WorldWideScience

Sample records for anomalous specific heat

  1. Anomalous Schottky specific heat and structural distortion in ferromagnetic PrAl2.

    Science.gov (United States)

    Pathak, Arjun K; Paudyal, D; Mudryk, Y; Gschneidner, K A; Pecharsky, V K

    2013-05-03

    Unique from other rare earth dialuminides, PrAl(2) undergoes a cubic to tetragonal distortion below T = 30 K in a zero magnetic field, but the system recovers its cubic symmetry upon the application of an external magnetic field of 10 kOe via a lifting of the 4f crystal field splitting. The nuclear Schottky specific heat in PrAl(2) is anomalously high compared to that of pure Pr metal. First principles calculations reveal that the 4f crystal field splitting in the tetragonally distorted phase of PrAl(2) underpins the observed unusual low temperature phenomena.

  2. Phonon-induced anomalous specific heat of a model nanocrystal by computer simulation

    International Nuclear Information System (INIS)

    Wang, J.; Wolf, D.; Phillpot, S.R.; Gleiter, H.

    1994-10-01

    The authors construct a simple model of a nanocrystalline material in which all the grains are the same size and shape, and in which all the grain boundaries are crystallographically identical. The authors show that the model nanocrystal has a low-temperature specific-heat anomaly similar to that seen in experiment, which arises from the presence of low-frequency phonons localized at the grain boundaries

  3. Anomalous heat capacity of nanoparticles

    International Nuclear Information System (INIS)

    Likhachev, V.N.; Vinogradov, G.A.; Alymov, M.I.

    2006-01-01

    The heat capacity of nanosized particles exceeds (from few to tenth percents) the same values of the corresponding bulk materials, and this difference increases with the diminishing of the sizes. In the present Letter we give an explanation of this phenomenon on an example of a nanocrystal with simple cubic lattice and an arbitrary shape. The simplest harmonic interaction potential of the nearest neighbors is used. A qualitative agreement with experimental data is obtained. The decisive role is attributed to the choice of boundary conditions: free boundaries provide the 'softening' of vibrational spectrum thus giving larger contribution to the heat capacity. The increase in heat capacity depends on the particle size, shape and sample perfection

  4. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  5. Anomalous heat evolution of deuteron implanted Al on electron bombardment

    International Nuclear Information System (INIS)

    Kamada, K.; Kinoshita, H.; Takahashi, H.

    1994-05-01

    Anomalous heat evolution was observed in deuteron implanted Al foils on 175 keV electron bombardment. Local regions with linear dimension of several 100nm showed simultaneous transformation from single crystalline to polycrystalline structure instantaneously on the electron bombardment, indicating the temperature rise up to more than melting point of Al from room temperature. The amount of energy evolved was more than 180 MeV for each transformed region. The transformation was never observed in proton implanted Al foils. The heat evolution was considered due to a nuclear reaction in D 2 molecular collections. (author)

  6. Experimental study of parametric instabilities and anomalous heating in plasma

    International Nuclear Information System (INIS)

    Batanov, G.M.; Rabinovich, M.S.

    1975-01-01

    Over the last few years the study of the dissipation of electromagnetic wave energy in a hot plasma has become perhaps one of the main problems of high-temperature plasma physics and controlled thermonuclear fusion. The focus of attention is on the processes by which electromagnetic energy is transformed into potential plasma waves and the processes involving relaxation of the latter. In this paper the authors summarize the experimental research into these processes conducted at the Lebedev Physics Institute over the 10 cm wave band. In the case of an isotropic plasma the authors recorded non-linear generation of Langmuir noise, the energy density of which was found to be comparable, in order of magnitude, with that of a pump wave. They detected the generation of fast-electron streams, the non-stationary character of the latter with respect to time, and non-linear transmissivity of the plasma layer. In the case of a magnetoactive plasma they studied the parametric excitation of oscillations at the upper hybrid frequency during its resonance with the first overtone of the pump wave. Excitation of plasma noise was found to be accompanied by a flux of fast-electrons, in the energy spectrum of which separate groups were detected. It was also found that the effective collision frequency increased by 1-3 orders, compared to the pari-collision frequency. In the region of magnetic waves close to the electron cyclotron resonance the authors observed forced Mandel'shtam-Brillouin scattering and kinetic instability of the plasma. It was found that the excitation of ionic Langmuir noise preceded ''anomalous absorption'' of waves and ''anomalous heating'' of electrons. The authors further consider the possibility of an experimental study of anomalous heating in plasma in the region of the lower hybrid frequencies, using the Institute's L-2 stellarator. (author)

  7. Anomalous heat flow belt along the continental margin of Brazil

    Science.gov (United States)

    Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.

    2018-01-01

    A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.

  8. Nonlinear trapped electron mode and anomalous heat transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1982-01-01

    We take the phenomenological point of view that the anomalous electron thermal conductivity produced by the non-linear trapped electron mode should also influence the stability properties of the mode itself. Using a model equation, we show that this effect makes the mode self-stabilizing. A simple expression for the anomalous thermal conductivity is derived, and its scaling properties are discussed. (orig.)

  9. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  10. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  11. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  12. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Directory of Open Access Journals (Sweden)

    Sergis Antonis

    2011-01-01

    Full Text Available Abstract This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  13. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    International Nuclear Information System (INIS)

    Li, Yunyun; Li, Nianbei; Hänggi, Peter; Li, Baowen; Liu, Sha

    2015-01-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  14. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    Science.gov (United States)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an

  15. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  16. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  17. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Yang Xiao-Jun

    2017-01-01

    Full Text Available In this paper, we address a class of the fractional derivatives of constant and variable orders for the first time. Fractional-order relaxation equations of constants and variable orders in the sense of Caputo type are modeled from mathematical view of point. The comparative results of the anomalous relaxation among the various fractional derivatives are also given. They are very efficient in description of the complex phenomenon arising in heat transfer.

  18. Superconductivity and specific heat of titanium base A15 alloys

    International Nuclear Information System (INIS)

    Junod, A.; Flukiger, R.; Muller, J.

    1976-01-01

    Experimental data on the superconducting transition temperature, and low temperature specific heat, together with X-ray investigations, are reported for binary and pseudo-binary compounds of Ti with the A15-type structure. A 'true' relative maximum of the coefficient of the electronic specific heat, γ, as well as the superconducting transition temperature, Tsub(c), occurs in the Tisub(3)Irsub(1-x)Ptsub(x) system near x = 0.2. Tisub(3)Irsub(0.8)Ptsub(0.2) shows the lowest Debye temperature, theta 0 , of all A15-type compounds known to date. The anomalous temperature dependence of the lattice specific heat may be reproduced by a model phonon spectrum similar to that of Nb 3 Sn. (author)

  19. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  20. High-field specific heats of A15 V3Si and Nb3Sn

    International Nuclear Information System (INIS)

    Stewart, G.R.; Brandt, B.L.

    1984-01-01

    In order to further understand the anomalous behavior of the specific heat of Nb 3 Sn in an 18-T magnetic field discovered by Stewart, Cort, and Webb [Phys. Rev. B 24, 3841 (1981)], we have performed specific-heat measurements on a different sample of Nb 3 Sn at lower fields both in the normal and mixed states, as well as measurement to 19 T on both transforming and nontransforming V 3 Si. The high-field data for V 3 Si indicate that this material behaves quite normally, and that γ/sup trans/ 3 Sn, however, remains anomalous, with both the same ''kink'' in the normal-state field data as observed by Stewart, Cort, and Webb (although at a slightly higher temperature) and unusual mixed-state behavior. The mixed-state specific heat of the V 3 Si samples is as expected, based on earlier work on the mixed-state specific heat of V and Nb

  1. Effects of an Anomalous Resistivity on the Power Deposition by Alfven Waves in Pre-Heated Spherical Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [Tel Aviv Univ., Ramat Aviv (Israel)

    2005-08-01

    As it is the case with tokamaks in general, and moreover, due to their specific geometry (limited space for inboard solenoid magnets), low aspect ratio (spherical) tokamaks (STs) require additional auxiliary non-ohmic current startup and maintenance, generation of internal transport barriers (associated with underlying sheared poloidal flows and quasi-stationary radial electric fields), plasma heating, etc. One of the options to generate these necessary effects in STs is by the aid of rf waves launched from a suitable external antenna; in this option the effects just mentioned are a consequence of ponderomotive forces resulting from the interaction of the rf waves with the plasma. Since experimental data on STs (viz., the START-device) reveal the presence of an anomalous plasma resistivity (about four times Spitzer's one), we carried out a systematic parametric investigation of the effects of an increased plasma resistivity on the magnitude and spatial localization of the resulting power deposition.

  2. Anomalous heating and plasmoid formation in pulsed power driven magnetic reconnection experiments

    Science.gov (United States)

    Hare, Jack

    2017-10-01

    Magnetic reconnection is an important process occurring in various plasma environments, including high energy density plasmas. In this talk we will present results from a recently developed magnetic reconnection platform driven by the MAGPIE pulsed power generator (1 MA, 250 ns) at Imperial College London. In these experiments, supersonic, sub-Alfvénic plasma flows collide, bringing anti-parallel magnetic fields into contact and producing a well-defined, elongated reconnection layer. This layer is long-lasting (>200 ns, > 10 hydrodynamic flow times) and is diagnosed using a suite of high resolution, spatially and temporally resolved diagnostics which include laser interferometry, Thomson scattering and Faraday rotation imaging. We observe significant heating of the electrons and ions inside the reconnection layer, and calculate that the heating must occur on time-scales far faster than can be explained by classical mechanisms. Possible anomalous mechanisms include in-plane electric fields caused by two-fluid effects, and enhanced resistivity and viscosity caused by kinetic turbulence. We also observe the repeated formation of plasmoids in the reconnection layer, which are ejected outwards along the layer at super-Alfvénic velocities. The O-point magnetic field structure of these plasmoids is determined using in situ magnetic probes, and these plasmoids could also play a role in the anomalous heating of the electrons and ions. In addition, we present further modifications to this experimental platform which enable us to study asymmetric reconnection or measure the out-of-plane magnetic field inside the plasmoids. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.

  3. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  4. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  5. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  6. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    Science.gov (United States)

    Testa, D.; Albergante, M.

    2012-08-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium-tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the so

  7. A phenomenological explanation for the anomalous ion heating observed in the JET alpha-heating experiment of 1997

    International Nuclear Information System (INIS)

    Testa, D.; Albergante, M.

    2012-01-01

    In the so-called ‘alpha-heating’ experiment performed on the JET tokamak during the deuterium–tritium campaign of 1997, the ion temperature was found to be far exceeding (both in absolute value and in its rise time) the level that could have been expected from direct collisional heating by the fusion-born alpha particles themselves and energy equipartition with the electrons. To date, no explanation has been put forward for this long standing puzzle, despite much work having been performed on this subject in the early 2000s. Two analysis methods that have recently become available have been employed to re-analyse these observations of an anomalous ion heating. First, an algorithm based on the sparse representation of signals has been used to analyse magnetic, reflectometry and electron-cyclotron emission measurements of the turbulence spectra in the drift-wave range of frequencies. This analysis has then been complemented with turbulence simulations performed with the GENE code. We find, both experimentally and in the simulations, that the presence of a minority, but sufficiently large, population of fusion-born alpha particles that have not yet fully thermalized stabilizes the turbulence in the ion-drift direction, but practically does not affect the turbulence in the electron-drift direction. We link such stabilization of the ion-drift-wave turbulence to the increase in the ion temperature above the level achieved in similar discharges that did not have (at all or enough) alpha particles. When the fusion-born alpha particles have fully thermalized, the turbulence spectrum in the ion-drift direction reappears at somewhat larger amplitudes, which we link to the ensuing reduction in the ion temperature. This phenomenological dynamics fully corresponds to the actual experimental observations. By taking into account an effect of the alpha particles that had not been previously considered, our new analysis finally presents a phenomenological explanation for the

  8. Essential Specification Elements for Heat Exchanger Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Bower, L.

    2015-07-01

    Performance upgrade and equipment degradation are the primary impetuses for a nuclear power plant to engage in the large capital cost project of heat exchanger replacement. Along with attention to these issues, consideration of heat exchanger Codes and Standards, material improvements, thermal redesign, and configuration are essential for developing User’s Design Specifications for successful replacement projects. The User’s Design Specification is the central document in procuring ASME heat exchangers. Properly stated objectives for the heat exchanger replacement are essential for obtaining the materials, configurations and thermal designs best suited for the nuclear power plant. Additionally, the code of construction required and the applied manufacturing standard (TEMA or HEI) affects how the heat exchanger may be designed or configured to meet the replacement goals. Knowledge of how Codes and Standards affect design and configuration details will aid in writing the User’s Design Specification. Joseph Oat Corporation has designed and fabricated many replacement heat exchangers for the nuclear power industry. These heat exchangers have been constructed per ASME Section III to various Code-Years or ASME Section VIII-1 to the current Code-Year also in accordance with TEMA and HEI. These heat exchangers have been a range of like-for-like replacement to complete thermal, material and configuration redesigns. Several examples of these heat exchangers with their Code, Standard and specification implications are presented. (Author.

  9. Measurement of low-temperature specific heat

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1983-01-01

    The measurement of low-temperature specific heat (LTSH) (0.1 K< T<60 K) has seen a number of breakthroughs both in design concepts and instrumentation in the last 15 years: particularly in small sample calorimetry. This review attempts to provide an overview of both large and small sample calorimetry techniques at temperatures below 60 K, with sufficient references to enable more detailed study. A comprehensive review is made of the most reliable measurements of the LTSH of 84 of the elements to illustrate briefly some of the problems of measurements and analysis, as well as to provide additional references. More detail is devoted to three special areas of low-temperature calorimetry that have seen rapid development recently: (1) measurement of the specific heat of highly radioactive samples, (2) measurement of the specific heat of materials in high magnetic fields (18 T), and (3) measurement of the specific heat of very small (100 μg) samples. The review ends with a brief discussion of the frontier research currently underway on microcalorimetry for nanogram sample weights

  10. Heating of a dense plasma by an ultrashort laser pulse in the anomalous skin-effect regime

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gamalii, E.G.; Novikov, V.N.; Semakhin, A.N.; Tikhonchuk, V.T.

    1992-01-01

    The absorption of laser light in an overdense plasma with a sharp boundary and the heating of the plasma under conditions corresponding to the anomalous skin effect are studied. Heat transfer from the absorption region near the surface into the interior of the plasma is studied in the kinetic approximation. At high intensities of the laser pulse, the electron distribution function is deformed, and the plasma is heated at a rate tens of times that predicted by classical heat-transfer theory, because of the severe limitation on thermal conductivity. The anisotropy of the electron distribution function in the skin layer leads to an increase in the absorption coefficient. The angular distribution and the polarization dependence of the absorption coefficient are discussed

  11. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J.; Williams, V.

    2008-01-01

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  12. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  13. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  14. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    International Nuclear Information System (INIS)

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  15. Specific heat of praseodymium and neodymium

    International Nuclear Information System (INIS)

    Narayana Murthy, J.V.S.S.; Ramji Rao, R.

    1983-01-01

    The elements of the dynamical matrix of an ideal deep lattice, with nearest neighbour central interactions, have been obtained in a homogeneously strained state. The dispersion relations along the [0001] direction, on this model, have been presented for Pr and Nd. The frequency distribution function g(ω) is obtained and the lattice specific heat is calculated for Pr and Nd and the temperature variation of the equivalent Debye temperature is presented. (author)

  16. High-field specific heats of A15 V3Si and Nb3Sn

    Science.gov (United States)

    Stewart, G. R.; Brandt, B. L.

    1984-04-01

    In order to further understand the anomalous behavior of the specific heat of Nb3Sn in an 18-T magnetic field discovered by Stewart, Cort, and Webb [Phys. Rev. B 24, 3841 (1981)], we have performed specific-heat measurements on a different sample of Nb3Sn at lower fields both in the normal and mixed states, as well as measurement to 19 T on both transforming and nontransforming V3Si. The high-field data for V3Si indicate that this material behaves quite normally, and that γtransJunod and Muller [Solid State Commun. 36, 721 (1980)]. Nb3Sn, however, remains anomalous, with both the same "kink" in the normal-state field data as observed by Stewart, Cort, and Webb (although at a slightly higher temperature) and unusual mixed-state behavior. The mixed-state specific heat of the V3Si samples is as expected, based on earlier work on the mixed-state specific heat of V and Nb.

  17. Anomalous properties of heat diffusion in living tissue caused by branching artery network. Qualitative description

    OpenAIRE

    Lubashevsky, I. A.; Gafiychuk, V. V.; Datsko, B. Y.

    2002-01-01

    We analyze the effect of blood flow through large arteries of peripheral circulation on heat transfer in living tissue. Blood flow in such arteries gives rise to fast heat propagation over large scales, which is described in terms of heat superdiffusion. The corresponding bioheat heat equation is derived. In particular, we show that under local strong heating of a small tissue domain the temperature distribution inside the surrounding tissue is affected substantially by heat superdiffusion.

  18. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  19. Observation of Anomalous Potential Electric Energy in Distilled Water Under Solar Heating

    Science.gov (United States)

    Smarandache, Florentin; Christianto, V.

    2011-04-01

    In this paper, we describe a very simple experiment with distilled water which could exhibit anomalous potential electrical energy with very minimum preparation energy. While this observed excess energy here is less impressive than J-P. Beberian's and M. Porringa's, and the material used is also far less exotic than common LENR-CANR experiments, from the viewpoint of minimum preparation requirement --and therefore less barrier for rapid implementation--, it seems that further experiments could be recommended in order to verify and also to explore various implications of this new proposition.

  20. Cappuccino and Specific Heat Versus Heat of Vaporization

    Science.gov (United States)

    Hidden, Frits; Boomsma, Jorn; Schins, Anton; van den Berg, Ed

    2012-02-01

    A cappuccino is prepared by adding about 50 mL frothing, foaming milk to a cup of espresso. Whole milk is best for foaming and the ideal milk temperature when adding it to the espresso is 65 °C. The espresso itself may be warmer than that. During the heating the milk should not burn, as that would spoil the taste. The best way is to heat the milk slowly while stirring to froth the milk and create foam. But modern cappuccino machines in restaurants do not have time for slow heating. Could we heat the milk by just adding hot water?

  1. The confinement of phonon propagation in TiAlN/Ag multilayer coatings with anomalously low heat conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, A. I.; Wainstein, D. L., E-mail: d-wainstein@sprg.ru [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); Rashkovskiy, A. Yu. [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskiy pr-t, 4, 119049 Moscow (Russian Federation); Gago, R. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, 66123 Saarbruecken (Germany); Endrino, J. L. [School of Aerospace, Transport and Manufacturing (SATM), Surface Engineering and Nanotechnology Institute, Cranfield University, College Road, Cranfield, MK43 0AL Bedfordshire (United Kingdom)

    2016-05-30

    TiAlN/Ag multilayer coatings with a different number of bilayers and thicknesses of individual layers were fabricated by DC magnetron co-sputtering. Thermal conductivity was measured in dependence of Ag layer thickness. It was found anomalous low thermal conductivity of silver comparing to TiAlN and Ag bulk standards and TiAlN/TiN multilayers. The physical nature of such thermal barrier properties of the multilayer coatings was explained on the basis of reflection electron energy loss spectroscopy. The analysis shows that nanostructuring of the coating decreases the density of states and velocity of acoustic phonons propagation. At the same time, multiphonon channels of heat propagation degenerate. These results demonstrate that metal-dielectric interfaces in TiAlN/Ag coatings are insurmountable obstacles for acoustic phonons propagation.

  2. Anomalous Heat Budgets in the Interior Pacific Ocean on Seasonal- to -Timescales and Gyre Spacescales

    Science.gov (United States)

    White, Warren; Cayan, Daniel R.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This study quantifies uncertainties in closing the seasonal cycle of diabatic heat storage over the Pacific Ocean from 20 degrees S to 60 degrees N through the synthesis of World Ocean Circulation Experiment (WOCE) products over 7 years from 1993-1999. We utilize WOCE reanalysis products from the following sources: diabatic heat storage (DHS) from the Scripps Institution of Oceanography (SIO); near-surface geostrophic and Ekman currents from the Earth and Space Research (ESR); and air-sea heat fluxes from Comprehensive Ocean-Atmosphere Data Set (COADS), National Centers for Environmental Prediction (NCEP), and European Center for Mid-Range Weather Forecasts (ECMWF). We interpolate these products onto a common grid, allowing the seasonal cycle of DHS to be modeled for comparison with that observed. Everywhere latent heat flux residuals dominate sensible heat flux residuals and shortwave heat flux residuals dominate longwave heat flux residuals, both comparable in magnitude to the residual horizontal heat advection. We find the root-mean-square (RMS) of the differences between observed and model residual DHS tendencies to be less than 15 W per square meters everywhere except in the Kuroshio extension. Comparable COADS and NCEP products perform better than ECMWF products in the extra-tropics, while the NCEP product performs best in the tropics. Radiative and turbulent air-sea heat flux residuals computed from ship-born measurements perform better than those computed from satellite cloud and wind measurements. Since the RMS differences derive largely from biases in measured wind speed and cloud fraction, least-squares minimization is used to correct the residual Ekman heat advection and air-sea heat flux. Minimization reduces RMS differences less than 5 W per square meters except in the Kuroshio extension, suggesting how winds, clouds, and exchange coefficients in the NCEP, ECMWF, and ESR products can be improved.

  3. Anomalous conductivity and electron heating in a plasma unstable to the two-stream instability

    International Nuclear Information System (INIS)

    Clark, W.H.M.; Hamberger, S.M.

    1979-01-01

    An experiment to excite the electron-ion two-stream instability in a cylindrical Q-machine plasma column is described. The mechanism for establishing a large pulsed electron drift velocity in the plasma by applying a potential difference between the end electrodes is discussed. The pulsed current-voltage characteristic of the plasma column and the temporal evolution of the electron density, drift velocity and thermal velocity are measured. In contrast with the behaviour of some computer simulations of the two-stream instability, the plasma exhibits a constant conductivity and the electron thermal velocity increases to values far in excess of the drift velocity. The electrical dissipation is consistent with the increase of the electron thermal energy, both indicating an anomalous conductivity of the same order as an empirical scaling found in earlier experiments on a toroidal discharge. (author)

  4. Anomalous electron heating and energy balance in an ion beam generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  5. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  6. Electronic contributions to the transport properties and specific heat of solid UO2: an empirical, self-consistent analysis

    International Nuclear Information System (INIS)

    Hyland, G.J.; Ralph, J.

    1982-07-01

    From an empirical, self-consistent analysis of new high temperature data on the thermo-electric Seebeck coefficient and d.c. electrical conductivity, the value of the free energy controlling the equilibrium of the thermally induced reaction, 2U 4+ reversible U 3+ + U 5+ is determined (treating the U 3+ and U 5+ as small polarons) and used to calculate the contribution of the process to the high temperature thermal conductivity and specific heat of UO 2 . It is found that the transport properties can be completely accounted for in this way, but not the anomalous rise in specific heat - the origin of which remains obscure. (U.K.)

  7. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

    Science.gov (United States)

    Herrington, Deborah G.

    2011-01-01

    A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

  8. Departures from LTE Populations Versus Anomalous Abundances: the Effects of Heating

    Science.gov (United States)

    Underhill, A. B.

    1985-01-01

    The deposit of nonradiative heat and momentum in the mantle of a hot star affects the interpretation of the stellar spectrum in two ways. First, a superheated and moving plasma should be considered when doing the analysis, and second, a model atom which is appropriate for the physical state of the line forming regions. Some examples are presented for H and He showing how the changes in the electron temperature affect the solution of the equations of statistical equilibrium. The observed spectra of the Wolf-Raynet stars HD 191765, HD 192103, and HD 192163 are compatible with a normal H/He abundance ratio.

  9. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  10. Heat-source specification 500 watt(e) RTG

    International Nuclear Information System (INIS)

    1983-02-01

    This specification establishes the requirements for a 90 SrF 2 heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source

  11. Prediction of Liquid Specific Heat Capacity of Food Lipids.

    Science.gov (United States)

    Zhu, Xiaoyi; Phinney, David M; Paluri, Sravanti; Heldman, Dennis R

    2018-04-01

    Specific heat capacity (c p ) is a temperature dependent physical property of foods. Lipid-being a macromolecular component of food-provides some fraction of the food's overall heat capacity. Fats/oils are complex chemicals that are generally defined by carbon length and degree of unsaturation. The objective of this investigation was to use advanced specific heat capacity measurement to determine the effect of fatty acid chemical structure on specific heat capacity of food lipids. In this investigation, the specific heat capacity of a series of triacylglycerols were measured to quantify the influence of fatty acid composition on specific heat capacity based on two parameters; the -average carbon number (C) and the average number of double bonds (U). A prediction model for specific heat capacity of food lipids as a function of C, U and temperature (T) has been developed. A multiple linear regression to the three-parameter model (R 2 = 0.87) provided a good fit to the experimental data. The prediction model was evaluated by comparison with previously published specific heat capacity values of vegetable oils. It was found that the model provided a 0.53% error, while three other models from the literature predicted c p values with 0.85% to 1.83% average relative deviation from experimental data. The outcomes from this research confirm that the thermophysical properties of fat present in foods are directly related to the physical chemical properties. The specific heat capacity of food products is widely used in process design. Improvements of current models to predict specific heat capacity of food products will assist in the development of efficient processes and in the control of food quality and safety. Furthermore, the understanding of how changes in chemical structure of macromolecular components of foods effect thermophysical properties may begin to allude to models that are not just empirical, but represent portions of the differences in chemistry. © 2018

  12. Specific heat of the 38-K superconductor MgB_2 in the normal and superconducting state: bulk evidence for a double gap

    OpenAIRE

    Junod, Alain; Wang, Yuxing; Bouquet, Frederic; Toulemonde, Pierre

    2001-01-01

    The specific heat of two polycrystalline samples of MgB_2 is presented and analyzed (2 - 300 K, 0 - 16 T), together with magnetic properties. The main characteristics are a low density of states at the Fermi level, high phonon frequencies, and an anomalous temperature- and field- dependence of the specific heat at T < T_c. A two-gap model with a gap ratio of 3:1 fits the specific heat in zero field. The smaller gap is washed out by a field of 0.5 T.

  13. The Specific Heat of Matter at Low Temperatures

    CERN Document Server

    Tari, A

    2003-01-01

    Recent discoveries of new materials and improvements in calorimetric techniques have given new impetus to the subject of specific heat. Nevertheless, there is a serious lack of literature on the subject. This invaluable book, which goes some way towards remedying that, is concerned mainly with the specific heat of matter at ordinary temperatures. It discusses the principles that underlie the theory of specific heat and considers a number of theoretical models in some detail. The subject matter ranges from traditional materials to those recently discovered - heavy fermion compounds, high temper

  14. Specific heat in diluted magnetic semiconductor quantum ring

    Science.gov (United States)

    Babanlı, A. M.; Ibragimov, B. G.

    2017-11-01

    In the present paper, we have calculated the specific heat and magnetization of a quantum ring of a diluted magnetic semiconductor (DMS) material in the presence of magnetic field. We take into account the effect of Rashba spin-orbital interaction, the exchange interaction and the Zeeman term on the specific heat. We have calculated the energy spectrum of the electrons in diluted magnetic semiconductor quantum ring. Moreover we have calculated the specific heat dependency on the magnetic field and Mn concentration at finite temperature of a diluted magnetic semiconductor quantum ring.

  15. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?

    Science.gov (United States)

    Lofgren, Lotus; Nguyen, Nhu H; Kennedy, Peter G

    2018-02-07

    Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. On the specific heat in a limited medium

    International Nuclear Information System (INIS)

    Suzuki, A.T.

    1980-03-01

    The specific heat of solids is studied, following the usual approach in which the solid is considered as an elastic, isotropic and continuum system which bears normal modes of characteristic frequency. (L.C.) [pt

  17. Novel specific heat and magnetoresistance behavior of Tb0.5Ho0.5Mn2Si2

    Science.gov (United States)

    Pandey, Swati; Siruguri, V.; Rawat, R.

    2018-04-01

    In this report, we study temperature dependent heat capacity and electrical resistance of Tb1-xHoxMn2Si2 (x = 0.5). Two successive low temperature magnetic transitions T1 (˜15 K) and T2 (˜25 K) are observed from both measurements. Anomalous rise in heat capacity at low temperatures is ascribed to the nuclear Schottky effect. Sommerfeld coefficient (γ), Debye temperature (θD) and density of states at Fermi level N(EF) is calculated from the zero field specific heat data. We observe 4f contribution to heat capacity from T1 to 100K, which is attributed to crystal field effect. In the electrical transport study, application of the magnetic field shows a substantial change around the ordering temperature of rare earth moment resulting in large positive magnetoresistance of about 20% with field change of 6T.

  18. Electronic specific heats in metal--hydrogen systems

    International Nuclear Information System (INIS)

    Flotow, H.E.

    1979-01-01

    The electronic specific heats of metals and metal--hydrogen systems can in many cases be evaluated from the measured specific heats at constant pressure, C/sub p/, in the temperature range 1 to 10 K. For the simplest case, C/sub p/ = γT + βT 3 , where γT represents the specific heat contribution associated with the conduction electrons, and βT 3 represents lattice specific heat contribution. The electronic specific heat coefficient, γ, is important because it is proportional to electron density of states at the Fermi surface. A short description of a low temperature calorimetric cryostat employing a 3 He/ 4 He dilution refrigeration is given. Various considerations and complications encountered in the evaluation of γ from specific heat data are discussed. Finally, the experimental values of γ for the V--Cr--H system and for the Lu--H system are summarized and the variations of γ as function of alloy composition are discussed

  19. Specific heat and electric conductivity of zirconium alloy with 2,5 mass% niobium in the range of phase transitions

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Pokrasin, M.A.; Chernov, A.I.; Semashko, N.A.

    1996-01-01

    Experimental investigation of specific heat and electric resistance of zirconium alloy with 2.5 mass% niobium in the range of phase transitions was conducted, using adiabatic calorimeter of original design, characterized by high sensitivity, efficiency and high accuracy. It was revealed that temperature dependence of specific heat was characterized by anomalous growth at 590 deg C, related with (α+β Nb )→(α+β Zr )-transition, and at 810 deg -related with (α+β Zr )→β Zr - transition. Temperature dependence of electric resistance was specific in the region of α+β Zr →β Zr phase transition. It was established that revealed anomalies were connected with high oxygen absorption at high temperatures. 11 refs., 1 fig., 1 tab

  20. Low temperature specific heat anomalies in melanins and tumor melanosomes

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, U [Carnegie--Mellon Univ., Pittsburgh; Massalski, T B; McGinness, J E; Corry, P M

    1976-02-12

    Human malignant melanoma cells obtained at autopsy were used. Data indicate that melanins exhibit a large linear term (50-200 erg g/sup -1/K/sup -2/) and that they seem to undergo a phase transition as indicated by the heat capacity near 1.9/sup 0/K. A table is presented to show low temperature specific heat data for melanin samples. The measurements include two anomalies, a transition and an unusually high linear contribution. (HLW)

  1. Fluctuation-dissipation theorem for frequency-dependent specific heat

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Nielsen, Johannes K.

    1996-01-01

    A derivation of the fluctuation-dissipation (FD) theorem for the frequency-dependent specific heat of a system described by a master equation is presented. The FD theorem is illustrated by a number of simple examples, including a system described by a linear Langevin equation, a two-level system......, and a system described by the energy master equation. It is shown that for two quite different models with low-energy cutoffs—a collection of two-level systems and a system described by the energy master equation—the frequency-dependent specific heat in dimensionless units becomes universal at low temperatures......, i.e., independent of both energy distribution and temperature. These two models give almost the same universal frequency-dependent specific heat, which compares favorably to experiments on supercooled alcohols....

  2. "Anomalous" excitation in hydrogen-bonded molecular crystals - a Raman scattering study of specifically deuterated acetanilide (C 6D 5-CONH-CD 3)

    Science.gov (United States)

    Sauvajol, J. L.; De Nunzio, G.; Almairac, R.; Moret, J.; Barthés, M.; Bataillon, Place E.

    1991-01-01

    The focus of experimental and theoretical works about crystalline Acetanilide has been the "anomalous" temperature-dependent ir absorption and Raman peaks at about 1650 cm -1 and the multiband structure in the N-H stretch region. A lively discussion about the assignment of these "anomalous" bands has arisen and is still in progress. The present Raman experiments should be placed in this context as an attempt to identify the molecular degrees of freedom which originate the "anomalous" bands. In this aim Raman experiments have been performed on specifically deuterated Acetanilide [C 6D 5-CONH-CD 3] single crystal in the low-frequency (phonon) and C=O stretching regions. On cooling a distinct band at about 1495 cm -1 increases in intensity. We assign this peak to the equivalent of the 1650 cm -1 band in Acetanilide. The temperature dependence of this Raman line was studied. The results are discussed in the light of the models proposed to explain the anomalous behaviour of the 1650 cm -1 Raman line in Acetanilide.

  3. The Chemically-Specific Structure of an Amorphous Molybdenum Germanium Alloy by Anomalous X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, H. A.

    2002-06-11

    Since its inception in the late 1970s, anomalous x-ray scattering (AXS) has been employed for chemically-specific structure determination in a wide variety of noncrystalline materials. These studies have successfully produced differential distribution functions (DDFs) which provide information about the compositionally-averaged environment of a specific atomic species in the sample. Despite the wide success in obtaining DDFs, there are very few examples of successful extraction of the fully-chemically-specific partial pair distribution functions (PPDFs), the most detailed description of an amorphous sample possible by x-ray scattering. Extracting the PPDFs is notoriously difficult since the matrix equation involved is ill-conditioned and thus extremely sensitive to errors present in the experimental quantities that enter the equation. Instead of addressing this sensitivity by modifying the data through mathematical methods, sources of error have been removed experimentally: A focusing analyzer crystal was combined with a position-sensitive linear detector to experimentally eliminate unwanted inelastic scattering intensity over most of the reciprocal space range probed. This instrumentation has been used in data collection for the extraction of PPDFs from amorphous (a)-MoGe{sub 3}. This composition arises as a phase separation endpoint in the Ge-rich region of the vapor-deposited Mo-Ge amorphous alloy system but is not present at equilibrium. Since the first Ge-rich compound in the Mo-Ge equilibrium system is MoGe{sub 2}, previous workers have speculated that perhaps a unique MoGe{sub 3} compound exists in the amorphous system. Rather than indicating a distinct MoGe{sub 3} compound with definitive local structure, however, the coordination results are more consistent with a densely-packed alloy having a wide range of solid solubility. Significant improvement in the quality and reliability of experimental PPDFs from a-MoGe{sub 3} by AXS has been achieved solely

  4. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  5. Measurement of the specific heat capacity of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Picard, S.; Burns, D.T.; Roger, P

    2006-01-15

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  6. Measurement of the specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Picard, S.; Burns, D.T.; Roger, P.

    2006-01-01

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  7. Transport properties and specific heat of UTe and USb

    International Nuclear Information System (INIS)

    Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.

    1994-01-01

    Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))

  8. Specific heat of ZnCoSe semimagnetic semiconductor

    NARCIS (Netherlands)

    Twardowski, A.; Swagten, H.J.M.; Jonge, de W.J.M.; Demianiuk, M.

    1990-01-01

    The magnetic specific heat of ZnCoSe data are reported in the temperature range 1.5

  9. Specific heat of Cr-based semimagnetic semiconductors

    NARCIS (Netherlands)

    Twardowski, A.; Eggenkamp, P.J.T.; Mac, W.; Swagten, H.J.M.; Demianiuk, M.

    1993-01-01

    Specific heat of ZnCrSe and ZnCrS was measured for 1.5

  10. Negative specific heat with trapped ultracold quantum gases

    Science.gov (United States)

    Strzys, M. P.; Anglin, J. R.

    2014-01-01

    The second law of thermodynamics normally prescribes that heat tends to disperse, but in certain cases it instead implies that heat will spontaneously concentrate. The spontaneous formation of stars out of cold cosmic nebulae, without which the universe would be dark and dead, is an example of this phenomenon. Here we show that the counter-intuitive thermodynamics of spontaneous heat concentration can be studied experimentally with trapped quantum gases, by using optical lattice potentials to realize weakly coupled arrays of simple dynamical subsystems, so that under the standard assumptions of statistical mechanics, the behavior of the whole system can be predicted from ensemble properties of the isolated components. A naive application of the standard statistical mechanical formalism then identifies the subsystem excitations as heat in this case, but predicts them to share the peculiar property of self-gravitating protostars, of having negative micro-canonical specific heat. Numerical solution of real-time evolution equations confirms the spontaneous concentration of heat in such arrays, with initially dispersed energy condensing quickly into dense ‘droplets’. Analysis of the nonlinear dynamics in adiabatic terms allows it to be related to familiar modulational instabilities. The model thus provides an example of a dictionary mesoscopic system, in which the same non-trivial phenomenon can be understood in both thermodynamical and mechanical terms.

  11. Competing pseudogap and impurity effects on the normal-state specific heat properties of cuprate superconductors

    Science.gov (United States)

    Dzhumanov, S.; Karimboev, E. X.

    2014-07-01

    In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .

  12. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  13. Specific Heat Capacity of Alloy 690 for Simulating Neutron Irradiation

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Song, Woong Sub; Baik, Seung Je; Joo, Young Sun; Ahn, Sang Bok; Park, Jin Seok; Lee, Won Jae; Ryu, Woo Seok

    2011-01-01

    The KAERI(Korea Atomic Energy Research Institute) is developing new type of nuclear reactor, so called 'SMART'(System Integrated Modular Advanced Reactor) which has many features of small power and system integrated modular type. Alloy 690 was selected as the candidate material for the heat exchanger tube of the steam generator of SMART. The SMART R and D is now facing the stage of engineering verification and approval of standard design to apply to DEMO reactors. Therefore, the material performance under the relevant environment is required to be evaluated. The important material performance issues are mechanical properties i.e. (fracture toughness, tensile and hardness) and thermal properties i.e. (thermal diffusivity, specific heat capacity and thermal conductivity) for which the engineering database is necessary to design a steam generator. However, the neutron post irradiation characteristics of the alloy 690 are barely known. As a result, PIE(Post Irradiation Examination) of thermal properties are planed and performed successfully. But specific heat capacity measurement is not performed because of not having proper test system for irradiated materials. Therefore in order to verify the effect of neutron irradiation for alloy 690, simulation method is adopted. In general, high energy neutron bombardment in material bring about lattice defects i.e. void, pore and dislocation. Dominant factor to impact to heat capacity is mainly dislocation in material. Therefore, simulation of neutron irradiation is devised by material rolling method in order to make artificial dislocation in alloy 690 as same effect of neutron irradiation. After preparing test specimens, heat capacity measurements are performed and results are compared with rolled materials and un-rolled materials to verify the effect of neutron irradiation simulation. Main interest of simulation is that heat capacity value is changed by neutron irradiation

  14. Non Debye approximation on specific heat of solids

    Science.gov (United States)

    Bhattacharjee, Ruma; Das, Anamika; Sarkar, A.

    2018-05-01

    A simple non Debye frequency spectrum is proposed. The normalized frequency spectrum is compared to that of Debye spectrum. The proposed spectrum, provides a good account of low frequency phonon density of states, which gives a linear temperature variation at low temperature in contrast to Debye T3 law. It has been analyzed that the proposed model provides a good account of excess specific heat for nanostructure solid.

  15. Specific heat of V3GaH/sub x/

    International Nuclear Information System (INIS)

    Cort, B.; Stewart, G.R.; Huang, S.Z.; Meng, R.L.; Chu, C.W.

    1981-01-01

    Specific-heat measurements have been made on V 3 GaH/sub x/ for x = 0, 0.2, 1.4, and 1.9 in the temperature range 1.2--20 K. In addition to increased lattice parameter and depressed transition temperature with increased hydrogen concentrations, the Debye temperature increases and the electronic density of states drops, both dramatically. Decreased electron-phonon coupling is also indicated with hydrogenation

  16. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  17. Generic Guide Specification for Geothermal Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required

  18. Anomalous transport in tokamaks

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1989-01-01

    A review is presented of what is known about anomalous transport in tokamaks. It is generally thought that this anomalous transport is the result of fluctuations in various plasma parameters. In the plasma edge detailed measurements of the quantities required to directly determine the fluctuation driven fluxes are available. The total flux of particles is well explained by the measured electrostatic fluctuation driven flux. However, a satisfactory model to explain the origin of the fluctuations has not been identified. The processes responsible for determining the edge energy flux are less clear, but electrostatic convection plays an important part. In the confinement region experimental observations are presently restricted to measurements of density and potential fluctuations and their correlations. The characteristics of the measured fluctuations are discussed and compared with the predictions of various models. Comparisons between measured particle, electron heat and ion heat fluxes, and those fluxes predicted to result from the measured fluctuations, are made. Magnetic fluctuations is discussed

  19. Monoclonal antibodies specific to heat-treated porcine blood.

    Science.gov (United States)

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi

    2016-05-01

    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Specific heat measurements in KCN:KCL mixed crystals

    International Nuclear Information System (INIS)

    Ghivelder, L.

    1983-01-01

    An adiabatic calorimeter to perform specific heat measurements of small samples (approximatelly 150 mg) was built. The measurements were taken from 6 to 120 K, iN KCN:KCL mixed crystals, in order to observe the evolution of the antiferroelectric phase transition - that occurs at 83 K in KCN pure. From the experimental results the values of the phase transition critical temperature are found, for some particular concentrations of the mixture, and it was detected that this phase transition disappears with only 10% of Cl - . This result is explained in terms of a change of the potential wells in the crystal. (Author) [pt

  1. Specific heat of MgB_2 after irradiation

    OpenAIRE

    Wang, Yuxing; Bouquet, Frederic; Sheikin, Ilya; Toulemonde, Pierre; Revaz, Bernard; Eisterer, Michael; Weber, Harald W.; Hinderer, Joerg; Junod, Alain

    2002-01-01

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB_2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T_c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutr...

  2. Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Ganeshkumar Jayabalan

    2017-01-01

    Full Text Available This article presents the effect of adding multi wall carbon nanotubes (MWCNT in water – ethylene glycol mixture on density and various thermophysical properties such as thermal conductivity, specific heat and viscosity. Density of nanofluids was measured using standard volumetric flask method and the data showed a good agreement with the mixing theory. The maximum thermal conductivity enhancement of 11 % was noticed for the nanofluids with 0.9 wt. %. Due to lower specific heat of the MWCNT, the specific heat of the nanofluids decreased in proportion with the MWCNT concentration. The rheological analysis showed that the transition region from shear thinning to Newtonian extended to the higher shear stress range compared to that of base fluids. Viscosity ratio of the nanofluids augmented anomalously with respect to increase in temperature and about 2.25 fold increase was observed in the temperature range of 30 – 40 ˚C. The modified model of Maron and Pierce predicted the viscosity of the nanofluids with the inclusion of effect of aspect ratio of MWCNT and nanoparticle aggregates.

  3. Specific heat studies of lanthanum and yttrium sesquicarbides

    International Nuclear Information System (INIS)

    Cort, B.; Stewart, G.R.; Giorgi, A.L.

    1984-01-01

    The specific heats of the sesquicarbides LaC/sub 1.35/ and La/sub 0.9/Th/sub 0.1/C/sub 1.6/ (prepared by arc melting) and YC/sub 1.35/ (prepared by a high-pressure technique) have been measured for the first time. No bulk specific heat anomaly appears in either lanthanum compounds, even though (1) inductively measured superconducting transition temperatures are respectively high (11.0 K for LaC/sub 1.35/ and 12.7 K for La/sub 0.9/Th/sub 0.1/C/sub 1.6/) and (2) YC/sub 1.35/ is a bulk superconductor with a T/sub c/ = 10.5 K and Y/sub 0.7/Th/sub 0.3/C/sub 1.58/ (also prepared by high pressure) was previously reported to be a bulk superconductor with a T/sub c/ = 17.1 K. The apparent correlation with preparation technique is discussed

  4. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  5. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2004-01-01

    In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating

  6. Specific heat of MgB{sub 2} after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuxing [Universite de Geneve, Departement de physique de la matiere condensee, 24 quai Ernest-Ansermet, CH-1211 Geneva (Switzerland); Bouquet, Frederic [Universite de Geneve, Departement de physique de la matiere condensee, 24 quai Ernest-Ansermet, CH-1211 Geneva (Switzerland); Sheikin, Ilya [Universite de Geneve, Departement de physique de la matiere condensee, 24 quai Ernest-Ansermet, CH-1211 Geneva (Switzerland); Toulemonde, Pierre [Universite de Geneve, Departement de physique de la matiere condensee, 24 quai Ernest-Ansermet, CH-1211 Geneva (Switzerland); Revaz, Bernard [Universite de Geneve, Departement de physique de la matiere condensee, 24 quai Ernest-Ansermet, CH-1211 Geneva (Switzerland); Eisterer, Michael [Atominstitut der Oesterreichischen Universitaeten, A-1020 Vienna (Austria); Weber, Harald W [Atominstitut der Oesterreichischen Universitaeten, A-1020 Vienna (Austria); Hinderer, Joerg [GHMFL, Max-Planck Institute Grenoble, BP 166, F-38042, Grenoble (France); Junod, Alain [Universite de Geneve, Departement de physique de la matiere condensee, 24 quai Ernest-Ansermet, CH-1211 Geneva (Switzerland)

    2003-02-19

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB{sub 2} by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2{delta}{sub 0}/k{sub B}T{sub c}=1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T{sub c} and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH{sub c2}/dT at T{sub c} can be obtained without sacrificing more than a few degrees in T{sub c}. The upper critical field of the sample after irradiation exceeds 28 T at T{yields}0.

  7. Specific heat of MgB2 after irradiation

    International Nuclear Information System (INIS)

    Wang Yuxing; Bouquet, Frederic; Sheikin, Ilya; Toulemonde, Pierre; Revaz, Bernard; Eisterer, Michael; Weber, Harald W; Hinderer, Joerg; Junod, Alain

    2003-01-01

    We studied the effect of disorder on the superconducting properties of polycrystalline MgB 2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2Δ 0 /k B T c =1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH c2 /dT at T c can be obtained without sacrificing more than a few degrees in T c . The upper critical field of the sample after irradiation exceeds 28 T at T→0

  8. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  9. Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sørensen, J G; Kristensen, Torsten Nygård; Kristensen, K V

    2007-01-01

    In insects mild heat stress early in life has been reported to increase life span and heat resistance later in life, a phenomenon termed hormesis. Here, we test if the induction of the heat shock response by mild heat stress is mediating hormesis in longevity and heat resistance at older age...... line, seemingly mediated by the production of heat shock proteins (Hsps). The results indicate that heat inducible Hsps are important for heat induced hormesis in longevity and heat stress resistance. However, the results also suggest that other processes are involved and that different mechanisms...... might have marked sex specific impact...

  10. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    Science.gov (United States)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  11. Modeling and impacts of the latent heat of phase change and specific heat for phase change materials

    Science.gov (United States)

    Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.

    2018-05-01

    We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.

  12. Frictional Heating with Time-Dependent Specific Power of Friction

    Directory of Open Access Journals (Sweden)

    Topczewska Katarzyna

    2017-06-01

    Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.

  13. House owners' perceptions and factors influencing their choice of specific heating systems in Germany

    International Nuclear Information System (INIS)

    Decker, Thomas; Menrad, Klaus

    2015-01-01

    Against the background of global climate changes and several legal obligations, the target of this paper is to analyze the buying behavior of house owners in Germany with respect to heating systems and the main factors influencing choice when purchasing a specific heating system (e.g., oil heating or wood pellet heating). To investigate these issues, a Germany-wide written survey was conducted and the completed questionnaires of 775 respondents analyzed using multinomial logistic regression. Of 29 different variables influencing the purchase of a heating system, 12 statistically significant variables have been identified which characterize the owners of oil heating, a heat pump, gas heating and wood pellet heating. The membership of different ecological clusters primarily segregates the owners of a specific heating system, but the assessment of the different combustibles also plays a major role in this context. Suppliers of heating systems can use the results of this study to fine-tune their marketing strategies. With respect to policy issues only limited room for additional economic incentives can be identified to promote replacement of fossil-fuel based heating systems in favor of renewable ones. -- Highlights: •Current regulations support renewable heating systems insufficiently in Germany. •We developed a model to characterize the purchasers of different heating systems. •Ecological attitudes differentiate the purchasers of the different heating systems. •Economic reasons are mainly important for owners of gas and oil heating systems

  14. On a specific feature of heat transfer to organic coolants

    International Nuclear Information System (INIS)

    Kafengauz, N.L.; Gladkikh, V.A.

    1986-01-01

    Heat transfer to organic coolants, which is accompanied by solid carbon deposit formation, is experimentally studied. Polished and rough steel tubes with 3 mm outside diameter and 0.5 mm wall thickness, heated by electric current, were used as fuel elements. Results of experiments with kerosene T-1 are presented under the following regime parameters: pressure - 45 b; flow rate - 3.75 m/s; temperature - 25-40 deg C; fuel element temperature - 400-900 deg C. In experiments on fuel elements with natural roughness deposit formation caused a smooth increase of the wall temperature. In fuel elements with polished surface, deposit formation caused during the first minutes the reduction of the wall temperature and after that it increased. Intensity of solid deposit formation in fuel elements with polished and rough surface was the same. Similar results were observed not only in experiments with kerosene T-1, but with other organic fluids as well: with toluene, n-heptane, diisopropylcyclohexane etc. The results obtained can be explained in the following way. Solid deposits on a smooth surface create roughness which improves heat exchange and reduces, respectively, the heating surface temperature. But deposits possess weak heat conductivity and create additional thermal resistance, which aggravates heat exchange. Interaction of these two factors causes the complicated time dependence of wall temperature

  15. Feedlot cattle susceptibility to heat stress: an animal specific model

    Science.gov (United States)

    The extreme effects of heat stress in a feedlot situation can cause losses exceeding 5% of all the cattle on feed in a single feedlot. These losses can be very devastating to a localized area of feedlot producers. Animal stress is a result of the combination of three different components: environm...

  16. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle

    International Nuclear Information System (INIS)

    Chen Lingen; Ge Yanlin; Sun Fengrui; Wu Chih

    2006-01-01

    The thermodynamic performance of an air standard dual cycle with heat transfer loss, friction like term loss and variable specific heats of working fluid is analyzed. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle, are derived by detailed numerical examples. Moreover, the effects of variable specific heats of the working fluid and the friction like term loss on the irreversible cycle performance are analyzed. The results show that the effects of variable specific heats of working fluid and friction like term loss on the cycle performance are obvious, and they should be considered in practical cycle analysis. The results obtained in this paper may provide guidance for the design of practical internal combustion engines

  17. Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid

    International Nuclear Information System (INIS)

    Ge Yanlin; Chen Lingen; Sun, Fengrui; Wu Chih

    2006-01-01

    The performance of an air standard Atkinson cycle with heat-transfer loss, friction-like term loss and variable specific-heats of the working fluid is analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of variable specific-heats of the working fluid and the friction-like term loss on the irreversible cycle performance are analyzed. The results show that the effects of variable specific-heats of working fluid and friction-like term loss on the irreversible cycle performance should be considered in cycle analysis. The results obtained in this paper provide guidance for the design of Atkinson engines

  18. Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids

    Science.gov (United States)

    Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.

    2017-09-01

    Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.

  19. Influence of kondo effect on the specific heat jump of anisotropic superconductors

    Science.gov (United States)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.

  20. Influence of Kondo effect on the specific heat jump of anisotropic superconductors

    International Nuclear Information System (INIS)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. Explicit expressions are given for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally. (author)

  1. Silver oxides. II. Specific heats of silver oxide and silver peroxide. [20 to 99 C

    Energy Technology Data Exchange (ETDEWEB)

    Jirsa, F

    1949-01-01

    Specific heats were determined in a water calorimeter over the temperature range 20 through 99 C. The specific heat of Ag/sub 2/O is given as 0.0803 +- 0.001 cal/g-C, and that of Ag/sub 2/O/sub 2/ is given as 0.0869 +- 0.0005 cal/g-C.

  2. Anomalous field dependence of the Sommerfeld coefficient in the isotropic (K,Ba)BiO3 superconductor

    International Nuclear Information System (INIS)

    Klein, T.; Marcenat, C.; Bouquet, F.; Junod, A.; Blanchard, S.; Marcus, J.

    2004-01-01

    We report on specific heat measurements in high quality (K,Ba)BiO 3 single crystals (T c ∼31.5 K). A well defined specific heat jump is clearly visible at T C p (H) in the entire investigated field range (up to 13 T). However, the corresponding T C p (H) exhibits an anomalous positive curvature and the amplitude of the jump rapidly decreases with field suggesting a non-linear increase of the Sommerfeld coefficient (γ(H)). This anomalous behaviour is confirmed by low temperature measurements which show that γ(H)∝H α with α∼0.65

  3. Simulation of cracks in tungsten under ITER specific heat loads

    International Nuclear Information System (INIS)

    Peschany, S.

    2006-01-01

    The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to

  4. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    International Nuclear Information System (INIS)

    Gotovsky, M.A.

    2001-01-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  5. Determination and Application of Comprehensive Specific Frictional Resistance in Heating Engineering

    Directory of Open Access Journals (Sweden)

    Yanan Tian

    2018-01-01

    Full Text Available In this study, we analyze the deficiencies of specific frictional resistance in heating engineering. Based on economic specific frictional resistance, we put forward the concept of comprehensive specific frictional resistance, which considers the multiple factors of technology, economy, regulation modes, pipe segment differences, and medium pressure. Then, we establish a mathematical model of a heating network across its lifespan in order to develop a method for determining the comprehensive specific frictional resistance. Relevant conclusions can be drawn from the results. As an application, we have planned the heating engineering for Yangyuan County in China, which demonstrates the feasibility and superiority of the method.

  6. Heating water. Specifications for feedwater; Heizungswasser. Eine Standortbestimmung

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, M. [Hannemann Wassertechnik (Germany)

    2004-08-01

    Water is indispensable for life and for engineering. It is so universal that we seem to have lost respect for it. In heating systems, it is recommended to know about its technical properties and to account for them by appropriate measures. (orig.) [German] Wasser ist fuer Leben und Technik unverzichtbar. Vielleicht ist es auf die enormen Vorkommen und die Selbstverstaendlichkeit der Nutzung zurueckzufuehren, dass wir ein Stueck Achtung vor diesem Gut verloren haben. Wer bei der technischen Verwendung als Waermetraeger in Heizungsanlagen die speziellen Eigenschaften und die Wechselwirkungen mit Werkstoffen missachtet, kann schnell in unruhiges Fahrwasser geraten, mithin bis zum Schiffbruch. Wer die Wechselwirkungen kennt, beachtet und mit speziellen Behandlungsverfahren gegensteuert, ist daher gut beraten. (orig.)

  7. Determination of the thermal conductivity and specific heat capacity of neem seeds by inverse problem method

    Directory of Open Access Journals (Sweden)

    S.N. Nnamchi

    2010-01-01

    Full Text Available Determination of the thermal conductivity and the specific heat capacity of neem seeds (Azadirachta indica A. Juss usingthe inverse method is the main subject of this work. One-dimensional formulation of heat conduction problem in a spherewas used. Finite difference method was adopted for the solution of the heat conduction problem. The thermal conductivityand the specific heat capacity were determined by least square method in conjunction with Levenberg-Marquardt algorithm.The results obtained compare favourably with those obtained experimentally. These results are useful in the analysis ofneem seeds drying and leaching processes.

  8. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    Science.gov (United States)

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  9. Origin of two maxima in specific heat in enthalpy relaxation under thermal history composed of cooling, annealing, and heating.

    Science.gov (United States)

    Sakatsuji, Waki; Konishi, Takashi; Miyamoto, Yoshihisa

    2016-12-01

    The origin of two maxima in specific heat observed at the higher and the lower temperatures in the glass-transition region in the heating process has been studied for polymethyl methacrylate and polyvinyl chloride using differential scanning calorimetry, and the calculation was done using the phenomenological model equation under a thermal history of the typical annealing experiment composed of cooling, annealing, and heating. The higher maximum is observed above the glass-transition temperature, and it remains almost unchanged independent of annealing time t_{a}, while the lower one is observed above an annealing temperature T_{a} and shifts toward the higher one, increasing its magnitude with t_{a}. The analysis by the phenomenological model equation proposed in order to interpret the memory effect in the glassy state clarifies that under a typical annealing history, two maxima in specific heat essentially appear. The shift of the lower maximum toward higher temperatures from above T_{a} is caused by an increase in the amount of relaxation during annealing with t_{a}. The annealing temperature and the amount of relaxation during annealing play a major role in the determination of the number of maxima in the specific heat.

  10. Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    Harry O'Hanley

    2012-01-01

    Full Text Available Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry (DSC, a robust experimental methodology for measuring the heat capacity of fluids, the specific heat capacities of water-based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5 wt% and 50 wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviated very significantly from the data. Therefore, Model II is recommended for nanofluids.

  11. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    International Nuclear Information System (INIS)

    Shehata, M.S.

    2010-01-01

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the sours of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio γ(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating γ(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio γ(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and LPG due to high

  12. Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, M.S. [Mechanical Engineering Technology Department, Higher Institute of Technology, Banha University, 4Zagalol Street, Benha, Galubia 1235 Z (Egypt)

    2010-12-15

    An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FFT) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the source of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio {gamma}(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating {gamma}(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (III) Temperature dependant specific heat ratio {gamma}(T), and (IV) Logarithmic scale of (P and V). The duration of combustion for kerosene is smaller than for gasoline and

  13. An analysis of boundary-effects in obtaining the frequency dependent specific heat by effusivity measurements

    DEFF Research Database (Denmark)

    Christensen, Tage Emil; Behrens, Claus

    The frequency dependent specific heat is a significant response function characterizing the glass transition. Contrary to the dielectric response it is not easily measured over many decades. The introduction of the 3-omega method, where the temperature oscillations at a planar oscillatoric heat g...

  14. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-05-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. (author)

  15. Technical specifications for the provision of heat and steam sources for INPP and Visaginas. Final report

    International Nuclear Information System (INIS)

    2003-01-01

    In October 1999, the National Energy Strategy was approved by the Lithuanian Parliament. The National Energy Strategy included the decision to close Unit-1 of INPP before 2005. Later is has been decided to close Unit 2 before the end of 2009 as well. The closure and decommissioning will have heavy impact on the heat supply for the city of Visaginas. Unit 1 and Unit 2 of INPP supplies hot water and steam to INPP for process purposes and for space heating of residential and commercial buildings. When Unit 1 is permanently shut down, reliable heat and steam sources independent of the power plants own heat and steam generation facilities are required for safety reasons in the event of shutdown of the remaining unit for maintenance or in an emergency. These steam and heat sources must be operational before single unit operation is envisaged. Provision of a reliable independent heat and steam source is therefore urgent. After both reactors are shut down permanently, a steam source will be needed at the plant for radioactive waste storage and disposal. INPP and DEA has performed a feasibility study for the provision of a reliable heat source for Ignalina Nuclear Power Plant and Visaginas, and the modernisation of Visaginas district heating system. The objective of this project is to prepare technical specifications for the provision of new heat and steam sources for INPP and Visaginas, and for rehabilitation of the heat transmission pipeline between INPP, the back-up boiler station and Visaginas City. The results of the study are presented in detail in the reports and technical specifications: 1. Transient analysis for Visaginas DH system, 2. Non-destructive testing of boiler stations, pump stations and transmission lines, 3. Conceptual design, 4. Technical specifications, Package 1 to 6. The study has suggested: 1. Construction of new steam boiler station, 2. Construction of new heat only boiler station, 3. Renovation of existing back-up heat only boiler station, 4

  16. Specific heat and magnetization of RMn2(H,D)2

    International Nuclear Information System (INIS)

    Tarnawski, Z.; Kolwicz-Chodak, L.; Figiel, H.; Kim-Ngan, N.-T.H.; Havela, L.; Miliyanchuk, K.; Sechovsky, V.; Santava, E.; Sebek, J.

    2007-01-01

    The effect of hydrogen absorption on magnetic and thermodynamic properties of hydrides compounds RMn 2 (H,D) 2 (R = Y, Nd, Tb, Ho, and Er) have been investigated by performing specific heat and magnetization measurements in the temperature range of 2-320 K and in magnetic fields up to 9 T. The phase transition to the antiferromagnetic order accompanying a crystal structure transformation have been revealed by complicated-structure anomalies in specific heat and weak anomalies in magnetization

  17. Development of Field Angle Resolved Specific Heat Measurement System for Unconventional Superconductors

    International Nuclear Information System (INIS)

    Kitamura, Yasuhiro; Matsubara, Takeshi; Machida, Yo; Izawa, Koichi; Onuki, Yoshichika; Salce, Bernard; Flouquet, Jacques

    2015-01-01

    We developed a measurement system for field angle resolved specific heat under multiple extreme conditions at low temperature down to 50 mK, in magnetic field up to 7 T, and under high pressure up to 10 GPa. We demonstrated the performance of our developed system by measuring field angle dependence of specific heat of pressure induced unconventional superconductor CeIrSi 3

  18. Measurements of thermal diffusivity, specific heat capacity and thermal conductivity with LFA 447 apparatus

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    The LFA 447 can be successfully used for measurements of thermal diffusivity, specific heat and thermal conductivity of various samples. It is especially useful when determining the properties of materials on a very small scale. The matrix measurement mode allows for determining the local...... that the heat losses from both samples during the measurement are similar. Finally, the leveling of the samples is very important. Very small discrepancies can cause a massive error in the derivation of specific heat capacity and, as a result, thermal conductivity....

  19. Experimental Investigation on the Specific Heat of Carbonized Phenolic Resin-Based Ablative Materials

    Science.gov (United States)

    Zhao, Te; Ye, Hong; Zhang, Lisong; Cai, Qilin

    2017-10-01

    As typical phenolic resin-based ablative materials, the high silica/phenolic and carbon/phenolic composites are widely used in aerospace field. The specific heat of the carbonized ablators after ablation is an important thermophysical parameter in the process of heat transfer, but it is rarely reported. In this investigation, the carbonized samples of the high silica/phenolic and carbon/phenolic were obtained through carbonization experiments, and the specific heat of the carbonized samples was determined by a 3D DSC from 150 °C to 970 °C. Structural and compositional characterizations were performed to determine the mass fractions of the fiber and the carbonized product of phenolic which are the two constituents of the carbonized samples, while the specific heat of each constituent was also measured by 3D DSC. The masses of the carbonized samples were reduced when heated to a high temperature in the specific heat measurements, due to the thermal degradation of the carbonized product of phenolic resin in the carbonized samples. The raw experimental specific heat of the two carbonized samples and the carbonized product of phenolic resin was modified according to the quality changes of the carbonized samples presented by TGA results. Based on the mass fraction and the specific heat of each constituent, a weighted average method was adopted to obtain the calculated results of the carbonized samples. Due to the unconsolidated property of the fiber samples which impacts the reliability of the DSC measurement, there is a certain deviation between the experimental and calculated results of the carbonized samples. Considering the similarity of composition and structure, the data of quartz glass and graphite were used to substitute the specific heat of the high silica fiber and carbon fiber, respectively, resulting in better agreements with the experimental ones. Furthermore, the accurate specific heat of the high silica fiber and carbon fiber bundles was obtained by

  20. Specification of steam generator, condenser and regenerative heat exchanger materials for nuclear applications

    International Nuclear Information System (INIS)

    Jovasevic, J.V.; Stefanovic, V.M.; Spasic, Z.LJ.

    1977-01-01

    The basic standards specifications of materials for nuclear applications are selected. Seamless Ni-Cr-Fe alloy Tubes (Inconel-600) for steam generators, condensers and other heat exchangers can be employed instead of austenitic stainless steal or copper alloys tubes; supplementary requirements for these materials are given. Specifications of Ni-Cr-Fe alloy plate, sheet and strip for steam generator lower sub-assembly, U-bend seamless copper-alloy tubes for heat exchanger and condensers are also presented. At the end, steam generator channel head material is proposed in the specification for carbon-steel castings suitable for welding

  1. On the importance of specific heats as regards efficiency increases for highly dilute IC engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Importance of specific heats towards increasing engine efficiency was quantified. • Decreases of specific heats contribute 3.5–6.3% (abs) to the efficiency. • Dilute engines benefit from decreases of specific heats due to lower temperatures. - Abstract: Engineering and scientific efforts continue with the development of advanced, IC engines using highly dilute mixtures, and relatively high compression ratios. Such engines are known to provide opportunities for low emissions as well as high efficiencies. The main features of these engines include higher compression ratios, lean operation, use of EGR, and shorter burn durations. First, this study reviews the quantitative contributions of each of these features as determined by an engine cycle simulation. Second, this study provides the quantitative contributions to the increased efficiency in terms of fundamental thermodynamic considerations. An automotive engine operated at 2000 rpm was selected for this study. For the conditions examined, the net indicated thermal efficiency increased from 37.0% (conventional engine) to 53.9% (high efficiency engine) – for an incremental increase of 16.9% (absolute). The contribution of increases of the ratio of specific heats towards the final thermal efficiency is quantified. This aspect has been well known, but has not been quantified for actual engines. For the various conditions examined, 21–35% of the total efficiency improvement was estimated to be due to the increase of the ratio of specific heats

  2. Ordering effects on structure and specific heat of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    The experimental results on the change in the crystal structure and specific heat of the nonstoichiometric titanium carbide TiC y (0.5 2 C phases with cubic and trigonal symmetry and the rhombic ordered Ti 3 C 2 phase are formed in the titanium carbide at the temperature below 1000 K by the phase transitions mechanism. The temperatures and heats of the order-disorder phase transitions are determined [ru

  3. Specific microRNAs Regulate Heat Stress Responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Nehammer, Camilla; Podolska, Agnieszka; Mackowiak, Sebastian D

    2015-01-01

    have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress...... to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We...

  4. Specific heat of filled skutterudite PrOs4P12

    International Nuclear Information System (INIS)

    Matsuhira, Kazuyuki; Doi, Yoshihiro; Wakeshima, Makoto; Hinatsu, Yukio; Kihou, Kunihiro; Sekine, Chihiro; Shirotani, Ichimin

    2005-01-01

    We report the specific heat of filled skutterudite compounds PrOs 4 P 12 and LaOs 4 P 12 down to 1.8K. The specific heat divided by temperature C(T)/T in PrOs 4 P 12 shows a shoulder around 13K. This shoulder is caused by a Schottky anomaly due to a crystalline electric field effect. The electronic specific heat coefficients γ of PrOs 4 P 12 and LaOs 4 P 12 are estimated to be 56.5 and 21.6mJ/K 2 mol, respectively. The value of γ in PrOs 4 P 12 is 2.6 times larger than that in LaOs 4 P 12

  5. Beam Energy Scan of Specific Heat Through Temperature Fluctuations in Heavy Ion Collisions

    Science.gov (United States)

    Basu, Sumit; Nandi, Basanta K.; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan

    2016-01-01

    Temperature fluctuations may have two distinct origins, first, quantum fluctuations that are initial state fluctuations, and second, thermodynamical fluctuations. We discuss a method of extracting the thermodynamic temperature from the mean transverse momentum of pions, by using controllable parameters such as centrality of the system, and range of the transverse momenta. Event-by-event fluctuations in global temperature over a large phase space provide the specific heat of the system. We present Beam Energy Scan of specific heat from data, AMPT and HRG model prediction. Experimental results from NA49, STAR, PHENIX, PHOBOS and ALICE are combined to obtain the specific heat as a function of beam energy. These results are compared to calculations from AMPT event generator, HRG model and lattice calculations, respectively.

  6. Phonon spectrum of YBCO obtained by specific heat inversion method for real data

    CERN Document Server

    Tao Wen; Dai Xian Xi; Dai Ji Xin; Evenson, W E

    2003-01-01

    In this paper, the phonon spectrum of YBCO is obtained from experimental specific heat data by an exact inversion formula with a parameter for eliminating divergences. The results can be compared to those of neutron inelastic scattering, which can only be carried out in a few laboratories. Some key points of specific heat-phonon spectrum inversion (SPI) theory and a method of asymptotic behaviour control are discussed. An improved unique existence theorem is presented, and a universal function set for numerical calculation of SPI is calculated with high accuracy, which makes the inversion method applicable and convenient in practice. This is the first time specific heat-phonon SPI has been realized for a concrete system.

  7. Detection of Second Order Melting Transitions in the HTSC's by Specific Heat Measurements?

    Science.gov (United States)

    Pierson, Stephen W.; Valls, Oriol T.

    1997-03-01

    The finite magnetic field phase transition in the high-temperature superconductors from the solid vortex lattice to the liquid has been under intense study recently. Detection of this melting is difficult but has been seen in magnetization and resistivity measurements. It has also been reported recently in specific heat measurements. In particular, in one case, evidence for a second order melting phase transition has been presented based on specific heat measurements.(M. Roulin, A. Junod, and E. Walker. Science 273), 1210 (1996). However, we present evidence that the feature in the specific heat data can be explained using a theory derived using the lowest-Landau-level approximation(Z. Tes)anović and A. V. Andreev, Phys. Rev. B 49, 4064 (1994) that does not invoke flux lattice melting arguments.

  8. Specific heat study of quasi-one-dimensional antiferromagnetic model for an organic polymer chain

    International Nuclear Information System (INIS)

    Qu Shaohua; Zhu Lin

    2008-01-01

    The specific heat of an infinite one-dimensional polymer chain bearing periodically arranged side radicals connected to the even sites is studied by means of quantum transfer-matrix method based on a Ising-Heisenberg model. In the absence of the exchange interactions between side radicals and the main chain, the curves of specific heat show a round peak due to the antiferromagnetic excitations for the all antiferromagnetic interactions along the polymer chain. Considering the exchange interactions between the side radicals and the main chain, the curves of the specific heat show double-peak structure for ferromagnetic interactions between the radicals and main chain, indicating that a competition between ferromagnetic and antiferromagnetic interactions and the possibility of the occurrence of the stable ferrimagnetic state along the polymer chain

  9. Negative specific heat, phase transition and particles spilling from a potential well

    International Nuclear Information System (INIS)

    Rao, J.; Liu, Q.H.; Liu, T.G.; Li, L.X.

    2008-01-01

    For a finite number of noninteracting particles in a box with a potential well in the center, the microcanonical kinetic energy in dependence on the total energy as it is negative can be classified into three categories. The first exhibits a monotonical rise and the specific heat is positive. The second shows a diminishing sawtooth wave with a global rise. The last corresponds to the extreme case and takes the regular sawtooth wave form. The sawtooth wave portion associates periodically a kinetic energy fall in spite of an increase of the total energy; and we attribute to such a fall the negative specific heat. The phase transition can be defined when the relatively dense particle state in the well and relatively dilute particle state in the rest volume of the box coexist, and the appearance of the negative specific heat is sufficient but not necessary for the onset of the phase transition

  10. Theoretical analysis for the specific heat and thermal parameters of solid C60

    Science.gov (United States)

    Soto, J. R.; Calles, A.; Castro, J. J.

    1997-08-01

    We present the results of a theoretical analysis for the thermal parameters and phonon contribution to the specific heat in solid C60. The phonon contribution to the specific heat is calculated through the solution of the corresponding dynamical matrix, for different points in the Brillouin zone, and the construccion of the partial and generalized phonon density of states. The force constants are obtained from a first principle calculation, using a SCF Hartree-Fock wave function from the Gaussian 92 program. The thermal parameters reported are the effective temperatures and vibrational amplitudes as a function of temperature. Using this model we present a parametization scheme in order to reproduce the general behaviour of the experimental specific heat for these materials.

  11. On the low-temperature specific heat of icosahedral and decagonal quasicrystals

    International Nuclear Information System (INIS)

    Chernikov, M.A.

    2005-01-01

    Calorimetric experiments on icosahedral (Al-Re-Pd, Al-Mn-Pd) and decagonal (Al-Cu-Co, Al-Ni-Co) quasicrystals are described. For quasicrystals of both classes, the coefficient γ of the linear term to the specific heat falls into the range of 0.1-0.6 mJ/g-atom K 2 indicating a low density of energy states at Fermi level. For icosahedral Al-Mn-Pd, the cubic-in-temperature term to the specific heat is distinctly larger than the estimated contribution of long-wave acoustic excitations. On the contrary, the magnitude of the cubic-in-temperature term to the specific heat of decagonal Al-Ni-Co is in agreement,within the experimental accuracy, with the Debye acoustic contribution from the results of low-temperature measurements of the elastic modules [ru

  12. Specific heat of amorphous 3He films and confined liquid 3He

    International Nuclear Information System (INIS)

    Golov, A.; Pobell, F.

    1995-01-01

    We have measured the heat capacities of 3 He films and liquid 3 He in porous Vycor glass at 10 to 600 mK. With increasing the film thickness front 1 to 3 atomic layers , the specific heat evolves gradually from that typical to solid to that of liquid 3 He. At about 2 atomic layers, however, its low-temperature part is nearly temperature-independent; we interpret this as a result of gradual freezing of spins in an amorphous solid 3 He film with decreasing the temperature. The contribution of liquid 3 He in the center of the Vycor pores can be described as the specific heat of bulk liquid 3 He at corresponding pressures in the range 0 to 28 bar. The thickness of amorphous solid on the pore walls increases with external pressure roughly linearly. Preplating the walls with 4 He allows to determine the positions of 3 He atoms contributing to the surface specific heat at 10 to 50 mK. In addition, the contribution from the specific heat of 3 He- 4 He mixing at 100 to 600 mK is discussed as a function of pressure and amount of 4 He

  13. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  14. Specific heat of 4He and 3He--4He mixtures at their lambda transition

    International Nuclear Information System (INIS)

    Gasparini, F.M.; Moldover, M.R.

    1975-01-01

    We have measured the specific heat near the lambda transition of pure 4 He and of five 3 He-- 4 He mixtures up to a mole fraction of 0.39 3 He in 4 He. Our data for 4 He confirm the results of Ahlers revealing an asymmetry in the exponents above and below T/sub lambda/ when the specific heat is represented by a simple-power-law temperature dependence. Our results for these exponents (α = 0.012 plus-or-minus 0.002 and α' = -0.012 plus-or-minus 0.004) differ somewhat from Ahlers's. Our results can be reconciled with the requirement of scaling (α = α') only by supposing substantial contributions to C/sub p/ are made by singular correction terms to a simple power law. The measured specific heat of the mixtures richest in 3 He appears to be finite, continuous, and cusped at the lambda line. These qualitative features have been termed ''renormalization'' by Fisher. An analysis of our mixture data with a power-law temperature dependence does not yield a fully renormalized exponent, but rather an effective exponent. Derivatives at the lambda line were used to calculate the specific heat along paths of constant pressure and constant relative chemical potential.This specific heat behaves very much like C/sub p/ of pure 4 He, this behavior supporting the idea of universality for the specific-heat exponents. It is also true that the same asymmetry in the branches above and below T/sub lambda/ which is []bserved in pure 4 He is retained in the mixtures. The persistence of the asymmetry of C/subp//sub phi/ as one moves along the lambda line towards increasing 3 He concentration (at the saturated vapor pressure of the mixtures) is analogous to the persistence of the asymmetry of C/subp/ as one moves along the lambda line towards increasing pressure in pure 4 He

  15. Specific heat jump at T/sub c/ of proximity effect sandwiches containing nonmagnetic localized states

    International Nuclear Information System (INIS)

    Maneeratankul, S.; Tang, I.M.

    1987-01-01

    The decrease in the transition temperature and the jump in the specific heat at T/sub c/ of proximity effect sandwiches containing nonmagnetic Anderson impurities in the normal layer are studied. The effects of the resonant scattering by the impurities are treated in the same manner as that used by Kaiser in his study of the effects of resonant scattering on the properties of bulk superconductors. Numerical calculations of the decrease in T/sub c/ and the jump in the specific heat at T/sub c/ as a function of the thickness of the normal layer are presented

  16. Specific heat studies of pure Nb3Sn single crystals at low temperature

    International Nuclear Information System (INIS)

    Escudero, R; Morales, F; Bernes, S

    2009-01-01

    Specific heat measurements performed on high purity vapor-grown Nb 3 Sn crystals show clear features related to both the martensitic and superconducting transitions. Our measurements indicate that the martensitic anomaly does not display hysteresis, meaning that the martensitic transition could be a weak first-order or a second-order thermodynamic transition. Careful measurements of the two transition temperatures display an inverse correlation between them. At low temperature, specific heat measurements show the existence of a single superconducting energy gap feature.

  17. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  18. Low-temperature specific heat of YMn sub 2 in the paramagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.A.; Emerson, J.P.; Phillips, N.E. (Lawrence Berkeley Lab., CA (United States)); Ballou, R.; Lelievre-Berna, E. (Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. Louis Neel)

    1992-07-01

    The low-temperature specific heat of YMn{sub 2} has been measured at applied pressures of 0 to 7.7 kbar. A paramagnetic state is stabilized for moderate values of the applied pressure (of the order of 1.6 kbar). A large linear term in the specific heat, which decreases regularly with increasing pressure, is observed in this phase. It is ascribed to giant spin fluctuations associated with a magnetic-non magnetic instability and a strong geometrical spin frustration.

  19. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    Science.gov (United States)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  20. Specific heats of lunar surface materials from 90 to 350 degrees Kelvin

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.; Wilson, W.H.

    1970-01-01

    The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.

  1. Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier

    2016-08-01

    The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. © 2015 John Wiley & Sons Ltd.

  2. Determination of the specific heat petroleum derivates; Determinacao do calor especifico de derivados ultrapesados de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros Hernandez, Julie A.; Zuniga Linan, Lamia; Jardini, Andre; Maciel, Maria Regina Wolf; Maciel Filho, Rubens Maciel [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica; Medina, Lilian Carmen [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In the development of the specific mathematical modeling for heavy and ultra heavy petroleum fractions in a molecular distiller is very important the definition of physical and chemical parameters as density and specific heat of the mixture, the enthalpy of vaporization, among others, since they are used in the energy balance. Information on these properties and their variation with temperature are found in the open literature for mixture with few components (simple mixtures). However, for multicomponent solutions consisting of complex mixtures such as oil and its heavy and ultraheavy fractions, available data are few, or are limited to low temperatures. The specific heat is an important property in the energy balance. This property can be measured by Differential Scanning Calorimetry (DSC), which gives results with great sensitivity and accuracy. This paper presents the variation of specific heat with the temperature of ultra-heavy oil fractions in the range from 80 deg to 350 deg C . Through the study of this variation, the equation nowadays used can be adjusted, in order to determine the specific heat. New values of the constants are determined, so that the equation can be used for these complex products, optimizing the estimative of Cp and so no experimental data are always necessary for simulations. (author)

  3. Specific heat measurement set-up for quench condensed thin superconducting films.

    Science.gov (United States)

    Poran, Shachaf; Molina-Ruiz, Manel; Gérardin, Anne; Frydman, Aviad; Bourgeois, Olivier

    2014-05-01

    We present a set-up designed for the measurement of specific heat of very thin or ultra-thin quench condensed superconducting films. In an ultra-high vacuum chamber, materials of interest can be thermally evaporated directly on a silicon membrane regulated in temperature from 1.4 K to 10 K. On this membrane, a heater and a thermometer are lithographically fabricated, allowing the measurement of heat capacity of the quench condensed layers. This apparatus permits the simultaneous thermal and electrical characterization of successively deposited layers in situ without exposing the deposited materials to room temperature or atmospheric conditions, both being irreversibly harmful to the samples. This system can be used to study specific heat signatures of phase transitions through the superconductor to insulator transition of quench condensed films.

  4. Comparison of air-standard rectangular cycles with different specific heat models

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2016-01-01

    Highlights: • Air-standard rectangular cycle models are built and investigated. • Finite-time thermodynamics is applied. • Different dissipation models and variable specific heats models are adopted. • Performance characteristics of different cycle models are compared. - Abstract: In this paper, performance comparison of air-standard rectangular cycles with constant specific heat (SH), linear variable SH and non-linear variable SH are conducted by using finite time thermodynamics. The power output and efficiency of each cycle model and the characteristic curves of power output versus compression ratio, efficiency versus compression ratio, as well as power output versus efficiency are obtained by taking heat transfer loss (HTL) and friction loss (FL) into account. The influences of HTL, FL and SH on cycle performance are analyzed by detailed numerical examples.

  5. Lattice specific heat and local density of states of Ni-based dilute ...

    Indian Academy of Sciences (India)

    The required perfect lattice phonons of Ni are calculated using a general 4 Th neighbour force model derived by Birge- neau et al [14], on the basis of Born Von Karman fit to the measured dispersion curves in neutron scattering experiments. A comparison of calculated and experi- mental lattice specific heat provides us an ...

  6. The analysis of the specific heat of RFe2Si2 compounds

    Czech Academy of Sciences Publication Activity Database

    Svoboda, P.; Vejpravová, J.; Honda, F.; Šantavá, E.; Schneeweiss, Oldřich; Komatsubara, T.

    2003-01-01

    Roč. 328, 1-2 (2003), s. 139-141 ISSN 0921-4526 R&D Projects: GA ČR GA106/02/0943 Institutional research plan: CEZ:AV0Z2041904 Keywords : specific heat * magnetic properties * intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.908, year: 2003

  7. Specific heat and magnetism of a UIrGe single crystal

    Czech Academy of Sciences Publication Activity Database

    Sechovský, V.; Vejpravová, J.; Andreev, Alexander V.; Honda, F.; Prokeš, K.; Šantavá, Eva

    359-361, - (2005), s. 1126-1128 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z10100520 Keywords : uranium intermetallics * antiferromagnetism * magnetic anisotropy * specific heat Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.796, year: 2005

  8. Specific heat and magnetism of LuFe.sub.6./sub.Al.sub.6./sub..

    Czech Academy of Sciences Publication Activity Database

    Svoboda, P.; Andreev, Alexander V.; Šantavá, Eva; Šebek, Josef

    2008-01-01

    Roč. 113, č. 1 (2008), s. 307-310 ISSN 0587-4246. [CSMAG'07. Košice, 09.07.2007-12.07.2007] Institutional research plan: CEZ:AV0Z10100520 Keywords : specific heat * LuFe 6 Al 6 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  9. Specific heat of FeSe: Two gaps with different anisotropy in superconducting state

    Science.gov (United States)

    Muratov, A. V.; Sadakov, A. V.; Gavrilkin, S. Yu.; Prishchepa, A. R.; Epifanova, G. S.; Chareev, D. A.; Pudalov, V. M.

    2018-05-01

    We present detailed study of specific heat of FeSe single crystals with critical temperature Tc = 8.45 K at 0.4 - 200 K in magnetic fields 0 - 9 T. Analysis of the electronic specific heat at low temperatures shows the coexistence of isotropic s-wave gap and strongly anisotropic extended s-wave gap without nodes. It was found two possibilities of superconducting gap parameters which give equally description of experimental data: (i) two gaps with approximately equal amplitudes and weight contribution to specific heat: isotropic Δ1 = 1.7 meV (2Δ1 /kBTc =4.7) and anisotropic gap with the amplitude Δ2max = 1.8 meV (2 Δ2max /kBTc =4.9 and anisotropy parameter m = 0.85); (ii) two gaps with substantially different values: isotropic large gap Δ1 = 1.65 meV (2Δ1 /kBTc = 4.52) and anisotropic small gap Δ2max = 0.75 meV (2Δ2max /kBTc = 2) with anisotropy parameter m = 0.71 . These results are confirmed by the field behavior of the residual electronic specific heat γr.

  10. Specific heat of the Ising linear chain in a Random field

    International Nuclear Information System (INIS)

    Silva, P.R.; Sa Barreto, F.C. de

    1984-01-01

    Starting from correlation identities for the Ising model the effect of a random field on the one dimension version of the model is studied. Explicit results for the magnetization, the two-particle correlation function and the specific heat are obtained for an uncorrelated distribution of the random fields. (Author) [pt

  11. Investigation of enthalpy and specific heat of the gallium-indium-tin eutectic alloy

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Migaj, L.L.; Fordeeva, L.K.; Perlova, N.L.

    1978-01-01

    Enthalpy and specific heat of the fusible (melting point is 10.6 deg C) eutectic alloy (67% Ga - 20.5% In - 12.5% Sn according to mass) are determined by the mixing method. The determination was carried out in vacuum at the residual pressure of >= 1x10 -5 torr in the temperature range from 59.3 to 437.0 deg C. It is established that temperature dependence of alloy enthalpy is described by the equation: Hsub(t) - Hsub(0degC)=1.014+0.0879t-0.0000129 t 2 , where (Hsub(t) - Hsub(0degC)) is enthalpy, cal/g; t-temperature, deg C. Mean-square dispersion is +-0.6%. Temperature dependence of alloy specific heat in the temperature range under study was determined by differentiation of the equation obtained for enthalpy: Csub(p)=0.0879-0.000026t, where Csub(p)-specific heat, cal/gx deg. It is supposed that temperature increase makes it possible to decrease slightly specific heat

  12. Low-temperature specific-heat and thermal-conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    Specific heat, C(p), and thermal conductivity, lambda, have been measured on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Results for both C(p)(T) and lambda(T) confirm that the different length-scale regions observed in the aerogel structure are reflected...

  13. Low-temperature specific heat and thermal conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Sleator, T.; Bernasconi, A.; Posselt, D.

    1991-01-01

    Specific-heat and thermal-conductivity measurements were made on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Evidence for a crossover between regimes of characteristically different excitations was observed. The data analysis indicates a "bump" in the density...

  14. Summary of some feasibility studies for site-specific solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

  15. Specific heat and magnetic susceptibility vs long range order in V3Ga

    International Nuclear Information System (INIS)

    Junod, A.; Fluekiger, R.; Treyvaud, A.; Muller, J.

    1976-01-01

    A new technique of studying the magnetic susceptibility together with the specific heat and the superconducting transition of typical A15-type compounds in different ordering states enables us to consistently isolate the spin paramagnetism. Satisfactory results are obtained for V 3 Ga and these are compared with data on V 3 Au and Nb 3 (Au-Pt). (author)

  16. Laboratory Activity: Specific Heat by Change in Internal Energy of Silly Putty

    Science.gov (United States)

    Koser, John

    2011-01-01

    Students in introductory physics courses often don't study thermodynamics or thermodynamic events. If any thermal physics is taught in introductory courses (e.g., Physics 101 for Liberal Arts Majors), it usually involves the concepts of specific heat and various temperature scales. Seldom are the first and second laws of thermodynamics taught in…

  17. Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria

    OpenAIRE

    Blanckenhorn Wolf U.; Gautier Roland; Nick Marcel; Puniamoorthy Nalini; Schäfer Martin A.

    2014-01-01

    Thermal tolerance varies at all hierarchical levels of biological organization: among species populations individuals and even within individuals. Age or developmental stage and sex specific thermal effects have received relatively little attention in the literature despite being crucial for understanding thermal adaptation in nature and responses to global warming. We document stage and sex specific heat tolerance in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae) a...

  18. Specific heat of holmium and YNi2B2C. Criticalbehaviour and superconducting properties

    International Nuclear Information System (INIS)

    Bekkali, Abdelhakim

    2010-01-01

    Object of the thesis is the study of the specific heat of holmium and YNi 2 B 2 C in the temperature ranges from 50 to 200 KI respectively from 380 mK to 20 K in magnetic fields up to 9 T. In the present thesis the criticalbehaviour of YNi 2 B 2 C and properties of the superconducting state of tne non-magnetic rare-earth nickel borocarbide YNi 2 B 2 C are studied by means of a self-developed measurement apparatur of the specific heat using the quasi-adiabatic heating-pulse method as well as of holmium by means of the relaxation method. In this thesis reliable statements about the critical exponents on monocrystalline holmium could be made. The study on holmium proves that the critical behaviour of the specific heats cannot be described in the framework of the predictions of the chiral universality classes. By means of measurements of the specific heat in this thesis could be confirmed that YNi 2 B 2 C is a multiband superconductor. The positive curvature of the boundary line below T c in the phase diagram yields a first hint to the many-band character of YNI 2 B 2 C. In the zero-field the electronic specific heat in the superconducting state c es (T) can be not explained in the framework of the pure BCS theory. At low temperatures a residual contribution by normally conducting electrons could be detected, which hints to a not completely opened energy gap. A possible explanation would be that a band (or several bands) with low charge-carrier concentration not contribute to the superconductivity. This result agrees with de Haas-van Alphen measurements on isostructural superconducting LuNi 2 B 2 C monocrystals, which suggest the many-band character of the superconductivity as well as a vanishing energy gap in one band. The fluctuation behaviour of the specific heat of YNi 2 B 2 C in the neighbourhood of the superconducting-normally conducting transition agrees well with that of the 3D-XY model. [de

  19. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  20. Changes in cause-specific mortality during heat waves in central Spain, 1975-2008

    Science.gov (United States)

    Miron, Isidro Juan; Linares, Cristina; Montero, Juan Carlos; Criado-Alvarez, Juan Jose; Díaz, Julio

    2015-09-01

    The relationship between heat waves and mortality has been widely described, but there are few studies using long daily data on specific-cause mortality. This study is undertaken in central Spain and analysing natural causes, circulatory and respiratory causes of mortality from 1975 to 2008. Time-series analysis was performed using ARIMA models, including data on specific-cause mortality and maximum and mean daily temperature and mean daily air pressure. The length of heat waves and their chronological number were analysed. Data were stratified in three decadal stages: 1975-1985, 1986-1996 and 1997-2008. Heat-related mortality was triggered by a threshold temperature of 37 °C. For each degree that the daily maximum temperature exceeded 37 °C, the percentage increase in mortality due to circulatory causes was 19.3 % (17.3-21.3) in 1975-1985, 30.3 % (28.3-32.3) in 1986-1996 and 7.3 % (6.2-8.4) in 1997-2008. The increase in respiratory cause ranged from 12.4 % (7.8-17.0) in the first period, to 16.3 % (14.1-18.4) in the second and 13.7 % (11.5-15.9) in the last. Each day of heat-wave duration explained 5.3 % (2.6-8.0) increase in respiratory mortality in the first period and 2.3 % (1.6-3.0) in the last. Decadal scale differences exist for specific-causes mortality induced by extreme heat. The impact on heat-related mortality by natural and circulatory causes increases between the first and the second period and falls significantly in the last. For respiratory causes, the increase is no reduced in the last period. These results are of particular importance for the estimation of future impacts of climate change on health.

  1. Pseudogap and the specific heat of high Tc superconductors: a Hubbard model in a n-pole approximation

    International Nuclear Information System (INIS)

    Calegari, E J; Lausmann, A C; Magalhaes, S G; Chaves, C M; Troper, A

    2015-01-01

    In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-T c superconductors (HTSC), is studied taking into account hopping to first (t) and second (t 2 ) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (n T ) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation

  2. Pseudogap and the specific heat of high Tc superconductors: a Hubbard model in a n-pole approximation

    Science.gov (United States)

    Calegari, E. J.; Lausmann, A. C.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.

    2015-03-01

    In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-Tc superconductors (HTSC), is studied taking into account hopping to first (t) and second (t2) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (nT) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation.

  3. Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data

    Science.gov (United States)

    Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.

    2006-01-01

    Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.

  4. Anomalous gauge theories revisited

    International Nuclear Information System (INIS)

    Matsui, Kosuke; Suzuki, Hiroshi

    2005-01-01

    A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)

  5. Specific heat capacities of different clayey samples obtained by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2012-01-01

    Document available in extended abstract form only. The thermo-physical properties allow to calculate heat flows and to determine the thermal behaviour of the materials. Temperature influences the rates of the physical, chemical and biological reactions and processes in the soil or a material. Variations in temperature and water content in thermal, hydraulic, mechanical and geochemical processes affect the thermal properties such as density, specific heat, thermal conductivity and thermal diffusivity. Therefore, mathematical models that describe the dependence of the thermal properties on temperature and concentration are of interest to be used in computational programs applied to the modelling of coupled thermo-mechanical-hydraulic and chemical (THMC) processes. In this work, the specific heat capacity of different clayey international reference materials was determined. Differential Scanning Calorimetry (DSC) was used for such purpose. DSC is the main tool for determining the specific heat capacities of materials as a function of temperature. The specific heat capacity, c p (J/Kg.K), is a measurement of the amount of heat required to raise the temperature of a unit mass of a substance by one unit of temperature. A change in temperature, caused by a gain or a loss of heat from a material, depends on the specific heat capacity of the material. Thus, the specific heat capacity is a key and characteristic property of a material and/or substance, which should be determine accurately. The specific heat capacity is an intensive property and, unlike the thermal conductivity and thermal diffusivity, is independent of the dry density of the material. C p of the solid samples was determined by using a SETSYS Evolution 16 thermal analyser coupled to a differential scanning calorimeter (TG-DSC-DTA) from SETARAM Instrumentation. The thermal analyser system can use a heating rate from 0.01 to 100 C/min under a dynamic argon atmosphere and temperatures ranging from ambient to

  6. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    International Nuclear Information System (INIS)

    Arakcheev, A.S.; Skovorodin, D.I.; Burdakov, A.V.; Shoshin, A.A.; Polosatkin, S.V.; Vasilyev, A.A.; Postupaev, V.V.; Vyacheslavov, L.N.; Kasatov, A.A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-01-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle–ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating–cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  7. Temperature and air-fuel ratio dependent specific heat ratio functions for lean burned and unburned mixture

    International Nuclear Information System (INIS)

    Ceviz, M.A.; Kaymaz, I.

    2005-01-01

    The most important thermodynamic property used in heat release calculations for engines is the specific heat ratio. The functions proposed in the literature for the specific heat ratio are temperature dependent and apply at or near stoichiometric air-fuel ratios. However, the specific heat ratio is also influenced by the gas composition in the engine cylinder and especially becomes important for lean combustion engines. In this study, temperature and air-fuel ratio dependent specific heat ratio functions were derived to minimize the error by using an equilibrium combustion model for burned and unburned mixtures separately. After the error analysis between the equilibrium combustion model and the derived functions is presented, the results of the global specific heat ratio function, as varying with mass fraction burned, were compared with the proposed functions in the literature. The results of the study showed that the derived functions are more feasible at lean operating conditions of a spark ignition engine

  8. Optimizing the District Heating Primary Network from the Perspective of Economic-Specific Pressure Loss

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2017-07-01

    Full Text Available A district heating (DH system is one of the most important components of infrastructures in cold areas. Proper DH network design should balance the initial investment and the heat distribution cost of the DH network. Currently, this design is often based on a recommended value for specific pressure loss (R = ∆P/L in the main lines. This will result in a feasible network design, but probably not be optimal in most cases. The paper develops a novel optimization model to facilitate the design by considering the initial investment in the pipes and the heat distribution costs. The model will generate all possible network scenarios consisting of different series of diameters for each pipe in the flow direction of the network. Then, the annuity on the initial investment, the heat distribution cost, and the total annual cost will be calculated for each network scenario, taking into account the uncertainties of the material prices and the yearly operating time levels. The model is applied to a sample DH network and the results indicate that the model works quite well, clearly identifying the optimal network design and demonstrating that the heat distribution cost is more important than the initial investment in DH network design.

  9. Theoretical approach to the phonon modes and specific heat of germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Trejo, A.; López-Palacios, L.; Vázquez-Medina, R.; Cruz-Irisson, M., E-mail: irisson@ipn.mx

    2014-11-15

    The phonon modes and specific heat of Ge nanowires were computed using a first principles density functional theory scheme with a generalized gradient approximation and finite-displacement supercell algorithms. The nanowires were modeled in three different directions: [001], [111], and [110], using the supercell technique. All surface dangling bonds were saturated with Hydrogen atoms. The results show that the specific heat of the GeNWs at room temperature increases as the nanowire diameter decreases, regardless the orientation due to the phonon confinement and surface passivation. Also the phonon confinement effects could be observed since the highest optical phonon modes in the Ge vibration interval shifted to a lower frequency compared to their bulk counterparts.

  10. The effect of Ca doping on specific heat of YCoO{sub 3} cobaltate

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Rasna, E-mail: rasnathakur@yahoo.com; Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Gaur, N. K., E-mail: srl-nkgaur@yahoo.co.in [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-06

    We have investigated the thermodynamic properties of Y{sub 1-x}Ca{sub x}CoO{sub 3} (0.0≤x≤0.1) perovskites by means of a modified rigid ion model (MRIM). The variations of specific heat at wide temperatures 1 K ≤ T ≤ 1000 K are reported. Also, the effect of lattice distortions on the elastic and thermal properties of pure and Ca doped cobaltates has been studied by an atomistic approach. Besides, we have reported bulk modulus (B), cohesive energy (ϕ), molecular force constant (f), Reststrahlen frequency (υ), Debye temperature (θ{sub D}), Gruneisen parameter (γ) and specific heat (C). It is found that the present model has a promise to predict the thermodynamic properties of other perovskites as well.

  11. Specific-heat measurements in superconducting indium-thallium alloys and the pseudopotential form factor

    International Nuclear Information System (INIS)

    Munukutla, L.V.; Cappelletti, R.L.

    1980-01-01

    Normal-state specific heats between 1 and 4.4 K and superconducting transition temperatures of pure indium and In-Tl alloys have been measured. Excellent agreement with previous results was found. N/sub bs/(0) was extracted using our γ values and Dynes's lambda values and shows a large variation. The measured variation of lambda 2 > was also obtained from Dynes's results and found to be nearly linear in spite of the large variation of N/sub bs/(0). This is shown to be a consequence of the fact that the ratio of the calculated average screened pseudopotential form factor to electron density of states, 2 /sub s/>/N/sub bs/(0), is nearly constant across the alloy series for each element. No anomaly was found in the specific heat of In/sub 0.69/Tl/sub 0.31/ at the expected martensitic transition temperature

  12. Specific-heat measurements on dilute 3He-4He mixtures

    International Nuclear Information System (INIS)

    Zeeuw, H.C.M. van der.

    1985-01-01

    The author measured the specific heat of dilute 3 He- 4 He mixtures in the concentration range from X = 1 x 10 -3 to X = 3 x 10 -3 and in the temperature range from 100 mK to 600 mK. This has been done by means of a thermal relaxation method. This method provides some interesting features and is applied, to our knowledge, for the first time to dilute 3 He- 4 He mixtures. To reach the required temperature range for our experiments a 4 He circulating 3 He- 4 He dilution refrigerator has been constructed. The results confirm the deviation of the 3 He contribution to the specific heat from the ideal Fermi gas behaviour. (Auth.)

  13. Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid

    DEFF Research Database (Denmark)

    Roed, Lisa Anita; Niss, Kristine; Jakobsen, Bo

    2015-01-01

    The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat...... is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure. This observation is non-trivial and demonstrates the existence of specially simple molecular...... liquids in which different physical relaxation processes are both as function of temperature and pressure/density governed by the same underlying “inner clock.” Furthermore, the results are discussed in terms of the recent conjecture that van der Waals liquids, like the measuredliquid, comply...

  14. Specific heat of ceramic and single crystal MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Junod, A.; Wang, Y.; Bouquet, F.; Sheikin, I.; Toulemonde, P.; Eskildsen, M.R.; Eisterer, M.; Weber, H.W.; Lee, S.; Tajima, S

    2003-05-15

    The two-gap structure of MgB{sub 2} gives rise to unusual thermodynamic properties which depart markedly from the single-gap BCS model, both in their temperature- and field-dependence. We report measurements of the specific heat up to 16 T on ceramic and single crystal samples, which demonstrate these effects in bulk. The low-temperature mixed-state specific heat reveals a field-dependent anisotropy, and points to the existence of unusually large vortices, in agreement with local density-of-states measurements by scanning tunneling spectroscopy. It is finally shown that a suitable irradiation process nearly doubles H{sub c2} in the bulk.

  15. The DNA electronic specific heat at low temperature: The role of aperiodicity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Mendes, G.A. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Vasconcelos, M.S. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Ujsághy, O. [Department of Theoretical Physics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budafoki út 8, H-1521 Budapest (Hungary); Freire, V.N. [Departamento de Física, Universidade Federal do Ceará, 60455-760, Fortaleza, CE (Brazil); Caetano, E.W.S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531, Fortaleza, CE (Brazil)

    2012-07-16

    The electronic specific heat spectra at constant volume (C{sub V}) of a long-range correlated extended ladder model, mimicking a DNA molecule, is theoretically analyzed for a stacked array of a double-stranded structure made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. The role of the aperiodicity on C{sub V} is discussed, considering two different nucleotide arrangements with increasing disorder, namely the Fibonacci and the Rudin–Shapiro quasiperiodic structures. Comparisons are made for different values of the band fillings, considering also a finite segment of natural DNA, as part of the human chromosome Ch22. -- Highlights: ► Quasiperiodic sequence to mimic the DNA nucleotides arrangement. ► Electronic tight-binding Hamiltonian model. ► Electronic density of states. ► Electronic specific heat spectra.

  16. Low temperature specific heat of the spin-density-wave compound (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Odin, J.; Lasjaunias, J.C.; Biljakovic, K.

    1994-01-01

    We report on specific heat measurements of the SDW compound (TMTSF)2PF6 between 2 and 25 K, performed by two different techniques. We discuss the two successive transitions which occur in this T-range : the SDW ordering transition at T = 12.1 K, and a glass transition around-3-3.5 K. The latter i...... is very dependent on the kinetics of measurements, and has all characteristic features of freezing of supercooled liquids....

  17. Susceptibility and specific heat of the Heisenberg antiferromagnet on the Kagome lattice

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Canals, B.; Lacroix, C.

    2001-01-01

    The dynamic susceptibility of the S=((1)/(2)) Heisenberg antiferromagnet is calculated on the Kagome lattice by means of a Green's function decoupling scheme. The spin-spin correlation functions decrease exponentially with distance. The specific heat exhibits a single-peak structure with a T 2 dependence at low temperature and the correct high-temperature behaviour. The calculated total change in entropy indicates a ground-state entropy of 0.46 ln 2

  18. Specific heat of rare earth cobaltates RCoO{sub 3} (R = La, Pr and Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Rasna, E-mail: rasnathakur@yahoo.com [Department of Physics, Barkatullah University, Bhopal 462026 (India); Srivastava, Archana [Department of Physics, Sri Sathya Sai College for Women, Bhopal 462024 (India); Thakur, Rajesh K.; Gaur, N.K. [Department of Physics, Barkatullah University, Bhopal 462026 (India)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer We have reported the temperature dependence (5 K {<=} T {<=} 1000 K) of the lattice contribution to the specific heat of rhombohedral LaCoO{sub 3} and orthocobaltates RCoO{sub 3} (R = Pr and Nd). Black-Right-Pointing-Pointer The strong electron phonon interactions are present in these compounds and lattice distortions can affect them substantially. Black-Right-Pointing-Pointer Thus Rigid Ion Model (RIM) is used for the first time to study the cohesive and thermal properties of the cobaltates RCoO{sub 3} with rare earth cation (R = La, Pr and Nd). Black-Right-Pointing-Pointer The values of specific heat calculated by us have shown remarkably good agreement with corresponding experimental data. Black-Right-Pointing-Pointer In addition, the results on the temperature dependence of cohesive energy ({phi}), molecular force constant (f), Reststrahlen frequency ({upsilon}), Debye temperature ({theta}{sub D}) and Gruneisen parameter ({gamma}) are also reported. - Abstract: We have reported the temperature dependence (5 K {<=} T {<=} 1000 K) of the lattice contribution to the specific heat of rhombohedral LaCoO{sub 3} and orthocobaltates RCoO{sub 3} (R = Pr and Nd). The strong electron phonon interactions are present in these compounds and lattice distortions can affect them substantially. Thus Rigid Ion Model (RIM) is used for the first time to study the cohesive and thermal properties of the cobaltates RCoO{sub 3} with rare earth cation (R = La, Pr and Nd). The values of specific heat calculated by us have shown remarkably good agreement with corresponding experimental data. In addition, the results on the temperature dependence of cohesive energy ({phi}), molecular force constant (f), Reststrahlen frequency ({upsilon}), Debye temperature ({theta}{sub D}) and Gruneisen parameter ({gamma}) are also reported.

  19. Magnetic ordering and specific heat analysis of TmPtSn

    Czech Academy of Sciences Publication Activity Database

    Vejpravová, J.; Svoboda, P.; Šebek, Josef; Janeček, M.; Komatsubara, T.

    2003-01-01

    Roč. 328, - (2003), s. 142-144 ISSN 0921-4526 R&D Projects: GA ČR GA106/02/0943 Grant - others:GA UK(CZ) 165/01; VACUUM PRAHA(CZ) 2002 Keywords : rare-earth intermetallic compounds * magnetic ordering * specific heat Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.908, year: 2003

  20. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements

    International Nuclear Information System (INIS)

    Michel, J.

    1969-01-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [fr

  1. Renormalisation-group specific heat of the square lattice Potts ferromagnet

    International Nuclear Information System (INIS)

    Martin, H.O.; Tsallis, C.

    1982-01-01

    The free and internal energies and specific heat of the q-state Potts ferromagnet are discussed. A real space renormalisation group approach is presented which recovers a considerable amount of exact particular results for all dimensionalities (hypercubic lattices). The square lattice case is calculated in detail by using self-dual clusters (which provide the exact critical point for all q). Comparison with Onsager results (q=2) is satisfactory; the general tendencies for q different 2 (1 [pt

  2. The low temperature specific heat of Lu-Cu-Y metallic glasses

    International Nuclear Information System (INIS)

    Mohammed, K.A.; Lanchester, P.C.

    1987-01-01

    The specific heat of a series of amorphous metallic alloys of the form Lu x Cu 0.37 Y 0.36 (x=0, 0.1, 0.3 and 0.4) has been measured between 2 and 50 K, primarily in order to be able to determine the non-magnetic contributions to the specific heat in magnetic Re-Cu-Y amorphous alloys. The data at low temperature fit the simple form C p =γT+βT 3 from which values of γ and θ D (0) have been determined. Consideration is given to the error that arises if Y is used rather than Lu or La in forming non-magnetic rare earth intermetallics for purposes of determining the non-magnetic contributions to the specific heat of magnetic samples. A simple procedure is described that allows a useful improvement in accuracy in estimating non-magnetic contributions below 20 K if Y is used. The method may also be useful if only a restricted range of compositions using Lu is possible. (orig.)

  3. Low temperature specific heat of Lu-Cu-Y metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, K.A.; Lanchester, P.C.

    1987-02-01

    The specific heat of a series of amorphous metallic alloys of the form Lu/sub x/Cu/sub 0.37/Y/sub 0.36/ (x=0, 0.1, 0.3 and 0.4) has been measured between 2 and 50 K, primarily in order to be able to determine the non-magnetic contributions to the specific heat in magnetic Re-Cu-Y amorphous alloys. The data at low temperature fit the simple form C/sub p/=..gamma..T+..beta..T/sup 3/ from which values of ..gamma.. and theta/sub D/(0) have been determined. Consideration is given to the error that arises if Y is used rather than Lu or La in forming non-magnetic rare earth intermetallics for purposes of determining the non-magnetic contributions to the specific heat of magnetic samples. A simple procedure is described that allows a useful improvement in accuracy in estimating non-magnetic contributions below 20 K if Y is used. The method may also be useful if only a restricted range of compositions using Lu is possible.

  4. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  5. q-deformed Einstein's model to describe specific heat of solid

    Science.gov (United States)

    Guha, Atanu; Das, Prasanta Kumar

    2018-04-01

    Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.

  6. Specific heat of heavy-fermion CePd2Si2 in high magnetic fields

    International Nuclear Information System (INIS)

    Sheikin, I.; Wang, Y.; Bouquet, F.; Junod, A.; Lejay, P.

    2002-01-01

    We report specific heat measurements on the heavy-fermion compound CePd 2 Si 2 in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T N ∼ 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T N is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T N , an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, γ 0 , extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T N and the magnetic entropy at T N scale as [1-(B/B 0 ) 2 ] for B parallel a, suggesting the disappearance of antiferromagnetism at B 0 ∼42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor

  7. Technical specification improvements to containment heat removal and emergency core cooling systems: Final report

    International Nuclear Information System (INIS)

    Sullivan, W.P.; Ha, C.; Pentzien, D.C.; Visweswaran, S.

    1988-07-01

    This report presents the results of an analysis for technical specification improvements to the emergency core cooling systems (ECCS) and containment heat removal systems (EPRI Research Project 2142-3). The objective of this project is to further develop a reliability- and risk-based methodology to provide improvements by considering groups of surveillance test intervals and allowed out-of-service times jointly. This was done for the technical specifications for the ECCS, containment heat removal equipment, and supporting systems of a boiling water reactor plant. The project (1) developed a methodology for optimizing groups of surveillance test intervals and allowed out-of-service times jointly, (2) applied the methodology in a case study of a specific operating plant, Hatch-2, and (3) evaluated benefits of the application. The results of the case study demonstrate that beneficial technical specification improvements can be realized with application of the methodology. By tightening a small group of sensitive surveillance test intervals (STIs) and allowed out-of-service times (AOTs), a larger group of less sensitive STIs and AOTs can be extended resulting in an overall plant operating cost improvement without reducing the plant safety. The reliability- and risk-based methodology and results from this project can be effectively applied for technical specification improvements at other operating plants

  8. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J Enrique

    2014-01-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable. 65.: Thermal properties of condensed matter; 65.20.-w: Thermal properties of liquids; 65.20.Jk: Studies of thermodynamic properties of specific liquids.

  9. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  10. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  11. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Science.gov (United States)

    Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  12. The real gas dynamics of the fluids of high specific heat

    International Nuclear Information System (INIS)

    Meier, G.E.A.

    1987-01-01

    The gas dynamics of real fluids show several new effects beyond the gas dynamics of ideal substances. Many of these effects rely on phase changes in the flow fields and can be explained with the help of more complicated thermal and caloric state equations of the real fluids. Complete adiabatic liquefaction and evaporation are possible for those substances whose specific heat exceeds a limit of about twenty gas constants. These fluids consisting of great molecules have so much internal energy storage capacity in their numerous vibrational degrees of freedom that the heat of evaporation can be supplied or also stored in the case of condensation. So liquefaction shock waves, which transform a gas completely or partly into a liquid, are possible. The shock front becomes thereby the surface of a liquid. Partial liquefaction with droplet condensation occurs in weaker shock waves. On the other hand a superheated liquid with high specific heat can be changed into a gas or mixture state in expansion waves or flows. (orig.)

  13. The specific heat of Cu-Al-Ni shape memory alloys

    International Nuclear Information System (INIS)

    Ruiz-Larrea, I.; Lopez-Echarri, A.; Bocanegra, E.H.; No, M.L.; San Juan, J.M.

    2006-01-01

    The specific heat of Cu 81.8 Al 13.7 Ni 4.5 (AK10) shape memory alloy has been studied by means of conventional DSC and adiabatic calorimetry techniques. The transformation temperatures and the shape of the calorimetric curves obtained by adiabatic calorimetry do not show any noticeable dependence on the temperature measurement rates, contrarily to what is observed by other calorimetric techniques. The dynamical character of the various experimental methods together with the influence of the latent heat associated to the first order character of these phase transitions are discussed. The specific heat of AK10 has been measured from 50 to 350 K which covers the phase transformation temperature range. The forward and reverse martensitic transformation peaks were found at 299.5 and 304.6 K, showing a thermal hysteresis of 5.1 deg. C. The C p accuracy can be estimated in 0.1% of C p and permits a reliable assignment of the following values to the phase transition thermodynamic functions: ΔH = 7.4 ± 0.2 J/g and ΔS = 0.025 ± 0.001 J/gK

  14. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    Science.gov (United States)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  15. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  16. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  17. Specific heat and magnetization of a ZrB12 single crystal: characterization of a type II/1 superconductor

    OpenAIRE

    Wang, Yuxing; Lortz, Rolf; Paderno, Yuriy; Filippov, Vladimir; Abe, Satoko; Tutsch, Ulrich; Junod, Alain

    2005-01-01

    We measured the specific heat, the magnetization, and the magnetoresistance of a single crystal of ZrB12, which is superconducting below Tc ~ 6 K. The specific heat in zero field shows a BCS-type superconducting transition. The normal- to superconducting-state transition changes from first order (with a latent heat) to second order (without latent heat) with increasing magnetic field, indicating that the pure compound is a low-kappa, type-II/1 superconductor in the classification of Auer and ...

  18. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  19. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  20. Anomalous vacuum expectation values

    International Nuclear Information System (INIS)

    Suzuki, H.

    1986-01-01

    The anomalous vacuum expectation value is defined as the expectation value of a quantity that vanishes by means of the field equations. Although this value is expected to vanish in quantum systems, regularization in general produces a finite value of this quantity. Calculation of this anomalous vacuum expectation value can be carried out in the general framework of field theory. The result is derived by subtraction of divergences and by zeta-function regularization. Various anomalies are included in these anomalous vacuum expectation values. This method is useful for deriving not only the conformal, chiral, and gravitational anomalies but also the supercurrent anomaly. The supercurrent anomaly is obtained in the case of N = 1 supersymmetric Yang-Mills theory in four, six, and ten dimensions. The original form of the energy-momentum tensor and the supercurrent have anomalies in their conservation laws. But the modification of these quantities to be equivalent to the original one on-shell causes no anomaly in their conservation laws and gives rise to anomalous traces

  1. Temperature dependent anomalous statistics

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.

    1991-07-01

    We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs

  2. Physical Properties and Specific Heat Capacity of Tamarind (Tamarindus indica Seed

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-04-01

    Full Text Available This study investigated the effect of moisture content on physical properties and specific heat capacity of Tamarindus indica seed. Physical properties investigated were axial dimensions, one thousand seed weight, bulk and true densities, porosity, roundness and sphericity, surface area, angle of repose and static coefficient of friction. The thermal property determined was the specific heat. These properties of Tamarindus indica seed were investigated within the moisture content range of 7.55 - 10.47% (d.b. The length, width and thickness increased from 9.979 to 10.634mm, 8.909 to 10.089mm and 5.039 to 5.658mm, respectively in the above moisture range. One thousand seed weight, surface area, seed volume, true density and porosity, increased from 388.4 to 394.8g, 86.916 to 87.58cm2, 0.353 to 0.366cm3, 1217.5 to 1287.00kg/m3 and 28.22 to 33.87%, respectively, as moisture content increased in the above range, while bulk density decreased from 873.9 to 851.4kg/m3. Roundness and sphericity, and angle of repose also increased from 41 to 42.4% and 73.7 to 76.3% and 36.1 to 38.93o, respectively. Specific heat capacity values increased linearly from 589.00J/kgK to 638.61 J/kgK in the above moisture range.

  3. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Carrico, A.S.; Albuquerque, E.L.

    1980-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. We consider only the low-temperature limit case since, provided K B 1/h is very samll, we can replace the dispersion relation for the three acoustic branches by its long-wavelenghts form. The contributions of surface elastic waves ot the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (author) [pt

  4. Pressure dependence of the specific heat of heavy-fermion YbCu4.5

    International Nuclear Information System (INIS)

    Amato, A.; Fisher, R.A.; Phillips, N.E.; Jaccard, D.; Walker, E.

    1990-03-01

    The specific heat of a polycrystalline sample of YbCu 4.5 has been measured between 0.3 and 20K at pressures to 8.2 kbar. Unlike cerium-based heavy-fermion compounds, an increase of C/T is observed with increasing pressure, with the linear term enhanced by about 16% at 8.2 kbar. Above 7K, (∂C/∂P) T is negative. The nuclear contribution observed at P = 0 is increased by roughly a factor of two at 8.2 kbar. 7 refs., 3 figs

  5. Analysis of the phonon surface specific heat using Green function techniques

    International Nuclear Information System (INIS)

    Silva Carrico, A. da; Albuquerque, E.L. de

    1981-01-01

    Green functions are derived for the displacement associated with acoustic vibrations in isotropic elastic media and used to evaluate the surface specific heat in the harmonic approximation. Only the low-temperature limit case is considered since, provided K sub(B) T/h is very small, the dispersion relation for the three acoustic branches can be replaced by its long-wavelenght form. The contributions of surface elastic waves of the Rayleigh and Love types are pointed out and their features discussed. The nature of the result and their relations to previous work in this field is also presented and discussed. (Author) [pt

  6. Specific heat of Ginzburg-Landau fields in the n-1 expansion

    International Nuclear Information System (INIS)

    Bray, A.J.

    1975-01-01

    The n -1 expansion for the specific heat C/subv/ of the n-component Ginzburg-Landau model is discussed in terms of an n -1 expansion for the irreducible polarization. In the low-temperature limit, each successive term of the latter expansion diverges more strongly than the last, invalidating a truncation of this series at any finite order in 1/n. The most divergent terms in each order are identified and summed. The results provide justification for the usual truncated expansions for C/subv/

  7. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior of...... SiO2 are most likely not due to fractal behavior....... the possibility of two spectral dimensions characterizing the fracton modes. Our data imply important differences between the physical mechanisms dominating the low-temperature behavior of aerogels and dense glasses, respectively. From our analysis we also conclude that the low-temperature properties of amorphous...

  8. Effects of phonon dimensionality in the specific heat of multiwall carbon nanotubes at low temperatures

    International Nuclear Information System (INIS)

    Jorge, Guillermo A; Bekeris, V; Acha, C; Escobar, M M; Goyanes, S; Zilli, D; Cukierman, A L; Candal, R J

    2009-01-01

    We have measured the specific heat at constant pressure, C p , of three different samples of multiwall carbon nanotubes (MWNT). For all samples, C p departs from a graphitic behavior at T p measurements show a temperature threshold from a linear regime for intermediate temperature to a higher-order power law for low temperatures. Moreover, it was found that this crossover only depends on the internal structure of the individual MWNT and not on the spatial order of the MWNT within a bundle.

  9. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  10. Study of vibrational modes and specific heat of wurtzite phase of BN

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daljit, E-mail: daljit.jt@gmail.com; Sinha, M. M. [Department of Physics, SLIET, Longowal (India)

    2016-05-06

    In these days of nanotechnology the materials like BN is of utmost importance as in hexagonal phase it is among hardest materials. The phonon mode study of the materials is most important factor to find structural and thermodynamcal properties. To study the phonons de launey angular force (DAF) constant model is best suited as it involves many particle interactions. Therefore in this presentation we have studied the lattice dynamical properties and specific heat of BN in wurtzite phase using DAF model. The obtained results are in excellent agreement with existing results.

  11. Study of vibrational modes and specific heat of wurtzite phase of BN

    International Nuclear Information System (INIS)

    Singh, Daljit; Sinha, M. M.

    2016-01-01

    In these days of nanotechnology the materials like BN is of utmost importance as in hexagonal phase it is among hardest materials. The phonon mode study of the materials is most important factor to find structural and thermodynamcal properties. To study the phonons de launey angular force (DAF) constant model is best suited as it involves many particle interactions. Therefore in this presentation we have studied the lattice dynamical properties and specific heat of BN in wurtzite phase using DAF model. The obtained results are in excellent agreement with existing results.

  12. Crystal-field and clustering effects in the specific heat of Dy in Pd

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Jacques, P.; Poirier, M.

    1975-01-01

    Recent results of specific-heat measurements on dilute alloys of Dy in Pd are reanalyzed. Assuming the ionic ground state found from paramagnetic-resonance measurements, the Schottky-anomaly and cluster contributions are segregated and the crystal-field splitting of the ground and first-excited states is found to be in reasonable agreement with theoretical predictions. The nature of the cluster contribution is discussed and an upper limit to the range of the Ruderman-Kittel-Kasuya-Yosida interaction deduced

  13. Effects of phonon dimensionality in the specific heat of multiwall carbon nanotubes at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Guillermo A; Bekeris, V; Acha, C [Laboratorio de Bajas Temperaturas, Departamento de Fisica, FCEyN-UBA, Pab. 1, Ciudad Universitaria (1428), Buenos Aires (Argentina); Escobar, M M; Goyanes, S [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, FCEyN-UBA, Pab. 1, Ciudad Universitaria (1428), Buenos Aires (Argentina); Zilli, D; Cukierman, A L [PINMATE, Departamento de Industrias, FCEyN-UBA, Pab. Industrias, Ciudad Universitaria (1428), Buenos Aires (Argentina); Candal, R J, E-mail: gjorge@df.uba.a [Instituto de Fisicoquimica de Materiales, Ambiente y EnergIa, CONICET-UBA, Ciudad Universitaria (1428) Buenos Aires (Argentina)

    2009-05-01

    We have measured the specific heat at constant pressure, C{sub p}, of three different samples of multiwall carbon nanotubes (MWNT). For all samples, C{sub p} departs from a graphitic behavior at T < 120 K. C{sub p} measurements show a temperature threshold from a linear regime for intermediate temperature to a higher-order power law for low temperatures. Moreover, it was found that this crossover only depends on the internal structure of the individual MWNT and not on the spatial order of the MWNT within a bundle.

  14. Anomalous field dependence of the Sommerfeld coefficient in the isotropic (K,Ba)BiO{sub 3} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, T.; Marcenat, C.; Bouquet, F.; Junod, A.; Blanchard, S.; Marcus, J

    2004-08-01

    We report on specific heat measurements in high quality (K,Ba)BiO{sub 3} single crystals (T{sub c}{approx}31.5 K). A well defined specific heat jump is clearly visible at T{sub C{sub p(H)}} in the entire investigated field range (up to 13 T). However, the corresponding T{sub C{sub p(H)}} exhibits an anomalous positive curvature and the amplitude of the jump rapidly decreases with field suggesting a non-linear increase of the Sommerfeld coefficient ({gamma}(H)). This anomalous behaviour is confirmed by low temperature measurements which show that {gamma}(H){proportional_to}H{sup {alpha}} with {alpha}{approx}0.65.

  15. Effects of heat loss as percentage of fuel's energy, friction and variable specific heats of working fluid on performance of air standard Otto cycle

    International Nuclear Information System (INIS)

    Lin, J.-C.; Hou, S.-S.

    2008-01-01

    The objective of this study is to analyze the effects of heat loss characterized by a percentage of the fuel's energy, friction and variable specific heats of working fluid on the performance of an air standard Otto cycle with a restriction of maximum cycle temperature. A more realistic and precise relationship between the fuel's chemical energy and the heat leakage that is based on a pair of inequalities is derived through the resulting temperature. The variations in power output and thermal efficiency with compression ratio, and the relations between the power output and the thermal efficiency of the cycle are presented. The results show that the power output as well as the efficiency where maximum power output occurs will increase with increase of the maximum cycle temperature. The temperature dependent specific heats of the working fluid have a significant influence on the performance. The power output and the working range of the cycle increase with the increase of specific heats of the working fluid, while the efficiency decreases with the increase of specific heats of the working fluid. The friction loss has a negative effect on the performance. Therefore, the power output and efficiency of the cycle decrease with increasing friction loss. It is noteworthy that the effects of heat loss characterized by a percentage of the fuel's energy, friction and variable specific heats of the working fluid on the performance of an Otto cycle engine are significant and should be considered in practical cycle analysis. The results obtained in the present study are of importance to provide good guidance for performance evaluation and improvement of practical Otto engines

  16. On calculation of difference in specific heats at constant pressure and constant volume using an empiric Nernst-Lindeman equation

    International Nuclear Information System (INIS)

    Leont'ev, K.L.

    1981-01-01

    Known theoretical and empirical formulae are considered for the difference in specific heats at constant pressure and volume. On the basis of the Grunaiser law on the ratio of specific heat to thermal expansion and on the basis of the correlation proposed by the author, between this ratio and average velocity of elastic waves obtained in a new expression for the difference in specific heats and determined are conditions at which empiric Nernst-Lindeman equation can be considered to be strict. Results of calculations for metals with fcc lattice are presented

  17. Examination of anomalous self-experience

    DEFF Research Database (Denmark)

    Raballo, Andrea; Parnas, Josef

    2012-01-01

    . Here, we present the initial normative data and psychometric properties of a newly developed instrument (Examination of Anomalous Self-experience [EASE]), specifically designed to support the psychopathological exploration of SDs in both research and "real world" clinical settings. Our results support...

  18. Neutron diffraction, specific heat and magnetic susceptibility of Ni3(PO4)2

    International Nuclear Information System (INIS)

    Escobal, J.; Pizarro, J.L.; Mesa, J.L.; Rojo, J.M.; Bazan, B.; Arriortua, M.I.; Rojo, T.

    2005-01-01

    The Ni 3 (PO 4 ) 2 phosphate was synthesized by the ceramic method in air atmosphere. The crystal structure consists of a three-dimensional skeleton constructed from Ni 3 O 14 edge-sharing octahedra, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior was studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at approximately 17.1 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements of Ni 3 (PO 4 ) 2 exhibit a three-dimensional magnetic ordering (λ-type) peak at 17.1 K. Measurements above T N suggest the presence of a small short-range order in this phase. The total magnetic entropy was found to be 28.1 KJ/mol at 50 K. The magnetic structure of the nickel(II) phosphate exhibits ferromagnetic interactions inside the Ni 3 O 14 trimers which are antiferromagnetically coupled between them, giving rise to a purely antiferromagnetic structure

  19. Magnetic susceptibility, specific heat and magnetic structure of CuNi2(PO4)2

    International Nuclear Information System (INIS)

    Escobal, Jaione; Pizarro, Jose L.; Mesa, Jose L.; Larranaga, Aitor; Fernandez, Jesus Rodriguez; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    The CuNi 2 (PO 4 ) 2 phosphate has been synthesized by the ceramic method at 800 deg. C in air. The crystal structure consists of a three-dimensional skeleton constructed from MO 4 (M II =Cu and Ni) planar squares and M 2 O 8 dimers with square pyramidal geometry, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior has been studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The bimetallic copper(II)-nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at, approximately, 29.8 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements exhibit a three-dimensional magnetic ordering (λ-type) peak at 29.5 K. The magnetic structure of this phosphate shows ferromagnetic interactions inside the Ni 2 O 8 dimers, whereas the sublattice of Cu(II) ions presents antiferromagnetic couplings along the y-axis. The change of the sign in the magnetic unit-cell, due to the [1/2, 0, 1/2] propagation vector determines a purely antiferromagnetic structure. - Graphical abstract: Magnetic structure of CuNi2(PO4)2

  20. Unusual specific heat of almost dry L-cysteine and L-cystine amino acids.

    Science.gov (United States)

    Ishikawa, M S; Lima, T A; Ferreira, F F; Martinho, H S

    2015-03-01

    A detailed quantitative analysis of the specific heat in the 0.5- to 200-K temperature range for almost dry L-cysteine and its dimer, L-cystine, amino acids is presented. We report the occurrence of a sharp first-order transition at ∼76 K for L-cysteine associated with the thiol group ordering which was successfully modeled with the two-dimensional Ising model. We demonstrated that quantum rotors, two-level systems (TLS), Einstein oscillators, and acoustic phonons (the Debye model) are essential ingredients to correctly describe the overall experimental data. Our analysis pointed out the absence of the TLS contribution to the low temperature specific heat of L-cysteine. This result was similar to that found in other noncrystalline amorphous materials, e.g., amorphous silicon, low density amorphous water, and ultrastable glasses. L-cystine presented an unusual nonlinear acoustic dispersion relation ω(q)=vq0.95 and a Maxwell-Boltzmann-type distribution of tunneling barriers. The presence of Einstein oscillators with ΘE∼70 K was common in both systems and adequately modeled the boson peak contributions.

  1. First and Second-Law Efficiency Analysis and ANN Prediction of a Diesel Cycle with Internal Irreversibility, Variable Specific Heats, Heat Loss, and Friction Considerations

    Directory of Open Access Journals (Sweden)

    M. M. Rashidi

    2014-04-01

    Full Text Available The variability of specific heats, internal irreversibility, heat and frictional losses are neglected in air-standard analysis for different internal combustion engine cycles. In this paper, the performance of an air-standard Diesel cycle with considerations of internal irreversibility described by using the compression and expansion efficiencies, variable specific heats, and losses due to heat transfer and friction is investigated by using finite-time thermodynamics. Artificial neural network (ANN is proposed for predicting the thermal efficiency and power output values versus the minimum and the maximum temperatures of the cycle and also the compression ratio. Results show that the first-law efficiency and the output power reach their maximum at a critical compression ratio for specific fixed parameters. The first-law efficiency increases as the heat leakage decreases; however the heat leakage has no direct effect on the output power. The results also show that irreversibilities have depressing effects on the performance of the cycle. Finally, a comparison between the results of the thermodynamic analysis and the ANN prediction shows a maximum difference of 0.181% and 0.194% in estimating the thermal efficiency and the output power. The obtained results in this paper can be useful for evaluating and improving the performance of practical Diesel engines.

  2. Anomalous nuclear fragments

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1983-01-01

    Experimental data are given, the status of anomalon problem is discussed, theoretical approaches to this problem are outlined. Anomalons are exotic objects formed following fragmentation of nuclei-targets under the effect of nuclei - a beam at the energy of several GeV/nucleon. These nuclear fragments have an anomalously large cross section of interaction and respectively, small free path, considerably shorter than primary nuclei have. The experimental daa are obtained in accelerators following irradiation of nuclear emulsions by 16 O, 56 Fe, 40 Ar beams, as well as propane by 12 C beams. The experimental data testify to dependence of fragment free path on the distance L from the point of the fragment formation. A decrease in the fragment free path is established more reliably than its dependence on L. The problem of the anomalon existence cannot be yet considered resolved. Theoretical models suggested for explanation of anomalously large cross sections of nuclear fragment interaction are variable and rather speculative

  3. Specific heat measurements of TiB2 and 6LiF from 0.5 to 30 K

    International Nuclear Information System (INIS)

    Lang, Brian E.; Donaldson, Marcus H.; Woodfield, Brian F.; Burger, Arnold; Roy, Utupal N.; Lamberti, Vincent; Bell, Zane W.

    2005-01-01

    The specific heats of TiB 2 and 6 LiF have been measured from 0.5 to 30 K as part of a larger project in the construction of a neutron spectrometer. For this application, the measured specific heats were used to extrapolate the specific heats down to 0.1 K with lattice, electronic, and Schottky equations for the respective samples. The resultant specific heat values at 0.1 K for TiB 2 and 6 LiF are 4.08 x 10 -4 ± 0.27 x 10 -4 J/K/mol and 9.19 x 10 -9 ± 0.15 x 10 -9 J/K/mol, respectively

  4. Investigate the effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Peamsuwan, R.; Kumvongsa, C.

    2009-01-01

    The effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors in BCS weak-coupling limit is investigated. An analytical specific heat jump and the numerical specific heat are shown by using anisotropic order parameters, and the electron-phonon interaction and non-electron-phonon interaction. The two models of anisotropic order parameters are used for numerical calculation that we find little effect on the numerical results. The specific heat jump of MgB 2 , Lu 2 Fe 3 Si 5 and Nb 3 Sn superconductors can fit well with both of them. By comparing the experimental data with overall range of temperature, the best fit is Nb 3 Sn, MgB 2 , and Lu 2 Fe 3 Si 5 superconductors.

  5. Compact Representation for Specific Heat of Interacting Fermion Systems in Terms of Fully Renormalized Matsubara Green Function

    OpenAIRE

    Miyake, Kazumasa; Tsuruta, Atsushi

    2015-01-01

    On the basis of the Luttinger-Ward formalism for the thermodynamic potential, the specific heat of single-component interacting fermion systems with fixed chemical potential is compactly expressed in terms of the fully renormalized Matsubara Green function.

  6. Anomalous properties of technetium clusters

    International Nuclear Information System (INIS)

    Kryuchkov, S.V.

    1985-01-01

    On the basis of critical evaluation of literature data in the field of chemistry of technetium cluster compounds with ligands of a weak field a conclusion is made on specific, ''anomalous'' properties of technetium cluster complexes which consist in an increased ability of the given element to the formation of a series of binuclear and multinuclear clusters, similar in composition and structure and easily transforming in each other. The majority of technetium clusters unlike similar compounds of other elements are paramagnetic with one unpaired electron on ''metallic'' MO of loosening type. All theoretical conceptions known today on the electronic structure of technetium clusters are considered. It is pointed out, that the best results in the explanation of ''anomalous'' properties of technetium clusters can be obtained in the framework of nonempirical methods of self-consistent field taking into account configuration interactions. It is also shown, that certain properties of technetium clusters can be explained on the basis of qualitative model of Coulomb repulsion of metal atoms in clusters. The conclusion is made, that technetium position in the Periodic table, as well as recently detected technetium property to the decrease of effective charge on its atoms during M-M bond formation promote a high ability of the element to cluster formation both with weak field ligands and with strong field one

  7. Heat flux measurements of Tb{sub 3}M series (M=Co, Rh and Ru): Specific heat and magnetocaloric properties

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, J.C.B., E-mail: jolmiui@gmail.com [Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859 (Brazil); Lombardi, G.A. [Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859 (Brazil); Reis, R.D. dos [Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Freitas, H.E.; Cardoso, L.P.; Mansanares, A.M.; Gandra, F.G. [Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859 (Brazil)

    2016-12-15

    We report on the magnetic properties and magnetocaloric effect (MCE) for the Tb{sub 3}M series, with M=Co, Rh and Ru, obtained using a heat flux technique. The specific heat of Tb{sub 3}Co and Tb{sub 3}Rh are very similar, with a first order type transition occurring around 6 K below the magnetic ordering temperature without any corresponding feature on the magnetization. The slightly enhanced electronic specific heat, the Debye temperature around 150 K and the presence of the magnetic specific heat well above the ordering temperature are also characteristic of many other compounds of the R{sub 3}M family (R=Rare Earth). The specific heat for Tb{sub 3}Ru, however, presents two peaks at 37 K and 74 K. The magnetization shows that below the first peak the system presents an antiferromagnetic behavior and is paramagnetic above 74 K. We obtained a magnetocaloric effect for M=Co and Rh, −∆S=12 J/kg K, but for Tb{sub 3}Ru it is less than 3 J/kg K (μ{sub 0}∆H=5 T). We believe that the experimental results show that the MCE is directly related with the process of hybridization of the (R)5d-(M)d electrons that occurs in the R{sub 3}M materials.

  8. Enhanced specific heat capacity of molten salt-based nanomaterials: Effects of nanoparticle dispersion and solvent material

    International Nuclear Information System (INIS)

    Jo, Byeongnam; Banerjee, Debjyoti

    2014-01-01

    This study investigated the effect of nanoparticle dispersion on the specific heat capacity for carbonate salt mixtures doped with graphite nanoparticles. The effect of the solvent material was also examined. Binary carbonate salt mixtures consisting of lithium carbonate and potassium carbonate were used as the base material for the graphite nanomaterial. The different dispersion uniformity of the nanoparticles was created by employing two distinct synthesis protocols for the nanomaterial. Different scanning calorimetry was employed to measure the specific heat capacity in both solid and liquid phases. The results showed that doping the molten salt mixture with the graphite nanoparticles significantly raised the specific heat capacity, even in minute concentrations of graphite nanoparticles. Moreover, greater enhancement in the specific heat capacity was observed from the nanomaterial samples with more homogeneous dispersion of the nanoparticles. A molecular dynamics simulation was also performed for the nanomaterials used in the specific heat capacity measurements to explain the possible mechanisms for the enhanced specific heat capacity, including the compressed layering and the species concentration of liquid solvent molecules

  9. Specific heat and magnetic properties of single-crystalline ZnxDyyCrzSe4 spinels

    International Nuclear Information System (INIS)

    Jendrzejewska, Izabela; Groń, Tadeusz; Maciążek, Ewa; Duda, Henryk; Kubisztal, Marian; Ślebarski, Andrzej; Pietrasik, Ewa; Fijałkowski, Marcin

    2016-01-01

    The crystal structure, magnetic isotherm, magnetic susceptibility, electrical conductivity and specific heat measurements for single-crystalline Zn x Dy y Cr z Se 4 (where x+y+z≈3) spinels are presented. A semiconducting behavior with the activation energy of 0.53 eV, an antiferromagnetic order with a Néel temperature T N =22 K and a strong ferromagnetic exchange evidenced by a positive Curie–Weiss temperature θ=79, 71 and 70 K with increasing Dy-content in the sequence 0.05, 0.13 and 0.19 were established. Below T N the magnetic field dependence of magnetization, M(H), shows two peaks at critical fields H c1 and H c2 . The values of H c1 decrease slightly with temperature, especially for the larger Dy-content, while the values of H c2 drop rapidly with temperature. The magnetic contribution to the specific heat displays a sharp peak at T N , which is strongly shifted to much lower temperatures in the applied magnetic fields. Similar behavior was found for the temperature dependence of the specific heat C(T) plotted as C(T)/T vs. T. The value of the magnetic and phonon contribution to the entropy at T N and at H=0 is only ∼4.8, ∼4.4 and ∼4.2 J mol −1 K −1 /Cr 3+ for y=0.05, 0.13 and 0.19, respectively, much lower than the average magnetic contribution S m =(z/2)Rln(2S+1)=12.33 J mol −1 K −1 /Cr 3+ calculated for Cr 3+ ion with S=3/2, as the dysprosium one is paramagnetic. - Highlights: • Dy-substitution does not affect the Cr 3+ 3d 3 electronic configuration and AFM order. • The larger Dy-content, the smaller FM short-range interactions. • The magnetic and phonon contribution to the entropy decreases as Dy-content increases.

  10. Method to reduce non-specific tissue heating of small animals in solenoid coils.

    Science.gov (United States)

    Kumar, Ananda; Attaluri, Anilchandra; Mallipudi, Rajiv; Cornejo, Christine; Bordelon, David; Armour, Michael; Morua, Katherine; Deweese, Theodore L; Ivkov, Robert

    2013-01-01

    Solenoid coils that generate time-varying or alternating magnetic fields (AMFs) are used in biomedical devices for research, imaging and therapy. Interactions of AMF and tissue produce eddy currents that deposit power within tissue, thus limiting effectiveness and safety. We aim to develop methods that minimise excess heating of mice exposed to AMFs for cancer therapy experiments. Numerical and experimental data were obtained to characterise thermal management properties of water using a continuous, custom water jacket in a four-turn simple solenoid. Theoretical data were obtained with method-of-moments (MoM) numerical field calculations and finite element method (FEM) thermal simulations. Experimental data were obtained from gel phantoms and mice exposed to AMFs having amplitude >50 kA/m and frequency of 160 kHz. Water has a high specific heat and thermal conductivity, is diamagnetic, polar, and nearly transparent to magnetic fields. We report at least a two-fold reduction of temperature increase from gel phantom and animal models when a continuous layer of circulating water was placed between the sample and solenoid, compared with no water. Thermal simulations indicate the superior efficiency in thermal management by the developed continuous single chamber cooling system over a double chamber non-continuous system. Further reductions of heating were obtained by regulating water temperature and flow for active cooling. These results demonstrate the potential value of a contiguous layer of circulating water to permit sustained exposure to high intensity alternating magnetic fields at this frequency for research using small animal models exposed to AMFs.

  11. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    Science.gov (United States)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  12. Anomalous superconductivity in the tJ model; moment approach

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Rodriguez-Nunez, J.J.

    1997-01-01

    By extending the moment approach of Nolting (Z, Phys, 225 (1972) 25) in the superconducting phase, we have constructed the one-particle spectral functions (diagonal and off-diagonal) for the tJ model in any dimensions. We propose that both the diagonal and the off-diagonal spectral functions...... Hartree shift which in the end result enlarges the bandwidth of the free carriers allowing us to take relative high values of J/t and allowing superconductivity to live in the T-c-rho phase diagram, in agreement with numerical calculations in a cluster, We have calculated the static spin susceptibility......, chi(T), and the specific heat, C-v(T), within the moment approach. We find that all the relevant physical quantities show the signature of superconductivity at T-c in the form of kinks (anomalous behavior) or jumps, for low density, in agreement with recent published literature, showing a generic...

  13. Specific heat of S=1 quasi-1D antiferromagnet NDMAP in magnetic fields

    International Nuclear Information System (INIS)

    Tsujii, H.; Honda, Z.; Andraka, B.; Katsumata, K.; Takano, Y.

    2003-01-01

    NDMAP, Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ), is a quasi-one-dimensional S=1 Heisenberg antiferromagnet with Haldane-gap energies of 22 and 5.5 K for excitations polarized parallel and perpendicular to the chain c-axis, respectively. We have extended the specific-heat measurements by Honda et al. in this compound to 150 mK in temperature and 18 T in magnetic field, employing a novel relaxation calorimeter. The experiment provides an accurate determination of the exponent for the transition line for the field-assisted ordered phase. In addition, a new feature has been found in the phase diagram at around 14 T

  14. Electron spectroscopic evidence of electron correlation in Ni-Pt alloys: comparison with specific heat measurement

    CERN Document Server

    Nahm, T U; Kim, J Y; Oh, S J

    2003-01-01

    We have performed photoemission spectroscopy of Ni-Pt alloys to understand the origin of the discrepancy between the experimental linear coefficient of specific heat gamma and that predicted by band theory. We found that the quasiparticle density of states at the Fermi level deduced from photoemission measurement is in agreement with the experimental value of gamma, if we include the electron correlation effect. It was also found that the Ni 2p core level satellite intensity increases as Ni content is reduced, indicating a strong electron correlation effect which can enhance the quasiparticle effective mass considerably. This supports our conclusion that electron correlation is the most probable reason of disagreement of gamma between experiment and band theory.

  15. Field-orientation dependence of the specific heat of PrOs4Sb12

    International Nuclear Information System (INIS)

    Custers, Jeroen; Namai, Yukie; Tayama, Takashi; Sakakibara, Toshiro; Sugawara, Hitoshi; Aoki, Yuji; Sato, Hideyuki

    2006-01-01

    The superconducting (SC) gap of the Pr-based skutterudite PrOs 4 Sb 12 has been investigated by means of field-angle-dependent specific heat C(H,φ) experiments. At fixed temperatures, H was varied and rotated in the basal planes. A 4-fold oscillation of C(H,φ) is observed in the entire H-T SC phase diagram. The minima are located along the [100] directions suggesting the excistence of gap nodes or minima along these directions. The oscillation amplitude vertical bar A vertical bar becomes maximum at H/H c2 ∼0.3. Below, vertical bar A vertical bar->0. The temperature variation of vertical bar A vertical bar follows a quadratic dependence

  16. Specific-heat measurement of single metallic, carbon, and ceramic fibers at very high temperature

    International Nuclear Information System (INIS)

    Pradere, C.; Goyheneche, J.M.; Batsale, J.C.; Dilhaire, S.; Pailler, R.

    2005-01-01

    The main objective of this work is to present a method for measuring the specific heat of single metallic, carbon, and ceramic fibers at very high temperature. The difficulty of the measurement is due to the microscale of the fiber (≅10 μm) and the important range of temperature (700-2700 K). An experimental device, a modelization of the thermal behavior, and an analytic model have been developed. A discussion on the measurement accuracy yields a global uncertainty lower than 10%. The characterization of a tungsten filament with thermal properties identical to those of the bulk allows the validation of the device and the thermal estimation method. Finally, measurements on carbon and ceramic fibers have been done at very high temperature

  17. Modelling of Dynamic Transmission Cable Temperature Considering Soil-Specific Heat, Thermal Resistivity, and Precipitation

    DEFF Research Database (Denmark)

    Olsen, Rasmus; Anders, George J.; Holboell, Joachim

    2013-01-01

    This paper presents an algorithm for the estimation of the time-dependent temperature evolution of power cables, when real-time temperature measurements of the cable surface or a point within its vicinity are available. The thermal resistivity and specific heat of the cable surroundings are varied...... as functions of the moisture content which is known to vary with time. Furthermore, issues related to the cooling effect during rainy weather are considered. The algorithm is based on the lumped parameters model and takes as input distributed temperature sensing measurements as well as the current and ambient...... temperature. The concept is verified by studying a laboratory setup of a 245 kV cable system....

  18. Specific heat of single crystalline YBa2Cu3O7 in 20 Tesla

    International Nuclear Information System (INIS)

    Bonjour, E.; Calemczuk, R.; Henry, J.Y.; Muller, J.; Triscone, G.; Vallier, J.C.

    1993-01-01

    The specific heat of a single crystal of YBa 2 Cu 3 0 7 is measured from 40 to 150 K in magnetic fields up to 20 Tesla applied either parallel or normal to the c axis. Adiabatic calorimetry with a scatter well below 0.1% is used. The scaling of the superconducting transitions determines the bulk anisotropy ratio 5.5±0.5. A Maki-like term is observed at intermediate temperatures. The unusual behaviour of YBa 2 Cu 3 0 7 in a field, featuring a considerable smearing of the transition and an apparently field-independent onset, may be qualitatively understood as a phenomenological consequence of the small and anisotropic value of the coherence length alone, using the relevant models of field-induced critical I-D fluctuations on one hand, and London-like regime for the mean-field part of the transition on the other hand

  19. Using specific heat to scan gaps and anisotropy of MgB2

    International Nuclear Information System (INIS)

    Bouquet, F.; Wang, Y.; Toulemonde, P.; Guritanu, V.; Junod, A.; Eisterer, M.; Weber, H.W.; Lee, S.; Tajima, S.

    2004-01-01

    We performed specific heat measurements to study the superconducting properties of the ∼40 K superconductor MgB 2 , up to 16 T, using polycrystal and single crystal samples. Our results establish the validity of the two-gap model. We tested the effect of disorder by irradiating our sample. This procedure decreased T c down to ∼26 K, but did not suppress completely the smaller gap, at variance with theoretical expectations. A positive effect of the irradiation was the increase of H c2 up to almost 30 T. Our results on the single crystal allow the anisotropy of each band to be determined independently, and show the existence of a cross-over field well below H c2 characterizing the physics of the small-gapped band. We also present preliminary results on Nb 3 Sn, showing similar, but weaker effects

  20. Using specific heat to scan gaps and anisotropy of MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, F.; Wang, Y.; Toulemonde, P.; Guritanu, V.; Junod, A.; Eisterer, M.; Weber, H.W.; Lee, S.; Tajima, S

    2004-08-01

    We performed specific heat measurements to study the superconducting properties of the {approx}40 K superconductor MgB{sub 2}, up to 16 T, using polycrystal and single crystal samples. Our results establish the validity of the two-gap model. We tested the effect of disorder by irradiating our sample. This procedure decreased T{sub c} down to {approx}26 K, but did not suppress completely the smaller gap, at variance with theoretical expectations. A positive effect of the irradiation was the increase of H{sub c2} up to almost 30 T. Our results on the single crystal allow the anisotropy of each band to be determined independently, and show the existence of a cross-over field well below H{sub c2} characterizing the physics of the small-gapped band. We also present preliminary results on Nb{sub 3}Sn, showing similar, but weaker effects.

  1. Specific heat of single crystalline YBa2Cu3O7 in 20 Tesla

    International Nuclear Information System (INIS)

    Junod, A.; Bonjour, E.; Calemczuk, R.; Henry, J.Y.; Muller, J.; Triscone, G.; Vallier, J.C.

    1994-01-01

    The specific heat of a single crystal of YBa 2 Cu 3 O 7 is measured from 40 to 150 K in magnetic fields up to 20 Tesla applied either parallel or normal to the c axis. Adiabatic calorimetry with a scatter well below 0.1% is used. The scaling of the superconducting transitions determines the bulk anisotropy ratio, 5.5±0.5. A Maki-like term is observed at intermediate temperatures. The unusual behaviour of YBa 2 Cu 3 O 7 in a field, featuring a considerable smearing of the transition and an apparently field-independent onset, may be qualitatively understood as a phenomenological consequence of the small and anisotropic value of the coherence length alone, using the relevant models of field-induced critical 1-D fluctuations on one hand, and London-like regime for the mean-field part of the transition on the other hand. (orig.)

  2. Solid and liquid Equation of state for initially porous aluminum where specific heat is constant

    Science.gov (United States)

    Forbes, Jerry W.; Lemar, E. R.; Brown, Mary

    2011-06-01

    A porous solid's initial state is off the thermodynamic surface of the non-porous solid to start with but when pressure is high enough to cause total pore collapse or crush up, then the final states are on the condensed matter thermodynamic surfaces. The Hugoniot for the fully compacted solid is above the Principle Hugoniot with pressure, temperature and internal energy increased at a given v. There are a number of ways to define this hotter Hugoniot, which can be referenced to other thermodynamic paths on this thermodynamic surface. The choice here was to use the Vinet isotherm to define a consistent thermodynamic surface for the solid and melt phase of 6061 aluminum where specific heat is constant for the P-v-T space of interest. Analytical equations are developed for PH and TH.

  3. Measurement of the specific heats of Santowax 'R', para-, meta- and ortho-terphenyl, diphenyl and dowtherm 'A'

    International Nuclear Information System (INIS)

    Bowring, R.W.; Garton, D.A.; Norris, H.F.

    1960-12-01

    New absolute measurements have been made of the specific heats of Santowax 'R1, the terphenyl isomers, diphenyl and Dowtherm 'A'. An adiabatic calorimeter was used in which the sample was heated electrically while a surrounding jacket was maintained at the same temperature as the calorimeter. The specific heats of all materials tested were found to increase linearly with temperature, the slope being substantially the same for all the pure materials except para-terphenyl. The specific heat of Santowax 'R' was about 1/2% less than the weighted mean of its components. The probable accuracy of the measurements was ± 2% and this was confirmed by comparison with diphenyl ether. A summary of results is given in Table 1 and Figure 10. (author)

  4. Moisture Dependence of physical Properties and Specific Heat Capacity of Neem (Azadirachta Indica A. Juss Kernels

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-02-01

    Full Text Available This study investigated the effect of moisture content on the physical properties and specific heat capacity of Neem (Azadirachta Indica A. Juss nut kernels. The major, intermediate and minor axial dimensions of the kernels increased from 1.04 to 1.23cm, 0.42 to 0.6cm, and 0.32 to 0.45cm respectively, as the moisture content increased from 5.2 to 44.9 % (db. The arithmetic and geometric mean diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being higher. In the above moisture range, one thousand kernel weight, true density, porosity, sphericity, roundness and surface area all increased linearly from 0.0987 to 0.1755kg, 632 to 733kgm-3, 6.42 to 32.14%, 41.3 to 47.5%, 22 to 36% and 13 to 24cm2 respectively, while bulk density decreased from 591.4 to 497.4kgm-3 with increase in moisture content. Angle of repose increased from 21.22 to 29.8o with increase in moisture content. The Static coefficient of friction on ply wood with grains parallel to the direction of movement ranged from 0.41 to 0.61, it ranged from 0.19 to 0.24 on on fiber glass, 0.28 to .038 on hessian bag material and 0.25 to 0.33 on galvanized steel sheet. The specific heat of the seed varied from 2738.1- 4345.4J/kg/oC in the above moisture range.

  5. Empirical equations for viscosity and specific heat capacity determination of paraffin PCM and fatty acid PCM

    Science.gov (United States)

    Barreneche, C.; Ferrer, G.; Palacios, A.; Solé, A.; Inés Fernández, A.; Cabeza, L. F.

    2017-10-01

    Phase change materials (PCM) used in thermal energy storage (TES) systems have been presented, over recent years, as one of the most effective options in energy storage. Paraffin and fatty acids are some of the most used PCM in TES systems, as they have high phase change enthalpy and in addition they do not present subcooling nor hysteresis and have proper cycling stability. The simulations and design of TES systems require the knowledge of the thermophysical properties of PCM. Thermal conductivity, viscosity, specific heat capacity (Cp) can be experimentally determined, but these are material and time consuming tasks. To avoid or to reduce them, and to have reliable data without the need of experimentation, thermal properties can be calculated by empirical equations. In this study, five different equations are given to calculate the viscosity and specific heat capacity of fatty acid PCM and paraffin PCM. Two of these equations concern, respectively, the empirical calculation of the viscosity and liquid Cp of the whole paraffin PCM family, while the other three equations presented are for the corresponding calculation of viscosity, solid Cp, liquid Cp of the whole fatty acid family of PCM. Therefore, this study summarize the work performed to obtain the main empirical equations to measure the above mentioned properties for whole fatty acid PCM family and whole paraffin PCM family. Moreover, empirical equations have been obtained to calculate these properties for other materials of these PCM groups and these empirical equations can be extrapolated for PCM with higher or lower phase change temperatures within a lower relative error 4%.

  6. Electronic specific heat of transition metal carbides; Chaleur specifique electronique de carbures de metaux de transition

    Energy Technology Data Exchange (ETDEWEB)

    Conte, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-15

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [French] Les donnees experimentales permettant de preciser la structure de bandes des carbures de metaux de transition de structure NaCI sont encore peu.nombreuses. Nous avons mesure la chaleur specifique electronique de certains de ces carbures, de differentes concentrations electroniques (TiC stoechiometrique ou non, TaC et mixtes (Ti, Ta) - C). Nous donnons les principales caracteristiques (metallographie, resistivite, rayon X), de nos echantillons, et nous decrivons l'appareillage de chaleur specifique a basse temperature realise. Dans l'un nous utilisons l'helium comme gaz d'echange. L'autre est monte avec un contact mecanique. Les deux utilisent une sonde au germanium comme thermometre. La mesure de la resistance de cette sonde est decrite, ainsi que les differents montages de mesure. Les resultats, presentes dans un modele de bande rigide, font apparaitre que la densite des etats au niveau de Fermi presente un minimum au voisinage des carbures du groupe IV. (auteur)

  7. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  8. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  9. Anomalous photoconductivity of ferrocene

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, A K [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Spectroscopy; Mallik, B [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Spectroscopy

    1995-08-15

    Photoconductivity behaviour of ferrocene, a very useful metallo-organic sandwich compound, has been investigated at different constant temperatures using powdery material in a sandwich type of cell configuration and with the exposure of a polychromatic light source (mercury lamp of 125 W). Measurements with a constant d.c. bias voltage (27 V) across the sample cell and a fixed intensity of the exciting light source have shown a drastic change in the photocurrent versus time profile with the increase in temperature. Anomalous changes have been observed in the plot of the photocurrent versus reciprocal of temperature. Such changes are completely absent in the corresponding dark current behaviour. The photoinduced changes have been observed to be almost reversible in the entire temperature range. In a particular temperature range the reversibility of photocurrent is accompanied by fluctuations in equilibrium current obtained after switching off the light source. The observed anomalous changes in photocurrent have been explained by photoinduced phase transition in ferrocene. The possible origin and implications of this photoinduced phase transition are discussed. (orig.)

  10. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. copyright 1995 American Institute of Physics

  11. Stage- and sex-specific heat tolerance in the yellow dung fly Scathophaga stercoraria.

    Science.gov (United States)

    Blanckenhorn, Wolf U; Gautier, Roland; Nick, Marcel; Puniamoorthy, Nalini; Schäfer, Martin A

    2014-12-01

    Thermal tolerance varies at all hierarchical levels of biological organization: among species, populations, individuals, and even within individuals. Age- or developmental stage- and sex-specific thermal effects have received relatively little attention in the literature, despite being crucial for understanding thermal adaptation in nature and responses to global warming. We document stage- and sex- specific heat tolerance in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), a species common throughout the northern hemisphere that generally favours cool climates. Exposure of eggs to temperatures up to 32°C did not affect larval hatching rate, but subsequent egg-to-adult survival at a benign temperature was reduced. Permanent transfer from benign (18°C) to hot temperatures (up to 31°C) at different larval and pupal stages strongly decreased egg-to-adult survival, though survival continuously improved the later the transfer occurred. Temporary transfer for only two days increased mortality more weakly, survival being lowest when temperature stress was imposed early during the larval or pupal stages. Adult flies provided with sugar and water tolerated 31°C longer than previously thought (5 days in males to 9 days in females). Eggs were thus less susceptible to thermal stress than larvae, pupae or adults, in agreement with the hypothesis that more mobile stages require less physiological protection against heat because they can behaviourally thermoregulate. The probability of mating, of laying a clutch, and hatching success were generally independently reduced by exposure of females or males to warm temperatures (24°C) during the juvenile or adult stages, with some interactions evident. High temperature stress thus affects survival differentially depending on when it occurs during the juvenile or the pre-reproductive adult life stage, and affects reproductive success via the mating behaviour of both sexes, female physiology in terms of

  12. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  13. Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids

    International Nuclear Information System (INIS)

    De Robertis, E.; Cosme, E.H.H.; Neves, R.S.; Kuznetsov, A.Yu.; Campos, A.P.C.; Landi, S.M.; Achete, C.A.

    2012-01-01

    The purpose of this work is to investigate the applicability of the modulated temperature differential scanning calorimetry technique to measure specific heat of copper nanofluids by using the ASTM E2719 standard procedure, which is generally applied to thermally stable solids and liquids. The one-step method of preparation of copper nanofluid samples is described. The synthesized nanoparticles were separated from the base fluid and examined by X-ray diffraction and transmission electron microscopy in order to evaluate their structure, morphology and chemical nature. The presence of copper nanoparticles in the base fluid alters the characteristics of crystallization and melting processes and reduces the specific heat values of nanofluids in the whole studied temperature range. - Highlights: ► Copper nanofluids prepared by one-step method. ► Methodology of synthesis improved nanofluid stability. ► Specific heat determinations using modulated temperature differential scanning calorimetry. ► Good agreement between theoretical and experimental values.

  14. Monte Carlo study of internal energy and specific heat of a nano-graphene bilayer in a longitudinal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiao-hong; Wang, Wei, E-mail: ww9803@126.com; Chen, Dong-dong; Xu, Si-yuan

    2016-06-15

    The thermodynamic properties of a nano-graphene bilayer, consisting of the upper layer A of spin-3/2 with antiferromagnetic intralayer exchange coupling and the bottom layer B of spin-5/2 with ferromagnetic intralayer exchange coupling, have been studied by the use of Monte Carlo simulation. We find a number of characteristic phenomena. The effects of the exchange coupling, the single-ion anisotropy and the longitudinal magnetic field on the internal energy, the specific heat and the blocking temperature of the mixed-spin bilayer system have been investigated in detail. The internal energy and the specific heat profiles are clarified. In particular, we have found that the specific heat curve may show two peaks phenomenon for appropriate values of the system parameters.

  15. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped......The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... that this work can be used as an inspiration and guidance to perform measurements on the various composite materials containing PCM....

  16. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  17. Anomalous high-frequency resistivity of a plasma

    International Nuclear Information System (INIS)

    Kruer, W.L.; Dawson, J.M.

    1971-06-01

    In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs

  18. Microinstability-based model for anomalous thermal confinement in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed

  19. Low-temperature specific heat of the degenerate supersymmetric t-J model in one dimension

    International Nuclear Information System (INIS)

    Lee, K.; Schlottmann, P.

    1996-01-01

    We consider the one-dimensional SU(N)-invariant t-J model, which consists of electrons with N spin components on a lattice with nearest-neighbor hopping t constrained by the excluded multiple occupancy of the sites and spin-exchange J between neighboring lattice sites. The model is integrable and has been diagonalized in terms of nested Bethe ansatze at the supersymmetric point t=J. The low-T specific heat is proportional to T. The γ-coefficient is extracted from the thermodynamic Bethe-ansatz equations and is expressed in terms of the spin wave velocities and the group velocity of the charges for arbitrary N, band filling, and splitting of the levels (magnetic and crystalline fields). Our results contain the following special cases: (i) For N=2 the traditional spin-1/2 supersymmetric t-J model, (ii) for exactly one electron per site the SU(N)-Heisenberg chain, and (iii) for N=4 the two-band supersymmetric t-J model with crystalline field splitting. copyright 1996 American Institute of Physics

  20. Thermal behaviour of the Debye-Waller factor and the specific heat of anharmonic crystals

    International Nuclear Information System (INIS)

    Lima, R.A.T. de; Tsallis, C.

    1979-08-01

    The influence of the cubic and quartic crystalline anharmonicity on the classical and quantum thermal behaviour of the specific heat, Debye temperaturetheta, Debye-Waller factor W, crystalline expansion and phonon spectrum is studied, within the framework of the Variational Method in Statistical Mechanics. The sistems, mainly focalized are the single oscillator, the mono-atomic linear chain and simple cubic crystal. The trial Hamiltonian is an harmonic one, therefore the various anharmonic influences are mainly absorbed into the renormalization of theta(T). Several differences between the classical and quantum results are exhibited. Satisfactory qualitative agreement with experience was obtained in the low-temperature regime, in particular in what concerns the existence of a minimum in theta(T) which has been observed in Cu, Al, Ag, Au and Pb. For the intermediate-temperature regime the customary linear behaviour of W(T) (hence theta(T) almost constant) is reobtained. Finally in the high-temperature regime, the present treatment leads to a √T - dependence for the W-factor, which implies in the wrong curvature with respect to experimental data. A possible explanation of this disagreement might be related to the melting phenomenon, which is not covered by the present theory. (Author) [pt

  1. Specific features of hydrogen boiling heat transfer on the AMg-6 alloy massive heater

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Kozlov, S.M.; Rusanov, K.V.; Tyurina, E.G.

    1989-01-01

    Heat transfer and nucleate burns-out saturated with hydrogen at a plate heater (thickness-13 mm, diameter of heat-transferring surface - 30 mm) made of an aluminium alloy with the low value of a heat assimilation coefficient in the pressure range from 7.2x10 3 to 6x10 5 Pa is experimentally investigated. Value of start of boiling characteristics and heat transfer coefficients during nucleate burn-out, as well as the first critical densities of a heat flux and temperature heads are obtained. Existence of certain differrences of heat exchange during boiling is shown using a massive heater made of low-heat-conductive material in comparison with other cases of hydrogen boiling. Hypothesis concerning the existence of so-called mixed boiling on the heat transfer surface, which has been detected earlier only in helium boiling, as well as concerning possible reasons of stability of film boiling ficii in preburn-out region of heat duty is discussed

  2. Flux line lattice melting transition in YBa2Cu3O6.94 observed in specific heat experiments

    International Nuclear Information System (INIS)

    Roulin, M.; Junod, A.; Walker, E.

    1996-01-01

    When a magnetic field penetrates a type II superconductor, it forms a lattice of thin quantized filaments called magnetic vortices. Resistance, magnetization, and neutron diffraction experiments have shown that the vortex lattice of high-temperature superconductors can melt along a line in the field-temperature plane. The calorimetric signature of melting on this line was observed in a high-accuracy adiabatic specific heat experiment performed on YBa 2 Cu 3 O 6.94 . The specific heat of the vortex liquid was greater than that of the vortex solid. 17 refs., 3 figs

  3. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  4. Detection of anomalous events

    Science.gov (United States)

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  5. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    Science.gov (United States)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2017-11-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the

  6. Uncertainties in the estimation of specific absorption rate during radiofrequency alternating magnetic field induced non-adiabatic heating of ferrofluids

    International Nuclear Information System (INIS)

    Lahiri, B B; Ranoo, Surojit; Philip, John

    2017-01-01

    Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and

  7. INVESTIGATION OF HEAT CONDUCTION AND SPECIFIC ELECTRIC IMPEDANCE OF POROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    E. S. Golubtsova

    2004-01-01

    Full Text Available In this article there was investigated the influence of porosity and temperature change on heat condition and electrical resistance of porous iron (PZh4M nickel and steel 14X17H2. There are received the adequate equations of regression, establishing connection between heat conduction and electrical resistance of the investigated materials with their porosity and temperature.

  8. Theory of anomalous transport in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.

    1992-03-01

    Theoretical model of the anomalous transport in Torsatron/Heliotron plasmas is developed, based on the current-diffusive interchange instability which is destabilized due to the averaged magnetic hill near edge. Analytic formula of transport coefficient is derived. This model explains the high edge transport, the power degradation and energy confinement scaling law and the enhanced heat-pulse thermal conduction. (author)

  9. Specific heat of Nb{sub 3}Sn: The case for a single gap

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Y. J., E-mail: jophy@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Zhou, Jian; Sung, Zu Hawn; Lee, Peter J.; Larbalestier, D. C. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States)

    2014-10-01

    The important influence of multiple gaps in the superconductivity of MgB{sub 2} and Fe-based compounds, especially because of the possibility that manipulation of a second gap can significantly raise the upper critical field H{sub c2}, has refocused attention on Nb{sub 3}Sn because anomalies in both specific heat and point-contact tunneling studies have led to the proposal that Nb{sub 3}Sn is also a two-gap superconductor. Here, we search for evidence of the second gap in a careful study of the influence of the homogenization temperature on the sample uniformity. We show that it is very difficult to fabricate samples that are both homogeneous and stoichiometric. We find so-called “second-gap” anomalies disappear only after high temperature and long-term annealing. Such a well-annealed sample shows only a strong, electron-phonon-coupled, single-gap behavior. In contrast, samples reacted and annealed at lower temperatures, as in the earlier two-gap studies, show small chemical composition variations of the A15 phase. We propose that the second gap sightings are actually due to variation of T{sub c} within very difficult-to-fully homogenize samples. A curiosity of the A15 Nb{sub 3}Sn phase is that almost any mixture of Nb and Sn tries to form a stoichiometric A15 composition, but the residue of course contains off-stoichiometric A15, Nb, and other phases when the Nb:Sn ratio departs from the true 3:1 stoichiometry.

  10. Superconductivity and specific heat measurements in V--Nb--Ta ternary alloys

    International Nuclear Information System (INIS)

    Wang, R.Y.P.

    1977-01-01

    The correlation between the superconducting transition temperature T/sub c/ with electronic specific heat coefficient γ and Debye temperature theta/sub D/ in some isoelectronic ternary V--Nb--Ta alloys is investigated. It has been known that the variation of theta/sub D/ with concentration in both V--Nb and V--Ta systems is clearly of the same curvature as that of T/sub c/ and γ. In Ta--Nb alloys, however, over most of the concentration range theta/sub D/ seems to have a slight negative curvature while T/sub c/ and γ curve upwards. (But beyond approx. 80 at. % Nb theta/sub D/ rises rapidly to the pure Nb value.) By choosing alloys along a line connecting Ta and V 25 --Nb 75 which is close to the Nb--Ta side of the Gibb's triangle the extent to which the Nb--Ta type of behavior persists in this ternary system can be estimated. A model proposed by Miedema that takes into account the variation of properties caused by possible charge transfer among constituent atoms in an alloy has been found to apply almost quantitatively for nearly all binary alloy systems whose experimental data are available, including those for which Hopfield's method fails. A previous test of the extension of Miedema's empirical model into ternary alloys shows qualitatively correct behavior for intra-row Zr/sub x/Nb/sub 1-2x/Mo/sub x/ alloys. The good agreement between the predicted values of γ and T/sub c/ and the experimental values in the inter-row ternary V--Nb--Ta system studied here gives another and better test of the application of Miedema's model

  11. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Science.gov (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  12. Specific heat of the antiferro/ferro-magnet NpGa3

    International Nuclear Information System (INIS)

    Colineau, E.; Griveau, J.-C.; Wastin, F.; Rebizant, J.

    2011-01-01

    Research highlights: → The Actinide Research Department at ITU is devoted to basic and strategic research on actinide elements and compounds. The scientific programme encompasses both physics and chemistry, and is carried out in collaboration with a number of academic research partners worldwide. → The availability of state-of-the-art instrumentation adapted for measuring spectroscopic, thermodynamic and transport properties of radioactive samples, together with specialised facilities for preparation and characterisation of high quality samples, makes the department a centre of excellence in actinide research and one of the leading institutions in this field. → The object of actinide research is the understanding of chemical bonding in, and the solid-state physics properties of, the actinide metals and their compounds. The level of knowledge of actinides is far inferior to that of the rest of the periodic table, mainly because of the difficulty of handling transuranium materials, but also because of the inherent difficulty of understanding the behavior of the 5f-electrons. Their spatial extent and tendency to interact with electrons on ligand sites give actinide elements a complexity unique in the periodic table. Experiments and theory are performed with a view to improved understanding. - Abstract: The specific heat of NpGa 3 has been measured for the first time. The magnetic transitions and more generally the full magnetic phase diagram have been re-established precisely. The Sommerfeld coefficient and the magnetic entropy point to a rather localized system, in agreement with previous studies, in particular high pressure Moessbauer and resistivity. The comparison with other NpX 3 suggests that NpGa 3 is the most localized member of the series.

  13. Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)

    2016-04-13

    The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.

  14. Specific heat measurements of the antiferroelectric phase transition in the mixed system KCN sub(x)Cl sub(1-x)

    International Nuclear Information System (INIS)

    Ghivelder, L.; Bastos, C.A.M.; Ribeiro, P.C.; Weid, J.P. von der.

    1984-01-01

    The specific heat of KCN sub(x)Cl sub(1-x) mixed crystals was measured for four chlorine concentrations between x=0,90 and x=1,00. The entropy change ΔS and critical temperature T sub(c) were obtained and the results are discussed in terms of the orientational motion of the CN - molecular ions. (Author) [pt

  15. Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes: Green's function approach

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhai, Liang-Jun [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Hua, Ling-Ling [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China)

    2016-01-15

    The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated. - Highlights: • Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes (HFM-SWNTs) are investigated. • The magnetic correlations effect has a considerable contribution to the thermodynamics properties of HFM-SWNTs. • Magnetic correlation effects are always to lower the internal energy at finite temperature. • At Curie point, magnetic correlation energy is much less than zero. • The peak values of magnon specific heat curves rise and shift right towards higher temperatures with the diameter of tubes, the anisotropy strength, and the spin quantum number rising.

  16. Specific heat (1-330K), magnetic susceptiblity and Meissner effect Bi-(Pb)-Sr-Ca-Cu-O samples

    International Nuclear Information System (INIS)

    Junod, A.; Eckert, D.; Triscone, G.; Brunner, O.; Muller, J.; Zhao, Z.

    1989-01-01

    Five samples in the Bi 2 - y Pb y Sr 2 CaCu 2 O 8 + x system selected for their sharp diamagnetic transitions are characterized with particular emphasis on the specific heat. The behavior of the magnetic susceptibility upon doping with holes (Pb) is similar to that of the La 1 - y Sr y CuO 4 system

  17. Specific heat of NiCl26NH3 between 0.3 and 4.2K

    International Nuclear Information System (INIS)

    Sano, W.

    1979-01-01

    A careful specific heat measurements of nickel hexammine cloride, at liquid helium temperatures, revealed two maxima of magnetic origin in agreement with one of the works available in the literature. An inequivalency of Ni ions, resulting from a structural change at high temperatures, is considered as the new explanation of the magnetic ordering. (Author) [pt

  18. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  19. Istra district heating system. Specific technical report. Appendix 2 to the master plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The objective of the master plan project is to improve heat supply in Istra. The considerable system losses from the fuel supplied to the end-users are one subject for improvement. At the same time, the current system operation results in poor quality heat for the consumers. Due to the inflexibility of the system, the dwellings/premises of the consumers are either overheated or insufficiently heated. The financial situation in Istra, the legal ownership of the district heating system and consumers ability to pay limit the possibilities for system improvements. The Master Plan and Feasibility Study evaluates four different development scenarios. Each of the scenarios is compared to the current situation in Istra, where nothing is done to change the system, but only to operate the present system in a sustainable way. The sustainable operation of the district heating system includes all necessary renovations and component replacements necessary. The project does not take into account the present financial situation in Istra, which has resulted in less maintenance than necessary. This situation is not a comparable parameter, as it is not sustainable and will lead to a breakdown of the heat supply within a short time horizon. (EHS)

  20. Laser heat hyperalgesia is not a feature of non-specific chronic low back pain.

    Science.gov (United States)

    Franz, M; Ritter, A; Puta, C; Nötzel, D; Miltner, W H R; Weiss, T

    2014-11-01

    Based upon studies using mechanical pin-prick, pressure, electrical or heat stimuli applied to painful and/or pain-free parts of the body, chronic low back pain (CLBP) has been shown to be associated with generalized and enhanced pain sensitivity and altered brain responses to noxious stimuli. To date, no study examined the processing of noxious laser heat pulses, which are known to selectively excite thermal nociceptors located in the superficial skin layers, in CLBP. We studied laser heat pain thresholds (LHPTs) and nociceptive laser-evoked brain electrical potentials (LEPs) following skin stimulation of the pain-affected back and the pain-free abdomen using noxious laser heat stimulation in 16 CLBP patients and 16 age- and gender-matched healthy controls (HCs). We observed no statistically significant differences in LHPTs between CLBP patients and HCs, neither on the back nor on the abdomen. Furthermore, we found no evidence for altered brain responses between CLBP patients and HCs in response to stimulation of the back and abdomen in single-trial latencies and amplitudes of LEP components (N2, P2). The results are in contrast to previous studies showing hypersensitivity to different experimental noxious stimuli (e.g., contact heat). We argue that these discrepancies may be due to low spatial and temporal summation within the central nervous system following laser heat stimulation. Our results indicate important methodological differences between laser heat and thermode stimulation that should be taken into account when interpreting results, such as from thermal quantitative sensory testing. © 2014 European Pain Federation - EFIC®

  1. Anomalous spreading behaviour of polyethyleneglycoldistearate ...

    Indian Academy of Sciences (India)

    Unknown

    Anomalous behaviour; polythyleneglycoldistearate; air/water interface; ... distinguished these monolayer states in terms of molecular ordering, including the .... It has been found that the compressibilities of the materials in the condensed phase.

  2. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  3. Anomalous diffusion in chaotic scattering

    International Nuclear Information System (INIS)

    Srokowski, T.; Ploszajczak, M.

    1994-01-01

    The anomalous diffusion is found for peripheral collision of atomic nuclei described in the framework of the molecular dynamics. Similarly as for chaotic billiards, the long free paths are the source of the long-time correlations and the anomalous diffusion. Consequences of this finding for the energy dissipation in deep-inelastic collisions and the dynamics of fission in hot nuclei are discussed (authors). 30 refs., 2 figs

  4. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  5. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  6. Anomalous Nernst Effects of [CoSiB/Pt] Multilayer Films

    OpenAIRE

    Kelekci, O.; Lee, H. N.; Kim, T. W.; Noh, H.

    2013-01-01

    We report a measurement for the anomalous Nernst effects induced by a temperature gradient in [CoSiB/Pt] multilayer films with perpendicular magnetic anisotropy. The Nernst voltage shows a characteristic hysteresis which reflects the magnetization of the film as in the case of the anomalous Hall effects. With a local heating geometry, we also measure the dependence of the anomalous Nernst voltage on the distance d from the heating element. It is roughly proportional to 1/d^1.3, which can be c...

  7. Occupational exposure in small and medium scale industry with specific reference to heat and noise

    Directory of Open Access Journals (Sweden)

    Lakhwinder Pal Singh

    2010-01-01

    Full Text Available This study was undertaken to assess heat and noise exposure and occupational safety practices in small and medium scale casting and forging units (SMEs of Northern India. We conducted personal interviews of 350 male workers of these units through a comprehensive questionnaire and collected information on heat and noise exposure, use of protective equipment, sweat loss and water intake, working hour. The ambient wet bulb globe temperature (WBGT index was measured using quest temp 34/36o area heat stress monitor. A-weighted Leq ambient noise was measured using a quest sound level meter "ANSI SI. 43-1997 (R 2002 type-1 model SOUNDPRO SE/DL". We also incorporated OSHA norms for hearing conservation which include - an exchange rate of 5dB(A, criterion level at 90dB(A, criterion time of eight hours, threshold level is equal to 80dB(A, upper limit is equal to 140dB(A and with F/S response rate. Results of the study revealed that occupational heat exposure in melting, casting, forging and punching sections is high compared to ACGIH/NIOSH norms. Ambience noise in various sections like casting / molding, drop forging, cutting presses, punching, grinding and barreling process was found to be more than 90dB(A. About 95% of the workers suffered speech interference where as high noise annoyance was reported by only 20%. Overall, 68% workers were not using any personal protective equipment (PPE. The study concluded that the proportion of SME workers exposed to high level heat stress and noise (60 - 72 hrs/week is high. The workers engaged in forging and grinding sections are more prone to noise induced hearing loss (NIHL at higher frequencies as compared to workers of other sections. It is recommended that there is a strong need to implement the standard of working hours as well as heat stress and noise control measures.

  8. Specifics of forced-convective heat transfer in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Saltanov, A.E.; Mann, B.D.; Harvel, C.G.; Pioro, D.I., E-mail: Eugene.saltanov@hotmail.com [University of Ontario Institute of Technology, Oshawa, ON (Canada)

    2015-07-01

    The appropriate description of heat-transfer to coolants at supercritical state is one of the main challenges in development of supercritical-fluids applications for the Generation-IV reactors. In this paper the basis for comparison of relatively recent experimental data on supercritical carbon dioxide (CO{sub 2}) obtained at facilities of the Korea Atomic Energy Research Institute (KAERI) and Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL) is discussed, and a preliminary heat-transfer correlation for joint CRL and KAERI datasets is presented. (author)

  9. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  10. Multislice CT imaging of anomalous coronary arteries

    International Nuclear Information System (INIS)

    Shi Heshui; Aschoff, Andrik J.; Brambs, Hans-Juergen; Hoffmann, Martin H.K.

    2004-01-01

    The purpose of the present study was to evaluate the role of 16 multislice computed tomography (MSCT) to identify the origin of anomalous coronary arteries and to confirm their anatomic course in relation to the great vessels. Accuracy of coronary artery disease (CAD) detection was a secondary aim and was tested with conventional angiograms (CA) serving as standard of reference. Two hundred and forty-two consecutive patients referred for noninvasive coronary CT imaging were reviewed for the study. Sixteen patients (6.6%) with anomalous coronary arteries were detected and included as the study group. MSCT and CA images were analyzed in a blinded fashion for accuracy of anomalous artery origin and path detection. Results were compared in a secondary consensus evaluation. Accuracy ratios to detect CAD with MSCT in all vessels were calculated. Coronary anomalies for all 16 patients were correctly displayed on MSCT. CA alone achieved correct identification of the abnormality in only 53% (P=0.016). Sensitivity and specificity of MSCT to detect significantly stenosed vessels was 90 and 92%. 16-MSCT is accurate to delineate abnormally branching coronary arteries and allows sufficiently accurate detection of obstructive coronary artery disease in distal branches. It should therefore be considered as a prime non-invasive imaging tool for suspected coronary anomalies. (orig.)

  11. Specific power reduction of an ion source due to heating and cathode sputtering of electrodes

    International Nuclear Information System (INIS)

    Hamilton, G.U.; Semashko, N.N.

    The potentialities and limitations of the water-cooled ion-optical system of the ion source designed for continuous operation of the high-power neutral beam injector are determined. The following problems are analyzed: thermal expansion and deformation of electrodes, electrode sputtering as a result of bombardment, and heat transfer to turbulent flow of water

  12. Arabidopsis non-specific phospholipase C1: Characterization and its involvement in response to heat stress

    Czech Academy of Sciences Publication Activity Database

    Krčková, Zuzana; Brouzdová, Jitka; Daněk, Michal; Kocourková, Daniela; Rainteau, D.; Ruelland, E.; Valentová, O.; Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    Roč. 6, NOV 4 (2015), s. 928 ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP501/12/1942 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * Diacylglycerol * Heat stress Subject RIV: ED - Physiology Impact factor: 4.495, year: 2015

  13. Using Experts to Validate an Animal Specific Heat Stress Model for Feedlot Cattle

    Science.gov (United States)

    The extreme effects of heat stress in a feedlot situation can cause losses exceeding 5% of all the cattle on feed in a single feedlot. These losses can be very devastating to a localized area of feedlot producers. Animal stress is a result of the combination of three different components: environm...

  14. Transgenerational effects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin.

    Science.gov (United States)

    Groot, Maartje P; Kubisch, Alexander; Ouborg, N Joop; Pagel, Jörn; Schmid, Karl J; Vergeer, Philippine; Lampei, Christian

    2017-08-01

    Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. An examination of the estimation method for the specific heat of TRU dioxides: evaluation with PuO2

    International Nuclear Information System (INIS)

    Serizawa, H.; Arai, Y.

    2000-01-01

    This work set out to study the estimation method of the specific heat, C p , for the dioxides of the transuranic elements. C p was evaluated as a sum of three terms, contributions of phonon vibration, C ph , dilation, C d , and Schottky specific heat, C s , C ph and C d were calculated using the Debye temperature and Grueneisen constant obtained by high-temperature X-ray diffractometry. The method was applied to PuO 2 . The estimated C p was in good accordance with the reported one measured using a calorimeter. The error in the estimation was small compared to that which arises from using the conventional method based on C p (298) and the melting temperature. (orig.)

  16. Low-temperature specific heat measurements on the NdCoxFe1-xO3 system

    International Nuclear Information System (INIS)

    Bartolome, F.; Kuz'min, M.D.; Bartolome, J.; Blasco, J.; Garcia, J.

    1995-01-01

    Low-temperature specific heat measurements have been carried out on the NdCo x Fe 1-x O 3 perovskite system (x=0, 0.25, 0.5, 0.9, 1). Magnetic ordering of Nd 3+ ions have been observed in NdCoO 3 (at 1.20 K) and NdFeO 3 (at 1.05 K). The studied dilutions, unlike the pure Fe or Co compounds, do not show a magnetic order of the Nd ions due to the stronger molecular field caused by decompensation of the internal field upon the introduction of the (Co 3+ ) magnetic vacancies in the antiferromagnetically ordered Fe subsystem. The specific heat curve of the system at x=0.9 resembles spin-glass behaviour. ((orig.))

  17. Low-temperature specific heat of the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78)

    International Nuclear Information System (INIS)

    Garoche, P.; Veyssie, J.J.; Lienard, A.; Rebouillat, J.P.

    1979-01-01

    Results of specific heat measurements, between 0.3K and 10 K in magnetic fields up to 75 kOe, on the 'nearly ferromagnetic' amorphous alloy Ysub(0.22)Nisub(0.78) are reported. The results, especially the magnetic field dependence, exclude any appreciable contribution from uniform paramagnons. In contrast a quantitative analysis is obtained in terms of superparamagnetic clusters, demonstrating that the onset of ferromagnetism, as a function of concentration, is inhomogeneous in this amorphous metallic system. (author)

  18. Quantum single oscillator with a (mod X) sup(#betta#) - type potential : energy eigenvalues and specific heat

    International Nuclear Information System (INIS)

    Mariz, A.M.; Rio Grande do Norte Univ., Natal; Tsallis, C.

    1982-01-01

    The quantum single one-dimensional oscillator associated with a potential proportional to /X/ sup(#betta#) (#betta# > 0) is discussed. The exact energy eigenvalues recently established by Turschner are further elaborated and convenient exact as well as asymptotic relations are exhibited. The exact T → 0 and T → infinite specific heat is discussed and numerical results for typical values of #betta# and intermediate temperature are presented. (Author) [pt

  19. Magnetic determination of the specific heat jump at Tc in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Triscone, G.; Junod, A.; Muller, J.

    1989-01-01

    Magnetization measurements M(H,T) were performed on a polycrystalline YBa 2 Cu 3 O 7 - δ sample in the reversible region near T c . Thermodynamic relations are used to address the question: is the specific heat jump an intrinsic characteristic property of the electron system at the superconducting transition? It is shown that the measured data up to 8T (rather than extrapolated to H c2 ) already yield 45% of the calorimetric jump

  20. Thermal fluctuations in the classical superconductor Nb3Sn from high-resolution specific-heat measurements

    International Nuclear Information System (INIS)

    Lortz, Rolf; Wang Yuxing; Junod, Alain; Toyota, Naoki

    2007-01-01

    The range of thermal fluctuations in 'classical' bulk superconductors is extremely small and especially in low-fields hardly experimentally accessible. With a new type of calorimeter we were able to detect a tiny lambda anomaly in the specific-heat of the superconductor Nb 3 Sn within a narrow temperature range around the H c2 line. We show that the evolution of the anomaly as a function of magnetic field follows scaling laws expected in the presence of critical thermal fluctuations

  1. Crystal-field study of magnetization and specific heat properties of frustrated pyrochlore Pr2Zr2O7

    International Nuclear Information System (INIS)

    Alam, J.; Jana, Y.M.; Biswas, A. Ali

    2016-01-01

    The experimental results of temperature dependent dc magnetic susceptibility, field dependent isothermal magnetization, magnetic specific heat and entropy of the pyrochlore Pr 2 Zr 2 O 7 are simulated and analyzed using appropriate D 3d crystal-field (CF) and anisotropic molecular field tensors at Pr-sites in the self-consistent mean-field approach involving four magnetically non-equivalent rare-earth spins on the tetrahedral unit of the pyrochlore structure. CF level pattern and wave-functions of the ground 3 H 4 multiplet of the Pr 3+ ions are obtained considering intermediate coupling between different Russell-Saunders terms of the 4f 2 electronic configurations of Pr-ion and J-mixing effects. CF analysis shows that the CF ground-state of the Pr 3+ ion in Pr 2 Zr 2 O 7 is a well-isolated doublet, with significant admixtures of terms coming from |M J =±4〉 and |M J =±1〉, and the Pr-spins are effectively Ising-like along the local <111> axes. Magnetic specific heat in zero-field is simulated by considering a temperature dependence of the exchange splitting of the ground doublet. - Highlights: • Full CF diagonalization using intermediate coupling and J-mixing. • Pr-spins are Ising-like along local [111] axis. • Magnetic specific heat is due to temperature dependence exchange splitting of ground CF doublet.

  2. Low-temperature specific heat of the quasi-two-dimensional charge-density wave compound KMo6O17

    Science.gov (United States)

    Wang, Junfeng; Xiong, Rui; Yin, Di; Li, Changzhen; Tang, Zheng; Wang, Ququan; Shi, Jing; Wang, Yue; Wen, Haihu

    2006-05-01

    Low temperature specific heat (Cp) of quasi-two-dimensional charge-density wave (CDW) compound KMo6O17 has been studied by a relaxation method from 2to48K under zero and 12T magnetic fields. The results show that no specific heat anomaly is found at 16K under both zero and 12T magnetic fields, although an anomaly is clearly observed in the resistivity and magnetoresistance measurements. From the data between 2 and 4K , the density of states at Fermi level is estimated as 0.2eV-1permolecule and the Debye temperature is extracted to be 418K . A bump appearing in Cp/T3 is found between 4 and 48K centered around 12.5-15K , indicating that the phason excitations contribute to the total specific heat similarly as in quasi-one-dimensional CDW conductors. Using a modified Debye model, a pinning frequency of 0.73THz for KMo6O17 is estimated from the phason contribution.

  3. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    Science.gov (United States)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  4. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  5. Specific heat of superconducting metallic glasses at low temperatures; Spezifische Waerme von supraleitenden metallischen Glaesern bei tiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, Andreas

    2017-11-15

    In the framework of this thesis we performed, for the first time, an in-depth investigation of the thermodynamic properties of superconducting bulk metallic glasses (BMGs) by means of specific heat measurements in the temperature range between 25 mK and 300 K. To determine the specific heat we used a setup based on the well-established relaxation method. Furthermore we developed a novel micro-fabricated platform to measure superconducting, mg-sized samples down to T=5 mK. The platform temperature is measured by a metallic paramagnetic Ag:Er sensor that is inductively coupled to the input coil of a dc-SQUID by means of a micro-structured gradiometric meander coil. Thereby, we reached a temperature resolution of less than 30 nK/√(Hz) and a very low addenda heat capacity below 200 pJ/K at 50 mK. Connecting the obtained results with thermal conductivity data we were able to consistently model the various degrees of freedom in these BMGs and their interaction mechanisms: For temperatures T>2 K, we find pronounced low temperature anomalies in the phononic specific heat, which are attributed to localized harmonic vibration modes. In the superconducting state close to T{sub C}, where interactions of atomic tunneling systems with quasi-particles need to be taken into account, both measurements agree well with BCS-theory predictions. Far below T{sub C} we find good agreement between the data and the standard tunneling model predictions.

  6. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  7. Nanocalorimeter platform for in situ specific heat measurements and x-ray diffraction at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Willa, K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Diao, Z. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Laboratory of Mathematics, Physics and Electrical Engineering, Halmstad University, P.O. Box 823, SE-301 18 Halmstad, Sweden; Campanini, D. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Welp, U. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Divan, R. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Hudl, M. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden; Islam, Z. [X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Kwok, W. -K. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA; Rydh, A. [Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden

    2017-12-01

    Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-delta crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.

  8. Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory

    International Nuclear Information System (INIS)

    Sasaki, Shosuke

    2009-01-01

    The specific heat of liquid helium was calculated theoretically in the Landau theory. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau theory by applying temperature dependence of the elementary excitation energy. As well known, many-body system has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has a nonlinear form for the number distribution function. The function form can be determined using the excitation energy at zero temperature and the latent heat per helium atom at zero temperature. The nonlinear form produces new temperature dependence for the excitation energy from Bose condensate. We evaluate the specific heat using iteration method. The calculation results of the second iteration show good agreement with the experimental data in the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy at 1.1 K.

  9. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  10. Computer simulations of anomalous transport

    International Nuclear Information System (INIS)

    Lee, W.W.; Okuda, H.

    1980-07-01

    Numerical plasma simulations have been carried out to study: (1) the turbulent spectrum and anomalous plasma transport associated with a steady state electrostatic drift turbulence; and (2) the anomalous energy transport of electrons due to shear-Alfven waves in a finite-β plasma. For the simulation of the steady state drift turbulence, it is observed that, in the absence of magnetic shear, the turbulence is quenched to a low level when the rotational transform is a rational number, while the turbulent level remains high for an irrational rotational transform

  11. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  12. Manufacture of a heat-resistant alloy with modified specifications for HTGR structural applications

    International Nuclear Information System (INIS)

    Sahira, K.; Kondo, T.; Takeiri, T.

    1984-01-01

    A method of manufacturing a nuclear grade nickel-base heat-resistant alloy in application to heliumcooled reactor primary circuit components has been developed. The Hastelloy-XR alloy, a version of Hastelloy-X, was made available by combining the basic studies of the oxidation behavior of Hastelloy-X and the improvement of manufacturing techniques. In the primary and remelting steps, the choice of appropriate processes was made by performing numerical analyses of the statistical deviation of both chemical composition and the products' mechanical properties. The feasibility of making larger electroslag remelting ingots with reasonable control of macrosegregation was examined by the calculation of a molten metal pool shape during melting. The hot workability of Hastelloy-XR was confirmed to be equivalent to that of Hastelloy-X and the importance of controlling the thermal and mechanical processes more closely was stressed in obtaining a higher level of quality assurance for the nuclear applications. The possibility of enhancing the high-temperature mechanical performance of Hastelloy-XR was suggested based on the preliminary test results with the heats manufactured with controlled boron content

  13. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  14. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock.

    Directory of Open Access Journals (Sweden)

    Mo-bin Cheng

    2014-12-01

    Full Text Available Histone lysine (K residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs counteract the activity of methyl-transferases and remove methyl group(s from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1 specifically phosphorylates KDM3A at Ser264 (p-KDM3A, which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress.

  15. Fractional charge and anomalous commutators

    International Nuclear Information System (INIS)

    Frishman, Y.; Gepner, D.

    1983-06-01

    Non-integer charges on topological objects in the presence of fermions are further investigated. The connection with anomalous commutators is discussed. The reason for the identical results in two-dimensional solutions and four-dimensional monopoles is pointed out. (author)

  16. Specific heat of heavy-fermion CePd{sub 2}Si{sub 2} in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sheikin, I. [University of Geneva, DPMC, Geneva (Switzerland)]. E-mail: Ilya.Sheikin@physics.unige.ch; Wang, Y.; Bouquet, F.; Junod, A. [University of Geneva, DPMC, Geneva (Switzerland); Lejay, P. [CRTBT, CNRS, Grenoble (France)

    2002-07-22

    We report specific heat measurements on the heavy-fermion compound CePd{sub 2}Si{sub 2} in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T{sub N} {approx} 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T{sub N} is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T{sub N}, an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, {gamma}{sub 0}, extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T{sub N} and the magnetic entropy at T{sub N} scale as [1-(B/B{sub 0}){sup 2}] for B parallel a, suggesting the disappearance of antiferromagnetism at B{sub 0}{approx}42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor.

  17. Magnetic field dependence of the specific heat of heavy-fermion YbCu4.5

    International Nuclear Information System (INIS)

    Amato, A.; Fisher, R.A.; Phillips, N.E.; Jaccard, D.; Walker, E.

    1990-03-01

    The specific heat of a polycrystalline sample of YbCu 4.5 has been measured between 0.3 and 20K in magnetic fields to 7T. At zero field a minimum in C/T is observed near 11K. Below that temperature C/T increases and below 0.5K exhibits an upturn ascribed to a hyperfine contribution. The increase in C/T below 11K is reduced by a factor 1.5 for H = 7T, whereas the hyperfine term is enhanced due to the contribution of the 63 Cu and 65 Cu and nuclei. 5 refs., 3 figs

  18. Model for the orientation, magnetic field, and temperature dependence of the specific heat of CeCu6

    International Nuclear Information System (INIS)

    Edelstein, A.S.

    1988-01-01

    The results of a model calculation of the orientation, magnetic field, and temperature dependence of the specific heat C of CeCu 6 are found to be in good agreement with the single-crystal data of Amato et al. The model incorporates both the Kondo and crystal-field effects. It is suggested that the low-temperature Wilson's ratio CTchi, where chi is the susceptibility, may not change in an applied field H and that both CT and chi at low temperatures as a function of H may be proportional to the many-body density of states at the energy μH

  19. Behavior of specific heat and self diffusion coefficient of sodium near transition temperature: a molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, N.; Khan, G.

    1990-09-01

    In this report the author used of a very useful technique of simulation and applied it to successfully for determining the various properties of sodium, both in liquid and solid phase near transition point. As a first step the determination of specific heat and diffusion coefficient have been carried out. In liquid state the molecular dynamics (MD) values calculated matched the experimental data. But in solid state the diffusion coefficient obtained were not consistent with the one expected for a solid, rather the values obtained suggested that sodium remained in liquid state even below the melting point. (A.B.)

  20. Chlamydia trachomatis and chlamydial heat shock protein 60-specific antibody and cell-mediated responses predict tubal factor infertility

    DEFF Research Database (Denmark)

    Tiitinen, A.; Surcel, H.-M.; Halttunen, M.

    2006-01-01

    60)-specific immunoglobulin G (IgG) antibodies were analysed using enzyme-linked immunosorbent assay (ELISA) kits. Proliferative reactivity of peripheral blood mononuclear cells was studied in vitro against Chlamydia elementary body (EB) and recombinant CHSP60 antigens. RESULTS: C. trachomatis......BACKGROUND: To evaluate the role of Chlamydia trachomatis-induced humoral and cell-mediated immune (CMI) responses in predicting tubal factor infertility (TFI). METHODS: Blood samples were taken from 88 women with TFI and 163 control women. C. trachomatis and chlamydial heat shock protein 60 (CHSP...

  1. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    Science.gov (United States)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  2. Thermal fluctuations in the classical superconductor Nb{sub 3}Sn from high-resolution specific-heat measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lortz, Rolf [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland)], E-mail: Rolf.Lortz@physics.unige.ch; Wang Yuxing; Junod, Alain [Department of Condensed Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Toyota, Naoki [Physics Department, Graduate School of Science, Tohoku University, 980-8571 Sendai (Japan)

    2007-09-01

    The range of thermal fluctuations in 'classical' bulk superconductors is extremely small and especially in low-fields hardly experimentally accessible. With a new type of calorimeter we were able to detect a tiny lambda anomaly in the specific-heat of the superconductor Nb{sub 3}Sn within a narrow temperature range around the H{sub c2} line. We show that the evolution of the anomaly as a function of magnetic field follows scaling laws expected in the presence of critical thermal fluctuations.

  3. 16 kDa heat shock protein from heat-inactivated Mycobacterium tuberculosis is a homodimer - suitability for diagnostic applications with specific llama VHH monoclonals.

    Directory of Open Access Journals (Sweden)

    Saurabh K Srivastava

    Full Text Available BACKGROUND: The 16 kDa heat shock protein (HSP is an immuno-dominant antigen, used in diagnosis of infectious Mycobacterium tuberculosis (M.tb. causing tuberculosis (TB. Its use in serum-based diagnostics is limited, but for the direct identification of M.tb. bacteria in sputum or cultures it may represent a useful tool. Recently, a broad set of twelve 16 kDa specific heavy chain llama antibodies (VHH has been isolated, and their utility for diagnostic applications was explored. METHODOLOGY/PRINCIPAL FINDINGS: To identify the epitopes recognized by the nine (randomly selected from a set of twelve 16 kDa specific VHH antibodies distinct VHH antibodies, 14 overlapping linear epitopes (each 20 amino acid long were characterized using direct and sandwich ELISA techniques. Seven out of 14 epitopes were recognized by 8 out of 9 VHH antibodies. The two highest affinity binders B-F10 and A-23 were found to bind distinct epitopes. Sandwich ELISA and SPR experiments showed that only B-F10 was suitable as secondary antibody with both B-F10 and A-23 as anchoring antibodies. To explain this behavior, the epitopes were matched to the putative 3D structure model. Electrospray ionization time-of-flight mass spectrometry and size exclusion chromatography were used to determine the higher order conformation. A homodimer model best explained the differential immunological reactivity of A-23 and B-F10 against heat-treated M.tb. lysates. CONCLUSIONS/SIGNIFICANCE: The concentrations of secreted antigens of M.tb. in sputum are too low for immunological detection and existing kits are only used for identifying M.tb. in cultures. Here we describe how specific combinations of VHH domains could be used to detect the intracellular HSP antigen. Linked to methods of pre-concentrating M.tb. cells prior to lysis, HSP detection may enable the development of protein-based diagnostics of sputum samples and earlier diagnosis of diseases.

  4. Enhanced specific absorption rate of bi-magnetic nanoparticles for heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, Mohaned; Hempelmann, Rolf, E-mail: r.hempelmann@mx.uni-saarland.de

    2017-02-15

    Truncated octahedron bi-magnetic core/shell nanoparticles of Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4} with different size distributions have been synthesized, and their structural and magnetic properties have been studied. The structure and morphology of the core/shell nanostructures were established by using X-ray diffraction, and transmission electron microscopy. Dark field-TEM and X-ray photoelectron spectroscopy results confirmed the formation of bi-magnetic core/shell nanoparticles. The synthesized nanoparticles are superparamagnetic at room temperature. The Curie temperature increases with the increase of particle size from 360 K to 394 K. The experimental results showed that core/shell nanoparticles have a higher specific absorption rate compared to the core ones. These nanoparticles are interfacial exchange coupled between hard and soft magnetic phases. We demonstrated that the specific absorption rate could be tuned by the concentration of precursor and the synthesis time. - Highlights: • Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4} nanoparticles were synthesized by seed-mediated growth method. • Exchange-coupling between magnetic hard and soft phase of the magnetic nanoparticles affects the specific absorption rate. • The specific absorption rate could be tuned by the concentration of precursor and the synthesis time. • An increase of the core/shell magnetic nanoparticles size resulted in the increase of Curie temperature.

  5. Flow-induced vibration and fretting-wear specifications to ensure steam-generator and heat exchanger lifetime performance

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2008-01-01

    The current interest in refurbishment, life extension and new-build activity has meant a renewed emphasis on technical specifications that will ensure improved reliability and longer life. Preventing vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. The specifications must be firmly based on experimental data and field inspections. In addition, the specifications must be supported by theoretical analyses and fundamental scaling correlations, to cover conditions and geometries over the wide range applicable to existing components and probable future designs. The specifications are expected to evolve to meet changing industry requirements. This paper outlines the steps required to generate and support design specifications, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  6. Improvement of stability of Nb3 Sn superconductors by introducing high specific heat substances

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Li, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zlobin, A. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Peng, X. [Unlisted, US, OH

    2018-01-24

    High-Jc Nb3Sn conductors have low stability against perturbations, which accounts for the slow training rates of high-field Nb3Sn magnets. While it is known that adding substances with high specific heat (C) into Nb3Sn wires can increase their overall specific heat and thus improve their stability, there has not been a practical method that is compatible with the fabrication of long-length conductors. In this work, we put forward a scheme to introduce such substances to distributed-barrier Nb3Sn wires, which adds minimum difficulty to the wire manufacturing process. Multifilamentary wires using a mixture of Cu and high-C Gd2O3 powders have been successfully fabricated along this line. Measurements showed that addition of Gd2O3 had no negative effects on residual resitivity ratio or non-Cu Jc, and that flux jumps were remarkably reduced, and minimum quench energy values at 4.2 K, 14 T were increased by a factor of three, indicating that stability was significantly improved. We also discussed the influences of the positioning of high-C substances and their thermal diffusivity on their effectiveness in reducing the superconductor temperature rise against perturbations. Based on these results, we proposed an optimized conductor architecture to maximize the effectiveness of this approach.

  7. A broad set of different llama antibodies specific for a 16 kDa heat shock protein of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Anke K Trilling

    Full Text Available BACKGROUND: Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis. METHODOLOGY/PRINCIPAL FINDINGS: Antibodies for Mycobacterium tuberculosis (M. tb recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA tests and soluble antigen by surface plasmon resonance (SPR analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp. The highest affinity VHH had a dissociation constant (KD of 4 × 10(-10 M. CONCLUSIONS/SIGNIFICANCE: A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria.

  8. Evaluation of high specific-heat ceramic for regenerator use at temperatures between 2-30 K

    Science.gov (United States)

    Lawless, W. N.

    1979-01-01

    Specific heat, thermal conductivity (both in the range 2-30 K), and microhardness data were measured on the ceramics labelled LS-8, LS-8A, and LS-8A doped with CsI, SnCl2, and AgCl. A work hardened sample of LS-8A was also studied in an effort to determine the feasibility of using these types of LS-8 materials to replace Pb spheres in the regenerator of the JPL cryocooler. The LS-8A materials are all more than an order of magnitude harder than Pb, and the dopants do not significantly improve the hardness. However, the SnCl2 dopant has a remarkable effect in improving the specific heat and thermal conductivity of LS-8A. The SnCl2 doping level which maximized the regenerator enthalpy change in going from an unloaded to a loaded condition was found to be 0.2 percent SnCl2 in LS-8A. It was also found that the enthalpy change for a regenerator employing the LS-8A material is more than three times larger than for the Pb spheres case. The use of rods, rather than spheres, of optimally doped LS-8A in regenerators is discussed.

  9. Influence of tribomechanical micronization and hydrocolloids addition on enthalpy and apparent specific heat of whey protein model solutions

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2002-01-01

    Full Text Available Knowledge of thermophysical properties, especially the phase transitions temperature, specific heat and enthalpy, are essential in defining the freezing process parameters as well as storage conditions of frozen food. In this work thermophysical properties of 10% model solutions prepared with 60% whey protein concentrate (WPC with various hydrocolloids addition (HVEP, YO-EH, YO-L i YO-M were investigated. Powdered whey protein concentrate was treated in equipment for tribomechanical micronization and activation at 40000 rpm (Patent: PCT/1B99/00757 just before model solutions preparation. Particle size analysis was performed using Frich –laser particle sizer “analysette 22”. The phase transition temperatures were determined by differential thermal analysis (DTA, while specific heat and enthalpy were calculated according to several mathematical equations. The results have shown that, due to tribomechanical treatment, certain changes in thermophysical and energetic properties of materials occurred. Tribomechanical treatment affects changes in granulometrical composition of WPC which result in higher abilities of reactions with hydrocolloids in model solutions and significant changes in thermophysical properties of the mentioned models.

  10. Investigation of structure, specific heat and superconducting transition in Mg1-xAlxB2(x∼0.5)

    International Nuclear Information System (INIS)

    Xiang, J.Y.; Zheng, D.N.; Lang, P.L.; Zhao, Z.X.; Luo, J.L.

    2004-01-01

    We have carried out structure, magnetic and specific heat measurements on aluminum doped magnetism diboride samples Mg 1-x Al x B 2 in order to investigate possible superconductivity at the x=0.5 concentration. A diamagnetic signal was observed in magnetization measurements accompanied by a decrease in resistivity. However, the diamagnetic signal was extremely small as compared to what expected from full diamagnetism. Also, the transition both in magnetization and resistance was very broad. We propose that the diamagnetism is due to a very small amount of superconducting phase such as MgB 2 and the resistive transition is due to the percolation behavior. Furthermore, we performed specific heat measurements, which are considered as a tool to investigate the bulk nature of superconducting transition, on the x=0.5 sample to verify the existence of superconductivity. We observed no evident superconducting transition in the entire temperature region from 2 to 300 K. The undistinguishable data between 0 and 5 T magnetic fields also indicated the absence of bulk superconductivity in the x=0.5 sample

  11. Unusual effects of anisotropy on the specific heat of ceramic and single crystal MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, F.; Wang, Y.; Sheikin, I.; Toulemonde, P.; Eisterer, M.; Weber, H.W.; Lee, S.; Tajima, S.; Junod, A

    2003-03-01

    The two-gap structure in the superconducting state of MgB{sub 2} gives rise to unusual thermodynamic properties which depart markedly from the isotropic single-band BCS model, both in their temperature- and field dependence. We report and discuss measurements of the specific heat up to 16 T on ceramic, and up to 14 T on single crystal samples, which demonstrate these effects in the bulk. The behavior in zero field is described in terms of two characteristic temperatures, a crossover temperature T{sub c,{pi}} congruent with 13 K, and a critical temperature T{sub c}=T{sub c,{sigma}} congruent with 38 K, whereas the mixed-state specific heat requires three characteristic fields, an isotropic crossover field {mu}{sub 0}H{sub c2,{pi}} congruent with 0.35 T, and an anisotropic upper critical field with extreme values {mu}{sub 0}H{sub c2,{sigma}}{sub ,c} congruent with 3.5 T and {mu}{sub 0}H{sub c2,{sigma}}{sub ,ab} congruent with 19 T, where the indexes {pi} and {sigma} refer to the three-dimensional and two-dimensional sheets of the Fermi surface. Irradiation-induced interband scattering tends to move the gaps toward a common value, and increases the upper critical field up to {approx}28 T when T{sub c} congruent with 30 K.

  12. Melting of the flux line lattice observed by specific heat experiments in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Roulin, M.; Junod, A.; Erb, A.; Walker, E.

    1996-01-01

    High resolution adiabatic specific heat experiments on YBa 2 Cu 3 O 7-δ (0≤δ≤0.05) are performed in magnetic fields from 0 to 14 T (B parallel c and B perpendicular c). In a 0.3 gram, twinned crystal with strong pinning, a step is consistently observed at the melting temperature T m of the vortex solid up to a critical point that depends on δ. The field B m and step temperature T m obey the relation B m =B m0 (δ)(1-T m /T c ) ∼4/3 . The anisotropy of B m and that of the upper critical field B c2 are found to be equal. Alternatively, in a 18 mg, twinned crystal of high purity with low pinning, first-order-like specific heat peaks are observed on the melting line from 8 to 14 T. The entropy under these peaks is ∼0.5 k B /vortex/bilayer. These characteristic features are attributed to the melting of a vortex glass in the former case and that of a vortex lattice in the latter case

  13. Magnetic effects in anomalous dispersion

    International Nuclear Information System (INIS)

    Blume, M.

    1992-01-01

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ''forward scattering'' properties such as the Faraday effect and circular dichroism

  14. Faraday anomalous dispersion optical tuners

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  15. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  16. Schwinger Model Mass Anomalous Dimension

    CERN Document Server

    Keegan, Liam

    2016-06-20

    The mass anomalous dimension for several gauge theories with an infrared fixed point has recently been determined using the mode number of the Dirac operator. In order to better understand the sources of systematic error in this method, we apply it to a simpler model, the massive Schwinger model with two flavours of fermions, where analytical results are available for comparison with the lattice data.

  17. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  18. Specific features of the electrophysical parameters of NTD Si treated under different conditions of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gaidar, G. P., E-mail: gaydar@kinr.kiev.ua [National Academy of Sciences of Ukraine, Institute for Nuclear Research (Ukraine); Baranskii, P. I. [National Academy of Sciences of Ukraine, Lashkaryov Institute of Semiconductor Physics (Ukraine)

    2016-06-15

    The effect of thermal annealing in the temperature range 800 ⩽ T{sub ann} ⩽ 1200°C and of two cooling rates (v{sub cl} = 1 and 15°C min{sup –1}) upon a change in the concentration of charge carriers in the conduction band, their mobility, and tensoresistance in n-Si crystals doped by nuclear transmutation and doped with phosphorus impurity via the melt (during growth by the Czochralski method) was investigated. It is found that, after annealing of all of the crystals at T{sub ann} = 1050–1100°C, the concentration of charge carriers is increased by a factor of 1.3–1.7 compared to the initial concentration (irrespective of the method of doping). The specific annealing-temperature-dependent effect of cooling with a rate of 15°C min{sup –1} on the properties of transmutation-doped n-Si:P crystals is detected.

  19. Measurement of the enthalpy and specific heat of a Be2C-graphite-UC2 reactor fuel material to 19800K

    International Nuclear Information System (INIS)

    Roth, E.P.

    1980-01-01

    The enthalpy and specific heat of a Be 2 C-graphite-UC 2 composite nuclear fuel material were measured over the temperature range 300 to 1980 0 K using differential scanning calorimetry and liquid argon vaporization calorimetry. The fuel material measured was developed at Sandia National Laboratories for use in pulsed test reactors. The material is a hot-pressed composite consisting of 40 vol % Be 2 C, 49.5 vol % graphite, 3.5 vol % UC 2 and 7.0 vol % void. The specific heat was measured with the differential scanning calorimeter over the temperature range 300 to 950 0 K while the enthalpy was measured over the range 1185 to 1980 0 K with the liquid argon vaporization calorimeter. The normal spectral emittance at a wavelength of 6.5 x 10 -5 cm was measured over the experimental temperature range. The combined experimental enthalpy data were fit using a spline routine and differentiated to give the specific heat. Comparison of the measured specific heat of the composite to the specific heat calculated by summing the contributions of the individual components indicates that the specific heat of the Be 2 C component differs significantly from literature values and is approximately 0.6 cal/g-K (2.5 x 10 3 J/Kg-K) for temperatures above 1000 0 K

  20. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  1. Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles—Water Based Nanofluid

    Directory of Open Access Journals (Sweden)

    Tze Siong Chew

    2015-07-01

    Full Text Available Nanofluid has attracted great attention due to its superior thermal properties. In this study, chemical oxidative polymerization of aniline was carried out in the presence of dodecylbenzenesulfonic acid (DBSA as a dopant. Particles of DBSA-doped polyaniline (DBSA-doped PANI with the size range of 15 to 50 nm were obtained, as indicated by transmission electron microscope (TEM. Results of ultra violet-visible (UV-Vis absorption and Fourier transform infrared (FTIR spectroscopies as well as thermogravimetric analysis showed that PANI nanoparticles were doped with DBSA molecules. The doping level found was 36.8%, as calculated from elemental analysis data. Thermal conductivity of water was enhanced by 5.4% when dispersed with 1.0 wt% of DBSA-PANI nanoparticles. Specific heat capacity of water-based nanofluids decreased with increasing amount of DBSA-PANI nanoparticles.

  2. Specific heat of Nb3Sn and V2Zr compounds irradiated with high fluences fast neutrons

    International Nuclear Information System (INIS)

    Kar'kin, A.E.; Mirmel'shtejn, A.V.; Arkhipov, V.E.; Goshchitskij, B.N.

    1987-01-01

    Specific heat of Nb 3 Sn (structure A15) and V 2 Zr (C15) specimens irradiated with high fluences of bast neutrons has been measured. It is shown that in these compounds the temperature reduction of superconducting transition T c under neutron irradiation is accompanied with high decrease of N(E F ). Phonon spectrum of the irradiated V 2 Zr (amorphous phase) on the whole is harder, than at an initial state, for irradiated Nb 3 Sn state (disordered crystalline structure) phonon spectrum is differ weakly from initial one. General regularities of parameter change of electron and phonon subsystems for A15 compounds investigated here and earlier (V 3 Si, Mo 3 Si, Mo 3 Ge) have been analysed

  3. Self-dual cluster renormalization group approach for the square lattice Ising model specific heat and magnetization

    International Nuclear Information System (INIS)

    Martin, H.O.; Tsallis, C.

    1981-01-01

    A simple renormalization group approach based on self-dual clusters is proposed for two-dimensional nearest-neighbour 1/2 - spin Ising model on the square lattice; it reproduces the exact critical point. The internal energy and the specific heat for vanishing external magnetic field, spontaneous magnetization and the thermal (Y sub(T)) and magnetic (Y sub(H)) critical exponents are calculated. The results obtained from the first four smallest cluster sizes strongly suggest the convergence towards the exact values when the cluster sizes increases. Even for the smallest cluster, where the calculation is very simple, the results are quite accurate, particularly in the neighbourhood of the critical point. (Author) [pt

  4. Pressure dependence of thermal conductivity and specific heat in CeRh2Si2 measured by an extended thermal relaxation method

    Science.gov (United States)

    Nishigori, Shijo; Seida, Osamu

    2018-05-01

    We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.

  5. Neoclassical and anomalous transport in toroidal plasmas with drift-ordered turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1996-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electromagnetic drift wave fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear wave-particle interactions. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. For the microscale fluctuations k perpendicular ρ i ∼ 1 the parallel neoclassical fluxes remain invariant. For mesoscale fluctuations the mixing length fluctuation level with broken symmetry from (weak) shear flows the neoclassical banana-plateau fluxes are affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. The proof of the Onsager symmetry is carried out by splitting the response function up into the even and odd parts under the (t, B) → (-t,-B) transformation and using the self-adjointness of the linearized Landau collision operator and the quasilinear formalism. An explicit calculation of the symmetric transport coefficients is possible when the Krook collision model replaces the Landau collision operator. The importance of low aspect ratio tokamaks and helical systems for experimental investigations of the Onsager symmetries is emphasized

  6. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    Science.gov (United States)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  7. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  8. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity.

    Science.gov (United States)

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-11-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.

  9. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  10. Lattice specific heat for the RMIn5 (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    International Nuclear Information System (INIS)

    Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N.R.; Jorge, G.A.; Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S.; Vildosola, V.; García, D.J.

    2016-01-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn 5 (M=Co, Rh) and for the non-magnetic YMIn 5 and LaMIn 5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn 5 is an excellent approximation to the one of GdCoIn 5 in the full temperature range, for GdRhIn 5 we find a better agreement with LaCoIn 5 , in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn 5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  11. Investigation of the variation of the specific heat capacity of local soil samples from the Niger delta, Nigeria with moisture content

    International Nuclear Information System (INIS)

    Ofoegbu, C.O.; Adjepong, S.K.

    1987-11-01

    Results of an investigation of the variation, with moisture content, of the specific heat capacity of samples of three texturally different types of soil (clayey, sandy and sandy loam) obtained from the Niger delta area of Nigeria, are presented. The results show that the specific heat capacities of the soils studied, increase with moisture content. This increase is found to be linear for the entire range of moisture contents considered (0-25%), in the case of the sandy loam soil while for the clayey and sandy soils the specific heat capacity is found to increase linearly with moisture content up to about 15% after which the increase becomes parabolic. The rate of increase of specific heat capacity with moisture content appears to be highest in the clayey soil and lowest in the sandy soil. It is thought that the differences in the rates of increase of specific heat capacity with moisture content, observed for the soils, reflect the soils' water-retention capacities. (author) 3 refs, 5 figs

  12. Lattice specific heat for the RMIn{sub 5} (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Facio, Jorge I., E-mail: jorge.facio@cab.cnea.gov.ar [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Betancourth, D.; Cejas Bolecek, N.R. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Jorge, G.A. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Vildosola, V. [Centro Atómico Constituyentes, CNEA, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); García, D.J. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-06-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn{sub 5} (M=Co, Rh) and for the non-magnetic YMIn{sub 5} and LaMIn{sub 5} (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn{sub 5} is an excellent approximation to the one of GdCoIn{sub 5} in the full temperature range, for GdRhIn{sub 5} we find a better agreement with LaCoIn{sub 5}, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn{sub 5} (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  13. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  14. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  15. Influence of anomalous transport phenomena on onset of Neoclassical Tearing Modes in tokamaks

    International Nuclear Information System (INIS)

    Konovalov, S.V.; Mikhailovskii, A.B.; Shirokov, M.S.; Ozeki, T.; Takizuka, T.; Hayashi, N.

    2005-01-01

    Influence of anomalous perpendicular heat transport and anomalous ion perpendicular viscosity on conditions of Neoclassical Tearing Mode (NTM) onset is studied theoretically. Series of various parallel transport mechanisms competitive to anomalous cross-island heat transport in formation of the perturbed electron and ion temperature profiles within the island are considered. Analytical solutions to respective heat balance equations were found and perturbed temperature profiles were calculated rigorously. The partial contributions from the plasma electron and ion temperature perturbations in the bootstrap drive of the mode and magnetic curvature effect were then accounted in construction of a generalized transport threshold model of NTMs. Taking into account the curvature effect weakening in the generalized transport threshold model predicts notable improvement of NTM stability. The anomalous perpendicular ion viscosity was shown to modify collisionality dependence of polarization current effect reducing it to the low collisionality limit. The bootstrap drive of NTM in the presence of anomalous perpendicular ion viscosity was found to be dependent on the island rotation frequency and direction. For island rotating in direction of the electron diamagnetic drift viscosity effect was shown to be stabilizing. The role of viscosity effect grows rapidly with rise of the plasma ion temperature. (author)

  16. Partial anomalous pulmonary venous return in Turner syndrome.

    Science.gov (United States)

    van den Hoven, Allard T; Chelu, Raluca G; Duijnhouwer, Anthonie L; Demulier, Laurent; Devos, Daniel; Nieman, Koen; Witsenburg, Maarten; van den Bosch, Annemien E; Loeys, Bart L; van Hagen, Iris M; Roos-Hesselink, Jolien W

    2017-10-01

    The aim of this study is to describe the prevalence, anatomy, associations and clinical impact of partial anomalous pulmonary venous return in patients with Turner syndrome. All Turner patients who presented at our Turner clinic, between January 2007 and October 2015 were included in this study and underwent ECG, echocardiography and advanced imaging such as cardiac magnetic resonance or computed tomography as part of their regular clinical workup. All imaging was re-evaluated and detailed anatomy was described. Partial anomalous pulmonary venous return was diagnosed in 24 (25%) out of 96 Turner patients included and 14 (58%) of these 24 partial anomalous pulmonary venous return had not been reported previously. Right atrial or ventricular dilatation was present in 11 (46%) of 24 partial anomalous pulmonary venous return patients. When studied with advanced imaging modalities and looked for with specific attention, PAPVR is found in 1 out of 4 Turner patients. Half of these patients had right atrial and/or ventricular dilatation. Evaluation of pulmonary venous return should be included in the standard protocol in all Turner patients. Copyright © 2017. Published by Elsevier B.V.

  17. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram, E-mail: ekas2009@buc.edu.in

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe{sub 2}O{sub 3}-NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe{sub 2}O{sub 3}-NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe{sub 2}O{sub 3}-NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe{sub 2}O{sub 3}-NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe{sub 2}O{sub 3}-NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe{sub 2}O{sub 3}-NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe{sub 2}O{sub 3}-NPs could be an environmental risk factor for reproductive disease. - Highlights: • Fe{sub 2}O{sub 3}-NPs caused adverse effects on the seminal vesicle and prostate gland of mice • Heat shock proteins (Hsp60, 70 and 90) were

  18. Reduction in the specific consumption of heat by the thermal circuit, achieved by rationalization of the steam turbine condensation at nuclear power plants of the WWER-440 type

    International Nuclear Information System (INIS)

    Kubacek, A.

    1992-01-01

    Specific consumption of heat needed for the production of a net electricity unit is a criterion for assessing the efficiency of conversion of thermal energy into mechanical energy in the steam turbine. Based on theoretical calculations and analyses, a way of evaluating the specific heat consumption is demonstrated for the thermal circuit of the steam-engine equipment with one turbogenerator. The dependence of the specific heat consumption on the steam condensation temperature and on the amount of cooling water flowing through the condenser is calculated, as is the dependence of the limiting pressure on the relative loss of vacuum of the condenser and on the cooling water temperature. Such dependences can be used to upgrade the thermal circuit condensation regime. (M.D.). 2 figs., 12 refs

  19. Specific heat characteristics of Ce70Ga8.5Cu18.5Ni3 metallic glass at low temperatures

    Science.gov (United States)

    Liu, Rentao; Zhong, Langxiang; Zhang, Bo

    2018-03-01

    Specific heat behaviors have been studied in Ce70Ga8.5Cu18.5Ni3 bulk metallic glass (BMG) from 2 K to 50 K. The low-temperature specific heat of the Ce-based metallic glass is a combined action of the Fermi liquids term, Debye oscillator term, and Einstein oscillator term as well as excess term. We also observed an intense boson peak around 15 K and attributed it to a harmonic localized Einstein mode influenced by the dense-packed atomic cluster structure. It is also demonstrated that Ce70Ga8.5Cu18.5Ni3 BMG belongs to the strongly correlated heavy-fermion system with a great electron specific heat coefficient and a high Wilson ratio. It exhibits a typical Fermi-Liquid feature when the temperature is above 10 K, while it exhibits a Non-Fermi-Liquid feature when the temperature is below 3.5 K.

  20. Anomalous osmosis resulting from preferential absorption

    NARCIS (Netherlands)

    Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.

    1965-01-01

    An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly

  1. Statistical mechanics of Roskilde liquids: configurational adiabats, specific heat contours, and density dependence of the scaling exponent.

    Science.gov (United States)

    Bailey, Nicholas P; Bøhling, Lasse; Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C

    2013-11-14

    We derive exact results for the rate of change of thermodynamic quantities, in particular, the configurational specific heat at constant volume, CV, along configurational adiabats (curves of constant excess entropy Sex). Such curves are designated isomorphs for so-called Roskilde liquids, in view of the invariance of various structural and dynamical quantities along them. The slope of the isomorphs in a double logarithmic representation of the density-temperature phase diagram, γ, can be interpreted as one third of an effective inverse power-law potential exponent. We show that in liquids where γ increases (decreases) with density, the contours of CV have smaller (larger) slope than configurational adiabats. We clarify also the connection between γ and the pair potential. A fluctuation formula for the slope of the CV-contours is derived. The theoretical results are supported with data from computer simulations of two systems, the Lennard-Jones fluid, and the Girifalco fluid. The sign of dγ∕dρ is thus a third key parameter in characterizing Roskilde liquids, after γ and the virial-potential energy correlation coefficient R. To go beyond isomorph theory we compare invariance of a dynamical quantity, the self-diffusion coefficient, along adiabats and CV-contours, finding it more invariant along adiabats.

  2. Resonant vibrations of self-interstitials in fcc metals with application to specific heat and neutron scattering

    International Nuclear Information System (INIS)

    Ram, P.N.; Dederichs, P.H.

    1981-07-01

    Some aspects of resonant vibrations of self-interstitials in the 100-dumbbell configuration in fcc-metals are discussed by extending previous calculations of Zeller et al. and Schober et al. Employing a simple defect model with nearest-neighbour interaction the local frequency spectrum of the defect is calculated showing several localized modes and low-frequency resonant modes. The change in the total density of states due to the defects is expressed as the derivative of a generalized phase shift which is used to calculate the change in the lattic specific heat due to single interstitials. Inelastic neutron scattering away from the one-phonon lines is proposed as a method to observe the resonant modes induced by self-interstitials. The model calculation in Cu shows that the well defined resonant modes due to dumbbell vibrations have appreciable intensity and could presumably be detected in neutron scattering measurements. The effect of di-interstitials on the phonon dispersion in Al is also discussed. (orig./GSCH)

  3. ORIGEN2.1 Cycle Specific Calculation of Krsko Nuclear Power Plant Decay Heat and Core Inventory

    International Nuclear Information System (INIS)

    Vukovic, J.; Grgic, D.; Konjarek, D.

    2010-01-01

    This paper presents ORIGEN2.1 computer code calculation of Krsko Nuclear Power Plant core for Cycle 24. The isotopic inventory, core activity and decay heat are calculated in one run for the entire core using explicit depletion and decay of each fuel assembly. Separate pre-ori application which was developed is utilized to prepare corresponding ORIGEN2.1 inputs. This application uses information on core loading pattern to determine fuel assembly specific depletion history using 3D burnup which is obtained from related PARCS computer code calculation. That way both detailed single assembly calculations as well as whole core inventory calculations are possible. Because of the immense output of the ORIGEN2.1, another application called post-ori is used to retrieve and plot any calculated property on the basis of nuclide, element, summary isotope or group of elements for activation products, actinides and fission products segments. As one additional possibility, with the post-ori application it is able to calculate radiotoxicity from calculated ORIGEN2.1 inventory. The results which are obtained using the calculation model of ORIGEN2.1 computer code are successfully compared against corresponding ORIGEN-S computer code results.(author).

  4. Debye–Einstein approximation approach to calculate the lattice specific heat and related parameters for a Si nanowire

    Directory of Open Access Journals (Sweden)

    A. KH. Alassafee

    2017-11-01

    Full Text Available The modified Debye–Einstein approximation model is used to calculate nanoscale size-dependent values of Gruneisen parameters and lattice specific heat capacity for Si nanowires. All parameters forming the model, including Debye temperatures, bulk moduli, the lattice thermal expansion and the lattice volume, are calculated according to their nanoscale size dependence. Values for lattice volume Gruneisen parameters increase with the decrease of the nanowires’ diameter, while all other parameters decrease. The nanosize dependence of lattice thermal parameters agree with other reported theoretical results. Keywords: Lattice specific heat capacity, Gruneisen parameter, Debye–Einstein model, Si nanowires

  5. Indication for a chiral phase in the molecular magnetic chain Gd(hfac)3NiTiPr by specific heat and μ+SR measurements

    International Nuclear Information System (INIS)

    Lascialfari, A.; Ullu, R.; Affronte, M.; Cinti, F.; Caneschi, A.; Gatteschi, D.; Rovai, D.; Pini, M.G.; Rettori, A.

    2004-01-01

    Specific heat and muon spin relaxation (μ + SR) measurements performed in the molecular magnetic chain Gd(hfac) 3 NiTiPr provide indication for the onset, at T 0 =2.08 K, of a phase with chiral order in the absence of long-range helical order. Specific heat data (probing the chirality-chirality correlation function) show a peak at T 0 that disappears upon application of a 5 T magnetic field, while μ + SR data (probing the spin-spin correlation function) do not present any anomaly at T 0 nor oscillations in the asymmetry curve below T 0

  6. 44th Annual Anomalous Absorption Conference

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  7. Anomalous transport in mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  8. Fluctuation relations for anomalous dynamics

    International Nuclear Information System (INIS)

    Chechkin, A V; Klages, R

    2009-01-01

    We consider work fluctuation relations (FRs) for generic types of dynamics generating anomalous diffusion: Lévy flights, long-correlated Gaussian processes and time-fractional kinetics. By combining Langevin and kinetic approaches we calculate the probability distributions of mechanical and thermodynamical work in two paradigmatic nonequilibrium situations, respectively: a particle subject to a constant force and a particle in a harmonic potential dragged by a constant force. We check the transient FR for two models exhibiting superdiffusion, where a fluctuation-dissipation relation does not exist, and for two other models displaying subdiffusion, where there is a fluctuation-dissipation relation. In the two former cases the conventional transient FR is not recovered, whereas in the latter two it holds either exactly or in the long-time limit. (letter)

  9. Dinotor model for anomalous nuclei

    International Nuclear Information System (INIS)

    Castillejo, L.; Goldhaber, A.S.; Jackson, A.D.; Johnson, M.B.

    1986-01-01

    The simplest version of the MIT bag model implies the existence of metastable toroidal bags, with large radius proportional to the enclosed baryon number, and small radius comparable to that of an ordinary nucleon (we refer to those toroidal bags as dinotors). Considerations of various possible instabilities, and of the effects of quark interactions through intermediate gluons, suggest that the metastability is still valid when the model is treated more realistically. These results might provide an explanation for reports of anomalously large interaction cross sections of secondary fragments (''anomalons'') observed in visual track detectors. However, it appears that the most likely characteristics of toroidal bags would not be compatible with those of anomalons, and would not be as easy to detect in emulsions. copyright 1986 Academic Press, Inc

  10. Anomalous Lorentz and CPT violation

    Science.gov (United States)

    Klinkhamer, F. R.

    2018-01-01

    If there exists Lorentz and CPT violation in nature, then it is crucial to discover and understand the underlying mechanism. In this contribution, we discuss one such mechanism which relies on four-dimensional chiral gauge theories defined over a spacetime manifold with topology ℛ3 × S 1 and periodic spin structure for the compact dimension. It can be shown that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. For arbitrary Abelian U(1) gauge fields with trivial holonomies in the compact direction, this anomalous Lorentz and CPT violation has recently been established perturbatively with a Pauli-Villars-type regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  11. From large N nonplanar anomalous dimensions to open spring theory

    Energy Technology Data Exchange (ETDEWEB)

    Mello Koch, Robert de, E-mail: robert@neo.phys.wits.ac.za [National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics University of Witwatersrand, Wits, 2050 (South Africa); Kemp, Garreth, E-mail: Garreth.Kemp@students.wits.ac.za [National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics University of Witwatersrand, Wits, 2050 (South Africa); Smith, Stephanie, E-mail: Stephanie.Smith@students.wits.ac.za [National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical Physics University of Witwatersrand, Wits, 2050 (South Africa)

    2012-05-23

    In this Letter we compute the nonplanar one-loop anomalous dimension of restricted Schur polynomials that have a bare dimension of O(N). This is achieved by mapping the restricted Schur polynomials into states of a specific U(p) irreducible representation. In this way the dilatation operator is mapped into a u(p) valued operator and, as a result, can easily be diagonalized. The resulting spectrum is reproduced by a model of springs between masses.

  12. Assessment of thermal conductivity, viscosity and specific heat of nanofluids in single phase laminar indernal forced convection

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.

    2013-01-01

    Nanofluids are considered for improving the heat exchange in forced convective flow. In literature, the benefit of nanofluids compared to the corresponding base fluid is represented by several figures-of-merit in which the heat transfer benefit and the cost of pumping the fluid are considered. These

  13. Gyrokinetic electron acceleration in the force-free corona with anomalous resistivity

    OpenAIRE

    Arzner, Kaspar; Vlahos, Loukas

    2006-01-01

    We numerically explore electron acceleration and coronal heating by dissipative electric fields. Electrons are traced in linear force-free magnetic fields extrapolated from SOHO/MDI magnetograms, endowed with anomalous resistivity ($\\eta$) in localized dissipation regions where the magnetic twist $\

  14. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  15. Specific heat measurements of CePt{sub 3}Si and Ce{sub 1+x}Pt{sub 3+y}Si{sub 1+z}

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: motoyama@sci.u-hyogo.ac.jp; Watanabe, M. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Maeda, K. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Oda, Y. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Ueda, K. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2007-03-15

    We have measured the specific heat of a series of polycrystalline CePt{sub 3}Si and Ce{sub 1+x}Pt{sub 3+y}Si{sub 1+z} samples whose compositions vary slightly from the stoichiometric composition. We observed two peaks derived from magnetic anomalies on the specific heat measurements of the Ce{sub 1+x}Pt{sub 3+y}Si{sub 1+z} samples. One of the peaks relates to the antiferromagnetic phase transition at T{sub N}=2.2K. The other is a large peak at 2.7K observed for the sample that showed a ferromagnetic anomaly at 3.0K on the temperature dependence of the magnetization. Heat treatment had different effects between these anomalies.

  16. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs.

    Science.gov (United States)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe 2 O 3 -NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe 2 O 3 -NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe 2 O 3 -NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe 2 O 3 -NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe 2 O 3 -NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe 2 O 3 -NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe 2 O 3 -NPs could be an environmental risk factor for reproductive disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Critical current, electro-mechanical properties and specific heat of bronze Nb{sub 3}Sn conductors

    Energy Technology Data Exchange (ETDEWEB)

    Uglietti, D.; Seeber, B.; Abacherli, V.; Flukiger, R. [Geneva Univ., Groupe Applique de Physique (GAP) (Switzerland); Wang, X.Y.; Junod, A.; Flukiger, R. [Geneva Univ., Dept. Phys. Mat. Condensee (DPMC) (Switzerland)

    2004-07-01

    The fabrication process leading to a Nb{sub 3}Sn wire by using the bronze route with 15.4 wt per cent of Sn is described. The critical current density, J{sub c}, is studied as a function of the applied magnetic field, B, up to 25 T; the uniaxial strain, {epsilon}, was measured up to 17. In the second part our device for measuring I{sub c}({epsilon}) is presented. The device is based on the concept of the Walters spring (WASP), which allows to measure long length wires (voltage taps distance up to 50 cm), up to 1000 A and to obtain an absolute measurement of the strain value. It is thus possible to measure the voltage-current relation of technical superconducting wires and tapes down to 0.01 {mu}V/cm, an important requirement for the characterisation in view of applications like NMR high field magnets which require persistent mode operation with high current densities. Finally specific heat measurements on Nb{sub 3}Sn wires prepared at GAP have allowed to determine for the first time the overall distribution of T{sub c} in the filaments. The onset of T{sub c} was observed at 17.2 K, the T{sub c} distribution being centred at 15.9 K. This analysis confirms the reduction of T{sub c} due to the Ti addition and the presence of a distribution of Sn in Nb{sub 3}Sn bronze wires. (authors)

  18. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    Science.gov (United States)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  19. Measurement of the specific heat of small vanadium particles in the normal- and superconducting state in the temperature range of 1.5-12 K

    International Nuclear Information System (INIS)

    Vergara Garcia, O.

    1982-01-01

    The specific heat of small crystalline vanadium particles in form of polyeders with diameters between 2.9 and 13.2 mm was measured in the temperature range of 1.5-12 K. Quantum effects are interpreted in the frame of theoretical models. (BEF)

  20. Heat transfer calculations for the High Flux Isotope Reactor (HFIR). Technical specifications: bases for safety limits and limiting safety system settings

    International Nuclear Information System (INIS)

    Sims, T.M.; Swanks, J.H.

    1977-09-01

    Heat transfer analyses, in support of the preparation of the HFIR technical specifications, were made to establish the bases for the safety limits and limiting safety system settings applicable to the HFIR. The results of these analyses, along with the detailed bases, are presented

  1. Heavy mediums and materials (physics of the condensed state). Study of disordered systems at low temperature. Specific heat measurement in neutron irradiated quartz

    International Nuclear Information System (INIS)

    De Sa, L.

    1987-09-01

    Specific heat of neutron irradiated silicas presents characteristics evolving with radiation dose and is a good way to study properties of disordered systems. Results obtained and comparison with other experiments allow to follow amorphization and defects created by irradiation and raise hypothesis about the evolution of microscopic structure of these materials [fr

  2. Effect of variable thermal conductivity and specific heat capacity on the calculation of the critical metal hydride thickness for Ti1.1CrMn

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    model is applied to the metal hydride system, with Ti 1.1 CrMn as the absorbing alloy, to predict the weight fraction of absorbed hydrogen and solid bed temperat ure . Dependencies of thermal conductivity and specific heat capacity upon pressure and hydrogen content respectively , are accounted for...

  3. Anomalous dispersion enhanced Cerenkov phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  4. The Effect of Moisture Content and Temperature on the Specific Heat Capacity of Nut and Kernel of Two Iranian Pistachio Varieties

    Directory of Open Access Journals (Sweden)

    A.R Salari Kia

    2014-04-01

    Full Text Available Pistachio has a special ranking among Iranian agricultural products. Iran is known as the largest producer and exporter of pistachio in the world. Agricultural products are imposed under different thermal treatments during storage and processing. Designing all these processes requires thermal parameters of the products such as specific heat capacity. Regarding the importance of pistachio processing as an exportable product, in this study the specific heat capacity of nut and kernel of two varieties of Iranian pistachio (Kalle-Ghochi and Badami were investigated at four levels of moisture content (initial moisture content (5%, 15%, 25% and 40% w.b. and three levels of temperature (40, 50 and 60°C. In both varieties, the differences between the data were significant at the 1% of probability; however, the effect of moisture content was greater than that of temperature. The results indicated that the specific heat capacity of both nuts and kernels increase logarithmically with increase of moisture content and also increase linearly with increase of temperature. This parameter has altered for nut and kernel of Kalle-Ghochi and Badami varieties within the range of 1.039-2.936 kJ kg-1 K-1, 1.236-3.320 kJ kg-1 K-1, 0.887-2.773 kJ kg-1 K-1 and 0.811-2.914 kJ kg-1 K-1, respectively. Moreover, for any given level of temperature, the specific heat capacity of kernels was higher than that of nuts. Finally, regression models with high R2 values were developed to predict the specific heat capacity of pistachio varieties as a function of moisture content and temperature

  5. Specific heat measurements on metals up to their melting point; Mesure de la chaleur specifique des metaux jusqu'a leur temperature de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Affortit, Ch [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-15

    We have built an apparatus to measure the specific heat of metal up to the melting point. The method is the pulse-heating method, where the specimen is heated very rapidly (1/10 s) from room temperature to the melting point by a very intense d.c. current (1000 A). The simultaneous measurements of intensity, voltage and temperature in the specimen allows a calculation of the specific heat. We have obtained good results for niobium, tungsten, tantalum and uranium. The accuracy is around 3 to 5 per cent and allows a measurement of the heat of formation of vacancies near the melting temperature. (author) [French] Nous avons construit un appareil permettant la mesure de la chaleur specifique des metaux jusqu'a leur temperature de fusion. La methode utilisee est la methode dite de chauffage instantane, L'echantillon est echauffe tres rapidement (1/10 s) de la temperature ambiante a la temperature de fusion par le passage d'un courant tres intense ({approx} 1000 A). L'enregistrement simultane de l'intensite du courant, de la difference de potentiel aux bornes de l'echantillon et de la temperature, permet de calculer la chaleur specifique. Nous avons obtenu de bons resultats pour le niobium, le tungstene tantale et l'uranium. La precision de la methode est de l'ordre de 3 a 5 pour cent et permet une mesure de la chaleur de formation des lacunes au voisinage de la fusion. (auteur)

  6. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  7. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  8. Anomalous neutron scattering and feroelectric modes

    International Nuclear Information System (INIS)

    Viswanathan, K.S.

    1977-01-01

    It is suggested that anomalous neutron scattering could prove a powerful experimental tool in studying ferroelectric phase transition, the sublattice displacements of the soft modes as well as their symmetry characteristics. (author)

  9. Anomalous Solubility Behavior of Several Acidic Drugs

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2014-04-01

    Full Text Available The “anomalous solubility behavior at higher pH values” of several acidic drugs originally studied by Higuchi et al. in 1953 [1], but hitherto not fully rationalized, has been re-analyzed using a novel solubility-pH analysis computer program, pDISOL-XTM. The program internally derives implicit solubility equations, given a set of proposed equilibria and constants (iteratively refined by weighted nonlinear regression, and does not require explicit Henderson-Hasselbalch equations. The re-analyzed original barbital, phenobarbital, oxytetracycline, and sulfathiazole solubility-pH data of Higuchi et al. is consistent with the presence of dimers in saturated solutions. In the case of barbital, phenobarbital and sulfathiazole, anionic dimers, reaching peak concentrations near pH 8. However, oxytetracycline indicated a pronounced tendency to form a cationic dimer, peaking near pH 2. Under the conditions of the original study, only barbital indicated a slight tendency to form a salt precipitate at pH > 6.8, with a highly unusual stoichiometry (consistent with a slope of 0.55 in the log S – pH plot: K+ + A2H- + 3HA D KA5H4(s. Thus the “anomaly” in the Higuchi data can be rationalized by invoking specific aggregated species.

  10. Isobaric specific heat capacity of water and aqueous cesium chloride solutions for temperatures between 298 K and 370 K at p = 0.1 MPa

    International Nuclear Information System (INIS)

    Lourenco, M.J.V.; Santos, F.J.V.; Ramires, M.L.V.; Nieto de Castro, C.A.

    2006-01-01

    There has been some controversy regarding the uncertainty of measurements of thermal properties using differential scanning calorimeters, namely heat capacity of liquids. A differential scanning calorimeter calibrated in enthalpy and temperature was used to measure the isobaric specific heat capacity of water and aqueous solutions of cesium chloride, in the temperature range 298 K to 370 K, for molalities up 3.2 mol . kg -1 , at p = 0.1 MPa, with an estimated uncertainty (ISO definition) better than 1.1%, at a 95% confidence level. The measurements are completely traceable to SI units of energy and temperature. The results obtained were correlated as a function of temperature and molality and compared with other authors, obtained by different methods and permit to conclude that a DSC calibrated by Joule effect is capable of very accurate measurements of the isobaric heat capacity of liquids, traceable to SI units of measurement

  11. Anomalous heat transport and condensation in convection of cryogenic helium

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Schmoranzer, D.; Hanzelka, Pavel; Sreenivasan, K. R.; Skrbek, L.

    2013-01-01

    Roč. 110, č. 20 (2013), s. 8036-8039 ISSN 0027-8424 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : two-phase convection * temperature inversion * condensation * rain formation Subject RIV: BK - Fluid Dynamics Impact factor: 9.809, year: 2013

  12. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  13. Absence of a long-range ordered magnetic ground state in Pr3Rh4Sn13 studied through specific heat and inelastic neutron scattering

    Science.gov (United States)

    Nair, Harikrishnan S.; Ogunbunmi, Michael O.; Ghosh, S. K.; Adroja, D. T.; Koza, M. M.; Guidi, T.; Strydom, A. M.

    2018-04-01

    Signatures of absence of a long-range ordered magnetic ground state down to 0.36 K are observed in magnetic susceptibility, specific heat, thermal/electrical transport and inelastic neutron scattering data of the quasi-skutterudite compound Pr3Rh4Sn13 which crystallizes in the Yb3Rh4Sn13-type structure with a cage-like network of Sn atoms. In this structure, Pr3+ occupies a lattice site with D 2d point symmetry having a ninefold degeneracy corresponding to J  =  4. The magnetic susceptibility of Pr3Rh4Sn13 shows only a weak temperature dependence below 10 K otherwise remaining paramagnetic-like in the range, 10 K-300 K. From the inelastic neutron scattering intensity of Pr3Rh4Sn13 recorded at different temperatures, we identify excitations at 4.5(7) K, 5.42(6) K, 10.77(5) K, 27.27(5) K, 192.28(4) K and 308.33(3) K through a careful peak analysis. However, no signatures of long-range magnetic order are observed in the neutron data down to 1.5 K, which is also confirmed by the specific heat data down to 0.36 K. A broad Schottky-like peak is recovered for the magnetic part of the specific heat, C 4f, which suggests the role of crystal electric fields of Pr3+ . A crystalline electric field model consisting of 7 levels was applied to C 4f which leads to the estimation of energy levels at 4.48(2) K, 6.94(4) K, 11.23(8) K, 27.01(5) K, 193.12(6) K and 367.30(2) K. The CEF energy levels estimated from the heat capacity analysis are in close agreement with the excitation energies seen in the neutron data. The Sommerfeld coefficient estimated from the analysis of magnetic specific heat is γ = 761(6) mJ K-2 mol-Pr which suggests the formation of heavy itinerant quasi-particles in Pr3Rh4Sn13. Combining inelastic neutron scattering results, analysis of the specific heat data down to 0.36 K, magnetic susceptibility and, electrical and thermal transport, we establish the absence of long-range ordered magnetic ground state in Pr3Rh4Sn13.

  14. Indication for a chiral phase in the molecular magnetic chain Gd(hfac){sub 3}NiTiPr by specific heat and {mu}{sup +}SR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lascialfari, A.; Ullu, R.; Affronte, M.; Cinti, F.; Caneschi, A.; Gatteschi, D.; Rovai, D.; Pini, M.G. E-mail: mgpini@ifac.cnr.it; Rettori, A

    2004-05-01

    Specific heat and muon spin relaxation ({mu}{sup +}SR) measurements performed in the molecular magnetic chain Gd(hfac){sub 3}NiTiPr provide indication for the onset, at T{sub 0}=2.08 K, of a phase with chiral order in the absence of long-range helical order. Specific heat data (probing the chirality-chirality correlation function) show a peak at T{sub 0} that disappears upon application of a 5 T magnetic field, while {mu}{sup +}SR data (probing the spin-spin correlation function) do not present any anomaly at T{sub 0} nor oscillations in the asymmetry curve below T{sub 0}.

  15. A study of the disorder in heavily doped Ba1-xLaxF2+x by neutron scattering, ionic conductivity and specific heat measurements

    DEFF Research Database (Denmark)

    Andersen, Niels Hessel; Clausen, Kurt Nørgaard; Kjems, Jørgen

    1986-01-01

    The ionic disorder in single crystals of the fluorite-type solid solutions Ba1-xLaxF2+x (with x=0.209 and x=0.492) has been studied in the temperature range from room temperature to 800 degrees C by diffuse neutron scattering, ionic conductivity, and specific heat measurements. From the diffuse...... neutron scattering it was found that the disorder was dominated by 222 clusters, which at low temperatures (T>10-10s), in agreement with NMB results which suggest a jump frequency below 75 MHz. The temperatures at which the steepest slopes are found in the loss of correlations and in the conductivity...... coincide at approximately 650 degrees C. At this temperature no clear anomaly is observed in the specific heat. Based on these findings the authors propose a conduction mechanisms where F- ions are moving through the lattice by means of rearrangements of the 222 clusters....

  16. Evidence for a helical and a chiral phase transition in the Gd(hfac)3NITiPr magnetic specific heat

    International Nuclear Information System (INIS)

    Cinti, F.; Rettori, A.; Barucci, M.; Olivieri, E.; Risegari, L.; Ventura, G.; Caneschi, A.; Gatteschi, D.; Rovai, D.; Pini, M.G.; Affronte, M.; Mariani, M.; Lascialfari, A.

    2007-01-01

    New specific heat data taken at very low temperatures (0.03 3 NITiPr show a clear λ anomaly at T N =0.039K signaling the onset of the 3D helimagnetic phase. They match fairly well with previously reported data which showed the onset of the chiral phase transition at T 0 =2.08K. Also new magnetic susceptibility data taken in the neighborhood at T 0 are repeated

  17. Anomalous experiences, trauma and symbolization processes at the frontier between psychoanalysis and cognitive neurosciences

    Directory of Open Access Journals (Sweden)

    Thomas eRabeyron

    2015-12-01

    Full Text Available Anomalous or exceptional experiences are uncommon experiences which are usually interpreted as being paranormal by those who report them. These experiences have long remained difficult to explain, but current progress in cognitive neuroscience and psychoanalysis sheds light on the contexts in which they emerge, as well as on their underlying processes. Following a brief description of the different types of anomalous experiences, we underline how they can be better understood at the frontiers between psychoanalysis and cognitive neurosciences. In this regard, three main lines of research are discussed and illustrated, alongside clinical cases which come from a clinical service specializing in anomalous experiences. First, we study the links between anomalous experiences and hallucinatory processes, by showing that anomalous experiences frequently occur as a specific reaction to negative life events, in which case they mainly take the form of non-pathological hallucinations. Next, we propose to analyze these experiences from the perspective of their traumatic aspects and the altered states of consciousness they often imply. Finally, these experiences are considered to be the consequence of a hypersensitivity that can be linked to an increase in psychic permeability. In conclusion, these different processes lead us to consider anomalous experiences as primary forms of symbolization and transformation of the subjective experience, especially during or after traumatic situations.

  18. Anomalous Experiences, Trauma, and Symbolization Processes at the Frontiers between Psychoanalysis and Cognitive Neurosciences

    Science.gov (United States)

    Rabeyron, Thomas; Loose, Tianna

    2015-01-01

    Anomalous or exceptional experiences are uncommon experiences which are usually interpreted as being paranormal by those who report them. These experiences have long remained difficult to explain, but current progress in cognitive neuroscience and psychoanalysis sheds light on the contexts in which they emerge, as well as on their underlying processes. Following a brief description of the different types of anomalous experiences, we underline how they can be better understood at the frontiers between psychoanalysis and cognitive neurosciences. In this regard, three main lines of research are discussed and illustrated, alongside clinical cases which come from a clinical service specializing in anomalous experiences. First, we study the links between anomalous experiences and hallucinatory processes, by showing that anomalous experiences frequently occur as a specific reaction to negative life events, in which case they mainly take the form of non-pathological hallucinations. Next, we propose to analyze these experiences from the perspective of their traumatic aspects and the altered states of consciousness they often imply. Finally, these experiences are considered to be the consequence of a hypersensitivity that can be linked to an increase in psychic permeability. In conclusion, these different processes lead us to consider anomalous experiences as primary forms of symbolization and transformation of the subjective experience, especially during, or after traumatic situations. PMID:26732646

  19. Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9

    Science.gov (United States)

    Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.

  20. Thermodynamic state, specific heat, and enthalpy function of saturated UO2 vapor between 3,000 K and 5,000 K

    International Nuclear Information System (INIS)

    Karow, H.U.

    1977-02-01

    The properties have been determined by means of statistical mechanics. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contribution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma. At temperatures around 5,000 K, UO 2 vapor reaches the collective plasma state and becomes increasingly 'metallic'. - Moreover, the nonuniform molecular equilibrium composition of UO 2 vapor has been taken into account in calculating its caloric functions-of-state. The contribution to specific heat and enthalpy of thermally excited electronic states of the vapor molecules has been derived by means of a Rydberg orbital model of the UO 2 molecule. The resulting enthalpy functions and specific heats for saturated UO 2 vapor of equilibrium composition and that for pure UO 2 gas are compared with the enthalpy and specific heat data of gaseous UO 2 at lower temperatures known from literature. (orig./HP) [de

  1. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Science.gov (United States)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  2. The low temperature specific heat and electrical transport, magnetic properties of Pr{sub 0.65}Ca{sub 0.35}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhiyong, E-mail: zyhan@cauc.edu.cn

    2017-02-01

    The magnetic properties, electrical transport properties, and low temperature specific heat of polycrystalline perovskite manganese oxide Pr{sub 0.65}Ca{sub 0.35}MnO{sub 3} have been investigated experimentally. It is found that there exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state and the Debye temperature decreases gradually. In addition, the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide and this phenomenon is related to the itinerant electrons in ferromagnetic cluster state and the disorder in Pr{sub 0.65}Ca{sub 0.35}MnO{sub 3}. - Highlights: • There exists cluster glass state in the sample at low temperature besides the antiferromagnetic insulating state. • With the increase of magnetic field, antiferromagnetic insulating state converts to ferromagnetic metal state. • Low temperature electron specific heat in zero magnetic field is larger than that of ordinary rare-earth manganites oxide.

  3. Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry.

    Science.gov (United States)

    Schubnell, M; Schawe, J E

    2001-04-17

    In differential scanning calorimetry (DSC), remnant moisture loss in samples often overlaps and distorts other thermal events, e.g. glass transitions. To separate such overlapping processes, temperature modulated DSC (TMDSC) has been widely used. In this contribution we discuss the quantitative determination of the heat capacity of a moist sample from TMDSC measurements. The sample was a spray-dried pharmaceutical compound run in different pans (hermetically-sealed pan, pierced lid pan [50 microm] and open pan). The apparent heat capacity was corrected for the remaining amount of moisture. Using this procedure we could clearly identify the glass transition of the dry and the moist sample. We found that a moisture content of about 6.2% shifts the glass transition by about 50 degrees C.

  4. Sex- and limb-specific differences in the nitric oxide-dependent cutaneous vasodilation in response to local heating

    Science.gov (United States)

    Stanhewicz, Anna E.; Greaney, Jody L.; Larry Kenney, W.

    2014-01-01

    Local heating of the skin is commonly used to assess cutaneous microvasculature function. Controversy exists as to whether there are limb or sex differences in the nitric oxide (NO)-dependent contribution to this vasodilation, as well as the NO synthase (NOS) isoform mediating the responses. We tested the hypotheses that 1) NO-dependent vasodilation would be greater in the calf compared with the forearm; 2) total NO-dependent dilation would not be different between sexes within limb; and 3) women would exhibit greater neuronal NOS (nNOS)-dependent vasodilation in the calf. Two microdialysis fibers were placed in the skin of the ventral forearm and the calf of 19 (10 male and 9 female) young (23 ± 1 yr) adults for the local delivery of Ringer solution (control) or 5 mM Nω-propyl-l-arginine (NPLA; nNOS inhibition). Vasodilation was induced by local heating (42°C) at each site, after which 20 mM NG-nitro-l-arginine methyl ester (l-NAME) was perfused for within-site assessment of NO-dependent vasodilation. Cutaneous vascular conductance (CVC) was calculated as laser-Doppler flux/mean arterial pressure and normalized to maximum (28 mM sodium nitroprusside, 43°C). Total NO-dependent vasodilation in the calf was lower compared with the forearm in both sexes (Ringer: 42 ± 5 vs. 62 ± 4%; P 0.05). These data suggest that the NO-dependent component of local heating-induced cutaneous vasodilation is lower in the calf compared with the forearm. Contrary to our original hypothesis, there was no contribution of nNOS to NO-dependent vasodilation in either limb during local heating. PMID:25100074

  5. Exposure of Lactating Dairy Cows to Acute Pre-Ovulatory Heat Stress Affects Granulosa Cell-Specific Gene Expression Profiles in Dominant Follicles

    Science.gov (United States)

    Vanselow, Jens; Vernunft, Andreas; Koczan, Dirk; Spitschak, Marion; Kuhla, Björn

    2016-01-01

    High environmental temperatures induce detrimental effects on various reproductive processes in cattle. According to the predicted global warming the number of days with unfavorable ambient temperatures will further increase. The objective of this study was to investigate effects of acute heat stress during the late pre-ovulatory phase on morphological, physiological and molecular parameters of dominant follicles in cycling cows during lactation. Eight German Holstein cows in established lactation were exposed to heat stress (28°C) or thermoneutral conditions (15°C) with pair-feeding for four days. After hormonal heat induction growth of the respective dominant follicles was monitored by ultrasonography for two days, then an ovulatory GnRH dose was given and follicular steroid hormones and granulosa cell-specific gene expression profiles were determined 23 hrs thereafter. The data showed that the pre-ovulatory growth of dominant follicles and the estradiol, but not the progesterone concentrations tended to be slightly affected. mRNA microarray and hierarchical cluster analysis revealed distinct expression profiles in granulosa cells derived from heat stressed compared to pair-fed animals. Among the 255 affected genes heatstress-, stress- or apoptosis associated genes were not present. But instead, we found up-regulation of genes essentially involved in G-protein coupled signaling pathways, extracellular matrix composition, and several members of the solute carrier family as well as up-regulation of FST encoding follistatin. In summary, the data of the present study show that acute pre-ovulatory heat stress can specifically alter gene expression profiles in granulosa cells, however without inducing stress related genes and pathways and suggestively can impair follicular growth due to affecting the activin-inhibin-follistatin system. PMID:27532452

  6. Effect of Al_2O_3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications

    International Nuclear Information System (INIS)

    Hu, Yanwei; He, Yurong; Zhang, Zhenduo; Wen, Dongsheng

    2017-01-01

    Highlights: • Stable binary nitrate eutectic salt based Al_2O_3 nanofluids were prepared. • A maximum enhancement of 8.3% on c_p was obtained at 2.0 wt.% nanoparticles. • MD simulation results show good agreement with experimental data. • The change in Coulombic energy contributed to most of the large change in c_p. - Abstract: Molten salts can be used as heat transfer fluids or thermal storage materials in a concentrated solar power plant. Improving the thermal properties can influence the utilization efficiency of solar energy. In this study, the effect of doping eutectic binary salt solvent with Al_2O_3 nanoparticles on its specific heat capacity (c_p) was investigated. The effects of the mass fraction of nanoparticles on the c_p of the composite nanofluid were analyzed, using both differential scanning calorimetry measurements and molecular dynamics simulations. The specific heat capacity of the nanocomposites was enhanced by increasing the nanoparticle concentration. The maximum enhancement was found to be 8.3%, at a nanoparticle concentration of 2.0%. A scanning electron microscope was used to analyze the material morphology. It was observed that special nanostructures were formed and the specific heat capacity of the nanocomposites was enhanced by increasing the quantity of nanostructures. Simulation results of c_p agreed well with the experimental data, and the potential energy and interaction energy in the system were analyzed. The change in Coulombic energy contributed to most of the large change in c_p, which explains the discrepancy in values between conventional nanofluids and molten salt-based nanofluids.

  7. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    Science.gov (United States)

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  8. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  9. The vector meson with anomalous magnetic moment

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1976-01-01

    The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies

  10. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  11. Total least squares for anomalous change detection

    Science.gov (United States)

    Theiler, James; Matsekh, Anna M.

    2010-04-01

    A family of subtraction-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQbased anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of these algorithms with the potential for better performance.

  12. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  13. SPECIFIC DEGRADATION STRUCTURE FEATURES AND MECHANICAL PROPERTIES OF FURNACE AND HEAT POWER EQUIPMENT ELEMENTS AFTER LONG-TERM OPERATION

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2012-01-01

    Full Text Available The paper presents results of investigations on structure and mechanical properties of technological equipment elements made of heat-resistant steels. A scale of chrome and molybdenum steel microstructure degradation based on evaluation of  coagulated carbide size and material mechanical properties (a point from 0-operation without time limits, up to 4-operation prohibition has been proposed in the paper. It has been  established that an analysis of  steel microstructure directly on equipment elements by means of a portable microscope is an efficient express method for evaluation of equipment condition and structures due to control of material structure degradation rate of a diagnosed object.

  14. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress

    DEFF Research Database (Denmark)

    Abrego, David; Ulstrup, Karin E; Willis, Bette L

    2008-01-01

    The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties...... and a potential role for host factors in determining the physiological performance of reef corals....... of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated...

  15. Anomalous diffusion in a dynamical optical lattice

    Science.gov (United States)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  16. Development of anomalous detection using movie prediction

    International Nuclear Information System (INIS)

    Sakakibara, Yoji; Demachi, Kazuyuki; Kawai, Masaki; Chhatluli, Ritu; Kamiaka, Kazuma

    2012-01-01

    In this research, the new method to predict the near-future of the movie images captured by video camera based on the combination of the Principle Component Analysis (PCA) and the Singular Spectral Analysis (SSA). In the normal condition of machines, the real-time captured movie is supposed to correspond to the predicted one. If the error between the both becomes significantly large, it may suggest some anomalous motion of the machines. So the movie prediction method has a possibility of the sensitive anomalous detection system. (author)

  17. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  18. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus.

    Science.gov (United States)

    Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y

    2018-01-01

    Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage

  19. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  20. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  1. Anomalous N=2 superconformal Ward identities

    International Nuclear Information System (INIS)

    Ketov, Sergei V.

    2000-01-01

    The N=2 superconformal Ward identities and their anomalies are discussed in N=2 superspace (including N=2 harmonic superspace), at the level of the low-energy effective action (LEEA) in four-dimensional N=2 supersymmetric field theories. The (first) chiral N=2 supergravity compensator is related to the known N=2 anomalous Ward identity in the N=2 (abelian) vector mulitplet sector. As regards the hypermultiplet LEEA given by the N=2 non-linear sigma-model (NLSM), a new anomalous N=2 superconformal Ward identity is found, whose existence is related to the (second) analytic compensator in N=2 supergravity. The celebrated solution of Seiberg and Witten is known to obey the (first) anomalous Ward identity in the Coulomb branch. We find a few solutions to the new anomalous Ward identity, after making certain assumptions about unbroken internal symmetries. Amongst the N=2 NLSM target space metrics governing the hypermultiplet LEEA are the SU(2)-Yang-Mills-Higgs monopole moduli-space metrics that can be encoded in terms of the spectral curves (Riemann surfaces), similarly to the Seiberg-Witten-type solutions. After a dimensional reduction to three spacetime dimensions (3d), our results support the mirror symmetry between the Coulomb and Higgs branches in 3d, N=4 gauge theories

  2. Anomalous human behavior detection: An Adaptive approach

    NARCIS (Netherlands)

    Leeuwen, C. van; Halma, A.; Schutte, K.

    2013-01-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous

  3. Anomalous VVH interactions at a linear collider

    Indian Academy of Sciences (India)

    Abstract. We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of. CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider ...

  4. Anomalous periodic disruptions in tokamak plasma

    International Nuclear Information System (INIS)

    Montvai, A.; Tegze, M.; Valyi, I.

    1982-09-01

    Anomalously strong, periodic instabilities were observed in the MT-1 tokamak. Characteristics of these instabilities were partly similar to those of internal disruptions, but there were features making them different from the normal relaxational oscillations. Basic characteristics of the phenomenon were studied with the aid of generally used diagnostics. (author)

  5. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  6. Anomalous VVH interactions at a linear collider

    Indian Academy of Sciences (India)

    We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating ...

  7. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  8. Bunburra Rockhole: A New Anomalous Achondrite

    Czech Academy of Sciences Publication Activity Database

    Bland, P.A.; Spurný, Pavel; Greenwood, R.C.; Towner, M.C.; Bevan, A.W.R.; Bottke jr., W.F.; Shrbený, Lukáš; McClafferty, T.; Vaughan, D.; Benedix, G.K.; Franchi, I.A.; Hough, R.M.

    2009-01-01

    Roč. 72, Supplement (2009), A34-A34 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /72./. Nancy, 13.06.2009-18.06.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : Bunburra Rockhole * anomalous achondrite Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.253, year: 2009

  9. Anomalous Levinson theorem and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Boya, L.J.; Casahorran, J.; Esteve, J.G.

    1993-01-01

    We analyse the symmetry breaking associated to anomalous realization of supersymmetry in the context of SUSY QM. In this case one of the SUSY partners is singular; that leads to peculiar forms of the Levinson theorem relating phase shifts and bound states. Some examples are exhibited; peculiarities include negative energies, incomplete pairing of states and extra phases in scattering. (Author) 8 refs

  10. Empirical scaling for present ohmic heated tokamaks

    International Nuclear Information System (INIS)

    Daughney, C.

    1975-06-01

    Empirical scaling laws are given for the average electron temperature and electron energy confinement time as functions of plasma current, average electron density, effective ion charge, toroidal magnetic field, and major and minor plasma radius. The ohmic heating is classical, and the electron energy transport is anomalous. The present scaling indicates that ohmic-heating becomes ineffective with larger experiments. (U.S.)

  11. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    Science.gov (United States)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly

  12. Evidence for a helical and a chiral phase transition in the Gd(hfac){sub 3}NITiPr magnetic specific heat

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, F. [INFM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy)]. E-mail: fabio.cinti@fi.infn.it; Rettori, A. [INFM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); Barucci, M. [INFM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); Olivieri, E. [INFM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); Risegari, L. [INFM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); Ventura, G. [INFM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); Caneschi, A. [Department of Inorganic Chemistry, University of Florence, 50019 Sesto Fiorentino (Italy); Gatteschi, D. [Department of Inorganic Chemistry, University of Florence, 50019 Sesto Fiorentino (Italy); Rovai, D. [Department of Inorganic Chemistry, University of Florence, 50019 Sesto Fiorentino (Italy); Pini, M.G. [ISC-CNR, 50019 Sesto Fiorentino (Italy); Affronte, M. [INFM-S3 and Department of Physics, University of Modena, 41100 Modena (Italy); Mariani, M. [INFM and Department of Physics, University of Pavia, 27100 Pavia (Italy); Lascialfari, A. [Istituto di Fisiologia e Chimica Biologica, University of Milano, Milano (Italy); INFM and Department of Physics, University of Pavia, 27100 Pavia (Italy)

    2007-03-15

    New specific heat data taken at very low temperatures (0.03

  13. Universal fine structure of the specific heat at the critical λ-point for an ideal Bose gas in an arbitrary trap

    International Nuclear Information System (INIS)

    Tarasov, S V; Kocharovsky, Vl V; Kocharovsky, V V

    2014-01-01

    We analytically find the universal fine structure of the noted discontinuity in the value and/or derivative of the specific heat of an ideal Bose gas in an arbitrary trap in the whole critical region around the λ-point of the Bose–Einstein condensation. The result reveals a remarkable dependence of the λ-point structure on the trap's form and boundary conditions, even for a macroscopically large system. We suggest measuring this strong effect in the experiments with a controllable trap potential. (paper)

  14. Self consistently calibrated photopyroelectric calorimeter for the high resolution simultaneous absolute measurement of the specific heat and of the thermal conductivity

    Directory of Open Access Journals (Sweden)

    U. Zammit

    2012-03-01

    Full Text Available High temperature resolution study of the specific heat and of the thermal conductivity over the smecticA-nematic and nematic-isotropic phase transitions in octylcynobephenyl liquid crystal using a new photopyroelectric calorimetry configuration are reported, where, unlike previously adopted ones, no calibration is required other than the procedure used during the actual measurement. This makes photopyroelectric calorimetry suitable for “absolute” measurements of the thermal parameters like most other existing conventional calorimetric techniques where, however, the thermal conductivity cannot be measured.

  15. Alpha particle effects in burning tokamak plasmas: overview and specific examples

    International Nuclear Information System (INIS)

    Sigmar, D.J.

    1986-07-01

    Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between α-power driven sawtoothing and ideal MHD stability, and direct α-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional α-transport including the ambipolar electric field are discussed

  16. Anomalous Q(sub 0) Results in the CEBAF South Linac

    International Nuclear Information System (INIS)

    William J. Schneider; M. Drury; Joe Preble

    1993-01-01

    While in practice, the performance of cavities - Q(sub 0) versus E(sub acc) - in the assembled CEBAF cryomodule corresponds in nearly every respect to the performance as measured in the vertical test area; there are a few cases where this is not true. On six (6) of the twenty (20) cryomodules installed in the south linac, cavity 4 specifically, and one other cavity in cryomodule 7 have an anomalous low Q(sub 0). Investigation into the source of the low Q(sub 0) on these particular cavities have centered around trapped magnetic fields, slow cooldowns or maldistribution of He flow during cooldown leading to hydride precipitation and Q(sub 0) disease. Other possibilities such as low window Q(sub 0)'s or harmonic content of the klystron were also considered. A detailed investigation to understand the phenomena leading to the low Q(sub 0)'s on cryomodule 7 and 8 is discussed. We have found evidence suggesting cooldown dependent Q(sub 0) disease as well as window heating to account for some of the discrepancies but not all. A complete explanation of the problem is still under further investigation

  17. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  19. Anomalous thermal properties of glasses at low temperatures

    International Nuclear Information System (INIS)

    Salinger, G.L.

    1976-01-01

    It is shown that specific heat measurements above 0.1 K indicate a distribution of local modes independent of energy; ultrasonic attenuation at low powers indicate that the local mode systems can have at most a few levels; ultrasonic velocity measurements give information about phonon-local mode coupling parameters; the measured thermal conductivity agrees with that calculated from the above information assuming that the energy independent distribution of modes observed in the specific heat is responsible for phonon scattering; thermal expansion and far infrared experiments indicate a phonon assisted tunneling model; several experiments, however, indicate that the modes observed in the specific heat measurements may not all scatter phonons

  20. Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts

    DEFF Research Database (Denmark)

    Benavidez, Angelica D.; Kovarik, Libor; Genc, Arda

    2012-01-01

    of the particle size distribution (PSD). The abundance of the larger particles did not fit the log-normal distribution. We can rule out sample nonuniformity as a cause for the growth of these large particles, since images were recorded prior to heat treatments. The anomalous growth of these particles may help...

  1. Is the anomalous effect an experimental evidence for the excitation of new exotic states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, R.; Topor Pop, V.

    1984-10-01

    Lower bound on the mean free path of the projectile fragments from the relativistic heavy ion collisions are drived using generalized Rarita-Schwed's theorems. These bounds are compared with the experimental data on the anomalous mean free path observed in recent experiments. The near saturation of these bounds provide a specific interpretation of the anomalous effects as an experimental evidence for the excitation of those extreme nuclear states which saturate the limits of the convetional nuclear physics. (authors)

  2. The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens

    Directory of Open Access Journals (Sweden)

    G. Meneghetti

    2014-10-01

    Full Text Available The energy dissipated to the surroundings as heat in a unit volume of material per cycle, Q, was recently proposed by the authors as fatigue damage index and it was successfully applied to correlate fatigue data obtained by carrying out fully reversed stress- and strain-controlled fatigue tests on AISI 304L stainless steel plain and notched specimens. The use of the Q parameter to analyse the experimental results led to the definition of a scatter band having constant slope from the low- to the high-cycle fatigue regime. In this paper the energy approach is extended to analyse the influence of mean stress on the axial fatigue behaviour of unnotched cold drawn AISI 304L stainless steel bars. In view of this, stress controlled fatigue tests on plain specimens at different load ratios R (R=-1; R=0.1; R=0.5 were carried out. A new energy parameter is defined to account for the mean stress effect, which combines the specific heat loss Q and the relative temperature variation due to the thermoelastic effect corresponding to the achievement of the maximum stress level of the stress cycle. The new two-parameter approach was able to rationalise the mean stress effect observed experimentally. It is worth noting that the results found in the present contribution are meant to be specific for the material and testing condition investigated here.

  3. Specific heat of Ce{sub x}La{sub 1-x}B{sub 6} in the low cerium concentration limit (x {<=} 0.03)

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, M. A., E-mail: anisimov.m.a@gmail.com; Glushkov, V. V.; Bogach, A. V.; Demishev, S. V.; Samarin, N. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gavrilkin, S. Yu.; Mitsen, K. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Shitsevalova, N. Yu.; Levchenko, A. V.; Filippov, V. B. [National Academy of Sciences of Ukraine, Institute of Problems of Materials Science (Ukraine); Gabani, S.; Flachbart, K. [IEP SAS, Centre of Low Temperature Physics (Slovakia); Sluchanko, N. E. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-05-15

    The specific heat of high-quality Ce{sub x}La{sub 1-x}B{sub 6} (x = 0, 0.01, 0.03) single crystals is studied in the temperature range 0.4-300 K. LaB{sub 6} samples with various boron isotope compositions ({sup 10}B, {sup 11}B, {sup nat}B) are analyzed to estimate the effect of boron vacancies. The experimental data are used to take into account the electron component correctly under the renormalization of the density of states at T < 8 K, the contribution of the quasi-local vibrational mode of a rare-earth ion with the Einstein temperature {Theta}{sub E} Almost-Equal-To 152 K, the Debye contribution from the rigid cage of boron atoms with the Debye temperature {Theta}{sub D} Almost-Equal-To 1160 K, and the low-temperature Schottky contribution related to the presence of 1.5-2.3% boron vacancies in the rare-earth hexaborides. The detected low-temperature anomalies in the specific heat are shown to be interpreted in terms of the formation of two-level systems with an energy {Delta}E = 92-98 K caused by the displacement of rare-earth ions from their centrosymmetric positions. A scenario of heavy fermion formation that is alternative to the Kondo mechanism is proposed for the systems with a magnetic impurity.

  4. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  5. Ion anomalous transport and feedback control. Final technical report, September 1, 1987 - August 31, 1997

    International Nuclear Information System (INIS)

    Sen, A.K.

    1998-01-01

    This final report is comprised of the following six progress reports: Ion Temperature Gradient Instability and Anomalous Transport, July 1989; Ion Temperature Gradient Instability and Anomalous Transport, August 1991; Ion Temperature Gradient Instability and Anomalous Transport, July 1993; Ion Anomalous Transport and Feedback Control, May 1994; Ion Anomalous Transport and Feedback Control, April 1995; and Ion Anomalous Transport and Feedback Control, December 1997

  6. Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection

    International Nuclear Information System (INIS)

    Antonov, N V

    2006-01-01

    Recent progress on the anomalous scaling in models of turbulent heat and mass transport is reviewed with the emphasis on the approach based on the field-theoretic renormalization group (RG) and operator product expansion (OPE). In that approach, the anomalous scaling is established as a consequence of the existence in the corresponding field-theoretic models of an infinite number of 'dangerous' composite fields (operators) with negative critical dimensions, which are identified with the anomalous exponents. This allows one to calculate the exponents in a systematic perturbation expansion, similar to the ε expansion in the theory of critical phenomena. The RG and OPE approach is presented in a self-contained way for the example of a passive scalar field (temperature, concentration of an impurity, etc) advected by a self-similar Gaussian velocity ensemble with vanishing correlation time, the so-called Kraichnan's rapid-change model, where the anomalous exponents are known up to order O(ε 3 ). Effects of anisotropy, compressibility and the correlation time of the velocity field are discussed. Passive advection by non-Gaussian velocity field governed by the stochastic Navier-Stokes equation and passively advected vector (e.g. magnetic) fields are considered

  7. Resurgence of the cusp anomalous dimension

    Energy Technology Data Exchange (ETDEWEB)

    Dorigoni, Daniele; Hatsuda, Yasuyuki [DESY Theory Group, DESY Hamburg,Notkestrasse 85, D-22603 Hamburg (Germany)

    2015-09-21

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  8. Resurgence of the Cusp Anomalous Dimension

    Energy Technology Data Exchange (ETDEWEB)

    Dorigoni, Daniele; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2015-06-15

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  9. Resurgence of the Cusp Anomalous Dimension

    International Nuclear Information System (INIS)

    Dorigoni, Daniele; Hatsuda, Yasuyuki

    2015-06-01

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  10. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  11. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  12. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  13. Anomalous diffusion of fermions in superlattices

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.

    1996-03-01

    Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)

  14. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  15. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  16. Micro-instabilities and anomalous transport

    International Nuclear Information System (INIS)

    Connor, J.W.

    1992-01-01

    In order to optimise the design of a tokamak fusion reactor it is necessary to understand how the energy confinement time depends on the plasma and machine parameters. In principle the neo-classical theory provides this information but empirical evidence yields confinement times up to two orders of magnitude less than the predictions of this model. Experimental evidence of microscopic fluctuations in plasma density and other quantities suggests turbulent electro-magnetic fluctuations may be responsible for this anomalous transport. (Author)

  17. Anomalous cross-modulation between microwave beams

    Science.gov (United States)

    Ranfagni, Anedio; Mugnai, Daniela; Petrucci, Andrea; Mignani, Roberto; Cacciari, Ilaria

    2018-06-01

    An anomalous effect in the near field of crossing microwave beams, which consists of an unexpected transfer of modulation from one beam to the other, has found a plausible interpretation within the framework of a locally broken Lorentz invariance. A theoretical approach of this kind deserves to be reconsidered also in the light of further experimental work, including a counter-check of the phenomenon.

  18. Anomalous hall effect in ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  19. Probing anomalous gauge boson couplings at LEP

    International Nuclear Information System (INIS)

    Dawson, S.; Valencia, G.

    1994-01-01

    We bound anomalous gauge boson couplings using LEP data for the Z → bar ∫∫ partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII

  20. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  1. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  2. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  3. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  4. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  5. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  6. Can there be a T3 ln T kind of behaviour of the low temperature specific heat of liquid 3He without the paramagnons?

    International Nuclear Information System (INIS)

    Tripathy, D.N.; Mishra, S.

    1996-01-01

    It is shown that even without invoking the concepts like paramagnons, the temperature dependence of the interparticle correlations in a system of liquid 3 He can give rise a T 3 ln T kind of behaviour of its low temperature fermionic specific heat. It is found to be coming from the self-energy corrections to the bare single particle energy involving the particle-hole propagator. Looking at the similar kind of behaviour observed by us recently for an electron liquid, one may conclude that the T 3 ln T behaviour is perhaps universal for all fermi systems, although for liquid 3 He the very dependence also follows from the paramagnon effects. It is interesting to see that unlike earlier theories, an extremely good fit is obtained with the experimental data over the entire range of low temperatures. (orig.)

  7. Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements; Etude du couplage hyperfin dans les alliages gadolinium-praseodyme par mesures de chaleur specifique

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [French] Nous avons etudie le couplage hyperfin d'alliages de gadolinium-praseodyme par des mesures de chaleur specifique jusqu'a 0.3 K. Dans la premiere partie de cette etude nous decrivons le dispositif experimental. La deuxieme partie est consacree a des considerations theoriques. Nous avons etudie en detail le cas du praseodyme qui est une exception dans la serie des terres rares. La troisieme partie est consacree aux resultats experimentaux. (auteur)

  8. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    Science.gov (United States)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  9. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  10. Dualism of the 5f electrons of the ferromagnetic superconductor UGe2 as seen in magnetic, transport, and specific-heat data

    Science.gov (United States)

    Troć, R.; Gajek, Z.; Pikul, A.

    2012-12-01

    Single-crystalline UGe2 was investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity, and specific-heat measurements, all carried out in wide temperature and magnetic-field ranges. An analysis of the obtained data points out the dual behavior of the 5f electrons in this compound, i.e., possessing simultaneously local and itinerant characters in two substates. The magnetic and thermal characteristics of the compound were modeled using the effective crystal field (CF) in the intermediate coupling scheme and initial parameters obtained in the angular overlap model. Various configurations of the localized 5fn (n = 1, 2, and 3) electrons on the uranium ion have been probed. The best results were obtained for the 5f2 (U4+) configuration. The CF parameters obtained in the paramagnetic region allowed us to reproduce satisfactorily the experimental findings in the whole temperature range including also the magnitude of the ordered magnetic moment of uranium at low temperature. The electrical resistivity data after subtraction of the phonon contribution reveal the presence of a Kondo-like interaction in UGe2 supporting the idea of partial localization of the 5f electrons in UGe2. On the other hand, magnetoresistivity and an excess of specific heat originated from the hybridized (itinerant) part of 5f states, apparent around the characteristic temperature T*, give a distinct signature for the presence of the coupled charge-density wave and spin-density wave fluctuations over all the ferromagnetic region with a maximum at T*, postulated earlier in the literature.

  11. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  12. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  13. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  14. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  15. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  16. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Q.; Hendrickson, W.

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  17. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  18. Rationality of the anomalous dimensions in N=4 SYM theory

    International Nuclear Information System (INIS)

    Genovese, Luigi; Stanev, Yassen S.

    2005-01-01

    We reconsider the general constraints on the perturbative anomalous dimensions in conformal invariant QFT and in particular in N=4 SYM with gauge group SU(N). We show that all the perturbative corrections to the anomalous dimension of a renormalized gauge invariant local operator can be written as polynomials in its one loop anomalous dimension. In the N=4 SYM theory the coefficients of these polynomials are rational functions of the number of colours N

  19. Presentation: 3D magnetic inversion by planting anomalous densities

    OpenAIRE

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2013-01-01

    Slides for the presentation "3D magnetic inversion by planting anomalous densities" given at the 2013 AGU Meeting of the Americas in Cancun, Mexico.   Note: There was an error in the title of the talk. The correct title should be "3D magnetic inversion by planting anomalous magnetization"   Abstract: We present a new 3D magnetic inversion algorithm based on the computationally efficient method of planting anomalous densities. The algorithm consists of an iterative growth of the an...

  20. Anomalous x-ray radiation of beam plasma

    International Nuclear Information System (INIS)

    Dimitrov, S.K.; Zavyalov, M.A.; Mikhin, S.G.; Tarasenkov, V.A.; Telkovskij, V.G.; Khrabrov, V.A.

    1985-01-01

    The properties of non-equilibrium stationary plasma under the conditions of the planned plasma-chemical reactors based on beam-plasma discharge were investigated. The x-ray spectrum of the beam-plasma was measured and anomalous spectral properties were analyzed. Starting with some critical pressure the anomalous radiation was added to the classical bremsstrahlung spectrum. The occurrence of anomalous radiation can be used to diagnose the condition of beam transportation in such systems. (D.Gy.)

  1. Connection between recurrence time statistics and anomalous transport

    International Nuclear Information System (INIS)

    Zaslavsky, G.M.; Tippett, M.K.

    1991-01-01

    For a model stationary flow with hexagonal symmetry, the recurrence time statistics are studied. The model has been shown to have a sharp transition from normal to anomalous transport. Here it is shown that this transition is accompanied by a correspondent change of the recurrence time statistics from normal to anomalous. The latter one displays the existence of a power tail. Recurrence time statistics provide a local measurement of anomalous transport that is of practical interest

  2. Inclusive anomalous muon production in e+e- annihilation

    International Nuclear Information System (INIS)

    Feldman, G.J.; Bulos, F.; Lueke, D.; Abrams, G.S.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Dorfan, J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hanson, G.; Heile, F.B.; Jaros, J.A.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Lueth, V.; Madaras, R.J.; Morehouse, C.C.; Nguyen, H.K.; Paterson, J.M.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pierre, F.M.; Pun, T.P.; Rapidis, P.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Tanenbaum, W.; Trilling, G.H.; Vannucci, F.; Whitaker, J.S.; Wiss, J.E.

    1977-01-01

    We present measurements of inclusive anomalous muon production in e + e - annihilations in three energy ranges. In all three ranges we observe a large anomalous muon production rate in two-prong events which is compatible with the expected decays of pairs of heavy leptons. In the highest energy range there is also appreciable anomalous muon production in multiprong events which, due to its magnitude and momentum dependence, must come in part from a source other than a heavy lepton

  3. Anomalous Cepheids and population II blue stragglers

    Science.gov (United States)

    Nemec, James M.

    Recent studies of anomalous Cepheids (ACs) and population II blue stragglers (BSs), including photometrically variable BSs (VBSs), are reviewed. The VBSs represent about 25 percent of the BSs, the majority of which are SX Phe short-period variables in the Cepheid instability strip. Mass estimates derived using various techniques suggest that both ACs and BSs are relatively massive (about 1.0-1.6 solar mass). The recent discovery that two BSs in the globular cluster NGC 5466 are contact binaries, and the earlier discovery that one of the BSs in Omega Cen is an eclipsing binary, provide direct evidence that at least some BSs are binary systems.

  4. Global constraints on top quark anomalous couplings

    Science.gov (United States)

    Déliot, Frédéric; Faria, Ricardo; Fiolhais, Miguel C. N.; Lagarelhos, Pedro; Onofre, António; Pease, Christopher M.; Vasconcelos, Ana

    2018-01-01

    The latest results on top quark physics, namely single top quark production cross sections, W -boson helicity and asymmetry measurements are used to probe the Lorentz structure of the W t b vertex. The increase of sensitivity to new anomalous physics contributions to the top quark sector of the standard model is quantified by combining the relevant results from Tevatron and the Large Hadron Collider. The results show that combining an increasing set of available precision measurements in the search for new physics phenomena beyond the standard model leads to significant sensitivity improvements, especially when compared with the current expectation for the High Luminosity run at the LHC.

  5. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    We have performed full charge-density calculations for the equilibrium atomic volumes of the alpha-phase light actinide metals using the local density approximation (LDA) and the generalized gradient approximation (GGA). The average deviation between the experimental and the GGA atomic radii is 1.......3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  6. Observations of anomalous fading in maiolica

    International Nuclear Information System (INIS)

    Bowman, S.G.E.

    1988-01-01

    In the course of an authenticity study on Italian maiolica (tin-glazed earthenware of the Renaissance period), storage at elevated temperature was used to accelerate anomalous fading. Substantial levels of fading were observed in about half of the samples, and in these cases the variation of fading with glow curve temperature accounted for the lack of an equivalent dose plateau. Some evidence was found for a difference in the fading between alpha and beta induced thermoluminescence (TL). More importantly, some samples with unstable natural TL were found: the implications of this for dating and the circumvention of fading are discussed. (author)

  7. Anomalous vector-boson self-interactions

    International Nuclear Information System (INIS)

    Nir, Y.

    1988-03-01

    We study the possibility that vector-boson self-couplings may differ from their standard model values. We find that known constraints from loop-effects and from unitarity already imply that such deviations are of order 10 -2 or less. Consequently, even if the correct model differs from the standard model and even if the energy scale of new physics is as low as 1 TeV, a direct observation of anomalous couplings is very improbable in the LEP-200 and Tevatron experiments. (author)

  8. The anomalous magnetic moment of the muon

    International Nuclear Information System (INIS)

    Farley, F.J.M.

    1975-01-01

    A historical survey of the measurements of the gyromagnetic ratio g of the muon. A brief introduction is given to the theory of the 'anomalous magnetic moment' a equivalent to 1/2(g-2) and its significance is explained. The main part of the review concerns the successive (g-2) experiments to measure a directly, with gradually increasing accuracy. At present experiment and theory agree to (13+-29) parts in 10 9 in g, and the muon still obeys the rules of quantum electrodynamics for a structureless point charge. (author)

  9. Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by Mycobacterium tuberculosis Heat Shock Protein X

    Science.gov (United States)

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T.-C.

    2014-01-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4+ and CD8+ T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)–expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors. PMID:24990079

  10. Zγ production at NNLO including anomalous couplings

    Science.gov (United States)

    Campbell, John M.; Neumann, Tobias; Williams, Ciaran

    2017-11-01

    In this paper we present a next-to-next-to-leading order (NNLO) QCD calculation of the processes pp → l + l -γ and pp\\to ν \\overline{ν}γ that we have implemented in MCFM. Our calculation includes QCD corrections at NNLO both for the Standard Model (SM) and additionally in the presence of Zγγ and ZZγ anomalous couplings. We compare our implementation, obtained using the jettiness slicing approach, with a previous SM calculation and find broad agreement. Focusing on the sensitivity of our results to the slicing parameter, we show that using our setup we are able to compute NNLO cross sections with numerical uncertainties of about 0.1%, which is small compared to residual scale uncertainties of a few percent. We study potential improvements using two different jettiness definitions and the inclusion of power corrections. At √{s}=13 TeV we present phenomenological results and consider Zγ as a background to H → Zγ production. We find that, with typical cuts, the inclusion of NNLO corrections represents a small effect and loosens the extraction of limits on anomalous couplings by about 10%.

  11. Powder diffraction studies using anomalous dispersion

    International Nuclear Information System (INIS)

    Cox, D.E.; Wilkinson, A.P.

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high T c superconductors, ternary alloys, FeCo 2 (PO 4 ) 3 , FeNi 2 BO 5 ), oxidation-state contrast (e.g. YBa 2 Cu 3 O 6+x , Eu 3 O 4 , GaCl 2 , Fe 2 PO 5 ), and the effect of coordination geometry (e.g. Y 3 Ga 5 O l2 )

  12. Anomalous Stars and Where to Find Them

    Science.gov (United States)

    Muna, Demitri; Huff, Eric

    2018-01-01

    The sky is now extensively mapped by imaging surveys in wavelengths that span the electromagnetic spectrum, ranging from Fermi and GALEX down to WISE, Planck, and radio surveys like FIRST and VLSS. Individual public catalogs now contain on order hundreds of millions of distinct sources. Recent progress in image analysis techniques makes possible great increases in the efficiency, sensitivity, and reliability of measurements that combine imaging data from multiple probes with heterogeneous properties. This is especially true for the identification of anomalous sources: traditional methods for finding ‘outliers’ typically rely on making hard cuts on noisy catalog properties, greatly restricting the potential discovery space. Cross-catalog matches confine investigation to objects that occur at signal-to-noise ratios sufficient to be independently detectable in a subset of all the available multi-wavelength coverage. The process of merging the latest analyses with existing data is severely hampered, however, by the fractured way in which these data are processed and stored, limitations of data access, the data volume involved, and the computation power required. This has left archive data far from fully exploited. Stellar anomalies present the best place to start: joint distributions of stellar colors and magnitudes have finer structures than extended sources, and modelling of point sources is computationally cheaper than for galaxies. We present a framework to solve the problem of applying new algorithms to old data while overcoming the limitations described above, in the search for the undiscovered anomalous.

  13. Unparticles and anomalous dimensions in the cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Karch, Andreas [Department of Physics, University of Washington,3910 15th Ave. NE, Seattle, WA 98195-1560 (United States); Limtragool, Kridsanaphong; Phillips, Philip W. [Department of Physics and Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States)

    2016-03-25

    Motivated by the overwhelming evidence some type of quantum criticality underlies the power-law for the optical conductivity and T−linear resistivity in the cuprates, we demonstrate here how a scale-invariant or unparticle sector can lead to a unifying description of the observed scaling forms. We adopt the continuous mass formalism or multi band (flavor) formalism of the unparticle sector by letting various microscopic parameters be mass-dependent. In particular, we show that an effective mass that varies with the flavor index as well as a running band edge and lifetime capture the AC and DC transport phenomenology of the cuprates. A key consequence of the running mass is that the effective dynamical exponent can differ from the underlying bare critical exponent, thereby providing a mechanism for realizing the fractional values of the dynamical exponent required in a previous analysis http://dx.doi.org/10.1103/PhysRevB.91.155126. We also predict that regardless of the bare dynamical exponent, z, a non-zero anomalous dimension for the current is required. Physically, the anomalous dimension arises because the charge depends on the flavor, mass or energy. The equivalent phenomenon in a d+1 gravitational construction is the running of the charge along the radial direction. The nature of the superconducting instability in the presence of scale invariant stuff shows that the transition temperature is not necessarily a monotonic function of the pairing interaction.

  14. More modular invariant anomalous U(1) breaking

    International Nuclear Information System (INIS)

    Gaillard, Mary K.; Giedt, Joel

    2002-01-01

    We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to an anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds upon previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kaehler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated out of the theory at the tree-level. We also address how our formalism may be extended to describe the generalized Green-Schwarz mechanism for multiple anomalous U(1)'s that occur in four-dimensional Type I and Type IIB string constructions

  15. Elucidation of the mechanism for anomalous blueshift

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Koga, J.K.; Nakajima, Kazuhisa

    2004-01-01

    The anomalous blue shift of high intensity laser which was discovered by the present authors occurs in the process of gas ionization accompanied with the self-focusing. This shift does not depend either on the laser power or on the gas density and all photons are shifted by a certain frequency, while the one which has been known in common depends on both the intensity and density and only some part of the laser photons is shifted. In order to elucidate this phenomenon, the occurrence conditions of the anomalous blue shift were investigated and the results are compared with theory. The shifts were measured by focusing the laser beam in the gas-filled chamber with an off-axis-parabolic mirror and with a convex lens. When the reflective lens was used the amount of the shift depended significantly on the ionization rate of the plasma, while it depended on the pulse width when the transmission lens was used indicating that the shift is determined by the valence due to the ionization at the focusing point. (S. Funahashi)

  16. Anomalous Micellization of Pluronic Block Copolymers

    Science.gov (United States)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  17. Anomalous growth of Ba on Ag(111)

    International Nuclear Information System (INIS)

    Teodoro, O.M.N.D.; Los, J.; Moutinho, A.M.C.

    2002-01-01

    Electropositive elements are often adsorbed on metals to produce a well-known decrease in the surface work function. During deposition, the work function drops steeply and reaches a minimum at coverage lower than one monolayer. Then, it increases slightly and the work function converges to the value of the deposited element. In this work, we report anomalous behavior found during the deposition of barium on a Ag(111) surface. After a minimum of about 2.4 eV the work function did not increase up to 2.7 eV, the bulk barium work function, no matter what amount of barium was deposited. Auger electron spectroscopy corroborated these results in which we measured a permanent and constant intensity of the Ag MNN peak for high barium coverage. To explain this anomalous growth of barium on Ag(111) we propose an explanation based on the diffusion of silver atoms into the barium film. Further experiments showed that coadsorption of oxygen before a second deposition of barium blocked the diffusion thus allowing the work function to reach 2.7 eV

  18. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis.

    Science.gov (United States)

    Krawczyk, Antonina O; de Jong, Anne; Omony, Jimmy; Holsappel, Siger; Wells-Bennik, Marjon H J; Kuipers, Oscar P; Eijlander, Robyn T

    2017-04-01

    Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA 2mob operon carried on the Tn 1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA 2mob required higher HA temperatures for efficient germination than spores lacking spoVA 2mob The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K + (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers. IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases

  19. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    Science.gov (United States)

    Urbach, J. S.; Mitzi, D. B.; Kapitulnik, A.; Wei, J. Y. T.; Morris, D. E.

    1989-06-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0)<=1 mJ/mole K2].

  20. Low-temperature specific heat of single-crystal Bi2CaSr2Cu2O8 and Tl2Ca2Ba2Cu3O10

    International Nuclear Information System (INIS)

    Urbach, J.S.; Mitzi, D.B.; Kapitulnik, A.; Wei, J.Y.T.; Morris, D.E.; Physics Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720)

    1989-01-01

    We report specific-heat measurements from 2 to 15 K on single crystals of Bi 2 CaSr 2 Cu 2 O 8 and Tl 2 Ca 2 Ba 2 Cu 3 O 10 We find low-temperature deviations from the Debye law that can be attributed to spin-glass behavior of a small concentration of isolated impurity copper moments. At higher temperatures, we observe contributions to the specific heat that can be attributed to a soft-phonon mode, possibly associated with the superstructure in the Bi-O and Tl-O layers. From our single-crystal data, we conclude that the thallium- and bismuth-based copper oxide superconductors show no measurable linear term in the specific heat [γ(0) less than or equal to 1 mJ/mole K 2