WorldWideScience

Sample records for anomalous spin waves

  1. Magnetic excitations and anomalous spin-wave broadening in multiferroic FeV2O4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang [Ames Laboratory; Ramazanoglu, Mehmet [Ames Laboratory; Chi, Songxue [Oak Ridge National Laboratory; Liu, Yong [Ames Laboratory; Lograsso, Thomas A. [Ames Laboratory; Vaknin, David [Ames Laboratory

    2014-06-01

    We report on the different roles of two orbital-active Fe2+ at the A site and V3+ at the B site in the magnetic excitations and on the anomalous spin-wave broadening in FeV2O4. FeV2O4 exhibits three structural transitions and successive paramagnetic (PM)–collinear ferrimagnetic (CFI)–noncollinear ferrimagnetic (NCFI)/ferroelectric transitions. The high-temperature tetragonal/PM–orthorhombic/CFI transition is accompanied by the appearance of a large energy gap in the magnetic excitations due to strong spin-orbit-coupling-induced anisotropy at the Fe2+ site. While there is no measurable increase in the energy gap from the orbital ordering of V3+ at the orthorhombic/CFI–tetragonal/NCFI transition, anomalous spin-wave broadening is observed in the orthorhombic/CFI state due to V3+ spin fluctuations at the B site. The spin-wave broadening is also observed at the zone boundary without softening in the NCFI/ferroelectric phase, which is discussed in terms of magnon-phonon coupling. Our study also indicates that the Fe2+ spins without the frustration at the A site may not play an important role in inducing ferroelectricity in the tetragonal/NCFI phase of FeV2O4.

  2. Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.;

    2009-01-01

    above T-N. A linear spin-wave model based on Heisenberg exchange couplings and single-ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange...

  3. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  4. Contributions in anomalous fermion momenta of neutral vector boson in plane-wave field

    CERN Document Server

    Klimenko, E Y

    2002-01-01

    The contributions of the neutral vector boson to the anomalous magnetic and electric momenta of the polarized fermion moving in the plane-wave electromagnetic field are considered in this paper. The contributions are divided by the fermion spin polarization states, which makes it possible to investigate the important problem on the contributions to the fermion anomalous momenta, coming from the the fermion transition to the intermediate state spin-nonflip or spin flip of fermion

  5. Spin wave confinement

    CERN Document Server

    2008-01-01

    This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and

  6. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))

    1983-03-11

    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  7. Particle with spin 2 and anomalous magnetic moment in external electromagnetic and gravitational fields

    CERN Document Server

    Kisel, V V; Red'kov, V M

    2011-01-01

    Tensor 50-component form of the first order relativistic wave equation for a particle with spin 2 and anomalous magnetic moment is extended to the case of an arbitrary curved space-time geometry. An additional parameter considered in the presence of only electromagnetic field as related to anomalous magnetic moment, turns to determine additional interaction terms with external geometrical background through Ricci R_{kl} and Riemann R_{klmn} tensors.

  8. Anomalous Dimensions from a Spinning D5-Brane

    CERN Document Server

    Armoni, A

    2006-01-01

    We consider the anomalous dimension of a certain twist two operator in N=4 super Yang-Mills theory. At strong coupling and large-N it is captured by the classical dynamics of a spinning D5-brane. The present calculation generalizes the result of Gubser, Klebanov and Polyakov (hep-th/0204051): in order to calculate the anomalous dimension of a bound state of k coincident strings, the spinning closed string is replaced by a spinning D5 brane that wraps an S4 inside the S5 part of the AdS5 times S5 metric.

  9. Hydrodynamic waves in an anomalous charged fluid

    Science.gov (United States)

    Abbasi, Navid; Davody, Ali; Hejazi, Kasra; Rezaei, Zahra

    2016-11-01

    We study the collective excitations in a relativistic fluid with an anomalous U (1) current. In 3 + 1 dimensions at zero chemical potential, in addition to ordinary sound modes we find two propagating modes in presence of an external magnetic field. The first one which is a transverse degenerate mode, propagates with a velocity proportional to the coefficient of gravitational anomaly; this is in fact the Chiral Alfvén wave recently found in [1]. Another one is a wave of density perturbation, namely a chiral magnetic wave (CMW). The velocity dependence of CMW on the chiral anomaly coefficient is well known. We compute the dependence of CMW's velocity on the coefficient of gravitational anomaly as well. We also show that the dissipation splits the degeneracy of CAW. At finite chiral charge density we show that in general there may exist five chiral hydrodynamic waves. Of these five waves, one is the CMW while the other four are mixed Modified Sound-Alfvén waves. It turns out that in propagation transverse to the magnetic field no anomaly effect appears while in parallel to the magnetic field we find sound waves become dispersive due to anomaly.

  10. Hydrodynamic Waves in an Anomalous Charged Fluid

    CERN Document Server

    Abbasi, Navid; Rezaei, Zahra

    2015-01-01

    We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...

  11. Anomalous properties of spin-extended chiral fermions

    CERN Document Server

    Elbistan, M

    2015-01-01

    The spin-extended semiclassical chiral fermion (we call the S-model), which had been used to derive the twisted Lorentz symmetry of the "spin-enslaved" chiral chiral fermion (we call the c-model) is equivalent to the latter in the free case, however coupling to an external electromagnetic field yields inequivalent systems. The difference is highlighted by the inconsistency of spin enslavement within the spin-extended framework. The S-model exhibits nevertheless similar though slightly different anomalous properties as the usual c-model does.

  12. Anomalous dimensions of higher spin currents in large N CFTs

    CERN Document Server

    Hikida, Yasuaki

    2016-01-01

    We examine anomalous dimensions of higher spin currents in the critical O(N) scalar model and the Gross-Neveu model in arbitrary d dimensions. These two models are proposed to be dual to the type A and type B Vasiliev theories, respectively. We reproduce the known results on the anomalous dimensions to the leading order in 1/N by using conformal perturbation theory. This work can be regarded as an extension of previous work on the critical O(N) scalars in 3 dimensions, where it was shown that the bulk computation for the masses of higher spin fields on AdS_4 can be mapped to the boundary one in conformal perturbation theory. The anomalous dimensions of the both theories agree with each other up to an overall factor depending only on d, and the coincidence is explained for d=3 by making use of N=2 supersymmetry.

  13. Snell's Law for Spin Waves

    Science.gov (United States)

    Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.

    2016-07-01

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  14. Charge-Induced Spin Torque in Anomalous Hall Ferromagnets

    Science.gov (United States)

    Nomura, Kentaro; Kurebayashi, Daichi

    2015-09-01

    We demonstrate that spin-orbit coupled electrons in a magnetically doped system exert a spin torque on the local magnetization, without a flowing current, when the chemical potential is modulated in a magnetic field. The spin torque is proportional to the anomalous Hall conductivity, and its effective field strength may overcome the Zeeman field. Using this effect, the direction of the local magnetization is switched by gate control in a thin film. This charge-induced spin torque is essentially an equilibrium effect, in contrast to the conventional current-induced spin-orbit torque, and, thus, devices using this operating principle possibly have higher efficiency than the conventional ones. In addition to a comprehensive phenomenological derivation, we present a physical understanding based on a model of a Dirac-Weyl semimetal, possibly realized in a magnetically doped topological insulator. The effect might be realized also in nanoscale transition materials, complex oxide ferromagnets, and dilute magnetic semiconductors.

  15. Universal anomalous dimensions at large spin and large twist

    CERN Document Server

    Kaviraj, Apratim; Sinha, Aninda

    2015-01-01

    In this paper we consider anomalous dimensions of double trace operators at large spin ($\\ell$) and large twist ($\\tau$) in CFTs in arbitrary dimensions ($d\\geq 3$). Using analytic conformal bootstrap methods, we show that the anomalous dimensions are universal in the limit $\\ell\\gg \\tau\\gg 1$. In the course of the derivation, we extract an approximate closed form expression for the conformal blocks arising in the four point function of identical scalars in any dimension. We compare our results with two different calculations in holography and find perfect agreement.

  16. Anomalous Microwave Emission from Spinning Dust and its Polarization Spectrum

    CERN Document Server

    Hoang, Thiem

    2015-01-01

    Nearly twenty years after the discovery of anomalous microwave emission (AME) that contaminates to the cosmic microwave background (CMB) radiation, its origin remains inconclusive. Observational results from numerous experiments have revealed that AME is most consistent with spinning dust emission from rapidly spinning ultrasmall interstellar grains. In this paper, I will first review our improved model of spinning dust, which treats realistic dynamics of wobbling non-spherical grains, impulsive interactions of grains with ions in the ambient plasma, and some other important effects. I will then discuss recent progress in quantifying the polarization of spinning dust emission from polycyclic aromatic hydrocarbons. I will finish with a brief discussion on remaining issues about the origins of AME.

  17. Anomalous spin of the Chern-Simons-Georgi-Glashow model

    CERN Document Server

    Qiu-Hong, Huo

    2012-01-01

    With the Coulomb gauge, the Chern-Simons-Georgi-Glashow (CSGG) model is quantized in the Dirac formalism for the constrained system. Combining the Gauss law and Coulomb gauge consistency condition, the difference between the Schwinger angular momentum and canonical angular momentum of the system is found to be an anomalous spin. The reason for this result lies in that the Schwinger energy momentum tensor and the canonical one have different symmetry properties in presence of the Chern-Simons term.

  18. Anomalous dimensions in CFT with weakly broken higher spin symmetry

    Science.gov (United States)

    Giombi, Simone; Kirilin, Vladimir

    2016-11-01

    In a conformal field theory with weakly broken higher spin symmetry, the leading order anomalous dimensions of the broken currents can be efficiently determined from the structure of the classical non-conservation equations. We apply this method to the explicit example of O( N) invariant scalar field theories in various dimensions, including the large N critical O( N) model in general d, the Wilson-Fisher fixed point in d = 4 - ɛ, cubic scalar models in d = 6 - ɛ and the nonlinear sigma model in d = 2 + ɛ. Using information from the d = 4 - ɛ and d = 2 + ɛ expansions, we obtain some estimates for the dimensions of the higher spin operators in the critical 3d O( N) models for a few low values of N and spin.

  19. Anomalous drift of spiral waves in heterogeneous excitable media

    CERN Document Server

    Sridhar, S; Panfilov, Alexander V

    2009-01-01

    We study the drift of spiral waves in a simple model of heterogeneous excitable medium, having gradients in local excitability or cellular coupling. For the first time, we report the anomalous drift of spiral waves towards regions having higher excitability, in contrast to all earlier observations in reaction-diffusion models of excitable media. Such anomalous drift can promote the onset of complex spatio-temporal patterns, e.g., those responsible for life-threatening arrhythmias in the heart.

  20. Spin Waves in Ho2Co17

    DEFF Research Database (Denmark)

    Clausen, Kurt Nørgaard; Lebech, Bente

    1980-01-01

    Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed.......Spin wave excitations in a single crystal of Ho2Co17 have been studied at 4.8 and 78 K. The results are discussed in terms of a linear spin wave model. At 78 K both ground state and excited state spin waves are observed....

  1. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been...... explained by Liu as originating from the mixing of the spin states of the conduction electrons due to the spin-orbit coupling. We find that this coupling mechanism introduces interactions which violate the selection rules for a simple ferromagnet. The interactions between the magnons and phonons propagating...... in the c direction of Tb have been studied experimentally by means of inelastic neutron scattering. The magnons are coupled to both the acoustic- and optical-transverse phonons. By studying the behavior of the acoustic-optical coupling, we conclude that it is a spin-mixed-induced coupling as proposed...

  2. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    Science.gov (United States)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  3. Anomalous spin of the Chern-Simons-Georgi-Glashow model

    Institute of Scientific and Technical Information of China (English)

    HUO Qiu-Hong; JIANG Yun-Guo; WANG Ru-Zhi; YAN Hui

    2013-01-01

    With the Coulomb gauge,the Chern-Simons-Georgi-Glashow (CSGG) model is quantized in the Dirac formalism for the constrained system.Combining the Gauss law and Coulomb gauge consistency condition,the difference between the Schwinger angular momentum and canonical angular momentum of the system is found to be an anomalous spin.The reason for this result lies in the fact that the Schwinger energy momentum tensor and the canonical one have different symmetry properties in the presence of the Chern-Simons term.

  4. Fractionalized spin-wave continuum in kagome spin liquids

    Science.gov (United States)

    Mei, Jia-Wei; Wen, Xiao-Gang

    Motivated by spin-wave continuum (SWC) observed in recent neutron scattering experiments in Herbertsmithite, we use Gutzwiller-projected wave functions to study dynamic spin structure factor S (q , ω) of spin liquid states on the kagome lattice. Spin-1 excited states in spin liquids are represented by Gutzwiller-projected two-spinon excited wave functions. We investigate three different spin liquid candidates, spinon Fermi-surface spin liquid (FSL), Dirac spin liquid (DSL) and random-flux spin liquid (RSL). FSL and RSL have low energy peaks in S (q , ω) at K points in the extended magnetic Brillouin zone, in contrast to experiments where low energy peaks are found at M points. There is no obviuos contradiction between DSL and neutron scattering measurements. Besides a fractionalized spin (i.e. spin-1/2), spinons in DSL carry a fractionalized crystal momentum which is potentially detectable in SWC in the neutron scattering measurements.

  5. Reconfigurable heat-induced spin wave lenses

    Science.gov (United States)

    Dzyapko, O.; Borisenko, I. V.; Demidov, V. E.; Pernice, W.; Demokritov, S. O.

    2016-12-01

    We study the control and manipulation of propagating spin waves in yttrium iron garnet films using a local laser-induced heating. We show that, due to the refraction of spin waves in the thermal gradients, the heated region acts as a defocusing lens for Damon-Eshbach spin waves and as a focusing lens for backward volume waves enabling collimation of spin-wave beams in the latter case. In addition to the focusing/defocusing functionality, the local heating allows one to manipulate the propagation direction of the spin-wave beams and to efficiently suppress their diffraction spreading by utilizing caustic effects.

  6. Strange and Charm Quark Spins from Anomalous Ward Identity

    CERN Document Server

    Gong, Ming; Alexandru, Andrei; Draper, Terrence; Liu, Keh-Fei

    2015-01-01

    We present a calculation of the strange and charm quark contributions to the nucleon spin from anomalous Ward identity (AWI). It is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations on a $24^3 \\times 64$ lattice with the light sea mass at $m_{\\pi} = 330$ MeV. To satisfy the AWI, the overlap fermion for the pseudoscalar density and the overlap Dirac operator for the topological density, which do not have multiplicative renormalization, are used to renormalize the form factor of the local axial-vector current at finite $q^2$. For the charm quark, we find the positive pseudoscalar term almost cancels the negative topological term for each $q^2$, leading to a very small net contribution. For the strange quark, the pseudoscalar term is less positive than that of the charm and this results in a negative strange quark spin when combined with the topological contribution. The $g_A(q^2)$ at $q^2 =0$ is obtained by a global fit of the pseudoscalar and the topological form fact...

  7. Anomalous Surface Wave Launching by Handedness Phase Control

    KAUST Repository

    Zhang, Xueqian

    2015-10-09

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Spin-transfer torque induced spin waves in antiferromagnetic insulators

    Science.gov (United States)

    Daniels, Matthew; Guo, Wei; Stocks, G. Malcolm; Xiao, Di; Xiao, Jiang

    2015-03-01

    We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations. Supported by NSF EFRI-1433496 (M.W.D), U.S. DOE Office of Basic Energy Sciences, Materials Sciences and Engineering (D.X. & G.M.S.), Major State Basic Research Project of China and National Natural Science Foundation of China (W.G. and J.X.).

  9. A fractional calculus model of anomalous dispersion of acoustic waves.

    Science.gov (United States)

    Wharmby, Andrew W

    2016-09-01

    An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.

  10. The anomalous dimension of spin-1/2 baryons in many flavors QCD

    CERN Document Server

    Vecchi, Luca

    2016-01-01

    We derive the anomalous dimension of spin-1/2 baryon operators in QCD at leading 1/Nf order. Within this approximation the complication resulting from the mixing with an infinite number of evanescent operators can be easily bypassed.

  11. Gravitational waves and spinning test particles

    CERN Document Server

    Mohseni, M

    2000-01-01

    The motion of a classical spinning test particle in the field of a weak plane gravitational wave is studied. It is found that the characteristic dimensions of the particle's orbit is sensitive to the ratio of the spin to the mass of the particle. The results are compared with the corresponding motion of a particle without spin.

  12. Extraordinary momentum and spin in evanescent waves

    CERN Document Server

    Bliokh, Konstantin Y; Nori, Franco

    2013-01-01

    Momentum and spin represent fundamental dynamical properties of quantum particles. It is known that the photon's momentum is determined by the wave vector and is independent of polarization. The spin of the photon is associated with circular polarization and is also collinear with the wave vector. We show that exactly the opposite can be the case for evanescent optical waves. First, a single evanescent wave possesses a spin angular momentum, which is largely independent of the polarization and is orthogonal to the wave vector. Second, such a wave carries a momentum component, which depends on the circular polarization and is also orthogonal to the wave vector. Although these extraordinary properties seem to be in contradiction with what is known about photons, we show that they reveal a fundamental spin momentum, introduced by Belinfante in field theory more than 70 years ago, which is unobservable in propagating fields. We demonstrate, both theoretically and numerically, that the unusual transverse momentum ...

  13. Spin waves and spin instabilities in quantum plasmas

    CERN Document Server

    Andreev, P A

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.

  14. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  15. Magnetic trapping of silver and copper, and anomalous spin relaxation in the ag-he system.

    Science.gov (United States)

    Brahms, Nathan; Newman, Bonna; Johnson, Cort; Greytak, Tom; Kleppner, Daniel; Doyle, John

    2008-09-01

    We have trapped large numbers of copper (Cu) and silver (Ag) atoms using buffer-gas cooling. Up to 3 x 10{12} Cu atoms and 4 x 10{13} Ag atoms are trapped. Lifetimes are as long as 5 s, limited by collisions with the buffer gas. Ratios of elastic to inelastic collision rates with He are >or=10{6}, suggesting Cu and Ag are favorable for use in ultracold applications. The temperature dependence of the Ag-3He collision rate varies as T;{5.8+/-0.4}. We find that this temperature dependence is inconsistent with the behavior predicted for relaxation arising from the spin-rotation interaction, and conclude that the Ag-3He system displays anomalous collisional behavior in the multiple-partial wave regime. Gold (Au) was ablated into 3He buffer gas, however, atomic Au lifetimes were observed to be too short to permit trapping.

  16. Spin pumping with coherent elastic waves

    Science.gov (United States)

    Weiler, M.; Huebl, H.; Goerg, F. S.; Czeschka, F. D.; Gross, R.; Goennenwein, S. T. B.

    2012-02-01

    The generation and detection of pure spin currents is an important topic for spintronic applications. Spin currents may be generated, e.g., via spin pumping. In this approach, a precessing magnetization relaxes via the emission of a spin current. Conventionally, electromagnetic waves, i.e. microwave photons, are used to drive the magnetization precession. We here show that a spin current can also be pumped by means of an acoustic wave, i.e. microwave phonons. In the experiments, coherent surface acoustic wave (SAW) phonons with a frequency of 1.55 GHz traverse a ferromagnetic thin film/normal metal (Co/Pt) bilayer. The SAW phonons drive the resonant magnetization precession via magnetoelastic coupling [1]. We use the inverse spin Hall voltage in the Pt film as a measure for the generated spin current and record its evolution as a function of time and external magnetic field magnitude and orientation. Our experiments show that a spin current is generated in the exclusive presence of a resonant elastic excitation. This establishes acoustic spin pumping as a resonant analogue to the spin Seebeck effect and opens intriguing perspectives for applications in, e.g., micromechanical resonators. [4pt] [1] M. Weiler et al., Phys. Rev. Lett. 106, 117601 (2011)

  17. Anomalous friction of graphene nanoribbons on waved graphenes

    Directory of Open Access Journals (Sweden)

    Jun Fang

    2015-11-01

    Full Text Available Friction plays a critical role in the function and maintenance of small-scale structures, where the conventional Coulomb friction law often fails. To probe the friction at small scales, here we present a molecular dynamics study on the process of dragging graphene nanoribbons on waved graphene substrates. The simulation shows that the induced friction on graphene with zero waviness is ultra-low and closely related to the surface energy barrier. On waved graphenes, the friction generally increases with the amplitude of the wave at a fixed period, but anomalously increases and then decreases with the period at a fixed amplitude. These findings provide insights into the ultra-low friction at small scales, as well as some guidelines into the fabrication of graphene-based nano-composites with high performance.

  18. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dai [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Li, Yufan; Qu, D.; Chien, C. L., E-mail: clchien@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Xiaofeng [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China)

    2015-05-25

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  19. Separation of spin Seebeck effect and anomalous Nernst effect in Co/Cu/YIG

    Science.gov (United States)

    Tian, Dai; Li, Yufan; Qu, D.; Jin, Xiaofeng; Chien, C. L.

    2015-05-01

    The spin Seebeck effect (SSE) and Anomalous Nernst effect (ANE) have been observed in Co/Cu/YIG (yttrium iron garnet) multi-layer structure, where the ferromagnetic insulator YIG acts as the pure spin injector and the ferromagnetic metal Co layer acts as the spin current detector. With the insertion of 5 nm Cu layer, the two ferromagnetic layers are decoupled, thus allowing unambiguous separation of the SSE and ANE contributions under the same experimental conditions in the same sample.

  20. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    Science.gov (United States)

    Miao, B. F.; Huang, S. Y.; Qu, D.; Chien, C. L.

    2016-01-01

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  1. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    Energy Technology Data Exchange (ETDEWEB)

    Miao, B. F., E-mail: bfmiao@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Huang, S. Y. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Qu, D.; Chien, C. L., E-mail: clchien@jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-01-15

    The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE), inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE) may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  2. Absence of anomalous Nernst effect in spin Seebeck effect of Pt/YIG

    Directory of Open Access Journals (Sweden)

    B. F. Miao

    2016-01-01

    Full Text Available The Pt/YIG structure has been widely used to study spin Seebeck effect (SSE, inverse spin Hall effect, and other pure spin current phenomena. However, the magnetic proximity effect in Pt when in contact with YIG, and the potential anomalous Nernst effect (ANE may compromise the spin current phenomena in Pt/YIG. By inserting a Cu layer of various thicknesses between Pt and YIG, we have separated the signals from the SSE and that of the ANE. It is demonstrated that the thermal voltage in Pt/YIG mainly comes from spin current due to the longitudinal SSE with negligible contribution from the ANE.

  3. Antiferromagnetic spin wave and the superconductivity

    Science.gov (United States)

    Koh, Shun-ichiro

    2000-07-01

    The neutron scattering of UPd 2Al 3 showed that a sharp peak, which is absent in the normal phase, appears in the superconducting phase (Metoki et al., J. Phys. Soc. Japan 66 (1997) 2560; Bernhoeft et al., Phys. Rev. Lett. 81 (1998) 4244). Assuming this excitation to be an antiferromagnetic (AFM) spin-wave, this paper deals with its enhancement by the superconductivity. Applying the slave-boson formalism, we consider the AFM ordering as a spin-density-wave (Koh, Phys. Lett. A 253 (1999) 98). Above Tc, the spin-wave suffers an energy dissipation due to the conduction electron. Below Tc, the superconductivity suppresses the dissipation, resulting in the growth of the AFM spin-wave.

  4. Superdirected Beam of the Surface Spin Wave

    CERN Document Server

    Annenkov, Alexander Yu; Lock, Edwin H

    2016-01-01

    Visualized diffraction patterns of the surface spin wave excited by arbitrarily oriented linear transducer in tangentially magnetized ferrite film are investigated experimentally in the plane of ferrite film for the case where the transducer length D is much larger than the wavelength L. Superdirected (nonexpanding) beam of the surface spin wave with noncollinear wave vector k and group velocity vector V was observed experimentally: the angular width of this beam was about zero, the smearing of the beam energy along the film plane was minimal and the length of the beam trajectory was maximal (50 mm). Thus it was shown that such phenomenon as superdirected propagation of the wave exists in the nature.

  5. Anomalous wave as a result of the collision of two wave groups on sea surface

    CERN Document Server

    Ruban, V P

    2016-01-01

    The numerical simulation of the nonlinear dynamics of the sea surface has shown that the collision of two groups of relatively low waves with close but noncollinear wave vectors (two or three waves in each group with a steepness of about 0.2) can result in the appearance of an individual anomalous wave whose height is noticeably larger than that in the linear theory. Since such collisions quite often occur on the ocean surface, this scenario of the formation of rogue waves is apparently most typical under natural conditions.

  6. Stacking order dependence of inverse spin Hall effect and anomalous Hall effect in spin pumping experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Il; Seo, Min-Su; Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806 (Korea, Republic of); Kim, Dong-Jun; Park, Byong-Guk [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-07

    The dependence of the measured DC voltage on the non-magnetic material (NM) in NM/CoFeB and CoFeB/NM bilayers is studied under ferromagnetic resonance conditions in a TE{sub 011} resonant cavity. The directional change of the inverse spin Hall effect (ISHE) voltage V{sub ISHE} for the stacking order of the bilayer can separate the pure V{sub ISHE} and the anomalous Hall effect (AHE) voltage V{sub AHE} utilizing the method of addition and subtraction. The Ta and Ti NMs show a broad deviation of the spin Hall angle θ{sub ISH}, which originates from the AHE in accordance with the high resistivity of NMs. However, the Pt and Pd NMs show that the kinds of NMs with low resistivity are consistent with the previously reported θ{sub ISH} values. Therefore, the characteristics that NM should simultaneously satisfy to obtain a reasonable V{sub ISHE} value in bilayer systems are large θ{sub ISH} and low resistivity.

  7. Confined spin wave spectra of Kagome artificial spin ice arrays

    Science.gov (United States)

    Panagiotopoulos, I.

    2017-01-01

    The spin wave modes of elongated magnetic islands arranged in Kagome artificial spin-ice arrays are micromagnetically simulated in the frequency regime between 3 and 16 GHz. The edge modes are more suitable in order to detect the signatures of various types of local order of the spin-ice lattice as they are much more sensitive to the magnetic configurations of neighboring elements. The spectra of arrays consisting up to 30 elements can be decomposed to those originating from local magnetic states of their vertices.

  8. Modeling anomalous surface - wave propagation across the Southern Caspian basin

    Energy Technology Data Exchange (ETDEWEB)

    Priestly, K.F.; Patton, H.J.; Schultz, C.A.

    1998-01-09

    The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.

  9. Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution

    DEFF Research Database (Denmark)

    Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel

    2009-01-01

    Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN...

  10. Constrained dynamics of an anomalous (g{ne}2) relativistic spinning particle in electromagnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Berard, A.; Grandati, Y.; Mohrbach, H. [Universite Paul Verlaine, Institut de Physique, Laboratoire de Physique Moleculaire et des Collisions, ICPMB, IF CNRS 2843, Metz, Cedex 3 (France); Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India); Pal, Probir [S.N. Bose National Centre for Basic Sciences, Kolkata (India)

    2011-11-15

    In this paper we have considered the dynamics of an anomalous (g{ne}2) charged relativistic spinning particle in the presence of an external electromagnetic field. A constraint analysis is done and the complete set of Dirac brackets are provided that generate the canonical Lorentz algebra and dynamics through Hamiltonian equations of motion. The spin-induced effective curvature of spacetime and its possible connection with Analogue Gravity models are commented upon. (orig.)

  11. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells.

    Science.gov (United States)

    Lepkowski, S P; Bardyszewski, Witold

    2017-03-22

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the two-dimensional band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  12. Anomalous Magnetic Excitations of Cooperative Tetrahedral Spin Clusters

    DEFF Research Database (Denmark)

    Prsa, K.; Rønnow, H.M.; Zaharko, O.;

    2009-01-01

    An inelastic neutron scattering study of Cu2Te2O5X2 (X=Cl, Br) shows strong dispersive modes with large energy gaps persisting far above T-N, notably in Cu2Te2O5Br2. The anomalous features: a coexisting unusually weak Goldstone-like mode observed in Cu2Te2O5Cl2 and the size of the energy gaps can...

  13. Anomalous Nernst and anisotropic magnetoresistive heating in a lateral spin valve

    NARCIS (Netherlands)

    Slachter, Abraham; Bakker, Frank Lennart; van Wees, Bart Jan

    2011-01-01

    We measured the anomalous Nernst effect and anisotropic magnetoresistive heating in a lateral multiterminal permalloy/copper spin valve using all-electrical lock-in measurements. To interpret the results, a threedimensional thermoelectric finite-element model is developed. Using this model, we extra

  14. Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling.

    Science.gov (United States)

    Sekine, Akihiko; Nomura, Kentaro

    2016-03-04

    We search for dynamical magnetoelectric phenomena in three-dimensional correlated systems with spin-orbit coupling. We focus on the antiferromagnetic insulator phases where the dynamical axion field is realized by the fluctuation of the antiferromagnetic order parameter. It is shown that the dynamical chiral magnetic effect, an alternating current generation by magnetic fields, emerges due to such time dependences of the order parameter as antiferromagnetic resonance. It is also shown that the anomalous Hall effect arises due to such spatial variations of the order parameter as antiferromagnetic domain walls. Our study indicates that spin excitations in antiferromagnetic insulators with spin-orbit coupling can result in nontrivial charge responses. Moreover, observing the chiral magnetic effect and anomalous Hall effect in our system is equivalent to detecting the dynamical axion field in condensed matter.

  15. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  16. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  17. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  18. Domain Wall Propagation through Spin Wave Emission

    NARCIS (Netherlands)

    Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.

    2012-01-01

    We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping

  19. Magnetoresistance generated from charge-spin conversion by anomalous Hall effect in metallic ferromagnetic/nonmagnetic bilayers

    Science.gov (United States)

    Taniguchi, Tomohiro

    2016-11-01

    A theoretical formulation of magnetoresistance effect in a metallic ferromagnetic/nonmagnetic bilayer originated from the charge-spin conversion by the anomalous Hall effect is presented. Analytical expressions of the longitudinal and transverse resistivities in both nonmagnet and ferromagnet are obtained by solving the spin diffusion equation. The magnetoresistance generated from charge-spin conversion purely caused by the anomalous Hall effect in the ferromagnet is found to be proportional to the square of the spin polarizations in the ferromagnet and has fixed sign. We also find additional magnetoresistances in both nonmagnet and ferromagnet arising from the mixing of the spin Hall and anomalous Hall effects. The sign of this mixing resistance depends on those of the spin Hall angle in the nonmagnet and the spin polarizations of the ferromagnet.

  20. Z sup 0 -boson contribution in anomalous electron momenta in plane-wave electromagnetic field

    CERN Document Server

    Klimenko, E Y

    2002-01-01

    The Z sup 0 -boson contribution to the mass of electron moving in plane-wave field is considered. The dependence of the Z sup 0 -boson contribution to electron anomalous magnetic momentum and anomalous electric momentum on the external field parameters is studied within the frames of the Weinberg-Salam-Glashow standard model

  1. Spin-wave modes of ferromagnetic films

    Science.gov (United States)

    Arias, R. E.

    2016-10-01

    The spin-wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically, either in the magnetostatic approximation or also considering the exchange interaction. A theoretical method is presented that allows one to determine with ease the exact frequency dispersion relations of dipole-exchange modes under general conditions: an obliquely applied magnetic field, and surface boundary conditions that allow for partial pinning, which may be of different origins. The method is a generalization of Green's theorem to the problem of solving the linear dynamics of ferromagnetic spin-wave modes. Convolution integral equations for the magnetization and the magnetostatic potential of the modes are derived on the surfaces of the film. For the translation-invariant film these become simple local algebraic equations at each in-plane wave vector. Eigenfrequencies result from imposing a 6 ×6 determinant to be null, and spin-wave modes follow everywhere through solving linear 6 ×6 inhomogeneous systems. An interpretation of the results is that the Green's functions represent six independent plane-wave solutions to the equations of motion, with six associated complex perpendicular wave vectors: volume modes correspond to the cases in which two of these are purely real at a given frequency. Furthermore, the convolution extinction equations enforce the boundary conditions: this is possible at specific eigenfrequencies for a given in-plane wave vector. Magnetostatic modes may also be obtained in detail. At low frequencies and for some obliquely applied magnetic fields, magnetostatic and dipole-exchange volume modes may have forward or backward character depending on the frequency range.

  2. Magnetometer Based On Spin Wave Interferometer

    CERN Document Server

    Balynsky, M; Chiang, H; Kozhevnikov, A; Filimonov, Y; Balandin, A A; Khitun, A

    2016-01-01

    We describe magnetic field sensor based on spin wave interferometer. Its sensing element consists of a magnetic cross junction with four micro-antennas fabricated at the edges. Two of these antennas are used for spin wave excitation and two others antennas are used for the detection of the inductive voltage produced by the interfering spin waves. Two waves propagating in the orthogonal arms of the cross may accumulate significantly different phase shifts depending on the magnitude and the direction of the external magnetic field. This phenomenon is utilized for magnetic field sensing. The sensitivity has maximum at the destructive interference condition, where a small change of the external magnetic field results in a drastic increase of the inductive voltage as well as the change of the output phase. We report experimental data obtained on a micrometer scale Y3Fe2(FeO4)3 cross structure. The change of the inductive voltage near the destructive interference point exceeds 40 dB per 1 Oe. At the same time, the ...

  3. Anomalous fiber optic gyroscope signals observed above spinning rings at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tajmar, M; Plesescu, F; Seifert, B [Space Propulsion and Advanced Concepts, Austrian Research Centers GmbH - ARC, A-2444 Seibersdorf (Austria)], E-mail: martin.tajmar@arcs.ac.at

    2009-02-01

    Precision fiber optic gyroscopes were mounted mechanically de-coupled above spinning rings inside a cryostat. Below a critical temperature (typically <30 K), the gyroscopes measure a significant deviation from their usual offset due to Earth's rotation. This deviation is proportional to the applied angular ring velocity with maximum signals towards lower temperatures. The anomalous gyroscope signal is about 8 orders of magnitude smaller then the applied angular ring velocity, compensating about one third of the Earth rotation offset at an angular top speed of 420 rad/s. Moreover, our data shows a parity violation as the effect appears to be dominant for rotation against the Earth's spin. No systematic effect was found to explain this effect including the magnetic environment, vibration and helium gas friction suggesting that our observation is a new low temperature phenomenon. Tests in various configurations suggest that the rotating low temperature helium may be the source of our anomalous signals.

  4. Anomalous Fiber Optic Gyroscope Signals Observed above Spinning Rings at Low Temperature

    CERN Document Server

    Tajmar, M; Seifert, B

    2008-01-01

    Precision fiber optic gyroscopes were mounted mechanically de-coupled above spinning rings inside a cryostat. Below a critical temperature (typically <30 K), the gyroscopes measure a significant deviation from their usual Earth rotation offset proportional to the applied angular ring velocity with maximum signals towards lower temperatures. The anomalous gyroscope signal is about 8 orders of magnitude smaller then the applied angular ring velocity, compensating about one third of the Earth rotation offset at an angular top speed of 420 rad/s. Moreover, our data shows a parity violation as the effect appears to be dominant for rotation against the Earth's spin. No systematic effect was found to explain this effect including the magnetic environment, vibration and helium gas friction suggesting that our observation is a new low temperature phenomenon. Tests in various configurations suggest that the anomalous signals is originating from the rotating helium in our facilities.

  5. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma, Part II: Dispersion dependencies

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    The dielectric permeability tensor for spin polarized plasmas derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space in Part I of this work is applied for study of spectra of high-frequency transverse and transverse-longitudinal waves propagating perpendicular to the external magnetic field. Cyclotron waves are studied at consideration of waves with electric field directed parallel to the external magnetic field. It is found that the separate spin evolution modifies the spectrum of cyclotron waves. These modifications increase with the increase of the spin polarization and the number of the cyclotron resonance. Spin dynamics with no account of the anomalous magnetic moment gives a considerable modification of spectra either. The account of anomalous magnetic moment leads to a fine structure of each cyclotron resonance. So, each cyclotron resonance splits on three waves. Details of this spectrum and its changes with the change of spin polarization are studied for the first and se...

  6. Contributions of Higgs bosons in anomalous momentum of electron in plane-wave field

    CERN Document Server

    Klimenko, E Y

    2002-01-01

    The Higgs bosons contribution to the anomalous magnetic momentum of the electron, moving in the field representing the superposition of the constant crossed field and plane electromagnetic wave of the elliptical polarization are considered in this work

  7. Anomalous magnetic fluctuations in superconducting Sr2RuO4 revealed by 101Ru nuclear spin-spin relaxation

    Science.gov (United States)

    Manago, Masahiro; Yamanaka, Takayoshi; Ishida, Kenji; Mao, Zhiqiang; Maeno, Yoshiteru

    2016-10-01

    We carried out 101Ru nuclear quadrupole resonance (NQR) measurement on superconducting (SC) Sr2RuO4 under zero magnetic field (H =0 ) and found that the nuclear spin-spin relaxation rate 1 /T2 is enhanced in the SC state. The 1 /T2 measurement in the SC state under H =0 is effective for detecting slow magnetic fluctuations parallel to the quantized axis of the nuclear spin. Our results indicate that low-energy magnetic fluctuations perpendicular to the RuO2 plane emerge when the superconductivity sets in, which is consistent with the previous 17O-NQR result that the nuclear spin-lattice relaxation rate 1 /T1 of the in-plane O site exhibits anomalous behavior in the SC state. The enhancement of the magnetic fluctuations in the SC state is unusual and suggests that the fluctuations are related to the unconventional SC pairing. We suggest that this phenomenon is a consequence of the spin degrees of freedom of the spin-triplet pairing.

  8. Absence of the Thermal Hall Effect in Anomalous Nernst and Spin Seebeck Effects

    Science.gov (United States)

    Chen, Yi-Jia; Huang, Ssu-Yen

    2016-12-01

    The anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE) in spin caloritronics are two of the most important mechanisms to manipulate the spin-polarized current and pure spin current by thermal excitation. While the ANE in ferromagnetic metals and the SSE in magnetic insulators have been extensively studied, a recent theoretical work suggests that the signals from the thermal Hall effect (THE) have field dependences indistinguishable from, and may even overwhelm, those of the ANE and SSE. Therefore, it is vital to investigate the contribution of the THE in the ANE and SSE. In this work, we systematically study the THE in a ferromagnetic metal, Permalloy (Py), and magnetic insulator, an yttrium iron garnet (YIG), by using different Seebeck coefficients between electrodes and contact wires. Our results demonstrate that the contribution of the THE by the thermal couple effect in the Py and YIG is negligibly small if one includes the thickness dependence of the Seebeck coefficient. Thus, the spin-polarized current in the ANE and the pure spin current in the SSE remain indispensable for exploring spin caloritronics phenomena.

  9. Spin waves in exchange-coupled double layers in the presence of spin torques

    Science.gov (United States)

    Baláž, Pavel; Barnaś, Józef

    2015-03-01

    Spin-wave spectra of a double magnetic layer are calculated theoretically in the macroscopic limit. Magnetic dynamics is described in terms of the Landau-Lifshitz-Gilbert equation, and both static (of the Ruderman-Kittel-Kasuya-Yosida type) and dynamic (via spin pumping) interlayer couplings are taken into account. The influence of spin pumping and spin transfer torque on the spin-wave spectra (frequency and damping factor) has been studied for both parallel and antiparallel magnetic configurations. The spin-wave spectrum in the parallel magnetic state is reciprocal, while in the antiparallel configuration it is nonreciprocal. In both cases, a substantial reduction of the spin-wave lifetimes due to spin pumping to the nonmagnetic metallic layers has been found. In the parallel configuration, this reduction appears mainly for optical modes, while in the antiparallel configuration, it is remarkable for all modes. In turn, the spin torque due to spin current flowing from a metallic layer, created for instance by the spin Hall effect, gives rise to significant changes in the damping factors as well, but these modifications depend on the sign of spin current. For one spin current orientation, the spin-wave damping becomes reduced and may disappear for some modes at a specific threshold value of the spin current, indicating magnetic instability in the system due to spin transfer torque. For the opposite spin current, the damping is enhanced, which indicates stabilization of the corresponding magnetic state.

  10. Spin current-induced by a sound wave.

    Science.gov (United States)

    Lyapilin, Igor I

    2013-04-01

    The interaction of conduction electrons with a longitudinal sound wave propagating in a crystal in a constant magnetic field is investigated. It is shown that the transverse spin current arises when the longitudinal sound wave propagation through the system. The average power absorbed by the spin subsystem of the conduction electrons and the spin-Hall conductivity have a resonant character.

  11. Unambiguous separation of the inverse spin Hall and anomalous Nernst effects within a ferromagnetic metal using the spin Seebeck effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Stephen M., E-mail: swu@anl.gov; Hoffman, Jason; Pearson, John E.; Bhattacharya, Anand [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-01

    The longitudinal spin Seebeck effect is measured on the ferromagnetic insulator Fe{sub 3}O{sub 4} with the ferromagnetic metal Co{sub 0.2}Fe{sub 0.6}B{sub 0.2} (CoFeB) as the spin detector. By using a non-magnetic spacer material between the two materials (Ti), it is possible to decouple the two ferromagnetic materials and directly observe pure spin flow from Fe{sub 3}O{sub 4} into CoFeB. It is shown that in a single ferromagnetic metal, the inverse spin Hall effect (ISHE) and anomalous Nernst effect (ANE) can occur simultaneously with opposite polarity. Using this and the large difference in the coercive fields between the two magnets, it is possible to unambiguously separate the contributions of the spin Seebeck effect from the ANE and observe the degree to which each effect contributes to the total response. These experiments show conclusively that the ISHE and ANE in CoFeB are separate phenomena with different origins and can coexist in the same material with opposite response to a thermal gradient.

  12. Thermally Driven Pure Spin and Valley Currents via the Anomalous Nernst Effect in Monolayer Group-VI Dichalcogenides

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang;

    2015-01-01

    The spin and valley-dependent anomalous Nernst effects are analyzed for monolayer MoS2 and other group-VI dichalcogenides. We find that pure spin and valley currents can be generated perpendicular to the applied thermal gradient in the plane of these two-dimensional materials. This effect provide...

  13. Nonreciprocal spin wave spectroscopy of thin Ni–Fe stripes

    NARCIS (Netherlands)

    Khalili Amiri, P.K.; Rejaei, B.; Vroubel, M.; Zhuang, Y.

    2007-01-01

    The authors report on the observation of nonreciprocal spin wave propagation in a thin ( ∼ 200 nm) patterned Ni–Fe stripe. The spin wave transmission spectrum is measured using a pair of microstrip lines as antennas. The nonreciprocity of surface wave dispersion brought about by an adjacent aluminum

  14. Spin waves in a skyrmion crystal

    Science.gov (United States)

    Petrova, Olga; Tchernyshyov, Oleg

    2012-02-01

    We derive the spectrum of low-frequency spin waves in skyrmion crystals observed recently in noncentrosymmetric ferromagnets [1-4]. We treat the skyrmion crystal as a superposition of three helices whose wavevectors form an equilateral triangle [1]. The low-frequency spin waves are Goldstone modes associated with displacements of skyrmions. Their dispersion is determined by the elastic properties of the skyrmion crystal and by the kinetic terms of the effective Lagrangian, which include both kinetic energy and a Berry phase term reflecting a non-trivial topology of magnetization. The Berry phase term acts like an effective magnetic field, mixing longitudinal and transverse vibrations into a gapped cyclotron mode and a twist wave with a quadratic dispersion [5]. [4pt][1] Muehlbauer, Binz, Jonietz, Pfleiderer, Rosch, Neubauer, Georgii, Boeni, Science 323, 915 (2009). [0pt][2] Muenzer, Neubauer, Adams, Muehlbauer, Franz, Jonietz, Georgii, et al., Phys. Rev. B 81, 041203 (2010). [0pt][3] Yu, Onose, Kanazawa, Park, Han, Matsui, Nagaosa, Tokura, Nature 465, 901 (2010). [0pt][4] Yu, Kanazawa, Onose, Kimoto, Zhang, Ishiwata, Matsui, Tokura, Nat. Mater. 10, 106 (2011). [0pt][5] Petrova, Tchernyshyov, arXiv:1109.4990v2 [cond-mat.mes-hall

  15. Demonstration of a robust magnonic spin wave interferometer

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  16. Broken Lifshitz invariance, spin waves and hydrodynamics

    CERN Document Server

    Roychowdhury, Dibakar

    2016-01-01

    In this paper, based on the basic principles of thermodynamics, we explore the hydrodynamic regime of interacting Lifshitz field theories in the presence of broken rotational invariance. We compute the entropy current and discover new dissipative effects those are consistent with the principle of local entropy production in the fluid. In our analysis, we consider both the parity even as well as the parity odd sector upto first order in the derivative expansion. Finally, we argue that the present construction of the paper could be systematically identified as that of the hydrodynamic description associated with \\textit{spin waves} (away from the domain of quantum criticality) under certain limiting conditions.

  17. Transverse spin Seebeck effect versus anomalous and planar Nernst effects in Permalloy thin films.

    Science.gov (United States)

    Schmid, M; Srichandan, S; Meier, D; Kuschel, T; Schmalhorst, J-M; Vogel, M; Reiss, G; Strunk, C; Back, C H

    2013-11-01

    Transverse magnetothermoelectric effects are studied in Permalloy thin films grown on MgO and GaAs substrates and compared to those grown on suspended SiN(x) membranes. The transverse voltage along platinum strips patterned on top of the Permalloy films is measured versus the external magnetic field as a function of the angle and temperature gradients. After the identification of the contribution of the planar and anomalous Nernst effects, we find an upper limit for the transverse spin Seebeck effect, which is several orders of magnitude smaller than previously reported.

  18. Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required

    CERN Document Server

    Hensley, Brandon S

    2016-01-01

    In light of recent observational results indicating an apparent lack of correlation between the Anomalous Microwave Emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons (PAHs), we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly-constrained grain size, charge, and dipole moment distributions, we discus...

  19. Spin Waves in a Classical Compressible Heisenberg Chain

    NARCIS (Netherlands)

    Fivez, J.; Raedt, H. De

    1980-01-01

    The effect of the spin—lattice interaction on the spin dynamics of a classical Heisenberg chain is studied by means of a truncated continued fraction. At low temperature, the spin correlation length and the spin wave frequency show the same simple dependence on the coupling.

  20. Theory of Spin Waves in Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Cooke, J. F.

    1976-01-01

    A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...

  1. Modeling calcium wave based on anomalous subdiffusion of calcium sparks in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available Ca(2+ sparks and Ca(2+ waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC coupling process in cardiac myocytes. Although the classical Fick's law is widely used to model Ca(2+ sparks and Ca(2+ waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM paradox. However, the anomalous subdiffusion model successfully reproduces Ca(2+ sparks of experimental results. In this paper, in the light of anomalous subdiffusion of Ca(2+ sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic Ca(2+ release of Ca(2+ release units (CRUs. Our model successfully reproduces calcium waves with physiological parameters. The results reveal how Ca(2+ concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous Ca(2+ spark can induce a Ca(2+ wave. With physiological Ca(2+ currents (2pA through CRUs, it is shown that an initial firing of four adjacent CRUs can form a Ca(2+ wave. Furthermore, the phenomenon of calcium waves collision is also investigated.

  2. Investigation of dominant spin wave modes by domain walls collision

    Energy Technology Data Exchange (ETDEWEB)

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2014-06-28

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.

  3. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  4. Spin wave absorber generated by artificial surface anisotropy for spin wave device network

    Science.gov (United States)

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-09-01

    Spin waves (SWs) have the potential to reduce the electric energy loss in signal processing networks. The SWs called magnetostatic forward volume waves (MSFVWs) are advantageous for networking due to their isotropic dispersion in the plane of a device. To control the MSFVW flow in a processing network based on yttrium iron garnet, we developed a SW absorber using artificial structures. The mechanical surface polishing method presented in this work can well control extrinsic damping without changing the SW dispersion of the host material. Furthermore, enhancement of the ferromagnetic resonance linewidth over 3 Oe was demonstrated.

  5. Generalized Elliott-Yafet theory of electron spin relaxation in metals: origin of the anomalous electron spin lifetime in MgB2.

    Science.gov (United States)

    Simon, F; Dóra, B; Murányi, F; Jánossy, A; Garaj, S; Forró, L; Bud'ko, S; Petrovic, C; Canfield, P C

    2008-10-24

    The temperature dependence of the electron-spin relaxation time in MgB2 is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB2 and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport.

  6. Voltage modulation of propagating spin waves in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); CREST, Japan Science Technology, Kawaguchi, Saitama 332-0012 (Japan); Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Suzuki, Yoshishige, E-mail: suzuki-y@mp.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); CREST, Japan Science Technology, Kawaguchi, Saitama 332-0012 (Japan); Display and Semiconductor Physics Department, Korea University, Sejong 339-700 (Korea, Republic of)

    2015-05-07

    The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.

  7. Anomalous spin excitation spectrum of the Heisenberg model in a magnetic field.

    Science.gov (United States)

    Syljuåsen, Olav F; Lee, Patrick A

    2002-05-20

    Making the assumption that high-energy fermions exist in the two dimensional spin- 1/2 Heisenberg antiferromagnet, we present predictions based on the pi-flux ansatz for the dynamic structure factor when the antiferromagnet is subject to a uniform magnetic field. The main result is the presence of gapped excitations in a momentum region near (pi,pi) with energy lower than that at (pi,pi). This is qualitatively different from spin-wave theory predictions and may be tested by experiments or by quantum Monte Carlo.

  8. Planck Early Results: New Light on Anomalous Microwave Emission from Spinning Dust Grains

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Balbi, A; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Bernard, J -P; Bersanelli, M; Bhatia, R; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Cabella, P; Cappellini, B; Cardoso, J -F; Casassus, S; Catalano, A; Cayón, L; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, C; Christensen, P R; Clements, D L; Colombi, S; Couchot, F; Coulais, A; Crill, B P; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Gasperis, G; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Dickinson, C; Donzelli, S; Doré, O; Dörl, U; Douspis, M; Dupac, X; Efstathiou, G; En\\sslin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Génova-Santos, R T; Giard, M; Giardino, G; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hoyland, R J; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knox, L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leach, S; Leonardi, R; Lilje, P B; Linden-V\\ornle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; MacTavish, C J; Maffei, B; Maino, D; Mandolesi, N; Mann, R; Maris, M; Marshall, D J; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, A; Naselsky, P; Natoli, P; Netterfield, C B; N\\orgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Pajot, F; Paladini, R; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Poutanen, T; Prézeau, G; Procopio, P; Prunet, S; Puget, J -L; Reach, W T; Rebolo, R; Reich, W; Reinecke, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Rowan-Robinson, M; Rubi\; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, P; Smoot, G F; Starck, J -L; Stivoli, F; Stolyarov, V; Stompor, R; Sudiwala, R; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Torre, J -P; Tristram, M; Tuovinen, J; Umana, G; Valenziano, L; Varis, J; Verstraete, L; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Watson, R; Wilkinson, A; Ysard, N; Yvon, D; Zacchei, A; Zonca, A

    2011-01-01

    Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchus molecular clouds. The spectra are well fitted by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20-40 GHz and are detected at high significances of 17.1sigma and 10.4sigma, respectively. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density neutral gas appears to play a minor role. In Rho Ophiuchus, the ~30 GHz peak is dominated by dense molecular gas, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irra...

  9. Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required

    Science.gov (United States)

    Hensley, Brandon S.; Draine, B. T.

    2017-02-01

    In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).

  10. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  11. Anomalous propagation of Omega VLF waves near the geomagnetic equator

    Science.gov (United States)

    Ohtani, A.; Kikuchi, T.; Nozaki, K.; Kurihara, N.; Kuratani, Y.; Ohse, M.

    1983-09-01

    Omega HAIKU, REUNION, and LIBERIA signals were received and anomalous propagation characteristics were obtained near the geomagnetic equator. Short-period fluctuations were found in the phase of the HAIKU 10.2 kHz signal in November 1979 and in the phase and amplitude of the HAIKU 13.6 kHz signal in November 1981. These cyclic fluctuations are in close correlation with the phase cycle slippings, which occur most frequently when the receiver is located at 6 S geomagnetic latitude. On the basis of anisotropic waveguide mode theory indicating much less attenuation in WE propagation than in EW propagation at the geomagnetic equator, it is concluded that the short-period fluctuations in the phase and amplitude are due to interference between the short-path and the long-path signals.

  12. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    CERN Document Server

    Ruiz, D E

    2015-01-01

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Both phenomena are governed by an effective gauge Hamiltonian, which vanishes in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of $N$ resonant modes, where $N$ is arbitrary, and lead to equations for the wave spin, which happens to be a $(N^2-1)$-dimensional spin vector. As a special case, classical equations for a Dirac particle $(N=2)$ are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangi...

  13. A Case Against Spinning PAHs as the Source of the Anomalous Microwave Emission

    CERN Document Server

    Hensley, Brandon S

    2015-01-01

    We employ the all-sky map of the anomalous microwave emission (AME) produced by component separation of the microwave sky to study correlations between the AME and Galactic dust properties. We find that while the AME is highly correlated with all tracers of dust emission, fluctuations in the AME intensity per dust optical depth are uncorrelated with fluctuations in the emission from polycyclic aromatic hydrocarbons (PAHs), casting doubt on the association between AME and PAHs. Further, we find that the best predictor of the AME strength is the dust radiance and that the AME intensity increases with increasing radiation field strength, at variance with predictions from the spinning dust hypothesis. A reconsideration of other emission mechanisms, such as magnetic dipole emission, is warranted.

  14. A dual-isotope rubidium comagnetometer to search for anomalous long-range spin-mass (spin-gravity) couplings of the proton

    CERN Document Server

    Kimball, D F Jackson; Valdez, J; Swiatlowski, J; Rios, C; Peregrina-Ramirez, R; Montcrieffe, C; Kremer, J; Dudley, J; Sanchez, C

    2013-01-01

    The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of Rb-85 and Rb-87 atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of Rb-85 and Rb-87 spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented.

  15. Nonlinear spin-wave excitations at low magnetic bias fields

    Science.gov (United States)

    Woltersdorf, Georg

    We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.

  16. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  17. Universal spin-momentum locking of evanescent waves

    CERN Document Server

    Van Mechelen, Todd

    2015-01-01

    We show the existence of an inherent property of evanescent electromagnetic waves: spin-momentum locking, where the direction of momentum fundamentally locks the polarization of the wave. We trace the ultimate origin of this phenomenon to complex dispersion and causality requirements on evanescent waves. We demonstrate that every case of evanescent waves in total internal reflection, surface states and optical fibers/waveguides possesses this intrinsic spin-momentum locking. We derive the Stokes parameters for evanescent waves which reveal an intriguing result - every fast decaying evanescent wave is inherently circularly polarized with its handedness tied to the direction of propagation. We also show the existence of a fundamental angle associated with total internal reflection (TIR) such that propagating waves locally inherit perfect circular polarized characteristics from the evanescent wave. This circular TIR condition occurs if and only if the ratio of permittivities of the two dielectric media exceeds t...

  18. Predictability of the Appearance of Anomalous Waves at Sufficiently Small Benjamin-Feir Indices

    CERN Document Server

    Ruban, V P

    2016-01-01

    The numerical simulation of the nonlinear dynamics of random sea waves at moderately small Benjamin-Feir indices and its comparison with the linear dynamics (at the coincidence of spatial Fourier harmonics near a spectral peak at a certain time $t_p$) indicate that the appearance of a rogue wave can be predicted in advance. If the linear approximation shows the presence of a sufficiently extensive and/or high group of waves in the near future after $t_p$, an anomalous wave is almost necessarily formed in the nonlinear model. The interval of reliable forecasting covers several hundred wave periods, which can be quite sufficient in practice for, e.g., avoiding the meeting of a ship with a giant wave.

  19. Spin-wave multiple excitations in nanoscale classical Heisenberg antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhuofei [University of Georgia, Athens; Landau, David P [University of Georgia, Athens; Stocks, George Malcolm [ORNL; Brown, G. [Florida State University, Tallahassee

    2015-02-17

    Monte Carlo and spin dynamics techniques have been used to perform large-scale simulations of the dynamic behavior of a nanoscale, classical, Heisenberg antiferromagnet on a simple-cubic lattice with linear sizes L≤ 40 at a temperature below the Neel temperature. In this study, nanoparticles are modeled with completely free boundary conditions, i.e., six free surfaces, and nanofilms are modeled with two free surfaces in the spatial z direction and periodic boundaries parallel to the surfaces in the xy direction, which are compared to the infinite system with periodic boundary conditions. The temporal evolutions of spin configurations were determined numerically from coupled equations of motion for individual spins using a fast spin dynamics algorithm with the fourth-order Suzuki-Trotter decomposition of exponential operators, with initial spin configurations generated by Monte Carlo simulations. The local dynamic structure factor S(q,ω) was calculated from the local space- and time-displaced spin-spin correlation function. Multiple excitation peaks for wave vectors within the first Brillouin zone appear in the spin-wave spectra of the transverse component of dynamic structure factor ST (q,ω) in the nanoscale classical Heisenberg antiferromagnet, which are lacking if periodic boundary conditions are used. With the assumption of q-space spin-wave reflections with broken momentum conservation due to free-surface confinements, we successfully explained those spectra quantitatively in the linear dispersion region. Meanwhile, we also observed two unexpected quantized spin-wave excitation modes in the spatial z direction in nanofilms for ST (q,ω) not expected in bulk systems. In conclusion, the results of this study indicate the presence of unexpected forms of spin-wave excitation behavior that have yet to be observed experimentally but could be directly tested through neutron scattering experiments on nanoscale RbMnF3 particles or

  20. Entanglement between low- and high-lying atomic spin waves

    Science.gov (United States)

    Ding, D. S.; Wang, K.; Zhang, W.; Shi, S.; Dong, M. X.; Yu, Y. C.; Zhou, Z. Y.; Shi, B. S.; Guo, G. C.

    2016-11-01

    Establishing a quantum interface between different physical systems is of special importance for developing the practical versatile quantum networks. Entanglement between low- and high-lying atomic spin waves is essential for building up Rydberg-based quantum information engineering, which is also helpful to study the dynamics behavior of entanglement under external perturbations. Here, we report on the successful storage of a single photon as a high-lying atomic spin wave in a quantum regime. By storing a K-vector entanglement between a single photon and low-lying spin wave, we experimentally realize the entanglement between low- and high-lying atomic spin waves in two separated atomic systems. This makes our experiment a primary demonstration of Rydberg quantum memory of entanglement, representing a primary step toward the construction of a hybrid quantum interface.

  1. On the coupling between spinning particles and cosmological gravitational waves

    CERN Document Server

    Milillo, Irene; Montani, Giovanni

    2008-01-01

    The influence of spin in a system of classical particles on the propagation of gravitational waves is analyzed in the cosmological context of primordial thermal equilibrium. On a flat Friedmann-Robertson-Walker metric, when the precession is neglected, there is no contribution due to the spin to the distribution function of the particles. Adding a small tensor perturbation to the background metric, we study if a coupling between gravitational waves and spin exists that can modify the evolution of the distribution function, leading to new terms in the anisotropic stress, and then to a new source for gravitational waves. In the chosen gauge, the final result is that, in the absence of other kind of perturbations, there is no coupling between spin and gravitational waves.

  2. Spin waves and the order-disorder transition in chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.

    1969-01-01

    The inelastic magnetic scattering of neutrons has been studied in Cr and Cr0.95-Mn0.05 both below and above the Neel temperature. The temperature dependence of the spin-wave velocity in the alloy has been measured below TN. The scattering above TN may also be interpreted in terms of spin-wavelike...

  3. Spin waves in antiferromagnetic FeF2

    DEFF Research Database (Denmark)

    Hutchings, M T; Rainford, B.D.; Guggenheim, H J

    1970-01-01

    Spin-wave dispersion in antiferromagnetic FeF2 has been investigated by inelastic neutron scattering using a chopper time-of-flight spectrometer. The single mode observed has a relatively flat dispersion curve rising from 53 cm-1 at the zone centre to 79 cm-1 at the zone boundary. A spin...

  4. New Spin-Wave Mode in Weak Ferromagnetic Fermi Liquids

    OpenAIRE

    Petkova, Penka I.

    1999-01-01

    We study a phenomenological model for weak ferromagnetic Fermi liquids and investigate the properties of the spin waves in the model. The Landau kinetic equation is used to derive, in addition to the known Goldstone mode, a new spin-wave mode -- the first Silin-like ferromagnetic mode. We discuss the role of the interaction parameter F^a_1 on the behavior of the Goldstone mode and the first Silin-like ferromagnetic mode.

  5. Anomalous attenuation of extraordinary waves in ionosphere heating experiments experimental results of 2000-2001

    CERN Document Server

    Zabotin, N A; Kovalenko, E S; Frolov, V L; Komrakov, G P; Mityakov, N A; Sergeev, E N

    2001-01-01

    Multiple scattering from artificial random irregularities HF-induced in the ionosphere F region causes significant attenuation of both ordinary and extraordinary radio waves together with the conventional anomalous absorption of ordinary waves due to their conversion into the plasma waves. To study in detail features of this effect, purposeful measurements of the attenuation of weak probing waves of the extraordinary polarization have been performed at the Sura heating facility. Characteristic scale lengths of the involved irregularities are ~0.1-1 km across the geomagnetic field lines. To determine the spectral characteristics of these irregularities from the extraordinary probing wave attenuation measurements, a simple procedure of the inverse problem solving has been implemented and some conclusions about the artificial irregularity features have been drawn. Theory and details of experiments have been stated earlier. This paper reports results of two experimental campaigns carried out in August 2000 and Ju...

  6. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-01

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  7. Magnetization dynamics and spin pumping induced by standing elastic waves

    Science.gov (United States)

    Azovtsev, A. V.; Pertsev, N. A.

    2016-11-01

    The magnetization dynamics induced by standing elastic waves excited in a thin ferromagnetic film is described with the aid of micromagnetic simulations taking into account the magnetoelastic coupling between spins and lattice strains. Our calculations are based on the numerical solution of the Landau-Lifshitz-Gilbert equation comprising the damping term and the effective magnetic field with all relevant contributions. The simulations have been performed for 2-nm-thick F e81G a19 film dynamically strained by longitudinal and transverse standing waves with various frequencies, which span a wide range around the resonance frequency νres of coherent magnetization precession in unstrained F e81G a19 film. It is found that standing elastic waves give rise to complex local magnetization dynamics and spatially inhomogeneous dynamic patterns in the form of standing spin waves with the same wavelength. Remarkably, the amplitude of magnetization precession does not go to zero at nodes of these spin waves, which cannot be precisely described by simple analytical formulae. In the steady-state regime, magnetization oscillates with the frequency of the elastic wave, except in the case of longitudinal waves with frequencies well below νres, where the magnetization precesses with variable frequency strongly exceeding the wave frequency. The results obtained for the magnetization dynamics driven by elastic waves are used to calculate the spin current pumped from the dynamically strained ferromagnet into adjacent paramagnetic metal. Numerical calculations demonstrate that the transverse charge current in the paramagnetic layer, which is created by the spin current via inverse spin Hall effect, is high enough to be measured experimentally.

  8. On polarization parameters of spin-$1$ particles and anomalous couplings in $e^+e^-\\to ZZ/Z\\gamma$

    CERN Document Server

    Rahaman, Rafiqul

    2016-01-01

    We propose a complete set of asymmetries to construct the polarization density matrix for a massive spin-$1$ particle at colliders. We study their sensitivity to the anomalous trilinear gauge couplings of neutral gauge bosons in $e^+e^-\\to ZZ/Z\\gamma$ processes with unpolarized initial beams. We use these polarization asymmetries, along with the cross-section, to obtain a simultaneous limit on all the anomalous coupling using Markov Chain Monte Carlo (MCMC) method. For an $e^+e^-$ collider running at $500$ GeV center-of-mass energy and $100$ fb$^{-1}$ of integrated luminosity the simultaneous limits on the anomalous couplings are $1\\sim3\\times 10^{-3}$.

  9. Spin Waves in 2D ferromagnetic square lattice stripe

    OpenAIRE

    Ahmed, Maher Z.

    2011-01-01

    In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...

  10. Anomalous shear wave attenuation in the shallow crust beneath the Coso volcanic regionn, California ( USA).

    Science.gov (United States)

    Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori

    1988-01-01

    We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors

  11. Anomalous wave structure in magnetized materials described by non-convex equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Susana, E-mail: serna@mat.uab.es [Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Marquina, Antonio, E-mail: marquina@uv.es [Departamento de Matematicas, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2014-01-15

    We analyze the anomalous wave structure appearing in flow dynamics under the influence of magnetic field in materials described by non-ideal equations of state. We consider the system of magnetohydrodynamics equations closed by a general equation of state (EOS) and propose a complete spectral decomposition of the fluxes that allows us to derive an expression of the nonlinearity factor as the mathematical tool to determine the nature of the wave phenomena. We prove that the possible formation of non-classical wave structure is determined by both the thermodynamic properties of the material and the magnetic field as well as its possible rotation. We demonstrate that phase transitions induced by material properties do not necessarily imply the loss of genuine nonlinearity of the wavefields as is the case in classical hydrodynamics. The analytical expression of the nonlinearity factor allows us to determine the specific amount of magnetic field necessary to prevent formation of complex structure induced by phase transition in the material. We illustrate our analytical approach by considering two non-convex EOS that exhibit phase transitions and anomalous behavior in the evolution. We present numerical experiments validating the analysis performed through a set of one-dimensional Riemann problems. In the examples we show how to determine the appropriate amount of magnetic field in the initial conditions of the Riemann problem to transform a thermodynamic composite wave into a simple nonlinear wave.

  12. Magnetization oscillations and waves driven by pure spin currents

    Science.gov (United States)

    Demidov, V. E.; Urazhdin, S.; de Loubens, G.; Klein, O.; Cros, V.; Anane, A.; Demokritov, S. O.

    2017-02-01

    Recent advances in the studies of pure spin currents-flows of angular momentum (spin) not accompanied by the electric currents-have opened new horizons for the emerging technologies based on the electron's spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.

  13. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    Science.gov (United States)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  14. Highly retrievable spin-wave-photon entanglement source.

    Science.gov (United States)

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  15. Wave Sources, Energy Propagation and Conversion for Anomalous Rossby Wave Activities Along the West Asian Jet Stream

    Institute of Scientific and Technical Information of China (English)

    YANG Lianmei; Zhang Qingyun

    2009-01-01

    Characteristics of the wave sources, energy propagation and conversion for anomalous Rossby wave activ- ities (RWAs) along the West Asian jet stream (WAJS) in summer are examined based on the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanaiysis data from 1958 to 2003, using the vorticity source equation, the Eliassen-Palm (EP) flux, and the wave energy equation under diabatic heating. The study aims to find the dynamical causes for RWA anomalies along the WAJS and to improve the understanding of mid-high latitude circulation anomalies. The results show that the negative vorticity source and the strong EP flux divergence over the Mediterranean Sea and the North Atlantic - Scandinavian Peninsula area act as the wave sources for RWA anomalies along the WAJS. When the intensity and position of the wave sources are anomalous, the excited eastward-propagating RWA along the WAJS also behaves anomalously. In strong (weak) years of RWA, Rossby waves excited by the strong divergence of EP fluxes over the Iceland - Scandinavian Peninsula area (east to the Scandinavian Peninsula) propagate eastward and southeastward. The eastward propagating waves become strengthened (weakened) after turning southeastward near the Ural Mountains and then entering the Asian subtropi- cal westerly jet stream (ASWJS) over the Caspian Sea-Aral Sea-Xinjiang. The southeastward propagating waves also strengthen (weaken) after directly entering the ASWJS over the eastern Mediterranean-the Black Sea. Furthermore, the divergence of EP fluxes over the Mediterranean also strengthens (weakens) in the strong (weak) years, so they jointly bring about the strong (weak) RWA along the WAJS. Finally, the pertur- bation available potential energy (PAPE) along the WAJS (15°-60°E) produced by diabatic heating, is far greater than the conversion from the kinetic energy of the basic flow into the perturbation kinetic energy and from the available potential

  16. Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening

    Science.gov (United States)

    Martín-Solís, J. R.; Sánchez, R.; Esposito, B.

    2002-05-01

    Due to the relativistic decrease of the electron cyclotron frequency, a cyclotron resonance may appear between runaway electrons and lower hybrid waves. A single particle description of the runaway dynamics [J. R. Martín-Solís et al., Phys. Plasmas 5, 2370 (1998)] is extended to analyze the effect of the interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening. The conditions under which the resonant interaction can play a role in limiting the runaway energy are established and it is shown that, under typical lower hybrid current drive operation parameters, an efficient wave-particle coupling may occur. Observations of a fast pitch angle scattering event during the current decay phase of Ohmic discharges in the Toroidal Experiment for Technically Oriented Research (TEXTOR) [R. J. E. Jaspers, Ph.D. thesis, Technical University Eindhoven (1995)] are interpreted in terms of such interaction.

  17. Damping factor estimation using spin wave attenuation in permalloy film

    Energy Technology Data Exchange (ETDEWEB)

    Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp [Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180 (Japan); Yamanoi, Kazuto [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kasai, Shinya; Mitani, Seiji [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan)

    2015-05-07

    Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.

  18. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...

  19. Curvature-Induced Asymmetric Spin-Wave Dispersion

    Science.gov (United States)

    Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila

    2016-11-01

    In magnonics, spin waves are conceived of as electron-charge-free information carriers. Their wave behavior has established them as the key elements to achieve low power consumption, fast operative rates, and good packaging in magnon-based computational technologies. Hence, knowing alternative ways that reveal certain properties of their undulatory motion is an important task. Here, we show using micromagnetic simulations and analytical calculations that spin-wave propagation in ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is asymmetric regarding the sign of the wave vector. It is a purely curvature-induced effect and its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical expression of the dispersion relation has the same mathematical form as in thin films with the Dzyalonshiinsky-Moriya interaction. Therefore, this curvature-induced effect can be seen as a "dipole-induced Dzyalonshiinsky-Moriya-like" effect.

  20. On the spin wave multifractal spectra in magnetic multilayers

    Science.gov (United States)

    Bezerra, C. G.; Albuquerque, E. L.; , E. Nogueira, Jr.

    The multifractal properties of spin wave bandwidths in quasiperiodic magnetic multilayers are studied. The profiles of the bandwidths are analyzed and the f( α) function is calculated for different values of the dimensionless in-plane wave vector kxa and for four different sequences: Fibonacci, double-period, Thue-Morse and Rudin-Shapiro. We note that the f( α) spectra is qualitatively the same for different values of kxa.

  1. Searching for Gravitational Waves from Compact Binaries with Precessing Spins

    CERN Document Server

    Harry, Ian; Bohé, Alejandro; Buonanno, Alessandra

    2016-01-01

    Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or anti-aligned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron-star--black-hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have a factor of ten to twenty more templates than the aligned-spin banks, we find an overall improvement in signal recovery at fixed false-alarm rate for systems with high-mass ratio and highly precessing spins ---up to 60\\% for neutron-star--black-hole mergers. This gain in se...

  2. Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars

    Science.gov (United States)

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-02-01

    By using observations of the Hulse-Taylor pulsar, we constrain the gravitational wave (GW) speed to the level of 1 0-2 . We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows us to directly constrain the cosmological couplings in the effective field theory of dark energy formalism.

  3. A dual-isotope rubidium comagnetometer to search for anomalous long-range spin-mass (spin-gravity) couplings of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Derek F.J.; Lacey, Ian; Valdez, Julian; Swiatlowski, Jerlyn; Rios, Cesar; Peregrina-Ramirez, Rodrigo; Montcrieffe, Caitlin; Kremer, Jackie; Dudley, Jordan; Sanchez, C. [Department of Physics, California State University - East Bay, Hayward, California, 94542-3084 (United States)

    2013-07-15

    The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of {sup 85}Rb and {sup 87}Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of {sup 85}Rb and {sup 87}Rb spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation

    Energy Technology Data Exchange (ETDEWEB)

    Macia, Ferran; Kent, Andrew D [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Hoppensteadt, Frank C, E-mail: fmb2@nyu.edu [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (United States)

    2011-03-04

    Magnetization dynamics in nanomagnets has attracted broad interest since it was predicted that a dc current flowing through a thin magnetic layer can create spin-wave excitations. These excitations are due to spin momentum transfer, a transfer of spin angular momentum between conduction electrons and the background magnetization, that enables new types of information processing. Here we show how arrays of spin-torque nano-oscillators can create propagating spin-wave interference patterns of use for memory and computation. Memristic transponders distributed on the thin film respond to threshold tunnel magnetoresistance values, thereby allowing spin-wave detection and creating new excitation patterns. We show how groups of transponders create resonant (reverberating) spin-wave interference patterns that may be used for polychronous wave computation and information storage.

  5. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  6. Gravitational waves from spinning eccentric binaries

    CERN Document Server

    Csizmadia, Péter; Rácz, István; Vasúth, Mátyás

    2012-01-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relat...

  7. Excitations of incoherent spin-waves due to spin-transfer torque.

    Science.gov (United States)

    Lee, Kyung-Jin; Deac, Alina; Redon, Olivier; Nozières, Jean-Pierre; Dieny, Bernard

    2004-12-01

    The possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current, as predicted by Slonczewski and Berger, has recently been demonstrated. This observation opens important prospects of applications in radiofrequency components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics within the coherent spin-torque model. In some cases, the telegraph noise caused by spin-currents could not be quantitatively described by that model. This has led to controversy about the need for an effective magnetic temperature model. Here we interpret the experimental results of Kiselev et al. using micromagnetic simulations. We point out the key role played by incoherent spin-wave excitation due to spin-transfer torque. The incoherence is caused by spatial inhomogeneities in local fields generating distributions of local precession frequencies. We observe telegraph noise with gigahertz frequencies at zero temperature. This is a consequence of the chaotic dynamics and is associated with transitions between attraction wells in phase space.

  8. User-friendly software for modeling collective spin wave excitations

    Science.gov (United States)

    Hahn, Steven; Peterson, Peter; Fishman, Randy; Ehlers, Georg

    There exists a great need for user-friendly, integrated software that assists in the scientific analysis of collective spin wave excitations measured with inelastic neutron scattering. SpinWaveGenie is a C + + software library that simplifies the modeling of collective spin wave excitations, allowing scientists to analyze neutron scattering data with sophisticated models fast and efficiently. Furthermore, one can calculate the four-dimensional scattering function S(Q,E) to directly compare and fit calculations to experimental measurements. Its generality has been both enhanced and verified through successful modeling of a wide array of magnetic materials. Recently, we have spent considerable effort transforming SpinWaveGenie from an early prototype to a high quality free open source software package for the scientific community. S.E.H. acknowledges support by the Laboratory's Director's fund, ORNL. Work was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  9. Spin-wave and critical neutron scattering from chromium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.

    1971-01-01

    Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general, ...

  10. Inelastic scattering of neutrons by spin waves in terbium

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Houmann, Jens Christian Gylden

    1966-01-01

    Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...

  11. Semiclassical wave packet study of anomalous isotope effect in ozone formation.

    Science.gov (United States)

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-10-21

    We applied the semiclassical initial value representation method to calculate energies, lifetimes, and wave functions of scattering resonances in a two-dimensional potential for O+O2 collision. Such scattering states represent the metastable O3* species and play a central role in the process of ozone formation. Autocorrelation functions for scattering states were computed and then analyzed using the Prony method, which permits one to extract accurate energies and widths of the resonances. We found that the results of the semiclassical wave packet propagation agree well with fully quantum results. The focus was on the 16O16O18O isotopomer and the anomalous isotope effect associated with formation of this molecule, either through the 16O16O+18O or the 16O+16O18O channels. An interesting correlation between the local vibration mode character of the metastable states and their lifetimes was observed and explained. New insight is obtained into the mechanism by which the long-lived resonances in the delta zero-point energy part of spectrum produce the anomalously large isotope effect.

  12. Integrable open spin chain in super Yang-Mills and the plane-wave/SYM duality

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi

    2004-02-01

    We investigate the integrable structures in an Script N = 2 superconformal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, Script N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic scalar operators is identified with the hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.

  13. Integrable Open Spin Chain in Super Yang-Mills and the Plane-wave/SYM duality

    CERN Document Server

    Chen, B; Wu, Y S; Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi

    2004-01-01

    We investigate the integrable structures in an N=2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N=4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.

  14. Spin-transfer torque in ferromagnetic bilayers generated by anomalous Hall effect and anisotropic magnetoresistance

    Science.gov (United States)

    Taniguchi, Tomohiro; Grollier, Julie; Stiles, M. D.

    2016-10-01

    We propose an experimental scheme to determine the spin-transfer torque efficiency excited by the spin-orbit interaction in ferromagnetic bilayers from the measurement of the longitudinal magnetoresistace. Solving a diffusive spin-transport theory with appropriate boundary conditions gives an analytical formula of the longitudinal charge current density. The longitudinal charge current has a term that is proportional to the square of the spin-transfer torque efficiency and that also depends on the ratio of the film thickness to the spin diffusion length of the ferromagnet. Extracting this contribution from measurements of the longitudinal resistivity as a function of the thickness can give the spin-transfer torque efficiency.

  15. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  16. Thermodynamic transport theory of spin waves in ferromagnetic insulators

    Science.gov (United States)

    Basso, Vittorio; Ferraro, Elena; Piazzi, Marco

    2016-10-01

    We use the Boltzmann transport theory in the relaxation time approximation to describe the thermal transport of spin waves in a ferromagnet. By treating spin waves as magnon excitations we are able to compute analytically and numerically the coefficients of the constitutive thermomagnetic transport equations. As a main result, we find that the absolute thermomagnetic power coefficient ɛM, relating the gradient of the potential of the magnetization current and the gradient of the temperature, in the limit of low temperature and low field, is a constant ɛM=-0.6419 kB/μB . The theory correctly describes the low-temperature and magnetic-field dependencies of spin Seebeck experiments. Furthermore, the theory predicts that in the limit of very low temperatures the spin Peltier coefficient ΠM, relating the heat and the magnetization currents, tends to a finite value which depends on the amplitude of the magnetic field. This indicates the possibility to exploit the spin Peltier effect as an efficient cooling mechanism in cryogenics.

  17. Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale

    Directory of Open Access Journals (Sweden)

    Thomas eSebastian

    2015-06-01

    Full Text Available Spin waves constitute an important part of research in the field of magnetization dynamics. Spin waves are the elementary excitations of the spin system in a magnetically ordered material state and magnons are their quasi particles. In the following article, we will discuss the optical method of Brillouin light scattering (BLS spectroscopy which is a now a well established tool for the characterization of spin waves. BLS is the inelastic scattering of light from spin waves and confers several benefits: the ability to map the spin wave intensity distribution with spatial resolution and high sensitivity as well as the potential to simultaneously measure the frequency and the wave vector and, therefore, the dispersion properties.For several decades, the field of spin waves gained huge interest by the scientific community due to its relevance regarding fundamental issues of spindynamics in the field of solid states physics. The ongoing research in recent years has put emphasis on the high potential of spin waves regarding information technology. In the emerging field of textit{magnonics}, several concepts for a spin-wave based logic have been proposed and realized. Opposed to charge-based schemes in conventional electronics and spintronics, magnons are charge-free currents of angular momentum, and, therefore, less subject to scattering processes that lead to heating and dissipation. This fact is highlighted by the possibility to utilize spin waves as information carriers in electrically insulating materials. These developments have propelled the quest for ways and mechanisms to guide and manipulate spin-wave transport. In particular, a lot of effort is put into the miniaturization of spin-wave waveguides and the excitation of spin waves in structures with sub-micrometer dimensions.For the further development of potential spin-wave-based devices, the ability to directly observe spin-wave propagation with spatial resolution is crucial. As an optical

  18. Stern Gerlach spin filter using surface acoustic waves

    Science.gov (United States)

    Santos, Paulo V.; Nitta, Junsaku; Ploog, Klaus H.

    2004-12-01

    We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.

  19. Anomalous Hall effect and spin-orbit torques in MnGa/IrMn films: Modification from strong spin Hall effect of the antiferromagnet

    Science.gov (United States)

    Meng, K. K.; Miao, J.; Xu, X. G.; Wu, Y.; Zhao, X. P.; Zhao, J. H.; Jiang, Y.

    2016-12-01

    We report systematic measurements of anomalous Hall effect (AHE) and spin-orbit torques (SOTs) in MnGa/IrMn films, in which a single L 10-MnGa epitaxial layer reveals obvious orbital two-channel Kondo (2CK) effect. As increasing the thickness of the antiferromagnet IrMn, the strong spin Hall effect (SHE) has gradually suppressed the orbital 2CK effect and modified the AHE of MnGa. A scaling involving multiple competing scattering mechanisms has been used to distinguish different contributions to the modified AHE. Finally, the sizeable SOT in the MnGa/IrMn films induced by the strong SHE of IrMn have been investigated. The IrMn layer also supplies an in-plane exchange bias field and enables nearly field-free magnetization reversal.

  20. Direct mapping of spin and orbital entangled wave functions under interband spin-orbit coupling of giant Rashba spin-split surface states

    Science.gov (United States)

    Noguchi, Ryo; Kuroda, Kenta; Yaji, K.; Kobayashi, K.; Sakano, M.; Harasawa, A.; Kondo, Takeshi; Komori, F.; Shin, S.

    2017-01-01

    We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with a polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin splitting, the different orbital and spin parts of the surface wave function are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridization proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p - and s -polarized light.

  1. Real-time observation of Snell’s law for spin waves in thin ferromagnetic films

    Science.gov (United States)

    Tanabe, Kenji; Matsumoto, Ryo; Ohe, Jun-ichiro; Murakami, Shuichi; Moriyama, Takahiro; Chiba, Daichi; Kobayashi, Kensuke; Ono, Teruo

    2014-05-01

    We report the real-time observation of spin-wave propagation across a step inserted between two ferromagnetic films with different thicknesses. Because the dispersion relation of the spin wave depends on the thickness of the film, the step works as a junction to affect the spin wave propagation. When the spin wave transmits through the junction, the wavenumber undergoes modulation as per Snell’s law, which states that the refraction index is proportional to the wavenumber. From the viewpoint of magnonics, the present achievement opens up new possibilities of controlling the wavenumber of spin waves.

  2. Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Yu, Weichao; Lan, Jin; Wu, Ruqian; Xiao, Jiang

    2016-10-01

    Spin waves are collective excitations propagating in the magnetic medium with ordered magnetizations. Magnonics, utilizing the spin wave (magnon) as an information carrier, is a promising candidate for low-dissipation computation and communication technologies. We discover that, due to the Dzyaloshinskii-Moriya interaction, the scattering behavior of the spin wave at a magnetic domain wall follows a generalized Snell's law, where two magnetic domains work as two different mediums. Similar to optical total reflection that occurs at water-air interfaces, spin waves may experience total reflection at the magnetic domain walls when their incident angle is larger than a critical value. We design a spin-wave fiber using a magnetic domain structure with two domain walls, and demonstrate that such a spin-wave fiber can transmit spin waves over long distances by total internal reflections, in analogy to an optical fiber.

  3. Quantum spin-quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures

    Science.gov (United States)

    Zhou, Tong; Zhang, Jiayong; Xue, Yang; Zhao, Bao; Zhang, Huisheng; Jiang, Hua; Yang, Zhongqin

    2016-12-01

    A novel topological insulator with tunable edge states, called a quantum spin-quantum anomalous Hall (QSQAH) insulator, is predicted in a heterostructure of a hydrogenated Sb (S b2H ) monolayer on a LaFe O3 substrate by using ab initio methods. The substrate induces a drastic staggered exchange field in the S b2H film, which plays an important role to generate the QSQAH effect. A topologically nontrivial band gap (up to 35 meV) is opened by Rashba spin-orbit coupling, which can be enlarged by strain and an electric field. To understand the underlying physical mechanism of the QSQAH effect, a tight-binding model based on px and py orbitals is constructed. With the model, the exotic behaviors of the edge states in the heterostructure are investigated. Dissipationless chiral charge edge states related to one valley are found to emerge along both sides of the sample, whereas low-dissipation spin edge states related to the other valley flow only along one side of the sample. These edge states can be tuned flexibly by polarization-sensitive photoluminescence controls and/or chemical edge modifications. Such flexible manipulations of the charge, spin, and valley degrees of freedom provide a promising route towards applications in electronics, spintronics, and valleytronics.

  4. The c—Axis Infrared Conductivity of a dx2—y2— Wave Superconductor with the Hopping Assisted by the Spin Fluctuations

    Institute of Scientific and Technical Information of China (English)

    LOUPing; CAOLie-Zhao; 等

    2002-01-01

    A theory of the c-axis infrared conductivity of a dx2-y2- wave superconductor due to the competition between the interlayer direct hopping and the hopping assisted by the spin fluctuations has been developed.The prediction of our theory captures the main feature of the experiment.Thus we argue that the anomalous behavior of the c-axis infrared conductivity of the underdoped cuprates in superconducting state may be properly understood within the theory.

  5. Spin Waves Excitations of Co/Pt Multilayers

    Directory of Open Access Journals (Sweden)

    W. Zhou

    2012-01-01

    Full Text Available The present work investigated interlayer couplings of [Co(20 Å/Pt(30 Å]5, [Co(4 Å/Pt(7 Å]30, and [Co(4 Å/Pt(9 Å]30 multilayers with strong perpendicular magnetic anisotropy (PMA. Brillouin light scattering measurements were utilized to obtain spin waves of these samples with in-plane external magnetic fields. Interlayer couplings were found to be very sensitive to Pt thickness change from 7 Å to 9 Å, which implies that Pt atoms were more difficult to be polarized to provide interlayer coupling between Co layers than in the perpendicular external magnetic field situation. When Pt layer is 30 Å, the observed single spin wave can confirm the disappearance of interlayer coupling even when Co layer thickness is 20 Å.

  6. Shape-manipulated spin-wave eigenmodes of magnetic nanoelements

    Science.gov (United States)

    Zhang, Guang-Fu; Li, Zhi-Xiong; Wang, Xi-Guang; Nie, Yao-Zhuang; Guo, Guang-Hua

    2015-09-01

    The magnetization dynamics of nanoelements with tapered ends have been studied by micromagnetic simulations. Several spin-wave modes and their evolutions with the sharpness of the element ends are characterized. The edge mode localized in the two ends of the element can be effectively tuned by the element shape. Its frequency increases rapidly with the tapered parameter h and its localized area gradually expands toward the element center, and it finally merges into the fundamental mode at a critical tapered parameter h0. For nanoelements with h > h0, the edge mode is completely suppressed. The standing spin-wave modes mainly in the internal area of the element are less affected by the element shape. The shifts of their frequencies are small and they display different tendencies. The evolution of the spin-wave modes with the element shape is explained by considering the change of the internal field. Project supported by the National Natural Science Foundation of China (Grant No. 11374373), the Doctoral Fund of Ministry of Education of China (Grant No. 20120162110020), the Natural Science Foundation of Hunan Province of China (Grant No. 13JJ2004), and the Science and Technology Planning of Yiyang City of Hunan Province of China (Grant No. 2014JZ54).

  7. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  8. Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains.

    Science.gov (United States)

    Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun

    2016-05-18

    A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor [Formula: see text], which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field [Formula: see text] and the dislocation [Formula: see text], or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates.

  9. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    CERN Document Server

    Andreev, Pavel A

    2014-01-01

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves. Kinetic theory allows to obtain spectrum of the spin-electron acoustic waves including effects of occupation of quantum states more accurately than quantum hydrodynamics. We apply quantum kinetic to calculate the Landau damping of the spin-electron acoustic waves. We have considered contribution of ions dynamics in the spin-electron acoustic wave spectrum. We obtain contribution of ions in the Landau damping in temperature regime of classic ions. Kinetic analysis for ion-acoustic, zero sound, and Langmuir waves at separated spin-up and spin-down electron dynamics is presented as well.

  10. Planck early results. XX. New light on anomalous microwave emission from spinning dust grains

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Giraud-Héraud, Y.;

    2011-01-01

    Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and ρ Ophiuchi molecular clouds. The spectra are well fitted by ...

  11. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...

  12. The Stueckelberg wave equation and the anomalous magnetic moment of the electron

    Science.gov (United States)

    Bennett, A. F.

    2012-07-01

    The parametrized relativistic quantum mechanics of Stueckelberg (1942 Helv. Phys. Acta 15 23) represents time as an operator, and has been shown elsewhere to yield the recently observed phenomena of quantum interference in time, quantum diffraction in time and quantum entanglement in time. The Stueckelberg wave equation as extended to a spin-1/2 particle by Horwitz and Arshansky (1982 J. Phys. A: Math. Gen. 15 L659) is shown here to yield the electron g-factor g = 2 (1 + α/2π), to leading order in the renormalized fine structure constant α, in agreement with the quantum electrodynamics of Schwinger (1948 Phys. Rev. 73 416).

  13. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    Science.gov (United States)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  14. Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates

    Institute of Scientific and Technical Information of China (English)

    CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui

    2011-01-01

    The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.

  15. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    Science.gov (United States)

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  16. Influence of wave frequency variation on anomalous cyclotron resonance interaction of energetic electrons with finite amplitutude ducted whistler-mode wave

    CERN Document Server

    Erokhin, N S; Rycroft, M J; Nunn, D G

    1996-01-01

    The influence of wave frequency variation on the anomalous cyclotron resonance $\\omega=\\omega_{Be}+kv_{\\|}$ interaction (ACRI) of energetic electrons with a ducted finite amplitude whistler-mode wave propagating through the so-called transient plasma layer (TPL) in the magnetosphere or in the ionosphere is studied both analytically and numerically. The anomalous cyclotron resonance interaction takes place in the case when the whistler-mode wave amplitude $B_{W}$ is consistent with the gradient of magnetic field interacting energetic electrons (synchronous particles) is determined. The efficiencies of both the pitch-angle scattering of resonant electrons and their transverse acceleration are studied and the efficiencies dependence on the magnitude and sign of the wave frequency drift is considered. It has been shown that in the case of ACRI occuring under conditions relevant to VLF-emission in the magnetosphere, the energy and pitch-angle changes of synchronous electrons may be enchanced by a factor $10^2 \\div...

  17. Planck early results. XX. New light on anomalous microwave emission from spinning dust grains

    DEFF Research Database (Denmark)

    Bucher, M.; Delabrouille, J.; Giraud-Héraud, Y.;

    2011-01-01

    by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20......-40 GHz and are detected at high significances of 17.1σ for Perseus and 8.4σ for ρ Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In ρ Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas...... of the synchrotron, free-free, and thermal dust. We present spectra for two of the candidates; S140 and S235 are bright Hii regions that show evidence for AME, and are well fitted by spinning dust models. © ESO, 2011....

  18. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt)

    Science.gov (United States)

    Zhang, Yang; Sun, Yan; Yang, Hao; Železný, Jakub; Parkin, Stuart P. P.; Felser, Claudia; Yan, Binghai

    2017-02-01

    We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that we show are essential to determine the AHC and SHC, are compared for these different compounds. We point out that Mn3Ga shows a large SHC of about 600 (ℏ /e ) (Ωcm) -1 . Our work provides insights into the realization of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.

  19. Anomalous Hall and spin Hall conductivities in three-dimensional ferromagnetic topological insulator/normal insulator heterostructures

    Science.gov (United States)

    Men'shov, Vladimir N.; Tugushev, Victor V.; Chulkov, Evgueni V.

    2016-05-01

    In this letter we theoretically demonstrate how an interface perturbation and size effect can be used to manipulate the transport properties of semiconductor heterostructures composed of a thin film of a three-dimensional topological insulator (TI) doped with magnetic impurities and sandwiched between topologically normal insulators. In the framework of a continual scheme, we argue that electron states of the TI film are strongly dominated by its thickness and magnetization as well as by an interface potential whose variation can lead to the modification of topological properties of the heterostructure. This opens diverse possibilities to efficiently tune intrinsic Hall conductivity in the system. We calculate a phase diagram of the heterostructure, which demonstrates a series of quantum transitions between distinct regimes of conductivity. We derive the anomalous Hall conductivity and the spin Hall conductivity dependences on the chemical potential. Applicability conditions of the used approach are also discussed.

  20. Influence of defects and disorder on anomalous Hall effect and spin Seebeck effect on permalloy and Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vilanova Vidal, Enrique

    2012-09-19

    In this work Heusler thin films have been prepared and their transport properties have been studied. Of particularly interest is the anomalous Hall effect (AHE). The effect is a long known but still not fully understood transport effect. Most theory papers focus on the influence of one particular contribution to the AHE. Actual measured experimental data, however, often are not in accordance with idealized assumptions. This thesis discusses the data analysis for materials with low residual resistivity ratios. As prototypical materials, half metallic Heusler compounds are studied. Here, the influence of defects and disorder is apparent in a material with a complex topology of the Fermi surface. Using films with different degrees of disorder, the different scattering mechanisms can be separated. For Co{sub 2}FeSi{sub 0.6}Al{sub 0.4} and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, the AHE induced by B2-type disorder and temperature-dependent scattering is positive, while DO{sub 3}-type disorder and possible intrinsic contributions possess a negative sign. For these compounds, magneto-optical Kerr effects (MOKE) are investigated. First order contributions as a function of intrinsic and extrinsic parameters are qualitatively analyzed. The relation between the crystalline ordering and the second order contributions to the MOKE signal is studied. In addition, sets of the Heusler compound Co{sub 2}MnAl thin films were grown on MgO(100) and Si(100) substrates by radio frequency magnetron sputtering. Composition, magnetic and transport properties were studied systematically for samples deposited at different conditions. In particular, the anomalous Hall effect resistivity presents an extraordinarily temperature independent behavior in a moderate magnetic field range from 0 to 0.6 T. The off-diagonal transport at temperatures up to 300 C was analyzed. The data show the suitability of the material for Hall sensors working well above room temperature. Recently, the spin Seebeck effect

  1. Spin wave spectra in perpendicularly magnetized permalloy rings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Ding, J.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kostylev, M. [School of Physics, University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2015-03-16

    The dynamic behavior of perpendicularly magnetized permalloy circular rings is systematically investigated as a function of film thickness using broadband field modulated ferromagnetic resonance spectroscopy. We observed the splitting of one spin wave mode into a family of dense resonance peaks for the rings, which is markedly different from the single mode observed for continuous films of the same thickness. As the excitation frequency is increased, the mode family observed for the rings gradually converges into one mode. With the increase in the film thickness, a sparser spectrum of modes is observed. Our experimental results are in qualitative agreement with the dynamic micromagnetic simulations.

  2. Dipole-exchange spin waves in Fibonacci magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Milton Pereira, J. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60451-970 Fortaleza, Ceara (Brazil)]. E-mail: pereira@fisica.yfc.br; Costa Filho, R.N. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60451-970 Fortaleza, Ceara (Brazil)]. E-mail: rai@fisica.ufc.br

    2005-08-29

    A microscopic model is employed to calculate the spectrum of spin waves in quasiperiodic magnetic multilayers in the dipole-exchange regime. Results are presented for structures in which thin ferromagnetic films are separated by non-magnetic spacers following a Fibonacci sequence and extend previous magnetostatic calculations. The results show the splitting of the frequency bands and the mode mixing caused by the dipolar interaction between the films as a function of spacer thickness, as well as the fractal aspect of the spectrum induced by the non-periodic aspect of the structure.

  3. Model tests on anomalous low friction and pendulum-type wave phenomena

    Institute of Scientific and Technical Information of China (English)

    Hao Wu; Qin Fang; Yusheng Lu; Yadong Zhang; Jinchun Liu

    2009-01-01

    The anomalous low friction (ALF) and pendulum-type wavewave) phenomena were two typical,nonlinear,geo-mechanical,and dynamic responses in deep-block rock mass discovered from in situ observations,which occurred from the movement of the geo-blocks under the impact of external pulses,such as deep confined explosion,earthquake,and rock bursts.With the aim to confirm the existence of the above two phenomena and study the variation laws of them experimentally,laboratory tests on the granite and cement mortar continuum and blocks models were conducted on the self-independently developed multipurpose testing system,respectively.The ALF phenomenon was realized under two loading schemes,the blocks model and working block were acted upon by the joint action of vertical impact and horizontal static force as well as the joint action of both vertical and horizontal impacts with different time intervals.It revealed that the discrete time delays corresponding to the local maximums and minimums of the horizontal displacement amplitudes and residual horizontal displacements of the working block satisfied the canonical sequences with the multiple of √2,most of which satisfied the quantitative expression (√2)~i △/V_p.Besides,the one-dimensional impact experiments were carried out on the blocks granite model,continuum,and blocks cement mortar models,respectively.Based on the comparison and analysis of the propagation properties (amplitudes and the Fourier spectrums of acceleration time histories of blocks) of the 1D stress wave in the above models,it is indicated that the fractures in rock mass have tremendous effect on the attenuation of acceleration amplitudes and high-frequency waves.By comparison of the model test data with the in situ measurement conclusions,the existence of the μ wave was confirmed experimentally in the cement mortar blocks model with larger dimensions,and the frequencies corresponding to the local maximums of spectral density curves of three

  4. Characteristics of anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic, and external electric-field induced spin-orbit couplings

    Institute of Scientific and Technical Information of China (English)

    Liu Song; Yan Yu-Zhen; Hu Liang-Bin

    2012-01-01

    The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic,extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically.Based on a unified semiclassical theoretical approach,it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions,namely an intrinsic contribution determined by the Berry curvature in the momentum space,an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering.The characteristics of these competing contributions are discussed in detail in the paper.

  5. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.

  6. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Science.gov (United States)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin; Tang, Wei; Zeng, Zhong-ming; Guo, Guang-hua

    2016-09-01

    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results.

  7. Broadband and total autocollimation of spin waves using planar magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-04-14

    We present a systematic study of spin wave autocollimation in planar magnonic crystals comprising of antidot arrays in nanoscale permalloy (Py: Ni{sub 80}Fe{sub 20}) thin films. It is shown that a careful design of such crystals can allow for the autocollimation of the entire spin wave spectrum without any significant evanescence or any drop in the group velocity. These developments allow us access to spin wave beams which do not disperse or converge outside a waveguide. Collimated spin wave beams would be essential in applications such as dense signal routing and multiplexing in higher dimensional magnonic systems.

  8. Mapping of spin wave propagation in a one-dimensional magnonic crystal

    Science.gov (United States)

    Ordóñez-Romero, César L.; Lazcano-Ortiz, Zorayda; Drozdovskii, Andrey; Kalinikos, Boris; Aguilar-Huerta, Melisa; Domínguez-Juárez, J. L.; Lopez-Maldonado, Guillermo; Qureshi, Naser; Kolokoltsev, Oleg; Monsivais, Guillermo

    2016-07-01

    The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch's theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.

  9. Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity

    Science.gov (United States)

    Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A.; Ordóñez-Romero, César L.; Grishin, A.

    2015-03-01

    We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample.

  10. Spin-orbit decomposition of ab initio nuclear wave functions

    Science.gov (United States)

    Johnson, Calvin W.

    2015-03-01

    Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.

  11. Spin density wave order, topological order, and Fermi surface reconstruction

    CERN Document Server

    Sachdev, Subir; Chatterjee, Shubhayu; Schattner, Yoni

    2016-01-01

    In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order co-incides with the reconstruction of the Fermi surfaces into small 'pockets'. We present models which display this transition, while also displaying an alternative route between these phases via an intermediate phase with topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We establish an intimate connection between the suppression of certain defects in the SDW order, and the presence of Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models to the physics of the hole-doped cuprates near optimal doping.

  12. The Luther-Emery liquid: Spin gap and anomalous flux period

    Science.gov (United States)

    Seidel, Alexander; Lee, Dung-Hai

    2005-01-01

    We study the dependence of the ground state energy on an applied Aharonov-Bohm flux Φ for the Luttinger model with large momentum scattering. Employing the method of finite size bosonization, we show that for systems with a spin gap but with gapless charge degrees of freedom, the ground state energy has an exact period of hc/2e , i.e., half a flux quantum, in the limit of large system size L . Finite size corrections are found to vanish exponentially in L . This behavior is contrasted to that of the spin gapless case, for both even and odd particle number. Generalizations to finite temperature are also discussed.

  13. Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires

    NARCIS (Netherlands)

    Yokoyama, T.; Eto, M.; Nazarov, Y.V.

    2014-01-01

    We investigate theoretically the Josephson junction of semiconductor nanowire with strong spin-orbit (SO) interaction in the presence of magnetic field. By using a tight-binding model, the energy levels En of Andreev bound states are numerically calculated as a function of phase difference φ between

  14. Anomalous Spin Response and Virtual-Carrier-Mediated Magnetism in a Topological Insulator

    Science.gov (United States)

    Kernreiter, T.; Governale, M.; Zülicke, U.; Hankiewicz, E. M.

    2016-04-01

    We present a comprehensive theoretical study of the static spin response in HgTe quantum wells, revealing distinctive behavior for the topologically nontrivial inverted structure. Most strikingly, the q =0 (long-wavelength) spin susceptibility of the undoped topological-insulator system is constant and equal to the value found for the gapless Dirac-like structure, whereas the same quantity shows the typical decrease with increasing band gap in the normal-insulator regime. We discuss ramifications for the ordering of localized magnetic moments present in the quantum well, both in the insulating and electron-doped situations. The spin response of edge states is also considered, and we extract effective Landé g factors for the bulk and edge electrons. The variety of counterintuitive spin-response properties revealed in our study arises from the system's versatility in accessing situations where the charge-carrier dynamics can be governed by ordinary Schrödinger-type physics; it mimics the behavior of chiral Dirac fermions or reflects the material's symmetry-protected topological order.

  15. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  16. Current-induced modulation of backward spin-waves in metallic microstructures

    Science.gov (United States)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m‑2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m‑2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  17. Anomalous curie response of impurities in quantum-critical spin-1/2 Heisenberg antiferromagnets.

    Science.gov (United States)

    Höglund, Kaj H; Sandvik, Anders W

    2007-07-13

    We consider a magnetic impurity in two different S=1/2 Heisenberg bilayer antiferromagnets at their respective critical interlayer couplings separating Néel and disordered ground states. We calculate the impurity susceptibility using a quantum Monte Carlo method. With intralayer couplings in only one of the layers (Kondo lattice), we observe an anomalous Curie constant C*, as predicted on the basis of field-theoretical work [S. Sachdev, Science 286, 2479 (1999)10.1126/science.286.5449.2479]. The value C* = 0.262 +/- 0.002 is larger than the normal Curie constant C=S(S+1)/3. Our low-temperature results for a symmetric bilayer are consistent with a universal C*.

  18. The role of spin fluctuations in the anomalous anisotropy of MnBi

    Science.gov (United States)

    Barker, Joseph; Mryasov, Oleg

    2016-12-01

    MnBi is unusual for having a magnetic anisotropy energy which increases with temperature. Recent theoretical works have studied how the lattice effects the anisotropy. However, the role of spin fluctuations has been hitherto overlooked, even though this is the primary mechanism for the temperature dependence of anisotropy in magnetic materials. We have created a model of MnBi including all anisotropy terms which are indicated from experiments and theory. Parameterizing based on experimental measurements we used the Callen-Callen theory to calculate the temperature dependence of the magnetic anisotropy due to spin fluctuations. An excellent agreement is found with experiments, across the entire temperature range. Our results indicate the driving force to be the competition between in-plane single ion and out of plane two-ion anisotropies.

  19. Misaligned spin and orbital axes cause the anomalous precession of DI Herculis

    CERN Document Server

    Albrecht, Simon; Snellen, Ignas A G; Winn, Joshua N

    2009-01-01

    The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. One system, however -- DI Herculis -- has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. Here we report that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.

  20. Anomalous Doppler effect at interaction of electromagnetic waves with electron beams experimental researches and opportunities for application

    CERN Document Server

    Ivanov, B I

    2002-01-01

    The anomalous Doppler effect (ADE) in systems consisting of an electron beam and slow wave structure in longitudinal magnetic field is considered. Resonance condition for amplifiers and generators based on ADE enables resonance maintaining in case of wave phase velocity or beam velocity changing (acceleration of ions at ADE, reception of high efficiency at microwave generation). Essential advantages can be reached at combination of ADE and normal Doppler effect. The review of experimental studies of ADE is presented: amplification and generation of microwaves, energetic relations, excitation of accelerating IH-structures, development of ion acceleration.

  1. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Science.gov (United States)

    Mi, Bin-Zhou

    2016-09-01

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green's function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  2. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-15

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  3. Modified Spin Wave Analysis of Low Temperature Properties of the Spin-1/2 Frustrated Ferromagnetic Ladder

    Science.gov (United States)

    Hida, Kazuo; Iino, Takashi

    2012-03-01

    Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interactions are investigated using the modified spin wave approximation in the region with ferromagnetic ground states. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.

  4. Observation of spin-wave Doppler shift in Co90Fe10/Ru micro-strips for evaluating spin polarization

    Science.gov (United States)

    Sugimoto, Satoshi; Rosamond, Mark C.; Linfield, Edmund H.; Marrows, Christopher H.

    2016-09-01

    The current-induced spin-wave Doppler shift has been investigated for Co90Fe10 films, with and without under- and overlayers of Ru, aiming to obtain quantitative insights into the value of spin polarization of the diffusive electrical currents flowing in this material. This extends the use of spin-wave Doppler shift spectroscopy beyond the study of permalloy to other soft magnetic materials suitable for use in spintronic applications such as racetrack memories. The Damon-Eshbach spin-wave mode was employed, and a control experiment of permalloy yielded a value of spin polarization of P = 0.44 ± 0.03 for that material. An extended method to properly evaluate spin-wave Doppler shifts is developed that takes account of the non-negligible Oersted fields that are generated by the current density asymmetry caused by conducting under- or overlayers. The values of spin polarization for various Co90Fe10-based structures are found to lie in the range of 0.3-0.35, only slightly less than in permalloy.

  5. Symmetry ensemble theory of the spin wave emitting effect driven by current in nanoscale magnetic multilayers

    Institute of Scientific and Technical Information of China (English)

    Ren Min; Zhang Lei; Hu Jiu-Ning; Dong Hao; Deng Ning; Chen Pei-Yi

    2009-01-01

    This paper proposes a symmetry ensemble model for the magnetic dynamics caused by spin transfer torque in nanoscale pseudo-spin-valves, in which individual spin moments in the free layer are considered as subsystems to form a spinor ensemble. The magnetization dynamics equation of the ensemble was developed. By analytically investigating the equation, many magnetization dynamics properties excited by polarized current reported in experiments, such as double spin wave modes and the abrupt frequency jump, can be successfully explained. It is pointed out that an external field is not necessary for spin wave emitting (SWE) and a novel perpendicular configuration structure can provide much higher SWE efficiency in zero magnetic field.

  6. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  7. Magnetic anisotropy and quantized spin waves in hematite nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker

    2004-01-01

    We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... the temperature dependence of the magnetic anisotropy, which is strongly related to the suppression of the Morin transition in nanoparticles of hematite. Further, the localization of the signal in both energy and momentum transfer brings evidence for finite-size quantization of spin waves in the system....... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...

  8. Studies on Nematic Liquid Crystal Using Spin Wave Theory

    Institute of Scientific and Technical Information of China (English)

    LIUJian-Jun; LIUXiao-Jing; SHENMan; YANGGuo-Chen

    2004-01-01

    A spin wave theory is proposed to study nematic liquid crystals. Since the orientation of the molecular long axis and the angular momentum of the molecule rotating around its long axis have the same direction, operators can be introduced to research the nematic liquid crystal. By transforming the intermolecular interaction potential,the Hamiltonian of the system has the same form as that of the ferromagnetic substance. The relation of the order parameters to the reduced temperature can be obtained. It is in good agreement with the experimental results in the low temperature region. In the high temperature region close to the transition point, by using the Hamiltonian, the transition point can be obtained, which is near to the Maier-Saupe's result.

  9. Coherence and stiffness of spin waves in diluted ferromagnets

    Science.gov (United States)

    Turek, I.; Kudrnovský, J.; Drchal, V.

    2016-11-01

    We present the results of a numerical analysis of magnon spectra in supercells simulating two-dimensional and bulk random diluted ferromagnets with long-range pair exchange interactions. We show that low-energy spectral regions for these strongly disordered systems contain a coherent component leading to interference phenomena manifested by a pronounced sensitivity of the lowest excitation energies to the adopted boundary conditions. The dependence of configuration averages of these excitation energies on the supercell size can be used for an efficient determination of the spin-wave stiffness D . The developed formalism is applied to the ferromagnetic Mn-doped GaAs semiconductor with optional incorporation of phosphorus; the obtained concentration trends of D are found to be in reasonable agreement with recent experiments. Moreover, a relation of the spin stiffness to the Curie temperature TC has been studied for Mn-doped GaAs and GaN semiconductors. It is found that the ratio TC/D exhibits qualitatively the same dependence on Mn concentration in both systems.

  10. On magnetic monopoles, the anomalous g-factor of the electron and the spin-orbit coupling in the Dirac theory

    CERN Document Server

    Coddens, Gerrit

    2016-01-01

    We discuss the algebra and the interpretation of the anomalous Zeeman effect and the spin-orbit coupling within the Dirac theory. Whereas the algebra for the anomalous Zeeman effect is impeccable and therefore in excellent agreement with experiment, the physical interpretation of that algebra uses images that are based on macroscopic intuition but do not correspond to the meaning of this algebra. The interpretation violates the Lorentz symmetry. We give an alternative intuitive description of the meaning of this effect, which respects the symmetry and is exact. It can be summarized by stating that a magnetic field makes any charged particle spin. We show also that the traditional discussion about magnetic monopoles confuses two issues, viz. the symmetry of the Maxwell equations and the quantization of charge. These two issues define each a different concept of magnetic monopole. They cannot be merged together into a unique all-encompassing issue. We also generalize the minimal substitution for a charged parti...

  11. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.

    1975-01-01

    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin........ The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...

  12. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    Science.gov (United States)

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-12-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature.

  13. Anomalous thermal decoherence in a quantum magnet measured with neutron spin echo spectroscopy

    Science.gov (United States)

    Groitl, F.; Keller, T.; Rolfs, K.; Tennant, D. A.; Habicht, K.

    2016-04-01

    The effect of temperature dependent asymmetric line broadening is investigated in Cu (NO3)2.2.5 D2O , a model material for a one-dimensional bond alternating Heisenberg chain, using the high resolution neutron-resonance spin echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian, opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard linewidth measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain without convolution with the resolution function of the background spectrometer. This application of NRSE is very promising and establishes a basis for further experiments on different systems, since the results for Cu(NO3)2. 2.5 D2O are applicable to a broad range of quantum systems.

  14. Incommensurate spin density wave as a signature of spin-orbit coupling and precursor of topological superconductivity

    Science.gov (United States)

    Farrell, Aaron; Wu, P.-K.; Kao, Y.-J.; Pereg-Barnea, T.

    2016-12-01

    On a square lattice, the Hubbard model at half filling reduces to the Heisenberg model and exhibits antiferromagnetism. When doped away from half filling this model gives rise to d -wave superconductivity. This behavior is reminiscent of the phenomenology of the cuprate family with their high Tcd -wave superconductivity and their antiferromagnetic parent compound. It is therefore interesting to study an extension of the Hubbard model which includes spin orbit coupling. We have previously studied this model away from half filling [see, for example, Farrell and Pereg-Barnea, Phys. Rev. B 89, 035112 (2014), 10.1103/PhysRevB.89.035112] and found that the addition of spin-orbit coupling and Zeeman field leads to topological superconductivity with d +i d pairing function. In this paper we are interested in the `parent compound' of this state. Namely, we study the half filling, strong coupling limit of the square lattice Hubbard model with spin orbit coupling and Zeeman field. The strong coupling expansion of the model is a spin model which contains compass anisotropy and Dzyaloshinsky-Moriya interaction on top of the usual Heisenberg term. We analyze this spin model classically and find an incommensurate spin density wave (ISDW) for low Zeeman fields. This ISDW has a wave vector Q ⃗ which deviates from (π ,π ) by an amount which is proportional to the spin-orbit coupling and can therefore serve as a signature. We study the stability of the ISDW phase using spin wave theory and find a stable and an unstable region. At higher but moderate Zeeman fields we find a tilted antiferromagnet and a ferromagnet at high Zeeman fields.

  15. A BeppoSAX observation of Her X-1 during the first main-on after an anomalous low-state evidence for rapid spin-down

    CERN Document Server

    Oosterbroek, T; Orlandini, M; Segreto, A; Santangelo, A; Del Sordo, S

    2001-01-01

    Results of a BeppoSAX observation of Her X-1 in 2000 October during the first main-on state after the longest recorded anomalous low-state are presented. The 0.1-30 keV spectrum, light curve and pulse profile are all consistent with those measured during previous main on-states, indicating that Her X-1 has resumed its regular 35 day cycle with similar on-state properties as before. However, from a comparison of the measured pulse period with that obtained close to the start of the anomalous low-state, it is evident that Her X-1 continued to spin-down strongly during the anomalous low-state such that the pulse period has returned to a similar value as ~15 years ago. Additionally, the occurrence time of the main-on states after the end of the anomalous low-state indicate that a change in the length, or phasing, of the 35-day cycle occurred during the anomalous low-state.

  16. Engineering spin-wave channels in submicrometer magnonic waveguides

    Directory of Open Access Journals (Sweden)

    XiangJun Xing

    2013-03-01

    Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.

  17. Spinning wave plate design for retinal birefringence scanning

    Science.gov (United States)

    Irsch, K.; Gramatikov, B. I.; Wu, Y.-K.; Guyton, D. L.

    2009-02-01

    To enhance foveal fixation detection while bypassing the deleterious effects of corneal birefringence in retinal birefringence scanning (RBS), we developed a new RBS design introducing a double-pass spinning half wave plate (HWP) and a fixed double-pass retarder into the optical system. Utilizing the measured corneal birefringence from a data set of 300 human eyes, an algorithm and a related computer program, based on Mueller-Stokes matrix calculus, were developed in MATLAB for optimizing the properties of both wave plates. Foveal fixation detection was optimized with the HWP spun 9/16 as fast as the circular scan, with the fixed retarder having a retardance of 45° and fast axis at 90°. With this new RBS design, a significant statistical improvement of 7.3 times in signal strength, i.e. FFT power, was achieved for the available data set compared with the previous RBS design. The computer-model-optimized RBS design has the potential not only for eye alignment screening, but also for remote fixation sensing and eye tracking applications.

  18. One-dimensional and spherical polarization analysis of artificially confined spin-density waves in Cr/Sn multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Masayasu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: takeda.masayasu@jaea.go.jp; Nakamura, Mitsutaka [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kakurai, Kazuhisa [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Mibu, Ko [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555 (Japan); Lelievre-Berna, Eddy [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156-38042 Grenoble Cedex 9 (France)

    2007-07-15

    In Cr/Sn(0 0 1) multilayers in which monatomic Sn nonmagnetic layers are periodically embedded, spin-density waves (SDWs) are formed below the Neel temperature like that in bulk Cr. They are, however, quite different to the SDW in bulk Cr. For instance the wavelength of the SDW is defined not simply by the nesting vector of Cr, but also by the artificial periodicity introduced by the Sn layers. We performed the spherical neutron-polarization analysis of these anomalous SDW structures by using CRYOPAD (CRYOgenic Polarization Analysis Device) as well as the one-dimensional polarization analysis in order to get more detailed magnetic structural information which could not be obtained with unpolarized neutron experiments.

  19. Raman spectroscopy studies of spin-wave in V2O3 thin films

    Science.gov (United States)

    Chen, Xiang-Bai; Kong, Meng-Hong; Choi, Jeong-Yong; Kim, Hyun-Tak

    2016-11-01

    We present studies of the enhancement of spin-wave intensity and thickness dependence of spin-wave frequency in V2O3 thin films using Raman spectroscopy. Our results show that the intensity of spin-wave at ~450 cm-1 can be enhanced with a 633 nm laser rather than a 514 nm laser. The enhancement of spin-wave intensity is due to a resonance effect correlated with the on-site V 3d-3d Coulomb energy. A thickness dependence study shows that as the film thickness increases, the frequency of spin-wave at ~450 cm-1 has a redshift, while the frequency of the A g phonon at ~525 cm-1 has negligible shift. In comparison to the thickness dependence of the XRD results, we conclude that the spin-wave at ~450 cm-1 in V2O3 exists in the basal a-b plane, and the Raman study of the spin-wave provides a sensitive method for investigating the lattice and/or structure properties of crystals.

  20. Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect and Anomalous Cross Section induced by Quantum Interference

    CERN Document Server

    Lin, D H

    2003-01-01

    Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere'' like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.

  1. A formulation without partial wave decomposition for scattering of spin-1/2 and spin-0 particles

    CERN Document Server

    Abdulrahman, I

    2010-01-01

    A new technique has been developed to calculate scattering of spin-1/2 and spin-0 particles. The so called momentum-helicity basis states are constructed from the helicity and the momentum states, which are not expanded in the angular momentum states. Thus, all angular momentum states are taken into account. Compared with the partial-wave approach this technique will then give more benefit especially in calculations for higher energies. Taking as input a simple spin-orbit potential, the Lippman-Schwinger equations for the T-matrix elements are solved and some observables are calculated.

  2. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin L.; Bao, Mingqiang, E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Bi, Lei [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wen, Qiye; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chatelon, Jean Pierre [Univerisité de Saint-Etienne, Université de Lyon, LT2C, 25 rue du Docteur Rémy Annino, 42000 Saint-Etienne (France); Ross, C. A., E-mail: mingqiangbao@gmail.com, E-mail: caross@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-08

    An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of −H{sup →}×n{sup →}, where n{sup →} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.

  3. The spin wave dispersion of NdCu 2 in strong magnetic fields

    Science.gov (United States)

    Kramp, S.; Loewenhaupt, M.; Rotter, M.

    2000-03-01

    The study of the spin wave excitation spectrum in NdCu 2 revealed a pronounced minimum which forms an energy gap. Previous experiments showed that the gap energy remains finite in external magnetic fields parallel to the b-axis. In this paper we report on measurements of the spin wave dispersion in strong magnetic fields applied parallel to the c-direction (hard magnetization axis). The spin wave gap changes its position and soft mode behavior at a magnetic phase transition is observed. The comparison with the dispersion at μ 0H ||b=3 T reveals the anisotropy between ( ac)-plane and b-axis.

  4. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  5. Non-resonant wave front reversal of spin waves used for microwave signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Vasyuchka, V I; Chumak, A V; Hillebrands, B [Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universitaet Kaiserslautern, 67663 Kaiserslautern (Germany); Melkov, G A; Moiseienko, V A [Department of Radiophysics, National Taras Shevchenko University of Kiev, 01033 Kiev (Ukraine); Slavin, A N, E-mail: vasyuchka@physik.uni-kl.d [Department of Physics, Oakland University, Rochester, MI 48309 (United States)

    2010-08-18

    It is demonstrated that non-resonant ({omega}{sub s} {ne} {omega}{sub p}/2) wave front reversal (WFR) of spin-wave pulses (carrier frequency {omega}{sub s}) caused by pulsed parametric pumping (carrier frequency {omega}{sub p}) can be effectively used for microwave signal processing. When the spectral width {Omega}{sub s} of the signal is wider than the frequency band {Omega}{sub p} of signal amplification by pumping ({Omega}{sub s} >> {Omega}{sub p}), the non-resonant WFR can be used for the analysis of the signal spectrum. In the opposite case ({Omega}{sub s} << {Omega}{sub p}) the non-resonant WFR can be used for active (with amplification) filtering of the input signal.

  6. Anomalous spectral dependence of optical polarization and its impact on spin detection in InGaAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Puttisong, Y.; Huang, Y. Q.; Buyanova, I. A.; Chen, W. M. [Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping (Sweden); Yang, X. J.; Subagyo, A.; Sueoka, K.; Murayama, A. [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814 (Japan)

    2014-09-29

    We show that circularly polarized emission light from InGaAs/GaAs quantum dot (QD) ensembles under optical spin injection from an adjacent GaAs layer can switch its helicity depending on emission wavelengths and optical excitation density. We attribute this anomalous behavior to simultaneous contributions from both positive and negative trions and a lower number of photo-excited holes than electrons being injected into the QDs due to trapping of holes at ionized acceptors and a lower hole mobility. Our results call for caution in reading out electron spin polarization by optical polarization of the QD ensembles and also provide a guideline in improving efficiency of spin light emitting devices that utilize QDs.

  7. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  8. Electron-spin dynamics in elliptically polarized light waves

    CERN Document Server

    Bauke, Heiko; Grobe, Rainer

    2014-01-01

    We investigate the coupling of the spin angular momentum of light beams with elliptical polarization to the spin degree of freedom of free electrons. It is shown that this coupling, which is of similar origin as the well-known spin-orbit coupling, can lead to spin precession. The spin-precession frequency is proportional to the product of the laser-field's intensity and its spin density. The electron-spin dynamics is analyzed by employing exact numerical methods as well as time-dependent perturbation theory based on the fully relativistic Dirac equation and on the nonrelativistic Pauli equation that is amended by a relativistic correction that accounts for the light's spin density.

  9. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    Energy Technology Data Exchange (ETDEWEB)

    Yamanoi, K.; Yokotani, Y. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Cui, X. [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Yakata, S. [Department of Information Electronics, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Kimura, T., E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of the standing spin wave is an important advantage for the high power operation of the spin-wave device.

  10. Testing general gelativity using gravitational waves from binary neutron stars: Effect of spins

    CERN Document Server

    Agathos, Michalis; Li, Tjonnie G F; Broeck, Chris Van Den; Veitch, John; Vitale, Salvatore

    2013-01-01

    We present a Bayesian data analysis pipeline for testing GR using gravitational wave signals from coalescing compact binaries, and in particular binary neutron stars. In this study, we investigate its performance when sources with spins are taken into account.

  11. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    Energy Technology Data Exchange (ETDEWEB)

    Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadovnikov, A. V.; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Grishin, S. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2015-10-19

    We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.

  12. Transverse azimuthal dephasing of vortex spin wave in a hot atomic gas

    CERN Document Server

    Shi, Shuai; Zhang, Wei; Zhou, Zhi-Yuan; Dong, Ming-Xin; Liu, Shi-Long; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Optical fields with orbital angular momentum (OAM) interact with medium have many remarkable properties with its unique azimuthal phase, showing many potential applications in high capacity information processing, high precision measurement etc. The dephasing mechanics of optical fields with OAM in an interface between light and matter plays a vital role in many areas of physics. In this work, we study the transverse azimuthal dephasing of OAM spin wave in a hot atomic gas via OAM storage. The transverse azimuthal phase difference between the control and probe beams is mapped onto the spin wave, which essentially results in dephasing of atomic spin wave. The dephasing of OAM spin wave can be controlled by the parameters of OAM topological charge and beam waist. Our results are helpful for studying OAM light interaction with matter, maybe hold a promise in OAM-based quantum information processing.

  13. Spin-wave excitations and magnetism of sputtered Fe/Au multilayers

    Indian Academy of Sciences (India)

    M LASSRI; H SALHI; R MOUBAH; H LASSRI

    2016-08-01

    The spin-wave excitations and the magnetism of Fe/Au multilayers with different Fe thicknesses (tFe) grown by RF sputtering were investigated. The temperature dependence of spontaneous magnetization is well described by a T$_{3/2}$ law in all multilayers in the temperature range of 5–300 K. Spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization and the approximate values for the exchangeinteractions for various $t_{\\rm Fe}$ were obtained. The spin-wave constant $B$ was found to increase linearly with the inverse in the Fe thickness ($1/t_{\\rm Fe}$). Using the ferromagnetic resonance technique, the change of the anisotropy field $H_K$ as a function of $1/t_{\\rm Fe}$ was deduced. The spatial distributions of the discrete spin-wave modes were calculated. All theextracted results were in agreement with those determined experimentally and found in the literature.

  14. Interactions, disorder and spin waves in quantum Hall ferromagnets near integer filling

    CERN Document Server

    Rapsch, S

    2001-01-01

    dynamics is discussed in chapter 5 and employed to study spin waves in a domain wall structure. A hydrodynamic theory of spin waves is used to treat long-wavelength excitations of randomly disordered quantum Hall ferromagnets. Finally, the contribution of spin waves to the optical conductivity is studied in chapter 6. Predictions are made for the experimental signatures of spin waves in disordered quantum Hall systems. The observability of these signatures is discussed both for transport measurements and NMR experiments. The interplay between exchange interactions and disorder is studied in quantum Hall ferromagnets near integer filling. Both analytical and numerical methods are used to investigate a non-linear sigma model of these systems in the limit of vanishing Zeeman coupling and at zero temperature. Chapter 1 gives an introduction to the quantum Hall effect and to quantum Hall ferromagnets in particular. A brief review of existing work on disordered quantum Hall systems is included. In chapters 2-4, the...

  15. Spinon Superconductivity and Superconductivities Mediated by Spin-Waves and Phonons in Cuprates

    OpenAIRE

    Mourachkine, A.

    1998-01-01

    The disclosure of spinon superconductivity and superconductivity mediated by spin-waves in hole-doped Bi2212 cuprate raises the question about the origin of the superconductivity in other cuprates and specially in an electron-doped NCCO cuprate.

  16. Charge and spin currents in normal metal sandwiched by tow p-wave

    Directory of Open Access Journals (Sweden)

    Y Rahnavard

    2010-09-01

    Full Text Available Charge and spin transport properties of a clean $SNS$ Josephson junction (triplet superconductor-normal metal-triplet superconductor are studied using the quasiclassical Eilenberger equation of Green’s function. Our system consists of two p-wave superconducting crystals separated by a Copper nano layer. Effects of thickness of normal layer between superconductors on the spin and charge currents are investigated. Also misorientation between triplet superconductors which creates the spin current is another subject of this paper.

  17. Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins

    CERN Document Server

    Niederle, J

    2001-01-01

    New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins $s$ interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank $2n$ ($n=s-\\frac12$) antisymmetric w.r.t. $n$ pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles.

  18. Magnetic Spin Waves in CsNiF3 with an Applied Field

    DEFF Research Database (Denmark)

    Steiner, M.; Kjems, Jørgen

    1977-01-01

    The spin wave dispersion in the planar 1D ferromagnet CsNiF3 has been measured by inelastic neutron scattering in an external field. The spin wave linewidths are found to decrease with increasing field and become resolution-limited for H>10 kG at 4.2K. At high fields, H>10 kG, both energies and i...

  19. Spin Waves and Switching: The Dynamics of Exchange - Biased Co Core - CoO Shell Nanoparticles

    OpenAIRE

    Feygenson, Mikhail; Teng, Xiaowei; Inderhees, Sue E.; Yiu, Yuen; Du, Wenxin; Han, Weiqiang; Wen, Jinsheng; Xu, Zhijung; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Hagen, Mark; Qiu, Yiming; Brown, Craig M.; Zhang, Lihua; Aronson, Meigan C.

    2009-01-01

    The utility of nanoscaled ferromagnetic particles requires both stabilized moments and maximized switching speeds. During reversal, the spatial modulation of the nanoparticle magnetization evolves in time, and the energy differences between each new configuration are accomodated by the absorption or emission spin waves with different wavelengths and energy profiles. The switching speed is limited by how quickly this spin wave energy is dissipated. We present here the first observation of disp...

  20. Doppler effect in a solid medium: Spin wave emission by a precessing domain wall drifting in spin current

    Science.gov (United States)

    Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming

    2016-04-01

    The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.

  1. On polarization parameters of spin-1 particles and anomalous couplings in e^+e^-→ ZZ/Zγ

    Science.gov (United States)

    Rahaman, Rafiqul; Singh, Ritesh K.

    2016-10-01

    We study the anomalous trilinear gauge couplings of Z and γ using a complete set of polarization asymmetries for the Z boson in e^+e^-→ ZZ/Zγ processes with unpolarized initial beams. We use these polarization asymmetries, along with the cross section, to obtain a simultaneous limit on all the anomalous couplings using the Markov Chain Monte Carlo (MCMC) method. For an e^+e^- collider running at 500 GeV center-of-mass energy and 100 fb^{-1} of integrated luminosity the simultaneous limits on the anomalous couplings are 1-3× 10^{-3}.

  2. Wave function collapses in a single spin magnetic resonance force microscopy

    CERN Document Server

    Berman, G P; Tsifrinovich, V I

    2004-01-01

    We study the effects of wave function collapses in the oscillating cantilever driven adiabatic reversals (OSCAR) magnetic resonance force microscopy (MRFM) technique. The quantum dynamics of the cantilever tip (CT) and the spin is analyzed and simulated taking into account the magnetic noise on the spin. The deviation of the spin from the direction of the effective magnetic field causes a measurable shift of the frequency of the CT oscillations. We show that the experimental study of this shift can reveal the information about the average time interval between the consecutive collapses of the wave function

  3. Anomalous Propagation of Electromagnetic Waves in Anisotropic Media with a Unique Dispersion Relation

    Institute of Scientific and Technical Information of China (English)

    SHU Wei-Xing; LUO Hai-Lu; LI Fei; REN Zhong-Zhou

    2006-01-01

    @@ We investigate the propagation of electromagnetic waves at the interface between an isotropic material and the anisotropic medium with a unique dispersion relation. We show that the refraction behaviour of E-polarized waves is opposite to that of H-polarized waves, though the dispersion relations for E- and H-polarized waves are the same. It is found that waves exhibit different propagation properties in anisotropic media with different sign combinations of the permittivity and permeability tensors. Some interesting properties of propagation are also found in the special anisotropic media, leading to potential applications.

  4. Effects of frustration and cyclic exchange on the spin-1/2 Heisenberg antiferromagnet within the self-consistent spin-wave theory

    Science.gov (United States)

    Rutonjski, Milica S.; Pavkov-Hrvojević, Milica V.; Berović, Maja B.

    2016-12-01

    The relevance of the quasi-two-dimensional spin-1/2 frustrated quantum antiferromagnet (AFM) due to its possibility of modeling the high-temperature superconducting parent compounds has resulted in numerous theoretical and experimental studies. This paper presents a detailed research of the influence of the varying exchange interactions on the model magnetic properties within the framework of self-consistent spin-wave theory based on Dyson-Maleev (DM) representation. Beside the nearest neighbor (NN) interaction within the plane, the planar frustration up to the third NNs, cyclic interaction and the interlayer coupling are taken into account. The detailed description of the elementary spin excitations, staggered magnetization, spin-wave velocity renormalization factor and ground state energy is given. The results are compared to the predictions of the linear spin-wave theory and when possible also to the second-order perturbative spin-wave expansion results. Finally, having at our disposal improved experimental results for the in-plane spin-wave dispersion in high-Tc copper oxide La2CuO4, the self-consistent spin-wave theory (SCSWT) is applied to that compound in order to correct earlier obtained set of exchange parameters and high-temperature spin-wave dispersion.

  5. Anomalous Hall effect in epitaxially grown ferromagnetic FeGa/Fe3Ga hybrid structure: Evidence of spin carrier polarized by clusters

    Science.gov (United States)

    Duc Dung, Dang; Cho, Sunglae

    2013-05-01

    The anomalous Hall resistance relative with magnetic anisotropy of clusters Fe3Ga in Fe3Ga/Fe-Ga hybrid structural epitaxial was reported. The out-of-plane magnetic anisotropy was obtained for Fe3Ga/Fe-Ga hybrid structure, while in-plane magnetic anisotropy is shown in the single Fe-Ga phase epitaxial on GaAs(001). The observation of trend of saturation Hall resistance in Fe3Ga/Fe-Ga hybrid structural is compared with the Fe-Ga single crystal, which is solid evidence for spin polarization by local magnetic clusters.

  6. Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime

    CERN Document Server

    Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri

    2016-01-01

    In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.

  7. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    Science.gov (United States)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  8. Linear spin wave theory for single-Q incommensurate magnetic structures.

    Science.gov (United States)

    Toth, S; Lake, B

    2015-04-29

    Linear spin wave theory provides the leading term in the calculation of the excitation spectra of long-range ordered magnetic systems as a function of 1/√S. This term is acquired using the Holstein-Primakoff approximation of the spin operator and valid for small δS fluctuations of the ordered moment. We propose an algorithm that allows magnetic ground states with general moment directions and single-Q incommensurate ordering wave vector using a local coordinate transformation for every spin and a rotating coordinate transformation for the incommensurability. Finally we show, how our model can determine the spin wave spectrum of the magnetic C-site langasites with incommensurate order.

  9. Short-range spin- and pair-correlations : a variational wave-function

    NARCIS (Netherlands)

    van der Marel, D

    2004-01-01

    A many-body wave-function is postulated, which is sufficiently general to describe superconducting pair-correlations, and/or spin-correlations, which can occur either as long-range order or as finite-range correlations. The proposed wave-function appears to summarize some of the more relevant aspect

  10. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulations

    CERN Document Server

    Ruban, V P

    2015-01-01

    The nonlinear dynamics of an obliquely oriented wave packet at sea surface is studied both analytically and numerically for various initial parameters of the packet, in connection with the problem of oceanic rogue waves. In the framework of Gaussian variational ansatz applied to the corresponding (1+2D) hyperbolic nonlinear Schr\\"odinger equation, a simplified Lagrangian system of differential equations is derived, which determines the evolution of coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description for the process of nonlinear spatio-temporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system is integrated in quadratures, which fact allows us to understand qualitative differences between the linear and nonlinear regimes of the focusing of wave packet. Comparison of the Gaussian model predictions with results of direct numerical simulation of fully nonlinear long-cres...

  11. Spin waves in a two-sublattice antiferromagnet. A self-similar solution of the Landau-Lifshitz equation

    Science.gov (United States)

    Gorobets, Y. I.; Gorobets, Y.; Kulish, V. V.

    2017-01-01

    In the paper, spin waves in a uniaxial two-sublattice antiferromagnet are investigated. A new class of self-similar solutions of the Landau-Lifshitz equation is obtained and, therefore, a new type of spin waves is described. Examples of solutions of the found class are presented. New type of solution admits both linear and non-linear spin waves, including solitons. Space transformations used in the solution are mathematically analogous to the relativistic transformations.

  12. Suhl instabilities for spin waves in ferromagnetic nanostripes and ultrathin films

    Science.gov (United States)

    Haghshenasfard, Zahra; Nguyen, Hoa T.; Cottam, Michael G.

    2017-03-01

    A microscopic (or Hamiltonian-based) theory is employed for the spin-wave instability thresholds of nonlinear processes in ultrathin ferromagnetic stripes and films under perpendicular pumping with an intense microwave field. The spatially-quantized linear spin waves in these nanostructures may participate in parametric processes through the three-magnon interactions (the first-order Suhl process) and the four-magnon interactions (the second-order Suhl process) when pumped. By contrast with most previous studies of spin-wave instabilities made for larger samples, where macroscopic (or continuum) theories involving Maxwell's equations for magnetic dipolar effects are used, a discrete lattice of effective spins is employed. Then a dipole-exchange spin Hamiltonian is employed to investigate the behavior of the quantized spin waves under perpendicular pumping, when modifications due to the more extensive spatial confinement and edges effects in these nanostructures become pronounced. The instability thresholds versus applied magnetic field are calculated, with emphasis on the size effects and geometries of the nanostructures and on the different relative strengths of the magnetic dipole-dipole and exchange interactions in materials. Numerical results are presented using parameters for Permalloy, YIG, and EuS.

  13. Measuring the spin of black holes in binary systems using gravitational waves

    CERN Document Server

    Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-01-01

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...

  14. Lagrangian geometrical optics of classical vector waves and particles with spin

    Science.gov (United States)

    Ruiz, D. E.; Dodin, I. Y.

    2015-11-01

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the ``wave spin.'' In this work, we present a universal Lagrangian theory that describes these effects by extending the geometrical-optics approximation to small but nonvanishing λ / l , where λ is the wavelength, and l is the characteristic inhomogeneity scale (arXiv:1503.07829; arXiv:1503.07819). When applied to classical waves, this theory correctly predicts, for example, the difference between the polarization-driven bending of left- and right-polarized electromagnetic wave rays in isotropic media (arXiv:1507.05863). When applied to quantum waves, the same general theory yields a Lagrangian point-particle model for the Dirac electron, i.e. the relativistic spin-1/2 particle. The model captures both the Bargmann-Michel-Telegdi spin precession theory and the Stern-Gerlach spin-orbital coupling theory. Moreover, we present, for the first time, a calculation of the fully relativistic ponderomotive Hamiltonian for a Dirac electron in a vacuum laser field. This Hamiltonian captures not only the usual relativistic mass shift but also spin effects. This work was supported by the DOE NNSA through contract No. DE274-FG52-08NA28553, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by DOD NDSEG fellowship through contract No. 32-CFR-168a.

  15. Compression gain of spin wave signals in a magnonic YIG waveguide with thermal non-uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Kolokoltsev, O.; Gómez-Arista, Ivan; Qureshi, N.; Acevedo, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Ordóñez-Romero, César L. [Instituto de Física, Universidad Nacional Autónoma de México, CU 04510 D.F. (Mexico); Grishin, A. [Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm, Kista (Sweden)

    2015-03-01

    We report on the observation of the compression gain of the signals carried by surface spin waves (MSSWs) in yittrium iron garnet films as a result of non-uniform optical heating of the spin wave medium. Efficient gain takes place if a frequency downshift of the spin wave spectrum induced by the heating is compensated by the corresponding non-uniformity of the bias magnetic field. It is proposed that the effect can be understood in part as an interaction between spin waves and a thermally induced potential well in the sample. - Highlights: • In this manuscript we describe the case when thermal control of the magnetization profile leads to significant improvement of characteristics of a spin wave delay line element. • We believe that this technology can be used to realize reconfigurable magnonic crystals or waveguiding structures induced in the ferromagnets by scanning optic systems integrated with a semiconductor lasers. • It should be noted, in metallic systems thermal response times are of order of picoseconds.

  16. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    Science.gov (United States)

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-01-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications. PMID:27786261

  17. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves

    Science.gov (United States)

    Giordano, A.; Verba, R.; Zivieri, R.; Laudani, A.; Puliafito, V.; Gubbiotti, G.; Tomasello, R.; Siracusano, G.; Azzerboni, B.; Carpentieri, M.; Slavin, A.; Finocchio, G.

    2016-10-01

    Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as “free” layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications.

  18. Gaussian variational ansatz in the problem of anomalous sea waves: Comparison with direct numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ruban, V. P., E-mail: ruban@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2015-05-15

    The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of rogue wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.

  19. Multiple and spin off initiation of atmospheric convectively coupled Kelvin waves

    Science.gov (United States)

    Baranowski, Dariusz B.; Flatau, Maria K.; Flatau, Piotr J.; Schmidt, Jerome M.

    2017-02-01

    A novel atmospheric convectively coupled Kelvin wave trajectories database, derived from Tropical Rainfall Measuring Mission precipitation data, is used to investigate initiation of sequential Kelvin wave events. Based on the analysis of beginnings of trajectories from years 1998-2012 it is shown that sequential event initiations can be divided into two distinct categories: multiple initiations and spin off initiations, both of which involve interactions with ocean surface and upper ocean temperature variability. The results of composite analysis of the 83 multiple Kelvin wave initiations show that the local thermodynamic forcing related to the diurnal sea surface temperature variability is responsible for sequential Kelvin wave development. The composite analysis of 91 spin off Kelvin wave initiations shows that the dynamic forcing is a dominant effect and the local thermodynamic forcing is secondary. Detail case studies of both multiple and spin off initiations confirm statistical analysis. A multiple initiation occurs in the presence of the high upper ocean diurnal cycle and a spin off initiation results from both dynamic and local thermodynamic processes. The dynamic forcing is related to increased wind speed and latent heat flux likely associated with an off equatorial circulation. In addition a theoretical study of the sequential Kelvin waves is performed using a shallow water model. Finally, conceptual models of these two types of initiations are proposed.

  20. Separation of arbitrary spin wave equations in a class of ΛLTB cosmologies. Wave equations in Λ LTB cosmology

    Science.gov (United States)

    Zecca, Antonio

    2017-03-01

    The arbitrary spin field equations that are not separable, contrarily to what happens in the Robertson-Walker and Schwarzschild metrics, are studied in a general comoving spherically symmetric metric. They result to be separable by variable separation in a class of metrics governing the Lemâitre Tolman Bondi cosmological models whose physical radius has a special factorized parametric representation. The result is proved by induction by explicitly considering the spin 1, 3/2, 2 case and then the higher spin values. The procedure is based on the Newman-Penrose formalism, which takes into account the strong analogy with the Robertson-Walker metric case. The existence of a nontrivial Weyl spinor requires a symmetrization of one of the spinor wave equations for spin values greater than 1.

  1. CeRh3B2: A ferromagnet with anomalously large Ce 5d spin and orbital magnetic moments

    Science.gov (United States)

    Yaouanc, A.; Dalmas de Réotier, P.; Sanchez, J.-P.; Tschentscher, Th.; Lejay, P.

    1998-01-01

    We report a high-energy magnetic-Compton-scattering study performed on the ferromagnet CeRh3B2. This technique solely measures the electron spin magnetic moments. In contrast to a number of Ce intermetallics with nonmagnetic elements, the Ce 5d spin moment is found to be large and parallel to the Ce 4f spin moment. Therefore the Kondo effect does not play a key role for CeRh3B2. The inferred large Ce 5d orbital magnetic moment is a signature of the strong spin-orbit interaction for the Ce 5d band.

  2. Demonstration of atomic frequency comb memory for light with spin-wave storage.

    Science.gov (United States)

    Afzelius, Mikael; Usmani, Imam; Amari, Atia; Lauritzen, Björn; Walther, Andreas; Simon, Christoph; Sangouard, Nicolas; Minár, Jirí; de Riedmatten, Hugues; Gisin, Nicolas; Kröll, Stefan

    2010-01-29

    We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light, the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo-type rephasing of the dipole moments and directional retrieval of the light. This combination of photon-echo and spin-wave storage allows us to store submicrosecond (450 ns) pulses for up to 20 mus. The scheme has a high potential for storing multiple temporal modes in the single-photon regime, which is an important resource for future long-distance quantum communication based on quantum repeaters.

  3. Incommensurate spin density wave in metallic V2-yO3

    Science.gov (United States)

    Bao, Wei; Broholm, C.; Carter, S. A.; Rosenbaum, T. F.; Aeppli, G.; Trevino, S. F.; Metcalf, P.; Honig, J. M.; Spalek, J.

    1993-08-01

    We show by neutron diffraction that metallic V2-7O3 develops a spin density wave below TN~=9 K with incommensurate wave vector q~=1.7c* and an ordered moment of 0.15μB. The weak ordering phenomenon is accompanied by strong, nonresonant spin fluctuations with a velocity c=67(4) meV Å. The spin correlations of the metal are very different from those of the insulator and place V2-yO3 in a distinct class of Motte-Hubbard systems where the wave vector for magnetic order in the metal is far from a high symmetry commensurate reciprocal lattice point.

  4. Spinning swimming of Volvox by tangential helical wave

    CERN Document Server

    Felderhof, B U

    2016-01-01

    The swimming of a sphere by means of tangential helical waves running along its surface is studied on the basis of the Stokes equations. Two types of tangential waves are found. The first of these is associated with a pressure disturbance and leads to a higher rate of net rotation than the second one for the same power. It is suggested that the helical waves are relevant for the rotational swimming of Volvox.

  5. The influence of the initial velocity on the anomalous wave dynamics in expanding fireball

    Science.gov (United States)

    Konyukhov, A. V.; Likhachev, A. P.

    2016-11-01

    The quark-gluon plasma fireball expansion, appearing in the collision of relativistic heavy ions, can be accompanied by the wave anomalies associated with the quark-hadron phase transition. Namely, the composite rarefaction wave, which includes the rarefaction shock, can arise instead of a simple rarefaction wave. The emphasis of the given work is focused on the special features of these wave processes induced by nonzero quark-gluon plasma velocity at the beginning of the hydrodynamic stage of the fireball expansion. The simulation has been conducted in the framework of relativistic hydrodynamics. The equation of state used is based on the variant of the MIT-bag model. The initial conditions are formulated under the assumption that the distributions of the energy density and the baryon number density are uniform, while the radial velocity changes linearly from zero at the center to the assigned value at the fireball border. The results of the calculations have shown the strong dependence of the wave phenomena observed on the initial velocity distribution.

  6. Boundary-induced spin-density waves in linear Heisenberg antiferromagnetic spin chains with S ≥1

    Science.gov (United States)

    Dey, Dayasindhu; Kumar, Manoranjan; Soos, Zoltán G.

    2016-10-01

    Linear Heisenberg antiferromagnets (HAFs) are chains of spin-S sites with isotropic exchange J between neighbors. Open and periodic boundary conditions return the same ground-state energy per site in the thermodynamic limit, but not the same spin SG when S ≥1 . The ground state of open chains of N spins has SG=0 or S , respectively, for even or odd N . Density-matrix renormalization-group calculations with different algorithms for even and odd N are presented up to N =500 for the energy and spin densities ρ (r ,N ) of edge states in HAFs with S =1 , 3/2, and 2. The edge states are boundary-induced spin density waves (BI-SDWs) with ρ (r ,N ) ∝(-1) r -1 for r =1 ,2 ,...,N . The SDWs are in phase when N is odd, are out of phase when N is even, and have finite excitation energy Γ (N ) that decreases exponentially with N for integer S and faster than 1 /N for half integer S . The spin densities and excitation energy are quantitatively modeled for integer S chains longer than 5 ξ spins by two parameters, the correlation length ξ and the SDW amplitude, with ξ =6.048 for S =1 and 49.0 for S =2 . The BI-SDWs of S =3 /2 chains are not localized and are qualitatively different for even and odd N . Exchange between the ends for odd N is mediated by a delocalized effective spin in the middle that increases |Γ (N )| and weakens the size dependence. The nonlinear sigma model (NL σ M ) has been applied to the HAFs, primarily to S =1 with even N , to discuss spin densities and exchange between localized states at the ends as Γ (N ) ∝(-1) Nexp(-N /ξ ) . S =1 chains with odd N are fully consistent with the NL σ M ; S =2 chains have two gaps Γ (N ) with the same ξ as predicted whose ratio is 3.45 rather than 3; the NL σ M is more approximate for S =3 /2 chains with even N and is modified for exchange between ends for odd N .

  7. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  8. Linear spin-wave study of a quantum kagome ice

    Science.gov (United States)

    Owerre, S. A.; Burkov, A. A.; Melko, Roger G.

    2016-04-01

    We present a large-S study of a quantum spin ice Hamiltonian, introduced by Huang et al. [Phys. Rev. Lett. 112, 167203 (2014), 10.1103/PhysRevLett.112.167203], on the kagome lattice. This model involves a competition between the frustrating Ising term of classical kagome ice, a Zeeman magnetic field h , and a nearest-neighbor transverse spin-flip term SixSjx-SiySjy . Recent quantum Monte Carlo (QMC) simulations by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421], uncovered lobes of a disordered phase for large Ising interaction and h ≠0 —a putative quantum spin liquid phase. Here, we examine the nature of this model using large-S expansion. We show that the ground state properties generally have the same trends with those observed in QMC simulations. In particular, the large-S ground state phase diagram captures the existence of the disordered lobes.

  9. Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.

    2011-08-01

    We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.

  10. Discontinuity of the Spin-Wave Stiffness in the Two-Dimensional XY Model

    Science.gov (United States)

    Chayes, L.

    Using a graphical representation based on the Wolff algorithm, the (classical) d-dimensional XY model and some related spin-systems are studied. It is proved that in d≡2, the predicted discontinuity in the spin-wave stiffness indeed occurs. Further, the critical properties of the spin-system are related to percolation properties of the graphical representation. In particular, a suitably defined notion of percolation in the graphical representation is proved to be the necessary and sufficient condition for positivity of the spontaneous magnetization.

  11. Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards

    CERN Document Server

    Rastelli, Enrico

    2013-01-01

    The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc

  12. Modified High Frequency Radial Spin Wave Mode Spectrum in a Chirality-Controlled Nanopillar

    Science.gov (United States)

    Kolthammer, J. E.; Rudge, J.; Choi, B. C.; Hong, Y. K.

    2016-09-01

    Circular magnetic spin valve nanopillars in a dual vortex configuration have dynamic characteristics strongly dependent on the interlayer dipole coupling. We report here on frequency domain properties of such nanopillars obtained by micromagnetic simulations. After the free layer is chirality switched with spin transfer torque, a radial spin wave eigenmode spectrum forms in the free layer with unusually large edge amplitude. The structure of these modes indicate a departure from the magnetostatic processes typically observed experimentally and treated analytically in low aspect ratio isolated disks. Our findings give new details of dynamic chirality control and relxation in nanopillars and raise potential signatures for experiments.

  13. Excitation of Self-Localized Spin-Wave Bullets by Spin-Polarized Current in In-Plane Magnetized Magnetic Nano-Contacts: A Micromagnetic Study

    Science.gov (United States)

    2007-10-08

    Melkov,3 Vasil Tiberkevich,4 and Andrei N. Slavin4 1Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, University of Messina...nanocontact. In Eq. 1, the unit vector p defining the spin-polarization direction is parallel to the direction ez of the in-plane external magnetic field...linear theory,3 the propagating spin- wave mode excited at the threshold is a cylindrical spin- wave with the wave vector kL=1.2/Rc and frequency L

  14. Direct Observation of Spin- and Charge-Density Waves in a Luttinger Liquid

    Science.gov (United States)

    Cao, Chenglin; Marcum, Andrew; Mawardi Ismail, Arif; Fonta, Francisco; O'Hara, Kenneth

    2016-05-01

    At low energy, interacting fermions in one dimension (e.g. electrons in quantum wires or fermionic atoms in 1D waveguides) should behave as Luttinger liquids. In stark contrast to Fermi liquids, the low-energy elementary excitations in Luttinger liquids are collective sound-like modes that propagate independently as spin-density and/or charge-density (i.e. particle-density) waves with generally unequal, and interaction-dependent, velocities. Here we aim to unambiguously confirm this hallmark feature of the Luttinger liquid - the phenomenon of spin-charge separation - by directly observing in real space the dynamics of spin-density and ``charge''-density waves excited in an ultracold gas of spin-1/2 fermions confined in an array of 1D optical waveguides. Starting from a two-component mixture of 6 Li atoms harmonically confined along each of the 1D waveguides, we excite low lying normal modes of the trapped system - namely the spin dipole and density dipole and quadrupole modes - and measure their frequency as a function of interaction strength. Luttinger liquid theory predicts that the spin dipole frequency is strongly dependent on interaction strength whereas the density dipole and quadrupole mode frequencies are relatively insensitive. We will also discuss extending our approach to exciting localized spin density and particle density wavepackets which should propagate at different velocities. Supported by AFOSR and NSF.

  15. Can we measure individual black-hole spins from gravitational-wave observations?

    Science.gov (United States)

    Pürrer, Michael; Hannam, Mark; Ohme, Frank

    2016-04-01

    Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are known to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for nonprecessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one effective spin will be sufficient. Our work does not consider precessing binaries or subdominant harmonics, although we provide some arguments why we expect that these will not qualitatively change our conclusions.

  16. Quantum kinetics of spinning neutral particles: General theory and Spin wave dispersion

    CERN Document Server

    Andreev, P A

    2013-01-01

    Plasma physics give an example of physical system of particles with the long range interaction. At small velocity of particles we can consider the plasma approximately as a system of particles with the Coulomb interaction. The Coulomb interaction is isotropic. Systems of spinning neutral particles have long-range anisotropic interparticle interaction. So, they can reveal more reach properties than plasma. Furthermore for studying of systems of spinning particles we can develop kinetic and hydrodynamic methods analogous to used for the plasma. We derive kinetic equations by a new method, which is the generalization of the many-particle quantum hydrodynamics. Obtained set of kinetic equations is truncated, so we have closed set of two equations. One of them is the kinetic equation for quantum distribution function. The second equation is the equation for the spin-distribution. Which describes the spin kinetic evolution and gives contribution in time evolution of the distribution function. Our method allows to o...

  17. Demonstration of atomic frequency comb memory for light with spin-wave storage

    OpenAIRE

    2009-01-01

    We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo type rephasing of the dipole moments a...

  18. Mesh Size and Damped Edge Effects in Micromagnetic Spin Wave Simulation

    CERN Document Server

    Venkat, G; Fangohr, H; Prabhakar, A

    2014-01-01

    We have studied the dependence of spin wave dispersion on the characteristics of the mesh used in a finite element micromagnetic simulation. It is shown that the dispersion curve has a cut off at a frequency which is analytically predictable. The frequency depends on the average mesh length used for the simulation. Based on this, a recipe to effectively obtain the dispersion relation has been suggested. In a separate study, spin wave reflections are absorbed by introducing highly damped edges in the device. However, an abrupt change in the damping parameter causes reflections. We compare damping profiles and identify an exponential damping profile as causing significantly less reflections.

  19. Spin waves in the ferrimagnetic phase of NdCu{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, S.; Rotter, M.; Loewenhaupt, M. E-mail: loewenhaupt@physik.tu-dresden.de; Pyka, N.M.; Schmidt, W.; Kamp, R. van de

    2001-05-01

    The spin wave dispersion relation in the ferrimagnetic phase F1 of NdCu{sub 2} has been measured by means of inelastic neutron scattering. In a-direction the expected six dispersion branches could be determined. The spin wave dispersion is compared to that of the ferromagnetic phase F3. In F1 the magnetic Brillouin zone is only one-third of that in F3 introducing additional symmetry conditions for the dispersion relation. The experimental results agree well with these conditions.

  20. Spin waves in the ferrimagnetic phase of NdCu 2

    Science.gov (United States)

    Kramp, S.; Rotter, M.; Loewenhaupt, M.; Pyka, N. M.; Schmidt, W.; van de Kamp, R.

    2001-05-01

    The spin wave dispersion relation in the ferrimagnetic phase F1 of NdCu 2 has been measured by means of inelastic neutron scattering. In a-direction the expected six dispersion branches could be determined. The spin wave dispersion is compared to that of the ferromagnetic phase F3. In F1 the magnetic Brillouin zone is only one-third of that in F3 introducing additional symmetry conditions for the dispersion relation. The experimental results agree well with these conditions.

  1. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  2. Thermally induced transparency for short spin wave pulses in yttrium iron garnet (YIG) films

    Science.gov (United States)

    Ordonez Romero, Cesar Leonardo; Kolokoltsev, Oleg; Gomez Arista, Ivan; Qureshi, Naser; Monsiváis Galindo, Guillermo; Vargas Hernández, Hesiquio

    2014-03-01

    The compensation of spin wave propagation losses plays a very important role in the development of novel magnonic devices. Up to now, however, most of the known amplification methods present relative narrow frequency bandwidths due to their resonant nature. In this work, we present compensation of the propagation losses or pseudo-amplification of travelling spin waves by tailoring the bias magnetic field profile. The thermally-induced non-uniform profile of the magnetization introduced on an Yttrium Iron Garnet (YIG) thin film by a localized spot of a cw argon-ion laser creates the conditions to observe the complete compensation of the spin wave propagation losses. The spin wave evolution was mapped with a time and spaced resolved inductive magneto-dynamic prove system. The experiment was carried out using a uniform sample of single-crystal YIG film grown on a gallium-gadolinium garnet (GGG) substrate. The 2mm-wide, 20mm-long and 6microns-thick YIG strip was saturated with an external magnetic field enabling the set up for the propagation of magneto-static surface waves. This work was supported by the UNAM-DGAPA-PAPIIT IA100413.

  3. Null-Wave Giant Gravitons from Thermal Spinning Brane Probes

    CERN Document Server

    Armas, Jay; Pedersen, Andreas Vigand

    2013-01-01

    We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solu...

  4. Spin Waves in a Ferromagnetic Film with a Periodic System of Antidots

    Directory of Open Access Journals (Sweden)

    V.V. Kulish

    2015-03-01

    Full Text Available In the paper, spin waves in a thin film (composed of a uniaxial ferromagnet with a two-dimensional periodical system of antidots are studied. The film ferromagnet is considered to have the “easy axis” type. To describe such waves, the magnetostatic approximation with account for the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects is used. For such waves, an equation for the magnetic potential is derived; for the case of remote antidots, the dispersion relation and the transverse wavenumber spectrum are found. For the case of a film thin compared to the exchange length and for the case of a film bounded by a high-conductivity metal, the longitudinal wavenumber spectrum and the frequency spectrum of such spin waves are also obtained.

  5. Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4

    Science.gov (United States)

    Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David

    2017-03-01

    We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.

  6. Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite

    Science.gov (United States)

    Liu, Tianyu

    A systematic control of spin waves via external electric fields has been a long standing issue for the design of magnonic devices, and is of fundamental interest. One way to attain such control is to use multiferroics, whose electric and magnetic polarizations are inherently coupled. The lack of electric polarization in a centrosymmetric ferrite, however, makes direct coupling of its magnetization to external electric fields a challenge. Indirect electric control of spin waves has been accomplished by hybridizing yttrium iron garnet (YIG), a centrosymmetric ferrite, with a piezoelectric material. Here, we predict direct control of spin waves in YIG by a flexoelectric interaction, which couples an electric field to the spatial gradient of the magnetization, and thus the spin waves. Based on a superexchange model, which describes the antiferromagnetic coupling between two nearest neighbor iron ions through an oxygen ion, including spin-orbit coupling, we estimate the coupling constant and predict a phase shift linear in the applied electric fields. The theory is then confirmed by experimental measurement of the electric-field-induced phase shift in a YIG waveguide. In addition to the flexoelectric effect, another electric effect is observed, which couples the electric field directly with the magnetization of YIG. We call this a magnetoelectric effect. By adjusting the direction of the electric field, the two effects can be well separated. Experimental results agree quantitatively with the theoretical prediction. A phenomenological coupling constant for the magnetoelectric effect is also obtained. Our findings point to an important avenue for manipulating spin waves and developing electrically tunable magnonic devices.

  7. Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave

    Science.gov (United States)

    Gowtham, P. G.; Labanowski, D.; Salahuddin, S.

    2016-07-01

    Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.

  8. Spin wave isolator based on frequency displacement nonreciprocity in ferromagnetic bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Shichi, Shinsuke, E-mail: shinsuke-shichi@murata.com; Matsuda, Kenji; Okajima, Shingo; Hasegawa, Takashi; Okada, Takekazu [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Kanazawa, Naoki; Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Takagi, Hiroyuki; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

    2015-05-07

    We demonstrated the spin wave isolator using bilayer ferromagnetic media comprising single crystalline and poly-crystalline yttrium iron garnet films, which can control the propagation frequency of magnetostatic waves by the direction of applied magnetic field. This isolator's property does not depend on their thickness then this can be downsized and integrated for nano-scale magnonic circuits. Calculated dispersion relationship shows good agreement with measured one.

  9. Spin wave isolator based on frequency displacement nonreciprocity in ferromagnetic bilayer

    Science.gov (United States)

    Shichi, Shinsuke; Kanazawa, Naoki; Matsuda, Kenji; Okajima, Shingo; Hasegawa, Takashi; Okada, Takekazu; Goto, Taichi; Takagi, Hiroyuki; Inoue, Mitsuteru

    2015-05-01

    We demonstrated the spin wave isolator using bilayer ferromagnetic media comprising single crystalline and poly-crystalline yttrium iron garnet films, which can control the propagation frequency of magnetostatic waves by the direction of applied magnetic field. This isolator's property does not depend on their thickness then this can be downsized and integrated for nano-scale magnonic circuits. Calculated dispersion relationship shows good agreement with measured one.

  10. Efficiency of nonspinning templates in gravitational wave searches for aligned-spin binary black holes

    CERN Document Server

    Cho, Hee-Suk

    2016-01-01

    We study the efficiency of nonspinning waveform templates in gravitational wave searches for aligned-spin binary black holes (BBHs). We use PhenomD, which is the most recent phenomenological waveform model designed to generate the full inspiral-merger-ringdown waveforms emitted from BBHs with the spins aligned with the orbital angular momentum. Here, we treat the effect of aligned-spins with a single spin parameter $\\chi$. We consider the BBH signals with moderately small spins in the range of $-0.4\\leq \\chi \\leq 0.4$. Using nonspinning templates, we calculate fitting factors of the aligned-spin signals in a wide mass range up to $\\sim 100 M_{\\odot}$. We find that the signals with negative spins can have higher fitting factors than those with positive spins. If $\\chi = 0.3$, only the highly asymmetric-mass signals can have the fitting factors exceeding the threshold of 0.965, while the fitting factors for all of the signals can be larger than the threshold if $\\chi = -0.3$. We demonstrate that the discrepancy...

  11. Strings On Plane-waves And Spin Chains On Orbifolds

    CERN Document Server

    Sadri, D

    2005-01-01

    This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane- wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the “Penrose limit”. In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T- duality are also studied, as are BPS Dp- branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of ...

  12. Electric-field control of electromagnon propagation and spin-wave injection in a spiral multiferroic/ferromagnet composite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Bo [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, D-06120 Halle (Germany); Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Li, You-Quan [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 (China); Berakdar, Jamal [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, D-06120 Halle (Germany)

    2015-01-28

    We consider theoretically a composite chain consisting of a multiferroic helimagnet coupled to a conventional ferromagnet and inspect the conversion of electromagnon excitation into spin waves and vice versa. We demonstrate an electric-field control of spin-wave injection realized by electrically exciting an electromagnon that propagates with an intrinsic frequency larger than the gap of the spin wave in the ferromagnet. The efficiency of the conversion of the electromagnon into spin waves depends strongly on the strength of the magnetoelectric coupling at the interface and the intrinsic frequency of the multiferroic helimagnets. The phenomena predicted here suggest that a multiferroic/ferromagnet composite offers new opportunities for spin-wave injection, conversion, and control using electric field.

  13. Beating the spin-down limit on gravitational wave emission from the Vela pulsar

    CERN Document Server

    Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Allen, B; Allen, G S; Ceron, E Amador; Amariutei, D; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M BejgerM G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brummit, A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Clara, F; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Engel, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garcia, J; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Huet, D; Hughey, B; Husa, S; Huttner, S H; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Katzman, W; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Kelner, M; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; Kim, N; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kumar, R; Kwee, P; Landry, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lück, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Moesta, P; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; Mow--Lowry, C M; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishida, E; Nishizawa, A; Nocera, F; Nolting, D; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameswaran, A; Pardi, S; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Podkaminer, J; Poggiani, R; Pöld, J; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C R; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Salit, M; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santiago-Prieto, I; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schlamminger, S; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Weerathunga, T Shihan; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Smith, R; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szokoly, G P; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J; Buchner, S; Hotan, A; Palfreyman, J

    2011-01-01

    We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, $1.9\\ee{-24}$ and $2.2\\ee{-24}$, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of $2.1\\ee{-24}$, with 95% degree of belief. These limits are below the indirect {\\it spin-down limit} of $3.3\\ee{-24}$ for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of $\\sim 10^{-3}$. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and ...

  14. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  15. Can we measure individual black-hole spins from gravitational-wave observations?

    CERN Document Server

    Pürrer, Michael; Ohme, Frank

    2015-01-01

    Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are expected to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for non-precessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one ...

  16. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    CERN Document Server

    Brown, Duncan A; Lundgren, Andrew; Nitz, Alexander H

    2012-01-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cJ/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method of constructing filter banks for advanced-detector searches, which can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotr...

  17. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    CERN Document Server

    Suvorova, S; Melatos, A; Moran, W; Evans, R J

    2016-01-01

    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. superfluid or magnetospheric) or external (e.g. accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F-statistic to surmount some of the challenges raised by spin wandering. Specifically it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F-statistic output from coherent segments with duration T_drift = 10d over a total observation time of T_obs = 1yr can detect signals with wave strains h0 > 2e-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital...

  18. A coherent triggered search for single-spin compact binary coalescences in gravitational wave data

    Energy Technology Data Exchange (ETDEWEB)

    Harry, I W; Fairhurst, S, E-mail: ian.harry@astro.cf.ac.uk, E-mail: Stephen.Fairhurst@astro.cf.ac.uk [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom)

    2011-07-07

    In this paper, we present a method for conducting a coherent search for single-spin compact binary coalescences in gravitational wave data and compare this search to the existing coincidence method for single-spin searches. We propose a method to characterize the regions of the parameter space where the single-spin search, both coincident and coherent, will increase detection efficiency over the existing non-precessing search. We also show example results of the coherent search on a stretch of data from Laser Interferometer Gravitational-wave Observatory's fourth science run, but note that a set of signal-based vetoes will be needed before this search can be run to try to make detections.

  19. Parameter Estimation on Gravitational Waves from Neutron-star Binaries with Spinning Components

    Science.gov (United States)

    Farr, Ben; Berry, Christopher P. L.; Farr, Will M.; Haster, Carl-Johan; Middleton, Hannah; Cannon, Kipp; Graff, Philip B.; Hanna, Chad; Mandel, Ilya; Pankow, Chris; Price, Larry R.; Sidery, Trevor; Singer, Leo P.; Urban, Alex L.; Vecchio, Alberto; Veitch, John; Vitale, Salvatore

    2016-07-01

    Inspiraling binary neutron stars (BNSs) are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. We investigate how well we could hope to measure properties of these binaries using the Advanced LIGO detectors, which began operation in September 2015. We study an astrophysically motivated population of sources (binary components with masses 1.2\\quad {M}⊙ {--}1.6\\quad {M}⊙ and spins of less than 0.05) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential BNS sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertainties in component masses of ˜16%, with little constraint on spins (the median 90% upper limit on the spin of the more massive component is ˜0.7). Stronger prior constraints on neutron-star spins can further constrain mass estimates but only marginally. However, we find that the sky position and luminosity distance for these sources are not influenced by the inclusion of spin; therefore, if LIGO detects a low-spin population of BNS sources, less computationally expensive results calculated neglecting spin will be sufficient for guiding electromagnetic follow-up.

  20. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  1. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  2. Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin

    Science.gov (United States)

    Suvorova, S.; Sun, L.; Melatos, A.; Moran, W.; Evans, R. J.

    2016-06-01

    Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the star's spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g., superfluid or magnetospheric) or external (e.g., accretion) torques. It is shown that frequency tracking by hidden Markov model (HMM) methods can be combined with existing maximum likelihood coherent matched filters like the F -statistic to surmount some of the challenges raised by spin wandering. Specifically, it is found that, for an isolated, biaxial rotor whose spin frequency walks randomly, HMM tracking of the F -statistic output from coherent segments with duration Tdrift=10 d over a total observation time of Tobs=1 yr can detect signals with wave strains h0>2 ×10-26 at a noise level characteristic of the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). For a biaxial rotor with randomly walking spin in a binary orbit, whose orbital period and semimajor axis are known approximately from electromagnetic observations, HMM tracking of the Bessel-weighted F -statistic output can detect signals with h0>8 ×10-26. An efficient, recursive, HMM solver based on the Viterbi algorithm is demonstrated, which requires ˜103 CPU hours for a typical, broadband (0.5-kHz) search for the low-mass x-ray binary Scorpius X-1, including generation of the relevant F -statistic input. In a "realistic" observational scenario, Viterbi tracking successfully detects 41 out of 50 synthetic signals without spin wandering in stage I of the Scorpius X-1 Mock Data Challenge convened by the LIGO Scientific Collaboration down to a wave strain of h0=1.1 ×10-25, recovering the frequency with a root-mean-square accuracy of ≤4.3 ×10-3 Hz .

  3. Spin waves and phonons in a paraelectric antiferromagnet EuTiO3

    Science.gov (United States)

    Cao, Huibo; Hong, Jiawang; Delaire, Olivier; Hahn, Steven; Ehlers, Georg; Chi, Songxue; Garlea, Vasile; Fernandez-Baca, Jaime; Chakoumakos, Bryan; Yan, Jiaqiang; Sales, Brian

    2015-03-01

    Perovskite titanates ATiO3 (A=Ba,Pb,Sr,Ca,Cd,or Eu) are widely studied for their interesting instabilities and broad applications. A ferroelectric (FE) transition occurs in Ba, Pb, and Cd titanates, but not in SrTiO3 (STO) or EuTiO3 (ETO). In the case of STO, fluctuations yield a quantum paraelectric state, but whether ETO is quantum paraelectric remains an open question. Despite a number of similarities with well-studied STO, ETO is also unique owing to the magnetic Eu ions. By applying a tuning parameter, such as bi-axial tension, ETO can be turned into a FE ferromagnet, the ideal multiferroic. [J. H. Lee, et al., Nature 466, 954 (2010)] Studies of spin-spin and spin-lattice couplings in ETO are of great interest not only from a fundamental standpoint, but also for technological applications. We successfully grew a large, high-quality isotopically-enriched ETO crystal for neutron scattering. The crystal and magnetic structures were characterized with single crystal diffraction at HB-3A at HFIR at ORNL. The spin waves and phonons were measured in the temperature range of 1.5-400 K with CNCS at SNS and HB-3 at HFIR at ORNL. In this presentation, we will discuss structural instabilities, spin-spin interactions, and spin-phonon couplings in ETO. This work was supported by Office of Basic Energy Sciences, U.S. Department of Energy.

  4. Quarkonium and hydrogen spectra with spin-dependent relativistic wave equation

    Indian Academy of Sciences (India)

    V H Zaveri

    2010-10-01

    The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin and spin-orbit coupling. Spin angular momentum operator is integrated into the equation of motion. This requires modification to classical Laplacian operator. Consequently, the Dirac matrices and the k operator of Dirac’s theory are dispensed with. The theory points out that the curvature of the orbit draws on certain amount of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential. The unique feature of this quarkonium model is that the radial distance can be exactly determined and does not have a statistical interpretation. The established radial distance is then used to determine the wave function. The observed energy levels are used as the input parameters and the radial distance and the string tension are predicted. This ensures 100% conformance to all observed energy levels for the heavy quarkonium.

  5. Experimental demonstration of anomalous Floquet topological insulator for sound

    Science.gov (United States)

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-01

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  6. Entanglement of light-shift compensated atomic spin waves with telecom light

    CERN Document Server

    Dudin, Y O; Zhao, R; Blumoff, J Z; Kennedy, T A B; Kuzmich, A

    2010-01-01

    Entanglement of a 795 nm light polarization qubit and an atomic Rb spin wave qubit for a storage time of 0.1 s is observed by measuring the violation of Bell's inequality (S = 2.65 \\pm 0.12). Long qubit storage times are achieved by pinning the spin wave in a 1064 nm wavelength optical lattice, with a magic-valued magnetic field superposed to eliminate lattice-induced dephasing. Four-wave mixing in a cold Rb gas is employed to perform light qubit conversion between near infra red (795 nm) and telecom (1367 nm) wavelengths, and after propagation in a telecom fiber, to invert the conversion process. Observed Bell inequality violation (S = 2.66 \\pm 0.09), at 10 ms storage, confirms preservation of memory/light entanglement through the two stages of light qubit frequency conversion.

  7. Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites

    CERN Document Server

    Krawczyk, M; Levy, J C S; Mercier, D

    2003-01-01

    Spin-wave excitations in ferromagnetic layered composite (AB centre dot centre dot centre dot BA; A and B being different homogeneous ferromagnetic materials) are analysed theoretically, by means of the transfer matrix approach. The properties of multilayer spin-wave mode profiles are discussed in relation to multilayer characteristics, such as the filling fraction and the exchange or magnetization contrast; also, surface spin pinning conditions and dipolar interactions are taken into account. The interface conditions are satisfied by introducing an effective exchange field expressed by interface gradients of the exchange constant and the magnetization. This approach provides an easy way to find frequencies and amplitudes of standing spin waves in the multilayer. The developed theory is applied to interpretation of spin wave resonance (SWR) spectra obtained experimentally by Chambers et al in two systems: a bilayer Fe/Ni and a trilayer Ni/Fe/Ni, in perpendicular (to the multilayer surface) configuration of th...

  8. Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.; Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Dalrymple, J.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke, I.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubinski, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.; Mossavi, K.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mukhopadhyay, H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.

    2008-08-01

    We present direct upper limits on gravitational wave emission from the Crab pulsar using data from the first 9 months of the fifth science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). These limits are based on two searches. In the first we assume that the gravitational wave emission follows the observed radio timing, giving an upper limit on gravitational wave emission that beats indirect limits inferred from the spin-down and braking index of the pulsar and the energetics of the nebula. In the second we allow for a small mismatch between the gravitational and radio signal frequencies and interpret our results in the context of two possible gravitational wave emission mechanisms.

  9. Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves

    Energy Technology Data Exchange (ETDEWEB)

    Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S. [Istituto Officina dei Materiali del CNR (IOM-CNR), Unità di Perugia, I-06123 Perugia (Italy); Del Bianco, L. [Department of Physics and Astronomy, University of Bologna, I-40127 Bologna (Italy); Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Bonfiglioli, E.; Giovannini, L.; Spizzo, F.; Zivieri, R. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Tamisari, M. [Department of Physics and Earth Sciences and CNISM, University of Ferrara, I-44122 Ferrara (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia (Italy)

    2015-05-07

    Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence of the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.

  10. Gravitational waves from spinning compact object binaries: New post-Newtonian results

    CERN Document Server

    Marsat, Sylvain; Bohe, Alejandro; Faye, Guillaume

    2013-01-01

    We report on recent results obtained in the post-Newtonian framework for the modelling of the gravitational waves emitted by binary systems of spinning compact objects (black holes and/or neutron stars). These new results are obtained at the spin-orbit (linear-in-spin) level and solving Einstein's field equations iteratively in harmonic coordinates as well as the multipolar post-Newtonian formalism. The dynamics of the binary was tackled at the next-to-next-to-leading order, corresponding to the 3.5 post-Newtonian (PN) order for maximally spinning objects, and the result is found to be consistent with a previously obtained reduced Hamiltonian in the ADM approach. The corresponding contribution to the energy flux emitted by the binary was obtained at the 3.5PN order, as well as the next-to-leading 4PN tail contribution to this flux, an imprint of the non-linearity in the propagation of the wave. These new terms can be used to build more accurate PN templates for the next generation of gravitational wave detect...

  11. Linear spin-wave theory of incommensurably modulated magnets

    DEFF Research Database (Denmark)

    Ziman, Timothy; Lindgård, Per-Anker

    1986-01-01

    Calculations of linearized theories of spin dynamics encounter difficulties when applied to incommensurable magnetic phases: lack of translational invariance leads to an infinite coupled system of equations. The authors resolve this for the case of a `single-Q' structure by mapping onto the problem...... of diagonalizing a quasiperiodic Hamiltonian of tight-binding type in one dimension. This allows for calculation of the correlation functions relevant to neutron scattering or magnetic resonance experiments. With the application to the case of a longitudinally modulated magnet a number of new predictions are made......: at higher frequency there appear bands of response sharply defined in frequency, but broad in momentum transfer; at low frequencies there is a response maximum at the q vector corresponding to the modulation vector. They discuss generalizations necessary for application to rare-earth magnets...

  12. Evolution of spin-dependent atomic wave packets in a harmonic potential

    Institute of Scientific and Technical Information of China (English)

    Wen Ling-Hua; Liu Min; Kong Ling-Bo; Chen Ai-Xi; Zhan Ming-Sheng

    2005-01-01

    We have investigated theoretically the evolution of spin-dependent atomic wave packets in a harmonic magnetic trapping potential. For a Bose-condensed gas, which undergoes a Mott insulator transition and a spin-dependent transport, the atomic wavefunction can be described by an entangled single-atom state. Due to the confinement of the -harmonic potential, the density distributions exhibit periodic decay and revival, which is different from the case of free expansion after switching off the combined harmonic and optical lattice potential.

  13. On the damping of right hand circularly polarized waves in spin quantum plasmas

    Science.gov (United States)

    Iqbal, Z.; Hussain, A.; Murtaza, G.; Ali, M.

    2014-12-01

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k ∥ v ≫ ( ω + ω c e ) , ( ω + ω c g ) and (ii) k ∥ v ≪ ( ω + ω c e ) , ( ω + ω c g ) . Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.

  14. On the damping of right hand circularly polarized waves in spin quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Z. [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Hussain, A., E-mail: ah-gcu@yahoo.com [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Murtaza, G. [Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Ali, M. [Department of Physics, School of Natural Sciences, National University of Science and Technology Islamabad, Islamabad 44000 (Pakistan)

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.

  15. Temperature and field dependence of the spin wave gap in NdCu2

    Science.gov (United States)

    Kramp, S.; Pyka, N. M.; Loewenhaupt, M.; Rotter, M.

    1999-04-01

    NdCu2 shows a complex magnetic phase diagram below its Néel temperature of TN=6.5 K and for magnetic fields applied in the easy b direction. This complicated behavior is expected to be due to Ruderman-Kittel-Kasuya-Yoshida interaction of the 4f shells of the Nd ions in the presence of crystal field splitting. In order to obtain deeper insight into the mechanism leading to such different magnetic phases we started to study the spin wave spectra in a NdCu2 single crystal. In zero field as well as in fields applied in the easy b direction of magnetization, a pronounced minimum in the excitation spectrum has been observed and it forms an energy gap. The position of this spin wave gap does not coincide with any magnetic ordering wave vector in NdCu2, indicating anisotropic magnetic coupling. The temperature and field dependence of the spin wave gap have been studied. The position of the gap remains constant at qgap=(0.35, 0, 0), whereas the character of the excitations changes with temperature and the value of the energy gap changes with the magnetic field. Applying a field of 10 T in the hard c direction of magnetization changes the position of the minimum to qgap=(0.6, 0, 0) and gives proof of magnetic anisotropy.

  16. Spinning test-body orbiting around Schwarzschild black hole: circular dynamics and gravitational-wave fluxes

    CERN Document Server

    Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro

    2016-01-01

    We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary-condition (SSC), the Pirani SSC and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of [Phys.~Rev.~D.90,~044018(2014)]. We analyze the four different dynamics in terms of the ISCO shifts and in terms of the coordinate invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational wave fluxes produced by the spinning body are computed by solving the inhomogeneous $(2+1)D$ Teukolsky equation and contrasted for the different cases. For small orbital frequencies $\\Omega$, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, ${x \\equiv (M \\Omega)^{2/3} >0.1 }$, where $M$ is the black hole mass, and ...

  17. Implementing a search for gravitational waves from binary black holes with nonprecessing spin

    Science.gov (United States)

    Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra

    2016-06-01

    Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.

  18. Growth and spin-wave properties of thin Y{sub 3}Fe{sub 5}O{sub 12} films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Stognij, A. I.; Novitskii, N. N. [Scientific and Practical Materials Research Centre, National Academy of Sciences of Belarus, Minsk 220072 (Belarus); Lutsev, L. V., E-mail: l-lutsev@mail.ru; Bursian, V. E. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2015-07-14

    We describe synthesis of submicron Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films sputtered on Si substrates and present results of the investigation of ferromagnetic resonance (FMR) and spin waves in YIG/SiO{sub 2}/Si structures. It is found that decrease of the annealing time leads to essential reduction of the FMR linewidth ΔH and, consequently, to reduction of relaxation losses of spin waves. Spin-wave propagation in in-plane magnetized YIG/SiO{sub 2}/Si structures is studied. We observe the asymmetry of amplitude-frequency characteristics of the Damon-Eshbach spin waves caused by different localizations of spin waves at the free YIG surface and at the YIG/SiO{sub 2} interface. Growth of the generating microwave power leads to spin-wave instability and changes amplitude-frequency characteristics of spin waves.

  19. Spin wave surface states in one-dimensional planar magnonic crystals

    CERN Document Server

    Rychły, Justyna

    2016-01-01

    We have investigated surface spin wave states in one-dimensional planar bi-component magnonic crystals, localized on the surfaces resulting from the breaking of the periodic structure. The two systems have been considered: the magnonic crystal with periodic changes of the anisotropy field in exchange regime and the magnonic crystal composed of Fe and Ni stripes in dipolar regime with exchange interactions included. We chose the symmetric unit cell for both systems to implement the symmetry related criteria for existence of the surface states. We investigated also the surface states induced by the presence of perturbation of the surface areas of the magnonic crystals. We showed, that the system with modulated anisotropy is a direct analog of the electronic crystal. Therefore, the surface states in both systems have the same properties. For surface states existing in magnonic crystals in dipolar regime we demonstrated that spin waves preserve distinct differences to the electronic crystals, which are due to lon...

  20. Generation of multipartite continuous-variable entanglement via atomic spin wave: Heisenberg-Langevin approach.

    Science.gov (United States)

    Yang, Xihua; Shang, Jie; Xue, Bolin; Zhou, Yuanyuan; Xiao, Min

    2014-05-19

    We conduct theoretical studies on the effects of various parameters on generation of multipartite continuous-variable entanglement via atomic spin wave induced by the strong coupling and probe fields in the Λ-type electromagnetically induced transparency configuration in a realistic atomic ensemble by using the Heisenberg-Langevin formalism. It is shown that the increase of the atomic density and/or Rabi frequencies of the scattering fields, as well as the decrease of the coherence decay rate of the lower doublet would strengthen the degree of multipartite entanglement. This provides a clear evidence that the creation of multicolor multipartite entangled narrow-band fields to any desired number with a long correlation time can be achieved conveniently by using atomic spin wave in an atomic ensemble with large optical depth, which may find interesting applications in quantum information processing and quantum networks.

  1. Complete mapping of the spin-wave spectrum in a vortex-state nanodisk

    Science.gov (United States)

    Taurel, B.; Valet, T.; Naletov, V. V.; Vukadinovic, N.; de Loubens, G.; Klein, O.

    2016-05-01

    We report a study on the complete spin-wave spectrum inside a vortex-state nanodisk. Transformation of this spectrum is continuously monitored as the nanodisk becomes gradually magnetized by a perpendicular magnetic field and encounters a second-order phase transition to the uniformly magnetized state. This reveals the bijective relationship that exists between the eigenmodes in the vortex state and the ones in the saturated state. It is found that the gyrotropic mode can be continuously viewed as a uniform phase precession, which uniquely softens (its frequency vanishes) at the saturation field to transform above into the Kittel mode. By contrast, the other spin-wave modes remain finite as a function of the applied field, while their character is altered by level anticrossing.

  2. Field-induced spin-density wave beyond hidden order in URu2Si2

    Science.gov (United States)

    Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.

    2016-10-01

    URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.

  3. Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD

    CERN Document Server

    Kim, Youngman; Tsukioka, Takuya; Zhang, P M

    2016-01-01

    We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.

  4. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  5. su(1,2) Algebraic Structure of XYZ Antiferromagnetic Model in Linear Spin-Wave Frame

    Institute of Scientific and Technical Information of China (English)

    GUAN Yong; JIN Shuo; LIN Bing-Sheng; XIE Bing-Hao; JING Si-Cong; YU Zhao-Xian; HOU Jing-Min

    2008-01-01

    The XYZ antiferromagnetic model in linear spin-wave frame is shown explicitly to have an su(1,2) aigebraic structure: the Hamiltonian can be written as a linear function of the su(1,2) algebra generators. Based on it, the energy eigenvalues are obtained by making use of the similar transformations, and the algebraic diagonalization method is investigated. Some numerical solutions are given, and the results indicate that only one group solution could be accepted in physics.

  6. A nonlinear lattice model for Heisenberg helimagnet and spin wave instabilities

    Science.gov (United States)

    Ludvin Felcy, A.; Latha, M. M.; Christal Vasanthi, C.

    2016-10-01

    We study the dynamics of a Heisenberg helimagnet by presenting a square lattice model and proposing the Hamiltonian associated with it. The corresponding equation of motion is constructed after averaging the Hamiltonian using a suitable wavefunction. The stability of the spin wave is discussed by means of Modulational Instability (MI) analysis. The influence of various types of inhomogeneities in the lattice is also investigated by improving the model.

  7. Modified Spin Wave Thoery of the Bilayer Square Lattice Frustrated Quantum Heisenberg Antiferromagnet

    OpenAIRE

    Hida, Kazuo

    1995-01-01

    The ground state of the square lattice bilayer quantum antiferromagnet with nearest and next-nearest neighbour intralayer interaction is studied by means of the modified spin wave method. For weak interlayer coupling, the ground state is found to be always magnetically ordered while the quantum disordered phase appear for large enough interlayer coupling. The properties of the disordered phase vary according to the strength of the frustration. In the regime of weak frustration, the disordered...

  8. Polarization dependence of the spin-density-wave excitations in single-domain chromium

    Energy Technology Data Exchange (ETDEWEB)

    Boeni, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Roessli, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France); Sternlieb, B.J. [Brookhaven (United States); Lorenzo, E. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France); Werner, S.A. [Missouri (United States)

    1997-09-01

    A polarized neutron scattering experiment has been performed with a single-Q, single domain sample of chromium in a magnetic field of 4 T. It is confirmed that the longitudinal fluctuations are enhanced for small energy transfers and that the spin wave modes with {delta}S parallel to Q and {delta}S perpendicular to Q are similar. (author) 2 figs., 1 tab., 2 refs.

  9. A Spectral Representation for Spin-Weighted Spheroidal Wave Operators with Complex Aspherical Parameter

    CERN Document Server

    Finster, Felix

    2015-01-01

    A family of spectral decompositions of the spin-weighted spheroidal wave operator is constructed for complex aspherical parameters with bounded imaginary part. As the operator is not symmetric, its spectrum is complex and Jordan chains may appear. We prove uniform upper bounds for the length of the Jordan chains and the norms of the idempotent operators mapping onto the invariant subspaces. The completeness of the spectral decomposition is proven.

  10. Enhancement of antiferromagnetic spin wave in the heavy-fermion superconductors

    Science.gov (United States)

    Koh, Shun-ichiro

    2000-06-01

    Recently, the inelastic neutron scattering experiments of UPd 2Al 3 showed that a sharp peak indicating a magnetic excitation appears below the superconducting phase transition temperature (M. Metoki et al., J. Phys. Soc. Japan 66 (1997) 2560, N. Bernhoeft et al., Phys. Rev. Lett. 81 (1998) 4244). Assuming this excitation to be an antiferromagnetic (AFM) spin wave, this paper deals with its enhancement by the superconductivity.

  11. Extraordinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides

    Science.gov (United States)

    2015-01-23

    Low-Dimensional Copper Oxides Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 611102 6. AUTHORS Sd. PROJECT NUMBER David Cahill Se. TASK NUMBER Sf...TDTR) to advance understanding of the1mal transp01i in low dimensional copper - oxides that display extraordina1y thennal transp01i by the1mal...by ANSI Std. Z39.18 ABSTRACT Final Report: Extraoridinary Spin-Wave Thermal Conductivity in Low-Dimensional Copper Oxides Report Title We applied

  12. Effects of the applied magnetic field and anisotropy on the spin wave gap in ultrathin magnetic films at zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, B., E-mail: bengukaplan@yahoo.com; Kaplan, R.

    2014-12-15

    We investigate the calculated spin wave gap of two-dimensional magnetic films under the combined influence of the in-plane direction of the applied magnetic field and different kinds of magnetic anisotropies. We also compute the spin wave gap as a function of the applied magnetic field at zero temperature. We discuss the results in connection with experimental data reported for epitaxial Fe-deficient yttrium garnet (YIG) films grown by pulsed laser deposition (PLD) technique onto the different faces of the Gd{sub 3}Ga{sub 5}O{sub 12} single crystal. - Highlights: • The spin wave gap as a function of the applied field is calculated. • The influence of in-plane anisotropy on the spin wave gap is discussed. • The results are compared in connection with experimental data.

  13. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  14. GRB-supernovae: a new spin on gravitational waves

    CERN Document Server

    Van Putten, M H P M

    2005-01-01

    The discovery of the GRB-supernova association poses the question on the nature of the inner engine as the outcome of Type Ib/c supernovae. These events are believed to represent core-collapse of massive stars, probably in low-period stellar binaries and similar but not identical to the Type II event SN1987A. The branching ratio of Type Ib/c supernovae into GRB-supernovae has the remarkably small value of less than 0.5%. These observational constraints point towards a rapidly rotating black hole formed at low probability with low kick velocity. The putative black hole hereby remains centered, and matures into a high-mass object with large rotational energy in angular momentum. As the MeV-neutrino emissions from SN1987A demonstrate, the most powerful probe of the inner workings of core-collapse events are radiation channels to which the remnant envelope is optically thin. We here discuss the prospect of gravitational-wave emissions powered by a rapidly rotating central black hole which, in contrast to MeV-neut...

  15. The impact of finite size effects on spin waves in CoO

    Science.gov (United States)

    Feygenson, Mikhail; Teng, Xiaowei; Du, Wenxin; Podlesnyak, Andrey; Niedziela, Jennifer; Hagen, Mark; Aronson, Meigan

    2010-03-01

    We studied the spin waves in nanoscaled CoO using inelastic neutron scattering. The zero-field measurements were carried out on Co/CoO nanoparticles, CoO nanoparticles, and the bulk powder of CoO in the temperature range of 15 -- 300 K. The temperature-dependent inelastic intensity at 2.5 meV, found in all samples, was ascribed to CoO spin waves. We observed an increase at least of factor of 100 in the inelastic intensity for Co/CoO as compared to the CoO bulk, and shift of intensity towards larger scattering vectors. We suggest that new boundary conditions imposed by the nanoparticle surface and the breaking of the symmetry are mainly responsible for this effect. Similar enhancement of the spin wave spectrum was also predicted in thin films [1,2]. [1] S. Reshetnyak et al PMC Physics B 2008 [2] Y.Gorobets et al, Tech. Phys. 1998

  16. Physics Colloquium: Theory of the spin wave Seebeck effect in magnetic insulators

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Lundi 28 février 2011 17h00 - École de Physique, Auditoire Stückelberg Theory of the spin wave Seebeck effect in magnetic insulators Prof. Gerrit Bauer Delft University of Technology The subfield of spin caloritronics addresses the coupling of heat, charge and spin currents in nanostructures. In the center of interest is here the spin Seebeck effect, which was discovered in an iron-nickel alloy. Uchida et al. recently observed the effect also in an electrically insulating Yttrium Iron Garnett (YIG) thin magnetic film. To our knowledge this is the first observation of a Seebeck effect generated by an insulator, implying that the physics is fundamentally different from the conventional Seebeck effect in metals. We explain the experiments by the pumping of a spin current into the detecting contacts by the thermally excited magnetization dynamics. In this talk I will give a brief overview over the state o...

  17. Dynamic magnetization switching and spin wave excitations by voltage-induced torque

    Science.gov (United States)

    Shiota, Yoichi

    2013-03-01

    The effect of electric fields on ultrathin ferromagnetic metal layer is one of the promising approaches for manipulating the spin direction with low-energy consumption, localization, and coherent behavior. Several experimental approaches to realize it have been investigated using ferromagnetic semiconductors, magnetostriction together with piezo-electric materials, multiferroic materials, and ultrathin ferromagnetic layer. In this talk, we will present a dynamic control of spins by voltage-induced torque. We used the magnetic tunnel junctions with ultrathin ferromagnetic layer, which shows voltage-induced perpendicular magnetic anisotropy change. By applying the voltage to the junction, the magnetic easy-axis in the ultrathin ferromagnetic layer changes from in-plane to out-of-plane, which causes a precession of the spins. This precession resulted in a two-way toggle switching by determining an appropriate pulse length. On the other hand, an application of rf-voltage causes an excitation of a uniform spin-wave. Since the precession of spin associates with an oscillation in the resistance of the junction, the applied rf-signal is rectified and produces a dc-voltage. From the spectrum of the dc-voltage as a function of frequency, we could estimate the voltage-induced torque. This research was supported by CREST-JST, G-COE program, and JSPS for the fellowship. Collaborators include T. Nozaki, S. Miwa, F. Bonell, N. Mizuochi, T. Shinjo, and Y. Suzuki.

  18. Neutron-Scattering Study of Spin Waves in the Ferrimagnet RbNiF3

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1972-01-01

    by a 180° antiferromagnetic exchange between nearest-neighbor A, B spins and a 90° ferromagnetic exchange between nearest-neighbor B spins. In this paper we report a detailed inelastic-neutron-scattering study of the spin waves in RbNiF3 both at low temperatures and through Tc. The magnetic unit cell......-magnon Raman scattering. At higher temperatures it is found that the c-axis acoustic magnons renormalize like the magnetization, whereas the high-lying optic modes are nearly temperature independent. This leads one to the physical picture in which RbNiF3 at high temperatures is viewed as a set of strongly......RbNiF3 is a transparent hexagonal ferrimagnet with Tc=133°K. Below Tc the Ni++ magnetic moments are aligned collinearly in ferromagnetic hexagonal sheets with a stacking sequence of these planes BBABBA such that the A spins are antiparallel to the B spins. This magnetic structure is determined...

  19. Anomalous influence of spin fluctuations on the heat capacity and entropy in a strongly correlated helical ferromagnet MnSi

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2017-02-01

    The influence of spin fluctuations on the thermodynamic properties of a helical ferromagnet MnSi has been investigated in the framework of the Hubbard model with the electronic spectrum determined from the first-principles LDA + U + SO calculation, which is extended taking into account the Hund coupling and the Dzyaloshinskii-Moriya antisymmetric exchange. It has been shown that the ground state of the magnetic material is characterized by large zero-point fluctuations, which disappear at the temperature T* (< T c is the temperature of the magnetic phase transition). In this case, the entropy abruptly increases, and a lambdashaped anomaly appears in the temperature dependence of the heat capacity at constant volume ( C V ( T)). In the temperature range T* < T < T c , thermal fluctuations lead to the disappearance of the inhomogeneous magnetization. The competition between the increase in the entropy due to paramagnon excitations and its decrease as a result of the reduction in the amplitude of local magnetic moments, under the conditions of strong Hund exchange, is responsible for in the appearance of a "shoulder" in the dependence C V ( T)).

  20. Parallel ferromagnetic resonance and spin-wave excitation in exchange-biased NiFe/IrMn bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcos Antonio de, E-mail: marcossharp@gmail.com [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Pelegrini, Fernando [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Alayo, Willian [Departamento de Física, Universidade Federal de Pelotas, Pelotas, 96010-900 (Brazil); Quispe-Marcatoma, Justiniano; Baggio-Saitovitch, Elisa [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, 22290-180 (Brazil)

    2014-10-01

    Ferromagnetic Resonance study of sputtered Ru(7 nm)/NiFe(t{sub FM})/IrMn(6 nm)/Ru(5 nm) exchange-biased bilayers at X and Q-band microwave frequencies reveals the excitation of spin-wave and NiFe resonance modes. Angular variations of the in-plane resonance fields of spin-wave and NiFe resonance modes show the effect of the unidirectional anisotropy, which is about twice larger for the spin-wave mode due to spin pinning at the NiFe/IrMn interface. At Q-band frequency the angular variations of in-plane resonance fields also reveal the symmetry of a uniaxial anisotropy. A modified theoretical model which also includes the contribution of a rotatable anisotropy provides a good description of the experimental results.

  1. Parameter estimation on gravitational waves from neutron-star binaries with spinning components

    CERN Document Server

    Farr, Ben; Farr, Will M; Haster, Carl-Johan; Middleton, Hannah; Cannon, Kipp; Graff, Philip B; Hanna, Chad; Mandel, Ilya; Pankow, Chris; Price, Larry R; Sidery, Trevor; Singer, Leo P; Urban, Alex L; Vecchio, Alberto; Veitch, John; Vitale, Salvatore

    2015-01-01

    Inspiraling binary neutron stars are expected to be one of the most significant sources of gravitational-wave signals for the new generation of advanced ground-based detectors. Advanced LIGO will begin operation in 2015 and we investigate how well we could hope to measure properties of these binaries should a detection be made in the first observing period. We study an astrophysically motivated population of sources (binary components with masses $1.2~\\mathrm{M}_\\odot$-$1.6~\\mathrm{M}_\\odot$ and spins of less than $0.05$) using the full LIGO analysis pipeline. While this simulated population covers the observed range of potential binary neutron-star sources, we do not exclude the possibility of sources with parameters outside these ranges; given the existing uncertainty in distributions of mass and spin, it is critical that analyses account for the full range of possible mass and spin configurations. We find that conservative prior assumptions on neutron-star mass and spin lead to average fractional uncertain...

  2. Implementing a search for gravitational waves from non-precessing, spinning binary black holes

    CERN Document Server

    Capano, Collin; Privitera, Stephen; Buonanno, Alessandra

    2016-01-01

    Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms --- a template bank --- chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins $\\chi_{1,2}\\in [-0.99, 0.99]$ aligned with the orbital angular momentum, component masses $m_{1,2}\\in [2, 48]\\,\\mathrm{M}_\\odot$, and total mass $M_\\mathrm{total} \\leq 50\\,\\mathrm{M}_\\odot$. Using effective-one-body waveforms with spin effects, we show that less than $3\\%$ of the maximum signal...

  3. Large-scale simulations of spin-density-wave order in frustrated lattices

    Science.gov (United States)

    Barros, Kipton; Batista, Cristian; Chern, Gia-Wei

    We investigate spin-density-wave (SDW) phases within a generalized mean-field approximation. This approach incorporates the thermal fluctuations of SDW order and the development of short-range order above magnetic ordering temperatures Tc. Using a new Langevin dynamics method, we study mesoscale structures associated with triple- Q SDW states that are induced by Fermi surface nesting in triangular and kagome lattice Hubbard models. The core of our linear-scaling Langevin dynamics simulations is an efficient stochastic kernel polynomial method for computing the electron density matrix. We also investigate exotic phases above Tc arising from preformed magnetic moments.

  4. Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family

    Science.gov (United States)

    Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.

    1994-10-01

    We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.

  5. Temperature Dependence of the Spin Waves in ErFe2

    DEFF Research Database (Denmark)

    Clausen, K.; Rhyne, J. J.; Lebech, Bente

    1982-01-01

    The temperature renormalisation of the energies of the optic modes in ErFe2 has been determined from room temperature up to close to the Curie temperature (574K). It is found that the two modes, a dispersive transition-metal mode and a localised crystal-field-dominated mode, cross over at about 420......K. The experimental results have been interpreted and are well accounted for by a linear spin wave model, where the level scheme of the lowest J multiplet of the Er3+ site has been assumed to consist of pure Jz states with an equidistant energy spacing between the levels....

  6. Conditions for the spin wave nonreciprocity in an array of dipolarly coupled magnetic nanopillars

    Science.gov (United States)

    Verba, Roman; Tiberkevich, Vasil; Bankowski, Elena; Meitzler, Thomas; Melkov, Gennadiy; Slavin, Andrei

    2013-08-01

    It is demonstrated that collective spin waves (SWs) propagating in complex periodic arrays of dipolarly coupled magnetic nanopillars existing in a saturated (single-domain) ground state in a zero bias magnetic field could be nonreciprocal. To guarantee the SW nonreciprocity, two conditions should be fulfilled: (i) existence of a nonzero out-of-plane component of the pillars' static magnetization and (ii) a complex periodicity of array's ground state with at least two elements per a primitive cell, if the elements are different, and at least three elements per a primitive cell, if the elements are identical.

  7. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu; Ong, C. K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-04-21

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films.

  8. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  9. Ultrafast Spin Density Wave Transition in Chromium Governed by Thermalized Electron Gas

    Science.gov (United States)

    Nicholson, C. W.; Monney, C.; Carley, R.; Frietsch, B.; Bowlan, J.; Weinelt, M.; Wolf, M.

    2016-09-01

    The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter Δ through the ultrafast phase transition and show that Δ is governed by the transient temperature of the thermalized electron gas, in a mean field description. The complete destruction of SDW order on a sub-100 fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly nonadiabatic regime of ultrafast photoexcitation.

  10. Spin contamination-free N-electron wave functions in the excitation-based configuration interaction treatment.

    Science.gov (United States)

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Oña, Ofelia B; Capuzzi, Pablo

    2016-07-07

    This work deals with the spin contamination in N-electron wave functions provided by the excitation-based configuration interaction methods. We propose a procedure to ensure a suitable selection of excited N-electron Slater determinants with respect to a given reference determinant, required in these schemes. The procedure guarantees the construction of N-electron wave functions which are eigenfunctions of the spin-squared operator Sˆ(2), avoiding any spin contamination. Our treatment is based on the evaluation of the excitation level of the determinants by means of the expectation value of an excitation operator formulated in terms of spin-free replacement operators. We report numerical determinations of energies and 〈Sˆ(2)〉 expectation values, arising from our proposal as well as from traditional configuration interaction methods, in selected open-shell systems, in order to compare the behavior of these procedures and their computational costs.

  11. Spin Hall conductivity in the impure two-dimensional Rashba s-wave superconductor

    Science.gov (United States)

    Biderang, M.; Yavari, H.

    2016-06-01

    Based on the Kubo formula approach, the spin Hall conductivity (SHC) of a two-dimensional (2D) Rashba s-wave superconductor in the presence of nonmagnetic impurities is calculated. We will show that by increasing the superconducting gap, the SHC decreases monotonically to zero, while by decreasing the concentration of impurities at zero gap, the SHC closes to the clean limit universal value - e/8 π. As a function of the impurity relaxation rate τ at Tc = 0.1 and γ = 0.01 (γ is the spin-orbit coupling in unit of eV · m), we will show that in the dirty limit (τ → 0) the SHC vanishes, and by increasing the relaxation time (τ → ∞) the SHC depends on the value of superconducting gap (Δ = 1.76Tc√{ 1 -T/Tc }), is changed from zero for full gap to -e/8 π in zero gap. At low temperatures, the SHC goes to zero exponentially and near the critical temperature depending on the concentration of the scattering centers, the SHC will tend to the value of normal state. We will also show that the SHC is independent of spin-orbit coupling (γ) in the clean limit.

  12. On the rich eight branch spectrum of the oblique propagating longitudinal waves in partially spin polarized electron-positron-ion plasmas

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider oblique propagating longitudinal waves in this systems. We report presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas we find four branches: the Langmuir wave, the positron-acoustic wave and pair of waves having spin nature, they are the SEAW and, as we called it, spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, Trivelpiece-Gould wave, pair of positron-acoustic waves, pair of SEAWs, and pair of SEPAWs. Thus, for the first time, we r...

  13. Spin-wave dispersion of nanostructured magnonic crystals with periodic defects

    Science.gov (United States)

    Zhang, V. L.; Lim, H. S.; Ng, S. C.; Kuok, M. H.; Zhou, X.; Adeyeye, A. O.

    2016-11-01

    The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.

  14. Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories

    Science.gov (United States)

    Rieländer, Daniel; Lenhard, Andreas; Mazzera, Margherita; de Riedmatten, Hugues

    2016-12-01

    We report on a source of heralded narrowband (≈ 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW-1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.

  15. Radiation losses and dark mode for spin-wave propagation through a discrete magnetic micro-waveguide

    Science.gov (United States)

    Barabanenkov, Yuri; Osokin, Sergey; Kalyabin, Dmitry; Nikitov, Sergey

    2016-11-01

    This paper presents the quantum mechanical type T -scattering operator approach to studying the forward volume magnetostatic spin-wave multiple scattering by a finite ensemble of cylindrical magnetic inclusions in a ferromagnetic thin film. The approach is applied to the problem of spin-wave excitation transfer along a linear chain of inclusions. The substantial results are deriving the optical theorem for the T -scattering operator and, as a consequence, deriving a formula for collective extinction cross section of inclusion ensemble, where only the first inclusion of the chain is irradiated by an incident narrow spin-wave beam. From this formula it can be shown that only irradiated inclusion makes a direct contribution in the collective extinction cross section of the total number of inclusions. In this case the direct summarized contribution of all the other inclusions from the chain into the spin-wave scattering is invisible; we call such phenomenon the dark mode. Applying a one-multipole and closest neighbor coupling approximation, we reveal a regime of distant resonant transfer for spin-wave excitation along the linear chain of an essentially big but finite number of particles with the dark mode. Because we also found a resonant mechanism of filtering this mode from radiation losses, the revealed regime shows that at resonant conditions the linear chain of magnetic inclusions can play the role of a spin-wave micro-waveguide, which transfers a signal over a big distance in a form of the dark mode, where the controllable level of radiation losses can tend to reach nearly zero values.

  16. Distinguishing black-hole spin-orbit resonances by their gravitational wave signatures. II: Full parameter estimation

    CERN Document Server

    Trifirò, Daniele; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich

    2015-01-01

    Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" $\\xi$ and resonant family $\\Delta\\Phi=0,\\pi$ (which uniquely label the source); the inclination $\\theta_{JN}$ of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables t...

  17. Aharonov-Anandan effect induced by spin-orbit interaction and charge-density waves in mesoscopic rings

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Y.; Bishop, A.R. [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-08-01

    We study the spin-dependent geometric phase effect in mesoscopic rings of charge-density-wave (CDW) materials. When electron spin is explicitly taken into account, we show that the spin-dependent Aharonov-Casher phase can have pronounced frustration effects on such CDW materials with appropriate electron filling. We show that this frustration has observable consequences for transport experiments. We identify a phase transition from a Peierls insulator to metal, which is induced by spin-dependent phase interference effects. Mesoscopic CDW materials and spin-dependent geometric phase effects, and their interplay, are becoming attractive opportunities for exploitation with the rapid development of modern fabrication technology. {copyright} {ital 1998} {ital The American Physical Society}

  18. Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3

    Science.gov (United States)

    Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto

    2016-06-01

    Weyl fermions that emerge at band crossings in momentum space caused by the spin-orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet.

  19. Effects of the applied magnetic field and anisotropy on the spin wave gap in ultrathin magnetic films at zero temperature

    Science.gov (United States)

    Kaplan, B.; Kaplan, R.

    2014-12-01

    We investigate the calculated spin wave gap of two-dimensional magnetic films under the combined influence of the in-plane direction of the applied magnetic field and different kinds of magnetic anisotropies. We also compute the spin wave gap as a function of the applied magnetic field at zero temperature. We discuss the results in connection with experimental data reported for epitaxial Fe-deficient yttrium garnet (YIG) films grown by pulsed laser deposition (PLD) technique onto the different faces of the Gd3Ga5O12 single crystal.

  20. Collective spin waves in reconfigurable artificial crystals and magnonic meta-materials

    Science.gov (United States)

    Grundler, Dirk

    2014-03-01

    Periodically nanopatterned ferromagnets have generated great interest in the research field of magnonics in that they support spin-wave (SW) nanochannels, allow for multi-directional emission of short-wavelength SWs via the grating coupler effect and form artificial crystals for SWs (magnons) in the GHz frequency regime. Allowed SW minibands and forbidden frequency gaps are not just tailored by the geometrical and material parameters, but reflect decisively the periodic order of the nanomagnets' remanent magnetization. Thereby a further degree of freedom is offered for controlling wave phenomena in solids compared to photonics and plasmonics. We investigated such so-called reconfigurable magnonic crystals (MCs) consisting of a one-dimensional (1D) array of permalloy nanostripes that allow one to vary the Brillouin zone boundaries, forbidden frequency gaps and number of SW minibands in one-and-the same device. When excited by a microwave antenna, an unexpected metamaterial property was found in that both reciprocal and nonreciprocal SW excitation occurred depending on the parallel and antiparallel alignment of magnetic moments in neighboring stripes. Such excitation characteristics are not found in natural materials. Switching an individual stripe from parallel to antiparallel magnetization in an otherwise saturated 1D MC modified the transmitted SW amplitude considerably offering SW control on the nanoscale. Combined with the grating coupler effect, periodically nanopatterned ferromagnets are expected to provide interesting building blocks for magnonic applications aiming at transmitting and processing information at microwave frequencies with spin waves. Funding from the European Community's 7th Framework Programme (FP7/2007-2013) under grant No. 228673 MAGNONICS, No. 247556 NoWaPhen, the DFG via GR1640/5-1 (SPP 1538) and the German Excellence Cluster `Nanosystems Initiative Munich (NIM)' is acknowledged.

  1. On polarization parameters of spin-1 particles and anomalous couplings in e{sup +}e{sup -} → ZZ/Zγ

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Rafiqul; Singh, Ritesh K. [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Mohanpur (India)

    2016-10-15

    We study the anomalous trilinear gauge couplings of Z and γ using a complete set of polarization asymmetries for the Z boson in e{sup +}e{sup -} → ZZ/Zγ processes with unpolarized initial beams. We use these polarization asymmetries, along with the cross section, to obtain a simultaneous limit on all the anomalous couplings using the Markov Chain Monte Carlo (MCMC) method. For an e{sup +}e{sup -} collider running at 500 GeV center-of-mass energy and 100 fb{sup -1} of integrated luminosity the simultaneous limits on the anomalous couplings are 1-3 x 10{sup -3}. (orig.)

  2. Analysis of the broadband chaotic spin-wave excitations in an active ring oscillator based on a metalized ferrite film

    Science.gov (United States)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.; Demokritov, S. O.

    2016-11-01

    This paper reports the first experimental study of broadband chaotic nonlinear spin- wave excitations which is formed through development of four-wave parametric processes in active ring oscillator based on metallized ferrite film. We find that an increase in the oscillation power leads to Hopf bifurcations sequence. Monochromatic, periodic quasi-periodic and chaotic excitations are observed. Spectra of the chaotic excitations consist of series of chaotic bands separated well in frequency. Parameters of the chaotic attractors are discussed.

  3. Implementing a search for aligned-spin neutron star -- black hole systems with advanced ground based gravitational wave detectors

    CERN Document Server

    Canton, Tito Dal; Lundgren, Andrew P; Nielsen, Alex B; Brown, Duncan A; Harry, Ian W; Krishnan, Badri; Miller, Andrew J; Wiesner, Karsten; Willis, Joshua L

    2014-01-01

    We study the effect of spins on searches for gravitational waves from compact binary coalescence events in realistic early advanced LIGO data. We construct a realistic detection pipeline which includes matched filtering, signal-based vetoes, coincidence tests between different detectors, clustering of events, and an estimate of the rate of background events. We restrict attention to neutron star--black hole (NS-BH) binary systems, and we compare a search using non-spinning templates to a search using templates which include spins aligned with the orbital angular momentum. We introduce a new implementation of the gravitational-wave matched-filter computation in a new software toolkit for gravitational-wave data analysis called PyCBC, and use this to run our search. We find that the inclusion of aligned-spin effects significantly improves the astrophysical reach of the search. If the dimensionless spin of the black hole in astrophysical NS-BH systems were uniformly distributed between (-1,1), the sensitive volu...

  4. Size dependence of spin-wave modes in Ni80Fe20 nanodisks

    Directory of Open Access Journals (Sweden)

    P. Lupo

    2015-07-01

    Full Text Available We investigate the radial and azimuthal spin-wave (SW resonance modes in permalloy (Py: Ni80Fe20 disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size. Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  5. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  6. Size dependence of spin-wave modes in Ni80Fe20 nanodisks

    Science.gov (United States)

    Lupo, P.; Kumar, D.; Adeyeye, A. O.

    2015-07-01

    We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni80Fe20) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  7. Zitterbewegung, internal momentum and spin of the circular travelling wave electromagnetic electron

    CERN Document Server

    Asif, Malik Mohammad

    2016-01-01

    The study of this paper demonstrates that electron has Dirac delta like internal momentum (u,p_{{\\theta}}), going round in a circle of radius equal to half the reduced Compton wavelength of electron with tangential velocity c. The circular momentum p_{{\\theta}} and energy u emanate from circular Dirac delta type rotating monochromatic electromagnetic (EM) wave that itself travels in another circle having radius equal to the reduced Compton wavelength of electron. The phenomenon of Zitterbewegung and the spin of electron are the natural consequences of the model. The spin is associated with the internal circulating momentum of electron in terms of four component spinor, which leads to the Dirac equation linking the EM electron model with quantum mechanical theory. Our model accurately explains the experimental results of electron channelling experiment, [P. Catillon et al., Found.Phys. 38, 659 (2008)], in which the momentum resonance is observed at 161.784MeV/c corresponding to Zitterbewegung frequency of 80.8...

  8. Frequency domain reduced order models for gravitational waves from aligned-spin black-hole binaries

    CERN Document Server

    Pürrer, Michael

    2014-01-01

    Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body (EOB) models for binaries with aligned spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation studies. I provide a frequency-domain singular value decomposition (SVD)-based surrogate reduced order model that is thousands to hundred thousands times faster for typical system masses and has a faithfulness mismatch of better than $\\sim 0.1\\%$ with the original SEOBNRv1 model for advanced LIGO detectors. This model enables parameter estimation studies up to signal-to-noise ratios (SNRs) of 20 and even up to SNR 50 for masses below $50 M_\\odot$. This article discusses various choices for approximations and interpolation over th...

  9. Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains

    Science.gov (United States)

    Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.

    2016-09-01

    The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.

  10. Magnetic field dependence of the lowest-frequency edge-localized spin wave mode in a magnetic nanotriangle.

    Science.gov (United States)

    Lin, C S; Lim, H S; Wang, Z K; Ng, S C; Kuok, M H; Adeyeye, A O

    2011-03-01

    An understanding of the spin dynamics of nanoscale magnetic elements is important for their applications in magnetic sensing and storage. Inhomogeneity of the demagnetizing field in a non-ellipsoidal magnetic element results in localization of spin waves near the edge of the element. However, relative little work has been carried out to investigate the effect of the applied magnetic fields on the nature of such localized modes. In this study, micromagnetic simulations are performed on an equilateral triangular nanomagnet to investigate the magnetic field dependence of the mode profiles of the lowest-frequency spin wave. Our findings reveal that the lowest-frequency mode is localized at the base edge of the equilateral triangle. The characteristics of its mode profile change with the ground state magnetization configuration of the nanotriangle, which, in turn, depends on the magnitude of the in-plane applied magnetic field.

  11. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  12. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    Science.gov (United States)

    Gruszecki, P.; Romero-Vivas, J.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.; Krawczyk, M.

    2014-12-01

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.

  13. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Gruszecki, P., E-mail: pawel.gruszecki@amu.edu.pl; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614 (Poland); Romero-Vivas, J. [Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland); Dadoenkova, Yu. S.; Dadoenkova, N. N. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Ulyanovsk State University, 42 Leo Tolstoy str., 432000 Ulyanovsk (Russian Federation); Lyubchanskii, I. L. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine)

    2014-12-15

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.

  14. A possible scheme for measuring gravitational waves by using a spinful quantum fluid

    Directory of Open Access Journals (Sweden)

    Cheng Yao

    2014-06-01

    Full Text Available A method is proposed for measuring gravitational waves (GWs from the collective electromagnetic (EM response of a spinful quantum fluid, based on recent studies of the long-lived Mössbauer state 93mNb in a pure Nb crystal. A pronounced EM response was found for the geometric phase by rotating the sample in a magnetic field, suggesting that GWs could also be detected. It was recently suggested that the macroscopic wave functions confined in two twisted nonspherical superconductors would give a geometrical phase oscillation induced by GWs. The sensitivity to GWs would be inversely proportional to the square of the bound length, which is the detector size. The proposed sensitivity to GWs would be dramatically enhanced by changing the characteristic size, i.e., using the microscopic size of a non-spherical particle instead of the macroscopic detector size of a scalar quantum fluid. The collective EM response from the quantum fluid would allow the macroscopic geometrical phase to be read from microscopic particles. GWs in the millihertz range, with amplitude of 10−22, would be detectable.

  15. Fourth order wave equation in Bhabha-Madhavarao spin-$\\frac{3}{2}$ theory

    CERN Document Server

    Markov, Yu A; Bondarenko, A I

    2016-01-01

    Within the framework of the Bhabha-Madhavarao formalism, a consistent approach to the derivation of a system of the fourth order wave equations for the description of a spin-$\\frac{3}{2}$ particle is suggested. For this purpose an additional algebraic object, the so-called $q$-commutator ($q$ is a primitive fourth root of unity) and a new set of matrices $\\eta_{\\mu}$, instead of the original matrices $\\beta_{\\mu}$ of the Bhabha-Madhavarao algebra, are introduced. It is shown that in terms of the $\\eta_{\\mu}$ matrices we have succeeded in reducing a procedure of the construction of fourth root of the fourth order wave operator to a few simple algebraic transformations and to some operation of the passage to the limit $z \\rightarrow q$, where $z$ is some (complex) deformation parameter entering into the definition of the $\\eta$-matrices. In addition, a set of the matrices ${\\cal P}_{1/2}$ and ${\\cal P}_{3/2}^{(\\pm)}(q)$ possessing the properties of projectors is introduced. These operators project the matrices ...

  16. Bilayer honeycomb lattice with ultracold atoms: Multiple Fermi surfaces and incommensurate spin density wave instability

    Science.gov (United States)

    Dey, Santanu; Sensarma, Rajdeep

    2016-12-01

    We propose an experimental setup using ultracold atoms to implement a bilayer honeycomb lattice with Bernal stacking. In the presence of a potential bias between the layers and at low densities, fermions placed in this lattice form an annular Fermi sea. The presence of two Fermi surfaces leads to interesting patterns in Friedel oscillations and RKKY interactions in the presence of impurities. Furthermore, a repulsive fermion-fermion interaction leads to a Stoner instability towards an incommensurate spin density wave order with a wave vector equal to the thickness of the Fermi sea. The instability occurs at a critical interaction strength which goes down with the density of the fermions. We find that the instability survives interaction renormalization due to vertex corrections and discuss how this can be seen in experiments. We also track the renormalization group flows of the different couplings between the fermionic degrees of freedom, and find that there are no perturbative instabilities, and that Stoner instability is the strongest instability which occurs at a critical threshold value of the interaction. The critical interaction goes to zero as the chemical potential is tuned towards the band bottom.

  17. Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons

    Science.gov (United States)

    Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong; Zeng, Zhi

    2016-04-01

    The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electron interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.

  18. Light Spins of Cylindrical Electromagnetic Waves and their Jumps across Material Interfaces in the Presence of Energy Exchange

    Directory of Open Access Journals (Sweden)

    J. Mok

    2016-08-01

    Full Text Available We investigate light spins for cylindrical electromagnetic waves on resonance. To this goal, we consider both a dielectric cylinder of infinite length immersed in vacuum and a cylindrical hole punched through a dense dielectric medium. In order for waves of constant frequencies to be established through lossless media, energy absorption is allowed in the surrounding medium to compensate for radiation loss. The dispersion relation is then numerically solved for an asymmetry parameter implying a balance in energy exchange. Numerical studies are performed by varying parameters of refractive index contrast, azimuthal mode index, and size parameter of a cylindrical object. The resulting data is presented mostly in terms of a specific spin, defined as light spin per energy density. This specific spin is found to be bounded in its magnitude, with its maximum associated with either optical vortices or large rotations. Depending on parametric combinations, the specific spin could not only undergo finite jumps across the material interface but also exhibit limit behaviors.

  19. Comment on "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young's modulus" [J. Acoust. Soc. Am. 132, 2887-2895 (2012)].

    Science.gov (United States)

    Marston, Philip L

    2014-03-01

    The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.

  20. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.

    2008-08-01

    We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M⊙spin of the binary’s components to have a significant effect. We find that our search of S3 LIGO data has good sensitivity to binaries in the Milky Way and to a small fraction of binaries in M31 and M33 with masses in the range 1.0M⊙wave signals were identified during this search. Assuming a binary population with spinning components and Gaussian distribution of masses representing a prototypical neutron star black hole system with m1≃1.35M⊙ and m2≃5M⊙, we calculate the 90%-confidence upper limit on the rate of coalescence of these systems to be 15.9yr-1L10-1, where L10 is 1010 times the blue light luminosity of the Sun.

  1. Pure quantum states of neutrino with rotating spin in dense magnetized matter

    CERN Document Server

    Arbuzova, E V; Murchikova, E M

    2009-01-01

    The problem of rotation of the neutrino spin in dense matter and in strong electromagnetic field is solved in full agreement with the basic principles of quantum mechanics. We found complete system of wave functions of a massive Dirac neutrino possessing anomalous magnetic moment. These functions are eigenfunctions of kinetic momentum operator and describe neutrino with rotating spin. Using these wave functions it is possible to calculate probabilities of various processes with neutrino in the framework of the Furry picture. The dispersion law for the neutrino in dense magnetized matter is found. It is shown that group velocity of neutrino is independent of spin orientation.

  2. Effects of antidot shape on the spin wave spectra of two-dimensional Ni{sub 80}Fe{sub 20} antidot lattices

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ruma; Laha, Pinaki; Das, Kaustuv; Saha, Susmita; Barman, Saswati; Raychaudhuri, A. K.; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India)

    2013-12-23

    We show that the optically induced spin wave spectra of nanoscale Ni{sub 80}Fe{sub 20} (permalloy) antidot lattices can be tuned by changing the antidot shape. The spin wave spectra also show an anisotropy with the variation of the in-plane bias field orientation. Analyses show this is due to various quantized and extended modes, whose nature changes with the antidot shape and bias field orientation as a result of the variation of the internal magnetic field profile. The observed variation and anisotropy in the spin waves with the internal and external parameters are important for their applications in magnonic devices.

  3. Apparatus to study matter-wave quantum optics in spin space in a sodium spinor Bose-Einstein condensate

    Science.gov (United States)

    Nematollahi, Delaram; Zhang, Qimin; Altermatt, Joseph; Zhong, Shan; Goodman, Matthew; Bhagat, Anita; Schwettmann, Arne

    2016-05-01

    We present our apparatus designed to study matter-wave quantum optics in spin space, including our recently finished vacuum system and laser systems. Microwave-dressed spin-exchange collisions in a sodium spinor Bose-Einstein condensate provide a precisely controllable nonlinear interaction that generates squeezing and acts as a source of entanglement. As a consequence of this entanglement between atoms with magnetic quantum numbers m = +1 and m = -1, the noise of population measurements can be reduced below the shot noise. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices. With an added ion detector to detect Rydberg atoms via pulsed-field ionization, we plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.

  4. Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction

    Science.gov (United States)

    Labousse, Matthieu; Perrard, Stéphane; Couder, Yves; Fort, Emmanuel

    2016-10-01

    The back-reaction of a radiated wave on the emitting source is a general problem. In the most general case, back-reaction on moving wave sources depends on their whole history. Here we study a model system in which a pointlike source is piloted by its own memory-endowed wave field. Such a situation is implemented experimentally using a self-propelled droplet bouncing on a vertically vibrated liquid bath and driven by the waves it generates along its trajectory. The droplet and its associated wave field form an entity having an intrinsic dual particle-wave character. The wave field encodes in its interference structure the past trajectory of the droplet. In the present article we show that this object can self-organize into a spinning state in which the droplet possesses an orbiting motion without any external interaction. The rotation is driven by the wave-mediated attractive interaction of the droplet with its own past. The resulting "memory force" is investigated and characterized experimentally, numerically, and theoretically. Orbiting with a radius of curvature close to half a wavelength is shown to be a memory-induced dynamical attractor for the droplet's motion.

  5. Spin wave study and optical properties in Fe-doped ZnO thin films prepared by spray pyrolysis technique

    Science.gov (United States)

    Lmai, F.; Moubah, R.; El Amiri, A.; Abid, Y.; Soumahoro, I.; Hassanain, N.; Colis, S.; Schmerber, G.; Dinia, A.; Lassri, H.

    2016-07-01

    We investigate the magnetic and optical properties of Zn1-xFexO (x = 0, 0.03, 0.05, and 0.07) thin films grown by spray pyrolysis technique. The magnetization as a function of temperature [M (T)] shows a prevailing paramagnetic contribution at low temperature. By using spin wave theory, we separate the M (T) curve in two contributions: one showing intrinsic ferromagnetism and one showing a purely paramagnetic behavior. Furthermore, it is shown that the spin wave theory is consistent with ab-initio calculations only when oxygen vacancies are considered, highlighting the key role played by structural defects in the mechanism driving the observed ferromagnetism. Using UV-visible measurements, the transmittance, reflectance, band gap energy, band tail, dielectric coefficient, refractive index, and optical conductivity were extracted and related to the variation of the Fe content.

  6. Spin polarization driven by a charge-density wave in monolayer 1T−TaS2

    KAUST Repository

    Zhang, Qingyun

    2014-08-06

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer T-phase TaS2. We demonstrate that a charge-density wave is energetically favorable at low temperature, similar to bulk 1T-TaS2. Electron-phonon coupling is found to be essential for the lattice reconstruction. The charge-density wave results in a strong localization of the electronic states near the Fermi level and consequently in spin polarization, transforming the material into a magnetic semiconductor with enhanced electronic correlations. The combination of inherent spin polarization with a semiconducting nature distinguishes the monolayer fundamentally from the bulk compound as well as from other two-dimensional transition metal dichalcogenides. Monolayer T-phase TaS2 therefore has the potential to enable two-dimensional spintronics. © 2014 American Physical Society.

  7. Dressed-state electromagnetically induced transparency for light storage in uniform phase spin-waves

    CERN Document Server

    Šibalić, Nikola; Adams, Charles S; Weatherill, Kevin J

    2016-01-01

    We present, experimentally and theoretically, a scheme for dressed-state electromagnetically induced transparency (EIT) in a three-step cascade system where a four-level system is mapped into an effective three-level system. Theoretical analysis reveals that the scheme provides coherent state control via adiabatic following and provides a generalized protocol for light storage in uniform phase spin-waves that are insensitive to motional dephasing. The three-step driving enables a number of other features including spatial selectivity of the excitation region within the atomic medium, and kick-free and Doppler-free excitation that produces narrow resonances in thermal vapor. As a proof of concept we present an experimental demonstration of the generalized EIT scheme using the $6S_{1/2} \\rightarrow 6P_{3/2} \\rightarrow 7S_{1/2} \\rightarrow 8P_{1/2}$ excitation path in thermal cesium vapor. This technique could be applied to cold and thermal ensembles to enable longer storage times for Rydberg polaritons.

  8. Dressed-state electromagnetically induced transparency for light storage in uniform-phase spin waves

    Science.gov (United States)

    Šibalić, N.; Kondo, J. M.; Adams, C. S.; Weatherill, K. J.

    2016-09-01

    We present, experimentally and theoretically, a scheme for dressed-state electromagnetically induced transparency (EIT) in a three-step cascade system in which a four-level system is mapped into an effective three-level system. Theoretical analysis reveals that the scheme provides coherent-state control via adiabatic following and a generalized protocol for light storage in uniform phase spin-waves that are insensitive to motional dephasing. The three-step driving enables a number of other features, including spatial selectivity of the excitation region within the atomic medium, and kick-free and Doppler-free excitation that produces narrow resonances in thermal vapor. As a proof of concept, we present an experimental demonstration of the generalized EIT scheme using the 6 S1 /2→6 P3 /2→7 S1 /2→8 P1 /2 excitation path in thermal cesium vapor. This technique could be applied to cold and thermal ensembles to enable longer storage times for Rydberg polaritons.

  9. Competition between itinerant ferromagnetism and spin-density wave antiferromagnetism in FeGa

    Science.gov (United States)

    Wu, Yan; Cao, Huibo; McCandles, Gregory; Chan, Julia; Karki, Amar; Jin, Rongying; Ditusa, John

    2015-03-01

    The metallic magnetFeGadisplays a rich magnetic behavior that includes transitions between a FM ground state to a AFM intermediate state at 68 K and back to a FM state at 360 K. The phase transition at 360 K is accompanied by a discontinuous hysteretic change in the electrical resistivity. In addition, the application of moderate magnetic fields cause a sharp transformation from the AFM to FM state with a critical Hthat grows dramatically with T.To explore the cause of this unusual competition of magnetic states, we investigated the magnetic structure of FeGavia extensive single crystal neutron diffraction measurements. These measurements revealed a FM ordering with magnetic moments lying along the crystallographic c-axis both below 68 K and above 360 K as well as incommensurate spin density wave order between these temperatures. Our refinement of the diffraction data has uncovered the existence of a small non-coplanar moment which may be the origin of our previously discovered topological Hall Effect.

  10. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Energy Technology Data Exchange (ETDEWEB)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  11. Search for double charmonium decays of the P-wave spin-triplet bottomonium states

    CERN Document Server

    Shen, C P; Iijima, T

    2012-01-01

    Using a sample of 158 million $\\Upsilon(2S)$ events collected with the Belle detector, we search for the first time for double charmonium decays of the $P$-wave spin-triplet bottomonium states ($\\Upsilon(2S) \\to \\gamma \\chi_{bJ}$, $\\chi_{bJ} \\to \\jpsi \\jpsi$, $\\jpsi \\psp$, $\\psp \\psp$ for J=0, 1, and 2). No significant $\\chi_{bJ}$ signal is observed in the double charmonium mass spectra, and we obtain the following upper limits, $\\BR(\\chi_{bJ} \\to \\jpsi \\jpsi)<7.1\\times 10^{-5}$, $2.7\\times 10^{-5}$, $4.5\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\jpsi \\psp)<1.2\\times 10^{-4}$, $1.7\\times 10^{-5}$, $4.9\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\psp \\psp)<3.1\\times 10^{-5}$, $6.2\\times 10^{-5}$, $1.6\\times 10^{-5}$ for J=0, 1, and 2, respectively, at the 90% confidence level. These limits are significantly lower than the central values (with uncertainties of 50% to 70%) predicted using the light cone formalism but are consistent with calculations using the NRQCD factorization approach.

  12. Quantum critical properties of a metallic spin-density-wave transition

    Science.gov (United States)

    Gerlach, Max H.; Schattner, Yoni; Berg, Erez; Trebst, Simon

    2017-01-01

    We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z =2 , consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.

  13. Propagation of pulsed surface spin-wave signals at millikelvin temperatures

    Science.gov (United States)

    van Loo, Arjan; Morris, Richard; Karenowska, Alexy

    Propagating microwave-frequency magnons in magnetic films attract increasing attention on account of their potential interface with superconducting quantum circuit and qubit systems. Their rich dynamics and slow speeds make magnons an interesting addition to the circuit quantum electrodynamics toolbox and, at the same time, superconducting circuit technology promises to be a powerful tool in the investigation of their quantum properties. We have studied the propagation of pulsed surface spin-wave signals over millimeter distances in yttrium iron garnet waveguides at ~ 10 mK . Input microwave pulses and pulse trains with various envelope shapes were applied to an inductive input antenna, and the resulting magnons were detected by an output antenna of identical design. The shape of the output signal was observed to depend on the frequency content (carrier and pulse shape) of the input pulse. By performing measurements at varying frequencies and magnetic fields we have been able to map out the dispersion relation for surface magnon modes. These experiments were undertaken as a first step towards coupling propagating magnons in thin films to other quantum systems with microwave-frequency transition energies, and superconducting qubits in particular. The authors acknowledge support from the EPSRC (EP/K032690/1).

  14. Commensurate and incommensurate spin-density waves in heavy electron systems

    Directory of Open Access Journals (Sweden)

    P. Schlottmann

    2016-05-01

    Full Text Available The nesting of the Fermi surfaces of an electron and a hole pocket separated by a nesting vector Q and the interaction between electrons gives rise to itinerant antiferromagnetism. The order can gradually be suppressed by mismatching the nesting and a quantum critical point (QCP is obtained as the Néel temperature tends to zero. The transfer of pairs of electrons between the pockets can lead to a superconducting dome above the QCP (if Q is commensurate with the lattice, i.e. equal to G/2. If the vector Q is not commensurate with the lattice there are eight possible phases: commensurate and incommensurate spin and charge density waves and four superconductivity phases, two of them with modulated order parameter of the FFLO type. The renormalization group equations are studied and numerically integrated. A re-entrant SDW phase (either commensurate or incommensurate is obtained as a function of the mismatch of the Fermi surfaces and the magnitude of |Q − G/2|.

  15. Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state

    Science.gov (United States)

    Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2011-09-01

    We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning

  16. Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole

    CERN Document Server

    Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro

    2015-01-01

    We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a {\\it spinning} particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-supplementary-condition. The fluxes are computed, for the first time, by solving the 2+1 Teukolsky equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by $M$ the black hole mass and by $\\mu$ the particle mass, we cover dimensionless background spins $a/M=(0,\\pm0.9)$ and dimensionless particle spins $-0.9\\leq S/\\mu^2 \\leq +0.9$. Our results span orbits of Boyer-Lindquist coordinate radii $4\\leq r/M \\leq 30$; notably, we investigate the strong-field regime, in some cases even beyond the last-stable-orbit. We confirm, numerically, the Tanaka {\\it et al.} [Phys.\\ Rev.\\ D 54, 3762] 2.5th order accurate Post-Newtonian (PN) predictions for the gravitational wave fluxes of a...

  17. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Daz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nash, T; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ramsunder, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sanchodela Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F

    2007-01-01

    We report on the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family designed specially to capture the effects of spin-induced precession. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0 M_{\\odot} < m_1 < 3.0 M_{\\odot} and 12.0 M_{\\odot} < m_{2} < 20.0 M_{\\odot} which is where we would expect the spin of the binary's components to have significant effect. We find that our search of S3 LIGO data had good sensitivity to binaries in the Milky Way and to a small fraction of binaries in M31 and M33 with masses in the range 1.0 M_{\\odot} < m_{1}, m_{2} < 20.0 M_{\\odot}. No gravitational wave signals were identified during this search. Assuming a binary populati...

  18. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  19. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    CERN Document Server

    Andreev, Pavel A

    2014-01-01

    We discuss complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider contribution of the annihilation interaction in the quantum hydrodynamic equations and in spectrum of waves in magnetized electron-positron plasmas. We consider propagation of waves parallel and perpendicular to an external magnetic field. We also consider oblique propagation of longitudinal waves. We derive set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory for the linear wave behavior in absence of external fields. We calculate contribution of the Darwin...

  20. Quantification of a propagating spin-wave packet created by an ultrashort laser pulse in a thin film of a magnetic metal

    Science.gov (United States)

    Iihama, S.; Sasaki, Y.; Sugihara, A.; Kamimaki, A.; Ando, Y.; Mizukami, S.

    2016-07-01

    Coherent spin-wave generation by focused ultrashort laser pulse irradiation was investigated for a permalloy thin film at micrometer scale using an all-optical space- and time-resolved magneto-optical Kerr effect microscope. The spin-wave packet propagating perpendicular to the magnetization direction was clearly observed; however, that propagating parallel to the magnetization direction was not observed. The propagation length, group velocity, center frequency, and packet width of the observed spin-wave packet were evaluated and quantitatively explained in terms of the propagation of a magnetostatic spin wave driven by the ultrafast change of an out-of-plane demagnetization field induced by the focused-pulse laser.

  1. General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology

    CERN Document Server

    Smoller, Joel

    2012-01-01

    We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\

  2. Tunable spin-wave frequency gap in anisotropy-graded FePt films obtained by ion irradiation

    Science.gov (United States)

    Tacchi, S.; Pini, M. G.; Rettori, A.; Varvaro, G.; di Bona, A.; Valeri, S.; Albertini, F.; Lupo, P.; Casoli, F.

    2016-07-01

    The effect of graded anisotropy on static and dynamic magnetic properties of Ar+-irradiated FePt films has been investigated by static magnetometry, magnetic force microscopy, and Brillouin light scattering from thermally excited spin waves. A gradual variation of magnetic anisotropy with film thickness was obtained by Ar+ irradiation. The irradiation incidence angle influences the anisotropy profile: on decreasing α , a decreasing thickness of the hard L 10 phase and an increasing thickness of the soft A1 phase were obtained. Accordingly, the zero-field spin-wave frequency gap was found to decrease. In the sample with the highest soft-phase thickness the spin-wave frequency gap takes a substantial value (ν0≈6 GHz), which could be reproduced assuming the presence of a nonzero "rotatable" anisotropy (i.e., any direction in the film plane can be established as the easy axis by the application of a saturating magnetic field along this direction). The hypothesis is supported by both magnetometry and magnetic force microscopy data.

  3. Wave Function Parity Loss Used to Mitigate Thermal Broadening in Spin-orbit Coupled Zigzag Graphene Analogues

    Science.gov (United States)

    Sadi, Mohammad Abdullah; Liang, Gengchiau

    2017-01-01

    Carrier transport through a graphene zigzag nanoribbon (ZNR) is possible to be blocked by a p-n profile implemented along its transport direction. However, we found that in cases of analogous materials with significant intrinsic spin-orbit coupling (SOC), i.e. silicene and germanene, such a profile on ZNR of these materials allows transmission mostly through spin-orbit coupled energy window due to the loss of the parity of wave functions at different energies caused by SOC. Next, a p-i-n scheme on germanene ZNR is proposed to simultaneously permit edge transmission and decimate bulk transmission. The transmission spectrum is shown to mitigate the effect of thermal broadening on germanene and silicene ZNR based spin-separators by improving spin polarization yield by 400% and 785%, respectively, at 300 K. The importance of proper gate voltage and position for such performance is further elucidated. Finally, the modulation the current output of the proposed U-shape p-i-n device while maintaining its spin polarization is discussed. PMID:28091616

  4. Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

    CERN Document Server

    Bustillo, Juan Calderón; Sintes, Alicia M; Püerrer, Michael

    2015-01-01

    Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(\\ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its Zero-Detuned High Energy Power version, that we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a non-spinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 ROM waveform family, which only considers quadrupolar modes, towards hybrid post-Newtonian/Numerical Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses of more than $10\\%$ of events occur for mass ratio $q\\geq6$ and $M \\geq...

  5. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, M. [School of Physics, M013, University of Western Australia, Crawley, Perth 6009, Western Australia (Australia)

    2014-06-21

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.

  6. Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars

    CERN Document Server

    Pisarski, Andrzej

    2013-01-01

    We construct efficient banks of templates suitable for all-sky narrow-band searches of almost monochromatic gravitational waves originating from spinning neutron stars in our Galaxy in data collected by interferometric detectors. We thus assume that both the position of the gravitational-wave source in the sky and the wave's frequency together with spindown parameters are unknown. In the construction we employ simplified model of the signal with constant amplitude and phase which is a linear function of unknown parameters. All our template banks enable usage of the fast Fourier transform algorithm in the computation of the maximum-likelihood $\\mathcal{F}$-statistic for nodes of the grids defining the bank and fulfill an additional constraint needed to resample the data to barycentric time efficiently. Our template banks are suitable for larger range of search parameters than the banks previously proposed and compared to them they have smaller thicknesses for certain values of search parameters.

  7. Neutron Scattering Investigation of the Temperature Dependence of Long-Wavelength Spin Waves in Ferromagnetic Rb2CrCI4

    DEFF Research Database (Denmark)

    Hutchings, M T; Als-Nielsen, Jens Aage; Lindgård, Per-Anker;

    1981-01-01

    The long-wavelength spin waves in Rb2CrCl4, a nearly two-dimensional ferromagnet, have been investigated at several temperatures below Tc=52.4K using neutron inelastic scattering techniques. The data have been analysed in terms of a Hartree-Fock theory using matching-matrix elements to give...... correctly the effects of anisotropy. Values for the parameters in the spin Hamiltonian have been found, and the theory accounts well for the energy renormalisation of the spin waves and for the transition temperature and variation of magnetic moment with temperature. Due to weak uniaxial anisotropy terms...

  8. Anomalous radiative transitions

    CERN Document Server

    Ishikawa, Kenzo; Tobita, Yutaka

    2014-01-01

    Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \

  9. SH-Wave Seismic-Reflection Evidence for a Tectonic Origin of Anomalous Stress in Near-Surface Unlithified Sediment, Midcontinent, United States

    Science.gov (United States)

    Woolery, E. W.; Schaefer, J. A.; Wang, Z.

    2002-12-01

    Indirect and direct geotechnical measurements revealed the presence of high lateral earth pressure (Ko) in shallow, unlithified sediment at a site in the northernmost Mississippi embayment region of the central United States. Results from pile-load and pressuremeter tests showed maximum Ko values greater than 10; however, the complex geologic environment of the Midcontinent made defining an origin for the anomalous Ko based solely on these measurements equivocal. Although in situ sediment characteristics indicated that indirect tectonic or nontectonic geologic mechanisms that include transient overburden loads (e.g., fluvial deposition/erosion, glacial advance/retreat) and dynamic shear loads (e.g., earthquakes) were not the dominant cause, they were unable to provide indicators for a direct tectonic generation. Localized stresses induced anthropogenically by the geotechnical field tests were also considered, but ruled out as the primary origin. A high-resolution shear-wave (SH) reflection image of geologic structure in the immediate vicinity of the test site revealed compression-style neotectonism, and suggested the elevated stress was a tectonic manifestation. Post-Paleozoic reflectors exhibit a Tertiary (?) structural inversion, as evidenced by post-Cretaceous fault displacement and pronounced positive folds in the hanging wall of the interpreted faults. The latest stratigraphic extent of the stress effects (i.e., all measurements were in the Late Cretaceous to Tertiary McNairy Formation), as well as the relationship of stress orientation with the orientation of local structure and regional stress remains unknown. These are the subjects of on-going studies.

  10. Spin-wave dynamics in Invar Fe sub 6 sub 5 Ni sub 3 sub 5 alloy studied by small-angle polarized neutron scattering

    CERN Document Server

    Grigoriev, S V; Deriglazov, V V; Okorokov, A I; Dijk, N H V; Brück, E; Klaasse, J C P; Eckerlebe, H; Kozik, G

    2002-01-01

    Spin dynamics in Fe sub 6 sub 5 Ni sub 3 sub 5 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below T sub C =485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping GAMMA were obtained by fitting the antisymmetrical contribution to the scattering. The spin-wave stiffness extrapolated by a (T/T sub C) sup 5 sup / sup 2 law to T=0 K is D sub 0 =117+-2 meVA sup 2 , which is somewhat smaller than the spin-wave stiffness obtained by triple-axis spectrometry. (orig.)

  11. Ferromagnetic resonance study of interface coupling for spin waves in narrow NiFe/Ru/NiFe multilayer nanowires

    Science.gov (United States)

    Lupo, P.; Haghshenasfard, Z.; Cottam, M. G.; Adeyeye, A. O.

    2016-12-01

    A systematic investigation is presented for the magnetization dynamics in trilayer nanowires, consisting of two permalloy (Ni80Fe20 ) layers separated by a nonmagnetic Ru spacer layer. The width of the wires ranges from 90 to 190 nm. By varying the Ru thickness between 0.7 and 2.0 nm, the interlayer coupling can be effectively controlled, modifying the corresponding magnetic ground state and the spin-wave dynamics. By contrast with previous work on coupled trilayer nanowires with larger widths (270 nm and more), the focus here is on nanowire arrays where the strong shape anisotropy competes with the Ruderman-Kittel-Kasuya-Yosida interactions and biquadratic exchange interactions across the Ru interface, as well as dipolar interactions and Zeeman energy. As a result, the spin-wave spectrum is found to be drastically modified. Ferromagnetic resonance and hysteresis loop measurements are reported over a wide range of applied magnetic fields, showing that the overall magnetization alignment between the permalloy layers may be parallel, antiparallel, or in a spin-flop state, depending on the overall interlayer coupling. The experimental results for different stripe widths are successfully analyzed using a microscopic dipole-dipole theory and micromagnetic simulations.

  12. Constraints on the spin-parity and anomalous $\\mathrm{HVV}$ couplings of the Higgs boson in proton collisions at 7 and 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Soares, Mara Senghi; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Liu, Yueh-Feng; Lu, Rong-Shyang; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vega Morales, Roberto; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-01-01

    The study of the spin-parity and tensor structure of the interactions of the recently discovered Higgs boson is performed using the $\\mathrm{H} \\rightarrow \\mathrm{Z} \\mathrm{Z}$, $\\mathrm{Z}\\gamma^*$, $\\gamma^*\\gamma^* \\rightarrow 4\\ell$, $\\mathrm{H} \\rightarrow \\mathrm{W} \\mathrm{W} \\rightarrow \\ell\

  13. Schwinger method for particles of spin zero and 1/2 in the field of plane wave plus a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Boudjedaa, T. [Ecole Normale Superieure, Jijel (Algeria). Dept. de Physique; Chetouani, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Guechi, L. [Dept. de Physique Theorique, Inst. de Physique, Univ. de Constantine (Algeria); Hammann, T.F. [Lab. de Mathematiques et Physique Mathematique, Faculte des Sciences et Techniques, 68 Mulhouse (France)

    1995-07-01

    The Green`s functions for charged particles of spin zero and 1/2, subjected to the action of a Redmond field which is the combination of an electromagnetic plane wave plus a parallel constant magnetic field, are calculated via the Schwinger action principle. The Heisenberg equations are then exactly solved. The spectrum and the waves are deduced in both cases. (orig.).

  14. Tunable spin wave spectra in two-dimensional Ni{sub 80}Fe{sub 20} antidot lattices with varying lattice symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, R.; Barman, S.; Saha, S.; Barman, A., E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Otani, Y. [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-08-07

    Ferromagnetic antidot lattices are important systems for magnetic data storage and magnonic devices, and understanding their magnetization dynamics by varying their structural parameters is an important problems in magnetism. Here, we investigate the variation in spin wave spectrum in two-dimensional nanoscale Ni{sub 80}Fe{sub 20} antidot lattices with lattice symmetry. By varying the bias magnetic field values in a broadband ferromagnetic resonance spectrometer, we observed a stark variation in the spin wave spectrum with the variation of lattice symmetry. The simulated mode profiles showed further difference in the spatial nature of the modes between different lattices. While for square and rectangular lattices extended modes are observed in addition to standing spin wave modes, all modes in the hexagonal, honeycomb, and octagonal lattices are either localized or standing waves. In addition, the honeycomb and octagonal lattices showed two different types of modes confined within the honeycomb (octagonal) units and between two such consecutive units. Simulated internal magnetic fields confirm the origin of such a wide variation in the frequency and spatial nature of the spin wave modes. The tunability of spin waves with the variation of lattice symmetry is important for the design of future magnetic data storage and magnonic devices.

  15. Spin-orbit-induced anomalous pH-dependence in (1)H NMR spectra of Co(III) amine complexes: a diagnostic tool for structure elucidation.

    Science.gov (United States)

    Hegetschweiler, Kaspar; Kuppert, Dirk; Huppert, Jochen; Straka, Michal; Kaupp, Martin

    2004-06-02

    The pH-dependent (1)H NMR characteristics of a series of Co(III)-(polyamin)-aqua and Co(III)-(polyamin)-(polyalcohol) complexes, [Co(tach)(ino-kappa(3)-O(1,3,5))](3+) (1(3+)), [Co(tach)(ino-kappa(3)-Omicron(1,2,6))](3+) (2(3+)), [Co(tach)(taci-kappa-Nu(1)-kappa(2)-O(2,6))](3+) (3(3+)), [Co(ditame)(H(2)O)](3+) (4(3+)), and [Co(tren)(H(2)O)(2)](3+) (5(3+)), were studied in D(2)O by means of titration experiments (tach = all-cis-cyclohexane-1,3,5-triamine, ino = cis-inositol, taci = 1,3,5-triamino-1,3,5-trideoxy-cis-inositol, tren = tris(2-aminoethyl)amine, ditame = 2,2,6,6-tetrakis-(aminomethyl)-4-aza-heptane). A characteristic shift was observed for H(-C) hydrogen atoms in the alpha-position of a coordinated amino group upon deprotonation of a coordinated oxygen donor. For a cis-H-C-N-Co-O-H arrangement, deprotonation of the oxygen donor resulted in an additional shielding (shift to lower frequency) of the H(-C) proton, whereas for a trans-H-C-N-Co-O-H arrangement, deprotonation resulted in a deshielding (shift to higher frequency). The effect appears to be of rather general nature: it is observed for primary (1(3+)-5(3+)), secondary (4(3+)), and tertiary (5(3+)) amino groups, and for the deprotonation of an alcohol (1(3+)-3(3+)) or a water (4(3+), 5(3+)) ligand. Spin-orbit-corrected density functional calculations show that the high-frequency deprotonation shift for the trans-position is largely caused by a differential cobalt-centered spin-orbit effect on the hydrogen nuclear shielding. This effect is conformation dependent due to a Karplus-type behavior of the spin-orbit-induced Fermi-contact shift and thus only significant for an approximately antiperiplanar H-C-N-Co arrangement. The differential spin-orbit contribution to the deprotonation shift in the trans-position arises from the much larger spin-orbit shift for the protonated than for the deprotonated state. This is in turn due to a trans-effect of the deprotonated (hydroxo or alkoxo) ligand, which weakens

  16. Tuning directional dependent metal-insulator transitions in quasi-1D quantum wires with spin-orbit density wave instability

    Science.gov (United States)

    Das, Tanmoy

    2016-07-01

    We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.

  17. Ambiguities of the single spin observables in a truncated partial wave expansion for photoproduction of pseudoscalar mesons

    CERN Document Server

    Wunderlich, Y; Tiator, L

    2013-01-01

    The ambiguity problem in the truncated partial wave analysis of pseudoscalar meson photoproduction with suppressed t-channel exchanges is investigated. More precisely, the focus is set to ambiguities of the four single spin observables, $\\sigma_0$, $\\Sigma$, $T$ and $P$. For this purpose, the approach and formalism already worked out by Omelaenko in 1981 is revisited in this work. A numerical study using multipoles of the PWA solution MAID2007 shows how, for ideal circumstances, only one additional double polarization observable can resolve all ambiguities.

  18. Exploring Structure, Dynamics, and Topology of Nitroxide Spin-Labeled Proteins Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy.

    Science.gov (United States)

    Altenbach, Christian; López, Carlos J; Hideg, Kálmán; Hubbell, Wayne L

    2015-01-01

    Structural and dynamical characterization of proteins is of central importance in understanding the mechanisms underlying their biological functions. Site-directed spin labeling (SDSL) combined with continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy has shown the capability of providing this information with site-specific resolution under physiological conditions for proteins of any degree of complexity, including those associated with membranes. This chapter introduces methods commonly employed for SDSL and describes selected CW EPR-based methods that can be applied to (1) map secondary and tertiary protein structure, (2) determine membrane protein topology, (3) measure protein backbone flexibility, and (4) reveal the existence of conformational exchange at equilibrium.

  19. Spin-Wave Analysis of Specific Heat and Magnetization in EuO and EuS

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Henderson, A. J.; Meyer, H.

    1975-01-01

    Recent neutron scattering measurements of the spin-wave spectrum have shown that the second-nearest-neighbor exchange constant in EuO is ferromagnetic, in disagreement with previously published results from both specific-heat and magnetization measurements. We undertook a thorough study of the bulk...... data on both EuO and its isomorph EuS, including some previously unpublished specific-heat data. The new analysis resolved the controversy regarding the specific heat, which is actually in good agreement with the neutron scattering results. However, the NMR data are more sensitive to effects other than...

  20. Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz

    Science.gov (United States)

    Ohmichi, E.; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T.; Ohta, H.

    2016-07-01

    In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn2+ impurities(˜0.2%) in MgO.

  1. Interplay between spin-density wave and 3 d local moments with random exchange in a molecular conductor

    Science.gov (United States)

    Kawaguchi, Genta; Maesato, Mitsuhiko; Komatsu, Tokutaro; Imakubo, Tatsuro; Kitagawa, Hiroshi

    2016-02-01

    We present the results of high-pressure transport measurements on the anion-mixed molecular conductors (DIETSe)2M Br2Cl2 [DIETSe = diiodo(ethylenedithio)tetraselenafulvalene; M =Fe , Ga]. They undergo a metal-insulator (M-I) transition below 9 K at ambient pressure, which is suppressed by applying pressure, indicating a spin-density-wave (SDW) transition caused by a nesting instability of the quasi-one-dimensional (Q1D) Fermi surface, as observed in the parent compounds (DIETSe)2M Cl4 (M =Fe , Ga). In the metallic state, the existence of the Q1D Fermi surface is confirmed by observing the Lebed resonance. The critical pressures of the SDW, Pc, of the M Br2Cl2 (M =Fe , Ga) salts are significantly lower than those of the the M Cl4 (M = Fe, Ga) salts, suggesting chemical pressure effects. Above Pc, field-induced SDW transitions appear, as evidenced by kink structures in the magnetoresistance (MR) in both salts. The FeBr2Cl2 salt also shows antiferromagnetic (AF) ordering of d spins at 4 K, below which significant spin-charge coupling is observed. A large positive MR change up to 150% appears above the spin-flop field at high pressure. At low pressure, in particular below Pc, a dip or kink structure appears in MR at the spin-flop field, which shows unconventionally large hysteresis at low temperature (T hysteresis region clearly decreases with increasing pressure towards Pc, strongly indicating that the coexisting SDW plays an important role in the enhancement of magnetic hysteresis besides the random exchange interaction.

  2. Unconventional Electronic Reconstruction in Undoped (Ba,Sr)Fe2As2 Across the Spin Density Wave Transition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, M.

    2010-06-02

    Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe{sub 2}As{sub 2}, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5{mu}{sub B} can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.

  3. Optically induced spin wave dynamics in [Co/Pd]{sub 8} antidot lattices with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S.; Das, K.; Barman, A., E-mail: abarman@ybose.res.in [Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Klos, J. W.; Gruszecki, P.; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznań (Poland); Hellwig, O. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States)

    2014-10-20

    We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.

  4. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.

    Science.gov (United States)

    Nielsen, Robert D; Canaan, Stephane; Gladden, James A; Gelb, Michael H; Mailer, Colin; Robinson, Bruce H

    2004-07-01

    The measurement of spin-lattice relaxation rates from spin labels, such as nitroxides, in the presence and absence of spin relaxants provides information that is useful for determining biomolecular properties such as nucleic acid dynamics and the interaction of proteins with membranes. We compare X-band continuous wave (CW) and pulsed or time domain (TD) EPR methods for obtaining spin-lattice relaxation rates of spin labels across the entire range of rotational motion to which relaxation rates are sensitive. Model nitroxides and spin-labeled biological species are used to illustrate the potential complications that arise in extracting relaxation data under conditions typical to biological experiments. The effect of super hyperfine (SHF) structure is investigated for both CW and TD spectra. First and second harmonic absorption and dispersion CW spectra of the nitroxide spin label, TEMPOL, are all fit simultaneously to a model of SHF structure over a range of microwave amplitudes. The CW spectra are novel because all harmonics and microwave phases were acquired simultaneously using our homebuilt CW/TD spectrometer. The effect of the SHF structure on the pulsed free induction decay (FID) and pulsed saturation recovery spectrum is shown for both protonated and deuterated TEMPOL. We present novel pulsed saturation recovery measurements on biological molecules, including spin-lattice relaxation rates of spin-labeled proteins and spin-labeled double-stranded DNA. The impact of structure and dynamics on relaxation rates are discussed in the context of each of these examples. Collisional relaxation rates with oxygen and transition metal paramagnetic relaxants are extracted using both continuous wave and time domain methods. The extent of the errors inherent in the CW method and the advantages of pulsed methods for unambiguously measuring collisional relaxation rates are discussed. Spin-lattice relaxation rates, determined by both CW and pulsed methods, are used to determine

  5. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma, Part I: Dielectric permeability tensor for magnetized plasmas

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  6. Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Amitouche, F. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Bouarab, S., E-mail: bouarab_said@mail.ummto.d [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Tazibt, S. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Vega, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid (Spain); Demangeat, C. [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)

    2011-01-03

    We present ab initio density functional calculations of the electronic structure and magnetic properties of X{sub 2}/Cr{sub 36}(001) and X{sub 1}/Cr{sub 37}(001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe{sub 3}/X{sub 1}/Cr{sub 37}/X{sub 1}(001) multilayers to analyze the role played by the ferromagnetic iron slab.

  7. Standing spin-wave mode structure and linewidth in partially disordered hexagonal arrays of perpendicularly magnetized sub-micron Permalloy discs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics, University of Western Australia, Crawley, WA (Australia); Stamps, R. L. [School of Physics, University of Western Australia, Crawley, WA (Australia); SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2014-09-21

    Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs in the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.

  8. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  9. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2015-06-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  10. Supercurrent generation by spin injection in an s -wave superconductor-Rashba metal bilayer

    Science.gov (United States)

    Mal'shukov, A. G.

    2017-02-01

    The spin-galvanic (inverse Edelstein) and inverse spin-Hall effects are calculated for a hybrid system that combines thin superconductor and Rashba metal layers. These effects are produced by a nonequilibrium spin polarization that is injected into the normal metal layer. This polarization gives rise to an electric potential that relaxes within some characteristic length, which is determined by Andreev reflection. Within this length, the dissipative electric current of quasiparticles in the normal layer converts into the supercurrent. This process involves only subgap states, and at low temperature the inelastic electron-phonon interactions are not important. It is discussed how such a hybrid system can be integrated into a SQUID, where it produces an effect similar to a magnetic flux.

  11. Collinear spin-density-wave ordering in Fe/Cr multilayers and wedges

    Energy Technology Data Exchange (ETDEWEB)

    Fishman, R.S. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032 (United States); Shi, Z. [Read-Rite Corporation, R D Division, 345 Los Coches Street, Milpitas, California 95035 (United States)

    1999-06-01

    Several recent experiments have detected a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. We use two simple models to predict the behavior of a collinear SDW within an Fe/Cr/Fe trilayer. Both models combine assumed boundary conditions at the Fe-Cr interfaces with the free energy of the Cr spacer. Depending on the temperature and the number {ital N} of Cr monolayers, the SDW may be either commensurate ({ital C}) or incommensurate ({ital I}) with the bcc Cr lattice. Model I assumes that the Fe-Cr interface is perfect and that the Fe-Cr interaction is antiferromagnetic. Consequently, the {ital I} SDW antinodes lie near the Fe-Cr interfaces. With increasing temperature, the Cr spacer undergoes a series of transitions between {ital I} SDW phases with different numbers {ital n} of nodes. If the {ital I} SDW has n=m nodes at T=0, then {ital n} increases by one at each phase transition from {ital m} to m{minus}1 to m{minus}2 up to the {ital C} phase with n=0 above T{sub IC}(N). For a fixed temperature, the magnetic coupling across the Cr spacer undergoes a phase slip whenever {ital n} changes by one. In the limit N{r_arrow}{infinity}, T{sub IC}(N) is independent of the Fe-Cr coupling strength. We find that T{sub IC}({infinity}) is always larger than the bulk N{acute e}el transition temperature and increases with the strain on the Cr spacer. These results explain the very high IC transition temperature of about 600 K extrapolated from measurements on Fe/Cr/Fe wedges. Model II assumes that the {ital I} SDW nodes lie precisely at the Fe-Cr interfaces. This condition may be enforced by the interfacial roughness of sputtered Fe/Cr multilayers. As a result, the {ital C} phase is never stable and the transition temperature T{sub N}(N) takes on a seesaw pattern as n{ge}2 increases with thickness. In agreement with measurements on both sputtered and epitaxially grown multilayers, model II predicts the {ital I} phase to be unstable above the bulk N

  12. Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

    Science.gov (United States)

    Calderón Bustillo, Juan; Husa, Sascha; Sintes, Alicia M.; Pürrer, Michael

    2016-04-01

    Current template-based gravitational wave searches for compact binary coalescences use waveform models that omit the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar (ℓ,|m |)=(2 ,2 ) modes. We study the effect of such omission for the case of aligned-spin compact binary coalescence searches for equal-spin (and nonspinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its zero-detuned high-energy power version, which we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a nonspinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 reduced order model waveform family, which only considers quadrupolar modes, toward hybrid post-Newtonian/numerical relativity waveforms which contain higher order modes. We find that for all LIGO versions losses of more than 10% of events occur in the case of AdvLIGO for mass ratio q ≥6 and total mass M ≥100 M⊙ due to the omission of higher modes, this region of the parameter space being larger for eaLIGO and iLIGO. Moreover, while the maximum event loss observed over the explored parameter space for AdvLIGO is of 15% of events, for iLIGO and eaLIGO, this increases up to (39,23)%. We find that omission of higher modes leads to observation-averaged systematic parameter biases toward lower spin, total mass, and chirp mass. For completeness, we perform a preliminar, nonexhaustive comparison of systematic biases to statistical errors. We find that, for a given signal-to-noise ratio, systematic biases dominate over statistical errors at much lower total mass for eaLIGO than for AdvLIGO.

  13. Faithful solid state optical memory with dynamically decoupled spin wave storage.

    Science.gov (United States)

    Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe

    2013-07-12

    We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.

  14. Far-from-equilibrium spin transport in Heisenberg quantum magnets.

    Science.gov (United States)

    Hild, Sebastian; Fukuhara, Takeshi; Schauß, Peter; Zeiher, Johannes; Knap, Michael; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2014-10-03

    We study experimentally the far-from-equilibrium dynamics in ferromagnetic Heisenberg quantum magnets realized with ultracold atoms in an optical lattice. After controlled imprinting of a spin spiral pattern with an adjustable wave vector, we measure the decay of the initial spin correlations through single-site resolved detection. On the experimentally accessible time scale of several exchange times, we find a profound dependence of the decay rate on the wave vector. In one-dimensional systems, we observe diffusionlike spin transport with a dimensionless diffusion coefficient of 0.22(1). We show how this behavior emerges from the microscopic properties of the closed quantum system. In contrast to the one-dimensional case, our transport measurements for two-dimensional Heisenberg systems indicate anomalous superdiffusion.

  15. Anomalous Hall effect of heavy holes in Ⅲ-Ⅴ semiconductor quantum wells

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Gang; Zhang Ping

    2007-01-01

    The anomalous Hall effect of heavy holes in semiconductor quantum wells is studied in the intrinsic transport regime, where the Berry curvature governs the Hall current properties. Based on the first-order perturbation of wave function the expression of the Hall conductivity the same as that from the semiclassical equation of motion of the Bloch particles is derived. The dependence of Hall conductivity on the system parameters is shown. The amplitude of Hall conductivity is found to be balanced by a competition between the Zeeman splitting and the spin-orbit splitting.

  16. Spin Caloritronic Phenomena Driven by Spin-orbit Coupling

    NARCIS (Netherlands)

    Chen, Y.-T.

    2014-01-01

    In this thesis, we report several effects in spintronics and spin caloritronics related to relativistic spin-orbit coupling. In Chapter 2, we discuss the relativistic spin caloritronicHall effects in terms of a semiclassical theory for anomalous thermoelectric effects in ferromagnetic metals due to

  17. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    NARCIS (Netherlands)

    Lucassen, M.E.

    2012-01-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate therm

  18. Spin-density-wave instability in graphene doped near the van Hove singularity

    NARCIS (Netherlands)

    Makogon, D.; van Gelderen, R.; Roldan, R.; de Morais Smith, C.

    2011-01-01

    We study the instability of the metallic state toward the formation of a different ground state in graphene doped near the van Hove singularity. The system is described by the Hubbard model and a field theoretical approach is used to calculate the charge and spin susceptibility. We find that for rep

  19. Dynamic Consequences of Optical Spin-Orbit Interaction

    CERN Document Server

    Sukhov, Sergey; Dogariu, Aristide

    2015-01-01

    When circularly polarized wave scatters off a sphere, the scattered field forms a vortex with spiraling energy flow. This is due to the transformation of spin angular momentum into orbital one. Here we demonstrate that during this scattering an anomalous force can be induced that acts in a direction perpendicular to the propagation of incident wave. The appearance of this lateral force is made possible by the presence of an interface in the vicinity of scattering object. Besides radiation pressure and tractor-beam pulling forces, this lateral force is another type of non-conservative force that can be produced with unstructured light beams.

  20. Nonlinear and spin effects in two-photon annihilation of a fermion pair in an intensive laser wave

    CERN Document Server

    Sikach, S M

    2001-01-01

    The pattern of calculation of amplitudes of a series of processes in the field of an intensive laser wave, in which two fermions $(p; p')$ and two real photons $(k_1; k_2)$ participate, is considered. In relation to one-photon processes, these processes are of the second order on $\\alpha$, if the wave intensity $\\xi \\ll 1$ (i.e., actually absorption from the wave only one quantum). Otherwise, they are competing and essentially nonlinear. One-photon processes have a number of the important physical applications. For example, ${\\gamma}e$ and ${\\gamma}{\\gamma}$ colliders work on their basis. In DSB the calculation is conducted at the level of reaction amplitudes. It essentially simplifies both the calculation and the form of obtained results; those combinations of amplitudes which describe the spin effects are easy to calculate. And these effects are especially essential in nonlinear processes. The calculations are conducted in covariant form. Besides compactness, this provides independence of the frames of refe...

  1. Observation of anomalous dielectric properties in low-dimensional spin 1/2 α-Cu2V2O7 magnetic system

    Science.gov (United States)

    Chen, Yu-Jen; Chandrasekhar, Kakarla-Devi; Fan, Ko-Jung; Lin, Jiunn-Yuan; Lee, Jenn-Min; Chen, Jin-Ming; Yang, Hung-Duen

    Recently, low-dimensional magnetic systems have received much attention from both theoretical and experimental physics point of view due to their fascinating physical properties. In general, Cu2V2O7 can stabilize at least two sibling polymorphs named as α and β phases. In α phase, Cu2V2O7 crystallized in orthorhombic with Fdd2 space groups. The complex magnetic exchange interaction between the Cu-O-Cu ion within the intra and interchain creates the Dzyaloshinskii-Moriya interaction that leads to weak ferromagnetism below the magnetic transition temperature TN = 34 K. In this study, we present the results of multiple dielectric anomalies observed in the low dimensional spin 1/2 α-Cu2V2O7 magnetic system. The observed dielectric signatures can be ascribed to the complex magnetic interaction α-Cu2V2O7 system. Further, the chemical doping effect on the magnetic and multiferroic properties of α-Cu2V2O7 is underway.

  2. Anomalous Hall Effect for chiral fermions

    CERN Document Server

    Zhang, P -M

    2014-01-01

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.

  3. Proximity effect induced by Kondo interaction in a network composed of YBCO and spin density wave

    Science.gov (United States)

    Maity, S.; Ghosh, Ajay Kumar

    2015-10-01

    The possibility of the proximity effect mediated by Kondo interaction in YBCO embedded in system of diluted magnetic spin ordering has been studied. An YBCO sample is selected in which both metal to insulator transition and superconducting state exist in the different ranges of temperature. The intergranular network of the bulk Y-123 has been modified by the inclusion of YMnO3 which has a well defined magnetic structure depending on temperature. The current-voltage measurements have been carried out in pure Y-123 at several temperatures. At the same set of temperatures the current-voltage curves in presence of YMnO3 have been studied. The role of the diluted spin magnetic ordering in tuning proximity effect and conduction property in binary systems is associated with reduced coherence length in the normal region.

  4. Coupling of the zero sound to transverse spin waves for neutral and normal Fermi liquids in dc magnetic field at precessing magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Czerwonko, J. (Inst. of Physics, TU Wroclaw (Poland))

    1989-01-01

    Following the idea by Ketterson, this author showed that in neutral and normal Fermi liquids, the polarization effects lead to coupling of transverse spin waves to zero sound at precessing magnetization of the system. The observable effects, at the range of dc fields applied to {sup 3}He, can appear only if the zero sound is degenerate with transverse spin waves excited in the reference frame rotating with the Larmor frequency about the H{sub dc}-axis. This possibility is investigated at Landau parameters vanishing at l>1 and nonzero, though small, coupling of the density to the spin density and the particle current to the spin current, resulting from the polarization of the system by H{sub dc}. The degeneration is, in general, possible but, at large values of the zero sound velocity with respect to the Fermi velocity, caused by large values of the Landau parameter F{sub 0}{sup s} and also F{sub 1}{sup s} for {sup 3}He, at F{sub 0}{sup a}< or approx.-0.7, it appears only at positive F{sub 1}{sup a}. All experimental estimations of this parameter agree in its negativity excluding the degeneration of the zero sound and transverse spin waves for {sup 3}He. (orig.).

  5. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena

    2016-03-01

    We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α -helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.

  6. Quantum statistics and anharmonicity in the thermodynamics of spin waves in ferromagnetic metals

    Science.gov (United States)

    Wen, Haohua; Woo, C. H.

    2016-09-01

    The average energy needed to create a magnon is high in ferromagnetic metals due to the high-strength spin stiffness, which results in strong quantization effects that could be important even at thousands of degrees. To take into account quantum statistics at such high temperatures, the associated effects of anharmonicity of the spin vibrations must be taken into account. In addition to the complex nature of such effects, anharmonicity also affects the occupation of the density of state of the vibration states in the context of quantum statistics. Thus, an unoccupied vibration state might become occupied when its spring stiffness is substantially reduced with anharmonicity. Combined effects of quantum statistics and anharmonicity are expected. In this regard, the thermodynamics of ferromagnetic metals are investigated in this paper through the example of bcc iron between 10 and 1400 K. Theoretical analysis and spin-lattice dynamic simulations are performed, through which the physics behind the complex and dramatic temperature dependence of the thermodynamic functions of bcc iron is understood.

  7. Multichannel molecular state and rectified short-range boundary condition for spin-orbit-coupled ultracold fermions near p -wave resonances

    Science.gov (United States)

    Cui, Xiaoling

    2017-03-01

    We study the interplay of spin-orbit coupling (SOC) and strong p -wave interactions to the scattering property of spin-1/2 ultracold Fermi gases. Based on a two-channel square-well potential generating p -wave resonance, we show that the presence of an isotropic SOC, even for its length being much longer than the potential range, can greatly modify the p -wave short-range boundary condition (BC). As a result, the conventional p -wave BC cannot predict the induced molecules near p -wave resonances, which can be fully destroyed due to strong interference between the s - and p -wave channels. By analyzing the intrinsic reasons for the breakdown of the conventional BC, we propose a p -wave BC that can excellently reproduce the exact molecule solutions and also equally apply for a wide class of single-particle potentials besides SOC. This work reveals the significant effect of SOC on both the short- and long-range properties of fermions near p -wave resonances, paving the way for future explorations of interesting few- and many-body physics in such systems.

  8. Tunable properties of spin waves in magnetoelastic {NiFe}/{{Gd}}_{2}{({{MoO}}_{4})}_{3} heterostructure

    Science.gov (United States)

    Graczyk, Piotr; Trzaskowska, Aleksandra; Załȩski, Karol; Mróz, Bogusław

    2016-07-01

    Full ferroelastic and simultaneously ferroelectric materials are interesting candidates for applications in devices based on multiferroic heterostructures. They should allow for non-volatile and low-power writing of data bits in magnetoelectric random access memories. Moreover, ferroelasticity, in contrast to piezoelectric material, make magnetic information in ferromagnetic film resistant to external fields. As an example for such a system, we have studied the magnetoelastic interaction between a thin ferromagnetic layer of {{Ni}}85{{Fe}}15 with a full ferroelastic-ferroelectric gadolinium molybdate {{Gd}}2{({{MoO}}4)}3 crystal. We have investigated the influence of {{Gd}}2{({{MoO}}4)}3 spontaneous strain onto magnetic properties of thin ferromagnetic film. Particularly, we have shown by Brillouin spectroscopy, that it is possible to modulate surface spin wave frequency of {{Ni}}85{{Fe}}15 by spontaneous strain of gadolinium molybdate substrate.

  9. Size dependence of spin-wave modes in Ni{sub 80}Fe{sub 20} nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, P.; Kumar, D.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576 (Singapore)

    2015-07-15

    We investigate the radial and azimuthal spin-wave (SW) resonance modes in permalloy (Py: Ni{sub 80}Fe{sub 20}) disks at zero external magnetic field, as function of disk diameter and thickness, using broadband ferromagnetic resonance spectroscopy. We observed, from both experimental and micromagnetic simulation results that the number of SW absorption peaks increases with disk diameter. Numerically calculated SW mode profiles revealed a characteristic minimum size, which does not scale proportionately with the increasing disk diameter. We show that higher order modes could thus be avoided with an appropriate choice of the disk diameter (smaller than the minimum mode size). Moreover, based on the mode profiles, the existence of azimuthal SW modes with even number of crests or troughs can be ruled out. These results could be useful in enhancing our fundamental understanding as well as engineering of new magnonic devices.

  10. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited

    Directory of Open Access Journals (Sweden)

    Necdet Onur Urs

    2016-05-01

    Full Text Available Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  11. Generation of high energy square-wave pulses in all anomalous dispersion Er:Yb passive mode locked fiber ring laser.

    Science.gov (United States)

    Semaan, Georges; Ben Braham, Fatma; Salhi, Mohamed; Meng, Yichang; Bahloul, Faouzi; Sanchez, François

    2016-04-18

    We have experimentally demonstrated square pulses emission from a co-doped Er:Yb double-clad fiber laser operating in anomalous dispersion DSR regime using the nonlinear polarization evolution technique. Stable mode-locked pulses have a repetition rate of 373 kHz with 2.27 µJ energy per pulse under a pumping power of 30 W in cavity. With the increase of pump power, both the duration and the energy of the output square pulses broaden. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.

  12. Characterisation of spin-waves in copper(II) deuteroformate tetradeuterate: A square ¤S¤=1/2 Heisenberg antiferromagnet

    DEFF Research Database (Denmark)

    Clarke, S.J.; Harrison, A.; Mason, T.E.;

    1999-01-01

    Copper(II) formate tetrahydrate (CFTH) is a model square S = 1/2 Heisenberg antiferromagnet with T-N = 16.54 +/- 0.05 K. The dispersion of spin-waves in the magnetic layers of a fully deuterated sample of this material has been mapped at 4.3 K by inelastic neutron scattering from the zone centre...

  13. The spin rate of pre-collapse stellar cores: wave driven angular momentum transport in massive stars

    CERN Document Server

    Fuller, Jim; Lecoanet, Daniel; Quataert, Eliot

    2015-01-01

    The core rotation rates of massive stars have a substantial impact on the nature of core collapse supernovae and their compact remnants. We demonstrate that internal gravity waves (IGW), excited via envelope convection during a red supergiant phase or during vigorous late time burning phases, can have a significant impact on the rotation rate of the pre-SN core. In typical ($10 \\, M_\\odot \\lesssim M \\lesssim 20 \\, M_\\odot$) supernova progenitors, IGW may substantially spin down the core, leading to iron core rotation periods $P_{\\rm min,Fe} \\gtrsim 50 \\, {\\rm s}$. Angular momentum (AM) conservation during the supernova would entail minimum NS rotation periods of $P_{\\rm min,NS} \\gtrsim 3 \\, {\\rm ms}$. In most cases, the combined effects of magnetic torques and IGW AM transport likely lead to substantially longer rotation periods. However, the stochastic influx of AM delivered by IGW during shell burning phases inevitably spin up a slowly rotating stellar core, leading to a maximum possible core rotation perio...

  14. P-wave Lambda N - Sigma N coupling and the spin-orbit splitting of 9 Lambda Be

    CERN Document Server

    Fujiwara, Y; Suzuki, Y

    2008-01-01

    We reexamine the spin-orbit splitting of 9 Lambda Be excited states in terms of the SU_6 quark-model baryon-baryon interaction. The previous folding procedure to generate the Lambda alpha spin-orbit potential from the quark-model Lambda N LS interaction kernel predicted three to five times larger values for Delta E_{ell s}=E_x(3/2^+)-E_x(5/2^+) in the model FSS and fss2. This time, we calculate Lambda alpha LS Born kernel, starting from the LS components of the nuclear-matter G-matrix for the Lambda hyperon. This framework makes it possible to take full account of an important P-wave Lambda N - Sigma N coupling through the antisymmetric LS^{(-)} force involved in the Fermi-Breit interaction. We find that the experimental value, Delta E^{exp}_{ell s}=43 pm 5 keV, is reproduced by the quark-model G-matrix LS interaction with a Fermi-momentum around k_F=1.0 fm^{-1}, when the model FSS is used in the energy-independent renormalized RGM formalism.

  15. Non-linear spin wave theory results for the frustrated [Formula: see text] Heisenberg antiferromagnet on a body-centered cubic lattice.

    Science.gov (United States)

    Majumdar, Kingshuk; Datta, Trinanjan

    2009-10-07

    At zero temperature the sublattice magnetization of the quantum spin- 1/2 Heisenberg antiferromagnet on a body-centered cubic lattice with competing first and second neighbor exchange (J(1) and J(2)) is investigated using the non-linear spin wave theory. The zero temperature phases of the model consist of a two sublattice Néel phase for small J(2) (AF(1)) and a collinear phase at large J(2) (AF(2)). We show that quartic corrections due to spin wave interactions enhance the sublattice magnetization in both the AF(1) and the AF(2) phase. The magnetization corrections are prominent near the classical transition point of the model and in the J(2)>J(1) regime. The ground state energy with quartic interactions is also calculated. It is found that up to quartic corrections the first order phase transition (previously observed in this model) between the AF(1) and the AF(2) phase survives.

  16. Manipulating the Magnetization of a Nanomagnet with Surface Acoustic Waves: Spin-Rotation Mechanism

    Science.gov (United States)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2016-03-01

    We show that the magnetic moment of a nanoparticle embedded in the surface of a solid can be switched by surface acoustic waves in the GHz frequency range via a universal mechanism that does not depend on the structure of the particle and the structure of the substrate. It is based upon the generation of the effective ac magnetic field in the coordinate frame of the nanoparticle by the shear deformation of the surface due to surface acoustic waves. The magnetization reversal occurs via a consecutive absorption of surface phonons of the controlled variable frequency. We derive analytical equations governing this process and solve them numerically for the practical range of parameters.

  17. Directed searches for continuous gravitational waves from spinning neutron stars in binary systems

    Science.gov (United States)

    Meadors, Grant David

    2014-09-01

    Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these

  18. Goos-Hänchen shift of a spin-wave beam transmitted through anisotropic interface between two ferromagnets

    Science.gov (United States)

    Gruszecki, P.; Mailyan, M.; Gorobets, O.; Krawczyk, M.

    2017-01-01

    The main object of investigation in magnonics, spin waves (SWs) are promising information carriers. Presently, the most commonly studied are plane-wave-like SWs and SWs propagating in confined structures, such as waveguides. Here we consider a Gaussian SW beam obliquely incident on an ultranarrow interface between two identical ferromagnetic materials. We use an analytical model and micromagnetic simulations for an in-depth analysis of the influence of the interface properties, in particular the magnetic anisotropy, on the transmission of the SW beam. We derive analytical formulas for the reflectance, transmittance, phase shift, and Goos-Hänchen (GH) shift for beams reflected and refracted by an interface between two semi-infinite ferromagnetic media. The GH shifts in SW beam reflection and transmission are confirmed by micromagnetic simulations in the thin-film geometry. We demonstrate the dependence of the characteristic properties on the magnetic anisotropy at the interface, the angle of incidence, and the frequency of the SWs. We also propose a method for the excitation of high-quality SW beams in micromagnetic simulations.

  19. Spin-polarized quasiparticle transport in ferromagnet/insulator/p-wave superconductor junction

    Institute of Scientific and Technical Information of China (English)

    LI XiaoWei; LIU ShuJing

    2008-01-01

    We have studied the tunneling conductance in ferromagnet/insulator/p-wave superconductor junctions, taking into account the rough interface scattering effect.We find that there exist zero-bias conductance peaks and single-minimum structure in tunneling spectroscopy. As the exchange energy increases, the Andreev reflec-tion is always suppressed and the differential conductance decreases. The differ-ential conductance depends on the barrier strength and the roughness at the in-terface.

  20. Spin-polarized quasiparticle transport in ferromagnet/insulator/p-wave superconductor junction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We have studied the tunneling conductance in ferromagnet/insulator/p-wave superconductor junctions,taking into account the rough interface scattering effect. We find that there exist zero-bias conductance peaks and single-minimum structure in tunneling spectroscopy. As the exchange energy increases,the Andreev reflection is always suppressed and the differential conductance decreases. The differential conductance depends on the barrier strength and the roughness at the interface.

  1. Triplet pair amplitude in a trapped s -wave superfluid Fermi gas with broken spin rotation symmetry. II. Three-dimensional continuum case

    Science.gov (United States)

    Inotani, Daisuke; Hanai, Ryo; Ohashi, Yoji

    2016-10-01

    We extend our recent work [Y. Endo et al., Phys. Rev. A 92, 023610 (2015)], 10.1103/PhysRevA.92.023610 for a parity-mixing effect in a model of two-dimensional lattice fermions to a realistic three-dimensional ultracold Fermi gas. Including effects of broken local spatial inversion symmetry by a trap potential within the framework of the real-space Bogoliubov-de Gennes theory at T =0 , we point out that an odd-parity p -wave Cooper-pair amplitude is expected to have already been realized in previous experiments on an (even-parity) s -wave superfluid Fermi gas with spin imbalance. This indicates that when one suddenly changes the s -wave pairing interaction to an appropriate p -wave one by using a Feshbach technique in this case, a nonvanishing p -wave superfluid order parameter is immediately obtained, which is given by the product of the p -wave interaction and the p -wave pair amplitude that has already been induced in the spin-imbalanced s -wave superfluid Fermi gas. Thus, by definition, the system is in the p -wave superfluid state, at least just after this manipulation. Since the achievement of a p -wave superfluid state is one of the most exciting challenges in cold Fermi gas physics, our results may provide an alternative approach to this unconventional pairing state. In addition, since the parity-mixing effect cannot be explained as far as one deals with a trap potential in the local density approximation (LDA), it is considered as a crucial example which requires us to go beyond the LDA.

  2. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  3. On the Source of Astrometric Anomalous Refraction

    Science.gov (United States)

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-01

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed "anomalous refraction" by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale (~2°) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  4. Quasiparticle spin relaxation with superconducting velocity-tunable state in GaAs(100) quantum wells in proximity to s -wave superconductor

    Science.gov (United States)

    Yu, T.; Wu, M. W.

    2016-11-01

    We investigate the quasiparticle spin relaxation with superconducting-velocity-tunable state in GaAs (100) quantum wells in proximity to an s -wave superconductor. We first present the influence of the supercurrent on the quasiparticle state in GaAs (100) quantum wells, which can be tuned by the superconducting velocity. Rich features such as the suppressed Cooper pairings, large quasiparticle density and nonmonotonically tunable momentum current can be realized by varying the superconducting velocity. In the degenerate regime, the quasiparticle Fermi surface is composed by two arcs, referred to as Fermi arcs, which are contributed by the electron- and holelike branches. The D'yakonov-Perel' spin relaxation is then explored, and intriguing physics is revealed when the Fermi arc emerges. Specifically, when the order parameter tends to zero, it is found that the branch-mixing scattering is forbidden in the quasielectron band. When the condensation process associated with the annihilation of the quasielectron and quasihole is slow, this indicates that the electron- and holelike Fermi arcs in the quasielectron band are independent. The open structure of the Fermi arc leads to the nonzero angular average of the effective magnetic field due to the spin-orbit coupling, which acts as an effective Zeeman field. This Zeeman field leads to spin oscillations even in the strong-scattering regime. Moreover, in the strong-scattering regime, we show that the open structure of the Fermi arc also leads to the insensitiveness of the spin relaxation to the momentum scattering, in contrast to the conventional motional narrowing situation. Nevertheless, with a finite order parameter, the branch-mixing scattering can be triggered, opening the interbranch spin relaxation channel, which is dominant in the strong-scattering regime. In contrast to the situation with an extremely small order parameter, due to the interbranch channel, the spin oscillations vanish and the spin relaxation

  5. Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave resonance of $^{139}La$

    CERN Document Server

    Haseyama, T; Bowman, J D; Delheij, P P J; Funahashi, H; Ishimoto, S; Jones, G; Masaike, A; Masuda, Y; Matsuda, Y; Morimoto, K; Muto, S; Penttil\\"a, S I; Pomeroy, V R; Sakai, K; Sharapov, E I; Smith, D A; Yuan, V W

    2002-01-01

    The parity nonconserving spin rotation of neutrons in the 0.734-eV p-wave resonance of $^{139}La$ was measured with the neutron transmission method. Two optically polarized $^3He$ cells were used before and behind a a 5-cm long $^{139}La$ target as a polarizer and an analyzer of neutron spin. The rotation angle was carefully measured by flipping the direction of $^3He$ polarization in the polarizer in sequence. The peak-to-peak value of the spin rotation was found to be $ (7.4 \\pm 1.1) \\times 10^{-3} $ rad/cm which was consistent with the previous experiments. But the result was statisticallly improved. The s-p mixing model gives the weak matrix element as $xW = (1.71 \\pm 0.25)$ meV. The value agrees well with the one deduced from the parity-nonconserving longitudinal asymmetry in the same resonance.

  6. Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory

    Science.gov (United States)

    Ferguson, Kate R.; Beavan, Sarah E.; Longdell, Jevon J.; Sellars, Matthew J.

    2016-07-01

    Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr3 + ions doped into a Y2 SiO5 crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μ s . RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.

  7. Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory.

    Science.gov (United States)

    Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J

    2016-07-01

    Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5  μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.

  8. Mapping spin-wave dispersions in stripe-ordered La2-xSrxNiO4 ( x=0.275 , 0.333)

    Science.gov (United States)

    Woo, Hyungje; Boothroyd, A. T.; Nakajima, K.; Perring, T. G.; Frost, C. D.; Freeman, P. G.; Prabhakaran, D.; Yamada, K.; Tranquada, J. M.

    2005-08-01

    Using the MAPS spectrometer at the ISIS spallation source, we have measured the magnetic excitations of single-crystal samples of stripe-ordered La2-xSrxNiO4 with x=0.333 and 0.275. The full two-dimensional spin-wave dispersions were obtained using incident energies of 60 and 160 meV. To analyze the excitations, we have evaluated a spin-only Hamiltonian describing diagonal, site-centered stripes in the linear spin-wave approximation. Besides the superexchange energy J within antiferromagnetic domains, we have considered effective exchange couplings J1 and J2 across a charge stripe coupling second-neighbor Ni sites along Ni-O bond directions and along the plaquette diagonal, respectively. From least-squares fits of the model to the measurements on the x=1/3 sample at T=10K , we find that the dispersions are well described by a model using just J and J1 , but not J and J2 . Consistent with an analysis of previous measurements, we find that J is about 90% of the superexchange energy of undoped La2NiO4 and J1/J≈0.5 . The excitations observed for x=0.275 are surprisingly similar to those for x=1/3 , despite the differing magnetic-ordering wave vectors; the main difference is a broadening of the excitations for x=0.275 . For both samples, we find that one spin-wave branch has a gap of ˜20meV , confirming a previous observation for x=1/3 . We discuss the possible origin of this gap.

  9. Ranque-Hilsch effect revisited - Temperature separation traced to orderly spinning waves or 'vortex whistle'

    Science.gov (United States)

    Kurosaka, M.; Goodman, J. R.; Chu, J. Q.

    1982-06-01

    An acoustic streaming model of the total temperature separation mechanism present in the air flow in a Ranque-Hilsch tube is detailed. Previous explanations of the phenomenon of cold air encountered in the core flow and elevated temperatures of the radial wall flow in a tube where the inlet stream enters tangentially are reviewed. The emergence of a vortex whistle is shown to be a selective amplification of background noise, present in the swirling flow, and drawing energy from the flow itself. Taking the base flow to be a helix with a constant axial velocity and a swirl which is a Rankine vortex, the imposition of unsteady disturbances is demonstrated to result in the establishment of an unsteady boundary forming an annular viscous region around an inviscid core. A feedback occurs between the acoustic streaming in the outer layer and the inviscid core. Results are given for calculations of the frequency, the form of the second-order waves, and the tangential acoustic streaming at the outer edge of the unsteady viscous layer.

  10. Capulets and Montagues: distinguishing the rival families of black-hole spin-orbit resonances by their gravitational-wave signatures

    CERN Document Server

    Gerosa, Davide; Kesden, Michael; Berti, Emanuele; Sperhake, Ulrich

    2014-01-01

    If binary black holes form following the successive core collapses of sufficiently massive binary stars, precessional dynamics may align their spins $\\mathbf S_1$ and $\\mathbf S_2$ and the orbital angular momentum $\\mathbf L$ into a plane in which they jointly precess about the total angular momentum $\\mathbf J$. These spin orientations are known as spin-orbit resonances since $\\mathbf S_1$, $\\mathbf S_2$, and $\\mathbf L$ all precess at the same frequency to maintain their planar configuration. Two families of such spin-orbit resonances exist, alike in dignity but differentiated by whether the components of the two spins in the orbital plane are either aligned or antialigned. The fraction of binary black holes in each family is determined by the stellar evolution of their progenitors, so if gravitational-wave detectors could measure this fraction they could provide important insights into astrophysical formation scenarios for binary black holes. In this paper, we show that even under the conservative assumpti...

  11. On the Formulation of the Exchange Field in the Landau-Lifshitz Equation for Spin-Wave Calculation in Magnonic Crystals

    Directory of Open Access Journals (Sweden)

    M. Krawczyk

    2012-01-01

    Full Text Available The calculation of the magnonic spectra using the plane-wave method has limitations, the origin of which lies in the formulation of the effective magnetic field term in the equation of motion (the Landau-Lifshitz equation for composite media. According to ideas of the plane-wave method the system dynamics is described in terms of plane waves (a superposition of a number of plane waves, which are continuous functions and propagate throughout the medium. Since in magnonic crystals the sought-for superposition of plane waves represents the dynamic magnetization, the magnetic boundary conditions on the interfaces between constituent materials should be inherent in the Landau-Lifshitz equations. In this paper we present the derivation of the two expressions for the exchange field known from the literature. We start from the Heisenberg model and use a linear approximation and take into account the spacial dependence of saturation magnetization and exchange constant present in magnetic composites. We discuss the magnetic boundary conditions included in the presented formulations of the exchange field and elucidate their effect on spin-wave modes and their spectra in one- and two-dimensional planar magnonic crystals from plane-wave calculations.

  12. Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state

    CERN Document Server

    Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke

    2011-01-01

    We study the merger of black hole (BH)-neutron star (NS) binaries with a variety of BH spins aligned or anti-aligned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS = 2--5, where MBH and MNS are the mass of the BH and NS, respectively. We model NS matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the BH spin and assuming an irrotational velocity field for the fluid inside the NS. Dynamical simulations are performed in full general relativity by an adaptive mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the NS is tidally disrupted irrespective of the mass ratio when the BH has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS ~ 0.1 Msun, which is required by central engines of short gamma-ray bursts, if the BH spin is prograde...

  13. Spin Chern number and topological phase transition on the Lieb lattice with spin-orbit coupling

    Science.gov (United States)

    Chen, Rui; Zhou, Bin

    2017-03-01

    We propose that quantum anomalous Hall effect may occur in the Lieb lattice, when Rashba spin-orbit coupling, spin-independent and spin-dependent staggered potentials are introduced into the lattice. It is found that spin Chern numbers of two degenerate flat bands change from 0 to ±2 due to Rashba spin-orbit coupling effect. The inclusion of Rashba spin-orbit coupling and two kinds of staggered potentials opens a gap between the two flat bands. The topological property of the gap is determined by the amplitudes of Rashba spin-orbit coupling and staggered potentials, and thus the topological phase transition from quantum anomalous Hall effect to normal insulator can occur. Finally, the topological phase transition from quantum spin Hall state to normal insulator is discussed when Rashba spin-orbit coupling and intrinsic spin-orbit coupling coexist in the Lieb lattice.

  14. Spin Structures in Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Brok, Erik; Frandsen, Cathrine

    2013-01-01

    canting and hence a reduced magnetization. Moreover, relaxation between almost degenerate canted spin states can lead to anomalous temperature dependences of the magnetization at low temperatures. In ensembles of nanoparticles, interparticle exchange interactions can also result in spin reorientation......Spin structures in nanoparticles of ferrimagnetic materials may deviate locally in a nontrivial way from ideal collinear spin structures. For instance, magnetic frustration due to the reduced numbers of magnetic neighbors at the particle surface or around defects in the interior can lead to spin...

  15. ANOMALOUS MAGNETIC FILMS,

    Science.gov (United States)

    Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’

  16. Spin-Density-Wave-Type Ordering of LaCoGe Revealed by 59Co- and 139La-Nuclear Magnetic Resonance Measurements

    Science.gov (United States)

    Karube, Kosuke; Hattori, Taisuke; Ishida, Kenji; Tamura, Nobuhiko; Deguchi, Kazuhiko; Sato, Noriaki K.

    2013-08-01

    The low-temperature magnetic properties of LaCoGe with the tetragonal CeFeSi-type structure were investigated by 59Co- and 139La-nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The nuclear spin--lattice relaxation rate divided by the temperature, 1/(T1T), gradually increases with decreasing temperature and shows a kink at approximately 18 K, below which an inhomogeneous internal field appears at the Co nuclear site. These results indicate that antiferromagnetic ordering occurs below TN˜ 18 K. However, an internal field was not observed at the La nuclear site below TN. Taking all NMR results into account, we conclude that spin-density-wave (SDW)-type ordering occurs, where magnetic correlations are of the checkerboard type [\\mbi{Q}=(π,π)] in the ab-plane and have a long periodicity along the c-axis with inhomogeneous ordered moments pointing to the c-axis.

  17. The Coriolis Interaction between the v2 = 1 and v3 = 2 States of Nitrosyl Bromide: Anomalous Quadrupole Patterns and Interstate Transitions in the Millimeter-Wave Spectrum.

    Science.gov (United States)

    Esposti; Fuganti; Kisiel; Tamassia

    1998-10-01

    The millimeter-wave rotational spectra of 79BrNO and 81BrNO in the v2 = 1 and v3 = 2 vibrational states have been reinvestigated. Measurements of the rotational spectrum in the region of maximum c-type Coriolis interaction between the two states allowed the previous analysis to be extended to account for some uncommon effects. For the most perturbed transitions the nuclear quadrupole hyperfine structure arises from coupling of not only the bromine nucleus, but also the nitrogen nucleus with the rotational angular momentum. These effects were satisfactorily fitted with a Hamiltonian describing Coriolis coupling in a molecule with two quadrupolar nuclei. The successful analysis of pure rotational transitions then allowed accurate prediction of rovibrational transitions, six of which were measured for 79BrNO and four for 81BrNO. Copyright 1998 Academic Press.

  18. Atomic long-range order effects on Curie temperature and adiabatic spin-wave dynamics in strained Fe-Co alloy films

    Science.gov (United States)

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Vitos, Levente

    2016-08-01

    The strained Fe-Co alloy in body-centered tetragonal (bct) structure has raised considerable interest due to its giant uniaxial magnetocrystalline anisotropy energy. On the basis of the classical Heisenberg Hamiltonian with ab initio interatomic exchange interactions, we perform a theoretical study of fundamental finite temperature magnetic properties of Fe1 -xCox alloy films as a function of three variables: chemical composition 0.3 ≤x ≤0.8 , bct geometry [a ,c (a )] arising from in-plane strain and associated out-of-plane relaxation, and atomic long-range order (ALRO). The Curie temperatures TC(x ,a ) obtained from Monte Carlo simulations display a competition between a pronounced dependence on tetragonality, strong ferromagnetism in the Co-rich alloy, and the beginning instability of ferromagnetic order in the Fe-rich alloy when c /a →√{2 } . Atomic ordering enhances TC and arises mainly due to different distributions of atoms in neighboring coordination shells rather than altering exchange interactions significantly. We investigate the ordering effect on the shape of the adiabatic spin-wave spectrum for selected pairs (x ,a ) . Our results indicate that long-wavelength acoustic spin-wave excitations show dependencies on x , a , and ALRO similar to those of TC. The directional anisotropy of the spin-wave stiffness d (x ,a ) peaks in narrow ranges of composition and tetragonality. ALRO exhibits a strong effect on d for near equiconcentration Fe-Co. We also discuss our findings in the context of employing Fe-Co as perpendicular magnetic recording medium.

  19. Anomalous delta-type electric and magnetic two-nucleon interactions

    CERN Document Server

    Mandache, Nicolae Bogdan

    2009-01-01

    Anomalous delta-type interactions, of both electric and magnetic nature, are introduced between the overlapping peripheral structures of the nucleons, which may explain the spin-triplet deuteron state and the absence of other nucleon-nucleon bound states.

  20. Quasiparticle relaxation dynamics in spin-density-wave and superconducting SmFeAsO_{1-x}F_{x} single crystals

    OpenAIRE

    Mertelj, T.; Kusar, P.; Kabanov, V. V.; Stojchevska, L.; Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; J. Karpinski; Weyeneth, S.; Mihailovic, D.

    2010-01-01

    We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SmFeAsO and near-optimally doped SmFeAsO_{0.8}F_{0.2} single crystals - exhibiting spin-density wave (SDW) ordering and superconductivity respectively - using pump-probe femtosecond spectroscopy. In the undoped single crystals a single relaxation process is observed, showing a remarkable critical slowing down of the QP relaxation dynamics at the SDW transition temperature T_{SDW}\\simeq125{K}. In the sup...

  1. Tunable spin wave dynamics in two-dimensional Ni{sub 80}Fe{sub 20} nanodot lattices by varying dot shape

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Bipul Kumar; Rana, Bivas; Kumar, Dheeraj; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Sugimoto, Satoshi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Otani, YoshiChika [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-07

    We demonstrate tunable spin wave spectrum in two-dimensional Ni{sub 80}Fe{sub 20} nanodot lattices by varying dot shape. A single collective mode in elliptical dot lattices transforms into three distinct modes for the half-elliptical, rectangular, and diamond dot lattices, albeit with different peak frequencies and intensities. A drastic change is observed for the triangular dots, where eight modes covering a broad band are observed. Using micromagnetic simulations, we characterized the modes as different localized, extended, and quantized modes, whose frequencies and spatial profiles are determined by a combination of internal field profiles within the nanodots and the stray magnetic field within the lattice.

  2. Spin and spatial dynamics in electron-impact scattering off S-wave He using R-matrix with Time-Dependence theory

    CERN Document Server

    Wragg, Jack

    2016-01-01

    R-matrix with time-dependence theory is applied to electron-impact ionisation processes for He in the S-wave model. Cross sections for electron-impact excitation, ionisation and ionisation with excitation for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections. Ultra-fast dynamics induced by a scattering event is observed through time-dependent signatures associated with autoionisation from doubly excited states. Further insight into dynamics can be obtained through examination of the spin components of the time-dependent wavefunction.

  3. Long-range spin transport in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.

  4. Prediction of a quantum anomalous Hall state in Co-decorated silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-01-09

    Based on first-principles calculations, we demonstrate that Co-decorated silicene can host a quantum anomalous Hall state. The exchange field induced by the Co atoms combined with the strong spin-orbit coupling of the silicene opens a nontrivial band gap at the K point. As compared to other transition metals, Co-decorated silicene is unique in this respect, since usually hybridization and spin-polarization induced in the silicene suppress a quantum anomalous Hall state.

  5. Analytic bootstrap at large spin

    CERN Document Server

    Kaviraj, Apratim; Sinha, Aninda

    2015-01-01

    We use analytic conformal bootstrap methods to determine the anomalous dimensions and OPE coefficients for large spin operators in general conformal field theories in four dimensions containing a scalar operator of conformal dimension $\\Delta_\\phi$. It is known that such theories will contain an infinite sequence of large spin operators with twists approaching $2\\Delta_\\phi+2n$ for each integer $n$. By considering the case where such operators are separated by a twist gap from other operators at large spin, we analytically determine the $n$, $\\Delta_\\phi$ dependence of the anomalous dimensions. We find that for all $n$, the anomalous dimensions are negative for $\\Delta_\\phi$ satisfying the unitarity bound, thus extending the Nachtmann theorem to non-zero $n$. In the limit when $n$ is large, we find agreement with the AdS/CFT prediction corresponding to the Eikonal limit of a 2-2 scattering with dominant graviton exchange.

  6. Anomalous diffraction in hyperbolic materials

    CERN Document Server

    Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano

    2016-01-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  7. Anomalous diffraction in hyperbolic materials

    Science.gov (United States)

    Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano

    2016-09-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  8. Anomalous CMB polarization and gravitational chirality

    OpenAIRE

    Contaldi, Carlo R.; Magueijo, Joao; Smolin, Lee

    2008-01-01

    We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB ...

  9. Anomalous feedback and negative domain wall resistance

    Science.gov (United States)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-11-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.

  10. Variational wave functions for the S =1/2 Heisenberg model on the anisotropic triangular lattice: Spin liquids and spiral orders

    Science.gov (United States)

    Ghorbani, Elaheh; Tocchio, Luca F.; Becca, Federico

    2016-02-01

    By using variational wave functions and quantum Monte Carlo techniques, we investigate the complete phase diagram of the Heisenberg model on the anisotropic triangular lattice, where two out of three bonds have superexchange couplings J and the third one has instead J'. This model interpolates between the square lattice and the isotropic triangular one, for J'/J ≤1 , and between the isotropic triangular lattice and a set of decoupled chains, for J /J'≤1 . We consider all the fully symmetric spin liquids that can be constructed with the fermionic projective-symmetry group classification (Zhou and Wen, arXiv:cond-mat/0210662) and we compare them with the spiral magnetic orders that can be accommodated on finite clusters. Our results show that, for J'/J ≤1 , the phase diagram is dominated by magnetic orderings, even though a spin-liquid state may be possible in a small parameter window, i.e., 0.7 ≲J'/J ≲0.8 . In contrast, for J /J'≤1 , a large spin-liquid region appears close to the limit of decoupled chains, i.e., for J /J'≲0.6 , while magnetically ordered phases with spiral order are stabilized close to the isotropic point.

  11. Detecting topological phases in silicene by anomalous Nernst effect

    Science.gov (United States)

    Xu, Yafang; Zhou, Xingfei; Jin, Guojun

    2016-05-01

    Silicene undergoes various topological phases under the interplay of intrinsic spin-orbit coupling, perpendicular electric field, and off-resonant light. We propose that the abundant topological phases can be distinguished by measuring the Nernst conductivity even at room temperature, and their phase boundaries can be determined by differentiating the charge and spin Nernst conductivities. By modulating the electric and light fields, pure spin polarized, valley polarized, and even spin-valley polarized Nernst currents can be generated. As Nernst conductivity is zero for linear polarized light, silicene can act as an optically controlled spin and valley field-effect transistor. Similar investigations can be extended from silicene to germanene and stanene, and a comparison is made for the anomalous thermomagnetic figure of merits between them. These results will facilitate potential applications in spin and valley caloritronics.

  12. Spin density wave in (Fe{sub x}V{sub 3-x})S{sub 4} and the coexistence of normal and condensate states: A Moessbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Embaid, B.P., E-mail: pembaid@fisica.ciens.ucv.ve [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of); Gonzalez-Jimenez, F. [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of)

    2013-03-15

    Iron-vanadium sulfides of the monoclinic system Fe{sub x}V{sub 3-x}S{sub 4} (1.0{<=}x{<=}2.0) have been investigated by {sup 57}Fe Moessbauer Spectroscopy in the temperature range 30-300 K. Incommensurate spin density waves (SDW) have been found in this system. An alternative treatment of the spectra allows a direct measurement of the temperature evolution of condensate density of the SDW state which follows the Maki-Virosztek formula. For composition (x=1.0) the SDW condensate is unpinned while for compositions (x>1.0) the SDW condensate is pinned. Possible causes of the pinning-unpinning SDW will be discussed. - Highlights: Black-Right-Pointing-Pointer Fe{sub x}V{sub 3-x}S{sub 4}(1.0{<=}x{<=}2.0) system was investigated by {sup 57}Fe Moessbauer Spectroscopy. Black-Right-Pointing-Pointer Incommensurate spin density wave (SDW) has been found in this system. Black-Right-Pointing-Pointer We report the temperature evolution of the condensate density of SDW state. Black-Right-Pointing-Pointer For composition (x=1.0) the SDW is unpinned while for (x>1.0) is pinned.

  13. Accuracy and precision of gravitational-wave models of inspiraling neutron star -- black hole binaries with spin: comparison with numerical relativity in the low-frequency regime

    CERN Document Server

    Kumar, Prayush; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A; Lovelace, Geoffrey; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    Coalescing binaries of neutron stars (NS) and black holes (BH) are one of the most important sources of gravitational waves for the upcoming network of ground based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The Effective-One-Body and other phenomenological models interpolate between analytic results and $10-30$ orbit numerical relativity (NR) merger simulations. In this paper we study the accuracy of these models using new NR simulations that span $36-88$ orbits, with mass-ratios and black hole spins $(q,\\chi_{BH}) = (7, \\pm 0.4), (7, \\pm 0.6)$, and $(5, -0.9)$. We find that: (i) the recently published SEOBNRv1 and SEOBNRv2 models of the Effective-One-Body family disagree with each other (mismatches of a few percent) for black hole spins $\\geq 0.5$ or $\\leq -0.3$, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicate that this disagreement is due to phasing errors of...

  14. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  15. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  16. Anomalous law of cooling.

    Science.gov (United States)

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  17. Arbitrary Spin Galilean Oscillator

    CERN Document Server

    Hagen, C R

    2014-01-01

    The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.

  18. Anomalous CMB polarization and gravitational chirality

    CERN Document Server

    Contaldi, Carlo R; Smolin, Lee

    2008-01-01

    We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  19. Quantized Anomalous Hall Effect in Magnetic Topological Insulators

    Institute of Scientific and Technical Information of China (English)

    YU Rui

    2011-01-01

    The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are thndamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.

  20. Anomalous pion decay revisited

    CERN Document Server

    Battistel, O A; Nemes, M C; Hiller, B

    1999-01-01

    An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.

  1. Anomalous magnetoresistance in magnetized topological insulator cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Zhuo Bin, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)

    2015-05-07

    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  2. Anomalous Positive Refraction in an Anisotropic Left-Handed Medium

    Institute of Scientific and Technical Information of China (English)

    HU Wei; LUO Hai-Lu; CAO Jing-Xiao

    2005-01-01

    @@ We investigate the refraction phenomena of extraordinary light at a planar interface associated with a uniaxial left-handed medium. It is found that the anomalous positive refraction can occur at the interface from anisotropic right-handed medium to a uniaxially anisotropic left-handed medium. When the optical axis of a uniaxial left-handed medium is not normal or parallel to the interface, the refraction of the Poynting vector for the extraordinary waves can be either positive or negative depending on the incident angles, while the refraction of the wave vector is always negative. The physical essential of the anomalous positive refraction results from the anisotropy of uniaxial crystals.

  3. Spin Transport by Collective Spin Excitations

    Science.gov (United States)

    Hammel, P. Chris

    We report studies of angular momentum transport in insulating materials. Our measurements reveal efficient spin pumping from high wavevector k spin waves in thin film Y3Fe5O12 (YIG): spin pumping is independent of wavevector up to k ~ 20 μm-1. Optical detection of YIG FMR by NV centers in diamond reveals a role for spin waves in this insulator-to-insulator spin transfer process. Spin transport is typically suppressed by insulating barriers, but we find that fluctuating antiferromagnetic correlations enable efficient spin transport at nm-scale thicknesses in insulating antiferromagnets, even in the absence of long-range order, and that the spin decay length increases with the strength of the antiferromagnetic correlations. This research is supported by the U.S. DOE through Grants DE-FG02-03ER46054 and DE-SC0001304, by the NSF MRSEC program through Grant No. 1420451 and by the Army Research Office through Grant W911NF0910147.

  4. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  5. Incommensurate spin-density wave and magnetic lock-in transition in CaFe{sub 4}As{sub 3}.

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, P.; Chapon, L. C.; Todorov, I. S.; Chung, D. Y.; Castellan, J.-P.; Rosenkranz, S.; Osborn, R.; Toledano, P.; Kanatzidis, M. G.; Materials Science Division; Rutherford Appleton Lab.; Univ. of Picardie; Northwestern Univ.

    2010-05-01

    The magnetic structure for the recently synthesized iron-arsenide compound CaFe4As3 has been studied by neutron-powder diffraction. Long-range magnetic order is detected below 85 K, with an incommensurate modulation described by the propagation vector k=(0,?,0), ??0.39. Below ?25 K, our measurements detect a first-order phase transition where ? locks into the commensurate value 3/8. A model of the magnetic structure is proposed for both temperature regimes, based on Rietveld refinements of the powder data and symmetry considerations. The structures correspond to longitudinal spin-density waves with magnetic moments directed along the b axis. A Landau analysis captures the change in thermodynamic quantities observed at the two magnetic transitions, in particular, the drop in resistivity at the lock-in transition.

  6. Density-of-state oscillation of quasiparticle excitation in the spin density wave phase of (TMTSF)2ClO4.

    Science.gov (United States)

    Uji, S; Kimata, M; Moriyama, S; Yamada, J; Graf, D; Brooks, J S

    2010-12-31

    Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.

  7. Anomalous carrier dynamics in bilayer graphene in presence of mechanical strain: A theoretical study

    Science.gov (United States)

    Enamullah

    2016-05-01

    One of the optical response of charge carriers in bilayer graphene, anomalous Rabi oscillation is investigated theoretically in presence of mechanical strain. Rabi oscillation in extreme non-resonance regime is known as anomalous Rabi oscillation, has been predicted theoretically in single layer graphene by new technique known as asymptotic rotating wave approximation. In this article, we have shown a strong dependence of anomalous Rabi oscillations of charge carriers on the mechanical strain near the vanishing point of conduction and valance band.

  8. Anomalous law of cooling

    OpenAIRE

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel

    2014-01-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...

  9. Anomalous diffusion of epicentres

    CERN Document Server

    Sotolongo-Costa, Oscar; Posadas, A; Luzon, F

    2007-01-01

    The classification of earthquakes in main shocks and aftershocks by a method recently proposed by M. Baiesi and M. Paczuski allows to the generation of a complex network composed of clusters that group the most correlated events. The spatial distribution of epicentres inside these structures corresponding to the catalogue of earthquakes in the eastern region of Cuba shows anomalous anti-diffusive behaviour evidencing the attractive nature of the main shock and the possible description in terms of fractional kinetics.

  10. Optical diode effect at THz frequencies of spin-wave excitations in the room-temperature multiferroic BiFeO3

    Science.gov (United States)

    Rõõm, Toomas; Nagel, U.; Bordács, S.; Kézsmárki, I.; Yi, H. T.; Cheong, S.-W.; Lee, J. H.; Fishman, R. S.

    We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room-temperature applications. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The optical magnetoelectric effect in BiFeO3 is dominated by two types of spin-current induced polarizations, while the exchange-striction and single-ion polarization terms do not significantly contribute to it. Our work demonstrates that the nonreciprocal directional dichroism spectra and their theoretical analysis provide microscopic model of the magnetoelectric couplings in multiferroic materials. We acknowledge the Estonian Grant IUT23-3; the Hungarian OTKA K 108918, OTKA PD 111756, Bolyai 00565/14/11; the DOE, Office of Sciences, Basic Energy Sciences, Mat. Sciences and Eng. Div., and the DOE Grant DE-FG02-07ER46382.

  11. Semiclassical spin transport in spin-orbit-coupled bands.

    Science.gov (United States)

    Culcer, Dimitrie; Sinova, Jairo; Sinitsyn, N A; Jungwirth, T; MacDonald, A H; Niu, Q

    2004-07-23

    Motivated by recent interest in novel spintronics effects, we develop a semiclassical theory of spin transport that is valid for spin-orbit coupled bands. Aside from the obvious convective term in which the average spin is transported at the wave packet group velocity, the spin current has additional contributions from the wave packet's spin and torque dipole moments. Electric field corrections to the group velocity and carrier spin contribute to the convective term. Summing all terms we obtain an expression for the intrinsic spin-Hall conductivity of a hole-doped semiconductor, which agrees with the Kubo formula prediction for the same quantity. We discuss the calculation of spin accumulation, which illustrates the importance of the torque dipole near the boundary of the system.

  12. Quantized Anomalous Hall Effect in Magnetic Topological Insulators

    Institute of Scientific and Technical Information of China (English)

    YU Rui

    2011-01-01

    @@ The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively.The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.Recent progress on the mechanism of AHE has established a link between the AHE and the topological nature of the Hall current by adopting the Berry-phase concepts in close analogy to the intrinsic spin Hall effect.Given the experimental discovery of the quantum Hall and the quantum spin Hall effects, it is natural to ask whether the AHE can also be quantized.In a quantized anomalous Hall (QAH) insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically non-trivial electronic structure, leading to the quantized Hall effect without any external magnetic field.

  13. Spin gravitational resonance and graviton detection

    CERN Document Server

    Quach, James Q

    2016-01-01

    We develop a gravitational analogue of spin magnetic resonance, called spin gravitational resonance, whereby a gravitational wave interacts with a magnetic field to produce a spin transition. In particular, an external magnetic field separates the energy spin states of a spin-1/2 particle, and the presence of the gravitational wave produces a perturbation in the components of the magnetic field orthogonal to the gravitational wave propagation. In this framework we test Dyson's conjecture that individual gravitons cannot be detected. Although we find no fundamental laws preventing single gravitons being detected with spin gravitational resonance, we show that it cannot be used in practice, in support of Dyson's conjecture.

  14. Modeling the Multi-Band Afterglow of GRB 130831A: Evidence for a Spinning-Down Magnetar Dominated by Gravitational Wave Losses?

    CERN Document Server

    Zhang, Q; Zong, H S

    2016-01-01

    The X-ray afterglow of GRB 130831A shows an "internal plateau" with a decay slope of $\\sim$ 0.8, followed by a steep drop at around $10^5$ s with a slope of $\\sim$ 6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with a...

  15. Anomalous absorption of laser light on ion acoustic fluctuations

    Science.gov (United States)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  16. Research of spin wave function and exchange coupling interactions in metal magnetic materials%磁性金属材料中交换耦合作用和自旋波的研究∗

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Exchange coupling is one of the most important fundamental interactions in ferromagnetic systems. Understanding of the parameters in this interaction may help describe numerous properties of metal magnetic materials. However, in the localized electron theory or itinerant electron theory there are also certain difficulties when utilizing this approximation method to study magnetic ordering problems for multi-atom systems. In realistic magnets exchange coupling is also related to the coexistence of localized and itinerant degrees of freedom. In this case Heisenberg exchange relationship has some limitations. If the exchange relationship only depends on the structure of the magnet, and is not related to energy differences between the phases, we can better avoid the Heisenberg exchange limits. Based on this, we use the general principle of the exchange coupling theory to analyse the usual approximation, and discuss the opportunity to calculate the parameters of such coupling rigorously without specific assumptions about the range of magnetic order or any approximation about the form of magnetization density. We propose a method for calculating the exchange coupling parameter to any approximation. The range of applicability of the above relation is discussed quantitatively for real magnetic systems (magnetic metal materials Gd, Fe, Ni) and spin waves, and the relevance for the exchange coupling is also analysed. This analysis for metal magnetic system (Fe, Ni and Gd) shows that the most significant improvement is obtained for exchange coupling between nearest magnetic atoms and for spin wave spectrum at finite wave vectors. It can be described by the relationship between the exchange coupling approximation and spin wave spectrum, and also interaction between the nearest neighbor magnetic atoms in ferromagnetic systems;these will give reasonable description to the large wave vectors part of spin wave spectra in any magnet with not fully localized magnetism. This point of

  17. Beta Function and Anomalous Dimensions

    CERN Document Server

    Pica, Claudio

    2010-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  18. Anomalous Dimensions of Conformal Baryons

    CERN Document Server

    Pica, Claudio

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.

  19. Quantum anomalous Hall effect in magnetic insulator heterostructure.

    Science.gov (United States)

    Xu, Gang; Wang, Jing; Felser, Claudia; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-03-11

    On the basis of ab initio calculations, we predict that a monolayer of Cr-doped (Bi,Sb)2Te3 and GdI2 heterostructure is a quantum anomalous Hall insulator with a nontrivial band gap up to 38 meV. The principle behind our prediction is that the band inversion between two topologically trivial ferromagnetic insulators can result in a nonzero Chern number, which offers a better way to realize the quantum anomalous Hall state without random magnetic doping. In addition, a simple effective model is presented to describe the basic mechanism of spin polarized band inversion in this system. Moreover, we predict that 3D quantum anomalous Hall insulator could be realized in (Bi2/3Cr1/3)2Te3 /GdI2 superlattice.

  20. Spin photonics and spin-photonic devices with dielectric metasurfaces

    CERN Document Server

    Liu, Yachao; Ke, Yougang; Zhou, Xinxing; Luo, Hailu; Wen, Shuangchun

    2015-01-01

    Dielectric metasurfaces with spatially varying birefringence and high transmission efficiency can exhibit exceptional abilities for controlling the photonic spin states. We present here some of our works on spin photonics and spin-photonic devices with metasurfaces. We develop a hybrid-order Poincare sphere to describe the evolution of spin states of wave propagation in the metasurface. Both the Berry curvature and the Pancharatnam-Berry phase on the hybrid-order Poincare sphere are demonstrated to be proportional to the variation of total angular momentum. Based on the spin-dependent property of Pancharatnam-Berry phase, we find that the photonic spin Hall effect can be observed when breaking the rotational symmetry of metasurfaces. Moreover, we show that the dielectric metasurfaces can provide great flexibility in the design of novel spin-photonic devices such as spin filter and spin-dependent beam splitter.