accretion disks in the former,and irradiation-driven mass-transfer cycles in the latter.

  13. The 1997 event in the Crab Pulsar in X-rays

    Science.gov (United States)

    Vivekanand, M.

    2016-02-01

    Context. In October 1997, radio pulses from the Crab Pulsar underwent abnormal delay. This was reported by two radio observatories, both of which explained this frequency dependent and time varying delay as being due to refractive effects of ionized shells in the Crab Nebula. Both groups also noted that, curiously and confusingly coincident with the frequency dependent delay, the Crab Pulsar also underwent an unusual slowing down, which they believed to be unrelated to the Crab Nebula and instead intrinsic to the Crab Pulsar, resulting in an additional delay that was frequency independent. However, it now appears that one of the groups attributes the frequency independent delay also to refractive effects. Aims: This work aims to verify whether at least a part of the frequency independent delay is indeed due to intrinsic slowing down of the Crab Pulsar. Methods: Timing analysis of the Crab Pulsar's October 1997 event has been done in X-rays, which are not delayed by the refractive and diffractive effects that affect radio waves; at X-rays only the intrinsic slowing down should contribute to any observed delay. Data mainly from the PCA instrument aboard the RXTE satellite have been used, along with a small amount of data from the PDS instrument aboard the BeppoSAX satellite. Results: Analysis of the X-ray data, using the very accurate reference timing model derived at radio frequencies, strongly supports the intrinsic slowing down hypothesis. Analysis using the reference timing model derived self-consistently from the limited X-ray data, which is less accurate, is not completely unambiguous regarding the above two hypotheses, but provides reasonable support for the intrinsic slowing down hypothesis. Conclusions: A significant fraction of the frequency independent delay during the October 1997 event is indeed due to intrinsic slowing down of the Crab Pulsar.

  14. Spectral Modeling of the Comptonized Continua of Accreting X-Ray Pulsars: Recent Progress

    Science.gov (United States)

    Wolff, Michael T.; Becker, P. A.; Marcu, D.; Pottschmidt, K.; Wilms, J.; Wood, K. S.

    2014-01-01

    We are undertaking a program to analyze the X-ray spectra of the accretion flows onto strongly magnetic neutron stars in high mass binary systems such as Her X-1, Cen X-3, and LMC X-4. These accreting pulsars typically have X-ray spectra consisting of broad Comptonized cutoff power-laws. Current theory suggests these X-ray spectra result from the impact of the high-velocity magnetically channeled plasma accretion flows onto the surfaces of the neutron stars. The flows have such high energy density that shocks developing in the plasmas can be radiation-dominated. These X-ray pulsars often, but not always, show cyclotron resonant scattering features implying neutron star surface magnetic field strengths above 10^12 G. Over the past few years a number of studies have reported both positive and negative correlations of the cyclotron line energy centroids with X-ray luminosity in a number of pulsars. However, the detailed analysis of the cyclotron line centroids suffers from the lack of a robust model for the Comptonized X-ray continuum upon which the cyclotron lines are superposed. We discuss in this presentation our progress in developing tools for the analysis of the X-ray spectra formed in these systems. The range of parameter conditions presented by the many known real accreting pulsar systems substantially exceeds that of the limited set of pulsars on which the original analytic model of Becker and Wolff (2007) was validated. In the high temperature optically thick plasmas, the processes of bremsstrahlung emission from the hot plasma, black body emission from a thermal mound near the neutron star surface, and cyclotron emission from electrons in the first Landau excited state, all contribute to the total local photon population in the shock structure. We discuss our strategy for numerically accounting for the relative contribution to the full X-ray spectrum made by each of these physical processes. Solving for the integrated spectrum involves numerical

  15. A new model for the X-ray continuum of the magnetized accreting pulsars

    CERN Document Server

    Farinelli, R; Bozzo, E; Becker, P A

    2016-01-01

    Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high statistical quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models, rather than models linked to the physics of accretion. In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku+NuStar data, together with an advanced version of the compmag model. The latter provides a physical description of the high energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been impr...

  16. Suzaku Observation of Be/X-ray Binary Pulsar EXO 2030+375

    CERN Document Server

    Naik, Sachindra

    2014-01-01

    In this paper we study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a $Suzaku$ observation on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s which suggests that the pulsar is spinning-up. The pulse profiles were found to be peculiar e.g. unlike that obtained from the earlier Suzaku observation on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broad-band spectrum of the pulsar was found to be well described by three continuum models such as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high-energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. U...

  17. X-ray Spectroscopy of the High Mass X-ray Binary Pulsar Centaurus X-3 over its Binary Orbit

    CERN Document Server

    Naik, Sachindra; Ali, Zulfikar

    2011-01-01

    We present a comprehensive spectral analysis of the high mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as ~40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high energy cut-off and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by the presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2--3 with significant increase in the line...

  18. Superorbital Period Variations in the X-ray Pulsar LMC X-4

    Indian Academy of Sciences (India)

    B. Paul; S. Kitamoto

    2002-03-01

    We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third period in this system ( ∼ 30.3 day, $\\dot{P}$ ∼ -2 × 10-5 s s-1). Along with this result, a comparison of the superorbital intensity variations in LMC X-4, Her X-1 and SMC X-1 is also presented.

  19. Comptonization in the accretion column of the X-ray pulsar GX~1+4

    OpenAIRE

    Galloway, D. K.

    2000-01-01

    X-ray observations of the binary pulsar GX 1+4 made using the Rossi X-ray Timing Explorer (RXTE) satellite between February 1996 and May 1997 were analysed to quantify source spectral variation with luminosity. Mean Proportional Counter Array (PCA) spectra over the range 2-40 keV are best fitted with a Comptonization model, with source spectrum temperature T_0 approx 1-1.3 keV, plasma temperature T_e approx 6-10 keV, and optical depth tau approx 2-6. The range of fitted T_0 was consistent wit...

  20. Settling accretion onto slowly rotating X-ray pulsars

    CERN Document Server

    Shakura, N I; Kochetkova, A Yu; Hjalmarsdotter, L

    2013-01-01

    Quasi-spherical subsonic accretion onto slowly rotating magnetized NS is considered, when the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum transfer to/from the rotating NS magnetosphere by large-scale convective motions, which lead to an almost iso-angular-momentum rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability while taking cooling into account. The settling regime of accretion is possible for moderate X-ray luminosities L <4 10^36 erg/s. At higher luminosities a free-fall gap above the NS magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of spin-up/spin-down rates of wind accreting equilibrium XPSRs with known orbital periods (GX 301-2, Vela X-1), the main dimensionless parameters of the model and be determin...

  1. X-ray bounds on the r-mode amplitude in millisecond pulsars

    CERN Document Server

    Schwenzer, Kai; Güver, Tolga; Vurgun, Eda

    2016-01-01

    r-mode astroseismology provides a unique way to study the internal composition of compact stars. Due to their precise timing, recycled millisecond radio pulsars present a particularly promising class of sources. Although their thermal properties are still poorly constrained, X-ray data is very useful for astroseismology since r-modes could strongly heat a star. Using known and new upper bounds on the temperatures and luminosities of several non-accreting millisecond radio pulsars we derive bounds on the r-mode amplitude as low as $\\alpha\\lesssim10^{-8}$ and discuss the impact on scenarios for their internal composition.

  2. Accretion regimes in the X-ray pulsar 4U 1901+03

    CERN Document Server

    Reig, P

    2016-01-01

    The source 4U 1901+03 is a high-mass X-ray pulsar than went into outburst in 2003. Observation performed with the Rossi X-ray Timing Explorer showed spectral and timing variability, including the detection of flares, quasi-periodic oscillations, complex changes in the pulse profiles, and pulse phase dependent spectral variability. We re-analysed the data covering the 2003 X-ray outburst and focused on several aspects of the variability that have not been discussed so far. These are the 10 keV feature and the X-ray spectral states and their association with accretion regimes, including the transit to the propeller state at the end of the outburst. We find that 4U 1901+03 went through three accretion regimes over the course of the X-ray outburst. At the peak of the outburst and for a very short time, the X-ray flux may have overcome the critical limit that marks the formation of a radiative shock at a certain distance above the neutron star surface. Most of the time, however, the source is in the subcritical re...

  3. A Quick Method of Phase Ambiguity Resolution with X-Ray Pulsar Navigation

    Directory of Open Access Journals (Sweden)

    Xuerui Li

    2012-09-01

    Full Text Available In this study, we proposes a quick resolution method based on space search method which is based on least square method, space search method and ambiguity covariance method. The results of simulation indicate that this method can effectively improve the speed and efficiency of phase ambiguity resolution and has some certain reference value to the researches which is related to X-ray pulsar navigation.

  4. Thermonuclear Burning on the Accreting X-Ray Pulsar GRO J1744-28

    CERN Document Server

    Bildsten, L; Bildsten, Lars; Brown, Edward F.

    1996-01-01

    We investigate the thermal stability of nuclear burning on the accreting X-ray pulsar GRO J1744-28. The neutron star's dipolar magnetic field is 50 years. We also discuss the nature of the binary and point out that a velocity measurement of the stellar companion (most likely a Roche-lobe filling giant with m_K>17) will constrain the neutron star mass.

  5. X-ray pulsars/Doppler integrated navigation for Mars final approach

    Science.gov (United States)

    Cui, Pingyuan; Wang, Shuo; Gao, Ai; Yu, Zhengshi

    2016-05-01

    The performance of the navigation system during the Mars final approach phase determines the initial accuracy of Mars entry phase, which is critical for a pin-point landing. An X-ray pulsars/Doppler integrated navigation strategy is proposed to improve the estimation accuracy of the spacecraft's entry state, as well as to enhance the autonomy, real-time and reliability. The navigation system uses the X-ray pulsar measurements and Doppler velocity measurements which are complementary to each other. The performance degradation in velocity estimation at the end of the final approach phase for X-ray pulsar based navigation can thus be eliminated. The nonlinearity of the system and the performance of Extended Kalman Filter are analyzed in this paper. Furthermore, in order to optimize the navigation scheme, a principle for navigation beacons selection based on the Fisher information matrix is used. Finally, a navigation scenario based on the 2012 encounter at Mars of Mars Science Laboratory spacecraft is considered to demonstrate the feasibility and accuracy of the proposed scheme. Simulation results also indicate that the proposed navigation scheme has reference value for the design of the future Mars explorations.

  6. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    Science.gov (United States)

    Ikhsanov, N. R.; Mereghetti, S.

    2015-12-01

    We explore the possibility of explaining the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud (SMC) within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion on to a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-Keplerian magnetically levitating disc which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ˜1011-1013 G inferred from cyclotron features of Galactic high-mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.

  7. The X-ray Pulsar M82 X-2 on its Propeller Line

    CERN Document Server

    Christodoulou, D M; Laycock, S G T

    2016-01-01

    {\\it NuSTAR} has detected pulsations from the ultraluminous X-ray source X-2 in M82 and archival {\\it Chandra} observations have given us a good idea of its duty cycle. The newly discovered pulsar exhibited at least 4 super-Eddington outbursts in the past 15 years but, in its lowest-power state, it radiates just below the Eddington limit and its properties appear to be typical of high-mass X-ray binaries. M82 X-2 has been described as a common neutron star with a 1~TG magnetic field that occasionally accretes above the Eddington rate and as a magnetar-like pulsar with a 10-100~TG magnetic field that reaches above the quantum limit. We argue in favor of the former interpretation. Using standard accretion theory and the available observations, we calculate the stellar magnetic field of this pulsar in two independent ways and we show that it cannot exceed 3~TG in either case. We discuss the implications of our results for other ultraluminous X-ray sources that occasionally exhibit similar powerful outbursts.

  8. Performance enhancement of X-ray pulsar navigation using autonomous optical sensor

    Science.gov (United States)

    Kai, Xiong; Chunling, Wei; Liangdong, Liu

    2016-11-01

    This paper develops an integrated navigation method based on the X-ray pulsar navigation (XNAV) system and an autonomous optical navigation system for spacecrafts. The X-ray pulsar navigation is implemented by using the difference between the measured and predicated pulse arrival time, which is calculated by comparing an observed pulse profile with a standard pulse profile. A problem arises from the X-ray signal processing in that the spacecraft's orbit information, which may be unknown, is required to construct the observed pulse profile. The effect of the spacecraft orbit error on the accuracy of the pulse TOA (time of arrival) difference determination is analyzed. It is specified that the performance of the XNAV system may be degraded in the presence of large orbit error. In order to improve the navigation accuracy, an integrated navigation scheme is presented by fusing the measurement information of a X-ray detector and an ultraviolet optical sensor. The XNAV/optical integrated navigation system is effective to mitigate the effect of the spacecraft orbit error. The superiority of the presented scheme is illustrated through numerical simulations.

  9. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    CERN Document Server

    Weisskopf, Martin C; Yakovlev, Dmitry G; Harding, Alice; Zavlin, Vyacheslav E; O'Dell, Stephen L; Elsner, Ronald F; Becker, Werner

    2011-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = $(5.28 \\pm 0.28)\\times10^{-4}$ ($4.9 \\times10^{-4}$ is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find $\\tau_{\\rm scat} = 0.147 \\pm 0.043$. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at...

  10. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    Science.gov (United States)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  11. A broadband x-ray study of the Geminga pulsar with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mori, Kaya; Gotthelf, Eric V.; Dufour, Francois;

    2014-01-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband...

  12. A new model for the X-ray continuum of the magnetized accreting pulsars

    Science.gov (United States)

    Farinelli, Ruben; Ferrigno, Carlo; Bozzo, Enrico; Becker, Peter A.

    2016-06-01

    Context. Accreting highly magnetized pulsars in binary systems are among the brightest X-ray emitters in our Galaxy. Although a number of high-quality broad-band (0.1-100 keV) X-ray observations are available, the spectral energy distribution of these sources is usually investigated by adopting pure phenomenological models rather than models linked to the physics of accretion. Aims: In this paper, a detailed spectral study of the X-ray emission recorded from the high-mass X-ray binary pulsars Cen X-3, 4U 0115+63, and Her X-1 is carried out by using BeppoSAX and joined Suzaku +NuStar data, together with an advanced version of the compmag model, which provides a physical description of the high-energy emission from accreting pulsars, including the thermal and bulk Comptonization of cyclotron and bremsstrahlung seed photons along the neutron star accretion column. Methods: The compmag model is based on an iterative method for solving second-order partial differential equations, whose convergence algorithm has been improved and consolidated during the preparation of this paper. Results: Our analysis shows that the broad-band X-ray continuum of all considered sources can be self-consistently described by the compmag model. The cyclotron absorption features (not included in the model) can be accounted for by using Gaussian components. From the fits of the compmag model to the data we inferred the physical properties of the accretion columns in all sources, finding values reasonably close to those theoretically expected according to our current understanding of accretion in highly magnetized neutron stars. Conclusions: The updated version of the compmag model has been tailored to the physical processes that are known to occur in the columns of highly magnetized accreting neutron stars and it can thus provide a better understanding of the high-energy radiation from these sources. The availability of broad-band high-quality X-ray data, such as those provided by BeppoSAX in

  13. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    Science.gov (United States)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in

  14. Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015

    CERN Document Server

    Li, K L; Lin, L C C; Kong, Albert K H

    2016-01-01

    We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals (TOAs) analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipses or an ionized high-density shadow wind near the companion's surface. Finally, we propose that an outflow driven by the radiation pressure from day ~10 played an important role in the X-ray/optical evolution of the outburst.

  15. Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    Science.gov (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dimitry G.; Harding, Alice; Zavlin, Vyacheslav E.; Elsner, Ronald F.; Becker, Werner

    2012-01-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (5.28+\\-0.28) x 10(exp -4) (4.9 x 10(exp -4) is solar abundance). \\rVe also measure for the first time the impact of scattering of flux out of the image by interstellar grains. \\rYe find T(sub scat) = 0.147+/-0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum - albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We compare these spectral variations to those observed in Gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data were also used to set new. and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere.

  16. The accreting millisecond X-ray pulsar IGR J00291+5934: evidence for a long timescale spin evolution

    NARCIS (Netherlands)

    A. Patruno

    2010-01-01

    Accreting millisecond X-ray pulsars like IGR J00291+5934 are important because they can be used to test theories of pulsar formation and evolution. They give also the possibility of constraining gravitational wave emission theories and the equation of state of ultra-dense matter. Particularly crucia

  17. The slowest spinning X-ray pulsar in an extragalactic globular cluster

    CERN Document Server

    Zolotukhin, Ivan; Sartore, Nicola; Chilingarian, Igor; Webb, Natalie A

    2016-01-01

    Neutron stars are thought to be born rapidly rotating and then exhibit a phase of a rotation-powered pulsations as they slow down to 1-10 s periods. The significant population of millisecond pulsars observed in our Galaxy is explained by the recycling concept: during an epoch of accretion from a donor star in a binary system, the neutron star is spun up to millisecond periods. However, only a few pulsars are observed during this recycling process, with relatively high rotational frequencies. Here we report the detection of an X-ray pulsar with $P_{\\rm spin} = 1.20$ s in the globular cluster B091D in the Andromeda galaxy, the slowest pulsar ever found in a globular cluster. This bright (up-to 30% of the Eddington luminosity), high spin-up rate pulsar, persistent over the 12 years of observations, must have started accreting less than 1 Myr ago and has not yet had time to accelerate to hundreds of Hz. The neutron star in this unique wide binary with an orbital period $P_{\\rm orb} = 30.5$ h in a 12 Gyr old, meta...

  18. The 1997 Event in the Crab Pulsar in X-rays

    CERN Document Server

    Vivekanand, M

    2016-01-01

    In October 1997, radio pulses from the Crab Pulsar underwent abnormal delay. This was reported by two radio observatories, both of which explained this frequency dependent and time varying delay as being due to refractive effects of ionized shells in the Crab Nebula. Both groups also noted that, curiously and confusingly coincident with the frequency dependent delay, the Crab Pulsar also underwent an unusual slowing down, which they believed to be unrelated to the Crab Nebula and instead intrinsic to the Crab Pulsar, resulting in an additional delay that was frequency independent. However, it now appears that one of the groups attributes the frequency independent delay also to refractive effects. This work aims to verify whether at least a part of the frequency independent delay is indeed due to intrinsic slowing down of the Crab Pulsar. Timing analysis of the Crab Pulsar's October 1997 event has been done in X-rays, which are not delayed by the refractive and diffractive effects that affect radio waves; at X...

  19. Towards practical autonomous deep-space navigation using X-Ray pulsar timing

    Science.gov (United States)

    Shemar, Setnam; Fraser, George; Heil, Lucy; Hindley, David; Martindale, Adrian; Molyneux, Philippa; Pye, John; Warwick, Robert; Lamb, Andrew

    2016-07-01

    We investigate the feasibility of deep-space navigation using the highly stable periodic signals from X-ray pulsars in combination with dedicated instrumentation on the spacecraft: a technique often referred to as `XNAV'. The results presented are based on the outputs from a study undertaken for the European Space Agency. The potential advantages of this technique include increased spacecraft autonomy and lower mission operating costs. Estimations of navigation uncertainties have been obtained using simulations of different pulsar combinations and navigation strategies. We find that the pulsar PSR B1937 + 21 has potential to allow spacecraft positioning uncertainties of ~2 and ~5 km in the direction of the pulsar after observation times of 10 and 1 h respectively, for ranges up to 30 AU. This could be achieved autonomously on the spacecraft using a focussing X-ray instrument of effective area ~50 cm2 together with a high performance atomic clock. The Mercury Imaging X-ray Spectrometer (MIXS) instrument, due to be launched on the ESA/JAXA BepiColombo mission to Mercury in 2018, is an example of an instrument that may be further developed as a practical telescope for XNAV. For a manned mission to Mars, where an XNAV system could provide valuable redundancy, observations of the three pulsars PSR B1937 + 21, B1821-24 and J0437-4715 would enable a three-dimensional positioning uncertainty of ~30 km for up to 3 months without the need to contact Earth-based systems. A lower uncertainty may be achieved, for example, by use of extended observations or, if feasible, by use of a larger instrument. X-ray instrumentation suitable for use in an operational XNAV subsystem must be designed to require only modest resources, especially in terms of size, mass and power. A system with a focussing optic is required in order to reduce the sky and particle background against which the source must be measured. We examine possible options for future developments in terms of simpler, lower

  20. Chandra Phase-resolved X-Ray Spectroscopy of the Crab Pulsar

    Science.gov (United States)

    Weisskopf, Martin C.; Tennant, Allyn F.; Yakovlev, Dmitry G.; Harding, Alice; Zavlin, Vyacheslav E.; O'Dell, Stephen L.; Elsner, Ronald F.; Becker, Werner

    2011-12-01

    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-Ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line of sight to the Crab is underabundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms et al. we find [O/H] = (5.28 ± 0.28) × 10-4 (4.9 × 10-4 is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find τscat = 0.147 ± 0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum—albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We also compare these spectral variations to those observed in gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data are also used to set new, and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere. We discuss how such data are best connected to theoretical models of neutron star cooling and neutron star interiors. The data restrict the neutrino emission rate in the pulsar core and the amount of light elements in the heat-blanketing envelope. The observations allow the pulsar

  1. Transient pulsar dynamics in hard x-rays: Prognoz 9 and GRIF "Mir" space experiments data

    CERN Document Server

    Kudryavtsev, M I; Bogomolov, V V

    2006-01-01

    The long-term observations of the Galactic Centre as well as the Galactic anti-Centre regions in hard X-rays (10-300 keV) were made in experiments on board Prognoz-9 satellite and "Mir" orbital station (GRIF experiment). Some transient pulsars including A0535+262, GS1722-36, 4U1145-619, A1118-615, EXO2030+37, Sct X-1, SAX J2103.5+4545, IGR 16320-4751, IGR 16465-4507 were observed. The pulsation flux components of A0535+26 and GS1722-36 X-ray emission were revealed at significant level. For other observed pulsars the upper limits of pulsation intensity were obtained. The mean pulsation profiles of A0535+26 in different energy ranges as well as the energy spectra were obtained at different stages of outburst decreasing. The pulsation intensity-period behavior does not contradict the well-known correlation between spin-up rate and X-ray flux, while the stable character of the energy spectrum power index indicates on the absence of thermal component. The energy spectrum and mean pulsation profiles were also obtai...

  2. Nonthermal emission model of isolated X-ray pulsar RX J0420.0-5022

    CERN Document Server

    Chkheidze, Nino

    2013-01-01

    In the present paper an alternative theoretical interpretation to the generally assumed thermal emission models of the observed X-ray spectrum of isolated pulsar RX J0420.0-5022 is presented. It is well known that the distribution function of relativistic particles is one-dimensional at the pulsar surface. However, cyclotron instability causes an appearance of transverse momenta of relativistic electrons, which as a result, start to radiate in the synchrotron regime. On the basis of the Vlasov's kinetic equation we study the process of the quasi-linear diffusion (QLD) developed by means of the cyclotron instability. This mechanism provides generation of optical and X-ray emission on the light cylinder lengthscales. The analysis of the three archival XMM-Newton observations of RX J0420.0-5022 is performed. Considering a different approach of the synchrotron emission theory, the spectral energy distribution is obtained that is in a good agreement with the observational data. A fit to the X-ray spectrum is perfo...

  3. Spin period evolution of the X-ray pulsar GX 1+4

    CERN Document Server

    González-Galán, A; Kretschmar, P; Larsson, S; Postnov, K; Kochetkova, A; Finger, M H

    2012-01-01

    We report on the long-term evolution of the spin period of the symbiotic X-ray pulsar GX 1+4 and a possible interpretation within a model of quasi-spherical accretion. New period measurements from BeppoSAX, INTEGRAL and Fermi observations have been combined with previously published data from four decades of observations. During the 1970s GX 1+4 was spinning up with the fastest rate among the known X-ray pulsars at the time. In the mid 1980s it underwent a change during a period of low X-ray ux and started to spin down with a rate similar in magnitude to the previous spin up rate. The spin period has changed from ~110 s to ~160 s within the last three decades. Our results demonstrate that the overall spin down trend continues and is stronger than ever. We compare the observations with predictions from a model assuming quasi-spherical accretion from the slow wind of the M giant companion.

  4. On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    CERN Document Server

    Ikhsanov, N R

    2015-01-01

    We explore the possibility to explain the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion onto a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-keplerian magnetically levitating disc (ML-disc) which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ~ 10^11- 10^13 G inferred from cyclotron features of Galactic high mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties r...

  5. The X-ray Counterpart of the High-B Pulsar PSR J0726-2612

    CERN Document Server

    Speagle, J S; van Kerkwijk, M H

    2011-01-01

    Middle-aged, cooling neutron stars are observed both as relatively rapidly spinning radio pulsars and as more slowly spinning, strongly magnetized isolated neutron stars (INSs), which stand out by their thermal X-ray spectra. The difference between the two classes may be that the INSs initially had much stronger magnetic fields, which decayed. To test this, we used the Chandra X-ray Observatory to observe 1RXS J072559.8-261229, a possible X-ray counterpart to PSR J0726-2612, which, with its 3.44s period and 3e13G inferred magnetic field strength, is the nearest and least extincted among the possible slowly-spinning, strong-field INS progenitors (it likely is in the Gould Belt, at ~1 kpc). We confirm the identification and find that the pulsar has a spectrum consistent with being purely thermal, with blackbody temperature kT=87+/-5 eV and radius R=5.7+2.6-1.3 km at a distance of 1 kpc. We detect sinusoidal pulsations at twice the radio period with a semi-amplitude of 27\\pm5%. The properties of PSR J0726-2612 s...

  6. On the origin of cyclotron lines in the spectra of X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Mushtukov A. A.

    2014-01-01

    Full Text Available Cyclotron resonance scattering features are observed in the spectra of some X-ray pulsars and show significant changes in the line energy with the pulsar luminosity. In a case of bright sources, the line centroid energy is anti-correlated with the luminosity. Such a behaviour is often associated with the onset and growth of the accretion column, which is believed to be the origin of the observed emission and the cyclotron lines. However, this scenario inevitably implies large gradient of the magnetic field strength within the line-forming region, and it makes the formation of the observed line-like features problematic. Moreover, the observed variation of the cyclotron line energy is much smaller than could be anticipated for the corresponding luminosity changes. We argue that a more physically realistic situation is that the cyclotron line forms when the radiation emitted by the accretion column is reflected from the neutron star surface. The idea is based on the facts that a substantial part of column luminosity is intercepted by the neutron star surface and the reflected radiation should contain absorption features. The reflection model is developed and applied to explain the observed variations of the cyclotron line energy in a bright X-ray pulsar V 0332+53 over a wide range of luminosities.

  7. Timing and Spectroscopy of Accreting X-ray Pulsars: the State of Cyclotron Line Studies

    CERN Document Server

    Heindl, W A; Coburn, W; Staubert, R; Wilms, J; Kreykenbohm, I; Kretschmar, P

    2004-01-01

    A great deal of emphasis on timing in the RXTE era has been on pushing toward higher and higher frequency phenomena, particularly kHz QPOs. However, the large areas of the RXTE pointed instruments provide another capability which is key for the understanding of accreting X-ray pulsars -- the ability to accumulate high quality spectra in a limited observing time. For the accreting X-ray pulsars, with their relatively modest spin frequencies, this translates into an ability to study broad band spectra as a function of pulse phase. This is a critical tool, as pulsar spectra are strong functions of the geometry of the "accretion mound" and the observers' viewing angle to the ~10^12 G magnetic field. In particular, the appearance of "cyclotron lines" is sensitively dependent on the viewing geometry, which must change with the rotation of the star. These spectral features, seen in only a handful of objects, are quite important, as they give us our only direct measure of neutron star magnetic fields. Furthermore, th...

  8. The soft X-ray spectrum of transient pulsars in the Small Magellanic Cloud

    Science.gov (United States)

    La Palombara, N.; Sidoli, L.; Esposito, P.; Pintore, F.; Tiengo, A.; Mereghetti, S.

    2016-06-01

    The Small Magellanic Cloud is characterized by a high number of transient accreting pulsars, which can reach luminosities up to 10^{38} erg s^{-1} during their outbursts. Due to the low Galactic interstellar absorption in the SMC direction, these sources offer a unique opportunity to investigate the soft end of the X-ray spectrum in accreting pulsars. In the last two years we observed with XMM-Newton the large outburst of two of these transient pulsars (RX J0059.2-7138 and SMC X-2). Thanks to the high throughput and spectral resolution of XMM, these observations allowed us to investigate at an unprecedented level of detail their spectral and timing properties at soft X-ray energies. We found that both sources show a pulsed emission also at low energies, and that they are characterized by a thermal component which dominates the source spectrum below 0.5 keV; moreover, we discovered several emission and absorption features, which are very likely produced by photoionization of plasma located above the inner regions of the accretion disc.

  9. Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays

    CERN Document Server

    Marelli, M; De Luca, A; Parkinson, P M Saz; Salvetti, D; Hartog, P R Den; Wolff, M T

    2015-01-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from Gamma-ray pulsar timing. For PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. 2011 and confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars, the distribution is more dispersed for the radio-loud ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.

  10. Discovery of the Orbit of the Transient X ray Pulsar SAX J2103.5+4545

    CERN Document Server

    Baykal, A; Swank, J H

    2000-01-01

    Using X-ray data from the Rossi X-Ray Timing Explorer (RXTE), we carried out pulse timing analysis of the transient X-ray pulsar SAX J2103.5+4545. An outburst was detected by All Sky Monitor (ASM) October 25 1999 and reached a peak X-ray brightness of 27 mCrab October 28. Between November 19 and December 27, the RXTE/PCA carried out pointed observations which provided us with pulse arrival times. These yield an eccentric orbit (e= 0.4 \\pm 0.2) with an orbital period of 12.68 \\pm 0.25 days and light travel time across the projected semimajor axis of 72 \\pm 6 sec. The pulse period was measured to be 358.62171 \\pm 0.00088 s and the spin-up rate (2.50 \\pm 0.15) \\times 10^{-13} Hz s^{-1}. The ASM data for the February to September 1997 outburst in which BeppoSAX discovered SAX J2103.5+4545 (Hulleman, in't Zand and Heise 1998) are modulated at time scales close to the orbital period. Folded light curves of the 1997 ASM data and the 1999 PCA data are similar and show that the intensity increases at periastron passag...

  11. The quiescent state of the accreting X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Reig, P; Zezas, A

    2014-01-01

    We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be star's circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low optical state, pulsed X-ray emission was detected at a level of L_X~10^{33} erg/s. This is the lowest luminosity at which pulsations have ever been detected in an accreting pulsar. The derived spin period is 351.13 s, consistent with previous observations. The source continues its overall long-term spin-up, which reduced the spin period by 7.5 s since its discovery in 1997. The X-ray emission is consistent with a purely thermal spectrum, represented by a blackbody with kT=1 keV. We discuss possible scenarios to explain the observed quiescent luminosity and conclude that the most likely mechanism is direct emission resulting from the cooling of the polar caps, heated either during the most recent outburst or via intermittent accretion in quiescence.

  12. Propeller effect in the transient X-ray pulsar SMC X-2

    CERN Document Server

    Lutovinov, A; Krivonos, R; Molkov, S; Poutanen, J

    2016-01-01

    We report results of the monitoring campaign of the transient X-ray pulsar SMC X-2 performed with the Swift/XRT telescope in the period of Sept 2015 -- Jan 2016 during the Type II outburst. During this event bolometric luminosity of the source ranged from $\\simeq10^{39}$ down to $<10^{35}$ erg/s. Moreover, we discovered its dramatic drop by a factor of more than 100 below the limiting value of $L_{\\rm lim}\\simeq4\\times10^{36}$ erg/s, that can be interpreted as a transition to the propeller regime. These measurements make SMC X-2 the sixth pulsating X-ray source where such a transition is observed and allow us to estimate the magnetic field of the neutron star in the system $B\\simeq3\\times10^{12}$ G.

  13. The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We investigate the birthrate problem for low-mass X-ray binaries(LMXBs) and millisecond radio pulsars(MRPs) in this paper.We consider intermediate-mass and low-mass X-ray binaries(I/LMXBs) to be the progenitors of MRPs,and calculate their evolutionary response to the cosmic star formation rate(SFR) both semi-analytically and numerically.With a typical value(1 Gyr) of the LMXB lifetime,one may expect comparable birthrates of LMXBs and MRPs,but the calculated number of LMXBs is an order of magnitude higher than that observed in the Galaxy.Instead,we suggest that the birthrate problem could be solved if most MRPs have evolved from faint to rather than bright LMXBs.The former may have a population of-104 in the Galaxy.

  14. Time and Energy Measurement Electronics for Silicon Drift Detector Aimed for X-ray Pulsar Navigation

    OpenAIRE

    Chen, Er-Lei; Feng, Chang-Qing; Ye, Chun-Feng; Liu, Shu-Bin; Jin, Dong-Dong; Lian, Jian; HU, HUI-JUN

    2016-01-01

    A readout electronic with high time and energy resolution performance is designed for the SDD (Silicon Drift Detector) signals readout, which is aimed for X-ray pulsar based navigation (XNAV). For time measurement, the input signal is fed into a fast shaping and Constant Fraction Discrimination (CFD) circuit, and then be digitalized by a Time-to-Digital Converter (TDC) implemented in an Field Programmable Gate Array (FPGA), which is designed with a bin size of 2.5 ns. For energy measurement, ...

  15. Hard X-ray Detection and Timing of Accretion-Powered Pulsars with BATSE

    OpenAIRE

    Chakrabarty, Deepto; Prince, Thomas A.

    1996-01-01

    The BATSE all-sky monitor on the Compton Gamma Ray Observatory is a superb tool for the study of accretion-powered pulsars. In the first part of this thesis, I describe its capabilities for hard X-ray observations above 20 keV, present techniques for timing analysis of the BATSE data, and discuss general statistical issues for the detection of pulsed periodic signals in both the time and frequency domains. BATSE’s 1-day pulsed sensitivity in the 20–60 keV ...

  16. Spectral Properties of the X-ray Binary Pulsar LMC X-4 during Different Intensity States

    Indian Academy of Sciences (India)

    S. Naik; B. Paul

    2002-03-01

    We present spectral variations of the binary X-ray pulsar LMC X-4 observed with the RXTE/PCA during different phases of its 30.5 day long third period. Only out-of-eclipse data were used for this study. The 3–25 keV spectrum, modeled with high energy cut-off power-law and iron line emission is found to show strong dependence on the intensity state. Correlations between the Fe line emission flux and different parameters of the continuum are presented here.

  17. A supernova remnant coincident with the slow X-ray pulsar AX J1845-0258

    OpenAIRE

    Gaensler, B. M.; Gotthelf, E. V.; Vasisht, G.

    1999-01-01

    We report on Very Large Array observations in the direction of the recently-discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5-arcmin shell of radio emission; the shell is linearly polarized with a non-thermal spectral index. We class this source as a previously unidentified, young (< 8000 yr), supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation tha...

  18. New outburst of the accreting millisecond X-ray pulsar NGC 6440 X-2 and discovery of a strong 1 Hz modulation in the light-curve

    NARCIS (Netherlands)

    Patruno, A.; Yang, Y.; Altamirano, D.; Armas-Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Klis, M. Van Der; Watts, A.; Wijnands, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Markwardt, C.; Strohmayer, T.; Heinke, C.

    2010-01-01

    On June 11th, 2010, RXTE/PCA galactic bulge scan observations showed an increase in activity from the globular cluster NGC 6440. Two accreting millisecond X-ray pulsars (AMXPs) and 22 other X-ray binaries are known

  19. Evidence for Magneto-Levitation Accretion in Long-Period X-ray Pulsars

    CERN Document Server

    Ikhsanov, Nazar; Likh, Yury

    2014-01-01

    Study of observed spin evolution of long-period X-ray pulsars challenges quasi-spherical and Keplerian disk accretion scenarios. It suggests that the magnetospheric radius of the neutron stars is substantially smaller than Alfven radius and the spin-down torque applied to the star from accreting material significantly exceeds the value predicted by the theory. We show that these problems can be avoided if the fossil magnetic field of the accretion flow itself is incorporated into the accretion model. The initially spherical flow in this case decelerates by its own magnetic field and converts into a non-Keplerian disk (magnetic slab) in which the material is confined by its intrinsic magnetic field ("levitates") and slowly moves towards the star on a diffusion timescale. Parameters of pulsars expected within this magneto-levitation accretion scenario are evaluated.

  20. Chandra X-ray Spectroscopy of Kes75, its Young Pulsar, and its Synchrotron Nebula

    CERN Document Server

    Collins, B F; Helfand, D J

    2001-01-01

    We have observed the young Galactic supernova remnant Kes 75 with the Chandra X-ray Observatory. This object is one of an increasing number of examples of a shell-type remnant with a central extended radio core harboring a pulsar. Here we present a preliminary spatially resolved spectroscopic analysis of the Kes~75 system. We find that the spectrum of the pulsar is significantly harder than that of the wind nebula, and both of these components can be isolated from the diffuse thermal emission that seems to follow the same distribution as the extended radio shell. When we characterize the thermal emission with a model of an under-ionized plasma and non-solar elemental abundances, we require a significant diffuse high energy component, which we model as a power-law with a photon index similar to that of the synchrotron nebula.

  1. Count rates and structure factors in anomalous soft x-ray scattering from cuprate superconductors

    NARCIS (Netherlands)

    Abbamonte, P; Rusydi, A; Logvenov, G; Bozovic, [No Value; Sawatzky, GA; Venema, L.C.; Bozovic,; Pavuna, D

    2002-01-01

    It has recently been shown that x-ray diffraction from the doped holes in cuprates can be enhanced by 3-4 orders of magnitude by exploiting resonance effects in the oxygen K shell. This new type of anomalous scattering is direct way of probing ground state inhomogeneity in the mobile carrier liquid

  2. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    Science.gov (United States)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  3. X-ray and Rotational Luminosity Correlation and Magnetic Heating of the Radio Pulsars

    CERN Document Server

    Shibata, S; Yatsu, Y; Enoto, T; Bamba, A

    2016-01-01

    Previous works have suggested a correlation between the X-ray luminosity Lx and the rotational luminosity Lrot of the radio pulsars.However, none of the obtained regression lines are statistically acceptable due to large scatters. We construct a statistical model which has an intrinsic Lx-Lrot relation and reproduces the observed Lx distribution about it by using a Monte Carlo simulator, which takes into account the effects obscuring the intrinsic relation,i.e., the anisotropy of radiation, additional heating, uncertainty in distance and detection limit of the instruments. From the ATNF pulsar catalog we collect 57 `ordinary radio pulsars' with significant detection and 42 with upper limits.The sample does not include the high-magnetic field pulsars (>10^{13} G), which are separately analyzed. We obtain a statistically acceptable relation Lx (0.5 - 10 keV)= 10^{31.69} (Lrot / L_0)^{c_1} with c_1 = 1.03 \\pm 0.27 and L_0 =10^{35.38}. The distribution about the obtained Lx-Lrot relation is reproduced well by the...

  4. Chandra and Swift X-ray Observations of the X-ray Pulsar SMC X-2 During the Outburst of 2015

    OpenAIRE

    Li, K L; Hu, C. -P; Lin, L. C. C.; Kong, Albert K. H.

    2016-01-01

    We report the Chandra/HRC-S and Swift/XRT observations for the 2015 outburst of the high-mass X-ray binary (HMXB) pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra/HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift/XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arriva...

  5. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  6. An optical & X-ray study of the counterpart to the SMC X-ray binary pulsar system SXP327

    CERN Document Server

    Coe, M J; Corbet, R H D; Galache, J; McBride, V A; Townsend, L J; Udalski, A

    2008-01-01

    Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud. The data reveal many previously unknown X-ray detections of this system and clear evidence for a 49.995d binary period. In addition, the optical photometry show recurring outburst features at the binary period which may well be indicative of the neutron star interacting with a circumstellar disk around a Be star.

  7. Quasi-spherical accretion in low-luminosity X-ray pulsars: Theory vs. observations

    CERN Document Server

    Postnov, K; Kochetkova, A; Hjalmarsdotter, L

    2012-01-01

    Quasi-spherical subsonic accretion can be realized in slowly rotating wind-fed X-ray pulsars (XPSRs) at X-ray luminosities <4 10^{36} erg/s. In this regime the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasi-static shell. The shell mediates the angular momentum removal from the rotating NS magnetosphere by shear turbulent viscosity in the boundary layer or via large-scale convective motions. In the last case the differential rotation law in the shell is close to iso-angular-momentum rotation. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities while taking cooling into account. Measurements of spin-up/spin-down rates of quasi-spherically wind accreting XPSRs in equilibrium with known orbital periods (like e.g. GX 301-2 and Vela X-1) enable determination of the main dimensionless parameters of the model and the NS magnetic field. For equilibrium pulsars with indep...

  8. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    Science.gov (United States)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  9. BeppoSAX observation of the X-ray binary pulsar Vela X-1

    CERN Document Server

    Orlandini, M; Nicastro, L; Giarrusso, S; Segreto, A; Piraino, S; Cusumano, G; Del Sordo, S; Guainazzi, M; Piro, L

    1997-01-01

    We report on the spectral (pulse averaged) and timing analysis of the ~ 20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~ 2 in intensity, and a factor 10 in Nh. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X--ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~ 10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic c...

  10. BeppoSAX observation of the X-ray binary pulsar Vela X-1

    Science.gov (United States)

    Orlandini, M.; Dal Fiume, D.; Nicastro, L.; Giarrusso, S.; Segreto, A.; Piraino, S.; Cusumano, G.; Del Sordo, S.; Guainazzi, M.; Piro, L.

    1997-05-01

    We report on the spectral (pulse averaged) and timing analysis of the ~20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~2 in intensity, and a factor 10 in NH. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X-ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic component in the Vela X-1 power spectrum presents a knee at about 1 Hz. The pulse period, corrected for binary motion, is 283.206+/-0.001 sec.

  11. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    DEFF Research Database (Denmark)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29...

  12. Contrasting behaviour from two Be/X-ray binary pulsars: insights into differing neutron star accretion modes

    CERN Document Server

    Townsend, L J; Hill, A B; Coe, M J; Corbet, R H D; Bird, A J

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4s and 85.4s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and ...

  13. Flares from Galactic centre pulsars: a new class of X-ray transients?

    CERN Document Server

    Giannios, Dimitrios

    2016-01-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic centre (GC) should harbor a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03~pc from Sgr~A* can be revealed by the shock interactions with the disk around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over timescales of months, provided that the spin down luminosity of the neutron star is L_{sd}~10^{35} erg/s. Current limits on the population of normal and millisecond pulsars in the GC regi...

  14. Quasi-periodic oscillations discovered in the new X-ray pulsar XTE J1858+034

    CERN Document Server

    Paul, B

    1998-01-01

    We report the discovery of low frequency quasi-periodic oscillations centered at 0.11 Hz in the newly discovered 221 s X-ray pulsar XTE J1858+034. Among about 30 known transient X-ray pulsars this is the sixth source in which QPOs have been observed. If the QPOs are produced because of inhomogeneities in the accretion disk at the magnetospheric boundary, the low frequency of the QPOs indicate a large magnetosphere for this pulsar. Both the Keplerian frequency model and the beat frequency model are applicable for production of QPOs in this source. The QPOs and regular pulsations are found to be stronger at higher energy which favours the beat frequency model. The magnetic field of the pulsar is calculated as a function of its distance. The energy spectrum is found to be very hard, consisting of two components, a cut-off power law and an iron fluorescence line.

  15. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  16. Suzaku view of the Be/X-ray binary pulsar GX 304-1 during Type I X-ray outbursts

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra; Epili, Prahlad

    2016-04-01

    We report the timing and spectral properties of the Be/X-ray binary pulsar GX 304-1 using two Suzaku observations during its 2010 August and 2012 January X-ray outbursts. Pulsations at ˜275 s were clearly detected in the light curves from both observations. Pulse profiles were found to be strongly energy-dependent. During the 2010 observation, the prominent dips seen in soft X-ray (≤10 keV) pulse profiles were found to be absent at higher energies. However, during the 2012 observation, the pulse profiles were complex as a result of the presence of several dips. Significant changes in the shape of the pulse profiles were detected at high energies (>35 keV). A phase shift of ˜0.3 was detected while comparing the phase of the main dip in the pulse profiles below and above ˜35 keV. The broad-band energy spectrum of the pulsar was well described by a partially absorbed negative and positive power law with exponential cut-off (NPEX) model with 6.4-keV iron line and a cyclotron absorption feature. The energy of the cyclotron absorption line was found to be ˜53 and 50 keV for the 2010 and 2012 observations, respectively, indicating a marginal positive dependence on source luminosity. Based on the results obtained from phase-resolved spectroscopy, the absorption dips in the pulse profiles can be interpreted as due to the presence of additional matter at same phases. Observed positive correlation between the cyclotron line energy and luminosity, and the significant pulse-phase variation of cyclotron parameters are discussed from the perspective of theoretical models on the cyclotron absorption line in X-ray pulsars.

  17. The Quiescent X-Ray Properties of the Accreting Millisecond X-Ray Pulsar and Eclipsing binary Swift J1749.4-2807

    Science.gov (United States)

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-01

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a ~= 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of sime1 × 1033(D/6.7 kpc)2 erg s-1. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of <~ 2 × 1033 erg s-1 and constrain its temperature to be <~ 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of <~ 34% and <~ 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  18. Advances in understanding the anomalous dispersion of plasmas in the X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Cheng, K T; Johnson, W R

    2008-09-24

    Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main computational tool has been the average atom code AVATOMKG that enables us to calculate the index of refraction for any plasma at any wavelength. In the last year we have improved this code to take into account many-atomic collisions. This allows the code to converge better at low frequencies. In this paper we present our search for plasmas with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. We discuss the calculations of anomalous dispersion in Na vapor and Ne plasmas near 47 nm where we predict large effects. We also discuss higher Z plasmas such as Ce and Yb plasmas that look very interesting near 47 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in another year we use the average atom code to explore plasmas at higher X-ray energy to identify potential experiments for the future. In particular we look near the K shell lines of near solid carbon plasmas and predict strong effects. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  19. Searching for plasmas with anomalous dispersion in the soft X-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Johnson, W R; Cheng, K T

    2007-08-24

    Over the last decade the electron density of plasmas has been measured using X-ray laser interferometers in the 14 to 47 nm wavelength regime. With the same formula used in decades of experiments with optical interferometers, the data analysis assumes the index of refraction is due only to the free electrons, which makes the index less than one. Over the last several years, interferometer experiments in C, Al, Ag, and Sn plasmas have observed plasmas with index of refraction greater than one at 14 or 47 nm and demonstrated unequivocally that the usual formula for calculating the index of refraction is not always valid as the contribution from bound electrons can dominate the free electrons in certain cases. In this paper we search for other materials with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. An average atom code is used to calculate the plasma properties. This paper discusses the calculations of anomalous dispersion in Ne and Na plasmas near 47 nm and Xe plasmas near 14 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in 2 years the average atom code will be an invaluable tool to explore plasmas at higher X-ray energy to identify potential experiments for the future. During the next decade X-ray free electron lasers and other X-ray sources will be used to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  20. Pulsar Polar Cap Heating and Surface Thermal X-ray Emission. 2; Inverse Compton Radiation Pair Fronts

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alexander G.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the production of electron-positron pairs by inverse Compton scattered (ICS) photons above a pulsar polar cap (PC) and calculate surface heating by returning positrons. This paper is a continuation of our self-consistent treatment of acceleration, pair dynamics, and electric field screening above pulsar PCs. We calculate the altitude of the inverse Compton pair-formation fronts, the flux of returning positrons, and present the heating efficiencies and X-ray luminosities. We revise pulsar death lines implying cessation of pair formation, and present them in surface magnetic field-period space. We find that virtually all known radio pulsars are capable of producing pairs by resonant and nonresonant ICS photons radiated by particles accelerated above the PC in a pure star-centered dipole field, so that our ICS pair death line coincides with empirical radio pulsar death. Our calculations show that ICS pairs are able to screen the accelerating electric field only for high PC surface temperatures and magnetic fields. We argue that such screening at ICS pair fronts occurs locally, slowing but not turning off acceleration of particles until screening can occur at a curvature radiation (CR) pair front at higher altitude. In the case where no screening occurs above the PC surface, we anticipate that the pulsar gamma-ray luminosity will be a substantial fraction of its spin-down luminosity. The X-ray luminosity resulting from PC heating by ICS pair fronts is significantly lower than the PC heating luminosity from CR pair fronts, which dominates for most pulsars. PC heating from ICS pair fronts is highest in millisecond pulsars, which cannot produce CR pairs, and may account for observed thermal X-ray components in the spectra of these old pulsars.

  1. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    Science.gov (United States)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma

  2. XMM-Newton observations of two transient millisecond X-ray pulsars in quiescence

    CERN Document Server

    Campana, S; Stella, L; Israel, G L

    2005-01-01

    We report on XMM-Newton observations of two X-ray transient millisecond pulsars (XRTMSPs). We detected XTE J0929-314 with an unabsorbed luminosity of \\~7x10^{31} erg/s. (0.5-10 keV) at a fiducial distance of 10 kpc. The quiescent spectrum is consistent with a simple power law spectrum. The upper limit on the flux from a cooling neutron star atmosphere is about 20% of the total flux. XTE J1807-294 instead was not detected. We can put an upper limit on the source quiescent 0.5-10 keV unabsorbed luminosity <4x10^{31} erg/s at 8 kpc. These observations strenghten the idea that XRTMSPs have quiescent luminosities significantly lower than classical neutron star transients.

  3. Determination of Gravitomagnetic Field Through GRBs or X-ray Pulsars

    Institute of Scientific and Technical Information of China (English)

    WU Ning; ZHANG Da-Hua

    2006-01-01

    In gauge theory of gravity, there is direct coupling between the spin of a particle and gravitomagnetic field, which will affect Landau level. In the surface of a neutron star or near a black hole, the coupling energy between spin and gravitomagnetic field can be large and detectable. Precise measurement of the position of spectrum lines of the corresponding emission or absorption can help us to determine the gravitomagnetic field and electromagnetic field simultaneously. The ratio AEe/△Ep can be served as a quantitative criteria of black hole. In GRBs or X-ray pulsar,absorption spectral lines of electron were observed. If the absorption spectral lines of electron, neutron and proton can be observed simultaneously, using the method given in this paper, we can determine the gravitomagnetic field in the surface of the star, and discriminate black hole from neutron star.

  4. PSR J0357+3205: A FAST-MOVING PULSAR WITH A VERY UNUSUAL X-RAY TRAIL

    OpenAIRE

    De Luca, A; Mignani, R. P.; Marelli, M.; Salvetti, D.; Sartore, N.; Belfiore, A; Parkinson, P. Saz; Caraveo, P. A.; Bignami, G. F.

    2013-01-01

    The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright gamma-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission, originating at the pulsar position and extending for > 9' on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2...

  5. Implications on the X-ray emission of evolved pulsar wind nebulae based on VHE gamma-ray observations

    CERN Document Server

    Mayer, Michael J; Jung, Ira; Valerius, Kathrin; Stegmann, Christian

    2012-01-01

    Energetic pulsars power winds of relativistic leptons which produce photon nebulae (so-called pulsar wind nebulae, PWNe) detectable across the electromagnetic spectrum up to energies of several TeV. The spectral energy distribution has a double-humped structure: the first hump lies in the X-ray regime, the second in the gamma-ray range. The X-ray emission is generally understood as synchrotron radiation by highly energetic electrons, the gamma-ray emission as Inverse Compton scattering of energetic electrons with ambient photon fields. The evolution of the spectral energy distribution is influenced by the time-dependent spin-down of the pulsar and the decrease of the magnetic field strength with time. Thus, the present spectral appearance of a PWN depends on the age of the pulsar: while young PWNe are bright in X-rays and gamma-rays, the X-ray emission of evolved PWNe is suppressed. Hence, evolved PWNe may offer an explanation of the nature of some of the unidentified VHE gamma-ray sources not yet associated ...

  6. High-energy X-rays from J174545.5-285829, the cannonball: a candidate pulsar wind nebula associated with SGR a east

    DEFF Research Database (Denmark)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya;

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few-arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity ( v proj ~ 500 km s-1) pulsar candidate with a cometary pu...

  7. PSR J0357+3205: a fast moving pulsar with a very unusual X-ray trail

    CERN Document Server

    De Luca, A; Marelli, M; Salvetti, D; Sartore, N; Belfiore, A; Parkinson, P Saz; Caraveo, P A; Bignami, G F

    2013-01-01

    The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright gamma-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission, originating at the pulsar position and extending for > 9' on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2.2 yr, unveiling a significant angular displacement of the pulsar counterpart, corresponding to a proper motion of 0.165"+/-0.030" yr^(-1). At a distance of ~500 pc, the space velocity of the pulsar would be of ~390 km s^(-1) assuming no inclination with respect to the plane of the sky. The direction of the pulsar proper motion is perfectly aligned with the main axis of the X-ray nebula, pointing to a physical, yet elusive link between the nebula and the pulsar space velocity. No optical emission in the H_alpha line is se...

  8. Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    CERN Document Server

    White, N E; White, Nicholas E.; Ghosh, Pranab

    1998-01-01

    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of...

  9. Discovery of the transient X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Hulleman, F; Heise, J

    1998-01-01

    We report the discovery of the X-ray transient SAX J2103.5+4545 which was active from February to September 1997. The observed peak intensity of 20 mCrab (2 to 25 keV) occurred on April 11. An analysis of data obtained around the time of the peak revealed a pulsed signal with a period of 358.61 +/- 0.03 s on MJD 50569. The pulse profile has a pulsed fraction of ~40%. No change in the pulse period was detected, with an upper limit of 6 s/yr. The energy spectrum complies to a power law function with a photon index of 1.27 +/- 0.14 and low-energy absorption equivalent to a hydrogen column density of 3.1 +/- 1.4 10**22 atoms cm**-2 of cold gas of cosmic abundances. In analogy to other X-ray pulsars with similar characteristics we propose this object to be a neutron star in close orbit around a mass-losing star of early spectral type. The B star HD 200709 is a marginal candidate optical counterpart.

  10. Ultraviolet, X-ray, and Optical Radiation from the Geminga Pulsar

    CERN Document Server

    Kargaltsev, O Y; Zavlin, V E; Romani, R W

    2005-01-01

    We observed the gamma-ray pulsar Geminga with the HST STIS/MAMA detectors to measure the Geminga's UV spectrum and pulsations. The slope of the far-UV (FUV) spectrum is close to that of a Rayleigh-Jeans spectrum, suggesting that the FUV radiation is dominated by thermal emission from the neutron star (NS) surface. The measured FUV flux, F_FUV=(3.7+/-0.2)x10^-15 ergs cm^-2 s^-1 in 1155-1702 A band, corresponds to a brightness temperature T_RJ=(0.3-0.4)(d_200/R_13)^2 MK. The soft thermal component of the Geminga's X-ray spectrum measured with the XMM-Newton observatory corresponds to a temperature T_s=0.49+/-0.01 MK and radius R_s = (12.9+/-1.0)d_200 km. Unlike other NSs detected in the UV-optical, the FUV spectrum of Geminga lies below the extrapolation of the soft thermal component, which might be associated with the Geminga's very low temperature. Surprisingly, the thermal FUV radiation is strongly pulsed, showing a narrow dip at a phase close to that of a broader minimum of the soft X-ray light curve. The s...

  11. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    Science.gov (United States)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  12. The $\\gamma$-ray pulsar J0633+0632 in X-rays

    CERN Document Server

    Danilenko, Andrey; Karpova, Anna; Zyuzin, Dima; Shibanov, Yuriy

    2015-01-01

    We analysed Chandra observations of the bright Fermi pulsar J0633+0632 and found evidence of an absorption feature in its spectrum at $804^{+42}_{-26}$ eV (the errors here and below are at 90% confidence) with equivalent width of $63^{+47}_{-36}$ eV. In addition, we analysed in detail the X-ray spectral continuum taking into account correlations between the interstellar absorption and the distance to the source. We confirm early findings by Ray et al. (2011) that the spectrum contains non-thermal and thermal components. The latter is equally well described by the blackbody and magnetised atmosphere models and can be attributed to the emission from the bulk of the stellar surface in both cases. The distance to the pulsar is constrained in a range of 1--4 kpc from the spectral fits. We infer the blackbody surface temperature of $108^{+22}_{-14}$ eV, while for the atmosphere model, the temperature, as seen by a distant observer, is $53^{+12}_{-7}$ eV. In the latter case J0633+0632 is one of the coldest middle-ag...

  13. SXP214, an X-ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    CERN Document Server

    Hong, JaeSub; Zezas, Andreas; Haberl, Frank; Drake, Jeremy J; Plucinsky, Paul P; Gaetz, Terrance; Sasaki, Manami; Williams, Benjamin; Long, Knox S; Blair, William P; Winkler, P Frank; Wright, Nicholas J; Laycock, Silas; Udalski, Andrzej

    2016-01-01

    Located in the Small Magellanic Cloud (SMC), SXP214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found the source in a transition when the X-ray flux was on a steady rise. The Lomb-Scargle periodogram revealed a pulse period of 211.49 +/- 0.42 s, which is significantly (>5sigma) shorter than the previous measurements with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from <~2x to 7x10^35 erg s^-1 is correlated with steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N_H ~ 10^24 to <~10^20 cm^-2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was o...

  14. X-ray photon-counting detector based on a micro-channel plate for pulsar navigation

    Institute of Scientific and Technical Information of China (English)

    Baomei Chen; Baosheng Zhao; Huijun Hu; Qiurong Yan; Lizhi Sheng

    2011-01-01

    The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation. The pulse TOA can be calculated by comparing the measured arrival time with the predicted arrival time of the X-ray pulse for pulsar. In this study, in order to research the measurement of pulse arrival time, an experimental system is set up. The experimental system comprises a simulator of the X-ray pulsar, an X-ray detector, a time-measurement system, and a data-processing system. An X-ray detector base is proposed on the basis of the micro-channel plate (MCP), which is sensitive to soft X-ray in the 1-10 keV band. The MCP-based detector, the structure and principle of the experimental system, and results of the pulse profile are described in detail. In addition, a discussion of the effects of different X-ray pulse periods and the quantum efficiency of the detector on pulse-profile signal-to-noise ratio (SNR) is presented. Experimental results reveal that the SNR of the measured pulse profile becomes enhanced as the quantum efficiency of the detector increases. The SNR of the pulse profile is higher when the period of the pulse is smaller at the same integral.%@@ The pulse time of arrival (TOA) is a determining parameter for accurate timing and positioning in X-ray pulsar navigation.The pulse TOA can be calculated by comparing the measured arrival time with the predicted arrival time of the X-ray pulse for pulsar.In this study, in order to research the measurement of pulse arrival time, an experimental system is set up.The experimental system comprises a simulator of the X-ray pulsar, an X-ray detector, a time-measurement system, and a data-processing system.An X-ray detector base is proposed on the basis of the micro-channel plate (MCP), which is sensitive to soft X-ray in the 1-10 keV band.The MCP-based detector, the structure and principle of the experimental system,and results of the pulse profile are described in detail.In addition, a

  15. Guitar with a bow: a jet-like X-ray-emitting feature associated a fast-moving pulsar

    Science.gov (United States)

    Wang, Q. Daniel

    2011-09-01

    The Guitar Nebula is known to be a ram-pressure confined pulsar wind nebula associated with the very fast-moving pulsar B2224+65. Existing observations at two epochs have shown an unexpected 2 arcmin long X-ray-emitting jet-like feature emanating from the pulsar and offset from its proper motion direction by 118 degree. We propose a deep third epoch observation of this system in order to measure the X-ray spectral gradient across the feature as well as to confirm its proper motion, its morphological variation with time, and the presence of a counter jet. We will then critically test scenarios proposed to explain this system, which represents a class of similarly enigmatic objects recently discovered locally and in the central region of our Galaxy.

  16. Relation between the structure and catalytic activity for automotive emissions. Use of x-ray anomalous dispersion effect

    CERN Document Server

    Mizuki, J; Tanaka, H

    2003-01-01

    The employment of the X-ray anomalous dispersion effect allows us to detect the change in structure of catalytic converters with the environment exposed. Here we show that palladium atoms in a perovskite crystal move into and out of the crystal by anomalous X-ray diffraction and absorption techniques. This movement of the precious metal plays an important role to keep the catalytic activity long-lived. (author)

  17. Structure determination of thin CoFe films by anomalous x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gloskovskii, Andrei; Stryganyuk, Gregory; Ouardi, Siham [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Fecher, Gerhard H.; Felser, Claudia [Institut fuer Anorganische und Analytische Chemie, Johannes Gutenberg-Universitaet, 55099 Mainz (Germany); Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden (Germany); Hamrle, Jaroslav; Pistora, Jaromir [Department of Physics and Nanotechnology Centre, VSB-Technical University of Ostrava, 70833 Ostrava (Czech Republic); Bosu, Subrojati; Saito, Kesami; Sakuraba, Yuya; Takanashi, Koki [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan)

    2012-10-01

    This work reports on the investigation of structure-property relationships in thin CoFe films grown on MgO. Because of the very similar scattering factors of Fe and Co, it is not possible to distinguish the random A2 (W-type) structure from the ordered B2 (CsCl-type) structure with commonly used x-ray sources. Synchrotron radiation based anomalous x-ray diffraction overcomes this problem. It is shown that as grown thin films and 300 K post annealed films exhibit the A2 structure with a random distribution of Co and Fe. In contrast, films annealed at 400 K adopt the ordered B2 structure.

  18. Variable Quasi Periodic Oscillations during an Outburst of the Transient X-ray Pulsar XTE J1858 + 034

    Indian Academy of Sciences (India)

    U. Mukherjee; S. Bapna; H. Raichur; B. Paul; S. N. A. Jaaffrey

    2006-03-01

    We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30 keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with amodel consisting of a cut-off power law along with an iron emission line.

  19. The Transient Accereting X-Ray Pulsar XTE J1946+274: Stability of the X-Ray Properties at Low Flux and Updated Orbital Solution

    CERN Document Server

    Marcu-Cheatham, Diana M; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Caballero, Isabel; Finger, Mark H; Jenke, Peter J; Wilson-Hodge, Colleen A; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B; Kreykenbohm, Ingo; Klochkov, Dmitry; Rothschild, Richard E; Terada, Yukikatsu; Enoto, Teruaki; Iwakiri, Wataru; Wolff, Michael T; Becker, Peter A; Wood, Kent S; Wilms, Jöern

    2015-01-01

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 d orbit with 2-3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi-Dirac cutoff power law model along with a narrow Fe K line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ~35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the sub...

  20. The Transient Accreting X-Ray Pulsar XTE J1946+274: Stability of X-Ray Properties at Low Flux and Updated Orbital Solution

    Science.gov (United States)

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias; Müller, Sebastian; Falkner, Sebastian; Caballero, Isabel; Finger, Mark H.; Jenke, Peter J.; Wilson-Hodge, Colleen A.; Fürst, Felix; Grinberg, Victoria; Hemphill, Paul B.; Kreykenbohm, Ingo; Klochkov, Dmitry; Rothschild, Richard E.; Terada, Yukikatsu; Enoto, Teruaki; Iwakiri, Wataru; Wolff, Michael T.; Becker, Peter A.; Wood, Kent S.; Wilms, Jörn

    2015-12-01

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2-3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi-Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ˜35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (˜5 × 1037 erg s-1) and lowest (˜5 × 1036 erg s-1) observed 3-60 keV luminosities.

  1. SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Khattari, Z. [Institut fuer Roentgenphysik, Universitaet Goettingen, Geiststrasse 11, 37073 Goettingen (Germany); Brotons, G. [Institut fuer Roentgenphysik, Universitaet Goettingen, Geiststrasse 11, 37073 Goettingen (Germany); Arbely, E. [Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904 (Israel); Arkin, I.T. [Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904 (Israel); Metzger, T.H. [European Synchrotron Radiation Facility, Boite Postale 220, 38043 Grenoble (France); Salditt, T. [Institut fuer Roentgenphysik, Universitaet Goettingen, Geiststrasse 11, 37073 Goettingen (Germany)]. E-mail: tsaldit@gwdg.de

    2005-02-28

    We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.

  2. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    OpenAIRE

    Kong, A. K. H.; Hu, C. -P.; Lin, L. C. -C.; Li, K. L.; Jin, R.; Liu, C.Y.; Yen, D. C. -C.

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the...

  3. PSR J0357+3205: A FAST-MOVING PULSAR WITH A VERY UNUSUAL X-RAY TRAIL

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, A.; Mignani, R. P.; Marelli, M.; Salvetti, D.; Sartore, N.; Caraveo, P. A.; Bignami, G. F. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, Via E. Bassini 15, I-20133 Milano (Italy); Belfiore, A.; Saz Parkinson, P., E-mail: deluca@iasf-milano.inaf.it [Department of Physics, Santa Cruz Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

    2013-03-01

    The middle-aged PSR J0357+3205 is a nearby, radio-quiet, bright {gamma}-ray pulsar discovered by the Fermi mission. Our previous Chandra observation revealed a huge, very peculiar structure of diffuse X-ray emission originating at the pulsar position and extending for >9' on the plane of the sky. To better understand the nature of such a nebula, we have studied the proper motion of the parent pulsar. We performed relative astrometry on Chandra images of the field spanning a time baseline of 2.2 yr, unveiling a significant angular displacement of the pulsar counterpart, corresponding to a proper motion of 0.''165 {+-} 0.''030 yr{sup -1} at a position angle (P.A.) of 314 Degree-Sign {+-} 8 Degree-Sign . At a distance of {approx}500 pc, the space velocity of the pulsar would be of {approx}390 km s{sup -1} assuming no inclination with respect to the plane of the sky. The direction of the pulsar proper motion is aligned very well with the main axis of the X-ray nebula (P.A. = 315. Degree-Sign 5 {+-} 1. Degree-Sign 5), pointing to a physical, yet elusive, link between the nebula and the pulsar space velocity. No optical emission in the H{alpha} line is seen in a deep image collected at the Gemini telescope, which implies that the interstellar medium into which the pulsar is moving is fully ionized.

  4. Monte Carlo-based multiphysics coupling analysis of x-ray pulsar telescope

    Science.gov (United States)

    Li, Liansheng; Deng, Loulou; Mei, Zhiwu; Zuo, Fuchang; Zhou, Hao

    2015-10-01

    X-ray pulsar telescope (XPT) is a complex optical payload, which involves optical, mechanical, electrical and thermal disciplines. The multiphysics coupling analysis (MCA) plays an important role in improving the in-orbit performance. However, the conventional MCA methods encounter two serious problems in dealing with the XTP. One is that both the energy and reflectivity information of X-ray can't be taken into consideration, which always misunderstands the essence of XPT. Another is that the coupling data can't be transferred automatically among different disciplines, leading to computational inefficiency and high design cost. Therefore, a new MCA method for XPT is proposed based on the Monte Carlo method and total reflective theory. The main idea, procedures and operational steps of the proposed method are addressed in detail. Firstly, it takes both the energy and reflectivity information of X-ray into consideration simultaneously. And formulate the thermal-structural coupling equation and multiphysics coupling analysis model based on the finite element method. Then, the thermalstructural coupling analysis under different working conditions has been implemented. Secondly, the mirror deformations are obtained using construction geometry function. Meanwhile, the polynomial function is adopted to fit the deformed mirror and meanwhile evaluate the fitting error. Thirdly, the focusing performance analysis of XPT can be evaluated by the RMS. Finally, a Wolter-I XPT is taken as an example to verify the proposed MCA method. The simulation results show that the thermal-structural coupling deformation is bigger than others, the vary law of deformation effect on the focusing performance has been obtained. The focusing performances of thermal-structural, thermal, structural deformations have degraded 30.01%, 14.35% and 7.85% respectively. The RMS of dispersion spot are 2.9143mm, 2.2038mm and 2.1311mm. As a result, the validity of the proposed method is verified through

  5. The nature of the X-ray pulsar in M 31: An intermediate-mass X-ray binary?

    Science.gov (United States)

    Karino, Shigeyuki

    2016-09-01

    The first finding of the spin period of an accreting neutron star in M 31 was recently reported. The observed spin period is 1.2 s, and it shows 1.27 d modulations due to orbital motion. From the orbital information, the mass donor could not be a giant massive star. On the other hand, its observed properties are very odd as those of typical low-mass X-ray binaries. In this study, we compare the observed binary parameters with theoretical models given by a stellar evolution track, and give a restriction on the possible mass range of the donor. According to the standard stellar evolution model, the donor star should be larger than 1.5 M⊙, which suggests that this system is a new member of a rare category, an intermediate-mass X-ray binary. The magnetic field strength of the neutron star suggested by the spin-up/down tendency in this system supports the possibility of an intermediate-mass donor.

  6. The nature of the X-ray pulsar in M31: an intermediate mass X-ray binary?

    CERN Document Server

    Karino, Shigeyuki

    2016-01-01

    Recently the first finding of a spin period of an accreting neutron star in M31 is reported. The observed spin period is 1.2 s and it shows 1.27 d modulations due to orbital motion. From the orbital information, the mass donor could not be a giant massive star. On the other hand, the observed properties are quite odd for typical low mass X-ray binaries. In this study, we compare observed binary parameters with theoretical models given by a stellar evolution track and make a restriction on the possible mass range of the donor. According to the standard stellar evolution model, the donor star should be larger than 1.5 solar mass, and this suggests that this system is a new member of a rare category, intermediate mass X-ray binary. The magnetic field strength of the neutron star suggested by spin-up/down tendency in this system supports the possibility of intermediate mass donor.

  7. SXP 214: An X-Ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    Science.gov (United States)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas; Haberl, Frank; Drake, Jeremy J.; Plucinsky, Paul P.; Gaetz, Terrance; Sasaki, Manami; Williams, Benjamin; Long, Knox S.; Blair, William P.; Winkler, P. Frank; Wright, Nicholas J.; Laycock, Silas; Udalski, Andrzej

    2016-07-01

    Located in the Small Magellanic Cloud (SMC), SXP 214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found that the source was in a transition when the X-ray flux was on a steady rise. The Lomb–Scargle periodogram revealed a pulse period of 211.49 ± 0.42 s, which is significantly (>5σ) shorter than the previous measurements made with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from ≲2× to 7× {10}35 erg s‑1 is correlated with a steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N H ∼ 1024 to ≲1020 cm‑2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was observed, whereas at later times, both soft and hard X-ray components were observed to be pulsating. A likely explanation is that the neutron star was initially hidden in the circumstellar disk of the companion, and later came out of the disk with the accreted material that continued fueling the observed pulsation.

  8. Broadband x-ray imaging and spectroscopy of the crab nebula and pulsar with NuSTAR

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Reynolds, Stephen; Harrison, Fiona;

    2015-01-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ~9 ke...... in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band....

  9. Detection of cyclotron resonance scattering feature in high-mass X-ray binary pulsar SMC X-2

    Science.gov (United States)

    Jaisawal, Gaurava K.; Naik, Sachindra

    2016-09-01

    We report broad-band spectral properties of the high-mass X-ray binary pulsar SMC X-2 by using three simultaneous Nuclear Spectroscopy Telescope Array and Swift/XRT observations during its 2015 outburst. The pulsar was significantly bright, reaching a luminosity up to as high as ˜5.5 × 1038 erg s-1 in 1-70 keV range. Spin period of the pulsar was estimated to be 2.37 s. Pulse profiles were found to be strongly luminosity dependent. The 1-70 keV energy spectrum of the pulsar was well described with three different continuum models such as (i) negative and positive power law with exponential cutoff, (ii) Fermi-Dirac cutoff power law and (iii) cutoff power-law models. Apart from the presence of an iron line at ˜6.4 keV, a model independent absorption like feature at ˜27 keV was detected in the pulsar spectrum. This feature was identified as a cyclotron absorption line and detected for the first time in this pulsar. Corresponding magnetic field of the neutron star was estimated to be ˜2.3 × 1012 G. The cyclotron line energy showed a marginal negative dependence on the luminosity. The cyclotron line parameters were found to be variable with pulse phase and interpreted as due to the effect of emission geometry or complicated structure of the pulsar magnetic field.

  10. A radiation-hydrodynamic model of accretion columns for ultra-luminous X-ray pulsars

    CERN Document Server

    Kawashima, Tomohisa; Ohsuga, Ken; Ogawa, Takumi

    2016-01-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamic simulation of a super-critical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with density of $10^{-4} {\\rm g}~ {\\rm cm}^{-3}$ above a neutron star and solve the two dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, while gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, thereby a shock being generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as was noted by Basko \\& Sunyaev (1976). The average accretion rate is very high; ${\\dot M}\\sim 10^{2-3} L_{\\rm E}/c^2$ (with $L_{\\rm E}$ being the Eddington luminosity), and s...

  11. Theory of quasi-spherical accretion in X-ray pulsars

    CERN Document Server

    Shakura, N; Kochetkova, A; Hjalmarsdotter, L

    2011-01-01

    A theoretical model for quasi-spherical subsonic accretion onto slowly rotating magnetized neutron stars is constructed. In this model the accreting matter subsonically settles down onto the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates $\\dot M< \\dot M_*\\simeq 4\\times 10^{16}$ g/s. At higher accretion rates a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative $\\dot \\omega^*$, and $\\partial\\dot\\omega^*/\\partial\\dot M$ near the torque reversal) of X-ray pulsars with known orbital perio...

  12. Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2

    CERN Document Server

    Ikhsanov, N R

    2012-01-01

    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 x B_CRSF, or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar ca...

  13. Time and Energy Measurement Electronics for Silicon Drift Detector Aimed for X-ray Pulsar Navigation

    CERN Document Server

    Chen, Er-Lei; Ye, Chun-Feng; Liu, Shu-Bin; Jin, Dong-Dong; Lian, Jian; Hu, Hui-Jun

    2016-01-01

    A readout electronic with high time and energy resolution performance is designed for the SDD (Silicon Drift Detector) signals readout, which is aimed for X-ray pulsar based navigation (XNAV). For time measurement, the input signal is fed into a fast shaping and Constant Fraction Discrimination (CFD) circuit, and then be digitalized by a Time-to-Digital Converter (TDC) implemented in an Field Programmable Gate Array (FPGA), which is designed with a bin size of 2.5 ns. For energy measurement, a slow shaping and analog peak detection circuit is employed to acquire the energy information of input signals, which is then digitalized by a 14-bit Analog-to-Digital Converter (ADC). Both the time and energy measurement results are buffered and packaged in FPGA and then transmitted to Data Processing (DP) system. Test results indicate that the time resolution is about 3 ns, while the FWHM (Full Width at Half Maximum) of energy spectrum is better than 160 eV @ 5.9 keV, with the energy dynamic range from 1 keV to 10 keV....

  14. A fast pulse phase estimation method for X-ray pulsar signals based on epoch folding

    Institute of Scientific and Technical Information of China (English)

    Xue Mengfan; Li Xiaoping; Sun Haifeng; Fang Haiyan

    2016-01-01

    X-ray pulsar-based navigation (XPNAV) is an attractive method for autonomous deep-space navigation in the future. The pulse phase estimation is a key task in XPNAV and its accuracy directly determines the navigation accuracy. State-of-the-art pulse phase estimation techniques either suffer from poor estimation accuracy, or involve the maximization of generally non-convex object function, thus resulting in a large computational cost. In this paper, a fast pulse phase estimation method based on epoch folding is presented. The statistical properties of the observed profile obtained through epoch folding are developed. Based on this, we recognize the joint prob-ability distribution of the observed profile as the likelihood function and utilize a fast Fourier transform-based procedure to estimate the pulse phase. Computational complexity of the proposed estimator is analyzed as well. Experimental results show that the proposed estimator significantly outperforms the currently used cross-correlation (CC) and nonlinear least squares (NLS) estima-tors, while significantly reduces the computational complexity compared with NLS and maximum likelihood (ML) estimators.

  15. Quasi-periodic X-ray brightness fluctuations in an accreting millisecond pulsar

    CERN Document Server

    Wijnands, R; Homan, J; Chakraborty, D; Markwardt, C B; Morgan, E H; Wijnands, Rudy; Klis, Michiel van der; Homan, Jeroen; Chakrabarty, Deepto; Markwardt, Craig B.; Morgan, Ed H.

    2003-01-01

    The relativistic plasma flows onto neutron stars that are accreting material from stellar companions can be used to probe strong-field gravity as well as the physical conditions in the supranuclear-density interiors of neutron stars. Plasma inhomogeneities orbiting a few kilometres above the stars are observable as X-ray brightness fluctuations on the millisecond dynamical timescale of the flows. Two frequencies in the kilohertz range dominate these fluctuations: the twin kilohertz quasi-periodic oscillations (kHz QPOs). Competing models for the origins of these oscillations (based on orbital motions) all predict that they should be related to the stellar spin frequency, but tests have been difficult because the spins were not unambiguously known. Here we report the detection of kHz QPOs from a pulsar whose spin frequency is known. Our measurements establish a clear link between kHz QPOs and stellar spin, but one not predicted by any current model. A new approach to understanding kHz QPOs is now required. We ...

  16. On the power spectra of the wind-fed X-ray binary pulsar GX 301 - 2

    Science.gov (United States)

    Orlandini, Mauro; Morfill, G. E.

    1992-01-01

    A phenomenological model of accretion which is applied to the wind-fed X-ray binary pulsar GX 301 - 2 is developed, assuming that the accretion onto the neutron star does not occur from a continuous flux of plasma, but from blobs of matter which are threaded by the magnetic field lines onto the magnetic polar caps of the neutron star. These 'lumps' are produced at the magnetospheric limit by magnetohydrodynamical instability, introducing a 'noise' in the accretion process, due to the discontinuity in the flux of matter onto the neutron star. This model is able to describe the change of slope observed in the continuum component of the power spectra of the X-ray binary pulsar GX 301 - 2, in the frequency range 0.01 - 0.1 Hz. The physical properties of the infalling blobs derived in the model are in agreement with the constraints imposed by observations.

  17. Magnetar-like X-Ray Bursts from a Rotation-powered Pulsar, PSR J1119-6127

    Science.gov (United States)

    Göğüş, Ersin; Lin, Lin; Kaneko, Yuki; Kouveliotou, Chryssa; Watts, Anna L.; Chakraborty, Manoneeta; Alpar, M. Ali; Huppenkothen, Daniela; Roberts, Oliver J.; Younes, George; van der Horst, Alexander J.

    2016-10-01

    Two energetic hard X-ray bursts from the rotation-powered pulsar PSR J1119-6127 recently triggered the Fermi and Swift space observatories. We have performed in-depth spectral and temporal analyses of these two events. Our extensive searches in both observatories’ data for lower luminosity bursts uncovered 10 additional events from the source. We report here on the timing and energetics of the 12 bursts from PSR J1119-6127 during its burst active phase on 2016 July 26 and 28. We also found a spectral softer X-ray flux enhancement in a post-burst episode, which shows evidence of cooling. Here we discuss the implications of these results on the nature of this unusual high-field radio pulsar, which firmly place it within the typical magnetar population.

  18. 2S1553-542: a Be/X-ray binary pulsar on the far side of the Galaxy

    CERN Document Server

    Lutovinov, Alexander A; Townsend, Lee J; Tsygankov, Sergey S; Kennea, Jamie

    2016-01-01

    We report the results of a comprehensive analysis of X-ray (Chandra and Swift observatories), optical (Southern African Large Telescope, SALT) and near-infrared (the VVV survey) observations of the Be/X-ray binary pulsar 2S1553-542. Accurate coordinates for the X-ray source are determined and are used to identify the faint optical/infrared counterpart for the first time. Using VVV and SALTICAM photometry, we have constructed the spectral energy distribution (SED) for this star and found a moderate NIR excess that is typical for Be stars and arises due to the presence of circumstellar material (disk). A comparison of the SED with those of known Be/X-ray binaries has allowed us to estimate the spectral type of the companion star as B1-2V and the distance to the system as $>15$ kpc. This distance estimation is supported by the X-ray data and makes 2S1553-542 one of the most distant X-ray binaries within the Milky Way, residing on the far side in the Scutum-Centaurus arm or even further.

  19. A Possible 55-day X-ray Period of the Ultraluminous Accreting Pulsar M82 X-2

    CERN Document Server

    Kong, A K H; Lin, L C -C; Li, K L; Jin, R; Liu, C Y; Yen, D C -C

    2016-01-01

    We report a possible detection of a 55-day X-ray modulation for the ultraluminous accreting pulsar M82 X-2 from archival Chandra observations. Because M82 X-2 is known to have a 2.5-day orbital period, if the 55-day period is real, it will be the superorbital period of the system. We also investigated variabilities of other three nearby ultraluminous X-ray sources in the central region of M82 with the Chandra data and did not find any evidence of periodicities. Furthermore, we re-examined the previously reported 62-day periodicity near the central region of M82 by performing a systematic timing study with all the archival Rossi X-Ray Timing Explorer and Swift data. Using various dynamic timing analysis methods, we confirmed that the 62-day period is not stable, suggesting that it is not the orbital period of M82 X-1 in agreement with previous work.

  20. Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119--6127

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M E; Kaspi, V M; Camilo, F; Gaensler, B M; Pivovaroff, M J

    2005-08-05

    We present XMM-Newton observations of the radio pulsar PSR J1119-6127, which has an inferred age of 1,700 yr and surface dipole magnetic field strength of 4.1 x 10{sup 13} G. We report the first detection of pulsed X-ray emission from PSR J1119-6127. In the 0.5-2.0 keV range, the pulse profile shows a narrow peak with a very high pulsed fraction of (74 {+-} 14)%. In the 2.0-10.0 keV range, the upper limit for the pulsed fraction is 28% (99% confidence). The pulsed emission is well described by a thermal blackbody model with a temperature of T{infinity} = 2.4{sub -0.2}{sup +0.3} x 10{sup 6} K and emitting radius of 3.4{sub -0.3}{sup +1.8} km (at a distance of 8.4 kpc). Atmospheric models result in problematic estimates for the distance/emitting area. PSR J1119-6127 is now the radio pulsar with smallest characteristic age from which thermal X-ray emission has been detected. The combined temporal and spectral characteristics of this emission are unlike those of other radio pulsars detected at X-ray energies and challenge current models of thermal emission from neutron stars.

  1. Discovery of a 0.02 Hz QPO feature in the Transient X-ray Pulsar KS 1947+300

    CERN Document Server

    James, Marykutty; Devasia, Jincy; Indulekha, Kavila

    2010-01-01

    We report the discovery of Quasi Periodic Oscillations (QPO) at 0.02 Hz in a transient high mass X-ray binary pulsar KS 1947+300 using {\\em RXTE}-PCA. The QPOs were detected during May-June 2001, at the end of a long outburst. This is the 9th transient accretion powered high magnetic field X-ray pulsar in which QPOs have been detected and the QPO frequency of this source is lowest in this class of sources. The unusual feature of this source is that though the outburst lasted for more than 100 days, the QPOs were detected only during the last few days of the outburst when the X-ray intensity had decayed to 1.6% of the peak intensity. The rms value of the QPO is large, $\\sim15.4\\pm1.0%$ with a slight positive correlation with energy. The detection of QPOs and strong pulsations at a low luminosity level suggests that the magnetic field strength of the neutron star is not as high as was predicted earlier on the basis of a correlation between the spin-up torque and the X-ray luminosity.

  2. Discovery of SXP 265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    Science.gov (United States)

    Sturm, R.; Haberl, F.; Vasilopoulos, G.; Bartlett, E. S.; Maggi, P.; Rau, A.; Greiner, J.; Udalski, A.

    2014-11-01

    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the Optical Gravitational Lensing Experiment I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the South African Astronomical Observatory 1.9 m telescope, and photometrically, with data obtained using the Gamma-ray Burst Optical Near-ir Detector at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of Ps = (264.516 ± 0.014) s. The source likely shows a persistent X-ray luminosity of a few 1035 erg s-1 and in addition type-I outbursts that indicate an orbital period of ˜146 d. A periodicity of 0.867 d, found in the optical light curve, can be explained by non-radial pulsations of the Be star. We identify the optical counterpart and classify it as a B1-2II-IVe star. This confirms SXP 265 as a new Be/X-ray binary pulsar originating in the tidal structure between the Magellanic Clouds.

  3. Pulsars and quark stars

    CERN Document Server

    Xu, R

    2005-01-01

    Members of the family of pulsar-like stars are distinguished by their different manifestations observed, i.e., radio pulsars, accretion-driven X-ray pulsars, X-ray bursts, anomalous X-ray pulsars/soft gamma-ray repeaters, compact center objects, and dim thermal neutron stars. Though one may conventionally think that these stars are normal neutron stars, it is still an open issue whether they are actually neutron stars or quark stars, as no convincing work, either theoretical from first principles or observational, has confirmed Baade-Zwicky's original idea that supernovae produce neutron stars. After introducing briefly the history of pulsars and quark stars, the author summarizes the recent achievements in his pulsar group, including quark matter phenomenology at low temperature, starquakes of solid pulsars, low-mass quark stars, and the pulsar magnetospheric activities.

  4. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    Science.gov (United States)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s-1, which is less than that of any pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  5. X-ray investigation of the diffuse emission around plausible gamma-ray emitting pulsar wind nebulae in Kookaburra region

    CERN Document Server

    Kishishita, Tetsuichi; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-01-01

    We report on the results from {\\it Suzaku} X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV $\\gamma$-ray sources HESS J1418-609 and HESS J1420-607. The {\\it Suzaku} observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible PWN Rabbit with elongated sizes of $\\sigma_{\\rm X}=1^{\\prime}.66$ and $\\sigma_{\\rm X}=1^{\\prime}.49$, respectively. The peaks of the diffuse X-ray emission are located within the $\\gamma$-ray excess maps obtained by H.E.S.S. and the offsets from the $\\gamma$-ray peaks are $2^{\\prime}.8$ for PSR J1420-6048 and $4^{\\prime}.5$ for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with $\\Gamma=1.7-2.3$. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one zone electron emission model as the first order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimate...

  6. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    Science.gov (United States)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  7. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    Science.gov (United States)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-09-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}}˜ 10^{2-3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  8. Application of X-ray absorption spectroscopy and anomalous small angle scattering to RNA polymerase

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy is ideally suited for the investigation of the electronic structure and the local environment (≤∝5 A) of specific atoms in biomolecules. While the edge region provides information about the valence state of the absorbing atom, the chemical identity of neighboring atoms, and the coordination geometry, the EXAFS region contains information about the number and average distance of neighboring atoms and their relative disorder. The development of sensitive detection methods has allowed studies using near-physiological concentrations (as low as ∝100 μM). With careful choice of model compounds, judicious use of fitting procedures, and consideration of the results of biochemical and other spectrOScopic results, this data has provided pivotal information about the structures of these active sites which store energy in their conformation changes or ligand exchanges. Although the application of anomalous small angle scattering to biomolecules has occurred more recently, it clearly provides a method of determining distances between active sites that are outside the range of X-ray absorption spectroscopy. The wavelength dependence of the X-ray scattering power varies rapidly near the edge of the absorbing atom in both amplitude and phase. This behavior selectively alters the contribution of the absorbing atom to the scattering pattern. The structure-function relationship of the intermediate states provide the key to understanding the mechanisms of these complex molecules. It is this precise structural information about the active sites that is not obtainable by other spectroscopic techniques. Combination of these techniques offers a unique approach to the determination of the organization of active sites in biomolecules, especially metalloenzymes. Application of these methods to the substrate and template binding sites of RNA polymerase which contain zinc atoms demonstrates the versatility of this approach. (orig.)

  9. Radiation embrittlement studies using anomalous small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D. E.; Kestel, B. J.; Seifert, S.; Jemian, P. R.; Odette, G. R.; Klingensmith, D.; Gragg, D.

    1999-12-06

    Anomalous small angle x-ray scattering (ASAXS) was performed on an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy subjected to annealing or electron irradiation. ASAXS takes advantage of natural variations in the atomic scattering factor which exist at energies very near an element's x-ray absorption edge. By performing systematic SAXS experiments at energies near these absorption edges of the constituent alloy elements it is possible to vary the contrast of scattering centers containing the elements and in doing so quantify scatterer composition. The results of such an analysis for the samples in this work indicate the presence of Cu-rich, Cu{sub 85}Mn{sub 15} precipitates in the alloy. By applying the maximum entropy technique to the scattering data, it was possible to extract size distributions of scattering centers fog the different treatments. The results demonstrate the ability to detect and characterize small (11 {angstrom} radius) scatterers at quite low irradiation damage levels (5x10{sup {minus} 4} displacements per atom).

  10. Radiation embrittlement studies using anomalous small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Anomalous small angle x-ray scattering (ASAXS) was performed on an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy subjected to annealing or electron irradiation. ASAXS takes advantage of natural variations in the atomic scattering factor which exist at energies very near an element's x-ray absorption edge. By performing systematic SAXS experiments at energies near these absorption edges of the constituent alloy elements it is possible to vary the contrast of scattering centers containing the elements and in doing so quantify scatterer composition. The results of such an analysis for the samples in this work indicate the presence of Cu-rich, Cu85Mn15 precipitates in the alloy. By applying the maximum entropy technique to the scattering data, it was possible to extract size distributions of scattering centers fog the different treatments. The results demonstrate the ability to detect and characterize small (11 A radius) scatterers at quite low irradiation damage levels (5x10-4 displacements per atom)

  11. Anomalous elastic scattering of x-ray photon by an atom with an open shell

    International Nuclear Information System (INIS)

    In the non-relativistic approximation for the wavefunctions of the one-electron states and in the dipole approximation for the scattering amplitude the effect of relaxation of atomic shells in the field of core vacancies, multiplet splitting, Auger and radiative vacancy decays and virtual processes of one-photon double excitation/ionization from the atomic ground state on the differential cross section of anomalous elastic scattering of the linearly polarized x-ray photon by the copper atom near its 1s-shell ionization threshold are studied. The results of calculations are found to be in agreement with the high-precision synchrotron radiation experiment by Arp et al (1993 J. Phys. B: At. Mol. Opt. Phys. 26 4381)

  12. Anomalous elastic scattering of x-ray photon by an atom with an open shell

    Energy Technology Data Exchange (ETDEWEB)

    Hopersky, A N; Petrov, I D; Nadolinsky, A M; Yavna, V A; Koneev, R V [Rostov State University of Transport Communication, Chair of Mathematics, Rostov-on-Don, 344038 (Russian Federation)

    2004-08-28

    In the non-relativistic approximation for the wavefunctions of the one-electron states and in the dipole approximation for the scattering amplitude the effect of relaxation of atomic shells in the field of core vacancies, multiplet splitting, Auger and radiative vacancy decays and virtual processes of one-photon double excitation/ionization from the atomic ground state on the differential cross section of anomalous elastic scattering of the linearly polarized x-ray photon by the copper atom near its 1s-shell ionization threshold are studied. The results of calculations are found to be in agreement with the high-precision synchrotron radiation experiment by Arp et al (1993 J. Phys. B: At. Mol. Opt. Phys. 26 4381)

  13. X-ray emission from the double neutron star binary B1534+12: Powered by the pulsar wind?

    CERN Document Server

    Kargaltsev, O; Garmire, G P

    2006-01-01

    We report the detection of the double neutron star binary (DNSB) B1534+12 (= J1537+1155) with the Chandra X-ray Observatory. This DNSB (orbital period 10.1 hr) consists of the millisecond (recycled) pulsar J1537+1155A (P_A=37.9 ms) and a neutron star not detected in the radio. After the remarkable double pulsar binary J0737-3039, it is the only other DNSB detected in X-rays. We measured the flux of (2.2\\pm 0.6)\\times10^{-15} ergs s^{-1} cm^{-2} in the 0.3-6 keV band. The small number of collected counts allows only crude estimates of spectral parameters. The power-law fit yields the photon index of 3.2\\pm 0.5 and the unabsorbed 0.2-10 keV luminosity L_X=6\\times10^{29} ergs s^{-1} = 3\\times 10^{-4}Edot_A, where Edot_A is the spin-down power of J1537+1155A. Alternatively, the spectrum can be fitted by a blackbody model with T = 2.2 MK and the projected emitting area of ~ 5\\times 10^3 m^2. The distribution of photon arrival times over binary orbital phase shows a deficit of X-ray emission around apastron, which ...

  14. A Multi-wavelength study of the Pulsar PSR B1929+10 and its X-ray trail

    CERN Document Server

    Becker, W; Jessner, A; Taam, R E; Jia, J J; Cheng, K S; Mignani, R; Pellizzoni, A; De Luca, A; Slowikowska, A; Caraveo, P A; Becker, Werner; Kramer, Michael; Jessner, Axel; Taam, Ronald E.; Jia, Jian J.; Cheng, Kwong S.; Mignani, Roberto; Pellizzoni, Alberto; Luca, Andrea de; Slowikowska, Agnieszka; Caraveo, Patrizia

    2005-01-01

    We report on the emission properties of PSR B1929+10 and its putative X-ray trail from a multi-wavelength study performed with XMM-Newton, the ESO NTT, the HST, the Effelsberg 100m Radio Telescope and the Jodrell Bank Radio Observatory. The XMM-Newton observations confirm the existence of the diffuse emission with a trail morphology lying in a direction opposite to the transverse motion of the pulsar. The trail has a length of ~15 arcmin. Its spectrum is non-thermal and produced by electron-synchrotron emission in the shock between the pulsar wind and the surrounding medium. Assuming that the electron lifetime against synchrotron cooling is comparable to the source transit time over the X-ray trail length, the magnetic field strength in the trail emitting region is inferred to be ~5 uG. Inspecting data from the Effelsberg 11cm radio continuum survey of the Galactic plane we discovered an elongated feature apparently coincident with the X-ray trail. The emission properties observed from PSR 1929+10 are found t...

  15. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    Directory of Open Access Journals (Sweden)

    Bachetti Matteo

    2014-01-01

    Full Text Available The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum is consistent with that observed in many other magnetized accreting pulsars. We fail to detect cyclotron resonance scattering features in either phase-averaged nor phase-resolved spectra that would allow us to constrain the pulsar’s magnetic field. We detect a pulse period of ~ 12:29 s in all energy bands. The pulse profile can be modeled with a double Gaussian and shows a strong and smooth hard lag of up to 0.3 cycles in phase, or about 4s between the pulse at ~ 3 and ≳ 30 keV. This is the first report of such a strong lag in high-mass X-ray binary (HMXB pulsars. Previously reported lags have been significantly smaller in phase and restricted to low-energies (E<10 keV. We investigate the possible mechanisms that might produce such lags. We find the most likely explanation for this effect to be a complex beam geometry.

  16. Ain't No Crab, PWN Got A Brand New Bag: Correlated radio and X-ray Structures in Pulsar Wind Nebulae

    CERN Document Server

    Roberts, M S E; Gaensler, B M; Brogan, C L; Tam, C R; Romani, R W; Roberts, Mallory S.E.; Lyutikov, Maxim; Gaensler, Bryan M.; Brogan, Crystal; Tam, Cindy R.; Romani, Roger W.

    2004-01-01

    The traditional view of radio pulsar wind nebulae (PWN), encouraged by the Crab nebula's X-ray and radio morphologies, is that they are a result of the integrated history of their pulsars' wind. The radio emission should therefore be largely unaffected by recent pulsar activity, and hence minimally correlated with structures in the X-ray nebulae. Observations of several PWN, both stationary (sPWN) and rapidly moving (rPWN), now show clear morphological relationships between structures in the radio and X-ray with radio intensity variations on the order of unity. We present high-resolution X-ray and radio images of several PWN of both types and discuss the morphological relationships between the two wavebands.

  17. Nano-structured titanium and aluminium nitride coatings: Study by grazing incidence X-ray diffraction and X-ray absorption and anomalous diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tuilier, M.-H., E-mail: marie-helene.tuilier@uha.fr [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 -conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Pac, M.-J. [Universite de Haute Alsace (UHA), Laboratoire Physique et Mecanique Textile (LPMT), EA 4365 - conventionnee au CNRS, Equipe PPMR, F-68093 Mulhouse (France); Anokhin, D.V. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Moscow State University, Faculty of Fundamental Physical and Chemical Engineering, 119991, Moscow, GSP-1, 1-51 Leninskie Gory (Russian Federation); Ivanov, D.A. [Universite de Haute Alsace (UHA), CNRS, Institut de Science des Materiaux de Mulhouse (IS2M), LRC 7228, F-68093 Mulhouse (France); Rousselot, C. [Universite de Franche-Comte, FEMTO-ST (UMR CNRS 6174), F-25211 Montbeliard (France); Thiaudiere, D. [Synchrotron Soleil, Saint Aubin, F-91192 Gif sur Yvette (France)

    2012-12-30

    Titanium and aluminium nitride thin films, Ti{sub 1-x}Al{sub x}N (x = 0, x = 0.5, x = 0.68), deposited by reactive magnetron sputtering on silicon substrates are investigated by combining two different X-ray diffraction experiments carried out using synchrotron radiation. Grazing-incidence X-ray diffraction and Ti K-edge diffraction anomalous near edge structure spectroscopy provide information on the micro- and nano-structure of the films respectively, which play a crucial role in the functionality of coatings. The spectroscopic data of Ti{sub 0.50}Al{sub 0.50}N film show that Ti atoms in crystallized domains and grain boundaries are all in octahedral cubic local order, but their growth mode is quite different. It is found that the crystallized part of the Ti{sub 0.50}Al{sub 0.50}N film has a single-crystalline nature, whereas the TiN one presents a fibrillar microstructure. For Ti{sub 0.32}Al{sub 0.68}N film, grazing-incidence X-ray diffraction provides information on the uniaxial texture along the [001] direction of the hexagonal lattice. A sharp Ti K pre-edge peak is observed in diffraction anomalous near edge spectrum that definitely shows that Ti atoms are incorporated in the hexagonal lattice of those fibrillar domains. Moreover, the difference observed between Ti K-edge diffraction anomalous and X-ray absorption pre-edge regions proves that a significant part of Ti atoms is located in nanocrystallites with cubic symmetry outside of the crystallized domains. - Highlights: Black-Right-Pointing-Pointer We study nano and micro-structures of TiN, Ti{sub 0.50}Al{sub 0.50}N and Ti{sub 0.32}Al{sub 0.68}N films. Black-Right-Pointing-Pointer Anomalous diffraction solves the crystallized part regardless of grain boundaries. Black-Right-Pointing-Pointer TiN microstructure is fibrillar, Ti{sub 0.5}Al{sub 0.5}N presents single crystalline domains. Black-Right-Pointing-Pointer For Ti{sub 0.32}Al{sub 0.68}N, Ti atoms are located in nanocrystallites with cubic symmetry

  18. Investigation of iron emission lines in the eclipsing high mass X-ray binary pulsar OAO 1657-415

    CERN Document Server

    Jaisawal, Gaurava K

    2016-01-01

    We present the results obtained from timing and spectral studies of high mass X-ray binary pulsar OAO 1657-415 using a Suzaku observations in 2011 September. X-ray pulsations were detected in the light curves up to $\\sim$70 keV. The continuum spectra during the high- and low-flux regions in light curves were well described by high energy cutoff power-law model along with a blackbody component and iron fluorescent lines at 6.4 keV and 7.06 keV. Time resolved spectroscopy was carried out by dividing the entire observations into 18 narrow segments. Presence of additional dense matter at various orbital phases was confirmed as the cause of low-flux regions in the observations. Presence of additional matter at several orbital phases of the pulsar was interpreted as due to the inhomogeneously distributed clumps of matter around the neutron star. Using clumpy wind hypothesis, the physical parameters of the clumps causing the high- and low-flux episodes in the pulsar light curve were estimated. The equivalent width o...

  19. X-ray Measurement of the Spin-Down of Calvera: a Radio- and Gamma-ray-Quiet Pulsar

    CERN Document Server

    Halpern, J P; Gotthelf, E V

    2013-01-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot = (3.19+/-0.08)e-15, which corresponds to spin-down luminosity E-dot = 6.1e35 erg/s, characteristic age tau_c = P/2P-dot = 2.9e5 yr, and surface dipole magnetic field strength B_s = 4.4e11 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy gamma-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a gamma-ray luminosity limit of < 3.3e32 erg/s, which is less than that of any pulsar of comparable E-dot. Calvera sha...

  20. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    Science.gov (United States)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  1. The long-term evolution of the accreting millisecond X-ray pulsar Swift J1756.9-2508

    CERN Document Server

    Patruno, Alessandro; Messenger, Chris

    2009-01-01

    We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approximately 2 year long baseline of data, we can constrain the magnetic field of the neutron star to be 0.4x10^8 G < B < 9x10^8 G, which is within the range of typical accreting millisecond pulsars. The 2009 timing analysis allows us to put constraints on the accretion torque: the spin frequency derivative within the outburst has an upper limit of $|\\dot{\

  2. On the Light Curve and Spectra of X-Rays and Gamma-Rays from the Crab Pulsar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; K. S. Cheng; MEI Dong-Cheng

    2000-01-01

    We use a three-dimensional pulsar magnetosphere model to study the light curve and spectra of x-rays and gamma-rays from the Crab pulsar. In this model, the vertical size of the outer gap is first determined by a self-consistent model in which the outer gap is limited by pair production from collisions of thermal photons produced by polar cap heating of backflow outer gap current and curvature photons emitted by gap accelerated charged particles. The transverse size of the outer gap is determined by local pair production conditions. In principle, there are two topologically disconnected outer gaps present in the magnetosphere of a pulsar, and both incoming and outgoing particle flows are allowed. However, double-peak light curves with strong bridges are most common, Making use of the three-dimensional structure of the outer gap and its local properties, we compare the results of our model with the light curve and phase-resolved spectra of the Crab pulsar.

  3. Near-infrared observations of the Be/X-ray binary pulsar A0535+262

    Institute of Scientific and Technical Information of China (English)

    Sachindra Naik; Blesson Mathew; D. P. K. Banerjee; N. M. Ashok; Rajeev R. Jaiswal

    2012-01-01

    We present the results obtained from extensive near-infrared (IR) spectro-scopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~ 111 d orbital period.This observation campaign is part of the monitoring program of selective Be/X-ray binary systems aimed at understanding X-ray and near-IR properties at different orbital phases,especially during the periastron passage of the neutron star.The near-IR observations presented here were carried out using the 1.2 m telescope at the Mt.Abu IR Observatory.Though the source was relatively faint for spectroscopic observations with the 1.2 m telescope,we monitored the source closely during the 2011 February-March giant X-ray outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra took place at the periastron passage.Changes of such a striking nature were expected to be detectable in our spectra.Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst,which could suggest a mild evacuation/truncation of the circumstellar disk of the Be companion.Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830,1.7002 and 2.0585 μm.The presence of all the hydrogen emission lines in the JHK spectra,along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases,suggests that the near- IR line emitting regions of the disk are not significantly affected during the X-ray outburst.

  4. A Compact X-ray Source in the Radio Pulsar-Wind Nebula G141.2+5.0

    CERN Document Server

    Reynolds, Stephen P

    2016-01-01

    We report the results of a 50 ks Chandra observation of the recently discovered radio object G141.2+5.0, presumed to be a pulsar-wind nebula. We find a moderately bright unresolved X-ray source which we designate CXOU J033712.8 615302 coincident with the central peak radio emission. An absorbed power-law fit to the 241 counts describes the data well, with absorbing column $N_H = 6.7 (4.0, 9.7) \\times 10^{21}$ cm$^{-2}$ and photon index $\\Gamma = 1.8 (1.4, 2.2)$. For a distance of 4 kpc, the unabsorbed luminosity between 0.5 and 8 keV is $ 1.7^{+0.4}_{-0.3} \\times 10^{32}$ erg s$^{-1}$ (90\\% confidence intervals). Both $L_X$ and $\\Gamma$ are quite typical of pulsars in PWNe. No extended emission is seen; we estimate a conservative $3 \\sigma$ upper limit to the surface brightness of any X-ray PWN near the point source to be $3 \\times 10^{-17}$ erg cm$^{-2}$ s$^{-1}$ arcsec$^{-2}$ between 0.5 and 8 keV, assuming the same spectrum as the point source; for a nebula of diameter $13"$, the flux limit is 6\\% of the f...

  5. Anomalous elastic scattering of x-ray photons by a neon-like ion

    Energy Technology Data Exchange (ETDEWEB)

    Hopersky, A N; Nadolinsky, A M; Dzuba, D V; Yavna, V A [Rostov State University of Transport Communication, Rostov-on-Don, 344038 (Russian Federation)

    2005-05-28

    In the non-relativistic approximation for the wavefunctions of the one-electron states and in the dipole approximation for the scattering amplitude, the effect of radial monopole rearrangement of electron shells within the field of a vacancy and of the processes of one-photon double excitation/ionization on the absolute values and the shapes of the differential cross sections of anomalous non-zero-angle elastic scattering of linearly polarized x-ray photons by the Ne atom and by the neon-like Si{sup 4+} and Ar{sup 8+} ions in the vicinity of K- and KL{sub 23}-ionization thresholds is studied. The results of calculations for the Ne atom were found to be in agreement with the high-precision synchrotron radiation experiments by Coreno et al (1999 Phys. Rev. A 59 2494; K-ionization threshold) and by Avaldi et al (1996 J. Phys. B: At. Mol. Opt. Phys. 29 L737; KL{sub 23}-ionization threshold). The results of calculations for the Si{sup 4+} and Ar{sup 8+} ions are predictions.

  6. Anomalous elastic scattering of x-ray photons by a neon-like ion

    International Nuclear Information System (INIS)

    In the non-relativistic approximation for the wavefunctions of the one-electron states and in the dipole approximation for the scattering amplitude, the effect of radial monopole rearrangement of electron shells within the field of a vacancy and of the processes of one-photon double excitation/ionization on the absolute values and the shapes of the differential cross sections of anomalous non-zero-angle elastic scattering of linearly polarized x-ray photons by the Ne atom and by the neon-like Si4+ and Ar8+ ions in the vicinity of K- and KL23-ionization thresholds is studied. The results of calculations for the Ne atom were found to be in agreement with the high-precision synchrotron radiation experiments by Coreno et al (1999 Phys. Rev. A 59 2494; K-ionization threshold) and by Avaldi et al (1996 J. Phys. B: At. Mol. Opt. Phys. 29 L737; KL23-ionization threshold). The results of calculations for the Si4+ and Ar8+ ions are predictions

  7. A Catalog of Diffuse X-ray-Emitting Features within 20 pc of Sgr A*: Twenty Pulsar Wind Nebulae?

    CERN Document Server

    Muno, M P; Brandt, W N; Morris, M R; Starck, J -L

    2007-01-01

    We present a catalog of 34 diffuse features identified in X-ray images of the Galactic center taken with the Chandra X-ray Observatory. Several of the features have been discussed in the literature previously, including 7 that are associated with a complex of molecular clouds that exhibits fluorescent line emission, 4 that are superimposed on the supernova remnant Sgr A East, 2 that are coincident with radio features that are thought to be the shell of another supernova remnant, and one that is thought to be a pulsar wind nebula only a few arcseconds in projection from Sgr A*. However, this leaves 20 features that have not been reported previously. Based on the weakness of iron emission in their spectra, we propose that most of them are non-thermal. One long, narrow feature points toward Sgr A*, and so we propose that this feature is a jet of synchrotron-emitting particles ejected from the supermassive black hole. For the others, we show that their sizes (0.1-2 pc in length for D=8 kpc), X-ray luminosities (b...

  8. Exploring the X-ray and gamma-ray properties of the redback millisecond pulsar PSR J1723-2837

    CERN Document Server

    Hui, C Y; Takata, J; Kong, A K H; Cheng, K S; Wu, J H K; Lin, L C C; Wu, E M H

    2013-01-01

    We have investigated the X-ray and $\\gamma$-ray properties of the redback millisecond pulsar PSR J1723-2837 with XMM-Newton, Chandra and Fermi. We have discovered the X-ray orbital modulation of this binary system with the minimum that coincides with the phases of radio eclipse. The X-ray emission is clearly non-thermal in nature which can be well described by a simple power-law with a photon index of $\\sim1.2$. The phase-averaged luminosity is $\\sim9\\times10^{31}$ erg/s in 0.3-10 keV which consumes $\\sim0.2\\%$ of the spin-down power. We have detected the $\\gamma-$ray emission in $0.1-300$ GeV from this system at a significance of $\\sim6\\sigma$ for the first time. The $\\gamma-$rays in this energy range consumes $\\sim2\\%$ of the spin-down power and can be modeled by a power-law with a photon index of $\\sim2.6$. We discuss the high energy properties of the new redback in the context of a intrabinary shock model.

  9. Orbital Evolution Measurement of the Accreting Millisecond X-ray Pulsar SAX J1808.4–3658

    Indian Academy of Sciences (India)

    Chetana Jain; Anjan Dutta; Biswajit Paul

    2007-12-01

    We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10-12 s s-1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4–3658 will help us to resolve this.

  10. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    Science.gov (United States)

    Pintore, F.; Sanna, A.; Di Salvo, T.; Del Santo, M.; Riggio, A.; D'Aì, A.; Burderi, L.; Scarano, F.; Iaria, R.

    2016-04-01

    We analysed a 115-ks XMM-Newton observation and the stacking of 8 d of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (˜2 keV) and an additional hard X-ray emission described by a power law (Γ ˜ 2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high-energy tail is still under debate. In addition, a number of broad (σ = 0.1-0.4 keV) emission features likely associated with reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity of the source is ˜5 × 1037 erg s-1, about 25 per cent of the Eddington limit assuming a 1.4 M⊙ NS. We suggest that the spectral properties of SAX J1748.9-2021 are consistent with a soft state, differently from many other accreting X-ray millisecond pulsars which are usually found in the hard state. Moreover, none of the observed type-I burst reached the Eddington luminosity. Assuming that the burst ignition and emission are produced above the whole NS surface, we estimate an NS radius of ˜7-8 km, consistent with previous results.

  11. Anomalous scattering of highly dispersed pulsars

    CERN Document Server

    Löhmer, O; Mitra, D; Lorimer, D R; Lyne, A G

    2001-01-01

    We report multifrequency measurements of scatter broadening times for nine highly dispersed pulsars over a wide frequency range (0.6 -- 4.9 GHz). We find the scatter broadening times to be larger than expected and to scale with frequency with an average power-law index of $3.44\\pm 0.13$, i.e. significantly less than that expected from standard theories. Such possible discrepancies have been predicted very recently by Cordes & Lazio.

  12. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    DEFF Research Database (Denmark)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca A.;

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50ks. We present the results of this observation which enabled the discovery of acyclotron resonant scattering feature with a centroid energy of 29.3...

  13. The Accreting Millisecond X-ray Pulsar IGR J00291+5934: Evidence for a Long Timescale Spin Evolution

    CERN Document Server

    Patruno, Alessandro

    2010-01-01

    Accreting Millisecond X-ray Pulsars like IGR J00291+5934 are important because it is possible to test theories of pulsar formation and evolution. They give also the possibility to constrain gravitational wave emission theories and the equation of state of ultra dense matter. Particularly crucial to our understanding is the measurement of the long term spin evolution of the accreting neutron star. An open question is whether these accreting pulsars are spinning up during an outburst and spinning down in quiescence as predicted by the recycling scenario. Until now it has been very difficult to measure torques, due to the presence of fluctuations in the pulse phases that compromise their measurements with standard coherent timing techniques. By applying a new method, I am now able to measure a spin up during an outburst and a spin down during quiescence. I ascribe the spin up (Fdot=5.1(3)x10^{-13}\\Hz/s) to accretion torques and the spin down (Fdot=-3.0(8)x10^{-15} Hz/s) to magneto dipole torques, as those observ...

  14. X-ray analysis of the proper motion and pulsar wind nebula for PSR J1741-2054

    CERN Document Server

    Auchettl, Katie; Romani, Roger W; Posselt, Bettina; Pavlov, George G; Kargaltsev, Oleg; Ng, C-Y; Temim, Tea; Weisskopf, Martin C; Bykov, Andrei; Swartz, Douglas A

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the $Chandra$ ACIS-S detector totaling $\\sim$300 ks. By registering this new epoch of observations to an archival observation taken 3.2 years earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at $\\mu =109 \\pm 10$ mas/yr. The spectrum of the pulsar can be described by an absorbed power law with photon index $\\Gamma$=2.68$\\pm$0.04, plus a blackbody with an emission radius of (4.5$^{+3.2}_{-2.5})d_{0.38}$ km, for a DM-estimated distance of $0.38d_{0.38}$ kpc and a temperature of $61.7\\pm3.0$ eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of $\\Gamma$ = 1.67$\\pm$0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also looked for extended features that might represent a jet or torus-like structure using image deconvolution and PSF-subtraction but we find no conclusive evidence of suc...

  15. High Spatial Resolution X-Ray Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    CERN Document Server

    Swartz, Douglas A; Clarke, Tracy; Castelletti, Gabriela; Zavlin, Vyacheslav E; Bucciantini, Niccolò; Karovska, Margarita; van der Horst, Alexander J; Yukita, Mihoko; Weisskopf, Martin C

    2015-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant IC443 reveal an ~5$^{\\prime\\prime}$-radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north-south across the ring and through the pulsar's location at 06$^{\\rm h}$17$^{\\rm m}$5.200$^{\\rm s}$ +22$^{\\circ}$21$^{\\prime}$27.52$^{\\prime\\prime}$ (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind and, (3) the spectrum at greater distances is consistent with thermal emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion throu...

  16. High Spatial Resolution X-Ray Spectroscopy of the IC443 Pulsar Wind Nebula

    Science.gov (United States)

    Swartz, Douglas A.; Weisskopf, Martin C.; Bucciantini, Niccolo; Clarke, Tracy E.; Karovska, Margarita; Pavlov, George G.; van der Horst, Alexander; Yukita, Mihoko; Zavlin, Vyacheslav

    2014-08-01

    Deep Chandra ACIS observations of the region around the putative pulsar CXOU J061705.3+222127, in the supernova remnant IC443, reveal a ~5" radius ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar's location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest, appears to be subsonic: There is no evidence for a strong bow shock; and the ring is not distorted by motion through the ambient medium. Comparing this observation with historical observations of the same target we set a 99-% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 310 km/s, with the best-fit (but not statistically significant) direction toward the west.

  17. High Spatial Resolution X-Ray Spectroscopy of the IC 443 Pulsar Wind Nebula and Environs

    Science.gov (United States)

    Swartz, Douglas A.; Pavlov, George G.; Clarke, Tracy; Castelletti, Gabriela; Zavlin, Vyacheslav E.; Bucciantini, Niccolò; Karovska, Margarita; van der Horst, Alexander J.; Yukita, Mihoko; Weisskopf, Martin C.

    2015-07-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ∼5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north–south across the ring and through the pulsar's location at 06h17m5.ˢ200 + 22°21‧27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr‑1 (310 km s‑1 for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  18. A broadband X-ray study of the Geminga pulsar with NuSTAR And XMM-Newton

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kaya; Gotthelf, Eric V.; Halpern, Jules P.; Beloborodov, Andrei M.; Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Dufour, Francois; Kaspi, Victoria M.; An, Hongjun [Department of Physics, McGill University, Montreal, QC H3A2T8 (Canada); Bachetti, Matteo [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Kouveliotou, Chryssa [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pivovaroff, Michael J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: kaya@astro.columbia.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-10-01

    We report on the first hard X-ray detection of the Geminga pulsar above 10 keV using a 150 ks observation with the Nuclear Spectroscopic Telescope Array (NuSTAR) observatory. The double-peaked pulse profile of non-thermal emission seen in the soft X-ray band persists at higher energies. Broadband phase-integrated spectra over the 0.2-20 keV band with NuSTAR and archival XMM-Newton data do not fit to a conventional two-component model of a blackbody plus power law, but instead exhibit spectral hardening above ∼5 keV. We find that two spectral models fit the data well: (1) a blackbody (kT {sub 1} ∼ 42 eV) with a broken power law (Γ{sub 1} ∼ 2.0, Γ{sub 2} ∼ 1.4 and E {sub break} ∼ 3.4 keV) and (2) two blackbody components (kT {sub 1} ∼ 44 eV and kT {sub 2} ∼ 195 eV) with a power-law component (Γ ∼ 1.7). In both cases, the extrapolation of the Rayleigh-Jeans tail of the thermal component is consistent with the UV data, while the non-thermal component overpredicts the near-infrared data, requiring a spectral flattening at E ∼ 0.05-0.5 keV. While strong phase variation of the power-law index is present below ∼5 keV, our phase-resolved spectroscopy with NuSTAR indicates that another hard non-thermal component with Γ ∼ 1.3 emerges above ∼5 keV. The spectral hardening in non-thermal X-ray emission as well as spectral flattening between the optical and X-ray bands argue against the conjecture that a single power law may account for multi-wavelength non-thermal spectra of middle-aged pulsars.

  19. A new simulation metho d of X-ray pulsar signals%一种新的X射线脉冲星信号模拟方法

    Institute of Scientific and Technical Information of China (English)

    薛梦凡; 李小平; 孙海峰; 刘兵; 方海燕; 沈利荣

    2015-01-01

    Since X-ray pulsar signals cannot be directly detected on the ground, and the space flight detection is both time-consuming and costly, simulation of X-ray pulsar signals with true physical characteristics is of great importance to the validation of various X-ray pulsar signal processing algorithms and X-ray pulsar-based navigation strategies. In this paper, a new simulation method of X-ray pulsar signals is proposed, in which according to the pulsar signal model at the solar system Barycenter (SSB) and the trajectory information of the spacecraft, the real-time photon arrival rate function at the spacecraft is established, then based on this, a scale transforming method is employed to directly generate the photon event time stamps at the spacecraft which follow a non-homogeneous Poisson process. The proposed simulation method takes into account the pulsar spin down law and the influences of the largescale time-space effects introduced in the process of dynamic detection , and thus avoids the complicated iteration procedure involved in the state of the art simulation methods. Finally, a series of simulations are designed to evaluate the performance of the proposed simulation method. The main results can be concluded as follows: 1) The simulated photon event timestamps have a slowly changing period, which are consistent with the pulsar spin down law. 2) The observed pulsar profile accurately reflects how the radiation intensity of pulsars changes over time within a phase cycle, and it has a Pearson correlation coefficient of up to 0.99 with a standard profile. 3) The simulated average fluxes of the pulsars are very close to the true values, and thereby verifies the correctness of the proposed simulation method from an overall point of view. 4) The simulated photon series are very similar to the real data detected by the RXTE explorer, and when the simulation time is longer than 50 s, the relevancy between the simulated profile and the profile obtained from the real

  20. Atomic Rayleigh scattering cross-sections and the associated anomalous dispersion in the X-ray regions

    International Nuclear Information System (INIS)

    Elastic scattering cross-sections for Pd, Ag, Cd, In, Sn, Sb, Pt, Au and Pb are measured at an angle of 90 circle in the X-ray region 5.41≤E≤8.04 keV. These energies fall between the high-energy side of the L- and M-shell absorption edges of the atoms considered. The present atomic region is significant for solid X-rays to assess the contribution of resonance and solid-state environmental effects. Also it is the anomalous scattering region for many of the atoms of the periodic table. Experimental results are compared with theoretical calculations based on form factor formalisms including the anomalous corrections and available recent S-matrix values. Based on the experimental evidence, the present results indicate the influence of solid-state environmental effects, the importance of anomalous corrections nearer to absorption edges, the correctness of revised high-energy limit values, the superiority of S-matrix predictions over form factor values on measured elastic scattering cross-sections in the X-ray regime and also show the resonance behavior around K,L and M absorption edges. (orig.)

  1. An X-ray Synchrotron Nebula Associated with the Radio Pulsar PSR B1853+01 in the Supernova Remnant W44

    Science.gov (United States)

    Harrus, I.; Hughes, J. P.

    1995-12-01

    We present results of a study using ASCA X-ray data from the vicinity of the radio pulsar PSR B1853+01 located within the supernova remnant (SNR) W44. PSR B1853+01 is a 267 ms pulsar, which to date has only been detected in the radio band. Previous observations at soft X-ray energies (e.g., ROSAT HRI) have failed to detect any significant X-ray emission (pulsed or unpulsed) from the pulsar. In addition, no high energy tail was seen in the Ginga spectrum of W44 leading to a 3sigma upper limit of 3.6x 10(-12) ergs cm(-2) s(-1) for the 2--10 keV flux of a Crab-like power-law component contributing to the spectrum of W44. Over the 0.5--5 keV band, the ASCA data show soft thermal (kT ~ 0.5 keV) emission from W44 with a morphology very similar to that observed before by Einstein and ROSAT. In the high energy band (5--10 keV) the SNR for the most part is not visible and instead an unresolved source coincident with the position of PSR B1853+01 is evident. The observed ASCA spectra are consistent with a power-law origin (photon index ~ 3.5) for the X-ray emission from this source at a flux level below the Ginga upper limit. The maximum allowed size for the source is determined directly from the ASCA data (1.5(') ). We also report on our timing analysis, which failed to detect pulsations from the X-ray source at the pulsar's period. Based on these lines of evidence, we suggest that the new hard source in W44 represents the X-ray synchrotron nebula surrounding PSR B1853+01, rather than the beamed output of the pulsar itself. The ratio of the nebula's X-ray luminosity to the spin-down energy loss of the pulsar is consistent with that of other known plerions, lending further support to our interpretation. This is the first indirect detection in the X-ray band of the pulsar associated with W44.

  2. Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    Science.gov (United States)

    Vasilopoulos, G.; Haberl, F.; Delvaux, C.; Sturm, R.; Udalski, A.

    2016-09-01

    We report on the results of a ˜40-d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded 1036 erg s-1 we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1σ), making it the 17th known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law (Γ = 0.63) plus a high-temperature blackbody (kT ˜2 keV) component. By analysing ˜12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability while its IR flux varied in phase with the X-ray luminosity, which implies the presence of a disc-like component adding cooler light to the spectral energy distribution of the system.

  3. SXP 1062, a young Be X-ray binary pulsar with long spin period; Implications for the neutron star birth spin

    CERN Document Server

    Haberl, F; Filipovic, M D; Pietsch, W; Crawford, E J

    2011-01-01

    (shortened) The SMC is ideally suited to investigating the recent star formation history from X-ray source population studies. It harbours a large number of Be/X-ray binaries, and the supernova remnants can be easily resolved with imaging X-ray instruments. We search for new supernova remnants in the SMC and in particular for composite remnants with a central X-ray source. We study the morphology of newly found candidate supernova remnants using radio, optical and X-ray images and investigate their X-ray spectra. Here we report on the discovery of the new supernova remnant around the recently discovered Be/X-ray binary pulsar SXP 1062 in radio and X-ray images. The Be/X-ray binary system is found near the centre of the supernova remnant, which is located at the outer edge of the eastern wing of the SMC. The remnant is oxygen-rich, indicating that it developed from a type Ib event. From XMM-Newton observations we find that the neutron star with a spin period of 1062 s shows a very high average spin-down rate o...

  4. Discovery of a faint X-ray counterpart and of a parsec-long X-ray tail for the middle-aged, gamma-ray only pulsar PSR J0357+3205

    CERN Document Server

    De Luca, A; Mignani, R P; Caraveo, P A; Hummel, W; Collins, S; Shearer, A; Parkinson, P M Saz; Belfiore, A; Bignami, G F

    2011-01-01

    The Large Area Telescope (LAT) onboard the Fermi satellite opened a new era for pulsar astronomy, detecting gamma-ray pulsations from more than 60 pulsars, ~40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged (tau_C ~0.5 Myr) pulsar standing out for its very low spin-down luminosity (Erot ~6x10^33 erg/s), indeed the lowest among non-recycled gamma-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index Gamma=2.53+/-0.25). The absorbing column (NH=8+/-4x10^20 cm^-2) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from...

  5. Anomalous small-angle X-ray scattering of nanoporous two-phase atomistic models for amorphous silicon–germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chehaidar, A., E-mail: Abdallah.Chehaidar@fss.rnu.tn

    2015-09-15

    The present work deals with a detailed analysis of the anomalous small-angle X-ray scattering in amorphous silicon–germanium alloy using the simulation technique. We envisage the nanoporous two-phase alloy model consisting in a mixture of Ge-rich and Ge-poor domains and voids at the nanoscale. By substituting Ge atoms for Si atoms in nanoporous amorphous silicon network, compositionally heterogeneous alloys are generated with various composition-contrasts between the two phases. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its anomalous X-ray scattering pattern. Using a smoothing procedure, the computed X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so a rigorous quantitative analysis of the anomalous small-angle scattering. Our simulation shows that, as expected, the anomalous small-angle X-ray scattering technique is a tool of choice for characterizing compositional heterogeneities coexisting with structural inhomogeneities in an amorphous alloy. Furthermore, the sizes of the compositional nanoheterogeneities, as measured by anomalous small-angle X-ray scattering technique, are X-ray energy independent. A quantitative analysis of the separated reduced anomalous small-angle X-ray scattering, as defined in this work, provided a good estimate of their size.

  6. Luminosity Dependent Study of the High Mass X-ray Binary Pulsar 4U 0114 + 65 with ASCA

    Indian Academy of Sciences (India)

    U. Mukherjee; B. Paul

    2006-03-01

    Here we report the spectral characteristics of the high and low states of the pulsar 4U 0114+65 and examine the change in the parameters of the spectral model. A power lawand a photoelectric absorption by material along the line of sight together with a high energy cut-off suffice to describe the continuum spectrum in both the states. A fluorescence iron line at ∼ 6.4 keV is present in the high as well as in the low state, though it is less intense in the latter. The photon index, cut-off energy and e-folding energy values hardly show any discernible change over the states. We compare these spectral characteristics as observed with ASCA with those of other satellites. We also compare the spectral characteristics of 4U 0114 + 650 with other X-ray sources which show intensity variation at different time scales.

  7. Synchronous X-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere

    NARCIS (Netherlands)

    Hermsen, W.; Hessels, J.W.; Kuiper, L.; Leeuwen, van J.; Mitra, D.; Plaa, de J.; Rankin, J.M.; Stappers, B.W.; Wright, G.A.E.; Basu, R.; Alexov, A.; Coenen, T.; Griessmeier, J.M.; Hassall, T.E.; Karastergiou, A.; Keane, E.; Kondratiev, V.I.; Kramer, M.; Kuniyoshi, M.; Noutsos, A.; Serylak, M.; Pilia, M.; Sobey, C.; Weltevrede, P.; Zagkouris, K.; Asgekar, A.; Avruch, I.M.; Batejat, F.; Bell, M.E.; Bell, M.R.; Bentum, M.J.; Bernardi, G.; Best, P.; Birzan, L.; Bonfede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H.R.; Ciardi, B.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M.A.; Gasperin, de F.; Geus, de E.; Gunst, A.W.; Heald, G.; Hoeft, M.; Homeffer, A.; Iabobelli, M.; Kuper, G.; Maat, P.; Macario, G.; Markoff, S.; McKean, J.P.; Mevius, M.; Miller-Jones, J.C.A.; Morganti, R.; Munk, H.; Orrú, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V.N.; Pizzo, R.; Polatidis, A.G.; Rawlings, S.; Reich, W.; Röttgering, H.; Scaife, A.M.M.; Schoenmakers, A.; Shulevski, A.; Sluman, J.; Steinmetz, M.; Tagger, M.; Tang, Y.; Tasse, C.; Veen, ter S.; Vermeulen, R.; Brink, van de R.H.; Weeren, van R.J.; Weijers, R.A.M.J.; Wise, M.W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-01-01

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emis

  8. A 16 Millisecond X-Ray Pulsar in the Crab-Like SNR N157B Fast Times at 30 Doradus

    CERN Document Server

    Gotthelf, E V; Marshall, F E; Middleditch, J; Wang, Q D

    1998-01-01

    The supernova remnant N157B (30 Dor B, SNR 0539-69.1, NGC 2060), located in the Tarantula Nebula of the Large Magellanic Cloud, has long been considered a possible Crab-like remnant. This hypothesis has been confirmed, quite spectacularly, with the discovery of PSR J0537-6910, the remarkable 16 ms X-ray pulsar in N157B. PSR J0537-6910 is the most rapidly spinning pulsar found to be associated with a supernova remnant. Here we report our discovery and summarize the properties of this pulsar and its supernova remnant.

  9. The accretion-heated crust of the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5

    NARCIS (Netherlands)

    N. Degenaar; R. Wijnands

    2011-01-01

    We report on a Chandra Director’s Discretionary Time observation of the globular cluster Terzan 5, carried out ∼7 weeks after the cessation of the 2010 outburst of the newly discovered transiently accreting 11-Hz X-ray pulsar. We detect a thermal spectrum that can be fitted with a neutron star atmos

  10. Discovery of the optical counterpart to the X-ray pulsar SAX J2103.5+4545

    CERN Document Server

    Reig, P; Fabregat, J; Chato, R; Blay, P; Mavromatakis, F

    2004-01-01

    We report optical and infrared photometric and spectroscopic observations that identify the counterpart to the 358.6-s X-ray transient pulsar SAX J2103.5+4545 with a moderately reddened V=14.2 B0Ve star. This identification makes SAX J2103.5+4545 the Be/X-ray binary with the shortest orbital period known, Porb= 12.7 days. The amount of absorption to the system has been estimated to be Av=4.2+-0.3, which for such an early-type star implies a distance of about 6.5 kpc. The optical spectra reveal major and rapid changes in the strength and shape of the Halpha line. The Halpha line was initially observed as a double peak profile with the ratio of the intensities of the blue over the red peak greater than one (V/R > 1). Two weeks later this ratio reversed (V/R< 1). Subsequently, in less than a month, the emission ceased and Halpha appeared in absorption. This fast spectral variability is interpreted within the viscous decretion disc model and demonstrates the significant role of the neutron star on the evolutio...

  11. EXTraS discovery of an 1.2-s X-ray pulsar in M 31

    CERN Document Server

    Esposito, P; Belfiore, A; Novara, G; Sidoli, L; Castillo, G A Rodríguez; De Luca, A; Tiengo, A; Haberl, F; Salvaterra, R; Read, A M; Salvetti, D; Sandrelli, S; Marelli, M; Wilms, J; D'Agostino, D

    2015-01-01

    During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with $\\Gamma < 1$) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from $\\sim$$3\\times10^{37}$ to $2\\times10^{38}$ erg s$^{-1}$. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with $V\\gtrsim22$ outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray bi...

  12. NuSTAR Discovery of a Cyclotron Line in the Accreting X-Ray Pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John A.; Fornasini, Francesca M.; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Zhang, William W.

    2016-06-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by the Nuclear Spectroscope Telescope Array in the 3–79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of {29.3}-1.3+1.1 keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5 ± 0.1) × 1012 G. The known pulsation period is now observed at 904.0 ± 0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of \\dot{P}=-2× {10}-8 s s‑1 (‑0.6 s per year, or a frequency derivative of \\dot{ν }=3× {10}-14 Hz s‑1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2 × 108 cm.

  13. High-resolution X-ray spectroscopy of the ultracompact LMXB pulsar 4U 1626-67

    CERN Document Server

    Krauss, M I; Chakraborty, D; Juett, A M; Cottam, J; Krauss, Miriam I.; Schulz, Norbert S.; Chakrabarty, Deepto; Juett, Adrienne M.; Cottam, Jean

    2006-01-01

    [abridged] We report results from four recent observations of the ultracompact LMXB pulsar 4U 1626-67. All the observations obtained high-resolution X-ray spectra of the system, two from the Chandra X-ray Observatory using the HETGS, and two from the XMM-Newton Observatory using the RGS as well as the EPIC PN and MOS. These data allow us to study in detail the prominent Ne and O emission line complexes which make 4U 1626-67 unique among LMXBs. The observations were spaced over a period of 3 years for a total observing time of 238 ks, allowing us to monitor the line regions as well as the overall source flux, continuum spectrum, and timing properties. The structure of the emission lines and the ratios of the components of the helium-like Ne IX and O VII triplets support the hypothesis that they are formed in the high-density environment of the accretion disk. We do not find any significant changes in the line widths or ratios over this time period, though we note that the line equivalent widths decrease. We ar...

  14. Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

    CERN Document Server

    Pintore, Fabio; Di Salvo, Tiziana; Del Santo, Melania; Riggio, Alessandro; D'Aì, Antonino; Burderi, Luciano; Scarano, Fabiana; Iaria, Rosario

    2016-01-01

    We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Comptonization emission coming out of an optically thick plasma region, while the origin of the high energy tail is still under debate. In addition, a number of broad (~0.1-0.4 keV) emission features likely associated to reflection processes have been observed in the XMM-Newton data. The estimated 1.0-50 keV unabsorbed luminosity ...

  15. On the Nature of the X-ray Emission from the Accreting Millisecond Pulsar SAX J1808.4-3658

    CERN Document Server

    Poutanen, J; Poutanen, Juri; Gierlinski, Marek

    2003-01-01

    The pulse profiles of the accreting X-ray millisecond pulsar SAX J1808.4-3658 at different energies are studied. The two main emission component, the black body and the Comptonized tail that are clearly identified in the time-averaged spectrum, show strong variability with the first component lagging the second one. The observed variability can be explained if the emission is produced by Comptonization in a hot slab (radiative shock) of Thomson optical depth ~0.3-1 at the neutron star surface. The emission patterns of the black body and the Comptonized radiation are different: a "knife"- and a "fan"-like, respectively. We construct a detailed model of the X-ray production accounting for the Doppler boosting, relativistic aberration and gravitational light bending in the Schwarzschild spacetime. We present also accurate analytical formulae for computations of the light curves from rapidly rotating neutron stars using formalism recently developed by Beloborodov (2002). Our model reproduces well the pulse profil...

  16. NuSTAR discovery of a cyclotron line in the accreting X-ray pulsar IGR J16393-4643

    CERN Document Server

    Bodaghee, Arash; Fornasini, Francesca A; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E; Christensen, Finn E; Craig, William W; Hailey, Charles J; Harrison, Fiona A; Zhang, William W

    2016-01-01

    The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P' = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu' = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly i...

  17. Timing and spectral studies of the transient X-ray pulsar GX 304-1 during an outburst

    CERN Document Server

    Devasia, Jincy; Paul, Biswajit; Indulekha, Kavila

    2011-01-01

    We present the timing and spectral properties of the transient X-ray pulsar GX 304-1 during its recent outburst in 2010 August, using observations carried out with the Proportional Counter Array (PCA) instrument on-board the Rossi X-ray Timing Explorer (RXTE) satellite. We detected strong intensity and energy dependent variations in the pulse profiles during the outburst. The pulse profile showed significant evolution over the outburst. It showed complex structures consisting of a main peak with steps on both sides during the start of the outburst. On some days, a sharp dip like feature was seen which disappeared at the end of the outburst; when the profile evolved into a sinusoidal shape. At low energies, the pulse profiles appeared complex, consisting of multiple peaks and a narrow minimum. The amplitude of the second brightest peak in low energies decreased with energy, and above 12 keV, the shape of the pulse profile changed to a single broad peak with a dip like feature. The dip had energy dependence, bo...

  18. EXTraS discovery of an 1.2-s X-ray pulsar in M 31

    Science.gov (United States)

    Esposito, P.; Israel, G. L.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodríguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.; Read, A. M.; Salvetti, D.; Sandrelli, S.; Marelli, M.; Wilms, J.; D'Agostino, D.

    2016-03-01

    During a search for coherent signals in the X-ray archival data of XMM-Newton, we discovered a modulation at 1.2 s in 3XMM J004301.4+413017 (3X J0043), a source lying in the direction of an external arm of M 31. This short period indicates a neutron star (NS). Between 2000 and 2013, the position of 3X J0043 was imaged by public XMM-Newton observations 35 times. The analysis of these data allowed us to detect an orbital modulation at 1.27 d and study the long-term properties of the source. The emission of the pulsar was rather hard (most spectra are described by a power law with Γ < 1) and, assuming the distance to M 31, the 0.3-10 keV luminosity was variable, from ˜3 × 1037 to 2 × 1038 erg s-1. The analysis of optical data shows that, while 3X J0043 is likely associated to a globular cluster in M 31, a counterpart with V ≳ 22 outside the cluster cannot be excluded. Considering our findings, there are two main viable scenarios for 3X J0043: a peculiar low-mass X-ray binary, similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary resembling Her X-1. Regardless of the exact nature of the system, 3X J0043 is the first accreting NS in M 31 in which the spin period has been detected.

  19. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Reynolds, Stephen [Physics Department, NC State University, Raleigh, NC 27695 (United States); An, Hongjun [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Boggs, Steven; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektronvej 327, DK-2800 Lyngby (Denmark); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Livermore, CA 94550 (United States); Hailey, Charles J.; Nynka, Melania [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Markwardt, Craig; Zhang, William [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-03-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.

  20. Multi-wavelength properties of IGR J05007-7047 (LXP 38.55) and identification as a Be X-ray binary pulsar in the LMC

    CERN Document Server

    Vasilopoulos, G; Delvaux, C; Sturm, R; Udalski, A

    2016-01-01

    We report on the results of a $\\sim$40 d multi-wavelength monitoring of the Be X-ray binary system IGR J05007-7047 (LXP 38.55). During that period the system was monitored in the X-rays using the Swift telescope and in the optical with multiple instruments. When the X-ray luminosity exceeded $10^{36}$ erg/s we triggered an XMM-Newton ToO observation. Timing analysis of the photon events collected during the XMM-Newton observation reveals coherent X-ray pulsations with a period of 38.551(3) s (1 {\\sigma}), making it the 17$^{th}$ known high-mass X-ray binary pulsar in the LMC. During the outburst, the X-ray spectrum is fitted best with a model composed of an absorbed power law ($\\Gamma =0.63$) plus a high-temperature black-body (kT $\\sim$ 2 keV) component. By analysing $\\sim$12 yr of available OGLE optical data we derived a 30.776(5) d optical period, confirming the previously reported X-ray period of the system as its orbital period. During our X-ray monitoring the system showed limited optical variability wh...

  1. High-Energy X-rays from J174545.5-285829, the Cannonball: A Candidate Pulsar Wind Nebula Associated with Sgr A East

    CERN Document Server

    Nynka, Melania; Mori, Kaya; Baganoff, Frederick K; Bauer, Franz E; Boggs, Steven E; Craig, William W; Christensen, Finn E; Gotthelf, Eric V; Harrison, Fiona A; Hong, Jaesub; Perez, Kerstin M; Stern, Daniel; Zhang, Shuo; Zhang, William W

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few-arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (vproj~500 km/s) pulsar candidate with a cometary pulsar wind nebula (PWN) located ~2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma~1.6 power-law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV)=1.3e34 erg/s. The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  2. High-Energy X-rays from J174545.5-285829, the Cannonball: a Candidate Pulsar Wind Nebula Associated with Sgr a East

    Science.gov (United States)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Hong, Jaesub; Perez, Kerstin M.; Stern, Daniel; Zhang, Shuo; Zhang, William W.

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v(proj) approximately 500 km s(exp -1)) pulsar candidate with a cometary pulsar wind nebula (PWN) located approximately 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma is approximately 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10(exp 34) erg s(exp -1). The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  3. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    Science.gov (United States)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; Ferrigno, Carlo; Rothschild, Richard E.

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  4. The reawakening of the sleeping X-ray pulsar XTE J1946+274

    CERN Document Server

    Müller, Sebastian; Caballero, Isabel; Pottschmidt, Katja; Fürst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Jörn; Ferrigno, Carlo; Rothschild, Richard E; Staubert, Rüdiger

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE J1946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4 keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE J1946+274 is variable between individual outbursts.

  5. Discovery of an X-Ray Synchrotron Nebula Associated with the Radio Pulsar PSR B1853+01 in the Supernova Remnant W44

    Science.gov (United States)

    Harrus, Ilana M.; Hughes, John P.; Helfand, David J.

    1996-06-01

    We report the detection, using data from the Advanced Satellite for Cosmology and Astrophysics (ASCA), of a hard X-ray source in the vicinity of the radio pulsar PSR B1853+01, which is located within the supernova remnant (SNR) W44. PSR B1853+01, a 267 ms pulsar, has to date been detected only in the radio band. Previous observations at soft X-ray energies (e.g., with ROSAT HRI) have failed to detect any significant X-ray emission (pulsed or unpulsed) from the pulsar. In addition, no high-energy emission (>~4 keV) has been detected previously from W44. Over the 0.5--4.0 keV band, the ASCA data show soft thermal emission from W44, with a morphology very similar to that observed earlier by Einstein and ROSAT. In the high-energy band (4.0--9.5 keV), the SNR is, for the most part, invisible, although a source coincident with the position of PSR B1853+01 is evident. The observed ASCA spectra are consistent with a power-law origin (photon index ~2.3) for the X-ray emission from this source at a flux level (flux density ~0.5 mu Jy at 1 keV) consistent with previous upper limits. The maximum allowed size for the source is determined directly from the ASCA data (~30"). Timing analysis of the hard X-ray source failed to detect pulsations at the pulsar's period. Based on these lines of evidence, we conclude that the new hard source in W44 represents an X-ray synchrotron nebula associated with PSR B1853+01, rather than the beamed output of the pulsar itself. This discovery adds W44 to the small group of previously known plerionic SNRs. This nebula lies at the low end of, but is consistent with, the correlation between X-ray luminosity and pulsar spin-down energy loss found for such objects, lending further support to our interpretation.

  6. Research of X-ray pulsar navigation simulation source∗%X射线脉冲星导航系统模拟光源的研究*

    Institute of Scientific and Technical Information of China (English)

    盛立志; 胡慧君; 赵宝升; 吴建军; 周峰; 宋娟; 刘永安; 申景诗; 鄢秋荣; 邓宁勤

    2013-01-01

      介绍了X射线脉冲星导航地面模拟光源研究的必要性及非伺服的机械调制方法所存在的问题和缺陷,提出了基于栅控X射线球管的X射线脉冲星辐射脉冲模拟方法,通过电子光学设计计算,对栅控X射线管的电极结构进行设计优化,研制了栅控X射线管和脉冲星模拟光源装置.实验测试了栅控球管的性能,测试结果与理论计算结果基本相符,实现了对X射线的调制;通过基于FPGA的直接数字频率合成方法,产生脉冲星的任意形状脉冲轮廓电压信号,加载至球管控制栅极,并对其出射脉冲轮廓进行测试,结果表明产生的X射线脉冲轮廓逼真程度在95%以上,模拟源频率稳定度约为2×10−11.%  As an autonomous navigation method, X-ray pulsar navigation can provide position, timing and attitude information for various spacecrafts. Since the X-rays (1–20 keV) from the pulsar can not penetrate the earth atmosphere, an X-ray source in laboratory needs to be set up to test and calibrate the detector. In this paper an arbitrary X-ray pulse source to simulate the neutron pulsar signal is proposed. The main components of the simulation source are a grid controlled X-ray tube and arbitrary pulse generation electronics. With the arbitrary pulse voltage applied to the tube grid, the X-ray intensity is controlled. Through electron optics design, the tube electrode parameters are optimized. A grid controlled X-ray tube is fabricated and tested. Using a micro-channel plate detector to detect and reconstruct the generated X-ray pulses, the similarity between the accumulated profile and the original pulsar profile is better than 95%. The frequency stability of the pulsar source emulator is about 2×10−11.

  7. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    International Nuclear Information System (INIS)

    We have investigated bismuth ferrite nanoparticles (∼75 nm and ∼155 nm) synthesized by a chemical method, using soft X-ray (1253.6 eV) and hard X-ray (3500, 5500, and 7500 eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg Kα (1253.6 eV) source showed that iron and bismuth were present in both Fe3+ and Bi3+ valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi0 valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  8. X-ray Observations of the Supernova Remnant CTB 87 (G74.9+1.2): An Evolved Pulsar Wind Nebula

    CERN Document Server

    Matheson, H; Kothes, R

    2013-01-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by ~100" and located at the southeastern edge of the radio nebula. We detect a point source - the putative pulsar - at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for ~250" The spectra of t...

  9. A physical scenario for the high and low X-ray luminosity states in the transitional pulsar PSR J1023+0038

    Science.gov (United States)

    Campana, S.; Coti Zelati, F.; Papitto, A.; Rea, N.; Torres, D. F.; Baglio, M. C.; D'Avanzo, P.

    2016-10-01

    The binary system PSR J1023+0038 (J1023) hosts a neutron star and a low-mass companion. J1023 is the best studied transitional pulsar, alternating a faint eclipsing millisecond radio pulsar state to a brighter X-ray active state. At variance with other low-mass X-ray binaries, this active state reaches luminosities of only ~1034 erg s-1, showing strong, fast variability. In the active state, J1023 displays: i) a high state (LX ~ 7 × 1033 erg s-1, 0.3-80 keV) occurring ~80% of the time and during which X-ray pulsations at the neutron star spin period are detected (pulsed fraction ~ 8%); ii) a low state (LX ~ 1033 erg s-1) during which pulsations are not detected (≲ 3%); and iii) a flaring state during which sporadic flares occur in excess of ~ 1034 erg s-1, with no pulsation too. The transition between the high and the low states is very rapid, on a ~10 s timescale. Here we propose a plausible physical interpretation of the high and low states based on the (fast) transition among the propeller state and the radio pulsar state. We modelled the XMM-Newton spectra of the high, low and radio pulsar states, and found a good agreement with this physical picture.

  10. Comparative anomalous small-angle X-ray scattering study of hotwire and plasma grown amorphous silicon-germanium alloys

    OpenAIRE

    Goerigk, G.; Williamson, D. L.

    2001-01-01

    The nanostructure of hydrogenated amorphous silicon-germanium alloys, a-Si1-xGex:H, prepared by the hotwire deposition technique (x=0.06-0.79) and by the plasma enhanced chemical vapor deposition technique (x=0 and 0.50) was analyzed by anomalous small-angle x-ray scattering experiments. For all alloys with x >0 the Ge component was found to be inhomogeneously distributed with correlation lengths of about 1 nm. A systematic increase of the separated scattering was found due to the increasing ...

  11. XMM-Newton observations of the Small Magellanic Cloud: Be/X-ray binary pulsars active between October 2006 and June 2007

    Science.gov (United States)

    Haberl, F.; Eger, P.; Pietsch, W.

    2008-10-01

    Aims: We analysed eight XMM-Newton observations toward the Small Magellanic Cloud (SMC), performed between October 2006 and June 2007, to investigate high mass X-ray binary systems. Methods: We produced images from the European Photon Imaging Cameras (EPIC) and extracted X-ray spectra and light curves in different energy bands from sources that yielded a sufficiently high number of counts for a detailed temporal and spectral analysis. To search for periodicity we applied Fourier transformations and folding techniques and determined pulse periods using a Bayesian approach. To identify optical counterparts we produced X-ray source lists for each observation using maximum likelihood source detection techniques and correlated them with optical catalogues. The correlations were also used for astrometric boresight corrections of the X-ray source positions. Results: We found new X-ray binary pulsars with periods of 202 s (XMMU J005929.0-723703), 342 s (XMMU J005403.8-722632), 645 s (XMMU J005535.2-722906) and 325 s (XMMU J005252.1-721715), in the latter case confirming the independent discovery in Chandra data. In addition we detected sixteen known Be/X-ray binary pulsars and six ROSAT-classified candidate high mass X-ray binaries. From one of the candidates, RX J0058.2-7231, we discovered X-ray pulsations with a period of 291 s which makes it the likely counterpart of XTE J0051-727. From the known pulsars, we revise the pulse period of CXOU J010206.6-714115 to 967 s, and we detected the 18.37 s pulsar XTE J0055-727 (=XMM J004911.4-724939) in outburst, which allowed us to localise the source. The pulse profiles of the X-ray pulsars show a wide variety of shapes from smooth to highly structured patterns and differing energy dependence. For all the candidate high mass X-ray binaries, optical counterparts can be identified with magnitudes and colours consistent with Be stars. Twenty of the Be/X-ray binaries were detected with X-ray luminosities in the range 1.5 × 1035-5.5

  12. Study of luminosity and spin-up relation in X-ray binary pulsars with long-term monitoring by MAXI/GSC and Fermi/GBM

    CERN Document Server

    Sugizaki, Mutsumi; Nakajima, Motoki; Yamaoka, Kazutaka

    2015-01-01

    We study the relation between luminosity and spin-period change in X-ray binary pulsars using long-term light curve obtained by the MAXI/GSC all-sky survey and pulse period data from the Fermi/GBM pulsar project. X-ray binaries, consisting of a highly magnetized neutron star and a stellar companion, originate X-ray emission according to the energy of the accretion matter onto the neutron star. The accretion matter also transfers the angular momentum at the Alfven radius, and then spin up the neutron star. Therefore, the X-ray luminosity and the spin-up rate are supposed to be well correlated. We analyzed the luminosity and period-change relation using the data taken by continuous monitoring of MAXI/GSC and Fermi/GBM for Be/X-ray binaries, GX 304$-$1, A 0535$+$26, GRO J1008$-$57, KS 1947$+$300, and 2S 1417$-$624, which occurred large outbursts in the last four years. We discuss the results comparing the obtained observed relation with that of the theoretical model by Ghosh \\& Lamb (1979).

  13. X-ray Observations of Parsec-Scale Tails behind Two Middle-Aged Pulsars

    CERN Document Server

    Kargaltsev, O; Pavlov, G G; Wong, J A; Garmire, G P

    2008-01-01

    Chandra and XMM-Newton resolved extremely long tails behind two middle-aged pulsars, J1509-5850 and J1740+1000. The tail of PSR J1509-5850 is discernible up to 5.6' from the pulsar (6.5 pc at a distance of 4 kpc), with a flux of 2*10^{-13} erg s^{-1} cm^{-2} in 0.5-8 keV. The tail spectrum fits an absorbed power-law (PL) model with the photon index of 2.3\\pm0.2, corresponding to the 0.5-8 keV luminosity of 1*10^{33} ergs s^{-1}, for n_H= 2.1*10^{22} cm^{-2}. The tail of PSR J1740+1000 is firmly detected up to 5' (2 pc at a 1.4 kpc distance), with a flux of 6*10^{-14} ergs cm^{-2} s^{-1} in 0.4-10 keV. The PL fit yields photon index of 1.4-1.5 and n_H=1*10^{21} cm^{-2}. The large extent of the tails suggests that the bulk flow in the tails starts as mildly relativistic downstream of the termination shock, and then gradually decelerates. Within the observed extent of the J1509-5850 tail, the average flow speed exceeds 5,000 km s^{-1}, and the equipartition magnetic field is a few times 10^{-5} G. For the J1740+...

  14. Torque-luminosity correlation and possible evidence for core-crust relaxation in the X-ray pulsar GX 1+4

    OpenAIRE

    Paul, B.; Rao, A. R.; Singh, K. P.

    1997-01-01

    We present the detection of a positive correlation between spin-down rate $\\dot{P}$ and pulsed X-ray luminosity in the BATSE archival data of the bright hard X-ray pulsar GX 1+4. We have also seen a delay of 5.6 $\\pm$ 1.2 days between the luminosity change and the corresponding change in the spin-down rate. The observed correlation between $\\dot{P}$ and L_X is used to reproduce the period history of GX 1+4 based on the observed luminosity alone, and it is found that the spin period can be pre...

  15. Observation of parametric X-ray radiation in an anomalous diffraction region

    Science.gov (United States)

    Alexeyev, V. I.; Eliseyev, A. N.; Irribarra, E.; Kishin, I. A.; Kubankin, A. S.; Nazhmudinov, R. M.

    2016-08-01

    A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets.

  16. High-Energy pulse profile of the Transient X-ray Pulsar SAX J2103.5+4545

    CERN Document Server

    Falanga, M; Burderi, L; Bonnet-Bidaud, J M; Goldoni, P; Goldwurm, A; Lavagetto, G; Iaria, R; Robba, N R

    2005-01-01

    In two recent INTEGRAL papers, Lutovinov et al. (2003) and Blay et al. (2004) report a timing and spectral analysis of the transient Be/X-ray pulsar SAX J2103.5+4545 at high energies (5--200 keV). In this work we present for the first time a study of the pulse profile at energies above 20 keV using INTEGRAL data. The spin-pulse profile shows a prominent (with a duty cycle of 14%) and broad (with a FWHM of ~ 51 s) peak and a secondary peak which becomes more evident above 20 keV. The pulsed fraction increases with energy from ~ 45% at 5--40 keV to ~ 80% at 40--80 keV. The morphology of the pulse profile also changes as a function of energy, consistent with variations in the spectral components that are visible in the pulse phase resolved spectra. A study of the double peaked profile shows that the difference in the two peaks can be modeled by a different scattering fraction between the radiation from the two magnetic poles.

  17. Propeller effect in two brightest transient X-ray pulsars: 4U 0115+63 and V 0332+53

    CERN Document Server

    Tsygankov, S S; Doroshenko, V; Mushtukov, A A; Poutanen, J

    2016-01-01

    We present the results of the monitoring programmes performed with the Swift/XRT telescope and aimed specifically to the detection of an abrupt decrease of the observed flux associated with a transition to the propeller regime in two well known X-ray pulsars 4U 0115+63 and V 0332+53 during their giant outbursts in 2015. Such transitions were detected at the threshold luminosities of $(1.4\\pm0.4)\\times10^{36}$ erg s$^{-1}$ and $(2.0\\pm0.4)\\times10^{36}$ erg s$^{-1}$ for 4U 0115+63 and V 0332+53, respectively. Spectra of the sources are shown to be significantly softer during the low state. In both sources, the accretion at rates close to the aforementioned threshold values briefly resumes during the periastron passage following the transition into propeller regime. The strength of the dipole component of the magnetic field required to inhibit the accretion agrees well with estimates based on the position of the cyclotron lines in their spectra, thus excluding presence of a strong multipole component of the mag...

  18. A large spin-up rate measured with INTEGRAL in the High Mass X-ray Binary Pulsar SAXJ2103.5+4545

    CERN Document Server

    Sidoli, L; Larsson, S; Chernyakova, M; Kreykenbohm, I; Kretschmar, P; Paizis, A; Santangelo, A; Ferrigno, C; Falanga, M

    2005-01-01

    The High Mass X-ray Binary Pulsar SAXJ2103.5+4545 has been observed with INTEGRAL several times during the last outburst in 2002-2004. We report a comprehensive study of all INTEGRAL observations, allowing a study of the pulse period evolution during the recent outburst. We measured a very rapid spin-up episode, lasting 130days, which decreased the pulse period by 1.8s. The spin-up rate, pdot=-1.5e-7 s/s, is the largest ever measured for SAXJ2103.5+4545, and it is among the fastest for an accreting pulsar. The pulse profile shows evidence for temporal variability, apparently not related to the source flux or to the orbital phase. The X-ray spectrum is hard and there is significant emission up to 150keV. A new derivation of the orbital period, based on RXTE data, is also reported.

  19. Searching for the pulsar in G18.95-1.1: Discovery of an X-ray point source and associated synchrotron nebula with Chandra

    CERN Document Server

    Tuellmann, R; Gaetz, T J; Slane, P; Hughes, J P; Harrus, I; Pannuti, T G

    2010-01-01

    Using the Chandra X-ray Observatory, we have pinpointed the location of a faint X-ray point source (CXOUJ182913.1-125113) and an associated diffuse nebula in the composite supernova remnant G18.95-1.1. These objects appear to be the long-sought pulsar and its wind nebula. The X-ray spectrum of the point source is best described by an absorbed powerlaw model with Gamma=1.6 and an N_H of ~1x10^(22) cm^(-2). This model predicts a relatively low unabsorbed X-ray luminosity of about L_X (0.5-8.0keV) = 4.1x10^(31)D_2^2 erg s^(-1), where D_2 is the distance in units of 2kpc. The best-fitted model of the diffuse nebula is a combination of thermal (kT = 0.48keV) and non-thermal (1.4 < Gamma < 1.9) emission. The unabsorbed X-ray luminosity of L_X = 5.4x10^(33)D_2^2 erg s^(-1) in the 0.5-8keV energy band seems to be largely dominated by the thermal component from the SNR, providing 87% of L_X in this band. No radio or X-ray pulsations have been reported for CXOUJ182913.1-125113. If we assume an age of ~5300yr for ...

  20. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.;

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio...

  1. A NuSTAR Observation of the Gamma-ray-emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    Science.gov (United States)

    Bogdanov, Slavko

    2016-07-01

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy γ-ray source 3FGL J1544.6-1125. The system is detected up to ˜30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and γ-ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.

  2. Identification of HESS J1303-631 as a Pulsar Wind Nebula through gamma-ray, X-ray and radio observations

    CERN Document Server

    :,; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker, J; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Büsching, I; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M -H; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    The previously unidentified very high-energy (VHE; E > 100 GeV) \\gamma-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Detailed morphological and spectral studies of VHE \\gamma-ray emission as well as of the XMM-Newton X-ray data are performed. Significant energy-dependent morphology of the \\gamma-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E <2 TeV) extending \\sim 0.4^{\\circ} to the South-East of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N_{0} = (5.6 \\pm 0.5) X 10^{-12} TeV^-1 cm^-2 s^-1, \\Gamma = 1.5 \\pm 0.2) and E_{\\rm cut} = (7.7 \\pm 2.2) TeV. The PWN is also detected in X-rays, extending \\sim 2-3' from the pulsar position towards the center of the \\gamma-ray emission ...

  3. Nustar Detection of Hard X-Ray Phase Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Miyasaka, Hiromasa; Bachetti, Matteo; Harrison, Fiona A.;

    2013-01-01

    The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834-430 during its 2012 outburst-the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV w...

  4. X-ray measurement of the spin-down of CalverA: A radio- and gamma-ray-quiet pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V., E-mail: jules@astro.columbia.edu [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027-6601 (United States)

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is P-dot =(3.19± 0.08)×10{sup −15}, which corresponds to spin-down luminosity E-dot =6.1×10{sup 35} erg s{sup –1}, characteristic age τ{sub c}≡P/2 P-dot =2.9×10{sup 5} yr, and surface dipole magnetic field strength B{sub s} = 4.4 × 10{sup 11} G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 10{sup 32} erg s{sup –1}, which is less than that of any pulsar of comparable E-dot . Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  5. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    Science.gov (United States)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; Murakami, T.

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  6. X-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT CTB 87 (G74.9+1.2): AN EVOLVED PULSAR WIND NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Matheson, H.; Safi-Harb, S. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Kothes, R., E-mail: matheson@physics.umanitoba.ca, E-mail: samar@physics.umanitoba.ca, E-mail: roland.kothes@nrc-cnrc.gc.ca [Dominion Radio Astrophysical Observatory, National Research Council Herzberg, P.O. Box 248, Penticton, British Columbia, V2A 6J9 (Canada)

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by {approx}100'' and located at the southeastern edge of the radio nebula. We detect a point source-the putative pulsar-at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for {approx}250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N{sub H} = 1.38 (1.21-1.57) Multiplication-Sign 10{sup 22} cm{sup -2} (90% confidence). The total X-ray luminosity of the source is {approx}1.6 Multiplication-Sign 10{sup 34} erg s{sup -1} at an assumed distance of 6.1 kpc, with {approx}2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved ({approx}5-28 kyr) PWN, with the extended radio emission likely a ''relic'' PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n{sub 0} < 0.2 D{sup -1/2}{sub 6.1} cm{sup -3}), likely

  7. A NuSTAR Observation of the Gamma-Ray-Emitting X-ray Binary and Transitional Millisecond Pulsar Candidate 1RXS J154439.4-112820

    CERN Document Server

    Bogdanov, Slavko

    2015-01-01

    I present a 40 kilosecond Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4-112820, which is associated with the high-energy gamma-ray source 3FGL J1544.6--1125. The system is detected up to ~30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4-112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270-4859 and therefore almost certainly hosts a millisecond pulsar accreting at low luminosities. I also examine the long-term accretion history of 1RXS J154439.4-112820 based on archival optical, ultraviolet, X-ray, and $\\gamma$-ray light curves covering the past $\\sim$decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that ...

  8. A physical scenario for the high and low X-ray luminosity states in the transitional pulsar PSR J1023+0038

    CERN Document Server

    Campana, S; Papitto, A; Rea, N; Torres, D F; Baglio, M C; D'Avanzo, P

    2016-01-01

    PSR J1023+0038 (J1023) is a binary system hosting a neutron star and a low mass companion. J1023 is the best studied transitional pulsar, alternating a faint eclipsing millisecond radio pulsar state to a brighter X-ray active state. At variance with other Low Mass X-ray binaries, this active state reaches luminosities of only ~$10^{34}$ erg s$^{-1}$, showing strong, fast variability. In the active state, J1023 displays: i) a high state ($L_X\\sim7\\times10^{33}$ erg s$^{-1}$, 0.3-80 keV) occurring ~80% of the time and during which X-ray pulsations at the neutron star spin period are detected (pulsed fraction ~8%); ii) a low state ($L_X~10^{33}$ erg s$^{-1}$) during which pulsations are not detected (~<3%); and iii) a flaring state during which sporadic flares occur in excess of ~$10^{34}$ erg s$^{-1}$, with no pulsation too. The transition between the high and the low states is very rapid, on a ~10 s timescale. Here we put forward a plausible physical interpretation of the high and low states based on the (f...

  9. NuSTAR observations of the supergiant X-ray pulsar IGR J18027-2016: accretion from the stellar wind and possible cyclotron absorption line

    CERN Document Server

    Lutovinov, A; Postnov, K; Krivonos, R; Molkov, S; Tomsick, J

    2016-01-01

    We report on the first focused hard X-ray view of the absorbed supergiant system IGRJ18027-2016 performed with the NuSTAR observatory. The pulsations are clearly detected with a period of P_{spin}=139.866(1) s and a pulse fraction of about 50-60% at energies from 3 to 80 keV. The source demonstrates an approximately constant X-ray luminosity on a time scale of more than dozen years with an average spin-down rate of dP/dt~6x10^{-10} s/s. This behaviour of the pulsar can be explained in terms of the wind accretion model in the settling regime. The detailed spectral analysis at energies above 10 keV was performed for the first time and revealed a possible cyclotron absorption feature at energy ~23 keV. This energy corresponds to the magnetic field B~3x10^{12} G at the surface of the neutron star, which is typical for X-ray pulsars.

  10. Characterising anomalous transport in accretion disks from X-ray observations

    CERN Document Server

    Greenhough, J; Chaty, S; Dendy, R O; Rowlands, G

    2002-01-01

    Whilst direct observations of internal transport in accretion disks are not yet possible, measurement of the energy emitted from accreting astrophysical systems can provide useful information on the physical mechanisms at work. Here we examine the unbroken multi-year time variation of the total X-ray flux from three sources: Cygnus X-1, the microquasar GRS1915+105, and for comparison the nonaccreting Crab nebula. To complement previous analyses, we demonstrate that the application of advanced statistical methods to these observational time-series reveals important contrasts in the nature and scaling properties of the transport processes operating within these sources. We find the Crab signal resembles Gaussian noise; the Cygnus X-1 signal is a leptokurtic random walk whose self-similar properties persist on timescales up to three years; and the GRS1915+105 signal is similar to that from Cygnus X-1, but with self-similarity extending possibly to only a few days. This evidence of self-similarity provides a robu...

  11. Gamma-ray observations of the Be/pulsar binary 1A 0535+262 during a giant X-ray outburst

    CERN Document Server

    Acciari, V A; Araya, M; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Cui, W; Dickherber, R; Duke, C; Falcone, A; Finley, J P; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Kertzman, M; Krawczynski, H; Krennrich, F; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Park, N; Perkins, J S; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Saxon, D B; Sembroski, G H; Senturk, G Demet; Smith, A W; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vincent, S; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Weng, S; Williams, D A; Wood, M; Zitzer, B

    2011-01-01

    Giant X-ray outbursts, with luminosities of about $ 10^{37}$ erg s$^{-1}$, are observed roughly every 5 years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very-high energies (VHE; E$>$100 GeV) triggered by the X-ray outburst in December 2009. The observations started shortly after the onset of the outburst, and they provided comprehensive coverage of the episode, as well as the 111-day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/LAT at high energy photons (HE; E$>$0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/XRT and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A~...

  12. NuSTAR detection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Miyasaka, Hiromasa; Harrison, Fiona;

    2014-01-01

    The NuSTAR hard X-ray telescope observed the transient Be/X-ray binary GS 0834􀀀430 during its 2012 outburst. The source is detected between 3 – 79 keV with high statistical significance, and we were able to perform very accurate spectral and timing analysis. The phase-averaged spectrum i...

  13. VizieR Online Data Catalog: ATNF Pulsar Catalogue (Manchester+, 2005)

    Science.gov (United States)

    Manchester, R. N.; Hobbs, G. B.; Teoh, A.; Hobbs, M.

    2016-05-01

    The catalogue is a compilation of the principal observed parameters of pulsars, including positions, timing parameters, pulse widths, flux densities, proper motions, distances, and dispersion, rotation, and scattering measures. It also lists the orbital elements of binary pulsars, and some commonly used parameters derived from the basic measurements. The catalogue includes all published rotation-powered pulsars, including those detected only at high energies. It also includes Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) for which coherent pulsations have been detected. However, it excludes accretion-powered pulsars such as Her X-1 and the recently discovered X-ray millisecond pulsars. (2 data files).

  14. Discovery of a New X-ray Filled Radio Supernova Remnant Around the Pulsar Wind Nebula in 3EG J1809-2328

    OpenAIRE

    Roberts, Mallory S. E.; Brogan, Crystal L.

    2008-01-01

    We report the discovery of a partial ~2deg. diameter non-thermal radio shell coincident with Taz, the pulsar wind nebula (PWN) in the error box of the apparently variable gamma-ray source 3EG J1809-2328. We propose that this radio shell is a newly identified supernova remnant (SNR G7.5-1.7) associated with the PWN. The SNR surrounds an amorphous region of thermal X-rays detected in archival ROSAT and ASCA observations putting this system in the mixed-morphology class of supernova remnants. G7...

  15. Assessing the effects of timing irregularities on radio pulsars anomalous braking indices

    Science.gov (United States)

    Chukwude, A. E.; Chidi Odo, Finbarr

    2016-10-01

    We investigate the statistical effects of non-discrete timing irregularities on observed radio pulsar braking indices using correlations between the second derivative of the measured anomalous frequency (̈νobs) and some parameters that have been widely used to quantify pulsar timing fluctuations (the timing activity parameter (A), the amount of timing fluctuations absorbed by the cubic term (σR23) and a measure of pulsar rotational stability (σz)) in a large sample of 366 Jodrell Bank Observatory radio pulsars. The result demonstrates that anomalous braking indices are largely artifacts produced by aggregations of fluctuations that occur within or outside the pulsar system. For a subsample of 223 normal radio pulsars whose observed timing activity appeared consistent with instabilities in rotation of the underlying neutron stars (or timing noise) over timescales of ˜ 10 – 40 yr, |̈νobs| strongly correlates (with correlation coefficient |r| ˜ 0.80 – 0.90) with the pulsar timing activity parameters and spin-down properties. On the other hand, no meaningful correlations (r objects, whose timing activity appears significantly dominated by white noise fluctuations. The current result can be better understood if the timing noise in isolated pulsars originates from intrinsic spin-down processes of the underlying neutron stars, but white noise fluctuations largely arise from processes external to the pulsar system.

  16. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    CERN Document Server

    Mushtukov, Alexander A; Serber, Alexander V; Suleimanov, Valery F; Poutanen, Juri

    2015-01-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so called critical luminosity these variations are established to be connected with the appearance of the high accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity onto the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid ene...

  17. Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    CERN Document Server

    Sturm, R; Vasilopoulos, G; Bartlett, E S; Maggi, P; Rau, A; Greiner, J; Udalski, A

    2014-01-01

    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the OGLE I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the SAAO 1.9 m telescope, and photometrically, with data obtained using GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d, found in the optical li...

  18. The distribution of Sr2+ counterions around polyacrylate chains analyzed by anomalous small-angle X-ray scattering

    Science.gov (United States)

    Goerigk, G.; Schweins, R.; Huber, K.; Ballauff, M.

    2004-05-01

    The distribution of Sr counterions around negatively charged sodium polyacrylate chains (NaPA) in aqueous solution was studied by anomalous small-angle X-ray scattering. Different ratios of the concentrations of SrCl2/[NaPA] reveal dramatic changes in the scattering curves. At the lower ratio the scattering curves indicate a coil-like behavior, while at the higher ratio the scattering curves are contracted to smaller q-values, caused by the collapse of the NaPA coil. The form factor of the scattering contribution of the counterions was separated and analyzed. For the scattering curves of the collapsed chains, this analysis agrees with the model of a pearl necklace, consisting of collapsed sphere-like subdomains which are connected by stretched chain segments. An averaged radius of the pearls of 19 nm and a distance between neighbouring pearls close to 60 nm could be established for the collapsed state of the NaPA chains.

  19. Discovery of a 112 ms X-Ray Pulsar in Puppis A: Further Evidence of Neutron Stars Weakly Magnetized at Birth

    Science.gov (United States)

    Gotthelf, E. V.; Halpern, J. P.

    2009-04-01

    We report the discovery of 112 ms X-ray pulsations from RX J0822-4300, the compact central object (CCO) in the supernova remnant (SNR) Puppis A, in two archival Newton X-Ray Multi-Mirror Mission observations taken in 2001. The sinusoidal light curve has a pulsed fraction of 11% with an abrupt 180° change in phase at 1.2 keV. The observed phase shift and modulation are likely the result of emission from opposing thermal hot spots of distinct temperatures. Phase-resolved spectra reveal an emission feature at E line = 0.8 keV associated with the cooler region, possibly due to an electron cyclotron resonance effect similar to that seen in the spectrum of the CCO pulsar 1E 1207.4-5209. No change in the spin period of PSR J0821-4300 is detected in seven months, with a 2σ upper limit on the period derivative of \\dot{P} Bs 220 kyr. The latter is much longer than the SNR age, indicating that PSR J0821-4300 was born spinning near its present period. Its properties are remarkably similar to those of the two other known CCO pulsars, demonstrating the existence of a class of neutron stars born with weak magnetic fields related to a slow original spin. These results are also of importance in understanding the extreme transverse velocity of PSR J0821-4300, favoring the hydrodynamic instability mechanism in the supernova explosion.

  20. DISCOVERY OF PSR J1227−4853: A TRANSITION FROM A LOW-MASS X-RAY BINARY TO A REDBACK MILLISECOND PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Jayanta; Bhattacharyya, Bhaswati; Stappers, Ben [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL (United Kingdom); Ray, Paul S.; Wolff, Michael; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Chengalur, Jayaram N. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411 007 (India); Deneva, Julia [NRC Research Associate, resident at Naval Research Laboratory, Washington, DC 20375-5352 (United States); Camilo, Fernando [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Johnson, Tyrel J. [College of Science, George Mason University, Fairfax, VA 22030, USA, resident at Naval Research Laboratory, Washington, DC 20375 (United States); Hessels, Jason W. T.; Bassa, Cees G. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Keane, Evan F. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H30, P.O. Box 218, VIC 3122 (Australia); Ferrara, Elizabeth C.; Harding, Alice K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-10

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the discovery of a 1.69 millisecond pulsar (MSP), PSR J1227−4853, at a dispersion measure of 43.4 pc cm{sup −3} associated with this source, using the Giant Metrewave Radio Telescope (GMRT) at 607 MHz. This demonstrates that, post-transition, the system hosts an active radio MSP. This is the third system after PSR J1023+0038 and PSR J1824−2452I showing evidence of state switching between radio MSP and low-mass X-ray binary states. We report timing observations of PSR J1227−4853 with the GMRT and Parkes, which give a precise determination of the rotational and orbital parameters of the system. The companion mass measurement of 0.17–0.46 M{sub ⊙} suggests that this is a redback system. PSR J1227−4853 is eclipsed for about 40% of its orbit at 607 MHz with additional short-duration eclipses at all orbital phases. We also find that the pulsar is very energetic, with a spin-down luminosity of ∼10{sup 35} erg s{sup −1}. We report simultaneous imaging and timing observations with the GMRT, which suggests that eclipses are caused by absorption rather than dispersion smearing or scattering.

  1. Application of the Ghosh & Lamb relation to the spin-up/down behavior in the X-ray binary pulsar 4U 1626-67

    Science.gov (United States)

    Takagi, Toshihiro; Mihara, Tatehiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-06-01

    We analyzed continuous Monitor of All-sky X-ray Image/Gas Slit Camera (MAXI/GSC) data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/Gamma-ray Burst Monitor pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh and Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The "Ghosh & Lamb" relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that found by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the mass and radius of the neutron star, because the Ghosh & Lamb model depends on these parameters. We attempted this idea, and found that an assumed distance of, e.g., 10 kpc gives a mass in the range of 1.81-1.90 solar mass, and a radius of 11.4-11.5 km, although these results are still subject to considerable systematic uncertainties, other than distance.

  2. Positive correlation between the cyclotron line energy and luminosity in sub-critical X-ray pulsars: Doppler effect in the accretion channel

    Science.gov (United States)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Serber, Alexander V.; Suleimanov, Valery F.; Poutanen, Juri

    2015-12-01

    Cyclotron resonance scattering features observed in the spectra of some X-ray pulsars show significant changes of the line centroid energy with the pulsar luminosity. Whereas for bright sources above the so-called critical luminosity, these variations are established to be connected with the appearance of the high-accretion column above the neutron star surface, at low, sub-critical luminosities the nature of the variations (but with the opposite sign) has not been discussed widely. We argue here that the cyclotron line is formed when the radiation from a hotspot propagates through the plasma falling with a mildly relativistic velocity on to the neutron star surface. The position of the cyclotron resonance is determined by the Doppler effect. The change of the cyclotron line position in the spectrum with luminosity is caused by variations of the velocity profile in the line-forming region affected by the radiation pressure force. The presented model has several characteristic features: (i) the line centroid energy is positively correlated with the luminosity; (ii) the line width is positively correlated with the luminosity as well; (iii) the position and the width of the cyclotron absorption line are variable over the pulse phase; (iv) the line has a more complicated shape than widely used Lorentzian or Gaussian profiles; (v) the phase-resolved cyclotron line centroid energy and the width are negatively and positively correlated with the pulse intensity, respectively. The predictions of the proposed theory are compared with the variations of the cyclotron line parameters in the X-ray pulsar GX 304-1 over a wide range of sub-critical luminosities as seen by the INTEGRAL observatory.

  3. Application of the Ghosh & Lamb Relation to the Spin-up/down Behavior in the X-ray Binary Pulsar 4U 1626-67

    CERN Document Server

    Takagi, Toshihiro; Sugizaki, Mutsumi; Makishima, Kazuo; Morii, Mikio

    2016-01-01

    We analyzed continuous MAXI/GSC data of the X-ray binary pulsar 4U 1626-67 from 2009 October to 2013 September, and determined the pulse period and the pulse-period derivative for every 60-d interval by the epoch folding method. The obtained periods are consistent with those provided by the Fermi/GBM pulsar project. In all the 60-d intervals, the pulsar was observed to spin up, with the spin-up rate positively correlated with the 2-20 keV flux. We applied the accretion torque model proposed by Ghosh & Lamb (1979, ApJ, 234, 296) to the MAXI/GSC data, as well as the past data including both spin-up and spin-down phases. The Ghosh & Lamb relation was confirmed to successfully explain the observed relation between the spin-up/down rate and the flux. By comparing the model-predicted luminosity with the observed flux, the source distance was constrained as 5-13 kpc, which is consistent with that by Chakrabarty (1998, ApJ, 492, 342). Conversely, if the source distance is assumed, the data can constrain the m...

  4. Magnetars and white dwarf pulsars

    Science.gov (United States)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  5. In-Situ Anomalous Small-Angle X-ray Scattering Studies of Polymer Electrolyte Membrane Fuel Cell Catalyst Degradation

    Science.gov (United States)

    Gilbert, James Andrew

    Polymer electrolyte membrane fuel cells (PEMFCs) are a promising high efficiency energy conversion technology, but their cost effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically-active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex-situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed particle size distribution (PSD) growth evolutions of Pt and Pt-alloy nanoparticle catalysts during potential cycling in an aqueous acidic environment (with and without flow of electrolyte) and in a fuel cell environment using in-situ anomalous small-angle X-ray scattering (ASAXS). The results of this thesis show a surface area loss mechanism of Pt nanoparticles supported on carbon to be predominantly controlled by Pt dissolution, the particle size dependence of Pt dissolution, the loss of dissolved Pt into the membrane and electrolyte, and, to a lesser extent, the re-deposition of dissolved Pt onto larger particles. The relative extent of these loss mechanisms are shown to be dependent on the environment, the temperature, and the potential cycling conditions. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically-determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSDs and ECA resulting from various voltage profiles to the response to a single variable, oxide coverage. A better understanding of the degradation mechanisms of Pt and Pt-alloy nanoparticle distributions could lead to more stable electrocatalysts while

  6. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation.

    Science.gov (United States)

    Gilbert, James A; Kariuki, Nancy N; Subbaraman, Ram; Kropf, A Jeremy; Smith, Matt C; Holby, Edward F; Morgan, Dane; Myers, Deborah J

    2012-09-12

    Polymer electrolyte fuel cells (PEFCs) are a promising high-efficiency energy conversion technology, but their cost-effective implementation, especially for automotive power, has been hindered by degradation of the electrochemically active surface area (ECA) of the Pt nanoparticle electrocatalysts. While numerous studies using ex situ post-mortem techniques have provided insight into the effect of operating conditions on ECA loss, the governing mechanisms and underlying processes are not fully understood. Toward the goal of elucidating the electrocatalyst degradation mechanisms, we have followed Pt nanoparticle growth during potential cycling of the electrocatalyst in an aqueous acidic environment using in situ anomalous small-angle X-ray scattering (ASAXS). ASAXS patterns were analyzed to obtain particle size distributions (PSDs) of the Pt nanoparticle electrocatalysts at periodic intervals during the potential cycling. Oxide coverages reached under the applied potential cycling protocols were both calculated and determined experimentally. Changes in the PSD, mean diameter, and geometric surface area identify the mechanism behind Pt nanoparticle coarsening in an aqueous environment. Over the first 80 potential cycles, the dominant Pt surface area loss mechanism when cycling to 1.0-1.1 V was found to be preferential dissolution or loss of the smallest particles with varying extents of reprecipitation of the dissolved species onto existing particles, resulting in particle growth, depending on potential profile. Correlation of ASAXS-determined particle growth with both calculated and voltammetrically determined oxide coverages demonstrates that the oxide coverage is playing a key role in the dissolution process and in the corresponding growth of the mean Pt nanoparticle size and loss of ECA. This understanding potentially reduces the complex changes in PSD and ECA resulting from various voltage profiles to a response dependent on oxide coverage. PMID:22857132

  7. Determination of transition metal ion distribution in cubic spinel Co1.5Fe1.5O4 using anomalous x-ray diffraction

    Directory of Open Access Journals (Sweden)

    M. N. Singh

    2015-08-01

    Full Text Available We report anomalous x-ray diffraction studies on Co ferrite with composition Co1.5Fe1.5O4 to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co1.5Fe1.5O4 through co-precipitation and subsequent annealing route. The imaginary part (absorption of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  8. Trends in anomalous small-angle X-ray scattering in grazing incidence for supported nano-alloyed and core-shell metallic nano-particles

    International Nuclear Information System (INIS)

    As atomic structure and morphology of particles are directly correlated to their functional properties, experimental methods probing local and average features of particles at the nano-scale elicit a growing interest. Anomalous small-angle X-ray scattering (ASAXS) is a very attractive technique to investigate the size, shape and spatial distribution of nano-objects embedded in a homogeneous matrix or in porous media. The anomalous variation of the scattering factor close to an absorption edge enables element specific investigations. In the case of supported nano-objects, the use of grazing incidence is necessary to limit the probed depth. The combination of grazing incidence with the anomalous technique provides a powerful new method, anomalous grazing incidence small-angle X-ray scattering (AGISAXS), to disentangle complex chemical patterns in supported multi-component nano-structures. Nevertheless, a proper data analysis requires accurate quantitative measurements associated to an adapted theoretical framework. This paper presents anomalous methods applied to nano-alloys phase separation in the 1-10 nm size range, and focuses on the application of AGISAXS in bimetallic systems: nano-composite films and core-shell supported nano-particles

  9. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    CERN Document Server

    Falanga, M; Poutanen, J; Galloway, D K; Bozzo, E; Goldwurm, A; Hermsen, W; Stella, L

    2012-01-01

    We analyze the spectral and timing properties of IGR J17498-2921 and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kT_e ~ 50 keV, soft seed photons of kT_bb ~ 1 keV, and Thomson optical depth \\taut ~ 1 in a slab geometry. The slab area corresponds to a black body radius of R_bb ~9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 milliseconds up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy indepe...

  10. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.;

    2014-01-01

    -resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry.We find......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...

  11. A Hybrid Spin-Down Model and its Application to the Radio Quiet X-Ray Pulsar 1E 1207.4-5209

    Institute of Scientific and Technical Information of China (English)

    张灵娣; 彭秋和; 罗新炼

    2003-01-01

    A series of newly published papers are focusing on the formation of the absorption features discovered by Chandra and XMM-Newton from the young radio quiet x-ray pulsar 1E 1207.4-5209. We try to interpret it as cyclotron absorption lines since this possibility could not be ruled out. With new development and application of a hybrid model, i.e., the magnetic dipole spin-down model combined with the neutrino cyclotron radiation spin-down model, we can easily avoid the contradiction between the normal rotation energy loss rate and the relatively lower magnetic field, and then we obtain the possible initial spin period (~0.420s). We suppose that the progenitor of 1E 1207.4-5209 may be a white dwarf.

  12. Determination of parameters of long-term variability of the X-ray pulsar LMC X-4

    CERN Document Server

    Molkov, S; Falanga, M

    2015-01-01

    We have investigated the temporal variability of the X-ray flux measured from the high-mass Xray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991--2015 is near its equilibrium value $P_{sup} = 30.370$ days, while the observed historical changes in the phase of this variability can be interpreted in terms of the "red noise" model. We have obtained an analytical law from which the precession phase can be determined to within 5\\% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allo...

  13. Revealing the X-ray emission processes of old rotation-powered pulsars: XMM-Newton Observations of PSR B0950+08,PSR B0823+26 and PSR J2043+2740

    CERN Document Server

    Becker, W; Tennant, A F; Jessner, A; Dyks, J; Harding, A K; Zhang, S N; Becker, Werner; Weisskopf, Martin C.; Tennant, Allyn F.; Jessner, Axel; Dyks, Jaroslaw; Harding, Alice K.; Zhang, Shuang N.

    2004-01-01

    We have completed part of a program to study the X-ray emission properties of old rotation-powered pulsars with XMM-Newton in order to probe and identify the origin of their X-radiation. The X-ray emission from these old pulsars is largely dominated by non-thermal processes. None of the observed spectra required adding a thermal component consisting of either a hot polar cap or surface cooling emission to model the data. The X-ray spectrum of PSR 0950+08 is best described by a single power law of photon-index 1.93^{+0.14}_{-0.12}.Taking optical data from the VLT FORS1 into account a broken power law model is found to describe the pulsar's broadband spectrum from the optical to the X-ray band. Temperature upper limits for possible contributions from a heated polar cap or the whole neutron star surface are T_{pc} < 0.87 x10^6 K and T_s < 0.48 x 10^6 K, respectively. We also find that the X-ray emission from PSR 0950+08 is pulsed with two peaks per rotation period. The phase separation between the two X-ra...

  14. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    International Nuclear Information System (INIS)

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled

  15. An unexpected drop in the magnetic field of the X-ray pulsar V0332+53 after the bright outburst occurred in 2015

    CERN Document Server

    Cusumano, G; D'Ai, A; Segreto, A; Tagliaferri, G; Barthelmy, S D; Gehrels, N

    2016-01-01

    How the accreted mass settling on the surface of a neutron star affects the topology of the magnetic field and how the secular evolution of the binary system depends on the magnetic field change is still an open issue. We report evidence for a clear drop in the observed magnetic field in the accreting pulsar V0332+53 after undergoing a bright 3-month long X-ray outburst. We determine the field from the position of the fundamental cyclotron line in its X-ray spectrum and relate it to the luminosity. For equal levels of luminosity, in the declining phase we measure a systematically lower value of the cyclotron line energy with respect to the rising phase. This results in a drop of ~1.7 x 10^11 G of the observed field between the onset and the end of the outburst. The settling of the accreted plasma onto the polar cap seems to induce a distortion of the magnetic field lines weakening their intensity along the accretion columns. Therefore the dissipation rate of the magnetic field could be much faster than previo...

  16. The discovery of the optical/IR counterpart of the 12s transient X-ray pulsar GS 0834-43

    CERN Document Server

    Israel, G L; Campana, S; Polcaro, V F; Roche, P; Stella, L; Di Paola, A; Lazzati, D; Mereghetti, S; Giallongo, E; Fontana, A; Verrecchia, P

    2000-01-01

    We report the discovery of the optical/infra-red counterpart of the 12.3s transient X-ray pulsar GS0834-43. We re-analysed archival ROSAT PSPC observations of GS0834-43, obtaining two new refined positions, about 14" and 18" away from the previously published one, and a new spin period measurement. Within the new error circles we found a relatively faint (V=20.1) early type reddened star (V-R=2.24). The optical spectrum shows a strong Halpha emission line. The IR observations of the field confirm the presence of an IR excess for the Halpha-emitting star (K'=11.4, J-K'=1.94) which is likely surrounded by a conspicuous circumstellar envelope. Spectroscopic and photometric data indicate a B0-2 V-IIIe spectral-type star located at a distance of 3-5kpc and confirm the Be-star/X-ray binary nature of GS0834-43.

  17. X-ray studies of HESS J1837--069 with Suzaku and ASCA: a VHE gamma-ray source originated from the pulsar wind nebula

    CERN Document Server

    Anada, Takayasu; Dotani, Tadayasu; Bamba, Aya

    2008-01-01

    We present the ASCA and Suzaku studies of the TeV source HESS J1837--069, which has not been identified in other wave-lengths. We confirm the presence of two X-ray sources in the Suzaku XIS image, AX J1838.0--0655 and AX J1837.3--0652, near both ends of the elongated TeV emission region. The XIS spectra of the two sources are reproduced by an absorbed power-law model, whose parameters are all consistent with those determined by the ASCA data. Recently, 70.5 ms X-ray pulsation has been detected with RXTE in the sky region including HESS J1837--069 (2008, ApJ, 681, 515). Using the ASCA GIS data which has both timing and imaging capabilities, we identified the pulsation source as AX J1838.0--0655. The pulse periods determined by ASCA and Suzaku, and that reported with RXTE indicate steady spin-down at $\\dot{P} = 4.917(4) \\times 10^{-14}$ s s$^{-1}$. These results suggest that AX J1838.0--0655 is an intrinsically stable source, and presumably a pulsar wind nebula (PWN). We discuss the possibility that AX J1838.0-...

  18. High magnetic field pulsars and magnetars a unified picture

    CERN Document Server

    Zhang, B; Zhang, Bing; Harding, Alice K.

    2000-01-01

    We propose a unified picture of high magnetic field radio pulsars and magnetars by arguing that they are all rotating high-field neutron stars, but have different orientations of their magnetic axes with respective to their rotation axes. In strong magnetic fields where photon splitting suppresses pair creation near the surface, the high-field pulsars can have active inner accelerators while the anomalous X-ray pulsars cannot. This can account for the very different observed emission characteristics of the anomalous X-ray pulsar 1E 2259+586 and the high field radio pulsar PSR J1814-1744. A predicted consequence of this picture is that radio pulsars having surface magnetic field greater than about $2\\times 10^{14}$ G should not exist.

  19. RXTE monitoring of the 65-ms X-ray Pulsars PSR J1811-1925 in G11.2-0.3, and PSR J0205+6559 in 3C 58

    Science.gov (United States)

    Gavriil, F. P.; Ransom, S. M.; Roberts, M. S. E.; Kaspi, V. M.; Gaensler, B. M.; Gotthelf, E. V.; Murray, S. S.; Slane, P. O.

    2003-03-01

    The X-ray Pulsars PSR J1811-1925 and PSR J0205+6559, in the historical supernova remnants G11.2-0.3 and 3C 58 respectively, have characteristic ages much greater than the ages of their remnants. This likely implies that their current spin periods, ˜65 ms, are close to their birth spin period. Alternatively, these pulsars may have unusually high braking indices. Despite the striking similarities in the pulsar's spin parameters and historical ages, the two have very different pulse shapes and X-ray luminosities, which could imply different emission mechanisms and/or geometries. We report here on regular Rossi X-ray Timing Explorer/ Proportional Counting Array (RXTE/PCA) timing observations of these pulsars that were designed to measure their braking indices. For PSR J1811-1925, we provide a preliminary phase-coherent timing solution which includes a significant ⋰ ν. The braking index we measure is >> 3. This could be a manifestation of timing noise; further observations can test this. For PSR J0205+6559, excessive timing noise has made long-term phase coherent timing of this pulsar difficult, but preliminary results imply a braking index significantly greater than 3 as well. We also report on a preliminary analysis of the phase-averaged and phase-resolved spectra of both sources. This work is funded by NSERC, CIAR, NASA and a McGill University Tomlinson Fellowship.

  20. High-Energy X-Ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport

    Science.gov (United States)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.; Zhang, William W.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron emitting electron distribution at approximately 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N(sub H) map. We discuss possible origins of the shell-like structure and their implications.

  1. High-energy X-ray imaging of the pulsar wind nebula MSH 15–52: constraints on particle acceleration and transport

    Energy Technology Data Exchange (ETDEWEB)

    An, Hongjun; Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, Quebec, H3A 2T8 (Canada); Madsen, Kristin K.; Harrison, Fiona A.; Grefenstette, Brian W. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Reynolds, Stephen P. [Physics Department, NC State University, Raleigh, NC 27695 (United States); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hailey, Charles J.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-10-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15–52 in the hard X-ray band (≳8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at ∼200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509–58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50'' of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N {sub H} map. We discuss possible origins of the shell-like structure and their implications.

  2. X-ray and optical study of the new SMC X-ray binary pulsar system SXP7.92 and its probable optical counterpart, AzV285

    CERN Document Server

    Coe, M J; McBride, V A; Corbet, R H D; Townsend, L J; Udalski, A; Galache, J L

    2009-01-01

    Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud - SXP7.92. A detailed analysis of the X-ray data reveal a coherent period of 7.9s. A search through earlier X-ray observations of the SMC reveal a previously unknown earlier detection of this system. Follow-up X-ray observations identified a new transient source within the error circle of the previous observations. An optical counterpart, AzV285, is proposed which reveals clear evidence for a 36.8d binary period.

  3. Anomalous elastic scattering of linearly polarized X-ray radiation by multicharged atomic ions in the range of the ionization threshold of the 1s-shell

    Energy Technology Data Exchange (ETDEWEB)

    Hopersky, A.N. E-mail: phys@rgups.ru; Novikov, S.A.; Chuvenkov, V.V

    2002-04-01

    The absolute values and shape of differential cross-section of the process of the anomalous elastic scattering for non-zero angle are investigated within non-relativistic approximation for linearly polarized X-ray radiation scattered by multicharged atomic ions Ne{sup 6+} in the range of the ionization threshold of 1s-shell. The many-particle effects of radial rearrangement of electron shells in the field of an inner 1s-vacancy and the effect of vacancy stabilization are taken into account. The results of the work are predictions.

  4. INTEGRAL detects a new outburst from the millisecond X-ray pulsar IGR J17511-3057

    DEFF Research Database (Denmark)

    Bozzo, E.; Kuulkers, E.; Bazzano, A.;

    2015-01-01

    Crab in the 10-20 keV energy band. All uncertainties on the fluxes are quoted at 1 sigma c.l. The IBIS/ISGRI spectrum (effective exposure time 9.1 ks) could be reasonably well described by using a power-law model with photon index 2.3+/-0.4. The 20-100 keV X-ray flux estimated from the spectral fit is 4.5E-10...... ergs/cm^2/s. Further INTEGRAL observations in the direction of the source are already planned for the next days. The INTEGRAL monitoring of the Galactic bulge will also continue in the coming weeks, and the observational results from near real time data will be made available HERE....

  5. Site-specific Incorporation of 3-Iodo-L-tyrosine into Proteins and Single-wavelength Anomalous Dispersion Phasing with Soft X-ray in Protein Crystallography

    Science.gov (United States)

    Murayama, Kazutaka; Sakamoto, Kensaku

    Iodine is a good anomalous scatter for radiations from in-house X-ray generators (Cu/CrKα). Non-natural amino acid, 3-iodo-L-tyrosine, is able to be site-specifically incorporated into proteins with amber suppresser tRNA and mutated TyrRS from M. jannaschii in the E. coli expression system. To determine the crystal structure of acetyl transferase from T. thermophilus, iodotyrosine-containing proteins were prepared and crystallized. Structure determination was successfully conducted with the protein variant with iodotyrosine at position 111. Anomalous signals from iodotyrosine with Cu/CrKα radiations were both sufficient to calculate clear electron density map. In the crystal structure, iodotyrosine did not significantly disturb the native structure.

  6. Discovery of a Highly Energetic X-Ray Pulsar Powering HESS J1813-178 in the Young Supernova Remnant G12.82-0.02

    Science.gov (United States)

    Gotthelf, E. V.; Halpern, J. P.

    2009-08-01

    We report the discovery of 44.7 ms pulsations from the X-ray source CXOU J181335.1-174957 using data obtained with the XMM-Newton Observatory. PSR J1813-1749 lies near the center of the young radio supernova remnant G12.82-0.02, which overlaps the compact TeV source HESS J1813-178. This rotation-powered pulsar is the second most energetic in the Galaxy, with a spin-down luminosity of \\dot{E} = (6.8± 2.7) × 10^{37} erg s-1. In the rotating dipole model, the surface dipole magnetic field strength is Bs = (2.7 ± 0.6) × 1012 G and the spin-down age τ_c ≡ P/2\\dot{P} = 3.3-7.5 kyr, consistent with the location in the small, shell-type radio remnant. At an assumed distance of 4.7 kpc by association with an adjacent young stellar cluster, the efficiency of PSR J1813-1749 in converting spin-down luminosity to radiation is ≈0.03% for its 2-10 keV flux, ≈0.1% for its 20-100 keV INTEGRAL flux, and ≈0.07% for the >200 GeV emission of HESS J1813-178, making it a likely power source for the latter. The nearby young stellar cluster is possibly the birthplace of the pulsar progenitor, as well as an additional source of seed photons for inverse Compton scattering to TeV energies.

  7. Determination of dopant site occupancies in Cu-substituted YBa2Cu3O7-δ by differential anomalous x-ray scattering

    Science.gov (United States)

    Howland, R. S.; Geballe, T. H.; Laderman, S. S.; Fischer-Colbrie, A.; Scott, M.; Tarascon, J. M.; Barboux, P.

    1989-05-01

    Dopant site occupancies in YBa2Cu3-xMxO7-δ, with M=Fe (x=0.3 and x=0.5), Co (x=0.2 and x=0.5), Ni (x=0.3), and Zn (x=0.3) have been found using differential anomalous x-ray scattering. The Ni and Zn atoms were found to occupy the Cu(1) (``chains'') site and the Cu(2) (``planes'') site in a nearly random distribution. The Fe and Co atoms were found to occupy the Cu(1) site predominantly at low x, with an increasing fraction on the Cu(2) sites as the total amount of dopant increases. In all cases, our results appear to have high statistical significance, with very little sensitivity to expected uncertainties in oxygen content, total dopant content, anomalous corrections to the atomic scattering factor of the dopant, and to relative atomic coordinates assumed in the modeling. We have also discussed the results in the context of existing extended x-ray-absorption fine-structure and neutron-diffraction results, thermogravimetric analysis, and Mössbauer spectra, and Tc and Hall-effect studies.

  8. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs

  9. Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid Interface Observed Using Operando X-ray Scattering

    OpenAIRE

    Chu, Miaoqi; Miller, Mitchell; Dutta, Pulak

    2016-01-01

    Room temperature ionic liquids are widely recognized as novel electrolytes with properties very different from those of aqueous solutions, and thus with many potential applications, but observing how they actually behave at electrolytic interfaces has proved to be challenging. We have studied the voltage-dependent structure of [TDTHP]+[NTF2]− near its interface with an electrode, using in situ synchrotron X-ray reflectivity. An anion-rich layer develops at the interface above a threshold volt...

  10. Piercing the Vainshtein screen with anomalous gravitational wave speed: Constraints on modified gravity from binary pulsars

    OpenAIRE

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-01-01

    International audience By using observations of the Hulse-Taylor pulsar we constrain the gravitational wave (GW) speed to the level of 10 −2. We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively " pierces " the Vainshtein scre...

  11. The formation of low-mass helium white dwarfs orbiting pulsars: Evolution of low-mass X-ray binaries below the bifurcation period

    CERN Document Server

    Istrate, Alina; Langer, Norbert

    2014-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs) which have been spun up to high rotation rates via accretion of matter from a companion star in a low-mass X-ray binary (LMXB). However, many details of this recycling scenario remain to be understood. Here we investigate binary evolution in close LMXBs to study the formation of radio MSPs with low-mass helium white dwarf companions (He WDs) in tight binaries with orbital periods P_orb = 2-9 hr. In particular, we examine: i) if such observed systems can be reproduced from theoretical modelling using standard prescriptions of orbital angular momentum losses (i.e. with respect to the nature and the strength of magnetic braking), ii) if our computations of the Roche-lobe detachments can match the observed orbital periods, and iii) if the correlation between WD mass and orbital period (M_WD, P_orb) is valid for systems with P_orb < 2 days. Numerical calculations with a detailed stellar evolution code were used to trace the mass-tra...

  12. Formation of a partially-screened inner acceleration region in radio pulsars: drifting subpulses and thermal X-ray emission from polar cap surface

    CERN Document Server

    Gil, J; Zhang, B; Gil, Janusz; Melikidze, George; Zhang, Bing

    2006-01-01

    Formation of a partially-screened inner acceleration region in 102 pulsars with drifting subpulses is considered. This is motivated by that spark discharges leading to drifting subpulses cannot be produced in a steady polar cap flow and thus the inner accelerator should be intermittent in nature, that the traditional pure vacuum gap model predicts too fast a sub-pulse drifting rate, and that recent X-ray observations as well as the radio drifting data are both consistent with the inner gap being partially screened. By means of the condition $T_{\\rm c}/T_{\\rm s}>1$ (where $T_{\\rm c}$ is the critical temperature above which the surface delivers a thermal flow to adequately supply the corotation charge density, and $T_{\\rm s}$ is the actual surface temperature), it is found that a partially-screened acceleration region can be formed given that the near surface magnetic fields are very strong and curved. We consider both curvature radiation (CR) and resonant inverse Compton scattering (ICS) to produce seed photon...

  13. NuSTAR discovery of a cyclotron absorption line in the transient X-ray pulsar 2S 1553-542

    CERN Document Server

    Tsygankov, Sergey S; Krivonos, Roman A; Molkov, Sergey V; Jenke, Peter J; Finger, Mark H; Poutanen, Juri

    2015-01-01

    We report results of a spectral and timing analysis of the poorly studied transient X-ray pulsar 2S 1553-542 using data collected with the NuSTAR and Chandra observatories and the Fermi/GBM instrument during an outburst in 2015. Properties of the source at high energies (>30 keV) are studied for the first time and the sky position had been essentially improved. The source broadband spectrum has a quite complicated shape and can be reasonably described by a composite model with two continuum components - a black body emission with the temperature about 1 keV at low energies and a power law with an exponential cutoff at high energies. Additionally an absorption feature at $\\sim23.5$ keV is discovered both in phase-averaged and phase-resolved spectra and interpreted as the cyclotron resonance scattering feature corresponding to the magnetic field strength of the neutron star $B\\sim3\\times10^{12}$ G. Based on the Fermi/GBM data the orbital parameters of the system were substantially improved, that allowed us to d...

  14. Discovery of a pulsar wind nebula around the Magnetar Candidate AXP 1E1547.0-5408

    NARCIS (Netherlands)

    Vink, J.; Bamba, A.

    2009-01-01

    We report the detection of extended emission around the anomalous X-ray pulsar 1E1547.0-5408 using archival data of the Chandra X-ray satellite. The extended emission consists of an inner part, with an extent of 45 , and an outer part with an outer radius of 2. 9, which coincides with a supernova re

  15. Crowding and Anomalous Capacitance at an Electrode-Ionic Liquid Interface Observed Using Operando X-ray Scattering.

    Science.gov (United States)

    Chu, Miaoqi; Miller, Mitchell; Dutta, Pulak

    2016-03-23

    Room temperature ionic liquids are widely recognized as novel electrolytes with properties very different from those of aqueous solutions, and thus with many potential applications, but observing how they actually behave at electrolytic interfaces has proved to be challenging. We have studied the voltage-dependent structure of [TDTHP](+)[NTF2](-) near its interface with an electrode, using in situ synchrotron X-ray reflectivity. An anion-rich layer develops at the interface above a threshold voltage of +1.75 V, and the layer thickness increases rapidly with voltage, reaching ∼6 nm (much larger that the anion dimensions) at +2.64 V. These results provide direct confirmation of the theoretical prediction of "crowding" of ions near the interface. The interfacial layer is not purely anionic but a mixture of up to ∼80% anions and the rest cations. The static differential capacitance calculated from X-ray measurements shows an increase at higher voltages, consistent with a recent zero-frequency capacitance measurement but inconsistent with ac capacitance measurements. PMID:27163044

  16. Crowding and Anomalous Capacitance at an Electrode–Ionic Liquid Interface Observed Using Operando X-ray Scattering

    Science.gov (United States)

    2016-01-01

    Room temperature ionic liquids are widely recognized as novel electrolytes with properties very different from those of aqueous solutions, and thus with many potential applications, but observing how they actually behave at electrolytic interfaces has proved to be challenging. We have studied the voltage-dependent structure of [TDTHP]+[NTF2]− near its interface with an electrode, using in situ synchrotron X-ray reflectivity. An anion-rich layer develops at the interface above a threshold voltage of +1.75 V, and the layer thickness increases rapidly with voltage, reaching ∼6 nm (much larger that the anion dimensions) at +2.64 V. These results provide direct confirmation of the theoretical prediction of “crowding” of ions near the interface. The interfacial layer is not purely anionic but a mixture of up to ∼80% anions and the rest cations. The static differential capacitance calculated from X-ray measurements shows an increase at higher voltages, consistent with a recent zero-frequency capacitance measurement but inconsistent with ac capacitance measurements. PMID:27163044

  17. Crowding and Anomalous Capacitance at an Electrode-Ionic Liquid Interface Observed Using Operando X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Miaoqi; Miller, Mitchell; Dutta, Pulak (NWU)

    2016-04-11

    Room temperature ionic liquids are widely recognized as novel electrolytes with properties very different from those of aqueous solutions, and thus with many potential applications, but observing how they actually behave at electrolytic interfaces has proved to be challenging. We have studied the voltage-dependent structure of [TDTHP]+[NTF2]- near its interface with an electrode, using in situ synchrotron X-ray reflectivity. An anion-rich layer develops at the interface above a threshold voltage of +1.75 V, and the layer thickness increases rapidly with voltage, reaching ~6 nm (much larger that the anion dimensions) at +2.64 V. Our results provide direct confirmation of the theoretical prediction of “crowding” of ions near the interface. The interfacial layer is not purely anionic but a mixture of up to ~80% anions and the rest cations. Moreover, the static differential capacitance calculated from X-ray measurements shows an increase at higher voltages, consistent with a recent zero-frequency capacitance measurement but inconsistent with ac capacitance measurements.

  18. BeppoSAX OBSERVATIONS OF THE X-RAY PULSAR MAXI J1409-619 IN LOW STATE: DISCOVERY OF CYCLOTRON RESONANCE FEATURES

    Energy Technology Data Exchange (ETDEWEB)

    Orlandini, Mauro; Frontera, Filippo; Masetti, Nicola; Sguera, Vito [INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) Bologna, via Gobetti 101, 40129 Bologna (Italy); Sidoli, Lara [INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica (IASF) Milano, via Bassini 15, 20133 Milano (Italy)

    2012-04-01

    The transient 500 s X-ray pulsar MAXI J1409-619 was discovered by the slit cameras aboard Monitor of All-sky X-ray Image (MAXI) on 2010 October 17, and soon after accurately localized by Swift. We found that the source position was serendipitously observed in 2000 during BeppoSAX observations of the Galactic plane. Two sources are clearly detected in the Medium-Energy Concentrator Spectrometer (MECS): one is consistent with the position of IGR J14043-6148 and the other one with that of MAXI J1409-619. We report on the analysis of this archival BeppoSAX/MECS observation integrated with newly analyzed observation from ASCA and a set of high-energy observations obtained from the offset fields of the BeppoSAX/PDS instrument. For the ON-source observation, the 1.8-100 keV spectrum is fit by an absorbed power law with a photon index {Gamma} = 0.87{sup +0.29}{sub -0.19}, corresponding to 2-10 and 15-100 keV unabsorbed fluxes of 2.7 Multiplication-Sign 10{sup -12} and 4 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}, respectively, and a 2-10 keV luminosity of 7 Multiplication-Sign 10{sup 34} erg s{sup -1} for a 15 kpc distance. For a PDS offset field observation, performed about one year later and showing a 15-100 keV flux of 7 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1}, we clearly pinpoint three spectral absorption features at 44, 73, and 128 keV, resolved both in the spectral fit and in the Crab ratio. We interpret these not harmonically spaced features as due to cyclotron resonances. The fundamental energy of 44 {+-} 3 keV corresponds to a magnetic field strength at the neutron star surface of 3.8 Multiplication-Sign 10{sup 12}(1 + z) G, where z is the gravitational redshift. We discuss the nature of the source in the light of its possible counterpart.

  19. In-situ study of precipitates in Al–Zn–Mg–Cu alloys using anomalous small-angle x-ray scattering

    Science.gov (United States)

    Chun-Ming, Yang; Feng-Gang, Bian; Bai-Qing, Xiong; Dong-Mei, Liu; Yi-Wen, Li; Wen-Qiang, Hua; Jie, Wang

    2016-06-01

    In the present work, the precipitate compositions and precipitate amounts of these elements (including the size distribution, volume fraction, and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys (7150 and 7085 Al alloys), are investigated by anomalous small-angle x-ray scattering (ASAXS) at various energies. The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side, while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge. Similar results are observed in the 7085 alloy in an aging process (120 °C) by employing in-situ ASAXS measurements, indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min. In the aging process, the precipitate particles with an initial average size of ∼ 8 Å increase with aging time at an energy of 9.60 keV, while the increase with a slower rate is observed at an energy of 9.65 keV as near the Zn absorption edge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11005143, 11405259, and 51274046) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. [2014]1685).

  20. Anomalous lattice deformation in GaN/SiC(0001) measured by high-speed in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takuo, E-mail: sasaki.takuo@jaea.go.jp; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Ishikawa, Fumitaro [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2016-01-04

    We report an anomalous lattice deformation of GaN layers grown on SiC(0001) by molecular beam epitaxy. The evolution of the lattice parameters during the growth of the GaN layers was measured by in situ synchrotron X-ray diffraction. The lattice parameters in the directions parallel and normal to the surface showed significant deviation from the elastic strains expected for lattice-mismatched films on substrates up to a thickness of 10 nm. The observed lattice deformation was well explained by the incorporation of hydrostatic strains due to point defects. The results indicate that the control of point defects in the initial stage of growth is important for fabricating GaN-based optoelectronic devices.

  1. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  2. NuSTAR discovers a cyclotron line and reveals the spinning up of the accreting X-ray pulsar IGR J16393-4643

    Science.gov (United States)

    Bodaghee, Arash; Tomsick, John; Fornasini, Francesca; Krivonos, Roman; Stern, Daniel; Mori, Kaya; Rahoui, Farid; Boggs, Steven E.; Christensen, Finn; Craig, William W.; Hailey, Charles James; Harrison, Fiona; Zhang, William

    2016-04-01

    After several misclassifications, IGR J16393-4643 is now known to be a high-mass X-ray binary consisting of a heavily-absorbed pulsar that is likely paired with a massive and distant B star. It was observed for 50-ks by NuSTAR in the 3--79 keV energy band, complemented by a contemporaneous 2-ks observation with Swift-XRT. These observations enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5±0.1)×1012 G. The known pulsation period is now observed at 904.0±0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of dP/dt = -2×10-8 s s-1 (-0.6 s per year, or a frequency derivative of dν/dt = 3×10-14 Hz s-1). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2×108 cm.

  3. Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-ray Scattering in the Small Structure Limit

    OpenAIRE

    Guenter Goerigk; Sebastian Lages; Klaus Huber

    2016-01-01

    Anomalous small angle scattering measurements have been applied to diluted solutions of anionic polyacrylates decorated by specifically-interacting Pb2+ cations, revealing partial collapse of the polyacrylate into pearl-like subdomains with a size on the order of a few nanometers. From the pure-resonant scattering contribution of the Pb2+ cations, and from subsequent analysis of the resonant-invariant, the amount of Pb2+ cations condensed onto the polyanions with respect to the total amount o...

  4. Determination of Dopant Site Occupancies in Copper - Yttrium-Barium by a New Application of Differential Anomalous X-Ray Scattering.

    Science.gov (United States)

    Gustafson, Rebecca Howland

    Dopant site occupancies in YBa_2 Cu_{rm 3-x}M _{rm x}O _{7-delta}, with M representing Fe (x = 0.3 and x = 0.5), Co (x = 0.2 and x = 0.5), Ni (x = 0.3) and Zn (x = 0.3) have been determined using an new application of differential anomalous x-ray scattering. The Ni and Zn atoms were found to occupy the Cu(1) ("chains") site and the Cu(2) ("planes") site in a nearly random distribution. The Fe and Co atoms were found to occupy the Cu(1) site predominantly at low x, with an increasing fraction on the Cu(2) sites as the total amount of dopant increases. In all cases, the results appear to have high statistical significance, with very little sensitivity to expected uncertainties in oxygen content, total dopant content, anomalous corrections to the atomic scattering factor of the dopant, and to relative atomic coordinates assumed in the modeling. The results are also discussed in the context of existing EXAFS and neutron diffraction results, thermogravimetric analysis and Mossbauer spectra, and T_{rm c} and Hall-effect studies.

  5. Probing magnetar magnetosphere through X-ray polarization measurements

    Science.gov (United States)

    Taverna, R.; Muleri, F.; Turolla, R.; Soffitta, P.; Fabiani, S.; Nobili, L.

    2014-02-01

    The study of magnetars is of particular relevance since these objects are the only laboratories where the physics in ultra-strong magnetic fields can be directly tested. Until now, spectroscopic and timing measurements at X-ray energies in soft gamma repeaters and anomalous X-ray pulsars (AXPs) have been the main source of information about the physical properties of a magnetar and of its magnetosphere. Spectral fitting in the ˜0.5-10 keV range allowed us to validate the `twisted magnetosphere' model, probing the structure of the external field and estimating the density and velocity of the magnetospheric currents. Spectroscopy alone, however, may fail in disambiguating the two key parameters governing magnetospheric scattering (the charge velocity and the twist angle) and is quite insensitive to the source geometry. X-ray polarimetry, on the other hand, can provide a quantum leap in the field by adding two extra observables, the linear polarization degree and the polarization angle. Using the bright AXP 1RXS J170849.0-400910 as a template, we show that phase-resolved polarimetric measurements can unambiguously determine the model parameters, even with a small X-ray polarimetry mission carrying modern photoelectric detectors and existing X-ray optics. We also show that polarimetric measurements can pinpoint vacuum polarization effects and thus provide indirect evidence for ultra-strong magnetic fields.

  6. X-ray Detection and Processing Models for Spacecraft Navigation and Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on work done under Microcosm's recently completed Phase II SBIR program on X-ray pulsar based navigation (XNAV), relevant X-ray source characterization, X-ray...

  7. Visibility Research of X-ray Pulsar-based Navigation for Interplanetary Explore%行星际探测X射线脉冲星导航可见性研究

    Institute of Scientific and Technical Information of China (English)

    薛舜; 张科; 吕梅柏

    2014-01-01

    X射线脉冲星能为行星际探测提供自主运营、高精度的导航服务。行星际探测过程中脉冲星并非随时可见,如何选择脉冲星关系到该导航方法的可行性。本文利用脉冲星、航天器及第三天体位置关系从几何角度研究脉冲星可见性问题,证明了在绝对定位导航中第三天体遮挡与干扰问题的解的等价性并给出了基于可见性的脉冲星优先选择准则;研究了X射线探测器姿态运动对脉冲星探测的影响,引入姿态转移矩阵解决了脉冲星实时可见性问题;研究了第三天体位置对两个航天器间通讯链路畅阻的影响,给出了基于X射线脉冲星的相对定位导航时机。有关可见性问题而建立的脉冲星选择准则,为行星际探测X射线脉冲星导航的工程应用提供了基础。%X-ray pulsar-based navigation as a complete independence and high precision navigation method could be used for interplanetary exploration. How to choose pulsars will ultimately decide its feasibility, because pulsars visibility is a problem. Firstly, the paper computed the angles among pulsars, space probes and celestial bodies to research the visibility ingeometry way, concluded a united pulsars visible solution for planets eclipse and the Sun jamming, and then built navigation pulsars choice priority criterion in the absolute localization. Secondly, state transition matrix was introduced to research real time visibility when space probe’s attitude moving disturbed detector pointing. Finally, the paper researched the situation of communication link affecting by celestial body location between two probes and concluded the feasibility time of using relative navigation. These researches on building navigation pulsars choice criterion in visibility will be a foundation of using X-ray pulsar-based navigation for interplanetary explore.

  8. An Alternative Formation Theory of Beat. (II) Revelations of Recursion Formulas of the Reflected X-rays and the Anomalous Transmission and Absorption by the Binomial Theorem

    Science.gov (United States)

    Nakajima, Tetsuo

    2008-11-01

    The recursion formulas for the photon paths in the Borrmann triangle, which satisfy a new modified Pascal triangle can be derived from the binomial theorem by regarding the permutation of the stochastic variables of the diffracted and transmitted X-ray photons. The Borrmann triangle for the n-multiple X-ray reflections expanded by the n-degree binomial distribution consists of the two sub-triangles given by the ( n-1)-degree binomial distribution of the diffracted and transmitted photons. The former sub-triangle shows perfectly flawless symmetry but the latter one shows inevitable asymmetry. A reasonable understanding of both the high intense and very weak photon flows in the Borrmann triangle, which are popularly known as the anomalous transmission and absorption, respectively, are derived from the binomial theorem. Incident photons irradiated at a point O that forms the vertex of the Borrmann triangle propagate through the bypasses parallel to only the complementary half of the integral whole median with the high probabilities from the binomial theorem and emanate them from a short width slit of overline{O'O''} on the base of the high intense photon flow Borrmann triangle ▵ OO' O″, which can be defined by the standard deviation of the normal distribution. The parallel paths to the whole median also pass the very weak photon flows from the high power exponent of d multinomials through the triangle ▵ OO' O″. Both the above contrastive photon flows could coexist in ▵ OO' O″ based upon the complementary rivalry duality from the binomial theorem of ( d+ t) n =1, including the very weak photon flows from the high power exponent of t multinomials near both sides of the Borrmann triangle.

  9. The Radio Emission, X-ray Emission, and Hydrodynamics of G328.4+0.2: A Comprehensive Analysis of a Luminous Pulsar Wind Nebula, its Neutron Star, and the Progenitor Supernova Explosion

    CERN Document Server

    Gelfand, Joseph D; Slane, Patrick O; Patnaude, Daniel J; Hughes, John P; Camilo, Fernando

    2007-01-01

    We present new observational results obtained for the Galactic non-thermal radio source G328.4+0.2 to determine both if this source is a pulsar wind nebula or supernova remnant, and in either case, the physical properties of this source. Using X-ray data obtained by XMM, we confirm that the X-ray emission from this source is heavily absorbed and has a spectrum best fit by a power law model of photon index=2 with no evidence for a thermal component, the X-ray emission from G328.4+0.2 comes from a region significantly smaller than the radio emission, and that the X-ray and radio emission are significantly offset from each other. We also present the results of a new high resolution (7 arcseconds) 1.4 GHz image of G328.4+0.2 obtained using the Australia Telescope Compact Array, and a deep search for radio pulsations using the Parkes Radio Telescope. We find that the radio emission has a flat spectrum, though some areas along the eastern edge of G328.4+0.2 have a steeper radio spectral index of ~-0.3. Additionally...

  10. BeppoSAX and Chandra Observations of SAXJ0103.2-7209 = 2E0101.5-7225 a new Persistent 345s X-ray Pulsar in the SMC

    CERN Document Server

    Israel, G L; Covino, S; Dal Fiume, D; Gaetz, T J; Mereghetti, S; Oosterbroek, T; Orlandini, M; Parmar, A N; Ricci, D; Stella, L

    2000-01-01

    We report the results of a 1998 July BeppoSAX observation of a field in the SMC which led to the discovery of 345s pulsations in the X-ray flux of SAXJ0103.2-7209. The BeppoSAX X-ray spectrum is well fit by an absorbed power-law with photon index 1.0 plus a black body component with kT=0.1keV. The unabsorbed luminosity in the 2-10 keV energy range is 1.2x10^{36} erg/s. In a very recent Chandra observation the 345s pulsations are also detected. The available period measurements provide a constant period derivative of -1.7s/yr over the last three years making SAXJ0103.2-7209 one of the most rapidly spinning-up X-ray pulsars known. The BeppoSAX position is consistent with that of the Einstein source 2E0101.5-7225 and the ROSAT source RXJ0103.2-7209. This source was detected at a luminosity level of few 10^{35}-10^{36} erg/s in all datasets of past X-ray missions since 1979. The ROSAT HRI and Chandra positions are consistent with that of a m_V=14.8 Be spectral type star already proposed as the likely optical coun...

  11. The XMM-Newton survey of the Small Magellanic Cloud: XMMUJ005011.2-730026 = SXP214, a Be/X-ray binary pulsar

    CERN Document Server

    Coe, M J; Sturm, R; Pietsch, W; Townsend, L J; Bartlett, E S; Filipovic, M; Udalski, A; Corbet, R H D; Tiengo, A; Ehle, M; Payne, J L; Burton, D

    2011-01-01

    In the course of the XMM-Newton survey of the Small Magellanic Cloud (SMC), a region to the east of the emission nebula N19 was observed in November 2009. To search for new candidates for high mass X-ray binaries the EPIC PN and MOS data of the detected point sources were investigated and their spectral and temporal characteristics identified. A new transient (XMMUJ005011.2-730026= SXP214) with a pulse period of 214.05 s was discovered; the source had a hard X-ray spectrum with power-law index of ~0.65. The accurate X-ray source location permits the identification of the X-ray source with a ~15th magnitude Be star, thereby confirming this system as a new Be/X-ray binary.

  12. Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-ray Scattering in the Small Structure Limit

    Directory of Open Access Journals (Sweden)

    Guenter Goerigk

    2016-03-01

    Full Text Available Anomalous small angle scattering measurements have been applied to diluted solutions of anionic polyacrylates decorated by specifically-interacting Pb2+ cations, revealing partial collapse of the polyacrylate into pearl-like subdomains with a size on the order of a few nanometers. From the pure-resonant scattering contribution of the Pb2+ cations, and from subsequent analysis of the resonant-invariant, the amount of Pb2+ cations condensed onto the polyanions with respect to the total amount of Pb2+ cations in the solvent was estimated. In order to scrutinize systematic limitations in the determination of the chemical concentrations of resonant scattering counterions in the collapsed phase, Monte Carlo simulations have been performed. The simulations are based on structural confinements at variable size in the range of few nanometers, which represent the collapsed subdomains in the polyanions. These confinements were gradually filled to a high degree of the volume fraction with resonant scattering counterions giving access to a resonant-invariant at a variable degree of filling. The simulations revealed in the limit of small structures a significant underestimation of the true degree of filling of the collapsed subdomains when determining chemical concentrations of Pb2+ cations from the resonant invariant.

  13. Anomalous chemical shifts in X-ray photoelectron spectra of sulfur-containing compounds of silver (I) and (II)

    International Nuclear Information System (INIS)

    Highlights: • Ag 3d5/2 binding energy for Ag(II)SO4 is as large as 370.1 eV. • This is the largest value ever measured for a silver (II) compound. • Large shift is connected with the extreme oxidizing nature of Ag(II) species. • Ag(I)2S2O7 exhibits both positive and negative shifts with respect to metallic Ag. • Two distinct Ag(I) sites are responsible for large BE difference of 3.6 eV. - Abstract: Anomalous chemical shifts, i.e. cases when binding energy decreases with the increase of the oxidation state, have been well-documented for selected compounds of silver, and well understood based on analysis of initial- and final-state effects in the XPS spectra. Here we report two examples of even more exotic behaviour of chemical shifts for two silver compounds. The first one is Ag2S2O7 which exhibits both positive and negative substantial shifts with respect to metallic Ag for two distinct Ag(I) sites in its crystal structure, which differ by as much as 3.6 eV. Another is AgSO4, a rare example of oxo silver (II) salt, which exhibits “normal” chemical shift but the Ag 3d5/2 binding energy takes the largest value measured for a silver (II) compound (370.1 eV). This property is connected predominantly with the extremely strongly oxidizing nature of Ag(II) species

  14. Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: A quantitative anomalous small-angle x-ray scattering study

    Science.gov (United States)

    Goerigk, G.; Huber, K.; Schweins, R.

    2007-10-01

    The shrinking process of anionic sodium polyacrylate (NaPA) chains in aqueous solution induced by Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples with different ratios [Sr2+]/[NaPA] (between 0.451 and 0.464) has been investigated. From the quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed phase was calculated with concentrations v¯ between 0.94×1017 and 2.01×1017cm-3 corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of monomers [NaPA], a degree of site binding of r =[Sr2+]/[NaPA] between 0.05 and 0.11 was estimated. These values clearly differ from r =0.25, which was established from former light scattering experiments, indicating that the counterion condensation starts before the phase border is reached and increases rather sharply at the border.

  15. A partial structure factor investigation of the bulk metallic glass Zr63Ni25Al12 as studied by using a combination of anomalous X-ray scattering and reverse Monte Carlo modeling

    International Nuclear Information System (INIS)

    Anomalous X-ray scattering experiments were performed on Zr63Ni25Al12 bulk metallic glass. The results were analyzed using reverse Monte Carlo modeling to obtain local- and intermediate-range atomic configurations of this good metallic glass former. Although the Al-related partial information is not reliable due to the small values of their weighting factors in X-ray scattering, good partial information could be obtained from a reverse Monte Carlo analysis. The obtained structural information is given by parameters such as bond angle distributions, bond orientation order parameters, the Warren-Cowley order parameters, and Voronoi polyhedra. Results are compared to the previous results from Fukunaga et al. using X-ray and neutron total scattering. (orig.)

  16. Constraints on the mass and radius of neutron stars from X-ray observations

    OpenAIRE

    Li, Zhaosheng

    2015-01-01

    This article gives a very brief introduction about measuring the mass and radius of neutron star from X-ray observations. The masses and radii of neutron stars can be determined from photospheric radius expansion bursts in low-mass X-ray binaries, X-ray pulse profile modeling in accreting X-ray pulsars, gravitational redshift measurement in low-mass X-ray binaries and thermal X-ray spectral fitting in quiescent low-mass X-ray binaries.

  17. X-ray Polarization Probes of SNR and PWN

    Science.gov (United States)

    Romani, Roger W.

    2016-04-01

    X-ray synchrotron radiation traces the high energy extrema of e+/e- accelerated by pulsar magnetospheres and supernova shocks. X-ray polarization lets us probe the unresolved geometry of these relativistic shock structures. I summarize what we know about magnetic field geometries in these nebulae and the prospects for learning more from X-ray polarimetry.

  18. Determination of transition metal ion distribution in cubic spinel Co{sub 1.5}Fe{sub 1.5}O{sub 4} using anomalous x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. N. [Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore – 452013 (India); Sinha, A. K., E-mail: anil@rrcat.gov.in; Ghosh, Haranath [Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore – 452013 (India); Homi Bhabha National Institute, BARC, Mumbai-400094 (India)

    2015-08-15

    We report anomalous x-ray diffraction studies on Co ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co{sub 1.5}Fe{sub 1.5}O{sub 4}) through co-precipitation and subsequent annealing route. The imaginary part (absorption) of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES) spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.

  19. Discovery of a 112 ms X-ray Pulsar in Puppis A: Further Evidence of Neutron Stars Weakly Magnetized at Birth

    OpenAIRE

    Gotthelf, E. V.; Halpern, J. P.

    2009-01-01

    We report the discovery of 112-ms X-ray pulsations from RX J0822-4300, the compact central object (CCO) in the supernova remnant Puppis A, in two archival Newton X-Ray Multi-Mirror Mission observations taken in 2001. The sinusoidal light curve has a pulsed fraction of 11% with an abrupt 180 deg. change in phase at 1.2 keV. The observed phase shift and modulation are likely the result of emission from opposing thermal hot spots of distinct temperatures. Phase-resolved spectra reveal an emissio...

  20. The X-Ray Polarization Signature of Quiescent Magnetars: Effect of Magnetospheric Scattering and Vacuum Polarization

    CERN Document Server

    Fernández, Rodrigo

    2011-01-01

    In the magnetar model, the quiescent non-thermal soft X-ray emission from Anomalous X-ray Pulsars and Soft-Gamma Repeaters is thought to arise from resonant comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. In this paper we calculate how resonant cyclotron scattering would modify the observed polarization signal relative to the surface emission, using a multidimensional Monte Carlo radiative transfer code that accounts for the gradual coupling of polarization eigenmodes as photons leave the magnetosphere. We employ a globally-twisted, self-similar, force-free magnetosphere with a power-law momentum distribution, assume a blackbody spectrum for the seed pho...

  1. Tracing the Lowest Propeller Line in Magellanic High-mass X-Ray Binaries

    Science.gov (United States)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel

    2016-09-01

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P S < 12 s, detected at relatively low X-ray luminosities L X , appear to define such a line in the P S -L X diagram, characterized by a magnetic moment of μ = 3 × 1029 G cm3. This value implies the presence of surface magnetic fields of B ≥ 3 × 1011 G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  2. A complete library of X-ray pulsars in the Magellanic Clouds: A new resource for modeling the time evolution of luminosity and pulse profile

    Science.gov (United States)

    Yang, Jun; Laycock, Silas; Christodoulou, Dimitris; Fingerman, Samuel; Cappallo, Rigel; Zezas, Andreas; Antoniou, Vallia; Hong, Jaesub; Ho, Wynn; Coe, Malcolm; Klus, Helen

    2016-01-01

    We have collected and analyzed all XMM-Newton and Chandra (˜ 300) observations of the known pulsars in the Small & Large Magellanic Clouds (SMC, LMC). We aim to classify various pulsar properties with amplitude logLX = 33 ˜ 38 erg/s and incorporate the related parameters in theoretical models. With the high time-resolution data from the European Photon Imaging Camera (EPIC) and the latest calibration files and the Science Analysis System (SAS) software from High Energy Astrophysics Science Archive Research Center Software (HEASOFT), our pipeline generates a suite of useful products for each pulsar detection: point-source event lists, pulse profiles, periodograms, and spectra for the broad energy band, the soft band (0.2-2 keV), and the hard band (2-12 keV). Of 59 SMC pulsars in the EPIC field of view, we were able to measure 29 with pulse periods and power spectra. From XMM for example, for 16 of them, we find 12 are spinning up and 4 are spinning down. We also compare the observed pulse profiles to geometric models of the pulsars in order to constrain the magnetospheric parameters of each of these sources. Our motivation is to provide a library for time domain studies and profile modeling.

  3. Discovery of a 168.8 s X-ray pulsar transiting in front of its Be companion star in the Large Magellanic Cloud

    CERN Document Server

    Maggi, P; Sturm, R; Pietsch, W; Rau, A; Greiner, J; Udalski, A; Sasaki, M

    2013-01-01

    Aims: We report the discovery of LXP169, a new high-mass X-ray binary in the Large Magellanic Cloud. The optical counterpart is identified and exhibits an eclipsing light curve. We performed follow-up observations to clarify the eclipsing nature of the system. Methods: Energy spectra and time series were extracted from two XMM-Newton observations to search for pulsations, characterise the spectrum and measure spectral and timing changes. Long-term X-ray variability was studied using archival ROSAT data. The XMM-Newton positions were used to identify the optical counterpart. We obtained ultraviolet to near-infrared photometry to characterise the companion, along with its 4000 d long I-band light curve. We observed LXP169 with Swift at two predicted eclipse times. Results: We found a spin period of 168.8 s which did not change between two XMM-Newton observations. The X-ray spectrum, well characterised by a power-law, was harder when the source was brighter. The X-ray flux of LXP169 is found to be variable by a ...

  4. Magnetars and White Dwarf Pulsars

    CERN Document Server

    Lobato, Ronaldo V; Coelho, Jaziel G

    2016-01-01

    The Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely $B\\gtrsim10^{14}$ G, and for that reason are known as Magnetars. However, in the last years some SGRs/AXPs with low surface magnetic fields $B\\sim(10^{12}-10^{13})$ G have been detected, challenging the Magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-Ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on white dwarfs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized white dwarfs can have surface magnetic field $B\\sim 10^{7}-10^{10}$ G and rotate very fast with frequencies $\\Omega\\sim 1$ rad/s, consistent with the observed rotation periods $P\\sim (2-12)$ s.

  5. Autonomous attitude estimation method for spacecraft based on X-ray pulsars and minimum error entropy%基于X射线脉冲星的最小误差熵定姿态方法

    Institute of Scientific and Technical Information of China (English)

    罗楠; 许录平; 谢强

    2013-01-01

    提出一种基于X射线脉冲星能量观测信息和最小误差熵算法的航天器自主定姿方法.首先建立了圆形准直器差分测量模型,观测两颗脉冲星的辐射光子能量.然后引入信息熵概念来充分表征脉冲星辐射信号的随机性,用最小误差熵原理进行参数拟合,解出脉冲星在航天器坐标架下的方向矢量,通过矢量定姿法解算出航天器在参考坐标系中的完整姿态.最后结合美国国家宇航局HEACARC数据库提供的脉冲星观测数据进行了仿真试验,结果表明:在所给试验条件下,基于最小误差熵方法的参数估计精度要优于常用的最小二乘法,相比于后者,俯仰、滚动和偏航三轴精度分别提高了31.4%,27.1%和32.5%.%Aiming at autonomously determining the attitude of spacecraft, a method only using X-ray pulsars was proposed. The method established a difference measurement model firstly. The model employed two cylindrical collimators and one X-ray detector to observe the radiation photon energy of pulsars. Then the light curve was obtained according to the characteristics of response function and the mathematical model. To fully represent the randomness of pulsar radiation signals, the concept of information entropy was introduced. The principle of minimum error entropy was employed to fit attitude parameters and work out aspect solution of pulsar in the spacecraft coordinate system. According to the known position of pulsars in the celestial coordinate system, the spacecraft attitude with respect to the celestial coordinates could be calculated. At last, combined with the observation data from NASA s HEASARC database, numerical experiments were given to verify the effectiveness of the method. The simulation results indicate that the precision of attitude determination using only X-ray pulsars can meet the requirements of spacecraft attitude determination mission. With the given conditions, the accuracy of parameters fitting by

  6. Formation and evolution of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We review recent progress in theoretical understanding of X-ray binaries,which has largely been driven by new observations.We select several topics including formation of compact low-mass X-ray binaries,the evolutionary connection between low-mass X-ray binaries and binary and millisecond radio pulsars,and ultraluminous X-ray sources,to illustrate the interplay between theories and observations.

  7. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  8. Evolving into Magnetars from Normal Pulsars with a Low Braking Index

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-Cong

    2009-01-01

    Anomalous x-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are believed to be candidates for magnetars, and they are powered by the decay of ultra-strong magnetic fields of > 1014 G. From the modified spin-down relation of pulsars P (x) p2-n, we find that the Vela pulsar would evolve into the classes of magnetars under some assumptions that pulsars lose their rotational energy only by magnetic dipole radiation and the braking index is a constant. Our rough calculation indicates that only pulsars with n ~ 1.3 - 1.6 can evolve into magnetars.Pulsars like Vela with a low braking index may be the progenitors of AXPs and SGRs. Regarding the mechanism evolved into magnetars, we suggest that pulsars' surface magnetic field component may be increased by frequent glitches.

  9. Observations of the X-ray pulsar LMC X-4 with NuSTAR: limit on the magnetic field and tomography of the system in the fluorescent iron line

    CERN Document Server

    Shtykovsky, A E; Arefiev, V A; Molkov, S V; Tsygankov, S S

    2016-01-01

    We present results of the spectral and timing analysis of the X-ray pulsar LMC X-4 with the NuSTAR observatory in the broad energy range 3-79 keV. Along with the detailed analysis of the averaged source spectrum, the high-precision pulse phased-resolved spectra were obtained for the first time. It has been shown that the comptonization model gives the best approximation of the obtained spectra. The evolution of its parameters was traced depending on the pulse phase as well. The search for the possible cyclotron absorption line was performed for all energy spectra in the 5-55 keV energy range. The obtained upper limit for the depth of the cyclotron absorption line $\\tau\\simeq0.15$ ($3\\sigma$) indicates no cyclotron absorption line in this energy range, which provides an estimate of the magnitude of the magnetic field on the surface of the neutron star: $B 6.5 \\times 10^{12}$ G. The latter one is agree with the estimate of the magnetic field obtained from the analysis of the power spectrum of the pulsar: $B \\s...

  10. X-ray Emission from the Guitar Nebula

    CERN Document Server

    Romani, R W; Yadigaroglu, I A; Romani, Roger W.; Cordes, James M.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  11. Probing magnetars magnetosphere through X-ray polarization measurements

    CERN Document Server

    Taverna, Roberto; Turolla, Roberto; Soffitta, Paolo; Fabiani, Sergio; Nobili, Luciano

    2013-01-01

    The study of magnetars is of particular relevance since these objects are the only laboratories where the physics in ultra-strong magnetic fields can be directly tested. Until now, spectroscopic and timing measurements at X-ray energies in soft gamma-repeaters (SGRs) and anomalous X-ray pulsar (AXPs) have been the main source of information about the physical properties of a magnetar and of its magnetosphere. Spectral fitting in the ~ 0.5-10 keV range allowed to validate the "twisted magnetosphere" model, probing the structure of the external field and estimating the density and velocity of the magnetospheric currents. Spectroscopy alone, however, may fail in disambiguating the two key parameters governing magnetospheric scattering (the charge velocity and the twist angle) and is quite insensitive to the source geometry. X-ray polarimetry, on the other hand, can provide a quantum leap in the field by adding two extra observables, the linear polarization degree and the polarization angle. Using the bright AXP ...

  12. X-ray enhancement and long-term evolution of swift J1822.3–1606

    Energy Technology Data Exchange (ETDEWEB)

    Benli, Onur; Çalışkan, Ş.; Ertan, Ü.; Alpar, M. A. [Sabancı University, Orhanlı-Tuzla, İstanbul 34956 (Turkey); Trümper, J. E. [Max-Planck-Institut für extraterrestrische Physik, Geissenbachstrasse, 85740 Garching bei München (Germany); Kylafis, N. D., E-mail: onurbenli@sabanciuniv.edu [Physics Department and Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion, Crete (Greece)

    2013-12-01

    We investigate the X-ray enhancement and the long-term evolution of the recently discovered second 'low-B magnetar' Swift J1822.3-1606 in the frame of the fallback disk model. During a soft gamma burst episode, the inner disk matter is pushed back to larger radii, forming a density gradient at the inner disk. Subsequent relaxation of the inner disk could account for the observed X-ray enhancement light curve of Swift J1822.3-1606. We obtain model fits to the X-ray data with basic disk parameters similar to those employed to explain the X-ray outburst light curves of other anomalous X-ray pulsars and soft gamma repeaters. The long period (8.4 s) of the neutron star can be reached by the effect of the disk torques in the long-term accretion phase ((1-3) × 10{sup 5} yr). The currently ongoing X-ray enhancement could be due to a transient accretion epoch, or the source could still be in the accretion phase in quiescence. Considering these different possibilities, we determine the model curves that could represent the long-term rotational and the X-ray luminosity evolution of Swift J1822.3-1606, which constrain the strength of the magnetic dipole field to the range of (1-2) × 10{sup 12} G on the surface of the neutron star.

  13. Chest x-ray

    Science.gov (United States)

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  14. A search for X-rays from five pulsars PSR's 0740-28, 1737-30, 1822-09, 1915+13 and 1916+14

    CERN Document Server

    Alpar, M A; Kiziloglu, U; Ögelman, H B; Guseinov, O H; Kiziloglu, Umit; Ogelman, H

    1995-01-01

    We report observations of PSR's 0740-28, 1737-30, 1822-09, 1915+13 and 1916+14 with ROSAT. In the 0.1-2.1 keV range upper limits to luminosity are derived for power law and blackbody spectra, using a range of N_{H} estimates. The upper limit to the blackbody luminosity from PSR1822-09 turns out to be consistent with standard cooling curves. For the other pulsars the upper limits are not restrictive as they are much larger than the luminosities predicted by the models.

  15. X 射线脉冲星自主导航的观测方程*%Timing equation in X-ray pulsar autonomous navigation∗

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The timing equation is the basic theory of dealing with the observable data of pulsar. The pulse timing model is studied; the transformation equation of pulsar photon time of arrival in 1PN approximation is derived, the existing transformation equations are compared and analyzed; the transformation of the proper time from the spacecraft to TCB is also obtained. The process dealing with the observable data of RXTE is achieved by software, the pulsar period is estimated and pulse profile is replicated, the validity of timing equation is approved. The result of software is compared with that of Heasoft, the reason of difference between them is analyzed. Finally, the effects of the planet ephemeris error and the pulsar ephemeris error on data processing are achieved.%  在分析脉冲时间相位模型(pulse timing model)的意义和研究已有观测方程结论的基础上,对脉冲到达时间(TOA)所含各种效应进行了解析,推导建立了一阶后牛顿近似下光子到达时间转换方程,与一些作者的结果进行比较讨论;同时推导出航天器在三种类型轨道下质心坐标时与航天器原时转换公式。通过程序实现了推导的观测方程对 X 射线脉冲星空间观测数据处理的功能,并利用 RXTE 卫星观测数据进行验算,搜索出正确的脉冲星周期,折叠出准确的脉冲轮廓,验证了本文观测方程的正确性,并与 Heasoft 软件计算结果进行对比分析,最后分析了脉冲星位置误差与行星历表误差对数据处理的影响。

  16. A COMPACT RADIO COUNTERPART TO THE ENERGETIC X-RAY PULSAR ASSOCIATED WITH THE TEV GAMMA-RAY SOURCE J1813-178

    Directory of Open Access Journals (Sweden)

    Sergio Dzib

    2010-01-01

    Full Text Available Reportamos la detección de una fuente de radio compacta y variable coinci- dente con CXOU J181335.1{174957, el pulsar de rayos-X localizado cerca del cen- tro de la remanente de supernova joven G12.82{0.02, la cual traslapa con la fuente TeV compacta HESS J1813{178. La fuente de radio compacta, que llamamos VLA J181335.1{174957, fue detectada en observaciones hechas a 4.86 GHz con el VLA en 2006. Nuevas observaciones hechas con el VLA en 2009 no detectan la fuente a un nivel 1.9+-0.7 veces (2.8o más bajo que el de 2006. Sugerimos que VLA J181335.1{ 174957 podría estar relacionada con alguna de las recientemente detectadas clases de pulsares de radio variables, pero no podemos alcanzar una conclusión más sólida.

  17. X-Ray Bursts from the Transient Magnetar Candidate XTE J1810-197

    Science.gov (United States)

    Kouveliotou, Chryssa; Woods, Peter M.; Gavriil, Fotis P.; Kaspi, Victoria M.; Roberts, Mallory S. E.; Ibrahim, Alaa; Markwardt, Craig B.; Swank, Jean H.; Finger, Mark H.

    2005-01-01

    We have discovered four X-ray bursts, recorded with the Rossi X-ray Timing Explorer Proportional Counter Array between 2003 September and 2004 April, that we show to originate from the transient magnetar candidate XTE 51810-197. The burst morphologies consist of a short spike or multiple spikes lasting approx. 1 s each followed by extended tails of emission where the pulsed flux from XTE 51810-197 is significantly higher. The burst spikes are likely correlated with the pulse maxima, having a chance probability of a random phase distribution of 0.4%. The burst spectra are best fit to a blackbody with temperatures 4-8 keV, considerably harder than the persistent X-ray emission. During the X-ray tails following these bursts, the temperature rapidly cools as the flux declines, maintaining a constant emitting radius after the initial burst peak. The temporal and spectral characteristics of these bursts closely resemble the bursts seen from 1E 1048.1-5937 and a subset of the bursts detected from 1E 2259+586, thus establishing XTE J1810-197 as a magnetar candidate. The bursts detected from these three objects are sufficiently similar to one another, yet si,g&cantly differe2t from those seen from soft gamma repeaters, that they likely represent a new class of bursts from magnetar candidates exclusive (thus far) to the anomalous X-ray pulsar-like sources.

  18. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    International Nuclear Information System (INIS)

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip

  19. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    Science.gov (United States)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.; Saw, S. H.; Lee, S.

    2015-12-01

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  20. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    Energy Technology Data Exchange (ETDEWEB)

    Piriaei, D.; Javadi, S.; Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855 (Iran, Islamic Republic of); Mahabadi, T. D., E-mail: tadavari@gmail.com [Department of Physics and Biophysics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran 1916893813 (Iran, Islamic Republic of); Saw, S. H. [INTI International University, Nilai 71800 (Malaysia); Institute for Plasma Focus Studies, 32 Oak Park Drive, Victoria 3148 (Australia); Lee, S. [INTI International University, Nilai 71800 (Malaysia); Institute for Plasma Focus Studies, 32 Oak Park Drive, Victoria 3148 (Australia); Universty of Malaya, Kuala Lumpur 50603 (Malaysia)

    2015-12-15

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  1. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  2. Principles of X-ray Navigation

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, John Eric; /SLAC

    2006-03-17

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a

  3. STEMS3D: An X-ray spectral model for magnetar persistent radiations

    Science.gov (United States)

    Gogus, Ersin; Weng, Shan-Shan

    2016-07-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.

  4. X-ray (image)

    Science.gov (United States)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  5. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  6. X-ray apparatus

    International Nuclear Information System (INIS)

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  7. Dental x-rays

    Science.gov (United States)

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  8. X-Rays

    Science.gov (United States)

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  10. X-Ray Imaging

    Science.gov (United States)

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  11. A variable absorption feature in the X-ray spectrum of a magnetar.

    Science.gov (United States)

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss. PMID:23955229

  12. A variable absorption feature in the X-ray spectrum of a magnetar

    CERN Document Server

    Tiengo, Andrea; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Gotz, Diego; Israel, GianLuca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-01-01

    Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of AXPs and SGRs are greater than - or at the high end of the range of - those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature an...

  13. A variable absorption feature in the X-ray spectrum of a magnetar.

    Science.gov (United States)

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss.

  14. Crystallization and X-ray diffraction analysis of a novel immune-type receptor from Ictalurus punctatus and phasing by selenium anomalous dispersion methods

    International Nuclear Information System (INIS)

    A highly diversified novel immune-type receptor from catfish, NITR10, was crystallized to reveal novel mechanisms of immune recognition. X-ray diffraction data from crystals of a novel immune-type receptor (NITR10 from the catfish Ictalurus punctatus) were collected to 1.65 Å resolution and reduced to the primitive hexagonal lattice. Native and selenomethionine derivatives of NITR10 crystallized under different conditions yielded P3121 crystals. SeMet NITR10 was phased to a correlation coefficient of 0.77 by SAD methods and experimental electron-density maps were calculated to 1.65 Å. Five NITR10 molecules are predicted to be present in the asymmetric unit based on the Matthews coefficient

  15. Local structure around Pd atoms in Pd42.5Ni7.5Cu30P20 excellent glass-former studied by anomalous X-ray scattering

    International Nuclear Information System (INIS)

    In order to study local structure around the Pd atoms in Pd42.5Ni7.5Cu30P20 excellent metallic glass-former, an anomalous X-ray scattering (AXS) experiment was performed at energies close to the Pd K absorption edge at the beamline BM02 of the European Synchrotron Radiation Facility. The differential structure factor, ΔPdS(Q), was obtained with a good statistical quality, which demonstrates that a pre-shoulder at about 20nm-1, indicating the existence of an intermediate-range order, originates from the Pd-Pd atomic correlation. The first peak in the differential pair correlation function, ΔPdg(r), shows a longer inter-atomic length around the Pd atoms than the average value. The local structure around the Pd atoms is discussed in detail by comparing to the previous experiments of AXS and electronic structure. (author)

  16. CONSTRAINING THE EVOLUTIONARY FATE OF CENTRAL COMPACT OBJECTS: ''OLD'' RADIO PULSARS IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Central compact objects (CCOs) constitute a population of radio-quiet, slowly spinning (≥100 ms) young neutron stars with anomalously high thermal X-ray luminosities. Their spin-down properties imply weak dipole magnetic fields (∼1010-11 G) and characteristic ages much greater than the ages of their host supernova remnants (SNRs). However, CCOs may posses strong ''hidden'' internal magnetic fields that may re-emerge on timescales of ≳10 kyr, with the neutron star possibly activating as a radio pulsar in the process. This suggests that the immediate descendants of CCOs may be masquerading as slowly spinning ''old'' radio pulsars. We present an X-ray survey of all ordinary radio pulsars within 6 kpc that are positionally coincident with Galactic SNRs in order to test the possible connection between the supposedly old but possibly very young pulsars and the SNRs. None of the targets exhibit anomalously high thermal X-ray luminosities, suggesting that they are genuine old ordinary pulsars unrelated to the superposed SNRs. This implies that CCOs are either latent radio pulsars that activate long after their SNRs dissipate or they remain permanently radio-quiet. The true descendants of CCOs remain at large

  17. Design and development of grazing incidence x-ray mirrors

    Science.gov (United States)

    Zuo, Fuchang; Mei, Zhiwu; Ma, Tao; Deng, Loulou; Shi, Yongqiang; Li, Liansheng

    2016-01-01

    X-ray pulsar navigation has attracted extensive attentions from academy and engineering domains. The navigation accuracy is can be enhanced through design of X-ray mirrors to focus X-rays to a small detector. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. The simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the grazing incidence X-ray mirror was designed further based on our previous work, with focus on the reflectivity, effective area, angular resolution and baffles. To evaluate the performance of the manufactured mirror, the surface roughness and reflectivity were tested. The test results show that the grazing incidence mirror meets the design specifications. On the basis of this, the reflectivity of the mirror in the working bandwidth was extrapolated to evaluate the focusing ability of the mirror when it works together with the detector. The purpose of our current work to design and develop a prototype mirror was realized. It can lay a foundation and provide guidance for the development of multilayer nested X-ray mirror with larger effective area.

  18. X-ray Sources in Galactic Globular Clusters

    CERN Document Server

    Heinke, Craig O

    2011-01-01

    I review recent work on X-ray sources in Galactic globular clusters, identified with low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), millisecond pulsars (MSPs) and coronally active binaries by Chandra. Faint transient LMXBs have been identified in several clusters, challenging our understanding of accretion disk instabilities. Spectral fitting of X-rays from quiescent LMXBs offers the potential to constrain the interior structure of neutron stars. The numbers of quiescent LMXBs scale with the dynamical interaction rates of their host clusters, indicating their dynamical formation. Large numbers of CVs have been discovered, including a very faint population in NGC 6397 that may be at or beyond the CV period minimum. Most CVs in dense clusters seem to be formed in dynamical interactions, but there is evidence that some are primordial binaries. Radio millisecond pulsars show thermal X-rays from their polar caps, and often nonthermal X-rays, either from magnetospheric emission, or from a shock betwe...

  19. Nature of eclipsing pulsars

    CERN Document Server

    Khechinashvili, D; Gil, J; Khechinashvili, David; Melikidze, George; Gil, Janusz

    2000-01-01

    We present a model for pulsar radio eclipses in some binary systems, and test this model for PSRs B1957+20 and J2051-0827. We suggest that in these binaries the companion stars are degenerate dwarfs with strong surface magnetic fields. The magnetospheres of these stars are permanently infused by the relativistic particles of the pulsar wind. We argue that the radio waves emitted by the pulsar split into the eigenmodes of the electron-positron plasma as they enter the companion's magnetosphere and are then strongly damped due to cyclotron resonance with the ambient plasma particles. Our model explains in a natural way the anomalous duration and behavior of radio eclipses observed in such systems. In particular, it provides stable, continuous, and frequency-dependent eclipses, in agreement with the observations. We predict a significant variation of linear polarization both at eclipse ingress and egress. In this paper we also suggest several possible mechanisms of generation of the optical and $X$-ray emission ...

  20. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies

    CERN Document Server

    Irwin, Jimmy A; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-01-01

    An X-ray flaring source was found near the galaxy NGC 4697. Two flares were seen, separated by four years. The flux increased by a factor of 90 on a timescale of about one minute. Both flares were very brief. There is no optical counterpart at the position of the flares, but if the source was at the distance of NGC 4697, the luminosities were 10^39 erg/s. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar such flares. We found two flaring sources in globular clusters or ultra-compact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 x 10^40 erg/s, while the other flared five times to 10^40 erg/s. All of the flare rise times were <1 minute, and they then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron star or black hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft gamma repeaters that hav...

  1. X-Ray Polarimetry

    CERN Document Server

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.

  2. Resonant X-ray emission with a standing wave excitation.

    Science.gov (United States)

    Ruotsalainen, Kari O; Honkanen, Ari-Pekka; Collins, Stephen P; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems.

  3. Resonant X-ray emission with a standing wave excitation

    Science.gov (United States)

    Ruotsalainen, Kari O.; Honkanen, Ari-Pekka; Collins, Stephen P.; Monaco, Giulio; Moretti Sala, Marco; Krisch, Michael; Hämäläinen, Keijo; Hakala, Mikko; Huotari, Simo

    2016-01-01

    The Borrmann effect is the anomalous transmission of x-rays in perfect crystals under diffraction conditions. It arises from the interference of the incident and diffracted waves, which creates a standing wave with nodes at strongly absorbing atoms. Dipolar absorption of x-rays is thus diminished, which makes the crystal nearly transparent for certain x-ray wave vectors. Indeed, a relative enhancement of electric quadrupole absorption via the Borrmann effect has been demonstrated recently. Here we show that the Borrmann effect has a significantly larger impact on resonant x-ray emission than is observable in x-ray absorption. Emission from a dipole forbidden intermediate state may even dominate the corresponding x-ray spectra. Our work extends the domain of x-ray standing wave methods to resonant x-ray emission spectroscopy and provides means for novel spectroscopic experiments in d- and f-electron systems. PMID:26935531

  4. X-Ray Polarimetry

    OpenAIRE

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  5. Use of X-ray pulsar-based navigation method on interplanetary trajectory%X射线脉冲星导航在行星际轨道上的应用

    Institute of Scientific and Technical Information of China (English)

    杨博; 郭星灿; 杨勇

    2009-01-01

    It is supposed that the X-ray pulsar-based navigation method (XPNAV) can provide high-precision navigation throughout the solar system, and its utility on the heliocentric transfer orbit was discussed. The search space array method was introduced to resolve integer pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. A description of blending the vehicle dynamics with the pulse phase differences at nominal and estimated spacecraft locations within an Kalman Filter was provided for recursive determination of vehicle position and velocity. The simulation illustrates that this method is feasible and effective for interplanetary missions.%X射线脉冲星导航技术被认为是新一代导航技术,非常适合于行星际探测.深入分析了利用搜索空间方法求解飞行器真实位置和估计位置相位差的脉冲整周期模糊数,解决了相位导航方法存在的周期模糊数问题.利用轨道动力学模型估计飞行器的位置,并以真实位置和估计位置上的脉冲相位之差作为反馈进行偏差校正.仿真表明,X射线脉冲星导航方法在行星际轨道上是可行和高效的.

  6. Use of anomalous scattering for synchrotron X-ray reflectivity studies of Fe-Cr and Co-Cu double layers

    CERN Document Server

    Prokert, F; Gorbunov, A

    2003-01-01

    Double layers of Fe-Cr and Co-Cu, respectively, were prepared on oxidized Si substrates by pulsed laser deposition (PLD). The interfacial roughness structure was studied by synchrotron X-ray reflectivity measurements at the absorption K-edges using the contrast enhancement due to resonant scattering. The results are determined from simulations of the measured specular and diffuse scans. Whereas in Fe-Cr double layers the sigma sub r sub m sub s -interface width for Fe deposition on Cr (sigma sub C sub r =0.70+-0.1 nm) is not very different from that of Cr deposition on Fe (sigma sub F sub e =0.85+-0.1 nm), in Co-Cu double layers, in contrast, for Cu deposition on Co, the width (sigma sub C sub o =0.65+-0.1 nm) is much smaller than for Co deposition on Cu (sigma sub C sub u =1.5+-0.15 nm). On the basis of the fractal model to describe the interface roughness morphology, from the off-specular scans the lateral roughness correlation length, xi and the roughness exponent, h, were determined. For both types of dou...

  7. Modeling the amorphous structure of mechanically alloyed Ti{sub 50}Ni{sub 25}Cu{sub 25} using anomalous wide-angle x-ray scattering and reverse Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.C. de, E-mail: fsc1jcd@fisica.ufsc.br [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Poffo, C.M. [Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Souza, S.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Machado, K.D. [Departamento de Física, Centro Politécnico, Universidade Federal do Paraná, 81531-990 Curitiba, Paraná (Brazil); Trichês, D.M. [Departamento de Física, Universidade Federal do Amazonas, 3000 Japiim, 69077-000 Manaus, Amazonas (Brazil); Grandi, T.A. [Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, S/N, C.P. 476, 88040-900 Florianópolis, Santa Catarina (Brazil); Biasi, R.S. de [Seção de Engenharia Mecânica e de Materiais, Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ (Brazil)

    2013-09-01

    An amorphous Ti{sub 50}Ni{sub 25}Cu{sub 25} alloy was produced by 19 h of mechanical alloying. Anomalous wide angle x-ray scattering data were collected at six energies and six total scattering factors were obtained. By considering the data collected at two energies close to the Ni and Cu K edges, two differential anomalous scattering factors about the Ni and Cu atoms were obtained, showing that the chemical environments around these atoms are different. Eight factors were used as input data to the reverse Monte Carlo method used to compute the partial structure factors S{sub Ti3Ti}(K), S{sub Ti–Cu}(K), S{sub Ti–Ni}(K), S{sub Cu3Cu}(K), S{sub Cu–Ni}(K) and S{sub Ni–Ni}(K) and the partial pair distribution functions G{sub Ti3Ti}(r), G{sub Ti–Cu}(r), G{sub Ti–Ni}(r), G{sub Cu3Cu}(r), G{sub Cu–Ni}(r) and G{sub Ni–Ni}(r). From the RMC final atomic configuration and G{sub ij}(r) functions, the coordination numbers and interatomic atomic distances for the first neighbors were determined.

  8. X-ray crystallographic studies of metalloproteins.

    Science.gov (United States)

    Volbeda, Anne

    2014-01-01

    Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.

  9. Insights from soft X-rays

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten

    2008-01-01

    The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the pri......The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength...... of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine...

  10. X-ray - skeleton

    Science.gov (United States)

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  11. Extremity x-ray

    Science.gov (United States)

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  12. X-ray interferometers

    International Nuclear Information System (INIS)

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  13. Globular cluster x-ray sources.

    Science.gov (United States)

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  14. Globular cluster x-ray sources

    Science.gov (United States)

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  15. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    International Nuclear Information System (INIS)

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  16. 363. WE-Heraeus seminar on neutron stars and pulsars - 40 years after the discovery. Posters and contributed talks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; Huang, H.H. (eds.)

    2007-07-01

    The following topics were dealt with: X-ray observation of pulsars, gamma-ray observation of pulsars, radio observations of pulsars, theory of neutron stars and pulsars, AXPs, SGRs, and strange stars, gravitayional waves, analysis tools with software. (HSI)

  17. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  20. Lumbosacral spine x-ray

    Science.gov (United States)

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  2. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  3. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  4. The X-ray luminosity of rotation-powered neutron stars

    CERN Document Server

    Becker, W

    1997-01-01

    As a result of recent observations with ROSAT and ASCA the number of rotation-powered pulsars seen at X-ray energies has increased substantially. In this paper we review the phenomenology of the observed X-ray emission properties. At present 27 pulsars are detected, representing a wide range of ages (10^3 - 7 x 10^9 yrs), magnetic field strength (10^8 - 10^13 G) and spin periods (1.6 - 530 ms). Despite these dispersions in parameters all pulsars show an X-ray luminosity closely correlated with the rotational energy loss. This suggests that most of the observed X-rays are produced by magnetospheric emission originating from the co-rotating magnetosphere. Only for three middle aged pulsars (PSR 0656+14, Geminga and PSR 1055-52) and probably for the Vela-pulsar an additional thermal component is detected which can be attributed to thermal emission from the neutron stellar surface.

  5. X-Ray Diffraction.

    Science.gov (United States)

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  6. Medical X-Rays

    Science.gov (United States)

    ... The Conference of Radiation Control Program Directors (CRCPD) publishes Suggested State Regulations for the Control of Radiation , ... eSubmitter Guidance for Industry and Food and Drug Administration Staff - Assembler's Guide to Diagnostic X-Ray Equipment ...

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  10. Probing the Pulsar Origin of the Anomalous Positron Fraction with AMS-02 and Atmospheric Cherenkov Telescopes

    CERN Document Server

    Linden, Tim

    2013-01-01

    Recent observations by PAMELA, Fermi-LAT, and AMS-02 have conclusively indicated a rise in the cosmic-ray positron fraction above 10 GeV, a feature which is impossible to mimic under the paradigm of secondary positron production with self-consistent Galactic cosmic-ray propagation models. A leading explanation for the rising positron fraction is an additional source of electron-positron pairs, for example one or more mature, energetic, and relatively nearby pulsars. We point out that any one of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations. A smoking-gun signature of this scenario is an anisotropy in the arrival direction of the cosmic-ray electrons and positrons, which may be detectable by existing, or future, telescopes. The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02. We argue that the large collecting area of Atmospheric Cherenkov Telescopes (ACTs) makes them optimal tools for...

  11. "Magnetar-like Emission from the Young Pulsar in Kes 75"

    Science.gov (United States)

    Gavrill, R.; Gonzalez, M.; Livingstone, M.; Gotthelf, E.; Kaspi, V.; Woods, P.

    2008-01-01

    Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are thought to be magnetars - isolated neutron stars with ultra-high magnetic fields. These sources exhibit X-ray and gamma-ray bursts, and week to month-long flux enhancements, all too bright to be accounted for by their spindown luminosity. A mystery in neutron star astrophysics is why such emission has never been seen from rotation-powered pulsars with magnetar-like fields. Here we report the first detection of magnetar-like X-ray bursts from what has been long thought to be a rotation-powered pulsar, PSR 51846-0258, at the center of the supernova remnant Kes 75. PSR J1846-0258 has an inferred surface dipolar magnetic field of 4.9 X 1103 G, which is sixth highest among the > 1700 known rotation-powered pulsars, but less than those of the approximately 12 confirmed magnetars. The bursts coincided with a sudden flux increase and an unprecedented change in timing behavior, f m l y establishing PSR 51 846-0258 as a rotation-powered pulsar/magnetar transition object. These observations demonstrate that magnetar-like emission can be seen from sources with fields lower than the magnetars, and suggest that the intensity of magnetar-like activity in neutron stars depends on magnetic field strength in a more continuous way than previously thought.

  12. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    Energy Technology Data Exchange (ETDEWEB)

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T. [Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854-8065 (United States); Zhong, Z. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  13. The X-ray Bursts from the Magnetar Candidate 1E 2259+586

    CERN Document Server

    Gavriil, F P; Woods, P M; Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.

    2004-01-01

    We present a statistical analysis of the X-ray bursts observed from the 2002 June 18 outburst of the Anomalous X-ray Pulsar (AXP) 1E 2259+586, observed with the Proportional Counter Array aboard the Rossi X-ray Timing Explorer. We show that the properties of these bursts are similar to those of Soft Gamma-Repeaters (SGRs). The similarities we find are: the burst durations follow a log-normal distribution which peaks at 99 ms, the differential burst fluence distribution is well described by a power law of index -1.7, the burst fluences are positively correlated with the burst durations, the distribution of waiting times is well described by a log-normal distribution of mean 47 s, and the bursts are generally asymmetric with faster rise than fall times. However, we find several quantitative differences between the AXP and SGR bursts. Specifically, there is a correlation of burst phase with pulsed intensity, the AXP bursts we observed exhibit a wider range of durations, the correlation between burst fluence and ...

  14. Interplanetary spacecraft navigation using pulsars

    OpenAIRE

    Deng, X. P.; Hobbs, G.; You, X. P.; M. T. Li; Keith, M. J.; Shannon, R. M.; Coles, W.; Manchester, R. N.; J.H. Zheng; Yu, X. Z.; Gao, D.; Wu, X; Chen, D.

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journe...

  15. X-ray astronomy

    International Nuclear Information System (INIS)

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  16. Long-term spectral and timing properties of the soft gamma-ray repeater SGR 1833-0832 and detection of extended X-ray emission around the radio pulsar PSR B1830-08

    CERN Document Server

    Esposito, P; Turolla, R; Mattana, F; Tiengo, A; Possenti, A; Zane, S; Rea, N; Burgay, M; Götz, D; Mereghetti, S; Stella, L; Wieringa, M H; Sarkissian, J M; Enoto, T; Romano, P; Sakamoto, T; Nakagawa, Y E; Makishima, K; Nakazawa, K; Nishioka, H; François-Martin, C

    2011-01-01

    SGR 1833-0832 was discovered on 2010 March 19 thanks to the Swift detection of a short hard X-ray burst and follow-up X-ray observations. Since then, it was repeatedly observed with Swift, Rossi X-ray Timing Explorer, and XMM-Newton. Using these data, which span about 225 days, we studied the long-term spectral and timing characteristics of SGR 1833-0832. We found evidence for diffuse emission surrounding SGR 1833-0832, which is most likely a halo produced by the scattering of the point source X-ray radiation by dust along the line of sight, and we show that the source X-ray spectrum is well described by an absorbed blackbody, with temperature kT=1.2 keV and absorbing column nH=(10.4+/-0.2)E22 cm^-2, while different or more complex models are disfavoured. The source persistent X-ray emission remained fairly constant at about 3.7E-12 erg/cm^2/s for the first 20 days after the onset of the bursting episode, then it faded by a factor 40 in the subsequent 140 days, following a power-law trend with index alpha=-0....

  17. EXTraS discovery of two pulsators in the direction of the LMC: a Be/X-ray binary pulsar in the LMC and a candidate double-degenerate polar in the foreground

    CERN Document Server

    Haberl, F; Castillo, G A Rodriguez; Vasilopoulos, G; Delvaux, C; De Luca, A; Carpano, S; Esposito, P; Novara, G; Salvaterra, R; Tiengo, A; D'Agostino, D; Udalski, A

    2016-01-01

    The EXTraS project to explore the X-ray Transient and variable Sky searches for coherent signals in the X-ray archival data of XMM-Newton. XMM-Newton performed more than 400 pointed observations in the region of the Large Magellanic Cloud (LMC). We inspected the results of the EXTraS period search to systematically look for new X-ray pulsators in our neighbour galaxy. We analysed the XMM-Newton observations of two sources from the 3XMM catalogue which show significant signals for coherent pulsations. 3XMM J051259.8-682640 was detected as source with hard X-ray spectrum in two XMM-Newton observations, revealing a periodic modulation of the X-ray flux with 956~s. As optical counterpart we identify an early-type star with Halpha emission. The OGLE I-band light curve exhibits a regular pattern with three brightness dips which mark a period of ~1350 d. The X-ray spectrum of 3XMM J051034.7-670356 is dominated by a super-soft blackbody-like emission component (kT ~ 70 eV) which is modulated by nearly 100% with a per...

  18. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... time! Spotlight Recently posted: Pediatric MRI Intravascular Ultrasound Video: Chest CT Video:Thyroid Ultrasound Video: Head CT ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  2. Medical x-ray

    International Nuclear Information System (INIS)

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  3. Celestial X-ray Source Modeling and Catalogues for Spacecraft Navigation and Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microcosm X-ray pulsar-based navigation and timing (XNAV) team will provide the software and modeling infrastructure for NASA to support XNAV operations,...

  4. VizieR Online Data Catalog: X-ray and radio sources in binaries (Malkov+, 2015)

    Science.gov (United States)

    Malkov, O. Y.; Tessema, S. B.; Kniazev, A. Y.

    2016-05-01

    We have also compiled a general list of 239 radio pulsars in binary systems. The list is supplied with indication of photometric, spectroscopic or X-ray binarity, and with cross-identification data. (4 data files).

  5. Magneto-Levitation Accretion in High Mass X-ray Binaries

    Science.gov (United States)

    Pustilnik, Lev; Beskrovnaya, Nina; Ikhsanov, Nazar; Kim, Vitally; Likh, Yuri

    A wind-fed accretion by a neutron star in a High Mass X-ray Binary is discussed. We show that the structure and physical parameters of the accretion flow onto the neutron star strongly depends on the magnetic field strength in the stellar wind of its massive companion. A neutron star accreting material from a magnetized wind is expected to be surrounded by a dense non-Keplerian disk (magnetic slab) in which the material is confined by the magnetic field of the accretion flow itself. The accretion process in this case is governed by anomalous (Bohm) diffusion. We find that spin evolution and equilibrium period of the pulsar within this magneto-levitation accretion scenario are consistent with the observed values.

  6. Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X

    CERN Document Server

    Katsuda, Satoru; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3x2 degrees, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma~2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  7. XMM-Newton sets the record straight No X-ray emission detected from PSR J0631+1036

    CERN Document Server

    Kennea, J; Chatterjee, S; Cordes, J; Ho, C; Much, R P; Oosterbroek, T; Parmar, A

    2002-01-01

    The pulsar PSR J0631+1036 was discovered during a radio search of Einstein X-ray source error circles. A detection of a 288ms sinusoidal modulation in the ASCA lightcurve, the same period as the radio pulsar, appeared to confirm the association of the X-ray source and the pulsar. Its X-ray spectrum was said to be similar to that of middle aged gamma-ray pulsars such as Geminga. However, an XMM-Newton observation of the PSR J0631+1035 field, along with a re-analysis of VLA data confirming the timing position of the pulsar, show a 75'' discrepancy in location of the X-ray source and the pulsar, and therefore these cannot be the same object. The X-ray source appears to be the counterpart of an A0 star, detected by the XMM-Newton Optical Monitor. No 288ms period was detected from either the area around the pulsar or the bright X-ray source. The upper limit on the X-ray luminosity with relation to the empirically observed correlation between radio measured dE/dt and X-ray luminosity is discussed.

  8. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  9. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D. (Purdue Univ., Lafayette, IN (USA)); Anderson, S. (Michigan State Univ., East Lansing, MI (USA)); Mattigod, S. (Pacific Northwest Lab., Richland, WA (USA))

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography.

  10. The XMM-Newton survey of the Small Magellanic Cloud: Discovery of the 11.866 s Be/X-ray binary pulsar XMMUJ004814.0-732204 (SXP11.87)

    CERN Document Server

    Sturm, R; Coe, M J; Bartlett, E S; Buckley, D A H; Corbet, R H D; Ehle, M; Filipović, M D; Hatzidimitriou, D; Mereghetti, S; La Palombara, N; Pietsch, W; Tiengo, A; Townsend, L J; Udalski, A

    2010-01-01

    One of the goals of the XMM-Newton survey of the Small Magellanic Cloud is the study of the Be/X-ray binary population. During one of our first survey observations a bright new transient - XMMUJ004814.0-732204 - was discovered. We present the analysis of the EPIC X-ray data together with optical observations, to investigate the spectral and temporal characteristics of XMMUJ004814.0-732204. We found coherent X-ray pulsations in the EPIC data with a period of (11.86642 +/- 0.00017) s. The X-ray spectrum can be modelled by an absorbed power-law with indication for a soft excess. Depending on the modelling of the soft X-ray spectrum, the photon index ranges between 0.53 and 0.66. We identify the optical counterpart as a B = 14.9mag star which was monitored during the MACHO and OGLE-III projects. The optical light curves show regular outbursts by ~0.5 mag in B and R and up to 0.9 mag in I which repeat with a time scale of about 1000 days. The OGLE-III optical colours of the star are consistent with an early B spec...

  11. Pyroelectric x-ray detectors and x-ray pyrometers

    International Nuclear Information System (INIS)

    This paper discusses pyroelectric detectors which are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low energy x-rays. The authors report tests of LiTaO3, Sr.5Ba.5Nb2O6 and LiNbO3 detectors at Nova laser with 1 ns low energy x-rays and at Zapp Z-pinch machine with 100 ns x-rays. The temporal and spectral responses are discussed

  12. Pyroelectric x-ray detectors and x-ray pyrometers

    International Nuclear Information System (INIS)

    Pyroelectric detectors are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low-energy x rays. We report our tests of LiTaO3 detectors at Nova laser with 1-ns low-energy x rays and at Zapp Z-pinch machine with 100-ns x rays. The temporal and spectral responses are discussed

  13. Geriatric Pulsar Still Kicking

    Science.gov (United States)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  14. X-ray and optical studies of SAX J1808.4-3658 in quiescence

    NARCIS (Netherlands)

    C.O. Heinke; C.J. Deloye; P.G. Jonker; R. Wijnands; R.E. Taam

    2008-01-01

    We have observed the accreting millisecond X-ray pulsar SAX J1808.4-3658 (1808) in quiescence during two 50 ksec XMM-Newton observations, and acquired near-simultaneous photometry with Gemini South. We find 1808's X-ray spectrum to be hard, describable with an absorbed power-law of photon index 1.7-

  15. SWIFT J1749.4-2807 : X-ray decay, refined position and optical observation

    NARCIS (Netherlands)

    Yang, Y.J.; Russell, D. M.; Wijnands, R.; van der Klis, M.; Altamirano, D.; Patruno, A.; Watts, A.; Armas Padilla, M.; Cavecchi, Y.; Degenaar, N.; Kalamkar, M.; Kaur, R.; Linares, M.; Casella, P.; Rea, N.; Soleri, P.; Lewis, F.; Kong, A. K. H.

    2010-01-01

    We analyzed seven, target ID 31686, Swift follow-up observations of the neutron-star X-ray transient Swfit J1749.4-2807 (Wijnands et al. 2009) currently in outburst and which was found to be an accreting millisecond X-ray pulsar (ATel #2565). The observations span from April 11 to April 20.

  16. X-ray diffraction

    International Nuclear Information System (INIS)

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ...

  1. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si02. The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... As a result, bones appear white on the x-ray, soft tissue shows up in shades of gray and air appears black. Until recently, x-ray images were maintained on large film sheets (much ...

  4. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ...

  5. X-ray Crystallography Facility

    Science.gov (United States)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  8. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  9. X-ray selected BALQSOs

    CERN Document Server

    Page, M J; Ceballos, M; Corral, A; Ebrero, J; Esquej, P; Krumpe, M; Mateos, S; Rosen, S; Schwope, A; Streblyanska, A; Symeonidis, M; Tedds, J A; Watson, M G

    2016-01-01

    We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index alpha=0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, alpha_OX, of the X-ray selected BALQSOs, have a mean value of 1.69 +- 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger alpha_OX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray sp...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... lies. A drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... that is extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  11. X-Ray Exam: Ankle

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Ankle KidsHealth > For Parents > X-Ray Exam: Ankle Print A A A Text Size ... español Radiografía: tobillo What It Is An ankle X-ray is a safe and painless test that uses ...

  12. X-Ray Exam: Finger

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Finger KidsHealth > For Parents > X-Ray Exam: Finger Print A A A Text Size ... español Radiografía: dedo What It Is A finger X-ray is a safe and painless test that uses ...

  13. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Wrist KidsHealth > For Parents > X-Ray Exam: Wrist Print A A A Text Size ... español Radiografía: muñeca What It Is A wrist X-ray is a safe and painless test that uses ...

  14. X-Ray Exam: Hip

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Hip KidsHealth > For Parents > X-Ray Exam: Hip Print A A A Text Size ... español Radiografía: cadera What It Is A hip X-ray is a safe and painless test that uses ...

  15. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Forearm KidsHealth > For Parents > X-Ray Exam: Forearm Print A A A Text Size ... español Radiografía: brazo What It Is A forearm X-ray is a safe and painless test that uses ...

  16. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Pelvis KidsHealth > For Parents > X-Ray Exam: Pelvis Print A A A Text Size ... español Radiografía: pelvis What It Is A pelvis X-ray is a safe and painless test that uses ...

  17. X-Ray Exam: Foot

    Science.gov (United States)

    ... Tropical Delight: Melon Smoothie Pregnant? Your Baby's Growth X-Ray Exam: Foot KidsHealth > For Parents > X-Ray Exam: Foot Print A A A Text Size ... español Radiografía: pie What It Is A foot X-ray is a safe and painless test that uses ...

  18. X-Ray Absorption and Scattering by Interstellar Grains

    CERN Document Server

    Hoffman, John A

    2015-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the following false assumptions: (1) the grains are "optically thin" at the observed X-ray wavelengths, and (2) scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. An open...

  19. Cessation of X-ray pulsation of GX 1+4

    OpenAIRE

    Cui, W.; Smith, B

    2004-01-01

    We report results from our weekly monitoring campaign on the X-ray pulsar GX 1+4 with the Rossi X-Ray Timing Explorer satellite. The spin-down trend of GX 1+4 was continuing, with the pulsar being at its longest period ever measured (about 138.7 s). At the late stage of the campaign, the source entered an extended faint state, during which its X-ray (2-60 keV) flux decreased significantly, to an average level of similar to3 x 10(-10) ergs cm(-2) s(-1). It was highly variable in the faint stat...

  20. X-ray today

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, U. [Philips Medical Systems, Hamburg (Germany)

    2001-09-01

    The interest attracted by the new imaging modalities tends to overshadow the continuing importance of projection radiography and fluoroscopy. Nevertheless, projection techniques still represent by far the greatest proportion of diagnostic imaging examinations, and play an essential role in the growing number of advanced interventional procedures. This article describes some of the latest developments in X-ray imaging technology, using two products from the Philips range as examples: the Integris Allura cardiovascular system with 3D image reconstruction, and the BV Pulsera: a high-end, multi-functional mobile C-arm system with cardiac capabilities. (orig.)

  1. A Comprehensive Study of the X-ray Bursts from the Magnetar Candidate 1E 2259+586

    CERN Document Server

    Gavriil, F P; Woods, P M; Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.

    2003-01-01

    We present a statistical analysis of the X-ray bursts observed from the 2002 June 18 outburst of the Anomalous X-ray Pulsar (AXP) 1E 2259+586, observed with the Proportional Counter Array (PCA) aboard the Rossi X-ray Timing Explorer. We show that the properties of these bursts are similar to those of Soft Gamma-Repeaters (SGRs). The similarities we find are the burst durations follow a log-normal distribution which peaks at 99 ms, the differential burst fluence distribution is well described by a power law of index -1.7, the burst fluences are positively correlated with the burst durations, the distribution of waiting times is well described by a log-normal distribution of mean 47 s, and the bursts are generally asymmetric with faster rise than fall times. However, we find several quantitative differences between the AXP and SGR bursts. Specifically, the AXP bursts we observed exhibit a wider range of durations, the correlation between burst fluence and duration is flatter than for SGRs, the observed AXP burs...

  2. The Chandra X-Ray Observatory: Observations of Neutron Stars

    OpenAIRE

    Weisskopf, Martin C.

    2004-01-01

    We present here an overview of the status of the Chandra X-ray Observatory which has now been operating for five years. The Observatory is running smoothly, and the scientific return continues to be outstanding. We provide some details on the molecular contamination of the ACIS filters and its impact on observations. We review the observations with Chandra of the pulsar in the Crab Nebula and add some general comments as to the analysis of X-ray spectra. We conclude with comments about the fu...

  3. An X-Ray Study of the Supernova Remnant G290.1-0.8

    OpenAIRE

    Slane, Patrick; Smith, Randall K.; Hughes, John P.; Petre, Robert

    2001-01-01

    G290.1-0.8 (MSH 11-61A) is a supernova remnant (SNR) whose X-ray morphology is centrally bright. However, unlike the class of X-ray composite SNRs whose centers are dominated by nonthermal emission, presumably driven by a central pulsar, we show that the X-ray emission from G290.1-0.8 is thermal in nature, placing the remnant in an emerging class which includes such remnants as W44, W28, 3C391, and others. The evolutionary sequence which leads to such X-ray properties is not well understood. ...

  4. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  5. X-ray instrumentation for SR beamlines

    CERN Document Server

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  6. X-ray lithography sources

    International Nuclear Information System (INIS)

    Synchrotron from dipole magnets in electron storage rings has emerged as a useful source of x-rays for lithography. To meet the need for these sources numerous groups around the world have embarked on projects to design and construct storage rings for x-ray lithography. Both conventional electromagnets as well as superconducting (SC) dipoles have been incorporated into the various designs. An overview of the worldwide effort to produce commercial x-ray sources will be presented. To better illustrate the elements involved in these sources a closer examination of the Superconducting X-ray Lithography Source Project (SXLS) at BNL will be presented. 11 refs., 1 fig., 5 tabs

  7. Soft X-ray optics

    CERN Document Server

    Spiller, Eberhard A

    1993-01-01

    This text describes optics mainly in the 10 to 500 angstrom wavelength region. These wavelengths are 50 to 100 times shorter than those for visible light and 50 to 100 times longer than the wavelengths of medical x rays or x-ray diffraction from natural crystals. There have been substantial advances during the last 20 years, which one can see as an extension of optical technology to shorter wavelengths or as an extension of x-ray diffraction to longer wavelengths. Artificial diffracting structures like zone plates and multilayer mirrors are replacing the natural crystals of x-ray diffraction.

  8. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  9. X-ray Fluorescence Sectioning

    CERN Document Server

    Cong, Wenxiang

    2012-01-01

    In this paper, we propose an x-ray fluorescence imaging system for elemental analysis. The key idea is what we call "x-ray fluorescence sectioning". Specifically, a slit collimator in front of an x-ray tube is used to shape x-rays into a fan-beam to illuminate a planar section of an object. Then, relevant elements such as gold nanoparticles on the fan-beam plane are excited to generate x-ray fluorescence signals. One or more 2D spectral detectors are placed to face the fan-beam plane and directly measure x-ray fluorescence data. Detector elements are so collimated that each element only sees a unique area element on the fan-beam plane and records the x-ray fluorescence signal accordingly. The measured 2D x-ray fluorescence data can be refined in reference to the attenuation characteristics of the object and the divergence of the beam for accurate elemental mapping. This x-ray fluorescence sectioning system promises fast fluorescence tomographic imaging without a complex inverse procedure. The design can be ad...

  10. The X-ray Polarization Signature of Quiescent Magnetars: Effect of Magnetospheric Scattering and Vacuum Polarization

    Science.gov (United States)

    Fernández, Rodrigo; Davis, Shane W.

    2011-04-01

    In the magnetar model, the quiescent non-thermal soft X-ray emission from anomalous X-ray pulsars and soft gamma repeaters is thought to arise from resonant Comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry, and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. In this paper, we calculate how resonant cyclotron scattering would modify the observed polarization signal relative to the surface emission, using a multidimensional Monte Carlo radiative transfer code that accounts for the gradual coupling of polarization eigenmodes as photons leave the magnetosphere. We employ a globally twisted, self-similar, force-free magnetosphere with a power-law momentum distribution, assume a blackbody spectrum for the seed photons, account for general relativistic light deflection close to the star, and assume that vacuum polarization dominates the dielectric properties of the magnetosphere. The latter is a good approximation if the pair multiplicity is not much larger than unity. Phase-averaged polarimetry is able to provide a clear signature of the magnetospheric reprocessing of thermal photons and to constrain mechanisms generating the thermal emission. Phase-resolved polarimetry, in addition, can characterize the spatial extent and magnitude of the magnetospheric twist angle at ~100 stellar radii, and discern between uni- or bidirectional particle energy distributions, almost independently of every other parameter in the system. We discuss prospects for detectability with the Gravity and Extreme Magnetism (GEMS) mission.

  11. Radioisotope x-ray analysis

    International Nuclear Information System (INIS)

    Radioisotope x-ray fluorescence and x-ray preferential absorption (XRA) techniques are used extensively for the analysis of materials, covering such diverse applications as analysis of alloys, coal, environmental samples, paper, waste materials, and metalliferous mineral ores and products. Many of these analyses are undertaken in the harsh environment of industrial plants and in the field. Some are continuous on-line analyses of material being processed in industry, where instantaneous analysis information is required for the control of rapidly changing processes. Radioisotope x-ray analysis systems are often tailored to a specific but limited range of applications. They are simpler and often considerably less expensive than analysis systems based on x-ray tubes. These systems are preferred to x-ray tube techniques when simplicity, ruggedness, reliability, and cost of equipment are important; when minimum size, weight, and power consumption are necessary; when a very constant and predictable x-ray output is required; when the use of high-energy x-rays is advantageous; and when short x-ray path lengths are required to minimize the absorption of low-energy x-rays in air. This chapter reviews radioisotope XRF, preferential absorption, and scattering techniques. Some of the basic analysis equations are given. The characteristics of radioisotope sources and x-ray detectors are described, and then the x-ray analytical techniques are presented. The choice of radioisotope technique for a specific application is discussed. This is followed by a summary of applications of these techniques, with a more detailed account given of some of the applications, particularly those of considerable industrial importance. 79 refs., 28 figs., 7 tabs

  12. NuSTAR Hard X-ray Survey of the Galactic Center Region II: X-ray Point Sources

    CERN Document Server

    Hong, JaeSub; Hailey, Charles J; Nynka, Melania; Zhang, Shuo; Gotthelf, Eric; Fornasini, Francesca M; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; Tomsick, John A; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca; Stern, Daniel; Grindlay, Jonathan E; Alexander, David M; Aramaki, Tsuguo; Baganoff, Frederick K; Barret, David; Barrière, Nicolas; Boggs, Steven E; Canipe, Alicia M; Christensen, Finn E; Craig, William W; Desai, Meera A; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Harrison, Fiona A; Hong, Dooran; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E; Madsen, Kristen K; Mao, Peter H; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram; Westergaard, Niels J; Zhang, William W; Zoglauer, Andreas

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg^2 region around Sgr A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of ~4 x and ~8 x 10^32 erg s^-1 at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ...

  14. X-ray diagnostic equipment

    International Nuclear Information System (INIS)

    An X-ray tube is connected to several different image processing devices in X-ray diagnostic equipment. Only a single organ selector is allocated to it, for which the picture parameters for each image processing device are selected. The choice of the correct combination of picture parameters is made by means of a selector switch. (DG)

  15. X-ray tube arrangement

    International Nuclear Information System (INIS)

    An x-ray tube is described incorporating an elongated target/ anode over which the electron beam is deflected and from which x-rays are emitted. Improved methods of monitoring and controlling the amplitude of the beam deflection are presented. (U.K.)

  16. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing, E-mail: linmx97@gmail.com, E-mail: r.x.xu@pku.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China)

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  17. Orbital Period Determinations for Four SMC Be/X-ray Binaries

    CERN Document Server

    Schurch, M P E; McBride, V A; Townsend, L J; Udalski, A; Haberl, F; Corbet, R H D

    2010-01-01

    We present an optical and X-ray study of four Be/X-ray binaries located in the Small Magellanic Cloud (SMC). OGLE I-band data of up to 11 years of semi-continuous monitoring has been analysed for SMC X-2, SXP172 and SXP202B, providing both a measurement of the orbital period (Porb = 18.62, 68.90, and 229.9 days for the pulsars respectively) and a detailed optical orbital profile for each pulsar. For SXP172 this has allowed a direct comparison of the optical and X-ray emission seen through regular RXTE monitoring, revealing that the X-ray outbursts precede the optical by around 7 days. Recent X-ray studies by XMM-Newton have identified a new source in the vicinity of SXP15.3 raising doubt on the identification of the optical counterpart to this X-ray pulsar. Here we present a discussion of the observations that led to the proposal of the original counterpart and a detailed optical analysis of the counterpart to the new X-ray source, identifying a 21.7 d periodicity in the OGLE I-band data. The optical characte...

  18. The mysterious X-ray nebular feature associated to the Guitar Nebula

    Science.gov (United States)

    Chung Yue, Hui

    2008-10-01

    The Guitar Nebula is the archetype of pulsar bow-shock nebulae. While it is clearly seen in H-alpha, previous attempts to detect its X-ray counterpart have failed. Only recently Chandra has detected a 2' long extended feature, which starts at the pulsar position. Its orientation, however, deviates by ~118 deg from the pulsar's proper motion direction, calling for very peculiar physical conditions in the ISM and the magnetic field structure in the environment surrounding the pulsar. In order to study this linear feature in more detail than possible with the Chandra data we propose XMM-Newton observations.

  19. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.;

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more......-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or...... than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20...

  20. Interplanetary spacecraft navigation using pulsars

    CERN Document Server

    Deng, X P; You, X P; Li, M T; Keith, M J; Shannon, R M; Coles, W; Manchester, R N; Zheng, J H; Yu, X Z; Gao, D; Wu, X; Chen, D

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.