WorldWideScience

Sample records for anomalous physical properties

  1. Colligative properties of anomalous water.

    Science.gov (United States)

    Everett, D H; Haynes, J M; McElroy, P J

    1970-06-13

    Investigations of the phase behaviour on freezing and subsequent melting and of other properties indicate that anomalous water is a solution containing a fixed amount of relatively involatile material in normal water. There seems to be no need to postulate the existence of a new polymer of water in such solutions. If only water and silica are present, the properties are consistent with those of a silicic acid gel.

  2. Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation

    Science.gov (United States)

    Dove, Martin T.; Fang, Hong

    2016-06-01

    Negative thermal expansion (NTE) is the phenomenon in which materials shrink rather than expand on heating. Although NTE had been previously observed in a few simple materials at low temperature, it was the realisation in 1996 that some materials have NTE over very wide ranges of temperature that kick-started current interest in this phenomenon. Now, nearly two decades later, a number of families of ceramic NTE materials have been identified. Increasingly quantitative studies focus on the mechanism of NTE, through techniques such as high-pressure diffraction, local structure probes, inelastic neutron scattering and atomistic simulation. In this paper we review our understanding of vibrational mechanisms of NTE for a range of materials. We identify a number of different cases, some of which involve a small number of phonons that can be described as involving rotations of rigid polyhedral groups of atoms, others where there are large bands of phonons involved, and some where the transverse acoustic modes provide the main contribution to NTE. In a few cases the elasticity of NTE materials has been studied under pressure, identifying an elastic softening under pressure. We propose that this property, called pressure-induced softening, is closely linked to NTE, which we can demonstrate using a simple model to describe NTE materials. There has also been recent interest in the role of intrinsic anharmonic interactions on NTE, particularly guided by calculations of the potential energy wells for relevant phonons. We review these effects, and show how anhamonicity affects the response of the properties of NTE materials to pressure.

  3. Physical properties

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities into the physical properties of metals and ceramics at Lawrence Berkeley Laboratory during 1976 are reported. Topics covered include: high field superconductivity; microstructure and mechanical behavior of ceramics, glass-metal, and ceramic-metal systems; high temperature reactions; relation of microstructure to properties in ceramics; and structure and properties of carbon materials and composite materials

  4. Anomalous quantum numbers and topological properties of field theories

    International Nuclear Information System (INIS)

    Polychronakos, A.P.

    1987-01-01

    We examine the connection between anomalous quantum numbers, symmetry breaking patterns and topological properties of some field theories. The main results are the following: In three dimensions the vacuum in the presence of abelian magnetic field configurations behaves like a superconductor. Its quantum numbers are exactly calculable and are connected with the Atiyah-Patodi-Singer index theorem. Boundary conditions, however, play a nontrivial role in this case. Local conditions were found to be physically preferable than the usual global ones. Due to topological reasons, only theories for which the gauge invariant photon mass in three dimensions obeys a quantization condition can support states of nonzero magnetic flux. For similar reasons, this mass induces anomalous angular momentum quantum numbers to the states of the theory. Parity invariance and global flavor symmetry were shown to be incompatible in such theories. In the presence of mass less flavored fermions, parity will always break for an odd number of fermion flavors, while for even fermion flavors it may not break but only at the expense of maximally breaking the flavor symmetry. Finally, a connection between these theories and the quantum Hall effect was indicated

  5. The structural origin of anomalous properties of liquid water

    Science.gov (United States)

    Nilsson, Anders; Pettersson, Lars G. M.

    2015-12-01

    Water is unique in its number of unusual, often called anomalous, properties. When hot it is a normal simple liquid; however, close to ambient temperatures properties, such as the compressibility, begin to deviate and do so increasingly on further cooling. Clearly, these emerging properties are connected to its ability to form up to four well-defined hydrogen bonds allowing for different local structural arrangements. A wealth of new data from various experiments and simulations has recently become available. When taken together they point to a heterogeneous picture with fluctuations between two classes of local structural environments developing on temperature-dependent length scales.

  6. Physical properties and fisheries

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.

    The physical aspects influencing the different stages of behaviour of the marine fish can be divided into two categories (1) the physical properties of the ocean like temperature, salinity, oxygen, high penetration etc.; and (2) the physical...

  7. Physical properties of solids

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M. K.; Young, Jr, F. W.

    1977-10-01

    Research at ORNL into the physical properties of solids is described. Topics covered include: optical, electrical, and magnetic properties of magnesium oxide; ionic conductivity and superconductivity; surface physics and catalysis; defects and impurities in insulating crystals; photovoltaic conversion of solar energy; and fracture studies. (GHT)

  8. Physics basis of Multi-Mode anomalous transport module

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Luo, L. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Weiland, J. [Departments of Applied Physics, Chalmers University of Technology and Euratom-VR Assoc., S41296 Gothenburg (Sweden); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado (United States)

    2013-03-15

    The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and collision dominated magnetohydrodynamics modes as well as model for electron temperature gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces, finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle, toroidal, and poloidal angular momentum transports. The fluid approach which underlies the derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of plasma conditions.

  9. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.

    Science.gov (United States)

    Marquez-Lago, T T; Leier, A; Burrage, K

    2012-08-01

    There have been many recent studies from both experimental and simulation perspectives in order to understand the effects of spatial crowding in molecular biology. These effects manifest themselves in protein organisation on the plasma membrane, on chemical signalling within the cell and in gene regulation. Simulations are usually done with lattice- or meshless-based random walks but insights can also be gained through the computation of the underlying probability density functions of these stochastic processes. Until recently much of the focus had been on continuous time random walks, but some very recent work has suggested that fractional Brownian motion may be a good descriptor of spatial crowding effects in some cases. The study compares both fractional Brownian motion and continuous time random walks and highlights how well they can represent different types of spatial crowding and physical obstacles. Simulated spatial data, mimicking experimental data, was first generated by using the package Smoldyn. We then attempted to characterise this data through continuous time anomalously diffusing random walks and multifractional Brownian motion (MFBM) by obtaining MFBM paths that match the statistical properties of our sample data. Although diffusion around immovable obstacles can be reasonably characterised by a single Hurst exponent, we find that diffusion in a crowded environment seems to exhibit multifractional properties in the form of a different short- and long-time behaviour.

  10. Coupled Continuous Time Random Walks for Anomalous Transport in Media Characterized by Heterogeneous Mass Transfer Properties

    Science.gov (United States)

    Comolli, A.; Dentz, M.

    2015-12-01

    Solute transport in geological media is in general non-Fickian as it cannot be explained in terms of equivalent homogeneous media. This anomalous character can be traced back to the existence of multiscale heterogeneity and strong correlations within the medium. Here we investigate the impact of fast heterogeneous mass transfer properties as represented by a spatially varying retardation coefficient (mass exchange between mobile and immobile regions, linear sorption-desorption reactions, variable porosity). In order to estimate the effects of spatial correlation, and disorder distribution on the average transport, we consider 2D media characterized by complex multiscale geometries and point distributions of retardation of increasing heterogeneity. Within a Lagrangian framework, we coarse-grain the Langevin equation for the transport of solute particles due to advection and diffusion in the heterogeneous medium. The large-scale transport properties are derived within a stochastic modeling approach by ensemble averaging of the coarse-grained Langevin equation . This approach shows that the effective particle motion can be described by a coupled CTRW that is fully parametrized by the distribution of the retardation coefficient and the spatial medium organization. This allows for the explicit relation of the heterogeneous medium properties to observed anomalous transport in terms of solute dispersion, breakthrough curves and spatial concentration profiles.

  11. Anomalous Features on Anomalous Rocks — Deciphering the Physical Weathering History of Iron Meteorites found on Mars using Terrestrial Analogues

    Science.gov (United States)

    Ashley, J.

    2015-12-01

    Non-indigenous rocks (meteorites) found on Mars by rover science teams offer insights into probable recent (mid- to late-Amazonian) weathering processes within 15° of the martian equator. While source materials are often in question for indigenous martian alteration scenarios, the starting materials for most meteorites are known as unweathered, curated falls in Earth-based collections. Both chemical and mechanical weathering processes have modified at least 21 confirmed and candidate exogenic rocks found at three rover landing sites. Such processes have been shown to include acidic corrosion, oxide production, and aeolian scouring. The unknown martian surface exposure duration of the meteorites makes separating physical from chemical weathering effects challenging: Saltating sand grains may accomplish alone what oxidation and rust removal by aeolian scouring may accomplish in a shorter time interval, for example. However, aeolian abrasion appears to dominate for at least some of the surface features in martian irons. Iron meteorites are resistant to wind-blown sand relative to silicate rocks, but are malleable and able to preserve aeolian abrasion effects. These include 1) regmaglypts enlarged into hollows with overhanging cornices; 2) surfaces scalloped or deeply fluted by straight-line groves, and/or 3) deep 'boreholes' present across many surfaces. The flutings, boreholes, and scallops have oriented symmetry and are therefore potentially useful as paleo-wind direction indicators. Boreholes tend to be clean-edged, elliptical to round, of varying diameter, and often occur independently of local topography. Ventifacted igneous rocks found at Garnet Hill, San Gorgonio Pass, California, present features that resemble many aspects of those found in the metal masses on Mars. Though of different petrologies and mineralogies, both rock types are massive, homogeneous and unfractured, which may conceivably account for some apparent similarities in mechanical weathering

  12. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Echániz, T. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Instituto de Síntesis y Estudio de Materiales, Universidad del País Vasco, Apdo. 644, Bilbao 48080 (Spain)

    2014-09-07

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.

  13. The physical properties of coal

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2015-01-01

    Full Text Available stream_source_info Van Schoor2_2015.pdf.txt stream_content_type text/plain stream_size 15563 Content-Encoding UTF-8 stream_name Van Schoor2_2015.pdf.txt Content-Type text/plain; charset=UTF-8 22 2 the physIcAl propert...Ies of coAl Michael van Schoor, Leonie Mare This chapter explains why geophysicists usually want to know as much as possible about the physical properties of the different lithological units in an area before embarking on a geophysical survey. We also...

  14. Physical properties of liquid sodium

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Martinez Piquer, T.A.

    1977-01-01

    The molten sodium has been the more accepted coolant for the first generation of FBR, by this reason the knowledge of its technology is needed for the development of the next LMFBR. A series of necessary data for designing sodium liquid systems are given. Tables and graphics about the most important physical sodium properties between 1200-1400 degC are gathered. The results have been obtained from equations that relate the properties with temperature using a Fortran IV program. (author) [es

  15. Physical Properties of Liquid Crystals

    CERN Document Server

    Gray, George W; Spiess, Hans W

    1999-01-01

    This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.

  16. The physical properties of glycerin

    International Nuclear Information System (INIS)

    Kimsanov, B.Kh.; Karimov, M.B.; Khuseynov, K.

    1998-01-01

    In this chapter of book authors describe physical properties of glycerin. The pure glycerin presents syrup-vivid insipid transparent solution odorless and sweet on taste. The glycerin is very hygroscopic and can absorb from air till 40% moisture against its mass

  17. Anomalous transport properties of carbon-doped EuB.sub.6./sub..

    Czech Academy of Sciences Publication Activity Database

    Baťková, M.; Batko, I.; Filipov, V.; Flachbart, K.; Sechovský, V.; Shitsevalova, N.; Šantavá, Eva; Šebek, Josef

    2010-01-01

    Roč. 118, č. 5 (2010), s. 893-894 ISSN 0587-4246 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetoresistance * thermal properties * Eu boride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.467, year: 2010 http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z5p073.pdf

  18. Properties and Alignment of Interstellar Dust Grains toward Type Ia Supernovae with Anomalous Polarization Curves

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main (Germany)

    2017-02-10

    Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SN 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.

  19. Physical properties of polymers handbook

    CERN Document Server

    2007-01-01

    This book offers concise information on the properties of polymeric materials, particularly those most relevant to physical chemistry and chemical physics. Extensive updates and revisions to each chapter include eleven new chapters on novel polymeric structures, reinforcing phases in polymers, and experiments on single polymer chains. The study of complex materials is highly interdisciplinary, and new findings are scattered among a large selection of scientific and engineering journals. This book brings together data from experts in the different disciplines contributing to the rapidly growing area of polymers and complex materials.

  20. Physical properties of europium sesquioxide

    International Nuclear Information System (INIS)

    Gilchrist, K.E.; Brown, R.G.; Preston, S.D.

    1977-01-01

    Europium sesquioxide (Eu 2 O 3 ) is a neutron-absorbing material of potential use in reactor control rods and is being evaluated for use in fast reactors. This paper presents the results of physical and mechanical property measurements performed on unirradiated europia. The material exists in two useful crystallographic forms. Both the monoclinic form and a cubic variety, stabilized by the addition of 17 wt% molybdenum trioxide (MoO 3 ), have been examined. The properties reported are density, specific heat, thermal diffusivity and conductivity, thermal expansivity, Young's modulus, and strength. The data are compared with similar information in the literature. (Auth.)

  1. Properties of Anomalous and Type II Cepheids in the Small and Large Magellanic Clouds

    Directory of Open Access Journals (Sweden)

    Jurkovic Monika I.

    2017-01-01

    Full Text Available The Small Magellanic Cloud (SMC and Large Magellanic Cloud (LMC give us the possibility to study individual variable star types in a new way. Literature data provide us with photometric information about objects from the ultraviolet to the infrared. Here we would like to show the results of our study of 335 Anomalous and Type II Cepheids in the SMC and LMC detected by OGLE. Using the code More of DUSTY (MoD, a modified version of the DUSTY radiative transfer code, and the assumption that our objects are at a known distance, luminosity and effective temperature were determined. From these data the Hertzsprung-Russell diagram of these objects was compared with the theoretical models. The radius and masses of the examined stars was estimated, too. In the end, we have given the period-luminosity relations for the Anomalous and Type II Cepheids.

  2. Anomalous spin disordered properties of strongly correlated honeycomb compound In3Cu2VO9

    Directory of Open Access Journals (Sweden)

    Shi-Qing Jia

    2017-05-01

    Full Text Available We study the ground-state and finite-temperature magnetic properties of an interlayer frustrated J1 − J2 − Jc Heisenberg model on three-dimensional honeycomb lattice by employing the Schwinger boson mean-field theory, focusing on the low-energy physics in In3Cu2VO9. We find that with the increase of interlayer coupling Jc from 0 to 3.6 meV, the interlayer frustrated system transits from an antiferromagnetic (AFM phase to a state with intralayer AFM order and interlayer disorder. This spin disordered phase explains not only the intralayer phase transition at TN = 38 K, but also the qualitative behaviors of the intermediate-temperature specific heat and magnetic susceptibility of In3Cu2VO9.

  3. A call for new physics: The muon anomalous magnetic moment and lepton flavor violation

    Science.gov (United States)

    Lindner, Manfred; Platscher, Moritz; Queiroz, Farinaldo S.

    2018-02-01

    We review how the muon anomalous magnetic moment (g - 2) and the quest for lepton flavor violation are intimately correlated. Indeed the decay μ → eγ is induced by the same amplitude for different choices of in- and outgoing leptons. In this work, we try to address some intriguing questions such as: Which hierarchy in the charged lepton sector one should have in order to reconcile possible signals coming simultaneously from g - 2and lepton flavor violation? What can we learn if the g - 2anomaly is confirmed by the upcoming flagship experiments at FERMILAB and J-PARC, and no signal is seen in the decay μ → eγin the foreseeable future? On the other hand, if the μ → eγdecay is seen in the upcoming years, do we need to necessarily observe a signal also in g - 2?. In this attempt, we generally study the correlation between these observables in a detailed analysis of simplified models. We derive master integrals and fully analytical and exact expressions for both phenomena, and address other flavor violating signals. We investigate under which conditions the observations can be made compatible and discuss their implications. Lastly, we discuss in this context several extensions of the SM, such as the Minimal Supersymmetric Standard Model, Left-Right symmetric model, B- L model, scotogenic model, two Higgs doublet model, Zee-Babu model, 331 model, and Lμ -Lτ, dark photon, seesaw models type I, II and III, and also address the interplay with μ → eee decay and μ- e conversion.

  4. Coupled CDW and SDW fluctuations as an origin of anomalous properties of ferromagnetic superconductor UGe sub 2

    CERN Document Server

    Watanabe, S

    2002-01-01

    It is shown that anomalous properties of UGe sub 2 can be understood in a unified way on the basis of a single assumption that the superconductivity is mediated by the coupled SDW and CDW fluctuations induced by the imperfect nesting of the Fermi surface with majority spins at T=T sub x (P) deep in the ferromagnetic phase. Excess growth of uniform magnetization is shown to develop in the temperature range T < T sub x (P) as a mode-coupling effect of coupled growth of SDW and CDW orderings, which has been observed by two different types of experiments. The coupled CDW and SDW fluctuations are shown to be essentially ferromagnetic spin fluctuations which induce a spin-triplet p-wave attraction. These fluctuations consist of two modes, spin and charge fluctuations with large momentum transfer of the nesting vector. An anomalous temperature dependence of the upper critical field H sub c sub 2 (T) such as crossing of H sub c sub 2 (T) at P=11.4 kbar and P=13.5 kbar, can be understood by the strong-coupling-supe...

  5. Physical properties and mantle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shankland, T.J.; Johnson, P.A.; McCall, K.R. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.] [and others

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Because planetary interiors are remote, laboratory methods and associated theory are an essential step for interpreting geophysical measurements in terms of quantities that are needed for understanding Earth--temperature, composition, stress state, history, and hazards. One objective is the study of minerals and rocks as materials using experimental methods; another is to develop new methods, as in high pressure research, codes for computation in rock/soil physics, or nuclear-based analysis. Accomplishments include developing a single-crystal x-ray diffraction apparatus with application to materials at extremely high pressure and temperature; P-V-T equations of state and seismic velocity measurements for understanding the composition of Earth`s outer 1,000 km; creating computational tools to explain complex stress-strain histories of rocks; and measuring tungsten/thorium ratios W/Th that agree with the hypothesis that Earth accreted heterogeneously. Work performed in this project applies to geosciences, geothermal energy, mineral and rock properties, seismic detection, and isotope dating.

  6. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  7. Anomalous thermodynamic properties of the electron accumulation layer in SrTiO3

    Science.gov (United States)

    Sammon, Michael; Fu, Han; Shklovskii, B. I.

    2017-10-01

    Due to the nonlinear dielectric response within SrTiO3 (STO), an accumulation layer created by positive charges at the surface of the STO sample (x =0 ) has an electron density profile n (x ) that slowly decays as 1 /x12 /7 . Here we show that the long tail of n (x ) causes the magnetization and the specific heat of the accumulation layer to diverge at large x . We explore the truncation of the tail by the finite sample width W , the transition from the nonlinear to linear dielectric response with dielectric constant κ , and the use of a back gate with a negative voltage -|V | . We find that both the magnetization and specific heat are anomalously large and obey nontrivial power law dependences on W , κ , or |V |. We conclude with a discussion of how the capacitance as a function of the back gate voltage may be used to study the shape of the n (x ) tail in thin samples.

  8. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  9. Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels

    Science.gov (United States)

    Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji

    2018-04-01

    Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.

  10. Anomalous properties and coexistence of antiferromagnetism and superconductivity near a quantum critical point in rare-earth intermetallides

    International Nuclear Information System (INIS)

    Val’kov, V. V.; Zlotnikov, A. O.

    2013-01-01

    Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.

  11. Temporal characteristics of aerosol physical properties at ...

    Indian Academy of Sciences (India)

    Realizing the importance of aerosol physical properties at the adjoining continental and coastal locations in the airmass pathways onto the oceanic region, extensive measurements of aerosol physical properties were made at Visakhapatnam (17.7°N, 83.3°E), an eastern coastal location in peninsular India during the ICARB ...

  12. Physical properties of organic soils. Chapter 5.

    Science.gov (United States)

    Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni

    2011-01-01

    Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...

  13. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  14. Physical properties and moisture relations of wood

    Science.gov (United States)

    William Simpson; Anton TenWolde

    1999-01-01

    The versatility of wood is demonstrated by a wide variety of products. This variety is a result of a spectrum of desirable physical characteristics or properties among the many species of wood. In many cases, more than one property of wood is important to the end product. For example, to select a wood species for a product, the value of appearance- type properties,...

  15. Physical properties of thorium fluoride

    International Nuclear Information System (INIS)

    Van Uitert, L.G.; Guggenheim, H.J.; O'Bryan, H.M.; Warner, A.W. Jr.; Brownlow, D.; Bernstein, J.L.; Pasteur, G.A.; Johnson, L.F.

    1976-01-01

    Thorium fluoride has many properties that make it of interest for infrared windows. It is transparent to about eleven microns, is unaffected by moisture, has a moderate hardness, and suffers little dimensional change upon heating

  16. Physically unclonable functions constructions, properties and applications

    CERN Document Server

    Maes, Roel

    2013-01-01

    Physically unclonable functions (PUFs) are innovative physical security primitives that produce unclonable and inherent instance-specific measurements of physical objects; in many ways they are the inanimate equivalent of biometrics for human beings. Since they are able to securely generate and store secrets, they allow us to bootstrap the physical implementation of an information security system. In this book the author discusses PUFs in all their facets: the multitude of their physical constructions, the algorithmic and physical properties which describe them, and the techniques required to

  17. Thermal and physical properties of bakery products.

    Science.gov (United States)

    Baik, O D; Marcotte, M; Sablani, S S; Castaigne, F

    2001-07-01

    This article reviews the measurement techniques, prediction models, and data on thermo-physical properties of bakery products: specific heat, thermal conductivity, thermal diffusivity, and density. Over the last decade, investigation has focused more on thermo-physical properties of nonbread bakery products. Both commonly used and new measurement techniques for thermo-physical properties reported in the publication are presented with directions for their proper use. Data and prediction models are tabulated for the range of moisture content and temperature of the bakery products.

  18. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Keywords. Anomalous hydrodynamics; gauge anomaly; gravitational anomaly. PACS No. 47.10.ab. The chiral anomaly has played a ubiquitous role in modern physics. It has found appli- cations in several diverse fields like quantum wires, quantum Hall effect, chiral magnetic effect and anomalous hydrodynamics, to name ...

  19. Anomalous origin of left coronary artery arising from the right coronary cusp presenting with chest discomfort and syncope on physical exercise

    Directory of Open Access Journals (Sweden)

    Ran Baik

    2010-02-01

    Full Text Available Anomalous origins of coronary arteries are a rare type of disease among children. These anomalies can be categorized into 3 types according to the anatomical relationship of the aorta and pulmonary trunks. Among these types, the interarterial type, as observed in our case, needs early diagnosis and treatment, because it can increase the risk for the patient, causing sudden cardiac death in young individuals. Although there are controversies concerning the management of anomalous origins of the left coronary artery (LCA in children, the result can be very beneficial, if treated accurately. Three well-known methods for correction of anomalous origins of LCA are re-implantation, coronary arterial bypass grafting (CABG, and unroofing. We report on the case of a 12-year-old girl who had chest discomfort and syncope with physical exercise and was later diagnosed with an anomalous origin of LCA by transthoracic echocardiography (TTE and heart computed tomography (CT. She underwent a corrective operation by re-implantation, CABG, and unroofing.

  20. Photo- and gas-tuned, reversible thermoelectric properties and anomalous photo-thermoelectric effects of platinum-loaded tungsten trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenta; Watanabe, Takuya [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2016-06-28

    We report the photo- and gas-controllable properties of platinum-loaded tungsten trioxide (Pt/WO{sub 3}), which is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a Pt/WO{sub 3} thin film generated a thermoelectric power due to the ultraviolet-light-induced band-gap excitation (photochromic (PC) reaction) and/or dark storage in formic acid vapor (gaschromic (GC) reaction) in the absence of O{sub 2}, resulting from the generation of W{sup 5+} ions. After such chromic reactions, the electrical conductivity (σ) is increased, whereas the absolute value of the Seebeck coefficient (S) is decreased. The changes in σ and S and their rate of change for consistency increased in the order of: during the PC reaction < during the GC reaction < during simultaneous PC and GC reactions. The opposite behaviors, a decrease in σ and an increase in S, were exhibited by Pt/WO{sub 3} in the presence of O{sub 2} after dark storage or visible-light irradiation. This reversible cycle could be repeated. Moreover, anomalous, nontrivial photo-thermoelectric effects (a photoconductive effect (photoconductivity, σ{sub photo}) and a photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to the visible-light irradiation of Pt/WO{sub 3} in the absence of O{sub 2} after chromic reactions. Under visible-light irradiation, both σ{sub photo} and the absolute value of S{sub photo} are increased. After the irradiation, both values were decreased, that is, σ and the absolute value of S were smaller than σ{sub photo} and the absolute value of S{sub photo}, respectively. These effects are likely to be due to the photoinduced charge carriers and the accumulated electrons in Pt contributing to the increase in σ{sub photo}. In addition, electrons are extracted from the W{sup 5+} state, decreasing the number of W{sup 5+} in H{sub x}WO{sub 3} and thus contributing to the

  1. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  2. Anomalous properties of chloroborosilicate glasses in the K2O–BaO ...

    Indian Academy of Sciences (India)

    structure–property relationship of glasses. Most of the prop- erties usually exhibit monotonous .... Therefore it is evident that the biggest challenge for halide glasses is their hygroscopic nature as well as their ..... tudinally applied stress and the longitudinal strain is obtained for longitudinal wave propagation as. L = ρV 2. L .

  3. Treatments that enhance physical properties of wood

    Science.gov (United States)

    Roger M. Rowell; Peggy Konkol

    1987-01-01

    This paper was prepared for anyone who wants to know more about enhancing wood’s physical properties, from the amateur wood carver to the president of a forest products company. The authors describe chemical and physical treatments of wood that enhance the strength, stiffness, water repellency, and stability of wood. Five types of treatments are described: 1. water-...

  4. Important physical properties of peat materials

    Science.gov (United States)

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  5. Structure and physical properties of silkworm cocoons

    Science.gov (United States)

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2012-01-01

    Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916

  6. Anomalous elastic properties across the γ to α volume collapse in cerium

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Magnus J.; Jenei, Zs.; Cynn, H.; Kono, Y.; Park, C.; Kenney-Benson, C.; Evans, W.J. (LLNL); (CIW)

    2017-10-31

    The behavior of the f-electrons in the lanthanides and actinides governs important macroscopic properties but their pressure and temperature dependence is not fully explored. Cerium with nominally just one 4f electron offers a case study with its iso-structural volume collapse from the γ-phase to the α-phase ending in a critical point (pC, VC, TC), unique among the elements, whose mechanism remains controversial. Here, we present longitudinal (cL) and transverse sound speeds (cT) versus pressure from higher than room temperature to TC for the first time. While cL experiences a non-linear dip at the volume collapse, cT shows a step-like change. This produces very peculiar macroscopic properties: the minimum in the bulk modulus becomes more pronounced, the step-like increase of the shear modulus diminishes and the Poisson’s ratio becomes negative—meaning that cerium becomes auxetic. At the critical point itself cerium lacks any compressive strength but offers resistance to shear.

  7. Anomalous properties of a large magnetic moment in a fourfold potential

    CERN Document Server

    Vernier, N

    2003-01-01

    An experimental study of magnetic moments placed in a fourfold potential is presented here. The system used is a monocrystal of LiY sub 0 sub . sub 9 sub 9 Dy sub 0 sub . sub 0 sub 1 F sub 4 , where the only magnetic ions are the Dy sup 3 sup + ions. From static magnetic susceptibility measurements, it is shown that the Dy sup 3 sup + ion has an easy magnetization plane, with an additional anisotropy in the easy plane. Low frequency electron paramagnetic resonance experiments are presented here and up to nine resonance lines have been found. Some of them are in agreement with known properties of the Dy sup 3 sup + ion in LiY sub 0 sub . sub 9 sub 9 Dy sub 0 sub . sub 0 sub 1 F sub 4 , but others cannot be explained within the framework of the commonly used effective Hamiltonian. The behaviour of these new lines is consistent with a magnetic tunnelling effect. Finally, spin echoes have been observed, allowing the determination of the relaxation time T sub 2 and the coupling coefficient for several orientations...

  8. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  9. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  10. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    1996-01-01

    Fundamentals of Semiconductors attempts to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors The approach is physical and intuitive rather than formal and pedantic Theories are presented to explain experimental results This textbook has been written with both students and researchers in mind Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors The explanations are based on physical insights Each chapter is enriched by an extensive collection of tables of material parameters, figures and problems Many of these problems 'lead the student by the hand' to arrive at the results

  11. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  12. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2014-10-01

    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  13. Physical and Release Properties of Metronidazole Suppositories ...

    African Journals Online (AJOL)

    Purpose: A study was made of the effects of some bases and adjuvants on the physical and release properties of metronidazole suppositories with a view to providing more information for the optimization of the rectal formulation of metronidazole. Method: Suppositories (1g) containing 200mg of metronidazole each were ...

  14. Physical properties of sunflower grains after drying

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2015-12-01

    Full Text Available The knowledge of the physical properties of the grains is important for the optimization of post-harvest operations. This study aimed to evaluate the effects of convective drying with different air temperatures (45, 55, 65 and 75 °C the physical properties of sunflower seeds. The drying sunflower grains was performed in convection oven with forced air. In natural conditions, samples of 5 kg of pellets were used for each repetition drying. During the drying process, the grains samples were weighed periodically until they reach 10% (wet basis, w.b., then were subjected to evaluations of physical properties. According to the results it was observed that the porosity, apparent density, thousand kernel weight to the drag coefficient, roundness, sphericity and width of sunflower seed did not change with increasing temperature drying air. It was concluded that the drying air temperatures of 45 °C and 55 retained the initial physical characteristics of sunflower seeds. The temperature of the drying air of 75 °C had greater influence on changes in volumetric shrinkage of the grains.

  15. Physical Properties of Hanford Transuranic Waste

    Energy Technology Data Exchange (ETDEWEB)

    Berg, John C.

    2010-03-25

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  16. MAGNETIC WOVEN FABRICS - PHYSICAL AND MAGNETIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    GROSU Marian C

    2015-05-01

    Full Text Available A coated material is a composite structure that consists of at least two components: base material and coating layer. The purpose of coating is to provide special properties to base material, with potential to be applied in EMI shielding and diverse smart technical fields. This paper reports the results of a study about some physical and magnetic properties of coated woven fabrics made from cotton yarns with fineness of 17 metric count. For this aim, a plain woven fabric was coated with a solution hard magnetic polymer based. As hard magnetic powder, barium hexaferrite (BaFe12O19 was selected. The plain woven fabric used as base has been coated with five solutions having different amounts of hard magnetic powder (15% - 45% in order to obtain five different magnetic woven fabrics. A comparison of physical properties regarding weight (g/m2, thickness (mm, degree of charging (% and magnetic properties of magnetic woven samples were presented. Saturation magnetizing (emu/g, residual magnetizing (emu/g and coercive force (kA/m of pure hard magnetic powder and woven fabrics have been studied as hysteresis characteristics. The magnetic properties of the woven fabrics depend on the mass percentage of magnetic powder from coating solution. Also, the residual magnetism and coercive field of woven fabrics represents only a part of bulk barium hexafferite residual magnetism and coercive field.

  17. Physical properties of the planet Mercury

    Science.gov (United States)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  18. F-Canyon Sludge Physical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-08-22

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, D&D requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution.

  19. IMPROVING PHYSICAL PROPERTIES OF RAPE BIOFUELS

    Directory of Open Access Journals (Sweden)

    Zbigniew Kiernicki

    2012-12-01

    Full Text Available The researches on the use of biodiesel and fuel derived from waste plastics are presented in the paper. Biodiesel and fuel obtained from waste plastics were both used as fuel components. FAME is a bio-admixture in the fuel. The catalytic cracking of polyolefin was the source of second fuel admixture. The physical properties of the analyzed components of fuel have been presented. The operational parameters of direct injection in diesel engines fuelled by tested fuel blends was set out. The preparation of the fuel mixture was also described. The concept of the diesel fuel which is made from the components of opposite physical properties could have a positive practical effect and could improve the use of biofuels.

  20. Lunar physical properties from analysis of magnetometer data

    Science.gov (United States)

    Daily, W. D.

    1979-01-01

    The electromagnetic properties of the lunar interior are discussed with emphasis on (1) bulk, crustal, and local anomalous conductivity; (2) bulk magnetic permeability measurements, iron abundance estimates, and core size limits; (3) lunar ionosphere and atmosphere; and (4) crustal magnetic remanence: scale size measurements and constraints on remanence origin. Appendices treat the phase relationship between the energetic particle flux modulation and current disc penetrations in the Jovian magnetosphere (Pioneer 10 inbound) theories for the origin of lunar magnetism; electrical conductivity anomalies associated with circular lunar maria; electromagnetic properties of the Moon; Mare Serenitatis conductivity anomaly detected by Apollo 16 and Lunokhod 2 magnetometers; and lunar properties from magnetometer data: effects of data errors.

  1. PHYSICAL PROPERTIES OF SOYBEAN (A RESEARCH REPORT ...

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. Physical properties of linear dimensions, sphericity and solid density of four different varieties of dry mature soybean were determined in this study. For the varieties - TGX1768-6F,. TGX-1681-3F, TGX-536-02D, and TGX-1740-3F, the mean sphericity are 0.745, 0.857, 0.830, and 0.829 respectively. It is shown ...

  2. Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass.

    Science.gov (United States)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph

    2017-01-13

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48^{3}×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a_{μ}^{HLbL}=5.35(1.35)×10^{-10}, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.

  3. Physical and Frictional Properties of NERICA

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Some physical and frictional properties of the seeds and husks of New Rice for Africa (NERICA were studied at varying moisture contents of 13%, 17%, and 20% (w.b. In the study, four varieties of NERICA namely; FARO 44, FARO 51, FARO 52 and FARO 57 were selected to represent the different size ranges common to NERICA. The physical properties of NERICA such as shape, size, volume, moisture contents, density, weights, surface area, aspect ratio and sphericity were obtained through physical measurement of the grains samples of each of the four varieties. Results of the physical measurements indicate that the size ranges for the varieties are as follows: FARO 44; 3.653mm to 3.858mm, FARO 51; 3.685mm to 3.916mm, FARO 52; 3.674mm to 3.863mm and FARO 57; 3.924mm to 4.019mm. Results of the frictional properties, shows that plywood material has the highest value of 28.4(1.36 = 33.0(1.41, 29.9(1.38 = 35.2(1.45 and 30.4(1.28 = 37.6(1.51 at 13%, 17% and 20% (w.b respectively, while plastic material has the lowest coefficient of friction value of 20.8(1.21 = 17.7(1.14, 19.4(1.17 = 21.8(1.24 and 21.3(1.24 = 22.9(1.26 at 13%, 17% and 20% (w.b respectively.

  4. Observation of Anomalous Properties associated with the Low Temperature Structural Distortion in β-FeSe and Related Superconductorsa

    Directory of Open Access Journals (Sweden)

    Wu M. K.

    2012-03-01

    Full Text Available The discovery of Superconductivity in the tetragonal phase FeSe provides a unique platform for the detailed investigation of the correlation between the physical properties and crystal structure to better understand the possible origin of superconductivity in the new iron-based superconductors. We have carried out a series of properties characterizations by measuring magnetic susceptibility, Raman, NMR and femtosecond spectroscopy on single crystals and epitaxial thin films of the FeSe and Te-doped Fe(SeTe samples. Our results show clearly the presence of anomalies in all the characterized properties at the temperature where a structural distortion from tetragonal to orthorhombic (or monoclinic appears for all superconducting samples, but not in the non-superconducting ones. This structural distortion was observed not accompanied by a magnetic ordering as commonly occurs in the parent compounds of FeAs-based superconductors. All the observations suggest that the low temperature structural distortion is essential for the occurrence of superconductivity in the FeSe and related compounds. Details of the experimental results will be presented and discussed.

  5. 31 CFR 544.204 - Expenses of maintaining blocked physical property; liquidation of blocked property.

    Science.gov (United States)

    2010-07-01

    ... physical property; liquidation of blocked property. 544.204 Section 544.204 Money and Finance: Treasury... maintaining blocked physical property; liquidation of blocked property. (a) Except as otherwise authorized..., all expenses incident to the maintenance of physical property blocked pursuant to § 544.201(a) shall...

  6. 31 CFR 543.204 - Expenses of maintaining blocked physical property; liquidation of blocked property.

    Science.gov (United States)

    2010-07-01

    ... physical property; liquidation of blocked property. 543.204 Section 543.204 Money and Finance: Treasury... physical property; liquidation of blocked property. (a) Except as otherwise authorized, and notwithstanding... to the maintenance of physical property blocked pursuant to § 543.201(a) shall be the responsibility...

  7. 31 CFR 547.204 - Expenses of maintaining blocked physical property; liquidation of blocked property.

    Science.gov (United States)

    2010-07-01

    ... physical property; liquidation of blocked property. 547.204 Section 547.204 Money and Finance: Treasury... maintaining blocked physical property; liquidation of blocked property. (a) Except as otherwise authorized..., all expenses incident to the maintenance of physical property blocked pursuant to § 547.201(a) shall...

  8. Physical Properties of Synthetic Resin Materials

    Science.gov (United States)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  9. Corrosion and physical properties of microalloyed rebar

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L. [Univ. Autonoma de Campeche, Cuernavaca, Morelos (Mexico). Programa de Corrosion del Golfo de Mexico]|[UNAM, Cuernavaca, Morelos (Mexico). Inst. de Fisica; Hernandez, G.; Carpio, J.J. [Univ. Autonoma de Campeche, Cuernavaca, Morelos (Mexico). Programa de Corrosion del Golfo de Mexico; Arganis, C. [Inst. Nacional de Investigaciones Nucleares, Salazar (Mexico)

    1995-06-01

    The modifications of the Construction Code of Mexico City after the 1985 earthquakes included a recommendation to use low-alloy rebar as a first option for the reinforced-concrete buildings; main structural components. The first Mexican specification of low-alloy concrete rebar of weldable grade and optimal mechanical response during plastic deformation caused by earthquakes was issued in 1987. Reported here are the results of a comparative study of features of standard and microalloyed rebar considering physical and electrochemical properties of these materials embedded in plain and chloride-contaminated concrete.

  10. Physical Properties of the Glycoprotein Mucin

    Science.gov (United States)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  11. Symmetry and physical properties of crystals

    CERN Document Server

    Malgrange, Cécile; Schlenker, Michel

    2014-01-01

    Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This all...

  12. Chemistry and physical properties of estolides

    International Nuclear Information System (INIS)

    Isbell, T.A.

    2011-01-01

    Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to -36 degrees centigrade but suffer poor oxidative stability with RPVOT times of 29 - 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of -36 to - 54 degrees centigrade. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point -5 to -39 degrees centigrade) and good oxidative stability. Estolides from meadow foam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties. (Author).

  13. Selected physical properties of various diesel blends

    Science.gov (United States)

    Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika

    2018-01-01

    The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.

  14. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  15. Physical Properties of Silicone Gel Breast Implants.

    Science.gov (United States)

    Jewell, Mark L; Bengtson, Bradley P; Smither, Kate; Nuti, Gina; Perry, TracyAnn

    2018-04-28

    Surgical applications using breast implants are individualized operations to fill and shape the breast. Physical properties beyond shape, size, and surface texture are important considerations during implant selection. Compare form stability, gel material properties, and shell thickness of textured shaped, textured round, and smooth round breast implants from 4 manufacturers: Allergan, Mentor, Sientra, and Establishment Labs through bench testing. Using a mandrel height gauge, form stability was measured by retention of dimensions on device movement from a horizontal to vertical supported orientation. Dynamic response of gel material (gel cohesivity, resistance to gel deformation, energy absorption) was measured using a synchronized target laser following application of graded negative pressure. Shell thickness was measured using digital thickness gauge calipers. Form stability, gel material properties, and shell thickness differed across breast implants. Of textured shaped devices, Allergan Natrelle 410 exhibited greater form stability than Mentor MemoryShape and Sientra Shaped implants. Allergan Inspira round implants containing TruForm 3 gel had greater form stability, higher gel cohesivity, greater resistance to gel deformation, and lower energy absorption than those containing TruForm 2 gel and in turn, implants containing TruForm 1 gel. Shell thickness was greater for textured versus smooth devices, and differed across styles. Gel cohesivity, resistance to gel deformation, and energy absorption are directly related to form stability, which in turn determines shape retention. These characteristics provide information to aid surgeons choosing an implant based on surgical application, patient tissue characteristics, and desired outcome.

  16. Physical properties of beryllium oxide - Irradiation effects

    International Nuclear Information System (INIS)

    Elston, J.; Caillat, R.

    1958-01-01

    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author) [fr

  17. Electrical properties of schist and mylonite from the South Island, New Zealand: Exploring the source of the Southern Alps Anomalous Conductor

    Science.gov (United States)

    Kluge, Katherine; Toy, Virginia; Ohneiser, Chrisitan; Lockner, David

    2017-04-01

    The Southern Alps Electrical Conductor (SAC), identified from magnetotelluric surveys of the South Island Geophysical Transect (SIGHT) in the South Island, New Zealand, has high electrical conductivity relative to surrounding lithology (0.1 to 1 S/m between 5 and 25 km depth). This phenomenon is spatially coincident with shear zones of the Alpine Fault transform boundary and a region of anomalously low seismic velocity. It has been suggested these geophysical anomalies indicate dynamically linked fluids or graphite networks at depth, but this is unconfirmed. The convergent component of deformation within the Southern Alps orogen exhumes the lower crust. Because of this, we have been able to examine the relationship between electric properties, porosities, and mineral arrangement of hanging wall rock samples across metamorphic and strain gradients approaching the Alpine Fault. These allow us to constrain the roc properties which yield the source of the Southern Alps Electrical Conductor. We measured the electrical properties of 7 hand samples at the USGS Rock Physics Lab in Menlo Park, California. Complex resistivity of samples under confining pressure was measured up to 200 MPa, with a saturating brine of 0.1 M KCl. Laboratory measurements were then converted to complex conductivity. Mylonite conductivities were also averaged at each confining pressure and extrapolated to Alpine Fault conditions at depth (using fluid conductivity, geothermal gradient and effective confining pressure) to find projected in situ values between 0 and 9.4 km depth. Porosity ranges from 1.2 to 5.4% for hanging wall metamorphic schists and 1.0 to 1.9% for Alpine Fault Zone mylonites. Schist porosity substantially decreases with increasing proximity to the Alpine Fault, but mylonite porosity exhibits no systematic trend. Conductivity at 5 MPa effective confining pressure and 20 Hz ranges from 9.70x10-5 to 2.23x10-3 S/m for schists and 1.48x10-3 to 4.33x10-3 S/m for mylonites. Schist

  18. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  19. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  20. Physical properties of Al-R melts

    International Nuclear Information System (INIS)

    Sidorov, V.; Gornov, O.; Bykov, V.; Son, L.; Ryltsev, R.; Uporov, S.; Shevchenko, V.; Kononenko, V.; Shunyaev, K.; Ilynykh, N.; Moiseev, G.; Kulikova, T.; Sordelet, D.

    2007-01-01

    In this work, we present experimental data of physical properties (viscosity, surface tension, magnetic susceptibility and electroresistivity) studies for Al-R (R = Ce, Pr, Sm, Gd, Dy, Ho, Yb and Y) alloys and first intermetallic compounds from aluminum side, Al 11 R 3 (Al 3 R). All properties were measured during heating up to 2000 K and the following cooling down under helium atmosphere. The main results are: (1) the electronic characteristics of the objects are in good correlation with R positions in the periodic table, but rather lower than for pure elements. The conclusion is that through all investigated temperature range, the rare-earth elements have partly covalent but not only metallic states; (2) all the melts remain strongly microheterogeneous even at high overheatings above liquidus. The existence of associations with Al 2 R type is highly probable here. Some destruction of these associations takes place with increasing temperature above melting point at the composition of Al 2 R compound. However, the transformation into true solution state is somewhere above 1900 K. To check the idea, the thermodynamic modeling of the melts was performed. It was shown that associates with Al 2 R type are stable up to 2000 K

  1. 31 CFR 548.204 - Expenses of maintaining blocked physical property; liquidation of blocked property.

    Science.gov (United States)

    2010-07-01

    ... physical property; liquidation of blocked property. 548.204 Section 548.204 Money and Finance: Treasury... property; liquidation of blocked property. (a) Except as otherwise authorized, and notwithstanding the... maintenance of physical property blocked pursuant to § 548.201(a) shall be the responsibility of the owners or...

  2. 31 CFR 546.204 - Expenses of maintaining blocked physical property; liquidation of blocked property.

    Science.gov (United States)

    2010-07-01

    ... physical property; liquidation of blocked property. 546.204 Section 546.204 Money and Finance: Treasury... property; liquidation of blocked property. (a) Except as otherwise authorized, and notwithstanding the... maintenance of physical property blocked pursuant to § 546.201(a) shall be the responsibility of the owners or...

  3. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickenheim, B. R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bibler, N. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hay, M. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-08

    This document has been revised due to recent information that the glycolic acid used in Savannah River National Laboratory (SRNL) experiments contains both formaldehyde and methoxyacetic acid. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in earlier revisions. Additional data concerning the properties of glycolic acid have also been added to this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in Technical Grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.033 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the Slurry Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) process. It has been cited that glycolic acid

  4. Physical Properties of Moringa ( Moringa oleifera ) Seeds in relation ...

    African Journals Online (AJOL)

    Physical properties are very important in the design and manufacturing of processing machines. In this research work, the physical properties of Moringa were determined as design parameters for the development of an oil expeller for the crop. The properties were: length, width, thickness, arithmetic and geometric ...

  5. Changes in some physical properties of a typic haplorthox in ...

    African Journals Online (AJOL)

    The assessment of the impacts of different crop rotations on soil physical properties is needed to identify those with the potential to improve such properties which enhance crops´ responses to soil nutrients. The effects of eight crop rotations on physical properties of a Rhodic Ferralsol (Typic Haplorthox) were assessed in ...

  6. 40 CFR 716.50 - Reporting physical and chemical properties.

    Science.gov (United States)

    2010-07-01

    ... chemical properties. Studies of physical and chemical properties must be reported under this subpart if... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical...

  7. Anomalous X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g., in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discussion of the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references.

  8. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  9. Spectra and physical properties of Taurid meteoroids

    Science.gov (United States)

    Matlovič, Pavol; Tóth, Juraj; Rudawska, Regina; Kornoš, Leonard

    2017-09-01

    Taurids are an extensive stream of particles produced by comet 2P/Encke, which can be observed mainly in October and November as a series of meteor showers rich in bright fireballs. Several near-Earth asteroids have also been linked with the meteoroid complex, and recently the orbits of two carbonaceous meteorites were proposed to be related to the stream, raising interesting questions about the origin of the complex and the composition of 2P/Encke. Our aim is to investigate the nature and diversity of Taurid meteoroids by studying their spectral, orbital, and physical properties determined from video meteor observations. Here we analyze 33 Taurid meteor spectra captured during the predicted outburst in November 2015 by stations in Slovakia and Chile, including 14 multi-station observations for which the orbital elements, material strength parameters, dynamic pressures, and mineralogical densities were determined. It was found that while orbits of the 2015 Taurids show similarities with several associated asteroids, the obtained spectral and physical characteristics point towards cometary origin with highly heterogeneous content. Observed spectra exhibited large dispersion of iron content and significant Na intensity in all cases. The determined material strengths are typically cometary in the KB classification, while PE criterion is on average close to values characteristic for carbonaceous bodies. The studied meteoroids were found to break up under low dynamic pressures of 0.02-0.10 MPa, and were characterized by low mineralogical densities of 1.3-2.5 g cm-3. The widest spectral classification of Taurid meteors to date is presented.

  10. Magnetic effects in anomalous dispersion

    International Nuclear Information System (INIS)

    Blume, M.

    1992-01-01

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ''forward scattering'' properties such as the Faraday effect and circular dichroism

  11. Physical properties of molten carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Yanagida, M.; Tanimoto, K. [Osaka National Research Institute (Japan)] [and others

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  12. Chemistry and physical properties of estolides

    Directory of Open Access Journals (Sweden)

    Isbell, Terry A.

    2011-03-01

    Full Text Available Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to –36ºC but suffer poor oxidative stability with RPVOT times of 29 – 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of –36 to –54ºC. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point –5 to – 39ºC and good oxidative stability. Estolides from meadowfoam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties.

    Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las

  13. Physical properties of organic and biomaterials: Fundamentals and applications

    Science.gov (United States)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  14. An application of fractional calculus to anomalous diffusion and imaging in inhomogeneous media

    Science.gov (United States)

    Buonocore, Salvatore

    In recent years several studies have shown that field transport phenomena in media with non-homogeneous properties are characterized by unconventional behaviors. These processes, usually denoted as anomalous transport phenomena, are accurately described by fractional order mathematical models, whereas the classical integer order models fail to capture their properties. There are several examples of anomalous diffusion throughout the different fields of physics, such as wave propagation and diffusion processes in viscoelastic and heterogeneous media (e.g. soil, porous materials, etc.) fluid flow in porous media, non classical heat transfer. In particular, the diffusion processes in heterogeneous materials have shown to develop anomalous features characterized by non-local behavior due to the onset of long-range interactions. While integer order transport models are not able to explain these effects, fractional order models have shown to be able to capture these phenomena. The aim of this thesis is to investigate the occurrence of anomalous transport mechanisms associated to wave-like fields propagating in highly scattering media and to diffusive fields propagating in inhomogeneous media. Anomalous diffusion models are applicable to complex and inhomogeneous environments where classical diffusion theory ceases to be valid. Anomalous diffusion shows a nonlinear time dependence for the mean-squared displacement, and predicts stretched exponential decay for the temporal evolution of the system response. These unique characteristics of anomalous diffusion enable to probe complex media, with an approach that is not permitted by classical diffusion imaging. The behavior of the initial wave-like field turning into a diffused one will be governed by a classical or anomalous diffusive mechanism depending on the density of the medium. In this work this conversion phenomenon will be studied via a combination of stochastic molecular and fractional continuum models in order to

  15. Physical properties of 5 root canal sealers.

    Science.gov (United States)

    Zhou, Hui-min; Shen, Ya; Zheng, Wei; Li, Li; Zheng, Yu-feng; Haapasalo, Markus

    2013-10-01

    The aim of this study was to evaluate the pH change, viscosity and other physical properties of 2 novel root canal sealers (MTA Fillapex and Endosequence BC) in comparison with 2 epoxy resin-based sealers (AH Plus and ThermaSeal), a silicone-based sealer (GuttaFlow), and a zinc oxide-eugenol-based sealer (Pulp Canal Sealer). ISO 6876/2001 specifications were followed. The pH change of freshly mixed and set sealers was evaluated during periods of 1 day and 5 weeks, respectively. The viscosity was investigated at different injection rates (72, 10, and 5 mm/min) at room temperature by using a syringe-based system that was based on the Instron 3360 series universal testing system. The flow, dimensional change, solubility, and film thickness of all the tested sealers were in agreement with ISO 6876/2001 recommendations. The MTA Fillapex sealer exhibited a higher flow than the Endosequence BC sealer (P pH at all times. The pH of fresh samples of the AH Plus and ThermaSeal sealers was alkaline at first but decreased significantly after 24 hours. The viscosity of the tested sealers increased with the decreased injection rates. The tested sealers were pseudoplastic according to their viscosities as determined in this study. The MTA Fillapex and Endosequence BC sealers each possessed comparable flow and dimensional stability but higher film thickness and solubility than the other sealers tested. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  17. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of ozone treatment on chemical and physical properties of wheat (Triticum aestivum L.) gluten, glutenin and gliadin. Methods: Wheat proteins isolated from wheat flour were treated with ozone gas. The physical and chemical properties of gluten proteins were investigated after treatment ...

  18. Structural and physical properties of Sm doped magnesium zinc ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... and physical properties of prepared glass samples were characterized. The X-ray diffraction pattern verified their amorphous nature. The physical properties such as density, refractive index, molar volume, rare earth ion concentration, etc. were ..... We are grateful to UTM and Ministry of Education for the.

  19. Atomic structure and physical properties of liquid Pb Bi alloys

    Science.gov (United States)

    Kaban, I.; Hoyer, W.; Plevachuk, Yu; Sklyarchuk, V.

    2004-09-01

    The atomic structure and physical properties (dynamic viscosity, electrical conductivity, and thermopower) of liquid Pb-Bi alloys have been investigated in a wide temperature range. Gradual and reversible changes of the physical properties during heating and cooling of the Pb-Bi liquid alloys have been observed. No drastic structural transformations or atomic rearrangement with temperature variation have been found.

  20. Influence of substrate temperature on certain physical properties ...

    Indian Academy of Sciences (India)

    Influence of substrate temperature on certain physical properties and antibacterial activity of nanocrystalline Ag-doped In 2 O 3 thin films ... films were subjected to various characterization studies, to explore certain features like the influence of various deposition temperatures on physical and antibacterial properties.

  1. A Comparative Evaluation of the Physical and Chemical Properties ...

    African Journals Online (AJOL)

    The physical and chemical properties of tamarind seeds (Tamarindus indica L.) in Nigeria were investigated. Tamarind fruits were randomly collected from 18 towns in the savannah region of Nigeria. The seeds were manually separated from the pulp and membranes, sun-dried and the physical properties determined.

  2. Proximate, Physical And Sensory Properties Of Soy-Sweet Potato ...

    African Journals Online (AJOL)

    Flour mixtures consisting of full-fat soy flour and sweet potato flour at 25-75% levels were used in cookie production. Proximate, physical and sensory properties of the cookies were determined. Physical and sensory properties investigated included thickness, diameter, spread factor, spread ratio, fragility, appearance, ...

  3. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  4. Universal size dependence of the physical properties of nanomaterials

    Science.gov (United States)

    Eremin, E. N.; Yurov, V. M.; Guchenko, S. A.; Laurynas, V. Ch

    2017-06-01

    Dimensional analysis of the experimentally observed dependence of the physical properties of nanoparticles, nanofilms and nanomaterials showed that there is a universal equation that accurately describes the observed size effects. It is shown that the size factor is also a universal value and is determined only by the atomic structure of the nanomaterial. Discovered universal relationships enable us to calculate the physical properties (mechanical, electrical, magnetic, thermal, etc.) of small particles and thin films based on knowledge of the properties of bulk materials.

  5. Mechanical and physical properties of plasma-sprayed stabilized zirconia

    Science.gov (United States)

    Siemers, P. A.; Mehan, R. L.

    1983-01-01

    Physical and mechanical properties were determined for plasma-sprayed MgO- or Y2O3-stabilized ZrO2 thermal barrier coatings. Properties were determined for the ceramic coating in both the freestanding condition and as-bonded to a metal substrate. The properties of the NiCrAlY bond coating were also investigated.

  6. Complexity and the Emergence of Physical Properties

    Directory of Open Access Journals (Sweden)

    Miguel Angel Fuentes

    2014-08-01

    Full Text Available Using the effective complexity measure, proposed by M. Gell-Mann and S. Lloyd, we give a quantitative definition of an emergent property. We use several previous results and properties of this particular information measure closely related to the random features of the entity and its regularities.

  7. Physical properties of organic fullerene cocrystals

    Science.gov (United States)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  8. Modelling of physical properties - databases, uncertainties and predictive power

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Physical and thermodynamic property in the form of raw data or estimated values for pure compounds and mixtures are important pre-requisites for performing tasks such as, process design, simulation and optimization; computer aided molecular/mixture (product) design; and, product-process analysis...... in the estimated/predicted property values, how to assess the quality and reliability of the estimated/predicted property values? The paper will review a class of models for prediction of physical and thermodynamic properties of organic chemicals and their mixtures based on the combined group contribution – atom...

  9. 10428 PHYSICAL, CHEMICAL AND SENSORY PROPERTIES OF ...

    African Journals Online (AJOL)

    user

    beta carotene contents increased significantly (p < 0.05) as the level of substitution increased. The standard recorded ... Key words: Cookies, sweet potato, mango mesocarp, physical, Chemical, Sensory, Beta carotene ... baking powder and eggs were purchased from Wurukum Market, Makurdi, Benue State. Preparation of ...

  10. Moisture relations and physical properties of wood

    Science.gov (United States)

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  11. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  12. Impacts of land leveling on lowland soil physical properties

    OpenAIRE

    Parfitt, José Maria Barbat; Timm, Luís Carlos; Reichardt, Klaus; Pauletto, Eloy Antonio

    2014-01-01

    The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling pro...

  13. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    Science.gov (United States)

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  14. Let Students Discover an Important Physical Property of a Slinky

    Science.gov (United States)

    Gash, Philip

    2016-01-01

    This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.

  15. Evaluation of anatomical and physical properties of Khaya nthotheca

    African Journals Online (AJOL)

    The anatomical and physical properties of Khaya anthotheca (Welw.) C. DC wood from the transition forest of middle altitude (zone 1) and the humid dense forest of low altitude (zone 2) in the East of the Democratic Republic of Congo were evaluated to ascertain the effect of growth area on the anatomical and physical ...

  16. Physical Properties of Climbing Black Pepper ( Piper nigrum ) and ...

    African Journals Online (AJOL)

    Mass, density and moisture loss of climbing pepper were significantly affected by drying temperature and duration at 5% level of significance. Other climbing pepper physical properties under study were not influenced significantly. All alligator pepper properties considered were not significant (p > 0.05). Climbing pepper ...

  17. Physical, Chemical and Sensory Properties of Baked Products from ...

    African Journals Online (AJOL)

    AYBWEP) were processed into bread and cookies in the following ratios: 100: 0; 95: 5; 90: 10; 85: 15; 80: 20. The proximate composition, physical, chemical properties and sensory properties of bread and cookies samples from the blends were ...

  18. Impact of UV radiation on the physical properties of polypropylene ...

    African Journals Online (AJOL)

    The purpose of this study was to analyse the influence of simulated sun light radiation (xenon lamp) on physical properties of polypropylene (PP) nonwoven material, which is used for the production of agrotextiles. The research showed that the properties of row cover change when radiated with UV light. Tensile, tearing ...

  19. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    The soil chemical properties studied were soil pH, organic carbon, total nitrogen, available P, exchangeable base (Ca2+, Mg2+, K+ and Na+) and exchangeable acidity (H+ and Al3+). The physical properties were aggregate stability, mean weight diameter, water dispersible clay and clay flocculation index. Two fractions of ...

  20. Prediction of thermo-physical properties of liquid formulated products

    DEFF Research Database (Denmark)

    Mattei, Michele; Conte, Elisa; Kontogeorgis, Georgios

    2013-01-01

    The objective of this chapter is to give an overview of the models, methods and tools that may be used for the estimation of liquid formulated products. First a classification of the products is given and the thermo-physical properties needed to represent their functions are listed. For each...... property, a collection of the available models are presented according to the property type and the model type. It should be noted, however, that the property models considered or highlighted in this chapter are only examples and are not necessarily the best and most accurate for the corresponding property....

  1. Anomalous effects of dense matter under rotation

    Science.gov (United States)

    Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki

    2018-02-01

    We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

  2. Neutron diffraction and the physical properties of the light actinides

    International Nuclear Information System (INIS)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Richardson, J.W. Jr.

    1998-01-01

    For the past few years the authors have been applying the techniques of neutron powder diffraction to questions arising from the peculiar properties of the light actinide metals. The peculiar properties include complicated crystal structures, leading to complex phase diagrams; anomalous elastic and thermal expansion behavior; and surprisingly low melting points, especially for plutonium. The authors have made neutron diffraction studies of α-thorium, α-neptunium, α-uranium, and α- and δ-plutonium. A great deal has been learned from a study of the temperature dependence of the thermal vibrations of the light actinides. These can be determined using neutron diffraction to measure the Debye-Waller factors in powder diffraction experiments. The same neutron diffraction experiments also give information on the linear coefficient of thermal expansion α. This quantity is also strongly temperature dependent. Other neutron diffraction work is in progress, including attempts to solve some of the unknown alloy structures of Pu, and texture analysis via pole-figure measurements. The texture measurements are of particular interest, given the elastic anisotropy. High-quality data on Pu require the use of the nonabsorbing 242 Pu isotope, and this is a disadvantage. However, the high penetration of neutrons into most materials means that many safety problems can be solved by encapsulation of the radioactive material in V or other metal

  3. Chalk: composition, diagenesis and physical properties

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2007-01-01

    entry pressure, and elastic moduli are consequences of primary sediment composition and of subsequent diagenetic history as caused by microbial action, burial stress, temperature, and pore pressure. Porosity is a main determining factor for other properties. For a given porosity, the specific surface...... of burial, and over-pressuring. These factors cause the stress, temperature and pore-pressure to increase at different rates during burial in different localities....... of the sediment controls permeability and capillary entry pressure. As diagenesis progresses, the specific surface is less and less due to the calcite component and more and more due to the fine-grained silicates, as a reflection of the coarsening and cementation of the calcite crystals. The elastic moduli, which...

  4. Impact of local symmetry breaking on the physical properties of tetrahedral liquids.

    Science.gov (United States)

    Shi, Rui; Tanaka, Hajime

    2018-02-27

    Water and silica are the most important materials with local tetrahedral symmetry. They have similar crystalline polymorphs and exhibit anomalous density maximum in the liquid state. However, water and silica also show very different characteristics. For instance, the density of water varies much more sharply than that of liquid silica near the maximum as temperature changes. More notably, silica is a very good glass-former, but water is an extremely poor one. The physical origins of these similarities and differences still remain elusive, due to the lack of a microscopic understanding of the structural ordering in these two important liquids. Here, by accessing microscopic structural information by computer simulations, we reveal that local translational symmetry breaking is responsible for the density anomalies. On the other hand, the difference in the degree of local orientational symmetry breaking between water and silica, which originates from the difference in their bonding nature, causes not only the difference in the sharpness of density anomalies, but also their distinct glass-forming abilities. Our work not only shows the crucial roles of local translational and orientational symmetry breaking in the physical properties of the two extremely important materials, water and silica, but also provides a unified scenario applicable for other tetrahedral liquids such as Si, Ge, C, BeF 2 , and GeO 2 .

  5. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  6. Anomalous diffusion in geophysical and laboratory turbulence

    Directory of Open Access Journals (Sweden)

    A. Tsinober

    1994-01-01

    Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  7. Anomalous diffusion in geophysical and laboratory turbulence

    Science.gov (United States)

    Tsinober, A.

    We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926). The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc.) - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992) and Kit et al. (1993). The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry) and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson) which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL) to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  8. Investigating correlation between legal and physical property: possibilities and constraints

    Science.gov (United States)

    Dimopoulou, E.; Kitsakis, D.; Tsiliakou, E.

    2015-06-01

    Contemporary urban environment is characterized by complexity and mixed use of space, in which overlapping land parcels and different RRRs (Rights, Restrictions and Responsibilities) are frequent phenomena. Internationally, real property legislation either focuses on surface property or has introduced individual 3D real property units. The former approach merely accommodates issues related to subdivision, expropriation and transactions on part of the real property above or below surface, while the latter provides for defining and registering 3D real property units. National laws require two-dimensional real property descriptions and only a limited number of jurisdictions provide for threedimensional data presentation and recording. International awareness on 3D Cadastre may be apparent through the proposals for transition of existing cadastral systems to 3D along with legal amendments improving national 3D Cadastre legislation. Concurrently the use of appropriate data sources and the correct depiction of 3D property units' boundaries and spatial relationships need to be addressed. Spatial relations and constraints amongst real world objects could be modeled geometrically and topologically utilizing numerous modeling tools, e.g. CityGML, BIM and further sophisticated 3D software or by adapting international standards, e.g. LADM. A direct correlation between legal and physical property should be based on consistent geometry between physical and legal space, improving the accuracy that legal spaces' volumes or locations are defined. To address these issues, this paper investigates correlation possibilities and constraints between legal and physical space of typical 3D property cases. These cases comprise buildings or their interior spaces with mixed use, as well as complex structures described by explicit facade patterns, generated by procedural or by BIM ready 3D models. The 3D models presented are evaluated, regarding compliancy to physical or legal reality.

  9. Physical properties of Aten, Apollo and Amor asteroids

    Science.gov (United States)

    Mcfadden, Lucy-Ann; Tholen, David J.; Veeder, Glenn J.

    1989-01-01

    Data available on the physical properties of a group of planet-crossing asteroids, the Aten, Apollo, and Amor objects (AAAO) (include data on the taxonomy, mineralogical surface composition, diameter, rotation rate, shape, and surface texture) are presented together with the type of observations used for obtaining these data. These data show that the population of the AAAO is diverse in all of their physical characteristics. This diversity implies that the AAAO come from multiple sources and had different evolutionary histories.

  10. Physical properties of sidewall cores from Decatur, Illinois

    Science.gov (United States)

    Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.

    2017-10-18

    To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (

  11. Prediction of transport and other physical properties of fluids

    CERN Document Server

    Bretsznajder, S

    1971-01-01

    Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con

  12. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Graham, Alan [Univ. of Colorado, Denver, CO (United States); Nemer, Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phinney, Leslie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garcia, Robert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stirrup, Emily Kate [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  13. Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application

    Directory of Open Access Journals (Sweden)

    Lijuan Wang

    2017-02-01

    Full Text Available Dilute bismide in which a small amount of bismuth is incorporated to host III-Vs is the least studied III-V compound semiconductor and has received steadily increasing attention since 2000. In this paper, we review theoretical predictions of physical properties of bismide alloys, epitaxial growth of bismide thin films and nanostructures, surface, structural, electric, transport and optic properties of various binaries and bismide alloys, and device applications.

  14. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  15. Rational Rock Physics for Improved Velocity Prediction and Reservoir Properties Estimation for Granite Wash (Tight Sands in Anadarko Basin, Texas

    Directory of Open Access Journals (Sweden)

    Muhammad Z. A. Durrani

    2014-01-01

    Full Text Available Due to the complex nature, deriving elastic properties from seismic data for the prolific Granite Wash reservoir (Pennsylvanian age in the western Anadarko Basin Wheeler County (Texas is quite a challenge. In this paper, we used rock physics tool to describe the diagenesis and accurate estimation of seismic velocities of P and S waves in Granite Wash reservoir. Hertz-Mindlin and Cementation (Dvorkin’s theories are applied to analyze the nature of the reservoir rocks (uncemented and cemented. In the implementation of rock physics diagnostics, three classical rock physics (empirical relations, Kuster-Toksöz, and Berryman models are comparatively analyzed for velocity prediction taking into account the pore shape geometry. An empirical (VP-VS relationship is also generated calibrated with core data for shear wave velocity prediction. Finally, we discussed the advantages of each rock physics model in detail. In addition, cross-plots of unconventional attributes help us in the clear separation of anomalous zone and lithologic properties of sand and shale facies over conventional attributes.

  16. Impacts of land leveling on lowland soil physical properties

    Directory of Open Access Journals (Sweden)

    José Maria Barbat Parfitt

    2014-02-01

    Full Text Available The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd and bulk density (Bd; total porosity (Tp, macroporosity (Macro and microporosity (Micro; available water capacity (AWC; sand, silt, clay, and dispersed clay in water (Disp clay contents; electrical conductivity (EC; and weighted average diameter of aggregates (WAD. Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all

  17. Fat properties during homogenization, spray-drying, and storage affect the physical properties of dairy powders.

    Science.gov (United States)

    Vignolles, M L; Lopez, C; Madec, M N; Ehrhardt, J J; Méjean, S; Schuck, P; Jeantet, R

    2009-01-01

    Changes in fat properties were studied before, during, and after the drying process (including during storage) to determine the consequences on powder physical properties. Several methods were combined to characterize changes in fat structure and thermal properties as well as the physical properties of powders. Emulsion droplet size and droplet aggregation depended on the homogenizing pressures and were also affected by spray atomization. Aggregation was usually greater after spray atomization, resulting in greater viscosities. These processes did not have the same consequences on the stability of fat in the powders. The quantification of free fat is a pertinent indicator of fat instability in the powders. Confocal laser scanning microscopy permitted the characterization of the structure of fat in situ in the powders. Powders from unhomogenized emulsions showed greater free fat content. Surface fat was always overrepresented, regardless of the composition and process parameters. Differential scanning calorimetry melting experiments showed that fat was partially crystallized in situ in the powders stored at 20 degrees C, and that it was unstable on a molecular scale. Thermal profiles were also related to the supramolecular structure of fat in the powder particle matrix. Powder physical properties depended on both composition and process conditions. The free fat content seemed to have a greater influence than surface fat on powder physical properties, except for wettability. This study clearly showed that an understanding of fat behavior is essential for controlling and improving the physical properties of fat-filled dairy powders and their overall quality.

  18. Influence of substrate temperature on certain physical properties ...

    Indian Academy of Sciences (India)

    The deposited films were subjected to various characterization studies, to explore certain features like the influence of various deposition temperatures on physical and antibacterial properties. XRD results showed that all the samples exhibited preferential orientation along the (2 2 2) plane. The variation in the crystalline ...

  19. A comparative study of the physical and mechanical properties of ...

    African Journals Online (AJOL)

    This study investigates the compliance of the physical and mechanical properties of granites produced in some parts of Ogun State to relevant codes and standards. The desire to carry out the study was borne by personal on – site experience that single size aggregates produced in some parts of Ogun State do not conform ...

  20. The physical fibre properties of Gonometa postica after degumming ...

    African Journals Online (AJOL)

    The physical properties of the silk fibres that were evaluated in this study included weight loss determination, degumming efficiency and scanning electron microscopy. The results indicated that the weight loss of G. postica fibres ranged from 27 to 41% over a time period of 10 days for the different methods evaluated.

  1. Tillage and manure effect on soil physical and chemical properties ...

    African Journals Online (AJOL)

    ... tillage and liquid manure applications on some physical and chemical properties and also on the carbon and nitrogen mineralization potential from a meadow soil. Our results indicated that tillage and manure applications had no effect on the concentration of Cu, Mn, total N and organic C in the 0 - 15 cm layer of soil after ...

  2. Physical and mechanical properties of saligna eucalyptus grown in Hawaii

    Science.gov (United States)

    C.C. Gerhards

    1965-01-01

    Physical and mechanical properties were determined for saligna eucalyptus (Eucalyptus saligna, Smith) grown in Hawaii. In comparison with wood of the same species grown in Australia, saligna eucalyptus grown in Hawaii was lower in density, shrinkage, and compressive strength parallel to grain; it was about equal in strength in bending and shear; and it was stiffer....

  3. Some Physical And Mechanical Properties Of Uapaca Kirkiana, A ...

    African Journals Online (AJOL)

    Preparation of test samples and laboratory procedure to determine some physical and mechanical properties followed standard methods. Analysis of variance was used to determine the variation between and within trees and regression analysis was used to determine relationship between wood basic density and ...

  4. Effect of Tillage and Mulch Combination on Soil Physical Properties ...

    African Journals Online (AJOL)

    The effect of tillage method and mulching on selected soil physical properties and performance of sorghum (Sorghum bicolor) was studied in rainforest zone of South West Nigeria. Treatments were 4 x 2 factorial combination of tillage methods (zero tillage, manual clearing, heap, ridge), 12t/ha dry plant residue mulch, and ...

  5. Physical, chemical and sensory properties of cookies produced from ...

    African Journals Online (AJOL)

    This study was a result of the need for utilization of local raw materials for food production and diversification as well as an attempt to reduce the rising cost of wheat imports. The objective of this study was to investigate the physical, chemical and sensory properties of cookies produced from sweet potato and mango ...

  6. Molecular clips based on propanediurea : synthesis and physical properties

    NARCIS (Netherlands)

    Jansen, Robertus Johannes

    2002-01-01

    This thesis describes the synthesis and physical properties of a series of molecular clips derived from the concave molecule propanediurea. These molecular clips are cavity-containing receptors that can bind a variety of aromatic guests. This binding is a result of hydrogen bonding and pi-pi

  7. Some physical and mechanical properties of African birch ...

    African Journals Online (AJOL)

    The use of locally manufactured or waste materials in structural buildings without loss of performance is very crucial to the growth of developing countries. This report provides the results of some physical and mechanical property tests carried out on air dried African birch (Anogeissus leiocarpus) timber grown in Nigeria.

  8. Moisture dependent of some physical and morphological properties ...

    African Journals Online (AJOL)

    The static coefficients for friction of dent corn seeds were determined steel, plywood, wood, glass and galvanized sheet at various moisture contents. The highest static coefficient of friction was found on the wood and the lowest on the glass sheet among the materials tested. Key words: Dent corn, physical properties, ...

  9. determination of some physical properties of three groundnut varieties

    African Journals Online (AJOL)

    Dr Obe

    groundnuts. Three varieties of groundnuts namely ICGV-SM-93523, RMP-9 and RMP- 12 were collected and some of the physical properties, such as weight, angle of repose, coefficient of friction, bulk density, size, shape and moisture content were determined. The angle of repose for the three varieties was found to range ...

  10. Physical properties of peats as related to degree of decomposition

    Science.gov (United States)

    D.H. Boelter

    1969-01-01

    Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...

  11. Evaluation of the mechanical and physical properties of a posterior ...

    African Journals Online (AJOL)

    To evaluate the mechanical and physical properties of a micro-hybrid resin composite used in adult posterior restorations A micro-hybrid, light curing resin composite Unolux BCS Composite Restorative, (UnoDent, England) was used to restore 74 carious classes I and II cavities on posterior teeth of 62 adult patients.

  12. Tillage Effects on Maize Performance and Physical Properties of a ...

    African Journals Online (AJOL)

    The effects of six tillage methods on soil physical properties maize (Zea mays L.) germination, growth and yield were evaluated in field experiments during 1995 and 1996 cropping seasons. The selected treatments represented both conventional and conservation tillage practices common within the study area. The soil ...

  13. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Influence of vermicompost on soil chemical and physical properties ...

    African Journals Online (AJOL)

    In this study, the effects of vermicompost on soil chemical and physical properties was evaluated in tomato (Lycopersicum esculentum var Super Beta) field. The experiment was arranged in a randomized complete block design with four replications. Different amounts of vermicompost (0, 5, 10, 15 t ha-1) were incorporated ...

  15. Physical, chemical and electrochemical properties of pure and doped ceria

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Sammes, N.M.; Tompsett, G.A.

    2000-01-01

    This paper gives an extract of available data on the physical, chemical, electrochemical and mechanical properties of pure and doped ceria, predominantly in the temperature range from 200 to 1000 degrees C. Several areas are pointed out where further research is needed in order to make a better...

  16. Some Physical and Mechanical Properties of Daniellia Ogea Harms ...

    African Journals Online (AJOL)

    Throughout the antediluvian and up to date, humans keep understanding the nature of wood which has been used to meet some bunches of human's demands such as in industry, in framing and in war. This paper presents some physical and mechanical properties of Daniellia ogea (Iya) green timber specie freshly felled ...

  17. Physical and Pasting Properties of 'Ofada' Rice ( Oryza sativa L ...

    African Journals Online (AJOL)

    In this study, grain physical and pasting properties of ofada rice cultivated in South-West Nigeria was evaluated using Standard Evaluation System (SES) for rice with the aim of providing basic information for brand development and utilization of ofada in the development of novel food products. Results showed that size and ...

  18. Proximate Composition, Physical and Sensory Properties of Non ...

    African Journals Online (AJOL)

    Objective: The objective of the study was to investigate the possibility of preparing non-wheat cakes using acha and Bambara nut flour blends and generate base line data on the chemical, physical and sensory properties of the cakes. Materials and methods: Acha grains and Bambara nut seeds were processed into flour ...

  19. Tillage effects on soil. Physical properties and sunflower ...

    African Journals Online (AJOL)

    Soil physical properties and sunflower (Helianthus annuus) yield under convectional tillage (CT) and zero-tillage (Z,TJ. was monitored for 3 consecutive years in Ilorin, Southern Guinea Savannah zone of Nigeria (SGSZN). While bulk density of CT increased slightly over the years, significant decrease of 12 and 8% were ...

  20. Evaluation of physical, functional and pasting properties of ...

    African Journals Online (AJOL)

    The physical, functional and pasting properties of fermented cassava (Manihot esculenta Crantz) flour (lafun) from 10 different sources in Southwest Nigeria were evaluated by standard methods. The fermented flour was collected in polyethylene bags (500 g) each from the processing centers and transferred to the ...

  1. Effects of soil physical properties on erodibility and infiltration ...

    African Journals Online (AJOL)

    This study looked at the physical properties of soil of selected areas of Gidan Kwano campus of Federal University of Technology Minna, Nigeria and their effects on erodibility and infiltration parameters. Infiltration rate of the selected areas were conducted using a double ring infiltrometer and soil samples collected at ...

  2. Tillage and manure effect on soil physical and chemical properties ...

    African Journals Online (AJOL)

    The objective of this work was to study the effects of tillage and liquid manure applications on some physical and chemical properties and also on the carbon and nitrogen mineralization potential from a meadow soil. Our results indicated that tillage and manure applications had no effect on the concentration of Cu, Mn, total ...

  3. Influence of substrate temperature on certain physical properties ...

    Indian Academy of Sciences (India)

    2016-11-12

    Nov 12, 2016 ... influence of various deposition temperatures on physical and antibacterial properties. ... terial agents include metal oxide semiconductors as they are ... This method is found to be simple, cost-effective and can be used to prepare dense films on large areas with better quality. 2. Experimental details for the ...

  4. Proximate Compositions and physical properties of selected maize ...

    African Journals Online (AJOL)

    Physical properties such as germination capacity, hydration capacity, floater test and thousand-grain weight differed significantly (P≤ 0.05) among the selected varieties. The suitability of the maize grain varieties to processing and production of different maize based food products were highlighted. Key words: Maize ...

  5. Investigation of the mechanical and physical properties of greywacke specimens

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Konečný, Pavel; Knejzlík, Jaromír

    2009-01-01

    Roč. 46, č. 1 (2009), s. 188-193 ISSN 1365-1609 Institutional research plan: CEZ:AV0Z30860518 Keywords : greywacke * mechanical and physical properties Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.142, year: 2009 www.elsevier.com/locate ijrmms

  6. Tillage Effects on Maize Performance and Physical Properties of a ...

    African Journals Online (AJOL)

    Abstract. The effects of six tillage methods on soil physical properties maize (Zea mays L.) germination, growth and yield were evaluated in field experiments during 1995 and 1996 cropping seasons. The selected treatments represented both conventional and conservation tillage practices common within the study area.

  7. Physical Properties And Maize Production In A Spent Oil ...

    African Journals Online (AJOL)

    Information on the use of plant species and organic nutrients to improve the physical properties of oil-contaminated soil, with a view to making it conducive for crop production, is very important. Three legumes (Gliricidia sepium, Leucenae leucocephala and Calapogonium caeruleam) combined or not with poultry manure ...

  8. Characterization of physical and aerodynamic properties of walnuts

    Science.gov (United States)

    The objective of this research was to study the physical and aerodynamic properties of freshly harvested walnuts. Measurements were carried out for three walnut varieties, Tulare, Howard and Chandler cultivated in California, USA. The nuts treated with and without Ethephon were collected from mechan...

  9. Assessment of physical properties of foods commonly consumed by children

    Directory of Open Access Journals (Sweden)

    G Neeraja

    2018-01-01

    Conclusion: The physical properties and texture of food can be considered to be a risk factor for evaluating the relationship between food retention and dental caries. This information can further be used as an educative tool to parents and caregivers for effective modification of diet.

  10. The physical fibre properties of Gonometa postica after degumming

    African Journals Online (AJOL)

    user

    paste, which is currently in use as a chemical degumming agent. The physical properties of the silk fibres that were evaluated in this study included weight loss determination, degumming efficiency and scanning electron microscopy. The results indicated that the weight loss of G. postica fibres ranged from 27 to 41% over a.

  11. Terrestrial gamma dose rates and physical-chemical properties of ...

    African Journals Online (AJOL)

    It is the purpose of this study to provide a better perspective on the high radioactivity area in Jos Plateau and its implication on farm soil and would seek for any correlation between natural radioactivity and soil physical-chemical properties following the decades of mining activities in the area. To achieve this, soil samples ...

  12. Design, synthesis and physical properties of poly(styrene ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Poly(thiourea-azo-sulfone); SBS; electrical conductivity; thermal stability; tensile strength. 1. Introduction. Elastomer blends have been recurrently exploited in various industries to obtain best compromised physical properties including processability. In this regard, styrene– butadiene block copolymers form an ...

  13. Some physical and strength properties of immature Pinus patula ...

    African Journals Online (AJOL)

    A study was conducted to determine physical and strength properties of immature Pinus patula grown in Iringa and Njombe regions of Tanzania. Sample trees aged 5 to 15 years were collected from farmers' woodlots. The trees were categorized into 5 age classes: 5 - 7, 8 - 10, 11 - 12, 13 - 14 and 15 years. Four trees from ...

  14. Physical property characterization of 183-H Basin sludge

    International Nuclear Information System (INIS)

    Biyani, R.K.; Delegard, C.H.

    1995-01-01

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting 'loss-on-ignition' was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs

  15. Investigation of the physical and mechanical properties of Shea Tree ...

    African Journals Online (AJOL)

    Investigation of the physical and mechanical properties of Shea Tree timber ( Vitellaria paradoxa ) used for structural applications in Kwara State, Nigeria. ... strength parallel to grain of 24.7 (N/mm2), compressive strength perpendicular to grain of 8.99 (N/mm2), shear strength of 2.01 (N/mm2), and tensile strength parallel to ...

  16. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  17. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  18. Mechanical and physical properties of metakaolin based geopolymer paste

    Directory of Open Access Journals (Sweden)

    Risdanareni Puput

    2017-01-01

    Full Text Available This paper presents the result of studies on utilizing metakaolin obtained from Belitung as fly ash substitute material to produce geopolymer paste. Mechanical properties were assessed by compressive strength while physical properties were assessed by setting time, porosity, microstructure test and density test. The experiment was performed on geopolymer paste with 0, 25%, 50%, 75% and 100% fly ash replacement with metakaolin. Sodium Hidroxide (NaOH with concentration of 10 Molars and Sodium Silicate (Na2SiO3 were used as alkaline activator. In addition, activator ratio between sodium silicate to sodium hidroxide of 2 was applied. The result obtains that increasing metakaolin contain in mixture deliver longer setting time, higher open pore number, lower density and lower compressive strength of geopolymer paste. However, adding metakaolin up to 25 % into geopolymer paste mixture could increase mechanical and physical properties of geopolymer paste.

  19. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  20. Intrinsic anomalous Hall effect and local polarizabilities

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.

    2010-01-01

    Roč. 82, č. 11 (2010), 113303/1-113303/4 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0551 Institutional research plan: CEZ:AV0Z10100521 Keywords : orbital polarization momentum * Berry phase correction * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  1. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  2. PhySIC: a veto supertree method with desirable properties.

    Science.gov (United States)

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  3. Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the Standard Model with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    An inclusive search for anomalous production of two prompt, isolated muons with the same electric charge is presented. The search is performed in a data sample corresponding to 1.6 fb^-1 of integrated luminosity collected in 2011 at sqrt(s) = 7 TeV with the ATLAS detector at the LHC. Muon pairs are selected by requiring two isolated muons of the same electric charge with pT > 20 GeV and abs(eta) < 2.5. Minimal requirements are placed on the rest of the event activity. The distribution of the invariant mass of the muon pair m(mumu) is found to agree well with the background expectation. Upper limits on the cross section for anomalous production of two muons with the same electric charge are placed as a function of m(mumu) within a fiducial region defined by the event selection. The fiducial cross- section limit constrains the like-sign top-quark pair-production cross section to be below 3.7 pb at 95% confidence level. The data are also analyzed to search for a narrow like-sign dimuon resonance as predicted ...

  4. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  5. Chiral anomalous dispersion

    Science.gov (United States)

    Sadofyev, Andrey; Sen, Srimoyee

    2018-02-01

    The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.

  6. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Directory of Open Access Journals (Sweden)

    Daniel L Cook

    Full Text Available As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB, a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  7. Physical properties of sugar cookies containing chia-oat composites.

    Science.gov (United States)

    Inglett, George E; Chen, Diejun; Liu, Sean

    2014-12-01

    Omega-3 fatty acids of chia seeds (Salvia hispanica L.) and soluble β-glucan of oat products are known for lowering blood cholesterol and preventing coronary heart disease. Nutrim, oat bran concentrate (OBC), and whole oat flour (WOF) were composited with finely ground chia, and used in cookies at 20% replacement of wheat flour for improved nutritional and physical quality. The objective was to evaluate physical properties of chia-oat composites, dough, and cookies. These composites had improved water-holding capacities compared to the starting materials. The geometrical properties and texture properties of the cookies were not greatly influenced by a 20% flour replacement using chia-OBC or chia-WOF composites. There was a decrease in the cookie diameter, and increases in the height of cookies and dough hardness using 20% Chia- Nutrim composite. These fine-particle chia-oat composites were prepared by a feasible procedure for improved nutritional value and physical properties of foods. The cookies containing chia-oat composites can be considered a health-promoting functional food. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Investigations of Physical and Rheological Properties of Aged Rubberised Bitumen

    Directory of Open Access Journals (Sweden)

    Asim Hassan Ali

    2013-01-01

    Full Text Available Several road pavement distresses are related to rheological bitumen properties. Rutting and fatigue cracking are the major distresses that lead to permanent failures in pavement construction. Influence of crumb rubber modifier (CRM on rheological properties of bitumen binder such as improvement of high and intermediate temperatures is investigated in the binder’s fatigue and rutting resistance through physical-rheological changes in this research. The bitumen binders were aged by rolling thin film oven (RTFOT to simulate short-term aging and pressure aging vessel (PAV to simulate long-term aging. The effects of aging on the rheological and physical properties of bitumen binders were studied conducting dynamic shear rheometer test (DSR, Brookfield viscometer test, softening point test, and penetration test. The results showed that the use of rubberised bitumen binder reduces the aging effect on physical and rheological properties of the bitumen binder as illustrated through lower aging index of viscosity, lower aging index of , and an increase in with crumb rubber modifier content increasing, indicating that the crumb rubber might improve the aging resistance of rubberised bitumen binder. In addition, the results showed that the softening point increment ( and penetration aging ratio (PAR of the rubberised bitumen binder decreased significantly due to crumb rubber modification. Furthermore, the higher crumb rubber content, the lower after PAV aging, which led to higher resistance to fatigue cracking bitumen.

  9. Physical Properties of Hanford Transuranic Waste. Final Report

    International Nuclear Information System (INIS)

    Berg, John C.

    2010-01-01

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  10. Physical and Acoustical Properties of Corn Husk Fiber Panels

    Directory of Open Access Journals (Sweden)

    Nasmi Herlina Sari

    2016-01-01

    Full Text Available This research focuses on the development of a sustainable acoustic material comprising natural fibers of corn husk that were alkali modified by 1%, 2%, 5%, and 8% NaOH. The morphology and the acoustical, physical, and mechanical properties of the resulting fibers were experimentally investigated. Five different types of sample were produced in panel form, the acoustical properties of which were studied using a two-microphone impedance tube test. The porosity, tortuosity, and airflow resistivity of each panel were investigated, tensile tests were conducted, and the morphological aspects were evaluated via scanning electron microscopy. The sound absorption and tensile properties of the treated panels were better than those of raw fiber panels; the treated panels were of high airflow resistivity and had low porosity. Scanning electron micrographs of the surfaces of the corn husk fibers revealed that the different sound absorption properties of these panels were due to roughness and the lumen structures.

  11. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  12. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  13. Anomalous biceps origin from the rotator cuff

    Directory of Open Access Journals (Sweden)

    Samik Banerjee

    2015-01-01

    Full Text Available Variations in the origin of the long head of biceps tendon (LHBT have been described in literature; however, its clinical significance remains uncertain. We describe in this report, the history, physical examination and the arthroscopic findings in a patient who had an anomalous origin of the LHBT from the rotator cuff, resulting in restriction of range of motion. This anomalous origin of the long head of biceps tendon causing capsular contracture and restriction of movements leading to secondary internal impingement, has not been extensively reported in the literature. Shoulder arthroscopists should be aware that, although, an uncommon clinical condition, the aberrant congenital origin of the LHBT from the rotator cuff can rarely become pathologic in middle age and lead to shoulder dysfunction. In such cases, release of the anomalous band may be required, along with the treatment of other concomitant intraarticular pathologies in the glenohumeral joint.

  14. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  15. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  16. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  17. THE PHYSICAL PROPERTIES OF HEARTWOOD AND SAPWOOD OF EUCALYPTUS GRANDIS

    Directory of Open Access Journals (Sweden)

    Bekir Cihad BAL

    2012-12-01

    Full Text Available In this study, some of the physical propertiesof heartwood and sapwood of Eucalyptus grandisgrown in Karabucak, Turkey were determined. Thephysical properties determined were air-drieddensity, oven-dried density, basic density, shrinkage,swelling, fiber saturation point, and maximummoisture content. According to the test results, thephysical properties of the heartwood samplesdiffered from those of the sapwood samples due tothe presence of high proportion of juvenile wood inthe heartwood. It can be said that the shrinkage andswelling percentages were better for heartwood thansapwood. Air-dried density, oven-dried density, andbasic density of sapwood were higher than those ofheartwood.

  18. Physical and performance properties of coal tar urethanes - pipe

    International Nuclear Information System (INIS)

    Hickney, J.; Hendry, M.

    1984-01-01

    The purpose of this paper is to review certain physical properties of coal tar extended urethane coatings designed specifically for use in the pipe coatings market. The blend of coal tar and urethane resins provides a novel finished product with properties cumulatively inherent in its constituents. Typically, coal tar and coal tar pitch offer exceptional water resistance and cathodic alkali resistance when blended with other resins. An example is the standard coal tar epoxies used for many years in the marine markets for shipbottoms

  19. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  20. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous...

  1. Cesium Eluate Evaporation Solubility and Physical Property Behavior

    International Nuclear Information System (INIS)

    Pierce, R.A.

    2003-01-01

    The baseline flowsheet for low activity waste (LAW) in the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) includes pretreatment of supernatant by removing cesium using ion exchange. When the ion exchange column is loaded, the cesium will be eluted with a 0.5M nitric acid (HNO3) solution to allow the column to be conditioned for re-use. The cesium eluate solution will then be concentrated in a vacuum evaporator to minimize storage volume and recycle HNO3. To prevent the formation of solids during storage of the evaporator bottoms, criteria have been set for limiting the concentration of the evaporator product to 80 percent of saturation at 25 degrees C. A fundamental element of predicting evaporator product solubility is to collect data that can be used to estimate key operating parameters. The data must be able to predict evaporator behavior for a range of eluate concentrations that are evaporated to the point of precipitation. Parameters that were selected for modeling include solubility, density, viscosity, thermal conductivity, and heat capacity. Of central importance is identifying the effect of varying feed components on overall solubility. The point of solubility defines the upper limit for eluate evaporation operations and liquid storage. The solubility point also defines those chemical compounds that have the greatest effects on physical properties. Third, solubility behavior identifies intermediate points where physical property data should be measured for the database. Physical property data (density, viscosity, thermal conductivity, and heat capacity) may be an integral part of tracking evaporator operations as they progress toward their end point. Once the data have been collected, statistical design software can develop mathematical equations that estimate solubility and other physical properties

  2. Structural and physical properties of Sm 3 doped magnesium zinc ...

    Indian Academy of Sciences (India)

    Samarium (Sm 3 + ) doped magnesium zinc sulfophosphate glass system of composition ( 60 – x )P 2 O 5 –20MgO–20ZnSO 4 – x Sm 2 O 3 ( x = 0.0 , 0.5, 1.0, 1.5 and 2.0 mol%) were synthesized using melt-quenching technique. The structure and physical properties of prepared glass samples were characterized.

  3. Effects of moisture content on some physical properties of red ...

    African Journals Online (AJOL)

    The physical properties of red pepper seed were evaluated as a function of moisture content. The average length, width and thickness were 4.46, 3.66 and 0.79 mm, respectively, at 7.27% d.b. moisture content. In the moisture range of 7.27 to 20.69% dry basis (d.b.), studies on rewetted red pepper seed showed that the ...

  4. Generalized Spin Coherent States: Construction and Some Physical Properties

    International Nuclear Information System (INIS)

    Berrada, K.; El Baz, M.; Hassouni, Y.

    2009-12-01

    A generalized deformation of the su(2) algebra and a scheme for constructing associated spin coherent states is developed. The problem of resolving the unity operator in terms of these states is addressed and solved for some particular cases. The construction is carried using a deformation of Holstein-Primakoff realization of the su(2) algebra. The physical properties of these states is studied through the calculation of Mandel's parameter. (author)

  5. Physical and functional properties of breakfast cereals from maize ...

    African Journals Online (AJOL)

    The results revealed the following ranges of physical and functional properties; pH (4.70- 6.56), bulk density (0.29 - 0.71g/ml), water absorption capacity (68.31- 76.39%), oil absorption capacity (0.87- 1.32%), foam capacity (2.48- 3.49%), viscosity (19.73-31.08%), gelation temperature (121-157°C), emulsification capacity ...

  6. Some physical and mechanical properties of palm kernel shell (PKS ...

    African Journals Online (AJOL)

    In this study, some of the mechanical and physical properties of palm kernel shells (PKS) were evaluated. These are moisture content, 7.8325 ± 0.6672%; true density, 1.254 ± 5.292 x 10-3 g/cm3; bulk density, 1.1248g/cm3; mean rupture force along width, and thickness were 3174.52 ± 270.70N and 2806.94 ± 498.45N for ...

  7. Some physical properties of spinach ( Spinacia oleracea L.) seed ...

    African Journals Online (AJOL)

    The physical properties of spinach seed were evaluated as a function of moisture content. Average length, width and thickness were 4.03, 3.51 and 2.44 mm, respectively, at 11.93% dry basis (d.b). moisture content. In the moisture range from 11.93 to 21.52% d.b. studies on rewetted spinach seed showed that the thousand ...

  8. Physical Properties and Antibacterial Efficacy of Biodegradable Chitosan Films

    OpenAIRE

    中島, 照夫

    2009-01-01

    [Synopsis] Chitin, chitosan and quaternary chitosan films were prepared, and the physical properties and the antibacterial activities of chitosan and quaternary chitosan films were evaluated. The tensile strength of chitin films was 30~40% lower than that of chitosan films, but the crystallinity of chitin film was much higher than that of chitosan films. The crystallinity and orientation of crystallites were hardly affected by the four kinds of solvent chosen to cast chitosan films, but a de...

  9. Physical and Chemical Properties of Some Selected Rice Varieties ...

    African Journals Online (AJOL)

    Abstract. Physical and chemical properties of nine rice varieties grown and processed in Ebonyi State were studied. Average length and width of the tested varieties ranged between 6.31 and 7.63mm and 2.04 to 2.28mm respectively. All the grains are long grain but, Afikpo mars had the longest grain length of 7.63mm while ...

  10. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-04-01

    Full Text Available Biochar, a co-product of a controlled pyrolysis process, can be used as a tool for sequestering C in soil to offset greenhouse gas (GHG emissions, and as a soil amendment. Whereas the impacts of biochar application on soil chemical properties are widely known, the research information on soil physical properties is scarce. The objectives of this review are to (i synthesize available data on soil physical properties and GHG emissions, (ii offer possible mechanisms related to the biochar-amended soil processes, and (iii identify researchable priorities. Application rates of 1%–2% (w/w of biochar can significantly improve soil physical quality in terms of bulk density (BD, and water holding capacity (WHC. However, little data are available on surface area (SA, aggregation stability, and penetration resistance (PR of biochar-amended soil. While biochar amendment can initially accentuate the flux of carbon dioxide (CO2, the emission of GHGs may be suppressed over time. A 2-phase complexation hypothesis is proposed regarding the mechanisms of the interaction between soil and biochar.

  11. IAEA NAPRO coordinated research project: physical properties of sodium - 15331

    International Nuclear Information System (INIS)

    Passerini, S.; Gerardi, C.; Grandy, C.; Azpitarte, O.E.; Chocron, M.; Japas, M.L.; Bubelis, E.; Perez-Martin, S.; Jayaraj, S.; Roelofs, F.; Latge, C.; Gerschenfeld, A.; Long, Bin; Selvaraj, P.; Marinenko, E.; Zagorulko, Y.; Ohira, H.; Monti, S.

    2015-01-01

    The International Atomic Energy Agency (IAEA) recently established a CRP on 'Sodium properties and safe operation of experimental facilities in support of the development and deployment of Sodium Cooled Fast Reactors - NAPRO', to be carried out in the period 2013-2017. The first phase of the CRP is focused on the collection and assessment of sodium properties, and it will lead to a consistent property data set which will be published in the form of a handbook. This work is carried out by the 11 participating organizations from 10 Member States through the review and evaluation of the existing available data, the identification of the data gaps and the development of recommendations for experimental programmes to support closing these data gaps. A specific work package (WP 1.1), under the leadership of Argonne National Laboratory, is focused on the analysis of physical properties of sodium: 19 thermodynamic properties (including gaseous state) and 12 transport properties. The expected outcome includes the improved understanding of the availability, accuracy and range of applications of sodium properties centered on fast reactors and other technological applications. The implemented methodology for WP 1.1 (including the division of work among participants and an overall overview of the collected references) is described and so the properties included in WP 1.1 and their classification. Major findings to date related to WP 1.1 are presented in this work, including detailed analysis of two selected properties. The availability of relevant data in principal and out-of-principal references is discussed. Finally, challenges encountered with the collection of references, uncertainty and lack of recent experimental investigation are also listed and adjustments to the methodological approach are proposed as future work. (authors)

  12. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    International Nuclear Information System (INIS)

    Dixon, K.; Harbour, J.; Phifer, M.

    2008-01-01

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  13. Anomalous Diffusion Near Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  14. Chemical and physical properties of opencast lignite minesoils

    Energy Technology Data Exchange (ETDEWEB)

    Varela, C.; Vazquez, C.; Gonzalez-Sangregorio, M.V.; Leiros, M.C.; Gil-Sotres, F. (Facultad de Farmacia de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Edafologia y Quimica Agricola)

    1993-09-01

    The evolution of chemical and physical properties in a series of mine soils aged between 0 and 5 years, developed from spoil materials of the Meirama opencast lignite mine in Galicia (NW Spain), was studied. The soils are recovered without use of topsoil and are subject to identical management. In the surface horizon (0-7 cm), total C and N, CEC, and pyrophosphate-extracted Al[sub 2]O[sub 3] and Fe[sub 2]O[sub 3] increased with soil age. Oxalic-oxalate-extracted Al[sub 2]O[sub 3] and Fe[sub 2]O[sub 3] on the other hand, increased with soil age in all the horizons studied. Rapid recovery in terms of physical properties was also observed: bulk density dropped, while total porosity, percentage of macropores, and hydraulic conductivity increased, and aggregates showed greater stability on immersion in water. The results indicate that mineral weathering and organometallic complexation are the dominant processes at these early stages of edaphogenesis and that properties associated with gas exchange showed more rapid development than those associated with water movement. In spite of the above rapid modifications, the characteristics of the oldest soils in the series were still very different from those of native Galician soils.

  15. Variability in soil physical properties in landslide-prone areas

    Directory of Open Access Journals (Sweden)

    Leticia d’Agosto Miguel Fonseca

    2017-01-01

    Full Text Available The present study aimed to evaluate the relationship between the physical properties of the soil and relief in areas that are susceptible to landslides in the sub-basin of the Córrego do Yung, a creek in the urban district Três Moinhos of Juiz de Fora, Minas Gerais. Depth measurements of the solum were made at the soil sampling points, and the subsurface material was collected and analyzed for the two factors of particle size and type of horizon. In the laboratory, we determined the hydraulic conductivity, bulk and particle density, and total porosity, macroporosity and microporosity. The values of the physical properties throughout the sub-basin were predicted and mapped. Thematic maps were generated and showed a relation to each other: the clay was related to a higher hydraulic conductivity, higher porosity and lower soil density. In the steeper areas, the greater silt contents were mapped in the deeper layers and indicated the thin thickness of horizon B in these areas. A close relation of the curvature with the soil thickness was detected and was greater in the flat areas with less slope. The geostatistical analysis showed that the range of values for the properties of macroporosity, microporosity and silt was the lowest in the deeper layers, indicating low structural continuity in potentially erodible areas.

  16. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  17. PHYSICAL AND MECHANICAL PROPERTIES OF FOUR SALIX SPECIES

    Directory of Open Access Journals (Sweden)

    Silvana Nisgoski

    2012-11-01

    Full Text Available The increasing use of Salix species in the manufacture of various products has been attracting interest towards the Salicaceae family in South America. This paper reports the physical and mechanical parameters of Salix viminalis L. (purple osier, Salix x rubens Schrank (basket willow, Salix purpurea Linné (purple willow and Salix sp., cultivated in the Canoas River Valley, in the Serra Catarinense region of the state of Santa Catarina, Brazil. The evaluations were conducted with raw material, the most commonly used format in handcrafts, and the results indicate there are differences in physical and mechanical properties among the species. Salix viminalis and Salix purpurea were similar in density and in their modulus of elasticity, and had higher values of tensile and strength modulus than Salix x rubens and Salix sp.

  18. Improvement of physical properties of soyabeans by gamma irradiation

    International Nuclear Information System (INIS)

    Byun, M.-W.; Kwon, J.-H.; Mori, Tomohiko

    1993-01-01

    Physical properties of gamma-irradiated soybeans were evaluated at different temperatures by determining water absorption pattern and cooking characteristics of the sample. Irradiation at 2.5-10 kGy caused the reduction of soaking time in soybeans by 2-5 hours and the increase of hydration capacity by 10-20%, respectively, compared to the non-irradiated control at 20 o C. The activation energy for water absorption was lower in irradiated soybeans than in the non-irradiated control. Irradiation at 2.5-10 kGy caused the reduction of cooking time in soybeans by 30-60% compared to the non-irradiated control and the cooking rate constant of irradiated samples was higher about 2 times than that of the non-irradiated control. The irradiation efficacy on physical quality improvement was also recognized in the stored soybeans for one year at room temperature. (author)

  19. Physical properties of W gravities and W strings

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Rama, S.K.

    1991-01-01

    This paper investigates some basic physical properties of W gravities and W strings, using a free field realization. The authors argue that the configuration space of W gravities have global characteristics in addition to the Euler characteristic. The authors identify one such global quantity to be a monopole charge and show how this charge appears in the exponents. The free energy would then involve a θ parameter. Using a BRST procedure the authors find all the physical states of W 3 and W 4 gravities, and show that physical operators are nonsingular composites of the screening charge operators. (The latter are not physical operators for N ≥ 3.) For W strings we show how the W constraints lead to the emergence of a single (and not many) extra dimension coming from the W-gravity sector. By analyzing the resulting dispersion relations the authors find that both the lower and upper critical dimensions are lowered compared to ordinary two-dimensional gravity. The pure W gravity spectrum reveals an intriguing numerological connection with unitary minimal models coupled to ordinary gravity

  20. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  1. Physical properties of coriander seeds at different moisture content

    Science.gov (United States)

    Balasubramanian, S.; Singh, K. K.; Kumar, R.

    2012-10-01

    Physical properties of coriander seeds were determined at moisture content of 3.5-17.7%, d.b. The major axis and 1 000 seeds mass were found to decrease nonlinearly with increase in seed moisture. The medium and minor axes, geometric mean diameter, sphericity, unit volume, surface area and angle of repose increased linearly. Bulk density decreased linearly, however the true density increased non-linearly. The coefficient of static friction increased nonlinearly for different surfaces with increase in moisture level and its maximum was found for plywood surface. The rupture force and energy absorbed decreased linearly with increasing moisture content.

  2. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  3. Physical and chemical properties of wami tilapia skin gelatin

    Directory of Open Access Journals (Sweden)

    Alexandre Da Trindade Alfaro

    2013-09-01

    Full Text Available Gelatin was extracted from the skin of tilapia (Oreochromis urolepis hornorum and characterized according to its physical and chemical properties. It had pH 4.66, which is slightly higher than the values reported for gelatins processed by acid solubilization. In general, the ionic content was low, and the average yield of the process was 5.10 g/100 g. The proximal composition of the gelatin was similar to that of the commercial gelatins, with slightly higher moisture content. The tilapia skin gelatin had whitish-yellow color and average turbidity of 67 NTU.

  4. Physical and chemical properties of wami tilapia skin gelatin

    OpenAIRE

    Alfaro, Alexandre Da Trindade; Fonseca, Gustavo Graciano; Balbinot, Evellin; Machado, Alessandra; Prentice, Carlos

    2013-01-01

    Gelatin was extracted from the skin of tilapia (Oreochromis urolepis hornorum) and characterized according to its physical and chemical properties. It had pH 4.66, which is slightly higher than the values reported for gelatins processed by acid solubilization. In general, the ionic content was low, and the average yield of the process was 5.10 g/100 g. The proximal composition of the gelatin was similar to that of the commercial gelatins, with slightly higher moisture content. The tilapia ski...

  5. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Science.gov (United States)

    2010-07-01

    ... property records, and with applicable financial control accounts. (j) The results of physical inventories... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of...

  6. 31 CFR 593.204 - Expenses of maintaining blocked physical property; liquidation of blocked account.

    Science.gov (United States)

    2010-07-01

    ... physical property; liquidation of blocked account. 593.204 Section 593.204 Money and Finance: Treasury... maintaining blocked physical property; liquidation of blocked account. (a) Except as otherwise authorized, and... to the maintenance of physical property blocked pursuant to § 593.201(a) shall be the responsibility...

  7. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  8. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    OpenAIRE

    Noryawati Mulyono1); Anton Apriyantono2)

    2004-01-01

    Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properti...

  9. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  10. Global constraints on top quark anomalous couplings

    Science.gov (United States)

    Déliot, Frédéric; Faria, Ricardo; Fiolhais, Miguel C. N.; Lagarelhos, Pedro; Onofre, António; Pease, Christopher M.; Vasconcelos, Ana

    2018-01-01

    The latest results on top quark physics, namely single top quark production cross sections, W -boson helicity and asymmetry measurements are used to probe the Lorentz structure of the W t b vertex. The increase of sensitivity to new anomalous physics contributions to the top quark sector of the standard model is quantified by combining the relevant results from Tevatron and the Large Hadron Collider. The results show that combining an increasing set of available precision measurements in the search for new physics phenomena beyond the standard model leads to significant sensitivity improvements, especially when compared with the current expectation for the High Luminosity run at the LHC.

  11. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  12. Hypoxia alters the physical properties of the tumor microenvironment

    Science.gov (United States)

    Gilkes, Daniele

    Of all the deaths attributed to cancer, 90% are due to metastasis, or the spread of cancer cells from a primary tumor to distant organs, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that low oxygen states within a tumor, termed hypoxia, can alter the chemical and physical parameters of the extracellular matrix (ECM), or scaffold of the tumor tissue. These changes generate a microenvironment that may be more conducive for promoting metastasis. During tumor evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence the cells properties, such as cellular proliferation and cell motility. The talk will cover how hypoxia arises within normal tissue and also in tumors. We will cover the role of hypoxia in collagen biogenesis which influences compositional changes to the tumor microenvironment and discuss how these changes lead to a stiffer tumor stroma. The challenges in determining the influence of chemical versus physical cues on cancer progression will also be considered.

  13. Measuring (bio)physical tree properties using accelerometers

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Selker, John; van de Giesen, Nick

    2017-04-01

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree dynamics are often expensive, or difficult due to challenging environments. We demonstrate the potential of measuring (bio)physical properties of trees using robust and affordable acceleration sensors. Tree sway is dependent on e.g. mass and wind energy absorption of the tree. By measuring tree acceleration we can relate the tree motion to external loads (e.g. precipitation), and tree (bio)physical properties (e.g. mass). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, precipitation, and canopy drag. This presentation aims to show the concept of using accelerometers to measure tree dynamics, and we acknowledge that the presented example applications is not an exhaustive list. Further analyses are the scope of current research, and we hope to inspire others to explore additional applications.

  14. Understanding the physical properties of hybrid perovskites for photovoltaic applications

    Science.gov (United States)

    Huang, Jinsong; Yuan, Yongbo; Shao, Yuchuan; Yan, Yanfa

    2017-07-01

    New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic-inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

  15. Physical properties of heat-treated rattan waste binderless particleboard

    Science.gov (United States)

    Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida

    2017-07-01

    The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.

  16. Anomalous BRST Ward identity in string theory

    International Nuclear Information System (INIS)

    Demichev, A.P.; Iofa, M.Z.

    1990-01-01

    BRST transformations are studied in the path integral approach to string theory on Riemann surfaces of genus h≥2. The BRST Ward identity (WI) is shown to be anomalous, the anomaly being due to non-invariance of the functional integration domain under BRST transformations. The distinction between complete Lagrange BRST transformations including the metric and the auxiliary field and the commonly used 'truncated' BRST transformation is discussed in detail. The problem of decoupling of spurions from physical operators is investigated. (orig.)

  17. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  18. Fractal model of anomalous diffusion

    OpenAIRE

    Gmachowski, Lech

    2015-01-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...

  19. Aerosols physical properties at Hada Al Sham, western Saudi Arabia

    Science.gov (United States)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.-P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Almazroui, M.; Almehmadi, F. M.; Al Zawad, F. M.; Hakala, J.; Khoder, M.; Neitola, K.; Petäjä, T.; Shabbaj, I. I.; Hämeri, K.

    2016-06-01

    This is the first time to clearly derive the comprehensive physical properties of aerosols at a rural background area in Saudi Arabia. Aerosol measurements station was established at a rural background area in the Western Saudi Arabia to study the aerosol properties. This study gives overview of the aerosol physical properties (PM10, PM2.5, black carbon and total number concentration) over the measurement period from November 2012 to February 2015. The average PM10 and PM2.5 concentrations were 95 ± 78 μg m-3 (mean ± STD, at ambient conditions) and 33 ± 68 μg m-3 (at ambient conditions), respectively. As expected PM10 concentration was dominated by coarse mode particles (PM10-PM2.5), most probably desert dust. Especially from February to June the coarse mode concentrations were high because of dust storm season. Aerosol mass concentrations had clear diurnal cycle. Lower values were observed around noon. This behavior is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). During the day time the boundary layer is evolving, causing enhanced mixing and dilution leading to lower concentration. PM10 and PM2.5 concentrations were comparable to values measured at close by city of Jeddah. Black carbon concentration was about 2% and 6% of PM10 and PM2.5 mass, respectively. Total number concentration was dominated by frequent new particle formation and particle growth events. The typical diurnal cycle in particle total number concentration was clearly different from PM10 and PM2.5.

  20. Optical and Physical Properties of ONP Deinked Pulp

    Directory of Open Access Journals (Sweden)

    Iman Akbarpoor

    2012-01-01

    Full Text Available Enzymes are protein molecules with complex structures that accelerate the biochemical reactions. Activity of these chemical compounds is accomplished at limited range of pH, temperature and concentration. In this study, the effects of different concentrations of cellulose enzyme were investigated on deinking of old newsprint. Old newsprint (ONP was repulped at 5% consistency for 10 minutes in disintegrator with total revolution number of 26500. Enzymatic treatments of recycled ONP pulp were done under constant conditions (10% consistency,treatment time of 15 minutes, pH range of 5-5.5 at different cellulose concentrations of 0.025, 0.05, 0.1 and 0.2% (based on oven-dry waste paper. The optical and physical properties of the standard paper (60g/m2 made at different concentrations of cellulose were evaluated in comparison with control pulp (untreated ONP pulp with cellulase. Overall, the results achieved by comparison the optical properties of the paper produced indicated that using cellulase in deinking of ONP led to increase the brightness and the yellowness and decrease the opacity. The brightness was improved to a maximum level of 47.5 ISO %, but the yellowness was decreased to a minimum level of 11.3 ISO %, while the brightness reduced and the yellowness increased at higher concentrations than 0.05% cellulase. The highest opacity of 99.3 ISO % was achieved using 0.1% cellulase even higher than control pulp. The results gained by comparison the physical properties of the paper showed that using cellulase resulted in decrease of paper calliper, air resistance and density and improve the freeness of pulp

  1. Physical Properties of Ethyl Methacrylate as a Bolus in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Atousa Montaseri

    2012-03-01

    Full Text Available Introduction Bolus is a soft and resilient material which is used for increasing skin dose or to even out the irregular patient contour. The main property of various materials used presently as bolus is the water-equivalent electron density. Ethyl methacrylate is used as a soft-liner in dentistry and its physical and chemical properties are proved to be nontoxic for human body. The goal of this study was to assess the feasibility of using this material as bolus in radiotherapy and also evaluating some parameters such as mass, electron densities, and transmission factors. Materials and Methods Computed tomography data from the sample material were acquired to assess mass and electron densities with various techniques (mA and kVp. Circular ROIs were delineated on CT DICOM images and densities were calculated using CT numbers. Transmission factors were calculated for 6 and 18 MV. Results Evaluation of our results are evident that showed that mass and electron densities of ethyl methacrylate are similar to those of water and soft tissue. Furthermore, transmission factors are close to those of water. Conclusion According to the results of this study and other properties such as flexibility and harmlessness, it seems that ethyl methacrylate is a suitable material to be used as bolus in radiotherapy.

  2. Physical, chemical, and biological properties of wonder kelp--Laminaria.

    Science.gov (United States)

    Kim, Se-Kwon; Bhatnagar, Ira

    2011-01-01

    Laminaria is a kelp that finds its place in the brown algae family. It has been an area of study for past many years, and its wonderful biological properties have always attracted medical professionals and researchers to explore more and more from this wonder kelp. The constituents of Laminaria include iodine, potassium, magnesium, calcium and iron. Iodine compounds, TEA-hydroiodide in particular, are great lipolytic agents as they stimulate lipase activity. Laminarins on the other hand are used as a tumor angiogenic blocker. This genus of the kelps is also rich in algin, a high molecular weight polysaccharide that forms viscous colloidal solutions or gels in water leading to the use of kelp derivatives as bulk laxatives. It has great applications in cosmeceutical science, as well as some antibacterial properties have also been assigned to Laminaria. A deeper insight into the physical, biological, and chemical properties of this wonder kelp would lead to further exploitation of Laminaria for medicinal and cosmeceutical purpose. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Gamma irradiation influence on physical properties of milk proteins

    International Nuclear Information System (INIS)

    Ciesla, K.; Salmieri, S.; Lacroix, M.; Le Tien, C.

    2004-01-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling

  4. Physical and Mechanical Properties of Briquettes Produced from Energy Plants

    Directory of Open Access Journals (Sweden)

    Oľga Urbanovičová

    2017-01-01

    Full Text Available The study deals with the use of energy crops for the production of thermal energy in the form of briquettes and devising appropriate parameters for their production. Briquettes were produced from seven kinds of energy crops, Salix viminalis, Miscanthus sinensis, Rosa multiflora, Polygonum sachalinensis, Helianthus tuberosus, Sida hermaphrodita and Spartina pectinata, specifically. In the production of briquettes, moisture is the most important properties of material to be pressed, which ranges from 8 to 15 % as it was observed. At a higher humidity it has not been possible to produce briquettes farther in the study conditions. Another important condition for the successful production of briquettes was the particle size of chopped mass. The optimum particle size range from 8 to 20 %. The briquettes were pressed at a pressure of 21 MPa and with diameter of 50 %. Subsequently, physical and mechanical properties (density, moisture, mechanical resistance and chemical properties (chlorine, iron, nitrogen, calcium, ash, lignin content were measured. The briquettes density reached from 800 to 900 kg.m−3 with calorific value from 14 to 19 MJ.kg−1 which refers to fact that energy crops are competitive to fossil fuels by their calorific value.

  5. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  6. Magneto-optic observation of anomalous Meissner current flow in superconducting thin films with slits

    International Nuclear Information System (INIS)

    Baziljevich, M.; Johansen, T.H.; Bratsberg, H.; Shen, Y.; Vase, P.

    1996-01-01

    Slits patterned into a YBa 2 Cu 3 O 7-δ thin film were observed to obstruct Meissner sheet currents leading to an imbalance in the local Meissner screening properties. The new phenomenon was studied with magneto-optic imaging where twin lobes of opposite flux polarity were seen to form near the slits and inside the Meissner region. The lobe closest to the sample edge is always polarized opposite to the applied field. At weak fields, the anomalous flux generation is reversible. At higher fields, but still sufficiently small to keep the vortex penetration front away from the slits, the anomalous current starts nucleating flux lines which become trapped when the field is removed. copyright 1996 American Institute of Physics

  7. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  8. Psychometric properties of the PROMIS Physical Function item bank in patients receiving physical therapy.

    Directory of Open Access Journals (Sweden)

    Martine H P Crins

    Full Text Available The Patient-Reported Outcomes Measurement Information System (PROMIS is a universally applicable set of instruments, including item banks, short forms and computer adaptive tests (CATs, measuring patient-reported health across different patient populations. PROMIS CATs are highly efficient and the use in practice is considered feasible with little administration time, offering standardized and routine patient monitoring. Before an item bank can be used as CAT, the psychometric properties of the item bank have to be examined. Therefore, the objective was to assess the psychometric properties of the Dutch-Flemish PROMIS Physical Function item bank (DF-PROMIS-PF in Dutch patients receiving physical therapy.Cross-sectional study.805 patients >18 years, who received any kind of physical therapy in primary care in the past year, completed the full DF-PROMIS-PF (121 items.Unidimensionality was examined by Confirmatory Factor Analysis and local dependence and monotonicity were evaluated. A Graded Response Model was fitted. Construct validity was examined with correlations between DF-PROMIS-PF T-scores and scores on two legacy instruments (SF-36 Health Survey Physical Functioning scale [SF36-PF10] and the Health Assessment Questionnaire Disability-Index [HAQ-DI]. Reliability (standard errors of theta was assessed.The results for unidimensionality were mixed (scaled CFI = 0.924, TLI = 0.923, RMSEA = 0.045, 1th factor explained 61.5% of variance. Some local dependence was found (8.2% of item pairs. The item bank showed a broad coverage of the physical function construct (threshold-parameters range: -4.28-2.33 and good construct validity (correlation with SF36-PF10 = 0.84 and HAQ-DI = -0.85. Furthermore, the DF-PROMIS-PF showed greater reliability over a broader score-range than the SF36-PF10 and HAQ-DI.The psychometric properties of the DF-PROMIS-PF item bank are sufficient. The DF-PROMIS-PF can now be used as short forms or CAT to measure the level of

  9. CHANGES IN THE PHYSICAL PROPERTIES OF BREAD DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Teresa Fortuna

    2012-04-01

    Full Text Available The aim of this work was to compare the physical properties of breadcrumb during five days of storage in vacuum containers and polyethylene bags. On the basis of result it was stated, that storage of baguettes in vacuum condition and in polyethylene foil did not prevent the staling of breadcrumb. Hardness of breadcrumb stored in plastic bags on the fifth day was higher than hardness of bread stored in vacuum containers. The others texture values did not differ significantly on the fifth day of storage between packaging methods. The changes in water activity values both in vacuum containers and polyethylene bags were negligible during storage. Increase in lightness and decrease in yellowness were observed over the storage period, regardless of packaging method, while the values of a* remained essentially unchanged.doi:10.5219/194

  10. Dynamic simulation of flash drums using rigorous physical property calculations

    Directory of Open Access Journals (Sweden)

    F. M. Gonçalves

    2007-06-01

    Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.

  11. Regional dust deposits on Mars: Physical properties, age, and history

    International Nuclear Information System (INIS)

    Christensen, P.R.

    1986-01-01

    Major dust storms on Mars play an important role in the deposition and removal of fine dust material. Thermal, radar, and visual remote sensing observations provide important constraints on the Martian regolith which have been used to determine the location and physical properties of regional dust deposits. These deposits are located in three northern equatorial regions, Tharsis (-20 0 S to 50 0 N, 60 0 to 190 0 W), Arabia (-5 0 S to 30 0 N, 300 0 to 360 0 W), and Elysium (10 0 to 30 0 N, 210 0 to 225 0 W). They are covered by fine (approx.2--40 μm), bright (albedo >0.27) particles, with fewer exposed rocks and coarse deposits than found elsewhere. Dust is currently deposited uniformly throughout the equatorial region at a rate of approx.40 μm/global storm

  12. Physical properties of wild mango fruit and nut

    Science.gov (United States)

    Ehiem, J. C.; Simonyan, K. J.

    2012-02-01

    Physical properties of two wild mango varieties were studied at 81.9 and 24.5% moisture (w.b.) for the fruits and nuts, respectively. The shape and size of the fruit are the same while that of nuts differs at P = 0.05. The mass, density and bulk density of the fruits are statistically different at P = 0.05 but the volume is the same. The shape and size, volume and bulk density of the nuts are statistically the same at P = 0.05. The nuts of both varieties are also the same at P = 0.05 in terms of mass and density. The packing factor for both fruits and nut of the two varieties are the same at 0.95. The relevant data obtained for the two varieties would be useful for design and development of machines and equipment for processing and handling operations.

  13. Study of physical properties of the dynamic filter

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon

    2004-02-01

    This paper presents a characterization of the physical properties of the dynamic filter of Clinac 2300 CD linear accelerator of Varian Medical Systems, installed at the Cancer National Institute (INCA), Rio de Janeiro. The 'dynamic filter factors' were measured for the 6 and 15 MV photons, in squared and rectangular fields, and compared with factors furnished at the accelerator manual and used by the planning system, IN and OUT positions, at the maximum dose depths, 5 cm, 10 cm and 29 cm, for the 6 and 15 MV photons energies. The results demonstrated that the 'dynamic filter factors' does not changes with depth and the PDP for the opened field are the same for the fields with dynamic filters. Last but not least the dynamic filters were measured and compared with the nominal angles of the accelerator and the planning system, where some discrepancies were reported

  14. Influence of physical properties of soil on 137 Cs mobility

    International Nuclear Information System (INIS)

    Kanapickas, A.; Paulaitiene, I.; Mazeika, J.; Bauziene, I.

    2005-01-01

    A model to account for the mobility of radiocesium in soil is presented. The model requires a minimal set of coefficients that describe radiocesium migration and fixation rates, which can be related to physical soil properties. The peculiarities of experimental radiocesium profiles in soil are explained by the composition of soil, which affects the radiocesium fixation rate. It is shown that the migration of radiocesium in soil is governed by vertical convection of a mobile form, whereas diffusion is a slower process due to strong fixation. The results show that the velocity of vertical migration downward of mobile radiocesium can be set constant, because the overall migration rate depends on fixation. Modeling of experimental radiocesium soil profiles suggests that organic (humic) layers with reduced mineral content and humidity have a high radiocesium fixation rate. Soil structure that maintains high soil humidity and mineral content has an increased cesium exchangeability and. consequently, higher radiocesium mobility. (author)

  15. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    )-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...... has been compared to the cross-correlation (CC) estimator and the previously developed maximum likelihood estimator (MLE). The results show that the CMLE can handle a larger velocity search range and is capable of estimating even low velocity levels from tissue motion. The CC and the MLE produce...... for the CC and the MLE. When the velocity search range is set to twice the limit of the CC and the MLE, the number of incorrect velocity estimates are 0, 19.1, and 7.2% for the CMLE, CC, and MLE, respectively. The ability to handle a larger search range and estimating low velocity levels was confirmed...

  16. Study of chemical and physical properties of synthetic carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaloc, M.; Lesko, J.; Martineg, P.; Rojak, A.; Roubicek, V.; Weiss, Z.

    1980-01-01

    Results are presented of studying the chemical and physical properties of 17 samples of synthetic carbonaceous materials (''carbons'') of different origin and with different degree of thermal treatment, and for comparison two samples of natural graphite were tested. For all the samples an analysis was made of the element composition and they were studied by the methods DTA, TGA, IR-spectrometry, x-ray analysis and electron screen microscopy. The studies indicated that proper combination of these methods can provide a high quality evaluation of the initial materials and the processes of their processing, and also the attained carbonaceous materials from the viewpoint of using them in the modern sectors of technology: electrical metallurgy, electrical chemistry and electrothermal production, nuclear technology, production of semiconductor materials, etc.

  17. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  18. Physical properties and chemical composition of Segamat Kaolin, Johor, Malaysia

    International Nuclear Information System (INIS)

    Umar Hamzah; Learn, K.K.; Sahibin Rahim

    2010-01-01

    Kaolin is a source of secondary mineral as a product of a weathering process of primary minerals. Its main component is fine grain kaolinite (< 2 μm) and it also contains other elements such as aluminium and iron phyllosilicate as the pigment. Aluminium rich kaolin is light in colour with high plasticity and is normally used in the ceramic, plastic, paint, paper, pesticide, pharmacology and cosmetic industries. The physical and chemical characteristics of kaolins are important for its potential application. In this study, about 25 kaolin samples were hand-augered from depths of 1-2 m at Buloh Kasap Segamat, Johor, Malaysia. Chemical analysis carried out included determination of oxides and types of minerals by X-ray diffraction and X-ray fluorescence. Shrinkage rate, rupture modulus and water absorption rate tests were carried out in the physical properties analysis. Plastic and liquid limits of the kaolin were also measured for plastic index. The Segamat kaolin was light in colour due to its high silicate composition. The highest mineral content in the kaolin was kaolinite and quartz occurred as impurities. The low shrinkage rate showed that the kaolin was dense with little voids, hence very suitable for use in the ceramic industry. This kaolin has low water absorption, plasticity and durable according to the rupture modulus test. (author)

  19. Measurement of the physical properties of the snowpack

    Science.gov (United States)

    Kinar, N. J.; Pomeroy, J. W.

    2015-06-01

    This paper reviews measurement techniques and corresponding devices used to determine the physical properties of the seasonal snowpack from distances close to the ground surface. The review is placed in the context of the need for scientific observations of snowpack variables that provide inputs for predictive hydrological models that help to advance scientific understanding of geophysical processes related to snow in the near-surface cryosphere. Many of these devices used to measure snow are invasive and require the snowpack to be disrupted, thereby precluding the possibility for multiple measurements to be made at the same sampling location. Moreover, many devices rely on the use of empirical calibration equations that may not be valid at all geographic locations. The spatial density of observations with most snow measurement devices is often inadequate. There is a need for improved automation of snowpack measurement instrumentation with an emphasis on field-based feedback of measurement validity in lieu of postprocessing of samples or data at a lab or office location. The scientific future of snow measurement instrumentation thereby requires a synthesis between science and engineering principles that takes into consideration geophysics and the physics of device operation.

  20. Physical Properties of Intermetallic FE2VA1

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ye [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Fe2VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe2VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe2VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe2VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe2VAl.

  1. Influence of the Soil Genesis on Physical and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Marian Marschalko

    2013-01-01

    Full Text Available The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS and clayey sand F4 (CS. The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations.

  2. Physical Properties of Intermetallic FE2VA1

    International Nuclear Information System (INIS)

    Ye Feng

    2002-01-01

    Fe 2 VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe 2 VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe 2 VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe 2 VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe 2 VAl

  3. Effect of Ultrasonication on Physical Properties of Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peter Parashos

    2014-01-01

    Full Text Available Aim. To evaluate the effect on physical properties of Mineral Trioxide Aggregate (MTA of using direct hand compaction during placement and when using hand compaction with indirect ultrasonic activation with different application times. Methods. One hundred acrylic canals were obturated in 3 increments with MTA in sample sizes of 10. One group was obturated by hand with an endodontic plugger and the remainder obturated with indirect ultrasonic application, with times ranging from 2 seconds to 18 seconds per increment. Microhardness values, dye penetration depths, and radiographs of the samples were evaluated. Results. As ultrasonic application time per increment increased, microhardness values fell significantly (P<0.001 while dye penetration values increased (P<0.001. Microhardness of MTA ultrasonicated for 2 seconds was significantly higher than hand compaction (P=0.03. Most radiographic voids were visible in the hand-compacted group (P<0.001, which also had higher dye penetration depths than the 2-second ultrasonicated samples. Ultrasonication of MTA for 10–18 seconds resulted in significantly more voids than 2–8 seconds of ultrasonication (P=0.02. Conclusion. The use of ultrasonics with MTA improved the compaction and flow of MTA, but excessive ultrasonication adversely affected MTA properties. A time of 2 seconds of ultrasonication per increment presented the best compromise between microhardness values, dye penetration depths, and lack of radiographic voids.

  4. Structural and Physical Properties of Ionic Liquid Mixtures

    Science.gov (United States)

    Cha, Seoncheol; Kim, Doseok

    Ionic liquids are the materials consisting of only cations and anions and existing at liquid phase below 100 °C. They are called designer solven as the physical properties of the materials can be tuned by changing their constituent ions. Mixing ionic liquids is a new way of maximizing this advantage because the material properties can be changed continuously in the mixture. The excess molar volumes, a difference between the molar volumes of the mixtures and a linear interpolation between the volumes of pure components, have been found to differ significantly for some ionic liquid mixtures, but the origin of this difference is not well understood. The different microstructures of the mixtures, which can range from a simple mixture of two different consisting ionic liquids to a different structure from those of pure materials, have been suggested as the origin of this difference. We investigated ionic liquid mixture systems by IR spectroscopy by utilizing a particular peak in the IR spectrum for the moiety participating in the hydrogen bonding (νC(2)-H) that changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-H changed proportionally to the composition for the mixtures consisting of halide anion. By contrast, the absorbance changed nonlinearly for the mixtures of which one of the anion had multiple interaction sites

  5. Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite

    Science.gov (United States)

    Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu

    2017-12-01

    A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.

  6. Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the Standard Model with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2012-01-01

    Roč. 85, č. 03 (2012), "032004-1"-"032004-23" ISSN 1550-7998 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : cross section: upper limit * dimuon: mass spectrum * Higgs particle * ATLAS * pp interaction * muon direct production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.691, year: 2012 http://arxiv.org/pdf/1201.1091.pdf

  7. Recovering physical properties from narrow-band photometry

    Science.gov (United States)

    Schoenell, W.; Cid Fernandes, R.; Benítez, N.; Vale Asari, N.

    2013-05-01

    Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to z = 0 and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the STARLIGHT-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin (σ ≈ 0.1 - 0.2 dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.

  8. Physical properties of dense, low-temperature plasmas

    International Nuclear Information System (INIS)

    Redmer, R.

    1997-01-01

    Plasmas occur in a wide range of the density-temperature plane. The physical quantities can be expressed by Green's functions which are evaluated by means of standard quantum statistical methods. The influences of many-particle effects such as dynamic screening and self-energy, structure factor and local-field corrections, formation and decay of bound states, degeneracy and Pauli exclusion principle are studied. As a basic concept for partially ionized plasmas, a cluster decomposition is performed for the self-energy as well as for the polarization function. The general model of a partially ionized plasma interpolates between low-density, nonmetallic systems such as atomic vapors and high-density, conducting systems such as metals or fully ionized plasmas. The equations of state, including the location of the critical point and the shape of the coexistence curve, are determined for expanded alkali-atom and mercury fluids. The occurrence of a metal-nonmetal transition near the critical point of the liquid-vapor phase transition leads in these materials to characteristic deviations from the behavior of nonconducting fluids such as the inert gases. Therefore, a unified approach is needed to describe the drastic changes of the electronic properties as well as the variation of the physical properties with the density. Similar results are obtained for the hypothetical plasma phase transition in hydrogen plasma. The transport coefficients (electrical and thermal conductivity, thermopower) are studied wthin linear response theory given here in the formulation of Zubarev which is valid for arbitrary degeneracy and yields the transport coefficients for the limiting cases of nondegenerate, weakly coupled plasmas (Spitzer theory) as well as degenerate, strongly coupled plasmas (Ziman theory). mercury within the MHNC scheme via effective ion-ion potentials which are derived from the polarization function within an extended RPA. The optical properties of dense plasmas, the shift

  9. Physical characterization of functionalized spider silk: electronic and sensing properties

    Directory of Open Access Journals (Sweden)

    Eden Steven, Jin Gyu Park, Anant Paravastu, Elsa Branco Lopes, James S Brooks, Ongi Englander, Theo Siegrist, Papatya Kaner and Rufina G Alamo

    2011-01-01

    Full Text Available This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline and amorphous (helical structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size, on the process of pyrolization (suppressing mass loss rates and on the resulting carbonized fiber structure (that becomes more robust against bending and strain. The effects of iodine doping and other functional parameters (vacuum and thin film coating motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof

  10. Thermo-physical Properties and Mechanical Properties of Burn-resistant Titanium Alloy Ti40

    Directory of Open Access Journals (Sweden)

    LAI Yunjin

    2017-10-01

    Full Text Available As a functional material of burn-resistant titanium alloy, the physical properties of Ti40 alloy were first reported. The chemical compositions of Ti40 alloy ingots by VAR were uniform. The microstructures of Ti40 alloy slab manufactured by HEFF+WPF were uniform. The results show that the room temperature tensile strength of Ti40 alloy is 950 MPa degree. The properties of high temperature heat exposure, creep resistance and lasting time are good at 500 ℃. In the range from room temperature to 600 ℃, Young's modulus and shear modulus are decreased linearly with increasing the temperature, Poisson's ratio is increases slowly as the temperature rises, and linear thermal expansion coefficient and average linear expansion coefficient is increase as the temperature rises.

  11. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  12. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  13. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties

    Science.gov (United States)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre

    2016-04-01

    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  14. Accelerator physics and radiometric properties of superconducting wavelength shifters

    International Nuclear Information System (INIS)

    Scheer, Michael

    2008-01-01

    Subject of this thesis is the operation of wave-length shifters at electron storage rings and their use in radiometry. The basic aspects of the radiometry, the technical requirements, the influence of wave-length shifters on the storage ring, and results of first measurements are presented for a device installed at BESSY. Most of the calculations are carried out by the program WAVE, which has been developed within this thesis. WAVE allows to calculate the synchrotron radiation spectra of wavelength shifters within an relative uncertainty of 1/100000. The properties of wave-length shifters in terms of accelerator physics as well as a generating function for symplectic tracking calculations can also be calculated by WAVE. The later was implemented in the tracking code BETA to investigate the influence of insertion devices on the dynamic aperture and emittance of the storage ring. These studies led to the concept of alternating low- and high-beta-sections at BESSY-II, which allow to operate superconducting insertion devices without a significant distortion of the magnetic optics. To investigate the experimental aspects of the radiometry at wave-length shifters, a program based on the Monte-Carlo-code GEANT4 has been developed. It allows to simulate the radiometrical measurements and the absorption properties of detectors. With the developed codes first radiometrical measurements by the PTB have been analysed. A comparison of measurements and calculations show a reasonable agreement with deviations of about five percent in the spectral range of 40-60 keV behind a 1-mm-Cu filter. A better agreement was found between 20 keV and 80 keV without Cu filter. In this case the measured data agreed within a systematic uncertainty of two percent with the results of the calculations. (orig.)

  15. Determination of composition and physical properties of partially ionized plasmas in the function of temperature

    International Nuclear Information System (INIS)

    Zaporowski, B.

    1992-01-01

    The investigations of various kinds of partially ionized plasma were conducted for the pressure of 0.1 MPa and in the range of temperature of 298.15 K to 24000 K. The physical properties of various kinds of partially ionized plasma depend mainly of their composition and temperature. The composition of particular kinds of partially ionized plasmas varies also in the function of temperature. Simultaneous going on of physical and chemical processes in plasma is the reason of difficulties in the calculations of plasma's physical properties. The use of the laws of macroscopic thermodynamics for the calculations of physical properties of partially ionized plasma is impossible. There are enough exact methods for measuring of physical properties of partially ionized plasma. For these reasons the theoretical method using the base of statistic physics was used to calculate the composition and physical properties of various kinds of partially ionized plasma. (author) 2 refs., 2 figs

  16. Quantifying the impact of livestock grazing on soil physical properties

    Science.gov (United States)

    Fučík, Petr; Zajíček, Antonín; Holubík, Ondřej

    2014-05-01

    Livestock grazing is considered to have a noticeable influence on soil properties, when pedocompaction / soil pore reduction induced either by cattle or sheeps may curtail water residence time and accelerate the beginning and volume of overland flow. However, direct measurements of soil physical parameters and their changes under different pastoral management are seldom reported in central European conditions. Knowledge about these alterations are indispensable for setting the proper, soil and water conservative grazing management in the view of increasing areas of pastures, not only in the Czech Republic. Impact of cattle grazing on changes of soil properties was studied in three experimental upland catchments in the Czech Republic, differing in soil characteristics and grazing management. Values of soil saturated hydraulic conductivity (Ks), assessed three times a year in-situ during 2012 - 2013 with pressure infiltrometers, were compared for grazed and ungrazed cambisols, pseudogleys and gleysols, for grazing intensity ranging from 0.5 to 2 Livestock units / ha. Soil bulk density (BD) and macroporosity (MP) were determined before and after grazing season every year with ring 100 cm3 steel cyllinders. These parameters were measured also on heavily treaded plots by cattle - hotspots - in each catchment. Ks values on grazed plots were significantly lower (on average by 39 - 66 %) than on ungrazed sites, BD values were reduced on average by 15 % and MP values were lower roughly about 22 % on grazed plots. Ks values on hotspots were lower by 50 - 90 %, BD values by 5 - 18 % and MP values by 8 - 28 % comparing to the rest of grazed areas. Decrease of soil infiltration capacity was influenced by grazing intensity and soil characteristics. The greatest reductions concerning infiltration capacity were manifested in soils being periodically waterlogged (either by surface or by groundwater). A profound influence on the infiltration process was revealed in pasture soils

  17. Changes in microstructure and physical properties of skutterudites after severe plastic deformation

    Czech Academy of Sciences Publication Activity Database

    Rogl, G.; Grytsiv, A.; Buršík, Jiří; Horky, J.; Anbalagan, R.; Bauer, E.; Mallik, R.Ch.; Rogl, P.; Zehetbauer, M.

    2015-01-01

    Roč. 17, č. 5 (2015), s. 3715-3722 ISSN 1463-9076 Institutional support: RVO:68081723 Keywords : physical properties * plastic deformation * TEM, SEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.449, year: 2015

  18. Structural and photo-physical properties of spin-coated poly (3-hexylthiophene) thin films

    CSIR Research Space (South Africa)

    Motaung, DE

    2009-07-01

    Full Text Available Regioregular poly(3-hexylthiophenes) (P3HTs) and its blends were studied regarding their structural and photo-physical properties using fullerene as an electron acceptor material. Photo-physical and structural characteristics of the polymer blends...

  19. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties

    Science.gov (United States)

    Sukhanova, Alyona; Bozrova, Svetlana; Sokolov, Pavel; Berestovoy, Mikhail; Karaulov, Alexander; Nabiev, Igor

    2018-02-01

    Studies on the methods of nanoparticle (NP) synthesis, analysis of their characteristics, and exploration of new fields of their applications are at the forefront of modern nanotechnology. The possibility of engineering water-soluble NPs has paved the way to their use in various basic and applied biomedical researches. At present, NPs are used in diagnosis for imaging of numerous molecular markers of genetic and autoimmune diseases, malignant tumors, and many other disorders. NPs are also used for targeted delivery of drugs to tissues and organs, with controllable parameters of drug release and accumulation. In addition, there are examples of the use of NPs as active components, e.g., photosensitizers in photodynamic therapy and in hyperthermic tumor destruction through NP incorporation and heating. However, a high toxicity of NPs for living organisms is a strong limiting factor that hinders their use in vivo. Current studies on toxic effects of NPs aimed at identifying the targets and mechanisms of their harmful effects are carried out in cell culture models; studies on the patterns of NP transport, accumulation, degradation, and elimination, in animal models. This review systematizes and summarizes available data on how the mechanisms of NP toxicity for living systems are related to their physical and chemical properties.

  20. Physical and mechanical properties of Chrysophyllum marginatum wood

    Directory of Open Access Journals (Sweden)

    Jussan Albarello de Cezaro

    2016-06-01

    Full Text Available This study aimed to evaluate the physical and mechanical properties of the wood of Chrysophyllum marginatum (Hook. And Arn. Radlk. We used three trees with 20.3 ± 6 cm of diameter. It was determined by regression analysis the variation bottom-up of shrinkage, anisotropic coefficient, saturate moisture content and basic density. To characterize the static bending in the first log, in saturate and air dried conditions, it was performed variance analysis using Tukey›s test. It was observed a decrease in radial and tangential contractions and basic density on bottom-up direction. Saturate moisture content increased, considering the same direction. Anisotropic coefficient presented increase tendency up to 1.30 m height followed by stabilization from that position to the top. It was observed decreasing tendency of longitudinal contraction to approximately 40% of total height, followed by increasing up to the insertion of the first living branch. Mean anisotropic coefficient and basic density were 2.3kg m-³ and 594 kg m-³, respectively. Air dry condition showed greater static bending resistance than when saturate. Values of rupture and elasticity modulus were similar to those found in studies with Eucalyptus saligna and Carya illinoinensis.

  1. Avian magnetic compass: Its functional properties and physical basis

    Directory of Open Access Journals (Sweden)

    Roswitha WILTSCHKO, Wolfgang WILTSCHKO

    2010-06-01

    Full Text Available The avian magnetic compass was analyzed in bird species of three different orders – Passeriforms, Columbiforms and Galliforms – and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity; it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range [Current Zoology 56 (3: 265–276, 2010].

  2. Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2017-01-01

    Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.

  3. Characterisation of gaharu hydrosol: Physical, chemical and microbiological properties

    International Nuclear Information System (INIS)

    Nur Humaira Lau Abdullah; Salmah Moosa

    2010-01-01

    Gaharu hydrosol is produced during the hydro distillation of resinous wood part of Aquilaria sp. This aromatic water is being considered as a by-product in the industry. There is interest to turn this aromatic by-product into aroma therapy products. The present study is carried out in order to understand the properties of gaharu hydrosol, physically, chemically and microbiologically. Gaharu hydrosol from two different extraction facilities for example at Kedaik Agar wood Sdn. Bhd. and Malaysian Nuclear Agency were characterised in this study. All the gaharu hydrosol samples displayed acidic nature, with pH in the range of 3.62 - 4.53. Four antioxidant assays were carried out to ascertain the antioxidant capabilities of two gaharu hydrosol samples through the total phenolic content assay, ABTS + radical scavenging activity, DPPH· radical scavenging activity and ferric reducing activity (FRAP). The results revealed that the samples exhibited lower antioxidant capabilities as compared to the positive control. For microbial population study, fungi was not present in the samples as there was no growth observed on the Plate Sabouraud Dextrose Agar (SDA) using membrane filtration technique. The antibacterial activity of the gaharu hydrosol against Staphylococcus aureus and Pseudomonas aeruginosa was determined using agar dilution method and disk diffusion method. The results showed that the gaharu hydrosol did not inhibit the growth of both the bacteria. The results obtained from this study will be further evaluated for the development of new products using this aromatic gaharu by-product. (author)

  4. Physical Properties of Copper Based MMC Strengthened with Alumina

    Directory of Open Access Journals (Sweden)

    Kaczmar J. W.

    2014-06-01

    Full Text Available The aim of this work is the development of Cu-Al2O3 composites of copper Cu-ETP matrix composite materials reinforced by 20 and 30 vol.% Al2O3 particles and study of some chosen physical properties. Squeeze casting technique of porous compacts with liquid copper was applied at the pressure of 110 MPa. Introduction of alumina particles into copper matrix affected on the significant increase of hardness and in the case of Cu-30 vol. % of alumina particles to 128 HBW. Electrical resistivity was strongly affected by the ceramic alumina particles and addition of 20 vol. % of particles caused diminishing of electrical conductivity to 20 S/m (34.5% IACS. Thermal conductivity tests were performed applying two methods and it was ascertained that this parameter strongly depends on the ceramic particles content, diminishing it to 100 Wm-1K-1 for the composite material containing 30 vol.% of ceramic particles comparing to 400 Wm-1K-1 for the unreinforced copper. Microstructural analysis was carried out using SEM microscopy and indicates that Al2O3 particles are homogeneously distributed in the copper matrix. EDS analysis shows remains of silicon on the surface of ceramic particles after binding agent used during preparation of ceramic preforms.

  5. Thermo-physical properties of (Th,U)O2

    International Nuclear Information System (INIS)

    Yang, J. H.; Gang, K. W.; Lee, C. B.

    2003-01-01

    The temperature dependance of thermal expansion, thermal diffusivity and thermal conductivity in (Th 1-y U y )O 2 (y=0.0, 0.345, 0.645) system has been measured using dillatomeler and laser flash apparatus. The thermal expansion of (Th 1-y U y )0 2 linearly increases with U mole fraction y in the measured temperature range. The thermal conductivities of (Th 0.655 U 0. 3 45 )0 2 and (Th 0.. 3 55 U 0.645 )0 2 fuel were found to be lower than that of Th0 2 or U0 2 fuel The degradation of the thermal conductivity by the addition of U0 2 is large at low temperatures but becomes smaller as the temperature increases. The phonon -defect scattering might be associated with the degradation of the thermal conductivity. The measured thermo-physical properties of (Th,U)O 2 system can be well described in terms of the formation of a complete solid solution in the whole composibon range

  6. Theoretical investigation of chemical and physical properties of gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Fredrik

    1999-12-01

    This thesis is discussing the chemical and physical properties of different gaseous fuels. A mapping of about seventy gaseous fuels resulted in eleven type gases, these gases have mainly five components (inerts, H{sub 2}, CO, CH{sub 4} and higher order of hydrocarbons) of different quantities. Calculations of heating value and Wobbe number have been done. Dew point temperatures have been estimated by using three different programs. Flammability limits, laminar flame speed and auto ignition temperatures have been calculated by using a kinetic and chemical program developed by Mauss. Flammability limits have been compared with Le Chatelier's law and measurements. Problems related to combustion such as flash back, lift off and instability are closely connected with flame speed and flow patterns. These problems are discussed in terms of laminar flame speed and Reynolds' number. The main results of this study were: Auto ignition temperature for gas mixtures behavior is very complex and unpredictable. In general small quantities of hydrogen decrease the temperature of auto ignition. The calculations of flammability limits by the kinetic and chemical software showed good agreement to measurements. Low Btu gases requires large flow area in order to avoid large pressure drop.

  7. The Fundamental Physical Properties of Wolf-Rayet Stars

    Science.gov (United States)

    Massey, Philip

    Massive stars are the cosmic engines that power the far-infrared luminosities of distant galaxies, and dominate the ionization of nearby HII regions. They are the primary source of carbon and oxygen in the Universe, and their core collapses manufacture all of the elements heavier than Fe. The re-ionization of the early Universe was thanks to Population III massive stars, and the super-massive black holes we find in the cores of galaxies today were seeded as a result of the black holes that formed from the first generations of massive stars. Understanding massive star evolution is the key to unlocking many astrophysical problems. The largest uncertainty in massive star evolution is the question of how Wolf-Rayet (WR) stars form. Our proposal will determine the fundamental physical properties of WRs using four archival NASA data sets for a critical comparison with present day evolution models. It is generally assumed that massive stars spend most of their post-main-sequence lives WRs. For decades we have believed that WRs form as a result of stellar winds stripping off the H-rich outer layers of a star, leaving behind a bare stellar core. In this picture, WRs are a normal stage in the evolution of the most massive stars. Recently, this scenario has been called into question. Stellar wind mass- loss rates are now known to be significantly lower than previously thought, although whether this is a factor of 3 or 10 remains unclear. If the latter is correct, then this poses a serious problem for the formation of WRs. This has created a paradigm shift, with increased importance attached to the role of binary evolution, with Roche-lobe overflow performing the stripping. Attempts to distinguish which scenario is more prevalent is complicated by the possibility of past mergers; i.e., just because a WR is not a binary today does not prove it was not one in the past. We will tackle this question from a fresh perspective, determining reliable fundamental physical properties of

  8. Physical properties of chitosan dispersions in glycolic acid.

    Science.gov (United States)

    Anchisi, Carlo; Maccioni, Anna Maria; Cristina Meloni, Maria

    2004-07-01

    Evaporation-freezing and rheological behaviour of chitosan dispersions at different temperatures and with different molecular weights using glycolic acid as anionic systems were studied. Chitosans of high, 2,000,000, medium, 750,000, and low, 70,000 molecular weight (hC, mC, and lC, respectively) were employed alone or as mixtures (hC/mC, hC/lC, and mC/lC 1:1, w/w). Different concentrations of glycols were added to these base dispersions (propylene glycol and glycerine) to investigate how the above physical properties change. The different rheological and evaporation-freezing behaviours of chitosan dispersions were related both to the molecular weight of chitosan and the vehicle composition of the dispersions. Particularly, the rheological study showed a pseudoplastic and shear thinning behaviour for all chitosan dispersions with flow index values n, tending to <1 at increasing molecular weights. Chitosans dispersions containing glycols showed lower apparent viscosity values than the base dispersions of the corresponding chitosans, but the water loss and the freezing point were lower especially for chitosan dispersions containing glycerine. This work presents a wide range of dispersion series from which to choose the most suitable to formulate pharmaceutical and cosmetic products.

  9. Physical properties of orbital debris from spectroscopic observations

    Science.gov (United States)

    Jorgensen, K.; Africano, J.; Hamada, K.; Stansbery, E.; Sydney, P.; Kervin, P.

    2004-01-01

    Currently, certain physical properties, such as material type and albedo, of orbital debris are assumed when used to determine the size of the objects. A study to ascertain whether or not the assumed values are valid has begun using reflectance spectroscopy as a means of determining the material type of the object. What appears to some as a squiggly line is actually the reflectance of sunlight from the object. By comparing the location, depth, and width of the absorption features on the squiggly lines, the material type of the debris object is identified. Once the material type is known, the albedo of the object can be determined. This paper discusses the results from observations of large rocket bodies and satellites in both lower and geosynchronous Earth orbits (LEO and GEO, respectively) taken at the air force maui optical and supercomputing (AMOS) site located in Maui, Hawaii. Using the 1.6-m telescope and a spectral range of 0.3-0.9 μm, differences between rocket bodies of different types and launch dates, as well as satellites of different types and launch dates are determined. Variations seen in the squiggle lines are due to colors of paint, space weathering, and for the satellites, orientation and size of the solar panels. Future direction of the project will be discussed as well as plans for future observations.

  10. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  11. Anomalous and resonance small angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs

  12. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  13. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  14. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  15. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  16. Influence of strain on the physical properties of materials at the nanoscale

    Science.gov (United States)

    Manoharan, Mohan Prasad

    At the nanoscale, materials properties differ substantially from that at the bulk scale, opening new avenues for technological applications and basic science research. Such size effects arise from dimensional and microstructural constraints, especially when specimen size coincides with the critical fundamental length scales for various physical properties. While the state of the art practice is to investigate the size effects on 'individual' properties (mechanical or electrical or thermal and so on), the focus of this research is to explore the size effects on the 'coupling' among these domains. In particular, the effect of mechanical strain on various physical properties of materials at the nanoscale is studied. This is motivated by the hypothesis that very small elastic strain could be engineered in micro and nanoscale systems to 'tune' materials properties, which is not possible at the bulk scale using strain as a parameter. The objective of this research is to study the influence of strain on various material properties at the nanoscale, such as crystal structure, thermal and electrical conductivity, electronic bandgap and tribological properties through experimental characterization. While characterization of nanoscale materials in single domains remains the state of the art, coupled domain studies usher even stiffer challenges. This is because in addition to the difficulties in nanoscale specimen preparation, handling and properties measurement, meticulous attention has to be given to the boundary conditions for each of the domains. Another desired feature of the experimental setup is the capability for in situ high resolution microscopy so that microstructural details as well as experimental accuracy are achieved. A major contribution of this research is the development of microfabricated integrated systems to perform coupled domain characterization of small scale specimens in situ in thermal (infra-red), micro-Raman and electron microscopes. In addition

  17. Physical properties of magnesium affected soils in Colombia

    International Nuclear Information System (INIS)

    Garcia-Ocampo, A.

    2004-01-01

    Magnesium has some capacity to develop higher exchangeable sodium levels in clays and soil materials. The Mg +2 accumulation on the exchange complex of soils to a very high saturation levels affect their physical, chemical and biological properties. Colombia has a large area of these soils, located mainly in the main rivers valleys and in the Caribbean Region. In the Cauca River Valley there are about 117,000 hectares affected. There is a lack of information about the soil forming processes, the Mg +2 effects on soils, the type and source of compounds responsible for the magnesium enrichment, their relationship with the landscape and the way this accumulation occurs. To identify and quantify soil Mg +2 enriched areas over 2500 soil profiles from different landscape positions of the Cauca River Valley were studied. The information was processed to generate Mg-saturation maps, to identify the different soil profile types and to estimate the affected area. A topographic sequence from the alluvial inundation plain to the hills was used to explore the presence of diagnostic horizons and to determine the main soil characteristics and genetic, mineralogical or chemical evidences of soil forming processes. Two 180 kilometer transects parallel to the river were used to: a) study the type and source of Mg-compounds responsible for the Mg-enrichment and the way this accumulation occurs. b) the soil hydraulic properties like infiltration, saturated hydraulic conductivity and matrix potential at different depths were also measured. Samples of nine profiles were collected and the porosity and soil volume changes at different water content were examined. The program RETC was used for prediction of the hydraulic properties of non saturated soils. These properties involved the retention curve, the function of hydraulic conductivity and the diffusivity of the water in the soil. By grouping together the soil profiles, five main type of Mg-affected soils were identified as being

  18. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  19. Material physical properties of 12 chromium ferritic steel

    International Nuclear Information System (INIS)

    Ando, Masanori; Wakai, Takashi; Aoto, Kazumi

    2003-09-01

    High chromium ferritic steel is an attractive candidate for structural material of the next Fast Breeder Reactor, since both of thermal properties and high temperature strength of the steel are superior to those of conventional austenitic stainless steels. In this study, physical properties of 12Cr steels are measured and compared to those obtained in the previous studies to discuss about stochastic dispersions. The effect of measurement technique on Young's modulus and the influence of the specimen size on coefficient of thermal expansion are also investigated. The following conclusions are obtained. (1) Young's modulus of 12Cr steels obtained in this study tends to larger than those obtained in the previous studies especially in high temperature. Such a discrepancy is resulted from the difference in measurement technique. It was clarified that Young's modulus obtained by free vibration method is more adequate those obtained by the cantilever characteristic vibration method. Therefore, the authors recommend using the values obtained by free vibration method as Young's modulus of 12Cr steels. (2) Both instant and mean coefficient of thermal expansion of 12Cr steels obtained in this study is in a good agreement with those obtained in the previous studies. However, the obviously different values are obtained from the measurement by large size specimens. Such a discrepancy is resulted from heterogeneous during heating process of the specimens. Therefore, the authors recommend using the values obtained by φ4 x 20 mm specimens as instant and mean coefficient of thermal expansion of 12Cr steels. (3) Specific heat of 12Cr steels obtained in this study agree with those obtained in the previous studies with a few exceptions. (4)Thermal conductivity of 12Cr steels obtained in this study agree with those obtained in the previous studies. (5) It was confirmed that instant and mean coefficient of thermal expansion, density, specific heat and thermal conductivity of 12Cr steels

  20. Crystal growth and physical properties of Ferro-pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Aswartham, Saicharan

    2012-11-08

    . Single crystals of KFe{sub 2}As{sub 2} were grown with two different fluxes, namely, FeAs-flux and KAs-flux. The superconducting transition is found to be at 3.8 K in both the crystals. The influence of doping with selected elements like Na, Rh, Co and Cr has been investigated systematically in KFe{sub 2}As{sub 2} single crystals. With Na-doping at the K-site, yield (K{sub 1-x}Na{sub x})Fe{sub 2}As{sub 2}; superconductivity is suppressed to lower temperatures. Substitution of Co and Cr at Fe site, yield K(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2}, K(Fe{sub 0.95}Cr{sub 0.05}){sub 2}As{sub 2} superconductivity is rapidly killed. Single crystals of (Ba{sub 0.6}Eu{sub 0.4})(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x = 0, 0.05, 0.1, 0.15 and 0.2 were grown with solution growth technique using Fe-As flux and investigated with several physical measurements. The growth conditions are highly optimized to grow flux free large single crystals especially in case of BaFe{sub 2}As{sub 2} family. The high quality of the crystals were revealed by several physical properties, for e.g. single crystals of Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are of the highest quality which was confirmed by the magnetic ac susceptibility which showed a very sharp superconducting transition.

  1. ION SERIES AND THE PHYSICAL PROPERTIES OF PROTEINS. II.

    Science.gov (United States)

    Loeb, J

    1920-11-20

    1. Our results show clearly that the Hofmeister series is not the correct expression of the relative effect of ions on the swelling of gelatin, and that it is not true that chlorides, bromides, and nitrates have "hydrating," and acetates, tartrates, citrates, and phosphates "dehydrating," effects. If the pH of the gelatin is taken into considertion, it is found that for the same pH the effect on swelling is the same for gelatin chloride, nitrate, trichloracetate, tartrate, succinate, oxalate, citrate, and phosphate, while the swelling is considerably less for gelatin sulfate. This is exactly what we should expect on the basis of the combining ratios of the corresponding acids with gelatin since the weak dibasic and tribasic acids combine with gelatin in molecular proportions while the strong dibasic acid H(2)SO(4) combines with gelatin in equivalent proportions. In the case of the weak dibasic acids he anion in combination with gelatin is therefore monovalent and in the case of the strong H(2)SO(4) it is bivalent. Hence it is only the valency and not the nature of the ion in combination with gelatin which affects the degree of swelling. 2. This is corroborated in the experiments with alkalies which show that LiOH, NaOH, KOH, and NH(4)OH cause the same degree of swelling at the same pH of the gelatin solution and that this swelling is considerably higher than that caused by Ca(OH)(2) and Ba(OH)(2) for the same pH. This agrees with the results of the titration experiments which prove that Ca(OH)(2) and Ba(OH)(2) combine with gelatin in equivalent proportions and that hence the cation in combination with the gelatin salt with these two latter bases is bivalent. 3. The fact that proteins combine with acids and alkalies on the basis of the forces of primary valency is therefore not only in full agreement with the influence of ions on the physical properties of proteins but allows us to predict this influence qualitatively and quantitatively. 4. What has been stated in

  2. General Physical Properties of CGRaBS Blazars

    Science.gov (United States)

    Paliya, Vaidehi S.; Marcotulli, L.; Ajello, M.; Joshi, M.; Sahayanathan, S.; Rao, A. R.; Hartmann, D.

    2017-12-01

    We present the results of a multi-frequency, time-averaged analysis of blazars included in the Candidate Gamma-ray Blazar Survey catalog. Our sample consists of 324 γ-ray detected (γ-ray loud) and 191 γ-ray undetected (γ-ray quiet) blazars; we consider all the data up to 2016 April 1. We find that both the γ-ray loud and γ-ray quiet blazar populations occupy similar regions in the WISE color-color diagram, and γ-ray loud sources are brighter in the radio and X-ray bands. A simple one-zone synchrotron inverse-Compton emission model is applied to derive the physical properties of both populations. We find that the central black hole mass and accretion disk luminosity ({L}{disk}) computed from the modeling of the optical-UV emission with a Shakura-Sunyaev disk reasonably matches that estimated from the optical spectroscopic emission-line information. A significantly larger Doppler boosting in the γ-ray loud blazars is noted, and their jets are more radiatively efficient. On the other hand, the γ-ray quiet objects are more MeV-peaked and thus could be potential targets for next-generation MeV missions. Our results confirm earlier findings about the accretion-jet connection in blazars; however, many of the γ-ray quiet blazars tend to deviate from the recent claim that the jet power exceeds {L}{disk} in blazars. A broadband study, considering a larger set of γ-ray quiet objects and also including BL Lacs, will be needed to confirm/reject this hypothesis as well as to verify the evolution of the powerful high-redshift blazars into their low-power nearby counterparts.

  3. Waste Feed Evaporation: Physical Properties and Solubility Determination

    International Nuclear Information System (INIS)

    Calloway, T.B.

    2003-01-01

    Caustic adjustment of the UF recycle stream was required to prevent gel formation for the solutions tested. Actual amounts of caustic adjustment required will vary depending on the composition and volume ratios of the UF recycle. The concentration of recycles in the waste feed evaporator as required to blend with waste feed streams to provide a feed to the ultrafiltration process with a supernate specific gravity of 1.22 is feasible. No problems (such as severe foaming) were noted during the lab-scale testing that would preclude operation of the evaporator. The physical properties of the recycles and waste feed blends fit well to correlations based on sodium concentration and temperature. Evaporation of streams containing high levels of insoluble solids may lead to ''bumping'' or other undesirable behavior in the evaporator at insoluble solids. Sodium alumino-silicate solids were not noted in the evaporator feed or concentrate, but NAS did form in the blends of concentrated recycle and waste feeds. Strontium was found to precipitate during neutralization of the acid cleaning solution and remain precipitated during evaporation. Mercury was found to be significantly soluble in Envelope A simulants and the solubility of mercury increased during evaporation. No mercury was detected in the offgas system after evaporation using Envelope A simulants. Mercury was significantly less soluble in a simulant of AZ-102. Filtration of the Envelope A waste simulants was affected by the addition of recycle to the process, but the impact was primarily due to an increase in the amount of insoluble solids in the blended stream compared to the waste feed

  4. HETDEX: The Physical Properties of Lyman-alpha Emitters

    Science.gov (United States)

    Gronwall, Caryl; Blanc, G.; Ciardullo, R.; Finkelstein, S.; Gawiser, E.; Gebhardt, K.; HETDEX Collaboration

    2012-01-01

    Beginning in Fall 2012, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will map out 300 square degrees via a blind integral-field spectroscopic survey which will detect 800,000 Lyman-alpha emitters (LAEs) at 1.9 LAE power spectrum, but these emission-line sources are also important probes of galaxy evolution. LAEs are observed "in the act" of formation with low mass, little dust, very young ages, and a two-dimensional clustering scale-length that implies that they are the progenitors of today's Milky Way type galaxies. The unprecedented size of the HETDEX survey will allow us to explore the 3-D clustering of these objects and to measure their halo masses as a function of redshift. We will also be able to explore the physical properties of LAEs over a wide range of environments, and study how their luminosity functions, equivalent width distributions, and star formation rates change with galaxy density and redshift. In preparation for HETDEX, we undertook a 3 year pilot survey to test the feasibility of the experiment and design an optimal observing strategy. These observations were performed with a proto-type HETDEX spectrograph (VIRUS-P) on the McDonald 2.7-m telescope, and covered Ly-alpha in the redshift range 1.9 < z < 3.8. This survey discovered 104 Ly-alpha emitting galaxies in 169 sq. arcmin of sky, and reached objects with Ly-alpha line luminosities as faint as 3 x 1042 ergs/s. We will present the Ly-alpha luminosity function, equivalent width distributions, and star formation rates measured for this sample and discuss the implications of the pilot survey results for HETDEX.

  5. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    Science.gov (United States)

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  6. Physical properties of orbital debris from squiggly lines

    Science.gov (United States)

    Jorgensen, K.; Africano, J.; Hamada, K.; Stansbery, E.; Sydney, P.; Kervin, P.

    Currently, certain physical properties, such as material type and albedo, of orbital debris are assumed when used to determine the size of the objects. A study to ascertain whether or not the assumed values are valid has begun using reflectance spectroscopy as a means of determining the material type of the object. What appears to some as a squiggly line is actually the reflectance of sunlight from the object. By comparing the location, depth, and width of the absorption features on the squiggly lines, the material type of the debris object is identified. Once the material type is known, the albedo of the object can be determined. This paper discusses the results from observations of large rocket bodies and satellites in both lower and geosynchronous Earth orbits (LEO and GEO, respectively) taken at the Air Force Maui Optical Supercomputing (AMOS) site located in Maui, Hawaii. Using the 1.6- meter telescope and a spectral range of 0.3 to 0.9 microns, differences between rocket bodies of different types and launch dates, as well as satellites of different types and launch dates are determined. Variations seen in the squiggle lines are due to colors of paint, space weathering, and for the satellites, orientation and size of the solar panels. Initial findings from an additional observation run using the 3.67-meter telescope equipped with both a visible and near-infrared spectrometer (out to 2 microns) are also described. Future direction of the project will be discussed as well as plans for future observations.

  7. Soil physical properties of high mountain fields under bauxite mining

    Directory of Open Access Journals (Sweden)

    Dalmo Arantes de Barros

    2013-10-01

    Full Text Available Mining contributes to the life quality of contemporary society, but can generate significant impacts, these being mitigated due to environmental controls adopted. This study aimed to characterize soil physical properties in high-altitude areas affected by bauxite mining, and to edaphic factors responses to restoration techniques used to recover mined areas in Poços de Caldas plateau, MG, Brazil. The experiment used 3 randomized block design involving within 2 treatments (before mining intervention and after environmental recovery, and 4 replicates (N=24. In each treatment, soil samples with deformed structures were determined: granulometry, water-dispersible clay content, flocculation index, particle density, stoniness level, water aggregate stability, and organic matter contend. Soil samples with preserved structures were used to determine soil density and the total volume of pores, macropores, and micropores. Homogenization of stoniness between soil layers as a result of soil mobilization was observed after the mined area recovery. Stoniness decreased in 0.10-0.20 m layer after recovery, but was similar in the 0-0.10 m layer in before and after samples. The recovery techniques restored organic matter levels to pre-mining levels. However, changes in soil, including an increase in soil flocculation degree and a decrease in water-dispersible clays, were still apparent post-recovery. Furthermore, mining operations caused structural changes to the superficial layer of soil, as demonstrated by an increase in soil density and a decrease in total porosity and macroporosity. Decreases in the water stability of aggregates were observed after mining operations.

  8. Physical and chemical properties for sandstone and bentonites

    International Nuclear Information System (INIS)

    Sato, Haruo

    2004-01-01

    Physical and chemical properties such as porosity, pore-size distribution, dry density, solid density, mineralogy and chemical composition, which are important parameters for the understanding and analysis of the diffusion phenomena of radionuclides and ions in bentonite and in the geosphere, were measured. The measurements were performed for sandstone, of which fundamental data and information are limited. For bentonite, 3 kinds of bentonites with different smectite contents (Kunigel-V1, Kunipia-F, MX80) were used. In the measurements of the physical and chemical properties of rock, the measurements of solid density by pychnometer, the measurements of porosity, dry density and solid density by water saturation method, the measurements of porosity, dry density, solid density, pore-size distribution and specific surface area of pores by Hg porosimetry, the identifications of constituent minerals by X-ray Diffractometry (XRD), the measurement of chemical composition by whole rock analysis, the observations of micropore structure by Laser Confocal Microscope (LCM), the measurements of water vaporization curves and the measurements of the homogeneity of the rock by penetration of KMnO 4 were performed. While, in the measurements of the physical and chemical properties for bentonite, water basis water content, water content, porosity, dry density, solid density and their distributions in samples were measured, and the degree of inhomogeneity was quantitatively evaluated by comparing with data and information reported up to date. The porosities of sandstone are 15.6±0.21% for water saturation method and 15.5±0.2% for Hg porosimetry, and similar values were obtained in both methods. The solid densities ranged 2.65-2.69 Mg/m 3 for 3 methods, and the average value was 2.668±0.012 Mg/m 3 . The average pore size was 88.8±0.5nm, and pore sizes ≤10μm shared 80% of total pore volume and pore sizes ≤1μm shared 40%. The specific surface area of the pores is 4.09±0.017 m

  9. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  10. Summary of tank waste physical properties at the Hanford Site

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed

  11. Curing characteristics tensile and physical properties of rice straw filled standard Malaysian rubber

    Science.gov (United States)

    Alnaid, A.; Noriman, N. Z.; Dahham, O. S.; Hamzah, R.; Adam, T.; Al-Samarrai, M. N.; Mohammed, M.; Azlan, U. A. A.

    2017-10-01

    In this research, the effects of Rice Straw (RS) reinforced Standard Malaysian Rubber (SMRL) on curing characteristics, tensile properties and physical properties were investigated. All compounds were prepared using two roll mill at five different RS loading (10, 20, 30, 40, 50 phr). In addition, two different size of RS, fine size (FS) at 300 μm and coarse size (CS) at 10 mm were used. The properties such as cure characteristics, tensile properties and physical properties were determined. Results indicated that the fine size of RS filled SMRL contributed to the better properties such as tensile, hardness and crosslink density compare to coarser size of RS filled SMRL at same loading.

  12. Physical properties of inland valley soils of central Cross River State ...

    African Journals Online (AJOL)

    Physical properties of inland valley soils of central Cross River State, Nigeria. ... The physical properties of six Inland valley pedons in central Cross River State, Nigeria were investigated. The percent total sand ... The surface layers were generally loamy in texture while the subsoil layers were clayey. The mean bulk density ...

  13. Study on Physical Properties and Chemical Composition of Some Myanmar Gems

    International Nuclear Information System (INIS)

    Kyaw Myint Htoo; Tun Khin; Sein Htoon

    2004-05-01

    Physical properties of some Myanmar gems were studied by using refractometer, dichroscope, polariscope, SG test, UV test and microscope. Then, chemical composition were investigated by XRF-technique. After that, gem identification, evaluation, colour improvement were studied according to these physical properties and chemical composition

  14. Physical and Digital Security Mechanisms: Properties, Combinations and Trade-offs

    NARCIS (Netherlands)

    van Cleeff, A.

    2015-01-01

    The usage of information technology implies the replacement of physical systems with digital systems: we use information technology because some properties of software, such as high speed, low cost and high accuracy, are more desirable than the corresponding properties of physical systems.

  15. Microinstability-based model for anomalous thermal confinement in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed.

  16. Microinstability-based model for anomalous thermal confinement in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed

  17. Physical properties optimization of polycrystalline LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shiv J., E-mail: s.j.singh@ifw-dresden.de [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585 (Japan); Gräfe, Uwe; Beck, Robert; Wolter, Anja U.B.; Grafe, Hans-Joachim [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Hess, Christian [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01069 Dresden (Germany); Wurmehl, Sabine [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Institut für Festkörperphysik, Technische Universität Dresden, 01069 Dresden (Germany); Büchner, Bernd [Leibniz-Institute for Solid State and Material Research, IFW-Dresden, 01171 Dresden Germany (Germany); Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01069 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, 01069 Dresden (Germany)

    2016-10-15

    Highlights: • Synthesis of polycrystalline LiFeAs in a very broad heating temp. range (200–900 °C). • These samples are characterized by various physical and magnetic measurements. • Interestingly, the LiFeAs phase starts to form at 200 °C with T{sub c} of 19.2 K. • 600 °C synthesis temperature yields optimal high quality polycrystalline LiFeAs. • The properties of the best sample are consistent with that of LiFeAs single crystal. - Abstract: We present a study of parameter optimization for synthesizing truly stoichiometric polycrystalline LiFeAs. Stoichiometric LiFeAs has been prepared in a very broad range of synthesis temperature (200–900 °C) under otherwise exactly the same conditions, and has been characterized by structural, magnetic, transport, nuclear quadrupole resonance (NQR), and specific heat measurements. Our study showed that the LiFeAs phase is formed at 200 °C with a large amount of impurity phases. The amount of these impurity phases reduces with increasing synthesis temperature and the clean LiFeAs phase is obtained at a synthesis temperature of 600 °C. Magnetic susceptibility and resistivity measurements confirmed that the superconducting properties such as the critical temperature T{sub c}, and the upper critical field H{sub c2} do not depend on the synthesis temperature (≤ 700 °C), remaining at almost the same value of ∼19 K and ∼40 T, respectively. However, the width ΔT{sub c} of the transition and the NQR line width decrease with increasing the synthesis temperature and reached to minimum value for the synthesis temperature of 600 °C. Our careful analysis suggests that the best sample obtained at 600 °C is optimal concerning the low resistivity, high residual resistivity ratio (RRR), low ΔT{sub c}, high T{sub c} and H{sub c2}, and a small NQR line width with values which are comparable to that reported for LiFeAs single crystals. Specific heat measurements confirmed the bulk superconducting nature of the samples

  18. Study of chemical and physical properties of irradiated Guar Gum

    International Nuclear Information System (INIS)

    Hussein, H. A. S.

    2012-07-01

    This study was carried out to evaluate the effect of different gamma radiation doses to decontamination of micro-organisms present in Guar Gum powder. As well as to study the effect of radiation on the chemical and physical properties of the carbohydrate components of the Gum's material. Two types of samples were used in this study (powder and liquid). All samples were collected from commercially available Guar Gum (G G), which were obtained from the company (Sudanese Guar Gum ltd). Samples putted in polyethylene tightly closed container, then irradiated by applying different doses (2.5, 5, 7.5, 10, 20,30,40,and 50 kGy) from Co-60 source at room temperature in air. And take zero kGy as control. Irradiated powder samples of (2.5, 5, 7.5, 10 kGy) were investigated for contamination by using growth media agar and the result showed that 2.5 kGy is appropriate dose to remove the contamination of the samples. And then analyzed using fourier transform infrared (FTTR) x-ray fluorescence (X RF) and spectroscopy. The FTIR spectroscopy results suggested that there were no major chemical functional group transformation during irradiation. No change occurs by using low dose as 2.5 kGy. Also evaluation impact of radiation on liquid Samples (Aqueous solutions prepared in tow concentration of 1% and 5% wv that is by exposing the samples to the same dose of gamma rays) the effect of irradiation on it were investigated by using ultra violet spectroscopy ( UV.Vis), results showed that low dose has steeply effect in solutions specially in low concentration, it was more pronoun than that in high concentration, high dose has made change similar to that it made in powder. Also for both concentrations of liquid samples and for solutions made of irradiated powder pH measured and viscosity which used in investigations of molecular weight of liquid and powder, comparing the results of impact in the form of powder with the results of effects in the solutions found that the effects of

  19. Optical and physical properties of ceramic crystal laser materials

    Science.gov (United States)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  20. Physical and chemical properties of long-term salinized soils

    Directory of Open Access Journals (Sweden)

    Celestino Ruggiero

    2011-02-01

    Full Text Available In some areas, particularly in the Mediterranean regions, saline water is a source of water for crop irrigation. Consequently during the time, the use of this water may cause significant modifications of the soil physic-chemical properties and plant toxicity. The purpose of this investigation was to assess the variation of soil stability index and of ECe, ESP, pH, exchangeable potassium, bulk density, soil hydraulic conductivity and water retention curve (h(θ, for a clay sandy soil, which was irrigated over 12 years with saline water. The soil stability index was evaluated by 2 methods: after wetting the sample (Water Stability Index = WSI and without the pre-wetting step (Water Stability Dry Index = WSDI. The measures have been taken at three depths along the soil profile: 0-0.30, 0.30-0.60 and 0.60-0.90 m. The saline water was obtained by adding commercial sea salt to the irrigation water with the result of a final concentrations of 0.25 (2.5 g l-1, 0.5 (5 g l-1 and 1% (10 g l-1. A non-salinized control was also included. The increasing salinity of the irrigation water increased at all the depths ECe, ESP and pH, while exchangeable potassium decreased. Assessment of soil aggregates stability without samples pre-wetting (WSDI allowed us to better discriminate among the different samples examined. Aggregate stability for each of the soil layers decreased at increasing salinity of the irrigation water. Long term salinization affected the aggregate stability of the deepest layers. The soil hydraulic conductivity decreased also, while bulk density increased. The shape of the soil water retention curve was also affected by salinity. In the salinized plots less water is relaxed within -150 ÷ -12 cm ψ range. The available water was reduced at increasing salinity. Irrigation with saline water on clay-sandy soils increases ECe, pH and ESP, all of which negatively affect the soil aggregate stability. Damage to the soil structure remarkably reduces the

  1. Physical and chemical properties of long-term salinized soils

    Directory of Open Access Journals (Sweden)

    Celestino Ruggiero

    2006-06-01

    Full Text Available In some areas, particularly in the Mediterranean regions, saline water is a source of water for crop irrigation. Consequently during the time, the use of this water may cause significant modifications of the soil physic-chemical properties and plant toxicity. The purpose of this investigation was to assess the variation of soil stability index and of ECe, ESP, pH, exchangeable potassium, bulk density, soil hydraulic conductivity and water retention curve (h(θ, for a clay sandy soil, which was irrigated over 12 years with saline water. The soil stability index was evaluated by 2 methods: after wetting the sample (Water Stability Index = WSI and without the pre-wetting step (Water Stability Dry Index = WSDI. The measures have been taken at three depths along the soil profile: 0-0.30, 0.30-0.60 and 0.60-0.90 m. The saline water was obtained by adding commercial sea salt to the irrigation water with the result of a final concentrations of 0.25 (2.5 g l-1, 0.5 (5 g l-1 and 1% (10 g l-1. A non-salinized control was also included. The increasing salinity of the irrigation water increased at all the depths ECe, ESP and pH, while exchangeable potassium decreased. Assessment of soil aggregates stability without samples pre-wetting (WSDI allowed us to better discriminate among the different samples examined. Aggregate stability for each of the soil layers decreased at increasing salinity of the irrigation water. Long term salinization affected the aggregate stability of the deepest layers. The soil hydraulic conductivity decreased also, while bulk density increased. The shape of the soil water retention curve was also affected by salinity. In the salinized plots less water is relaxed within -150 ÷ -12 cm ψ range. The available water was reduced at increasing salinity. Irrigation with saline water on clay-sandy soils increases ECe, pH and ESP, all of which negatively affect the soil aggregate stability. Damage to the soil structure remarkably reduces the

  2. Physical Properties and Crop Management for Corn in an Albaqualf

    Directory of Open Access Journals (Sweden)

    Robson Giacomeli

    Full Text Available ABSTRACT Rice monoculture in lowlands can cause problems for management practices in crop fields, for example, in weed control. For this reason, corn in rotation with irrigated rice in lowlands may be advantageous, despite problems with soil compaction and water excess. The objective of this study was to evaluate soil physical properties and corn performance in soil management systems in an Albaqualf soil (lowlands. Two experiments were conducted in the field, in the 2013/14 and 2014/15 crop seasons. The experimental design was randomized blocks with two factors. There were three levels for the first factor, consisting of soil management practices: soil chiseling 45 days before sowing to a depth of 0.3 m; conventional tillage with two diskings to a depth of 0.1 m and subsequent leveling of the soil; and no-till. The second factor was composed of two levels: sowing on raised seedbeds, and without raised seedbeds. The soil parameters of bulk density, total porosity, macroporosity, microporosity, volumetric moisture, and soil resistance to mechanical penetration (RP were evaluated. The corn parameters were plant height, shoot dry matter, leaf area, height of the first ear of corn, grains per ear, and grain yield. Soil chiseling resulted in lower RP and higher macroporosity in the 0.1-0.2 and 0.2-0.3 m layers. In raised seedbeds, the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers were lower in RP and bulk density. Moreover, higher soil macroporosity was observed in relation to the treatment without raised seedbeds. In general, the highest grain yields were found in the treatments with lower RP and higher macroporosity in the root system region. Increased porosity accelerated water drainage in the soil, reducing the time that soil airspace was filled with water, which is a limiting factor for root development. In Albaqualf soils, planting corn in chiseled soil provides higher corn yields compared to conventional tillage, and planting corn on raised

  3. Physical and Mechanical Properties of Pasir-pasir Wood (Xanthophyllum SP) From North Sumatera

    OpenAIRE

    Sunandar, Ahmad Dany

    2007-01-01

    As a lasser know species, it is important to explore physical and mechanical properties of pasi-pasir (Xanthophyllum sp) wood. This research was conducted to observe physical and mechanical properties of pasir-pasir (Xanthophyllum sp) originated from North Sumatera. Sample were collected from North Tapanuli District, North Sumatera. Tree samples were divided into three sections and sampled for physical and mechanical test were collected from every section. The results revealed that this wood ...

  4. Effect of barium doping on the physical properties of zinc oxide ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 1. Effect of barium doping on the physical properties of zinc oxide ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  5. Anisotropic and excellent magnetocaloric properties of La0.7Ca0.3MnO3 single crystal with anomalous magnetization

    International Nuclear Information System (INIS)

    Debnath, J.C.; Zeng, R.; Kim, J.H.; Chen, D.P.; Dou, S.X.

    2012-01-01

    Highlights: ► ΔS M shows a very large reversibility value at low field. ► The single crystal exhibits anisotropy in the MCE. ► La 0.7 Ca 0.3 MnO 3 is weakly itinerant ferromagnetic. ► No hysteresis loss is observed. - Abstract: Magnetic properties and the magnetocaloric effect (MCE) have been investigated in La 0.7 Ca 0.3 MnO 3 single crystal with applied field along both the ab-plane and the c-direction. Due to the magnetocrystalline anisotropy, the crystal exhibits anisotropy in the MCE. Upon application of a 5 T field, the magnetic entropy changes (ΔS M ), reaching values of 7.668 J/(kg K) and 6.412 J/(kg K) for both the ab-plane and the c-direction, respectively. A magnetic entropy change of 3.3 J/(kg K) was achieved for a magnetic field change of 1.5 T at the Curie temperature, T C = 245 K. Due to the absence of grains in the single crystal, the ΔS M distribution here is much more uniform than for gadolinium (Gd) and other polycrystalline manganites, which is desirable for an Ericsson-cycle magnetic refrigerator. For a field change of 5 T, the relative cooling power, RCP, reached 358.17 J/kg, while the maximum adiabatic temperature change of 5.33 K and a magnetoresistance (MR) ratio of 507.88% at T C were observed. We analysed the magnetization of La 0.7 Ca 0.3 MnO 3 single crystal at T C and estimated several parameters of spin fluctuation on the basis of a self-consistent renormalization theory of spin fluctuations, with reciprocal susceptibility above T C . We found that the magnetic property of La 0.7 Ca 0.3 MnO 3 is weakly itinerant ferromagnetic. A large reversible MCE and no hysteresis loss with a considerable value of refrigerant capacity indicate that La 0.7 Ca 0.3 MnO 3 single crystal is a potential candidate as a magnetic refrigerant.

  6. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    Department of Physics, Lanzhou City University, Lanzhou 730070, China; School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China; State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China; Laboratory for Shock ...

  7. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  8. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    Science.gov (United States)

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  9. Soil chemical and physical properties that differentiate urban land-use and cover types

    Science.gov (United States)

    R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal

    2007-01-01

    We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...

  10. Physical and strength properties of Azadirachta indica , (a. Juss ...

    African Journals Online (AJOL)

    A total of 160 test samples were used from three trees randomly selected from the study area. Preparations of test samples, actual testing and determination of different properties were carried out following standard methods. All strength property values were adjusted to 12% moisture content. Results showed A. indica to ...

  11. Influence of Different Waxes on the Physical Properties of Linear ...

    African Journals Online (AJOL)

    The influence of three different waxes on the thermal and mechanical properties of linear low-density polyethylene (LLDPE) was investigated. The samples were prepared through melt blending in a Brabender mixer. The thermal properties of the samples were determined using differential scanning calorimetry (DSC) and ...

  12. High-pressure physical properties of magnesium silicate post ...

    Indian Academy of Sciences (India)

    lable experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal ... experimental determination of elastic properties at extreme conditions is, however, not an easy task. ... Determination of thermal properties of MgSiO3 post- perovskite is of particular geophysical interest ...

  13. Effects of Ba doping on physical properties of La-Ca-Mn-O thin films

    CERN Document Server

    Hong, N H; Sakai, J; Iwasaki, H

    2003-01-01

    Transport and magnetic properties of La-Ba-Ca-Mn-O thin films fabricated by the pulsed laser deposition technique had been investigated systematically to see the effects of substitution of the small atom Ca by Ba which is much bigger. The induced insulator-to-metal (IM) transition was obtained not only in compositions near 0.5 and 0.18 which are boundaries between metallic and insulating phases but also in the heavily doped region. In the region of x > 0.5, the Ba doping causes an anomalous response of the system to the magnetic field and a positive magnetoresistance was observed. Besides, our results concerning the vicinity of 0.5 imply the existence of phase separation. As for x < 0.5, the doping enhances remarkably the paramagnetism-ferromagnetism transition and the IM transition temperatures.

  14. Vertices for correlated electron systems with anomalous propagators

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav

    2014-01-01

    Roč. 3, č. 1 (2014), "66-1"-"66-10" ISSN 2278-3393 R&D Projects: GA ČR GCP204/11/J042 Institutional support: RVO:68378271 Keywords : interacting quantum dot * superconducting leads * diagrammatic perturbation expansion * anomalous vertex functions Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.cognizure.com/sj.aspx?p=200638479

  15. Physics understanding the properties of matter and energy

    CERN Document Server

    2015-01-01

    Without physics, modern life would not exist. Instead of electric light, we would read by the light of candles. We couldn''t build skyscrapers. We could not possibly bridge rivers, much less build a jet or interplanetary craft. Computers and smartphones would be unimaginable. Physics is concerned with the most fundamental aspects of matter and energy and how they interact to make the physical universe work. In accessible language and with explanatory graphics and visual aids, this book introduces readers to the science that is at the very center of all other sciences and essential to our very

  16. An ontology on property for physical, chemical, and biological systems.

    Science.gov (United States)

    Dybkaer, René

    2004-01-01

    Current metrological literature, including the International vocabulary of basic and general terms in metrology (VIM 1993), presents a special language slowly evolved without consistent use of the procedures of terminological work; furthermore, nominal properties are excluded by definition. Both deficiencies create problems in fields, such as laboratory medicine, which have to report results of all types of property, preferably in a unified systematic format. The present text aims at forming a domain ontology around "property", with intensional definitions and systematic terms, mainly using the terminological tools--with some additions--provided by the International Standards ISO 704, 1087-1, and 10241. "System" and "component" are defined, "quantity" is discussed, and the generic concept "property" is given as 'inherent state- or process-descriptive feature of a system including any pertinent components'. Previously, the term 'kind-of-quantity' and quasi-synonyms have been used as primitives; the proposed definition of "kind-of-property" is 'common defining aspect of mutually comparable properties'. "Examination procedure", "examination method", "examination principle", and "examination" are defined, avoiding the term 'test'. The need to distinguish between instances of "characteristic", "property", "type of characteristic", "kind-of-property", and "property value" is emphasized; the latter is defined together with "property value scale". These fundamental concepts are presented in a diagram, and the effect of adding essential characteristics to give expanded definitions is exemplified. Substitution usually leads to unwieldy definitions, but reveals circularity as does exhaustive consecutive listing of defining concepts. The top concept may be generically divided according to many terminological dimensions, especially regarding which operators are allowed among the four sets =, not equal to; ; +, -; and x, :. The coordinate concepts defined are termed by the

  17. Geophysical testing of rock and its relationships to physical properties

    Science.gov (United States)

    2011-02-01

    Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...

  18. Structural Dependence of Physical Properties in Sodium Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    Boroaluminosilicate glasses have found applications in many fields. The extent and nature of the mixing of network formers like SiO2, B2O3, and Al2O3 play an important role in controlling the macroscopic properties. To understand the structure-property correlations in these glasses, we study...... a series of sodium boroaluminosilicate glasses with various [Al2O3]/[SiO2] ratios to access different regimes of sodium behavior. We determine dynamic properties, elastic moduli, and hardness of these glasses. The results reveal an existence of local minimum for density, fragility index, Young’s and shear...

  19. Anomalous Stars and Where to Find Them

    Science.gov (United States)

    Muna, Demitri; Huff, Eric

    2018-01-01

    The sky is now extensively mapped by imaging surveys in wavelengths that span the electromagnetic spectrum, ranging from Fermi and GALEX down to WISE, Planck, and radio surveys like FIRST and VLSS. Individual public catalogs now contain on order hundreds of millions of distinct sources. Recent progress in image analysis techniques makes possible great increases in the efficiency, sensitivity, and reliability of measurements that combine imaging data from multiple probes with heterogeneous properties. This is especially true for the identification of anomalous sources: traditional methods for finding ‘outliers’ typically rely on making hard cuts on noisy catalog properties, greatly restricting the potential discovery space. Cross-catalog matches confine investigation to objects that occur at signal-to-noise ratios sufficient to be independently detectable in a subset of all the available multi-wavelength coverage. The process of merging the latest analyses with existing data is severely hampered, however, by the fractured way in which these data are processed and stored, limitations of data access, the data volume involved, and the computation power required. This has left archive data far from fully exploited. Stellar anomalies present the best place to start: joint distributions of stellar colors and magnitudes have finer structures than extended sources, and modelling of point sources is computationally cheaper than for galaxies. We present a framework to solve the problem of applying new algorithms to old data while overcoming the limitations described above, in the search for the undiscovered anomalous.

  20. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  1. [Conduct theoretical and experimental research programs in high energy physics]: Technical progress, Appendix A-2, FTP/A, Item 20,f

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported in these areas: neutrino physics; nucleon decay and the intrinsic properties of neutrinos; the D-zero experiment; QCD jet physics and ultrarelativistic nuclear physics; the Colliding Detector at Fermilab; rare kaon decay; the Anomalous Single Photon detector at SLAC; particle theory; neutrino astrophysics and cosmology; and operations and support services

  2. Anomalous thermal response of silicene to uniaxial stretching

    Science.gov (United States)

    Hu, Ming; Zhang, Xiaoliang; Poulikakos, Dimos

    2013-05-01

    Silicene—the silicon counterpart of graphene—has a two-dimensional structure that leads to a host of interesting physical and chemical properties of significant utility. We report here an investigation with nonequilibrium molecular dynamics simulations of thermal transport in a single-layer silicene sheet under uniaxial stretching. We discovered that, contrary to its counterpart of graphene and despite the similarity of their honeycomb lattice structure, silicene exhibits an anomalous thermal response to tensile strain: The thermal conductivity of silicene and silicene nanoribbons first increases significantly with applied tensile strain rather than decreasing and then fluctuates at an elevated plateau. By quantifying the relative contribution from different phonon polarizations, we show first that the phonon transport in silicene is dominated by the out-of-plane flexural modes, similar to graphene. We attribute subsequently the unexpected and markedly different behavior of silicene to the interplay between two competing mechanisms governing heat conduction in a stretched silicene sheet, namely, (1) uniaxial stretching modulation in the longitudinal direction significantly depressing the phonon group velocities of longitudinal and transverse modes (phonon softening) and hindering heat conduction, and (2) phonon stiffening in the flexural modes counteracting the phonon softening effect and facilitating thermal transport. The abnormal behavior of the silicene sheet is further correlated to the unique deformation characteristics of its hexagonal lattice. Our study offers perspectives of modulating the thermal properties of low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.

  3. Physical, sensory and chemical properties of bread prepared from ...

    African Journals Online (AJOL)

    , sensory and chemical properties of bread prepared from wheat and vitamin A enriched cassava flour blends. Materials and Methods: Cissus gum was extracted from cissus stem and prepared into powder while vitamin A enriched cassava ...

  4. Permeation Behavior and Physical Properties of Natural Rubber Nanocomposites

    National Research Council Canada - National Science Library

    Zukas, Walter; Sennett, Michael; Welsh, Elizabeth; Rodriguez, Axel; Ziegler, David; Touchet, Paul

    2004-01-01

    .... A study was carried out to examine the effects of varying nanoparticle morphology and composition on the mechanical and barrier properties of polymer nanocomposites made with natural rubber (NR...

  5. Synthesis, microstructure, and physical properties of metallic barcode nanowires

    Science.gov (United States)

    Park, Bum Chul; Kim, Young Keun

    2017-05-01

    With rapid progress in nanotechnology, nanostructured materials have come closer to our life. Single-component nanowires are actively investigated because of their novel properties, attributed to their nanoscale dimensions and adjustable aspect ratio, but their technical limitations cannot be resolved easily. Heterostructured nanomaterials gained attention as alternatives because they can improve the existing single-component structure or add new functions to it. Among them, barcode nanowires (BNWs), comprising at least two different functional segments, can perform multiple functions for use in biomedical sensors, information encoding and security, and catalysts. BNW applications require reliable response to the external field. Hence, researchers have been attempting to improve the reliability of synthesis and regulate the properties precisely. This article highlights the recent progress and prospects for the synthesis, properties, and applications of metallic BNWs with focus on the dependence of the magnetic, optical, and mechanical properties on material, composition, shape, and microstructure.

  6. SYNTHSIS AND PHYSICAL PROPERTIES OF SILVER NANOCOMPOSITES POLYMER ELECTROLYTE

    OpenAIRE

    加藤, 仁和

    2016-01-01

    The silver nano composite polymer electrolytes are prepared by the method of two kinds of the ultrafine particle direct dispersion method and in situ synthesis. The structure of the silver nano composite polymer electrolyte is characterized by Fourier transform infrared spectrometer spectrophotometer (FT-IR), Raman spectroscopy (Raman), and Thermally Stimulated Current (TSC) .The optical property is evaluated by the optical absorption. The electrical property is also evaluated by the ac i...

  7. Anomalous thermodynamic behaviour of novel compounds: inelastic neutron scattering and lattice dynamics studies

    International Nuclear Information System (INIS)

    Mittal, R.

    2014-01-01

    The understanding of the thermodynamic properties of solids has important applications in diverse areas like condensed matter physics, materials science, mineralogy, geophysics, etc. We have been extensively investigating anomalous thermodynamic properties of compounds using the techniques of lattice dynamics, inelastic neutron scattering, inelastic x-ray scattering and synchrotron x-ray diffraction. Here we present some of the results from our recent studies. Studies of materials exhibiting anomalous thermal expansion are of interest due to their fundamental scientific importance and potential applications in ceramic, optical and electronic industry etc. We have studied the thermodynamic properties of negative thermal expansion (NTE) compounds ZrW O8 , HfW 2 O 8 , ZrMO 2 O 8 , Zn(CN) 2 , Cu 2 O, Ag 2 O; Ag 3 Co(CN) 6 and Ag 3 Fe(CN) 6 . Our calculations predicted that large softening of the phonon spectrum involving librational and translational modes below 10 MeV would be responsible for anomalous thermal expansion behaviour. High pressure inelastic neutron scattering experiments carried by us on cubic ZrW 2 O 8 , ZrMo 2 O 8 and Zn(CN) 2 confirmed the phonon softening. The thermal expansion as derived from the phonon measurements is in good agreement with that obtained from diffraction data. This indicates that unusual phonon softening of low energy modes is able to account for the thermal expansion behaviour in these compounds. Superionic conduction in fluorite-structured (anti-fluorite, Li 2 O) oxides and LiMPO 4 (M=Fe, Mn) have applications in energy storage, conversion and nuclear industry. Fast ion conductors exhibit high ionic conductivity, which allow macroscopic movement of ions through their structure. The possible role of phonon in initiation of diffusion has been studied in Li 2 O and LiMPO 4 (M=Fe, Mn). The simulations play a pivotal role in understanding the conduction processes at high temperatures in these compounds. (author)

  8. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  9. SIFAT FISIK, KIMIA, DAN FUNGSIONAL DAMAR [Brief Review on: Physical, Chemical and Functional Properties of Dammar

    Directory of Open Access Journals (Sweden)

    Noryawati Mulyono1

    2004-12-01

    Full Text Available Dammar is one of Indonesian forestry products which is abundant. It has unique physical, chemical and functional properties. The important physical properties of dammar include its solubility in some organic solvents, softening temperature, viscosity and its absorbance. The important chemical properties reviewed here include its properties as resin, composition of terpenoid compounds present in dammar, and essential oil yielded from distillation of fresh dammar. Physical and chemical properties of dammar need to be studied further in order to optimize its functional properties. So far, dammar is widely used as weighting agent and source of essential oil. However, now, some species of dammar are being explored and developed for sal flour, fat source, triacylglycerol substituent for cocoa butter and wood preservatives.

  10. Design, crystal growth, and physical properties of low-temperature thermoelectric materials

    Science.gov (United States)

    Fuccillo, Michael K.

    Thermoelectric materials serve as the foundation for two important modern technologies, namely 1) solid-state cooling, which enables small-area refrigeration without vibrations or moving parts, and 2) thermoelectric power generation, which has important implications for waste heat recovery and improved sources of alternative energy. Although the overall field of thermoelectrics research has been active for decades, and several consumer and industrial products have already been commercialized, the design and synthesis of new thermoelectrics that outperform long-standing state of the art materials has proven extremely challenging. This is particularly true for low-temperature refrigeration applications, which is the focus of this work; however, scientific advances in this area generally support power generation as well. In order to achieve more efficient materials for virtually all thermoelectric applications, improved materials design principles must be developed and synthetic procedures must be better understood. We aim to contribute to these goals by studying two classes of materials, namely 1) the tetradymites Bi2TeSe 2 and Bi2Te2Se, which are close relatives of state of the art thermoelectric cooling materials, and 2) Kondo insulating (-like) FeSb2 and FeSi, which possess anomalously enhanced low-temperature thermoelectric properties that arise from exotic electronic and magnetic properties. The organization of this dissertation is as follows: Chapter 1 is a brief perspective on solid-state chemistry. Chapter 2 presents experimental methods for synthesizing and characterizing thermoelectric materials. In Chapter 3, two original research projects are discussed: first, work on the tetradymite Bi2TeSe2 doped with Sb to achieve an n- to p-type transition, and second, the tetradymite Bi2Te2Se with chemical defects through two different methods. Chapter 4 gives the magnetic and transport properties of FeSb 2--RuSb2 alloys, a family of compounds exemplifying what we

  11. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  12. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  13. Anomalous diffusion without scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Hanyga, A [Department of Earth Sciences, University of Bergen, Allegaten 41, N5007 Bergen (Norway)

    2007-05-25

    Asymptotic behaviour of a new class of anomalous diffusion equations for subdiffusive transport defined in terms of generalized distributed fractional-order time derivatives is considered. The effect of slowly varying factors on the scaling function of asymptotic solutions is demonstrated. The origin of slowly varying scaling factors in the CTRW models is discussed.

  14. Correlations between physical properties of jawbone and dental implant initial stability.

    Science.gov (United States)

    Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q; Hodges, James S; Ko, Ching-Chang

    2009-05-01

    There is confusion in the literature about how physical properties of bone vary between maxillary and mandibular regions and which physical properties affect initial implant stability. The purpose of this study was to determine correlations between physical properties of bone and initial implant stability, and to determine how physical properties and initial stability vary among regions of jawbone. Four pairs of edentulous maxillae and mandibles were retrieved from fresh human cadavers. Six implants per pair were placed in different anatomical regions (maxillary anterior, right and left maxillary posterior, mandibular anterior, right and left mandibular posterior). Immediately after surgery, initial implant stability was measured with a resonance frequency device and a tapping device. Implant surgeries and initial stability measurements were performed within 72 hours of death. Elastic modulus (EM) and hardness were measured using nano-indentation. Composite apparent density (cAD) was measured using Archimedes' principle. Bone-implant contact percentage and cortical bone thickness were recorded histomorphometrically. Mixed linear models and univariate-correlation analyses were used (alpha=.05). Generally, mandibular bone had higher initial implant stability and physical properties than maxillary bone. Initial implant stability was higher in the anterior region than in the posterior. EM was higher in the posterior region than in the anterior; the reverse was true for cAD. Of the properties evaluated, cAD had the highest correlation with initial implant stability (r=0.82). Both physical properties of bone and initial implant stability differed between regions of jawbone.

  15. STP: A mathematically and physically consistent library of steam properties

    International Nuclear Information System (INIS)

    Aguilar, F.; Hutter, A.C.; Tuttle, P.G.

    1982-01-01

    A new FORTRAN library of subroutines has been developed from the fundamental equation of Keenan et al. to evaluate a large set of water properties including derivatives such as sound speed and isothermal compressibility. The STP library uses the true saturation envelope of the Keenan et al. fundamental equation. The evaluation of the true envelope by a continuation method is explained. This envelope, along with other design features, imparts an exceptionally high degree of thermodynamic and mathematical consistency to the STP library, even at the critical point. Accuracy and smoothness, library self-consistency, and designed user convenience make the STP library a reliable and versatile water property package

  16. Proximate, Physical And Sensory Properties Of Soy-Sweet Potato ...

    African Journals Online (AJOL)

    ... with those of cookies made from whole wheat. Results showed that there was no significant (p>0.05) difference in cookie physical characteristics, as compared with the control sample, except in spread factor and fragility. Cookie spread was found to be influenced by the presence of sugar, oil and water absorption of flour.

  17. Physical properties of seeds of African walnut ( Plukenetia ...

    African Journals Online (AJOL)

    A study of the physical and proximate traits of seeds of African walnut (Plukenetia conophorum) from four locations (states) in south-eastern Nigeria was carried out in 2011. The locations considered were Enugu, Anambra, Abia and Rivers. Results of statistical analysis showed remarkable variation (p < 0.05) in all the seed ...

  18. Evaluation of physical properties of different digital intraoral sensors.

    Science.gov (United States)

    Al-Rawi, Wisam; Teich, Sorin

    2013-09-01

    Digital technologies provide clinically acceptable results comparable to traditional films while having other advantages such as the ability to store and manipulate images, immediate evaluation of the image diagnostic quality, possible reduction in patient radiation exposure, and so on. The purpose of this paper is to present the results of the evaluation of the physical design of eight CMOS digital intraoral sensors. Sensors tested included: XDR (Cyber Medical Imaging, Los Angeles, CA, USA), RVG 6100 (Carestream Dental LLC, Atlanta, GA, USA), Platinum (DEXIS LLC., Hatfield, PA, USA), CDR Elite (Schick Technologies, Long Island City, NY, USA), ProSensor (Planmeca, Helsinki, Finland), EVA (ImageWorks, Elmsford, NY, USA), XIOS Plus (Sirona, Bensheim, Germany), and GXS-700 (Gendex Dental Systems, Hatfield, PA, USA). The sensors were evaluated for cable configuration, connectivity interface, presence of back-scattering radiation shield, plate thickness, active sensor area, and comparing the active imaging area to the outside casing and to conventional radiographic films. There were variations among the physical design of different sensors. For most parameters tested, a lack of standardization exists in the industry. The results of this study revealed that these details are not always available through the material provided by the manufacturers and are often not advertised. For all sensor sizes, active imaging area was smaller compared with conventional films. There was no sensor in the group that had the best physical design. Data presented in this paper establishes a benchmark for comparing the physical design of digital intraoral sensors.

  19. Synthesis, characterization, and physical properties of 1D nanostructures

    Science.gov (United States)

    Marley, Peter Mchael

    framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.

  20. Profile distribution of some physical and chemical properties of ...

    African Journals Online (AJOL)

    Silt showed high variability at all topographic positions while clay content was low at the crest and high at the middle and lower slopes. Lateral variability of the soil properties indicated high variability in clay fraction along the toposequence. Silt fraction, organic carbon and organic matter showed medium variability whereas ...

  1. Effect of ozone gas processing on physical and chemical properties ...

    African Journals Online (AJOL)

    In this study, the physiochemical properties of proteins. (i.e., gluten, glutenin, and gliadin) isolated from non-ozone-treated flour were examined by studying chemical characteristics using SDS-. PAGE, free SH groups, differential scanning calorimetry (DSC) parameters, secondary structure, and rheological measurements.

  2. Physical-Chemical Properties, Storage Stability and Sensory ...

    African Journals Online (AJOL)

    Physico-chemical properties, storage stability and sensory evaluation of pumpkin seed oil was carried out and compared with other vegetable oils commonly used in Tanzania in order to evaluate its potential as an edible oil with the aim of promoting its utilization in rural areas. Pumpkin seeds were collected from different ...

  3. Effect of solution physical chemistry on the rheological properties of ...

    African Journals Online (AJOL)

    Knowledge on rheological properties of sludge is important for the design of pumping and transport facilities and as a tool in process control during treatment. Concentrated activated sludge is known to behave as a non-Newtonian material. The contribution to non- Newtonian behaviour is believed to originate from the ...

  4. Influence of substrate temperature on certain physical properties ...

    Indian Academy of Sciences (India)

    MS received 16 July 2015; revised 19 November 2015; accepted 18 April 2016; published online 12 November 2016. Abstract. Nanocrystalline Ag-doped ... adhesive property. Moreover, silver-doped materials are chemically durable and release silver ions for a long period of time [11]. Silver-doped indium and ceram-.

  5. Evaluation of physical properties of locally produced Gonometa ...

    African Journals Online (AJOL)

    Silk is a luxurious fibre with a unique combination of properties. However, this and other factors such as the costly production process make silk a very expensive fabric and therefore unaffordable for many consumers. Mixed fabrics might provide a solution to this problem of relative cost if the Gonometa postica silk could be ...

  6. Some Physical Properties of Vernonia amygdalina and Garcinia ...

    African Journals Online (AJOL)

    The effect of polymer concentrations on some of the physicochemical properties of Vernonia amygdalina (Linn) and Garcinia kola (Heckel) extracts loaded microspheres was evaluated. Microspheres of the aqueous extracts was prepared by emulsion solvent evaporation using polyethylene glycol (PEG) mixtures of ...

  7. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach.

    NARCIS (Netherlands)

    Takahashi, Y.; Imazato, S.; Kaneshiro, A.V.; Ebisu, S.; Frencken, J.E.F.M.; Tay, F.R.

    2006-01-01

    OBJECTIVES: Since atraumatic restorative treatment (ART) involves removal of carious lesions with manual instruments, improvement of filling materials to guarantee greater success should be considered. This study aimed to evaluate antibacterial, physical, and bonding properties of glass-ionomer

  8. Material designs and new physical properties in MX- and MMX-chain compounds

    CERN Document Server

    Yamashita, Masahiro

    2014-01-01

    This book details the structures, physical properties, theoretical treatments, applications, and perspectives of MX and MMX chain compounds for chemists and physicists. It also examines various photoinduced phase transitions and their dynamics.

  9. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Physical properties of a sediment core from the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    A box core of 7.5 m was collected from the Central Indian Basin for the purpose of geotechnical studies and depthwise variation of physical properties and clay mineralogy. Water content, Atterberg limits, specific gravity are measured at regular...

  11. Physical and chemical properties of San Francisco Bay waters, 1969-1976 (NODC Accession 8400194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One magnetic tape containing the physical and chemical properties of San Francisco Bay waters was forwarded to NODC by Mr. Richard Smith of the U.S Geological Survey...

  12. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  13. Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Jingchao Xie

    2013-01-01

    Full Text Available There is no standard testing method of the thermal physical properties of phase change materials (PCM. This paper has shown advancements in this field. Developments and achievements in thermal physical properties testing methods of PCM were commented, including differential scanning calorimetry, T-history measurement, the water bath method, and differential thermal analysis. Testing principles, advantages and disadvantages, and important points for attention of each method were discussed. A foundation for standardized testing methods for PCM was made.

  14. PHYSICAL PROPERTIES OF CHESTNUT (Castanea sativa Mill. WOOD OBTAINED FROM MAÇKA-ÇATAK REGION

    Directory of Open Access Journals (Sweden)

    Nurgül Ay

    2002-04-01

    Full Text Available In this study, physical properties of chestnut were investigated. 8 trees used for experiments were obtained fromTrabzon-Maçka- Çatak region. Samples were prepared according to the related standarts. Oven-dried and air-dried density, volume weight, the amount of shrinkage, the ratio of cell walls, air cavities, the moisture content of wood at green condition, and the fiber saturation point as physical properties were determined.

  15. Bacterial promoter prediction: Selection of dynamic and static physical properties of DNA for reliable sequence classification.

    Science.gov (United States)

    Ryasik, Artem; Orlov, Mikhail; Zykova, Evgenia; Ermak, Timofei; Sorokin, Anatoly

    2018-01-30

    Predicting promoter activity of DNA fragment is an important task for computational biology. Approaches using physical properties of DNA to predict bacterial promoters have recently gained a lot of attention. To select an adequate set of physical properties for training a classifier, various characteristics of DNA molecule should be taken into consideration. Here, we present a systematic approach that allows us to select less correlated properties for classification by means of both correlation and cophenetic coefficients as well as concordance matrices. To prove this concept, we have developed the first classifier that uses not only sequence and static physical properties of DNA fragment, but also dynamic properties of DNA open states. Therefore, the best performing models with accuracy values up to 90% for all types of sequences were obtained. Furthermore, we have demonstrated that the classifier can serve as a reliable tool enabling promoter DNA fragments to be distinguished from promoter islands despite the similarity of their nucleotide sequences.

  16. Gold processing residue from Jacobina Basin: chemical and physical properties

    OpenAIRE

    Lima, Luiz Rogério Pinho de Andrade; Bernardez, Letícia Alonso; Barbosa, Luís Alberto Dantas

    2007-01-01

    p. 848-852 Gold processing residues or tailings are found in several areas in the Itapicuru River region (Bahia, Brazil), and previous studies indicated significant heavy metals content in the river sediments. The present work focused on an artisanal gold processing residue found in a site from this region. Samples were taken from the processing residue heaps and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron...

  17. Physical properties of Kentucky's AML landslides: Case studies analyzed

    International Nuclear Information System (INIS)

    Iannacchione, A.T.; Vallejo, L.E.

    1994-01-01

    Once an abandoned mined land (AML) landslide occurs and is identified as an emergency, engineers must rapidly implement a slope stabilization design. Correct slope remediation solutions are generally derived from well-executed geotechnical examinations. This paper summarizes a large body of geotechnical data compiled by the US office of Surface Mining Reclamation and Enforcement (OSM) from AML landslides in eastern Kentucky. Special attention is placed on the examination of subsurface failures, phreatic water levels, soil profiles, and soil composition information from numerous borehole exploration programs. Strength properties calculated from laboratory procedures and stability analysis techniques were also reviewed. Laboratory-determined soil shear strength values were found to be higher than those inferred from stability analysis. This suggests that postfailure determinations of the phreatic surface may be largely inappropriate when used in stability analysis or that laboratory-measured shear strengths are ineffective in replicating in situ colluvium/spoil slope properties

  18. Physical properties of kraft black liquor. Final report. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  19. Determination of physical properties of fibrous thermal insulation

    Directory of Open Access Journals (Sweden)

    Jeandel G.

    2012-10-01

    Full Text Available The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  20. Physical properties of Cu nanoparticles: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kart, H.H., E-mail: hkart@pau.edu.tr [Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli (Turkey); Yildirim, H.; Ozdemir Kart, S. [Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli (Turkey); Çağin, T. [Department of Materials Science and Engineering, Texas A and M University, College Station, TX 77845-3003 (United States); Department of Chemical Engineering, Texas A and M University, College Station, TX 77845-3122 (United States)

    2014-09-15

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index.

  1. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index

  2. An index of anomalous convective instability to detect tornadic and hail storms

    Science.gov (United States)

    Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong

    2017-12-01

    In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential

  3. Development of an ASPEN PLUS physical property database for biofuels components

    Energy Technology Data Exchange (ETDEWEB)

    Wooley, R.J.; Putsche, V.

    1996-04-01

    Physical property data for many of the key components used in the simulation for the ethanol from lignocellulose process are not available in the standard ASPEN PLUS property databases. Indeed, many of the properties necessary to successfully simulate this process are not available anywhere. In addition, inputting the available properties into each simulation is awkward and tedious, and mistakes can be easily introduced when a long list of physical property equation parameters is entered. Therefore, one must evaluate the literature, estimate properties where necessary, and determine a set of consistent physical properties for all components of interest. The components must then be entered into an in-house NREL ASPEN PLUS database so they can be called on without being retyped into each specific simulation. The first phase of this work is complete. A complete set of properties for the currently identifiable important compounds in the ethanol process is attached. With this as the starting base the authors can continue to search for and evaluate new properties or have properties measured in the laboratory and update the central database.

  4. Integrating soil physical and biological properties in contrasting tillage systems in organic and conventional farming

    NARCIS (Netherlands)

    Crittenden, S.J.; Goede, de R.G.M.

    2016-01-01

    Though soil physical and soil biological properties are intrinsically linked in the soil environment they are often studied separately. This work adds value to analyses of soil biophysical quality of tillage systems under organic and conventional farming systems by correlating physical and

  5. influence of tillage practices on physical properties of a sandy loam

    African Journals Online (AJOL)

    DR. AMINU

    investigated after 9-15 years of management. During the growing ... Key words: Tillage, Tillage systems, Soil Physical properties, Moisture storage, Physical quality ... channel. GPS etrex, courtesy GARMIN Corporation 1999-. 2002) was used in determining coordinates of the sites. Treatments and Experimental Design.

  6. Effect of hydrogen on Fe and Pd alloying and physical properties

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Zemanová, Adéla; Čízek, J.; Hruška, P.; Životský, O.

    2017-01-01

    Roč. 42, č. 10 (2017), s. 6885-6901 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : positron-lifetime spectroscopy * neutron-diffraction * magnetic-properties * palladium-hydrogen * induced defects * iron Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.582, year: 2016

  7. Impact of petroleum products on soil composition and physical-chemical properties

    Science.gov (United States)

    Brakorenko, N. N.; Korotchenko, T. V.

    2016-03-01

    The article describes the grain-size distribution, physical and mechanical properties, swelling and specific electrical resistivity of soils before and after the contact with petroleum products. The changes in mechanical properties of soils contaminated with petroleum products have been stated. It leads to the increase in compressibility values, decline in internal friction angle and cohesion.

  8. Physical properties, structure and fracturing of the Chelyabinsk LL5 meteorite body

    Czech Academy of Sciences Publication Activity Database

    Grokhovsky, V. I.; Kohout, Tomáš; Gritsevich, M.; Koneva, E. V.

    2014-01-01

    Roč. 49, Special issue 1 (2014), pdf 5364-pdf 5364 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /77./. 08.09.2014-13.09.2014, Casablanca] Institutional support: RVO:67985831 Keywords : Chelyabinsk * LL chondrite * physical properties * structure * mechanical properties * stress Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.hou.usra.edu/meetings/metsoc2014/pdf/5364.pdf

  9. Bibliography of physical and chemical properties of plutonium and of some of its compounds

    International Nuclear Information System (INIS)

    Lefevre, J.

    1957-02-01

    This document proposes two lists of bibliographical references which respectively concern the physical properties of metallic plutonium and intermetallic plutonium compounds (addressed topics in these documents are state diagrams, crystal structure, and so on), and the chemical properties of plutonium and of some of its compounds (addressed topics are heavy elements, transuranium elements, and so on)

  10. Mutual associations among microstructural, physical and mechanical properties of human cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Danielsen, CC

    2002-01-01

    were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young's modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod...

  11. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    Science.gov (United States)

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  12. Physical properties of the Creutzfeldt-Jakob disease agent

    Energy Technology Data Exchange (ETDEWEB)

    Sklaviadis, T.K.; Manuelidis, L.; Manuelidis, E.E.

    1989-03-01

    In this report, the authors present the first physical characterization of the Creutzfeld-Jakob disease agent. Preparations with high yields of infectivity (assayed infectious units) were obtained by a novel, gentle procedure in which initially sedimenting Gp34 (prion protein) was disaggregated by a variety of criteria with no subsequent loss of infectivity. Studies with this preparation indicate that most of the Creutzfeldt-Jakob disease agent has both a viruslike size and density. In velocity sedimentation and isopycnic sucrose gradients, infectivity comigrated with nucleic acid-protein complexes of appreciable size.

  13. Physical properties of the Creutzfeldt-Jakob disease agent

    International Nuclear Information System (INIS)

    Sklaviadis, T.K.; Manuelidis, L.; Manuelidis, E.E.

    1989-01-01

    In this report, the authors present the first physical characterization of the Creutzfeld-Jakob disease agent. Preparations with high yields of infectivity (assayed infectious units) were obtained by a novel, gentle procedure in which initially sedimenting Gp34 (prion protein) was disaggregated by a variety of criteria with no subsequent loss of infectivity. Studies with this preparation indicate that most of the Creutzfeldt-Jakob disease agent has both a viruslike size and density. In velocity sedimentation and isopycnic sucrose gradients, infectivity comigrated with nucleic acid-protein complexes of appreciable size

  14. NATO Advanced Research Workshop on Physical Properties of Nano systems

    CERN Document Server

    Bonca, Janez

    2011-01-01

    Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena are found when systems are reduced to sizes comparable to the fundamental microscopic length scales of the material investigated. There has been great interest in this research due, in particular, to its role in the development of spintronics, molecular electronics and quantum information processing. The contributions to this volume describe new advances in many of these fundamental and fascinating areas of nanophysics, including carbon nanotubes, graphene, magnetic nanostructures, transport through coupled quantum dots, spintronics, molecular electronics, and quantum information processing.

  15. Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation Recording)

    Science.gov (United States)

    Pince, Ercag; Sabareesh, Sabareesh K. P.; Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni S.

    2015-08-01

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomenon. Examples can be given from organelles as molecular machines of cells performing physical tasks in a populated cytoplasm to human mobility in patchy environment at larger scales. Our recent results showed that it is possible to use the disordered landscape generated by speckle light fields to perform advanced manipulation tasks at the microscale. Here, we use speckle light fields to study the anomalous diffusion of micron size silica particles (5 μm) in the presence of active microswimmers. The microswimmers we used in the experiments are motile bacteria, Escherichia coli (E.coli). They constitute an active background constantly agitating passive silica particles within complex optical potentials. The speckle fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power (maximum power = 12 μW/μm2) is needed to obtain an effective random landscape pattern for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the anomalous diffusion of silica particles undergoing collisions with swimming bacteria. We observed an enhanced diffusion of particles interacting with the active bath of E.coli inside speckle light fields: this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interests.

  16. Physical properties of salt, anhydrite and gypsum : preliminary report

    Science.gov (United States)

    Robertson, Eugene C.; Robie, Richard A.; Books, Kenneth G.

    1958-01-01

    This summary is the result of a search of the available literature. Emphasis is placed on the mechanical and calorimetric properties of salt; the measurements of elastic, thermal, magnetic, and mass properties of salt are merely tabulated. Under hydrostatic pressure 100 percent at a nearly constant stress difference of about 300 kg/cm2. Similarily, under temperatures > 400?C at one atmosphere, salt deforms plastically to strains > 100 percent under stress differences of about 100 kg/cm2. Entha1pies were calculated for various temperatures to 2,000? C from the low temperature and high temperature heat capacities and the heats of solution of the following minerals: salt (or halite), NaCl; anhydrite, CaS04; quartz, Si02; and calcite, CaC03. Three combinations of these minerals were assumed to represent three possible natural salt beds, and the heats required to raise the temperature of each to 1,500?C and to 2,000?C were calculated. For a half and half mixture of salt and anhydrite, 1,300 cal/gm were required to raise the temperature to 2,000?C. For an evaporite containing 60 percent salt and about equal amounts of anhydrite, calcite, and quartz, 1,100 cal/gm are required to raise the temperature to 2,OOO?C. Most of the measurements of the elastic moduli were made on single crystals of salt, anhydrite, and gypsum. For the most part, the measurements of density, magnetic susceptibility, and other properties were made on natural salt samples.

  17. Influence of vermicompost on soil chemical and physical properties ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... 3.8400 a. 1.9833 a. 4.9367 ab. 1.6133 b. 38.66 b. 15. 4.2533 a. 1.1400 a. 5.7067 a. 1.5633 c. 40.33 a. In each column means with similar letters do not significantly differ (P ≥ 0.05). Table 4. Effect of vermicompost on soil chemical properties. Treatment with vermicompost (t ha-1). pH. EC (mScm-1). Organic.

  18. Complex Study of the Physical Properties of Reticulated Vitreous Carbon

    Science.gov (United States)

    Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.

    2015-01-01

    We give an example of using a two-level identifi cation system incorporating an augmented mathematical model covering the structure, the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. The model, when combined with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little studied characteristics of the above materials. We present some of the results of investigations of reticulated vitreous carbon confirming the possibility of using it in a number of engineering applications.

  19. Influence of texture on the physical properties of materials

    International Nuclear Information System (INIS)

    Penelle, R.; Baudin, T.

    1996-01-01

    The principles of crystallographic texture characterization by the means of X-ray or neutron diffraction statistical techniques are reviewed, and examples of their application to the study of the effects of texture on the properties of materials are presented: texture of magnetic steels, magneto-crystalline anisotropy, elasticity anisotropy and Young's modulus, plastic anisotropy (textural hardening), residual stresses. Neutron diffraction allows for the continuous monitoring of the recrystallization texture generation kinetics during in-situ annealing or for the follow-up of phase transformations. Backscattered electron diffraction allows for the quantification of the spatial distribution of grain and grain joint orientations and thus microstructure reconstruction

  20. Physical properties of encapsulate spent fuel in canisters

    International Nuclear Information System (INIS)

    1999-01-01

    Spent fuel and high-level wastes will be permanently stored in a deep geological repository (AGP). Prior to this, they will be encapsulated in canisters. The present report is dedicated to the study of such canisters under the different physical demands that they may undergo, be those in operating or accident conditions. The physical demands of interest include mechanical demands, both static and dynamic, and thermal demands. Consideration is given to the complete file of the canister, from the time when it is empty and without lid to the final conditions expected in the repository. Thermal analyses of canisters containing spent fuel are often carried out in two dimensions, some times with hypotheses of axial symmetry and some times using a plane transverse section through the centre of the canister. The results obtained in both types of analyses are compared here to those of complete three-dimensional analyses. The latter generate more reliable information about the temperatures that may be experienced by the canister and its contents; they also allow calibrating the errors embodied in the two-dimensional calculations. (Author)

  1. The interaction of physical properties of seawater via statistical approach

    Science.gov (United States)

    Hamzah, Firdaus Mohamad; Jaafar, Othman; Sabri, Samsul Rijal Mohd; Ismail, Mohd Tahir; Jaafar, Khamisah; Arbin, Norazman

    2015-09-01

    It is of importance to determine the relationships between physical parameters in marine ecology. Model and expert opinion are needed for exploration of the form of relationship between two parameters due to the complexity of the ecosystems. These need justification with observed data over a particular periods. Novel statistical techniques such as nonparametric regression is presented to investigate the ecological relationships. These are achieved by demonstrating the features of pH, salinity and conductivity at in Straits of Johor. The monthly data measurements from 2004 until 2013 at a chosen sampling location are examined. Testing for no-effect followed by linearity testing for the relationships between salinity and pH; conductivity and pH, and conductivity and salinity are carried out, with the ecological objectives of investigating the evidence of changes in each of the above physical parameters. The findings reveal the appropriateness of smooth function to explain the variation of pH in response to the changes in salinity whilst the changes in conductivity with regards to different concentrations of salinity could be modelled parametrically. The analysis highlights the importance of both parametric and nonparametric models for assessing ecological response to environmental change in seawater.

  2. Si96: A New Silicon Allotrope with Interesting Physical Properties

    Directory of Open Access Journals (Sweden)

    Qingyang Fan

    2016-04-01

    Full Text Available The structural mechanical properties and electronic properties of a new silicon allotrope Si96 are investigated at ambient pressure by using a first-principles calculation method with the ultrasoft pseudopotential scheme in the framework of generalized gradient approximation. The elastic constants and phonon calculations reveal that Si96 is mechanically and dynamically stable at ambient pressure. The conduction band minimum and valence band maximum of Si96 are at the R and G point, which indicates that Si96 is an indirect band gap semiconductor. The anisotropic calculations show that Si96 exhibits a smaller anisotropy than diamond Si in terms of Young’s modulus, the percentage of elastic anisotropy for bulk modulus and shear modulus, and the universal anisotropic index AU. Interestingly, most silicon allotropes exhibit brittle behavior, in contrast to the previously proposed ductile behavior. The void framework, low density, and nanotube structure make Si96 quite attractive for applications such as hydrogen storage and electronic devices that work at extreme conditions, and there are potential applications in Li-battery anode materials.

  3. Basic Physical Properties of Ammonia-Rich Ice

    Science.gov (United States)

    Shandera, S. E.; Lorenz, R. D.

    2000-10-01

    We report simple measurements of the thermal conductivity, mechanical strength and microwave absorptivity of ammonia hydrate ices, which are likely to be abundant in the Saturnian system. Understanding the dielectric properties of ammonia ice could play an important role in interpreting data from the Cassini spacecraft, which will image Titan's surface by radar in 2004. Thermal conductivity measurements were made by freezing a thin copper wire in the center of ice samples. The wire acted as both heater and temperature sensor, calibrated by a thermocouple also frozen in the sample. Ices with concentrations of 5- 30% ammonia were compared to pure water ice and ices containing salts. Thermal conductivity was found to decrease with increasing concentration of ammonia - a factor of 3 or 4 less than pure water ice for the 30% peritectic composition. Microwave absorptivity was measured by placing insulated ice samples and calibration materials in a conventional microwave oven. The microwave absorptivity was found to increase with increasing concentration of ammonia, although the effect is strongly temperature dependent, and heat leak from the room made quantitative measurement difficult. Mechanical strength was estimated using a ball bearing/accelerometer indentation method. For temperatures 100-150K, ammonia-rich ice has a Young's modulus about 10x smaller than pure ice. These properties affect tidal dissipation and the likelihood and style of cryovolcanism on (and the radar appearance of) the icy satellites and Titan. This work was supported by the Cassini RADAR team and the Arizona Space Grant Consortium.

  4. Snowmobile impacts on snowpack physical and mechanical properties

    Science.gov (United States)

    Fassnacht, Steven R.; Heath, Jared T.; Venable, Niah B. H.; Elder, Kelly J.

    2018-03-01

    Snowmobile use is a popular form of winter recreation in Colorado, particularly on public lands. To examine the effects of differing levels of use on snowpack properties, experiments were performed at two different areas, Rabbit Ears Pass near Steamboat Springs and at Fraser Experimental Forest near Fraser, Colorado USA. Differences between no use and varying degrees of snowmobile use (low, medium and high) on shallow (the operational standard of 30 cm) and deeper snowpacks (120 cm) were quantified and statistically assessed using measurements of snow density, temperature, stratigraphy, hardness, and ram resistance from snow pit profiles. A simple model was explored that estimated snow density changes from snowmobile use based on experimental results. Snowpack property changes were more pronounced for thinner snow accumulations. When snowmobile use started in deeper snow conditions, there was less difference in density, hardness, and ram resistance compared to the control case of no snowmobile use. These results have implications for the management of snowmobile use in times and places of shallower snow conditions where underlying natural resources could be affected by denser and harder snowpacks.

  5. The sdA problem - I. Physical properties

    Science.gov (United States)

    Pelisoli, Ingrid; Kepler, S. O.; Koester, D.

    2018-04-01

    The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.

  6. Cu2+-modified physical properties of Cobalt-Nickel ferrite

    Science.gov (United States)

    Rajasekhar Babu, K.; Rao, K. Rama; Rajesh Babu, B.

    2017-07-01

    The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer's method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu2+ ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1-50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  7. Changes in Physical Properties of Graphene Oxide with Thermal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-08-15

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable two dimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 ℃ in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 ℃, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 ℃, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  8. Multi-physics computational models of articular cartilage for estimation of its mechanical and physical properties

    NARCIS (Netherlands)

    Arbabi, V.

    2016-01-01

    Recent advances in the realm of computational modeling of complex multiphysics phenomena in articular cartilage enabled efficient and precise determination of articular cartilage properties. However, still accurate quantification of complicated indentation and diffusion processes tying closely with

  9. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. © IMechE 2015.

  10. Horizon universality and anomalous conductivities

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Umut [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Tarrío, Javier [Departament de Física Fonamental and Institut de Ciències del Cosmos,Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain)

    2015-10-08

    We show that the value of chiral conductivities associated with anomalous transport is universal in a general class of strongly coupled quantum field theories that admit a gravitational holographic dual in the large N limit. Our result only applies to theories in the presence of external gauge fields with no dynamical gluon fields. On the gravity side the result follows from near horizon universality of the fluctuation equations, similar to the holographic calculation of the shear viscosity.

  11. Electrochemical deposited nickel nanowires: influence of deposition bath temperature on the morphology and physical properties

    Science.gov (United States)

    Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.

    2017-10-01

    This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.

  12. Biometrology of physical properties of skin in thyroid dysfunction.

    Science.gov (United States)

    Szepetiuk, G; Piérard, G E; Betea, D; Petrossians, P; Xhauflaire-Uhoda, E; Beckers, A; Quatresooz, P

    2008-11-01

    There is ample clinical evidence that skin is responsive to physiopathological levels of circulating thyroid hormones. The aim of the study was to assess some physical changes of the skin in the presence of moderate thyroid dysfunction. University Hospital. A total of 119 adults suffering from hypothyroidism or hyperthyroidism and 60 healthy controls were enrolled in this study. Hormonal dosages (TSH, fT3, fT4) were assessed in the serum. A series of biometrological assessments were also performed on the volar and dorsal aspects of the forearms. These included electrometric assessments (Nova Dermal Phase Meter, Corneometer), evaporimetry (Tewameter)), colorimetry (Mexameter), ultrasound shear wave propagation (Reviscometer) and squamometry X. Correlations were searched between each of the serum hormonal dosages and each of the biometrological parameters. The hormonal changes in the untreated patients with thyroid dysfunction were modest in intensity. A few outlier values with regard to the normal range were found for each biometrological parameter. No correlations were found between fT3 or fT4 and each of the physical parameters. By contrast, significant negative linear correlations were found between thyroid-stimulating hormone (TSH) and skin hydration measured by the Corneometer and the Nova DPM. This multipronged exploratory study shows that direct or indirect effects of TSH may influence the stratum corneum hydration. This correlation seemed very sensitive, as no other specific biophysical parameter was significantly correlated with the thyroid hormonal concentrations in the serum. However, our findings do not exclude the possibility of some other skin changes supervening in case of more severe thyroid dysfunction. The mechanism by which TSH alters the stratum corneum hydration is yet unknown.

  13. Effect of guar gum on stability and physical properties of orange juice.

    Science.gov (United States)

    Lv, Ruihuan; Kong, Qing; Mou, Haijin; Fu, Xiaodan

    2017-05-01

    The objective of current study was to determine the stability and physical properties of orange juice which was added with guar gum. The optimal formulation showed good stability and physical properties, in light of better indices on the serum cloudiness (turbidity), sensory analysis, particle size distribution, aroma concentration analysis and rheological properties. By serum cloudiness (turbidity), the viscosity of optimal guar gum used in orange juice was 584mpas; by the other four methods, the optimal formulation was determined: 0.1% guar gum (584mpas) combined with 0.03% carboxymethyl cellulose (CMC). The results indicated that the guar gum can be used to partially replaced CMC and improve the stability and physical properties of orange juice. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  15. Estimation of Physical Properties of Amino Acids by Group-Contribution Method

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Liang, Xiaodong; Gani, Rafiqul

    2018-01-01

    In this paper, we present group-contribution (GC) based property models for estimation of physical properties of amino acids using their molecular structural information. The physical properties modelled in this work are normal melting point (Tm), aqueous solubility (Ws), and octanol....../water partition coefficient (Kow) of amino acids. The developed GC-models are based on the published GC-method by Marrero and Gani (J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183-184, 183-208) with inclusion of new structural parameters (groups and molecular weight of compounds). The main objective...... of introducing these new structural parameters in the GC-model is to provide additional structural information for amino acids having large and complex structures and thereby improve predictions of physical properties of amino acids. The group-contribution values were calculated by regression analysis using...

  16. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    Directory of Open Access Journals (Sweden)

    Behnam Rahimi

    2012-01-01

    Full Text Available Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed.

  17. Mechanical and thermal properties of physically-blended-plastic films

    International Nuclear Information System (INIS)

    Abu Issa, M. S.

    1983-10-01

    Low density polyethylene (LDPE) and isotactic polypropylene (PP) blend were produced in film form and were characterized by a number of techniques such as wide-angle x-ray diffraction (WAXD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and instron tensile testing. Results of WAXD and DTA showed conclusively that the two components in the blend are incompatible. SEM micrographs indicated that the 60/40 and 40/60 PP/PE blends show approximately fine homogeneous dispersion of the minor component into the matrix of the major component. The mechanical properties of the blend films improved with respect to the PE homo polymer. The improvement was more remarkable with the increase of the PP component in the blend. Results obtained in this work were explained in terms of crystallinity and the crystallite orientation. 28 refs., 29 figs., 5 tabs. (A.M.H.)

  18. Physical Properties of Intermetallic FE sub 2 VA1

    CERN Document Server

    Ye Fen

    2002-01-01

    Fe sub 2 VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe sub 2 VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe sub 2 VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments...

  19. Effect of polybutenes on mechanical and physical properties of polypropylene

    International Nuclear Information System (INIS)

    Nascimento, Uedson A. do; Timoteo, Gustavo Arante V.; Rabello, Marcelo S.

    2009-01-01

    This study investigated the effect of polybutene (PIB) of molecular weights ranging from 480 the 1.600 g/mol in polypropylene homopolymer. Compositions with 0, 3, 5 and 7% of PIB were prepared in internal mixer and compression moulded. The properties evaluated were: tensile strength, scanning electron microscopy (SEM), FTIR, X-ray diffraction (XRD) and melt flow index (IF). The results of mechanical tests showed that the presence of the plasticizer reduced the tensile strength, elastic modulus and hardness. The analysis of XRD showed a drop in the degree of crystallinity of PP/PIB blends. The micrographs obtained by SEM did not reveal the occurrence of the phase separation. The IF analysis confirm the effect of PIB as internal lubricant's, by increasing the rate of flow. (author)

  20. Physical properties of bifunctional BST/LSMO nanocomposites

    Science.gov (United States)

    Beltran-Huarac, Juan; Martinez, Ricardo; Morell, Gerardo

    2014-02-01

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba0.7Sr0.3TiO3 (BST) and ferromagnetic La0.67Sr0.33MnO3 (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287-292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42-0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MCp) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MCp was found to be ˜7% per Tesla. The analysis of the MCp measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.

  1. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  2. The study of some physical properties of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atif Mahmoud

    2008-07-01

    The phenomenon of superconductivity, the discovery of high temperature superconductivity in the Cuprates and the properties of these materials is described in the introductory chapter. It also includes a discussion of the pseudogap, which has remained a mystery as has the high transition temperature. Possible applications of high temperature superconductivity are reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and Landau are briefly sketched. The last section gives excerpts of the by now vast literature on this subject, focussing on the role impurities play in this context. The second chapter develops the mathematical tools and the theoretical background for the description of many-body systems. Various Green's functions are introduced which are then used to describe scattering of quasiparticles off defects of arbitrary strength. They are also required to calculate the a.c. conductivity, for which an expression is derived using linear response theory. The convergence problems one encounters when actually calculating the conductivity are briefly discussed. Detailed calculations for the normal state are presented in the third chapter and in the appendix. The third Chapter begins with a detailed presentation of the tight binding model for the energy dispersion because this model appears to give a more accurate description of the electronic properties of high temperature superconductors than the nearly free electron model. The shape of the two-dimensional Fermi surface is calculated and displayed as function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid band. B plays an important role in the formation of so-called hot spots. The quasiparticle density of states and its Hilbert transform F({omega}) are solved by means of complete elliptic integrals formalism. These results are used to obtain impurity bound states. A simple model for the superconductivity in the cuprate materials is developed on

  3. The study of some physical properties of high temperature superconductors

    International Nuclear Information System (INIS)

    Ismail, Atif Mahmoud

    2008-01-01

    The phenomenon of superconductivity, the discovery of high temperature superconductivity in the Cuprates and the properties of these materials is described in the introductory chapter. It also includes a discussion of the pseudogap, which has remained a mystery as has the high transition temperature. Possible applications of high temperature superconductivity are reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and Landau are briefly sketched. The last section gives excerpts of the by now vast literature on this subject, focussing on the role impurities play in this context. The second chapter develops the mathematical tools and the theoretical background for the description of many-body systems. Various Green's functions are introduced which are then used to describe scattering of quasiparticles off defects of arbitrary strength. They are also required to calculate the a.c. conductivity, for which an expression is derived using linear response theory. The convergence problems one encounters when actually calculating the conductivity are briefly discussed. Detailed calculations for the normal state are presented in the third chapter and in the appendix. The third Chapter begins with a detailed presentation of the tight binding model for the energy dispersion because this model appears to give a more accurate description of the electronic properties of high temperature superconductors than the nearly free electron model. The shape of the two-dimensional Fermi surface is calculated and displayed as function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid band. B plays an important role in the formation of so-called hot spots. The quasiparticle density of states and its Hilbert transform F(ω) are solved by means of complete elliptic integrals formalism. These results are used to obtain impurity bound states. A simple model for the superconductivity in the cuprate materials is developed on the basis

  4. PHYSICAL AND MECHANICAL PROPERTIES OF TORREFIED Ceiba pentandra WOOD

    Directory of Open Access Journals (Sweden)

    Ebenezer A. IYIOLA

    2016-09-01

    Full Text Available The need for improving or enhancing the performance of wood to meet the use for high economic value is a necessity. Physico-mechanical properties of torrefied Ceiba pentandra wood were investigated. Thirty nine defect-free specimens of dimensions 20mm × 20mm × 60mm (breadth × thickness x length were prepared for the determination of dimensional stability and compression test. For the evaluation of static bending strength tests, thirty nine specimens of dimensions 20mm × 20mm x 300mm were prepared. The specimens (at constant m.c. of 12% were thermally treated at temperatures of 120, 140, 160 and 180o C for 60, 90 and 120 minutes duration. The wood samples were introduced into the furnace and ramped to the temperature at which the actual heat treatment occurred. Density, Moisture content, Weight Loss, Void Volume, Water absorption, Volume swelling, Modulus of Elasticity (MOE, Modulus of Rupture (MOR, Maximum Compression Strength (MCS and Hardness of the torrefied and untreated samples were investigated. The mean values of the density showed a significant reduction as a function of treatment condition. The mean values of the moisture content of the wood samples varies 7.40% to 3.35% which is the highest reduction found in the treatment180o C for 120minutes. High weight loss was observed at 180o C for 2hrs (6.99%. The value of the volumetric swelling ranges from 7.52% to 1.39% compared to control (28.94% in 24hrs. The mean values of thermally treated samples for Modulus of Elasticity ranging from 10401 N/mm2 (180°C at 60 min to 1757N/mm2 (120°C at 90 min compared to control (MOE = 1694N/mm2 . The Modulus of Elasticity of the heat-treated samples increased rapidly as the temperature rises to 180o C for 60minutes but decreased as the time increases. It can be concluded that thermal modification improved dimensional stability and mechanical properties of wood samples

  5. Some physical properties of the date palm stem

    Directory of Open Access Journals (Sweden)

    Hakam A.

    2018-01-01

    Full Text Available The main objective of this study was to test some technological performances of date palm stem (Phoenix dactylifera L. from the region of Marrakech in Morocco with a view to its use in housing construction in southern Moroccan regions. Physical characteristics were determined according to French AFNOR standards. The samples used were respectively 20 mm × 20 mm × 20 mm in the longitudinal, radial and tangential directions. All the results obtained were the average of the measurements on 50 samples. The results obtained showed that the moisture content has an average value of 15 % at the center of stem and 18 % at the periphery and the infradensity has a value of 0.18 g / cm3 in the center and 0.42 g / cm3 in the periphery. For samples from the center, the tangential, radial and longitudinal shrinkage were respectively 2.02 %, 1.77 %, and 0.42 %, while on the periphery of the stem the tangential, radial and longitudinal shrinkage were respectively 3.41 %, 2.98 % and 0.34 %. These results showed that the stem center has better dimensional stability compared to the peripheral region of the stem.

  6. Thermo-Physical Properties of Kenaf-Filled Acrylonitrile Butadiene Styrene Composites

    Directory of Open Access Journals (Sweden)

    Nikmatin Siti

    2017-01-01

    Full Text Available Studies on advantageous of natural fillers incorporated into polymer composites on thermo-physical and mechanical properties are still intensively investigated. Several evidences suggest that the natural fillers with small contents combined with polymer increase their composite properties. We thus investigate thermo-physical properties of kenaf-filled acrylonitrile butadiene styrene (ABS composites. ABS with 5% kenaf microparticle size (ABS/K5, ABS with 5% kenaf short fiber (ABS/KSF5, and recycled ABS with 5% kenaf microparticle size (RABS/K5 were manufactured. Granular composites were manufactured by the twin screw extruder. Composite properties in terms of X-ray diffractions, surface morphologies, and thermal behaviors were investigated. The present work found that ABS/KSF5 has the highest degree of crystallinity compared to others. No significant difference was found in terms of thermal properties of the composites.

  7. Effect of pressure on the physical properties of magnetorheological fluids

    Directory of Open Access Journals (Sweden)

    A. Spaggiari

    2013-01-01

    Full Text Available To date, several applications of magnetorheological (MR fluids are present in the industrial world, nonetheless system requirements often needs better material properties. In technical literature a previous work shows that MR fluids exhibit a pressure dependency called squeeze strengthen effect. Since a lot of MR fluid based devices are rotary devices, this paper investigates the behaviour of MR fluids under pressure when a rotation is applied to shear the fluid. The system is designed in order to apply both the magnetic field and the pressure and follows a Design of Experiment approach. The experimental apparatus comprises a cylinder in which a piston is used both to apply the pressure and to shear the fluid. The magnetic circuit is designed to provide a nearly constant induction field in the MR fluid. The experimental apparatus measures the torque as a function of the variables considered and the yield shear stress is computed. The analysis of the results shows that there is a positive interaction between magnetic field and pressure, which enhances the MR fluid performances more than twice.

  8. Microscopic physical and chemical properties of graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, P.C.

    1992-08-24

    Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

  9. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  10. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  11. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    Science.gov (United States)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  12. PHYSICAL AND MECHANICAL PROPERTIES OF THREE POLYSTYRENE IMPREGNATED INDONESIAN WOOD SPECIES

    Directory of Open Access Journals (Sweden)

    Nurwati Hadjib

    2005-07-01

    Full Text Available The disadvantage of  fast-growing species is  that they have inferior physical and mechanical properties. Polystyrene impregnation can be applied to improve physical and mechanical properties. Wood samples, which were dried  until 10% moisture content were put into impregnating tank and vacuum pressured  at 20-mm Hg  for  two hours. During  the gradual release of  vacuum, styrene monomers,  vinyl acetate  monomers  and  terburyl-peroxide catalyst was streamed  into  the tank. Afterwards, the pressure inside the tank was allowed to decrease to 500 mm Hg and kept for 60 minutes. Wood samples which had been impregnated were subsequently immersed in water, then wrapped in aluminum foils and put in the oven for 24 hours at 60°C. The samples were then tested for the polymer loading and their physical and mechanical properties. The results showed that the polymer loadings in wood plastics with the species  of origin (i.e. consecutively sengon, pine and rubber wood were 118%, 72% and 44%, respectively. Impregnation with polystyrene  (copolymer of styrene and vinyl acetate monomers could improve the physical and mechanical properties of wood plastics, i.e.  specific gravity, moisture content, water absorption,  shrinkage/ swelling, compression parallelto the wood grain, MOR and MOE. Greater  use of vinyl acetate decreased physical and mechanical properties.

  13. Physical properties of monolithic U8 wt.%-Mo

    Science.gov (United States)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  14. Compaction physics of solid additive blends a thermal properties study

    Science.gov (United States)

    Brown, Amy

    Compacted solid additive blends have attracted the interest of the polymers industry due to their ability to improve processability. However, limited research has been performed to analyze the thermal properties that these additives have during pelletization. This research studies the reaction behavior of erucamide and silica, when in a pure and mixed form, with each other when thermal conductivity and frictional heating experiments are conducted. During the thermal conductivity study, it was found that pure erucamide had a thermal conductivity of 0.37 W/mK. The thermal conductivity of pure silica could not be found since silica will not compact to itself. Therefore, the thermal conductivity was extrapolated and found to be 0.09 W/mK. With the higher thermal conductivity belonging to erucamide, the heat transference that occurs during pelletization is through the use of erucamide. During the frictional studies, it was found that erucamide had a lower coefficient of friction compared to silica. The samples used were not pure, meaning a presence of both silica and erucamide were present for all experiments. The value obtained for the sample with a 75wt% of erucamide was 0.26. The value obtained for the sample with 75wt% of silica was 0.53. The surface and cross-section morphology and composition of the samples was examined by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy. Through this a softened layer was seen that provided evidence of an outer protective layer that forms during the pelletization process. Further analysis into this formed softened layer for varying compositions provided critical temperatures that need to be reached during processing.

  15. Physical and chemical studies of superconduction properties of the intercalation compounds

    International Nuclear Information System (INIS)

    Eder, F.X.; Lerf, A.

    1980-01-01

    The superconducting properties of the intercalation compounds of layered dichalcogenides were studied. Our studies were concerned mainly to the alkali metal intercalation derivatives of TaS 2 and NbS 2 , and later on extended to the molecule intercalation compounds. The main difficulties with this class of superconductors result from varying material properties; these are therefore the subject of broad intensity in our investigations. The results received on the physical and chemical properties of the intercalation compounds is utilized for a phenomenological description of the factors mainly determining there superconducting properties. (orig.) [de

  16. Acoustic metasurfaces for scattering-free anomalous reflection and refraction

    Science.gov (United States)

    Díaz-Rubio, A.; Tretyakov, S. A.

    2017-09-01

    Manipulation of acoustic wave fronts by thin and planar devices, known as metasurfaces, has been extensively studied, in view of many important applications. Reflective and refractive metasurfaces are designed using the generalized reflection and Snell's laws, which tell that local phase shifts at the metasurface supply extra momentum to the wave, presumably allowing arbitrary control of reflected or transmitted waves. However, as has been recently shown for the electromagnetic counterpart, conventional metasurfaces based on the generalized laws of reflection and refraction have important drawbacks in terms of power efficiency. This work presents a new synthesis method of acoustic metasurfaces for anomalous reflection and transmission that overcomes the fundamental limitations of conventional designs, allowing full control of acoustic energy flow. The results show that different mechanisms are necessary in the reflection and transmission scenarios for ensuring perfect performance. Metasurfaces for anomalous reflection require nonlocal response, which allows energy channeling along the metasurface. On the other hand, for perfect manipulation of anomalously transmitted waves, local and nonsymmetric response is required. These conclusions are interpreted through appropriate surface impedance models which are used to find possible physical implementations of perfect metasurfaces in each scenario. We hope that this advance in the design of acoustic metasurfaces opens new avenues not only for perfect anomalous reflection and transmission but also for realizing more complex functionalities, such as focusing, self-bending, or vortex generation.

  17. Estimation of Physical Properties of AN-107 Cesium and Technetium Eluate Blend

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    2001-06-12

    The objective of this study, as defined in the associated test specifications and task technical and quality assurance plan, was to estimate all the physical properties that are required to design the storage and transport facilities for the concentrated cesium and technetium eluates. Specifically, the scope of this study included: (1) modeling of the aqueous electrolyte chemistry of Tank 241-AN-107 Cs and Tc eluate evaporators, (2) process modeling of semi-batch and continuous evaporation operations, (3) determination of the operating vacuum and target endpoint of each evaporator, (4) calculation of the physical properties of the concentrated Cs and Tc eluate blend, and (5) development of the empirical correlations for the physical properties thus estimated.

  18. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  19. Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study

    Science.gov (United States)

    Sakuma, Hiroshi; Ichiki, Masahiro; Kawamura, Katsuyuki; Fuji-ta, Kiyoshi

    2013-04-01

    The physical properties of water under a wide range of pressure and temperature conditions are important in fundamental physics, chemistry, and geoscience. Molecular simulations are useful for predicting and understanding the physical properties of water at phases extremely different from ambient conditions. In this study, we developed a new five-site flexible induced point charge model to predict the density, static dielectric constant, and transport properties of water in the extremely supercritical phase at high temperatures and pressures of up to 2000 K and 2000 MPa. The model satisfactorily reproduced the density, radial distribution function, static dielectric constant, reorientation time, and self-diffusion coefficients of water above the critical points. We also developed a database of the static dielectric constant, which is useful for discussing the electrical conductivity of aqueous fluids in the earth's crust and mantle.

  20. Physical and mechanical properties of plywood panels manufactures with tropical plantation species for structural use

    Directory of Open Access Journals (Sweden)

    Diego Camacho

    2012-06-01

    Full Text Available Concrete, steel and plastics are the materials used for construction in Costa Rica. Meanwhile, wood from plantation are being introduced in the market. The present study aims to characterize and measured some physical and mechanical properties of plywood panels manufactured with veneers of Gmelina arborea, Tectona grandis and Acacia mangium coming from forest plantations for structural use. It was produced three plywood boards of each species and general characterization of them was done, and physical and mechanical properties were determined. The results shown that panels manufactured with T. grandis wood presented physical and mechanical properties higher than G. arborea and A. mangium. In accordance with standards of Voluntary Products Standart PS 1-95 and PS 1-09 of the United States, structural plywood of G. arborea can be grouped in grade 3, and plywood manufactured with T. grandis and A. mangium wood in grade 2. All species can be used in the manufacture of structural elements.

  1. 44th Annual Anomalous Absorption Conference

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  2. Physical-mechanical properties and chemical composition of Pinus taeda mature wood following a forest fire.

    Science.gov (United States)

    Bortoletto Júnior, G; Moreschi, J C

    2003-05-01

    The objective of this study was to assess the effects of heat released during forest fires on wood properties of Pinus taeda L. trees submitted to different burning levels (increasing fire intensity, I-IV). Wood samples were collected from trees in each of the burning levels and also from trees not affected by fire (control). Specimens were then extracted to evaluate the physical and mechanical wood properties; chemical composition was evaluated only for burning level IV and control. The analysis of the results showed that fire effects over the physical-mechanical properties and chemical composition in all burning levels did not cause sufficient chemical degradation and strength reduction, which could be cause for rejection of those woods for normal use. In the case of structural use caution should be adopted for the wood from burning levels III and IV, which had their mechanical property values reduced.

  3. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Reisenegger, Andreas; Zepeda, Felipe S. [Pontificia Universidad Catolica de Chile, Instituto de Astrofisica, Facultad de Fisica, Macul (Chile)

    2016-03-15

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of ''everyday'' matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties. (orig.)

  4. Computational studies of physical properties of Nb-Si based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Lizhi [Middle Tennessee State Univ., Murfreesboro, TN (United States)

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.

  5. Physical-Mechanical Properties And Microstructure Of Breadfruit Starch Edible Films With Various Plasticizer

    OpenAIRE

    Cut Fatimah Zuhra Marpongahtun

    2013-01-01

    Breadfruit contains starch can be used as raw material of edible film. Research on preparation of edible films using various types of plasticizer (xylitol, sorbitol and PEG 400) has been done. The edible films were evaluated of physical-mechanical properties and microstructure. The results of this study indicate that the addition of plasticizer effect on the physical and mechanical characteristics, the edible film thickness, tensile strength and water vapor transmission rate greater using PEG...

  6. Physical and mechanical properties of particleboard manufactured from wood, bamboo and rice husk

    OpenAIRE

    Melo, Rafael Rodolfo de; Stangerlin, Diego Martins; Santana, Ricardo Robinson Campomanes; Pedrosa, Talita Dantas

    2014-01-01

    In this work, the physical-mechanical properties of particleboards manufactured with wood (Eucalyptus grandis), bamboo (Bambusa vulgaris) and/or rice husk (Oryza sativa) particles, combined or not, were assessed. They were produced in the following proportions: 100% wood; 100% bamboo; 100% rice; 50% wood and 50% bamboo; 50% wood and 50% rice husk. In order to characterize the manufactured particleboards, their physical (density; moisture content; water absorption and thickness swelling) and m...

  7. Physical and Mechanical Properties of Three Polystyrene Impregnated Indonesian Wood Species

    OpenAIRE

    Hadjib, Nurwati

    2005-01-01

    The disadvantage of  fast-growing species is  that they have inferior physical and mechanical properties. Polystyrene impregnation can be applied to improve physical and mechanical properties. Wood samples, which were dried  until 10% moisture content were put into impregnating tank and vacuum pressured  at 20-mm Hg  for  two hours. During  the gradual release of  vacuum, styrene monomers,  vinyl acetate  monomers  and  terburyl-peroxide catalyst was streamed  into  the tank. Afterwards, the ...

  8. The Relationship of Physical Property Indicators and Clay Soil Structural Strength of Tomsk Oblast Territory

    Science.gov (United States)

    Kramarenko, V. V.; Nikitenkov, A. N.; Molokov, V. Y.; Matveenko, I. A.; Shramok, A. V.

    2015-11-01

    The article deals with the characteristic of initial condition in fine-grained soils - its structural strength - pstr. Estimation and measurement of this factor at soil testing are of primary importance for defining its physical and mechanical properties as well as for subsequent calculation of foundation settlements that is insufficiently covered in Code of practice, national standard and inefficiently applicable in practice of engineering geological investigations. The article reveals the relationship between soil physical property, its occurrence depth, which will make possible to forecast pstr over the given territory.

  9. Comparative Evaluation of Physical and Structural Properties of Water Retted and Non-retted Flax Fibers

    Directory of Open Access Journals (Sweden)

    Vijaya Raghavan

    2013-10-01

    Full Text Available Flax stems of Modran variety were subjected to water retting under laboratory conditions and its physical properties were compared with non-retted fibers. Physical properties including percentage of impurities, weighted average length, linear density, tenacity and elongation were analyzed and the results were compared. The analysis of retted and non-retted flax fibers showed that retting is the most important step in the processing of flax fibers and it directly affects quality attributes like strength, fineness, and homogeneity. Scanning Electron microscope images of fibers were also analyzed and the retted fibers showed much cleaner surface when compared to decorticated non-retted fibers.

  10. Effect of Dose Rate on Radiation Pre vulcanized Natural Rubber Latex Tensile Strength and Physical Properties

    International Nuclear Information System (INIS)

    Sofian Ibrahim; Mohd Noorwadi Mat Lazim; Syuhada Ramli

    2015-01-01

    Comparison on effect of irradiation dose rate on physical and mechanical properties of RVNRL was carried out in RAYMINTEX and Sinagama plant with dose rate at 0.23 kGy/ hour and 2.00 kGy/ hour respectively. The samples were irradiated at 12, 15 and 17 kGy. Results from the study showed irradiation dose rate does not significantly affect on physical properties of RVNRL but affects its tensile strength approximately at 10-15 %. Therefore it can be concluded that high irradiation dose rates will produced RVNRL with better tensile strength. (author)

  11. Chemical, physical and morphometric properties of Peruvian carrot (Arracacia xanthorrhiza B.) starch.

    Science.gov (United States)

    Pérez, E E; Borneo, R; Melito, C G; Tovar, J

    1999-01-01

    Starch was isolated from Peruvian carrot (PC)--or arracacha--(Arraccacia xanthorrhiza B.) roots. Its chemical, physical, physicochemical and granular structural properties were compared to those of commercial cassava starch. Scanning electron microscopy revealed a granular size for PC starch ranging between 4 and 26 microns in diameter, with spherical and truncated-egg shapes. PC and cassava starches were similar regarding gross chemical composition and basic physical characteristics but differed in pasting properties, with PC starch showing lower breakdown and consistency indices. The two starches also showed different water absorption and solubility patterns.

  12. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum...

  13. Physical properties of VNTR data, and their impact on a test of allelic independence

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, B.; Risch, N. (Yale Univ., New Haven, CT (United States))

    1993-08-01

    In this article the authors describe the physical properties of VNTR data, as well as their effects on the two-dimensional distribution of fragment pairs. Tests of independence of alleles at a locus may confound those physical properties with allele independence. A recently proposed test by Geisser and Johnson is an example. The authors show that alleles can be strictly independent, yet the proposed test suggests large violations of allele independence because it is sensitive to well-known electrophoretic phenomena. 7 refs., 4 tabs.

  14. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.; Romero, G.; Smolko, Eduardo E.

    1999-01-01

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  15. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Zbigniew Suchorab

    2016-04-01

    Full Text Available This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production.

  16. Heavy metals concentration relationship with Perna viridis physical properties in Mengkabong Lagoon, Sabah, Malaysia.

    Science.gov (United States)

    Abdullah, Noraini; Tair, Rohana; Abdullah, Mohd Harun

    2014-01-01

    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis.

  17. A mathematical model for prediction of physical properties of the coke oven charge during carbonisation

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K.; Godiwalla, K.M.; Mehrotra, S.P. [CSIR, Jamshedpur (India)

    2007-07-01

    Mathematical models for the prediction of physical properties of the charge (e.g specific heat, density, and thermal conductivity) and heat of reaction during thermal decomposition of coal to coke have been constructed in terms of the changes in the chemical composition and structure. For realistic quantification of thermal transport processes in the oven, it is essential to predict the physical properties of the charge as they evolve during the carbonisation process. The models are based on the predictive procedure developed to address volatile matter evolution during carbonisation from knowledge of coal proximate analysis, ultimate analysis and heating profile. A first principle based formalism has been adopted to predict the physical properties of the charge and heat of carbonisation reaction as a function of the charge temperature during carbonisation supported with pertinent data. The predictions have been validated with published data, wherever possible. The models of physical properties are expected to generate critical temperature dependent property data of the oven charge' which would be vital for further development of a rigorous oven heat transfer model during carbonisation.

  18. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  19. Anomalous gauge theories as constrained Hamiltonian systems

    International Nuclear Information System (INIS)

    Fujiwara, T.

    1989-01-01

    Anomalous gauge theories considered as constrained systems are investigated. The effects of chiral anomaly on the canonical structure are examined first for nonlinear σ-model and later for fermionic theory. The breakdown of the Gauss law constraints and the anomalous commutators among them are studied in a systematic way. An intrinsic mass term for gauge fields makes it possible to solve the Gauss law relations as second class constraints. Dirac brackets between the time components of gauge fields are shown to involve anomalous terms. Based upon the Ward-Takahashi identities for gauge symmetry, we investigate anomalous fermionic theory within the framework of path integral approach. (orig.)

  20. Evaluation of Beeswax Influence on Physical Properties of Lipstick Using Instrumental and Sensory Methods

    OpenAIRE

    Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta; Bernatoniene, Jurga

    2016-01-01

    The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavengin...

  1. Physical properties of steel and concrete up to melting and ablation

    International Nuclear Information System (INIS)

    Schneider, U.; Diederichs, U.

    1981-01-01

    The relevant physical properties of typical steels and concretes which are used in HTGR constructional design are presented. Special consideration has been given to the properties and phenomena concerning thermal behaviour e.g. thermal diffusivity and conductivity, heat capacity, density, thermal expansion and decomposition effects. Data from the literature and recent test results will be discussed. A temperature range from 20 0 C up to the melting points is considered. (orig./HP)

  2. Self-Consistent Physical Properties of Carbon Nanotubes in Composite Materials

    Science.gov (United States)

    Pipes, R. B.; Frankland, S. J. V.; Hubert, P.; Saether, E.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    A set of relationships is developed for selected physical properties of single-walled carbon nanotubes (SWCN) and their hexagonal arrays as a function of nanotube size in terms of the chiral vector integer pair, (n,m). Properties include density, principal Young's modulus, and specific Young's modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are developed for polymeric mixtures.

  3. Effects of gamma radiation on the physical properties of some South African varieties of potatoes

    International Nuclear Information System (INIS)

    Winchester, R.V.

    1975-01-01

    Effects of gamma irradiation on the mass loss, specific gravity, firmness, sprouting, and rotting of five varieties of potatoes grown in South Africa have been studied. Doses of up to 15 krad inhibit sprouting without detrimental effects on other physical properties, and the culinary properties are expected to be unaffected. Excessive mass loss, shrinkage, and rotting found in some varieties are ascribed to unsuitable storage conditions rather than to irradiation. (orig.) [de

  4. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sloman, David L.; Noucti, Njamkou; Altman, Michael D.; Chen, Dapeng; Mislak, Andrea C.; Szewczak, Alexander; Hayashi, Mansuo; Warren, Lee; Dellovade, Tammy; Wu, Zhenhua; Marcus, Jacob; Walker, Deborah; Su, Hua-Poo; Edavettal, Suzanne C.; Munshi, Sanjeev; Hutton, Michael; Nuthall, Hugh; Stanton, Matthew G. (Merck)

    2016-09-01

    Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer’s disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility.

  5. Saturated hydraulic conductivity in relation to physical properties of soils in the Nsukka Plains, SE Nigeria

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1994-05-01

    The objective of the study is to develop and validate statistical models for estimating the saturated hydraulic conductivity of soils with high water intake rates from more easily-determined properties and to test the hypothesis that it is equal to Philip transmissivity term and the steady infiltration rate. The results of the study show that the dominant physical property influencing saturated hydraulic conductivity of the investigated soils is the macroporosity. 37 refs, 6 figs, 5 tabs

  6. Effect of Re-Quenching and Re-Drawing on the Physical Properties of Centrifugal Castings and the Effect of Increased Soaking Time on the Physical Properties of Cold Worked Centrifugal Castings and Forgings,

    Science.gov (United States)

    Metallurgy, *Centrifugal casting, *Physical properties, *Cold drawing, *Cold working, *Quenching, *Immersion, Forging, Heat treatment, Charpy impact ... tests , Tensile properties, Modulus of elasticity, Stress strain relations, Test methods, Laboratory tests , Tables(Data), Graphs, Research management, Army research

  7. Physical properties of the tetragonal CuMnAs: A first-principles study

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Carva, K.; Baláž, P.; Turek, I.

    2017-01-01

    Roč. 96, č. 9 (2017), s. 1-8, č. článku 094406. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : first- principles calculations * defects * CuMnAs * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  8. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  9. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  10. Physical properties and microstructure study of 316L SS fabricated by metal injection moulding process

    Science.gov (United States)

    Dandang, Nur Aidah Nabihah; Harun, Wan Sharuzi Wan; Khalil, Nur Zalikha; Ismail, Muhammad Hussain; Ibrahim, Rosdi

    2017-12-01

    Metal injection moulding (MIM) has been practised to process alloy powders to become components with significant physical and mechanical properties. Dissimilar than other methods, MIM focuses on the production of high volume, a small, and complex shape of products. The performance of the compacts depends on the suitable sintering parameters that governs their strengths in the final phase which determines the excellent properties of the sintered compacts. Three different sintering temperatures were utilised; 1100, 1200, and 1300 °C with two different soaking times; 1 and 3 hours at 10 °C/min heating rate to study their effect on the physical properties and microstructure analysis of 316L SS alloy compacts. The shrinkage measurement, surface roughness, and density measurement had been conducted for physical properties study. Different sintering temperatures give an effect to the physical properties of the sintered compacts. The shrinkage measurement at 1300 °C and 3-hour sintering condition demonstrated the highest percentage reading which was 10.1 % compared to the lowest percentage reading of 6.4 % at 1100 °C and 1-hour sintering conditions. Whereas, the minimum percentage of density measurement can be found at sintering conditions of 1100 °C and 1-hour which is 83.9 % and the highest percentage is at 1300 °C and 3-hour sintering condition which is about 89.51 %. Therefore, it has been determined that there could be a significant relationship between sintering temperature and physical properties in which it can be found from the porosity of the compact based on the microstructure studies.

  11. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina

    2016-01-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain, B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms. PMID:26873313

  12. Emergence of Anomalous Transport in Stressed Rough Fractures

    Science.gov (United States)

    Kang, P. K.; Brown, S.; Alves da Silva, J.; Juanes, R.

    2015-12-01

    Fluid flow and tracer transport in fractured rock controls many natural and engineered processes in the geosciences, and therefore has been extensively studied. Geologic fractures, however, are always under significant overburden stress. While confining stress has been shown to impact fluid flow through rough-walled fractures in a fundamental way, studies of anomalous tracer transport at the scale of individual fractures have so far ignored the potential role of confining stress.Here, we report the emergence of anomalous (non-Fickian) transport through a rough-walled fracture as a result of increasing the normal stress on the fracture. We generate fracture surfaces with fractal roughness, and solve the elastic contact problem between the two surfaces to obtain the 3D fracture geometry for increasing levels of normal stress. We then simulate fluid flow and particle transport through the stressed rough fracture. We observe a transition from Fickian to anomalous transport as the normal stress on the fracture increases.We show that the origin of this anomalous transport behavior can be traced to the self-organization of the flow field into a heterogeneous structure dominated by preferential channels and stagnation zones, as a result of the larger number of contacts in a highly stressed fracture. We also propose a spatial Markov model that reproduces the transport behavior at the scale of the entire fracture with only three physical parameters. Our results point to a heretofore unrecognized link between geomechanics and anomalous particle transport in fractured media. Finally, we show preliminary laboratory experiment results that confirm our findings. (a) Magnitude of the volumetric flux at each discretization grid block at low stress. (b) Magnitude of the volumetric flux for a highly stressed fracture. Values are normalized with the mean volumetric flux.

  13. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  14. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles

    Science.gov (United States)

    Mejia-Santillan, M. E.; Pariona, N.; Bravo-C., J.; Herrera-Trejo, M.; Montejo-Alvaro, F.; Zarate, A.; Perry, D. L.; Mtz-Enriquez, A. I.

    2018-04-01

    The topotactic transformation from magnetite to maghemite sub-microparticles was demonstrated by a variety of techniques that include X-ray diffraction, Raman spectroscopy, electron microscopy, Mössbauer spectroscopy, magnetic measurements, and vis-NIR diffuse reflectance. The physical, chemical, and morphological properties of the particles were correlated with their adsorptive properties in water with respect to arsenic (V). The adsorptive properties of the iron oxide are increased by changing the crystal phases involved, specifically, the transformation of magnetite to maghemite. Maghemite sub-microparticles are capable of efficiently decreasing the arsenic content in water from 100 ppb to below the World Health Organization (WHO) guideline of 10 ppb.

  15. The physical properties of Santowax 'R' for heat transfer calculations (AERE R/M 183 revised)

    International Nuclear Information System (INIS)

    Bowring, R.W.; Garton, D.A.; Kinneir, J.H.

    1961-03-01

    Values of the following physical properties of Santowax 'R' are presented in graphical and/or tabular form in both English and Metric units: Vapour Pressure, Specific heat, Enthalpy, Density, Dynamic viscosity, Kinematic viscosity, Thermal conductivity, Prandtl number, Surface tension, Latent heat of vaporisation, Critical properties, Gas solubilities. The data were obtained by new experimental measurements, by calculation or from the published literature. Wherever possible an estimate of the probable error is given. Conversion factors and Tables are also presented to facilitate the conversion of any of the properties to convenient units required for calculations. (author)

  16. Identifying the Physical Properties of Showers That Influence User Satisfaction to Aid in Developing Water-Saving Showers

    OpenAIRE

    Okamoto, Minami; Sato, Minoru; Shodai, Yoshihiko; Kamijo, Masayoshi

    2015-01-01

    This research was conducted with the goal of clarifying the required conditions of water-saving showerheads. In order to this, the research analyzes the mutual relationship between water usage flow, the level of satisfaction and the physical properties of spray of showerheads. The physical properties of spray were measured using physical properties test apparatus of standard or scheme for water-saving showerheads issued in several water-saving countries, and satisfaction evaluation data was a...

  17. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    Science.gov (United States)

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  18. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS2.

    Science.gov (United States)

    Hobbis, Dean; Wei, Kaya; Wang, Hsin; Martin, Joshua; Nolas, George S

    2017-11-20

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. We synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. In addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8 Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that of CuSbS 2 , in addition to investigating the effect of Te alloying on these properties.

  19. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Science.gov (United States)

    Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.

    2018-03-01

    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

  20. Soil and Rock Physical Properties at the Mars Exploration Rover Landing Sites: Early Returns

    Science.gov (United States)

    Ming, D. W.; Anderson, R. C.; Arvidson, R. E.; Bell, J. F., III; Biesiadecki, J.; Christensen, P. H.; Gorevan, S. P.; Ehlmann, B. L.; Guinness, E. A.; Graff, T. G.

    2004-01-01

    The purpose of this paper is to report the 'early returns' on the physical properties of soil units and rocks at the MER landing sites. Because we are still very early in the mission at Meridiani Planum, results from the Gusev Crater Landing Site are emphasized here.

  1. Composition and physical properties of arugula, shepherd's purse, and upland cress oils

    Science.gov (United States)

    The fatty acid, tocopherol and phytosterol profiles of arugula [AO; Eruca vesicaria (L.) Cav. subsp. sativa (Mill.) Thell.], upland cress [UCO; Barbarea verna (Mill.) Asch.], and shepherd's purse [SPO; Capsella bursa-pastoris (L.) Medik.] oils are reported, along with their physical properties. The...

  2. Composition and Physical Properties of Cress (Lepidium sativum L.) and Field Pennycress (Thlaspi arvense L.) Oils

    Science.gov (United States)

    The fatty acid profile and tocopherol, and phytosterol contents of crude cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils are reported, along with yields from the corresponding seeds. The physical properties of these oils were also determined, which included oxidative stab...

  3. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Science.gov (United States)

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  4. Effects of Music on Image Impression and Relationship between Impression and Physical Properties

    Science.gov (United States)

    Sato, Keiko; Mitsukura, Yasue

    Auditory information plays an integral role in AV media because even identical images are perceived differently when they are matched with different music. However, we now present a few studies in which the changes in subjective perceptions were analyzed on the basis of the physical properties of the perceived items. The purpose of this study is to investigate the effects of music on image impression in terms of the physical properties of images. In this paper, we first elucidate the changes in subjective impressions when the image is presented by itself and when it is presented with music. Secondly, to clarify the relation between the impression of an image or music and physical properties, we compare the different image or music perceptions with each other and also compare their respective physical properties, which include color information, structural information, and frequency characteristics. As a result, the color information of an image containing green or saturation colors and the power of the music were strongly correlated with adjectives expressing activity. Moreover, the entropy of saturation correlated with words expressing spatial extent.

  5. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs

    Science.gov (United States)

    Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White

    2012-01-01

    Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...

  6. PHYSICAL AND MECHANICAL PROPERTIES OF Araucaria angustifolia (Bertol. WOOD FOR THREE STRATUM PHYTOSOCIOLOGICAL

    Directory of Open Access Journals (Sweden)

    Rafael Beltrame

    2010-11-01

    Full Text Available The study of physical and mechanical properties of wood is essential for industrial use both in construction and the manufacture of furniture. Thus, the study aimed to determine the physical and mechanical properties of the Araucaria angustifolia wood in terms of three strata phytosociological. For this, 15 trees were felled, five belonging to the upper stratum, the middle stratum five and five for the lower strata. The trees were deployed for the preparation of specimens used for mechanical testing. In the mechanical characterization of the species assays were performed for impact resistance, static bending, compression axial and perpendicular to the fibers. As for the characterization of physical properties, determined the apparent specific gravity at 12% relative humidity for each extract. The results did not show significant differences in the tests of impact resistance and static bending to the strata phytosociological. As for the apparent specific gravity, compression axial and perpendicular there was a change in the values of propertiesbetween the strata phytosociological, is generally butter in the middle and upper strata. Therefore the physical and mechanical properties tend to present higher values these two strata. The data analysis allowed of Araucaria angustifolia wood has moderate mechanical strength when compared with other species studies.

  7. How does the science of physical and sensory properties contribute to gastronomy and culinary art?

    NARCIS (Netherlands)

    Piqueras Fiszman, B.; Varela, P.; Fiszman, S.

    2013-01-01

    What occurs in a physical properties and sensory research laboratory is relevant to food developers, chefs, and others working in the hospitality/culinary sector as well as to any curious food lover. Thanks to the contributions of science, the latest food innovations are percolating through to the

  8. Effects of heating treatment on some of the physical properties of ...

    African Journals Online (AJOL)

    The aim of the current study is to determine the effects of different heat treatment and varnish combination applications on some of the physical properties of wood materials sampled from limba (Terminalia superba), iroko (Chlorophora excelsa), ash (Fraxinus excelsior L.) and Anatolian chestnut (Castenea sativa Mill.) ...

  9. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Qunying Mou; Yiqiang Wu; Yuan Liu

    2011-01-01

    In this study the effect of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) was investigated. Wood specimens were subjected to heat treatment at 160, 180, 200 and 220°C for 1, 2, 3 and 4h. The results show that heat treatment resulted in a darkened color, decreased moisture performance and increased dimensional stability of...

  10. A post-logging assessment of some soil physical properties in a ...

    African Journals Online (AJOL)

    We assessed the impact of logging operations on some soil physical properties: penetration resistance, bulk density and matric potential in four logging gaps; loading bays, tree-fall gaps, primary skid trails, secondary skid trails and undisturbed site as control in a moist semi-deciduous forest in Ghana. Penetration resistance ...

  11. Influence of Salvadora persica (miswak) extract on physical and antimicrobial properties of glass ionomer cement

    NARCIS (Netherlands)

    El-Tatari, A.; de Soet, J.J.; de Gee, A.J.; Abou Shelib, M.; van Amerongen, W.E.

    2011-01-01

    AIM: To investigate physical and antimicrobial properties of Glass Ionomer Cement (GIC) combined with Salvadora Persica Extract (SPE). METHODS: SPE was added to GIC (Fuji IX) in concentrations of 1%, 2% and 4% w/w. The compressive strength and diametral tensile strength were measured at 1 h, 24 h

  12. Physical and combustion properties of nonwoven fabrics produced from conventional and naturally colored cottons

    Science.gov (United States)

    A comparative study was conducted to identify the effects of processing parameters on physical and combustion properties of needlepunched (NP) and hydroentangled (H-E) nonwoven fabrics produced from fibers of a standard Mid-South white fiber cotton and a naturally colored brown fiber cotton. The fl...

  13. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data

    Science.gov (United States)

    Hermans, Thomas; Oware, Erasmus; Caers, Jef

    2016-09-01

    Time-lapse applications of electrical methods have grown significantly over the last decade. However, the quantitative interpretation of tomograms in terms of physical properties, such as salinity, temperature or saturation, remains difficult. In many applications, geophysical models are transformed into hydrological models, but this transformation suffers from spatially and temporally varying resolution resulting from the regularization used by the deterministic inversion. In this study, we investigate a prediction-focused approach (PFA) to directly estimate subsurface physical properties with electrical resistance data, circumventing the need for classic tomographic inversions. First, we generate a prior set of resistance data and physical property forecast through hydrogeological and geophysical simulations mimicking the field experiment. We reduce the dimension of both the data and the forecast through principal component analysis in order to keep the most informative part of both sets in a reduced dimension space. Then, we apply canonical correlation analysis to explore the relationship between the data and the forecast in their reduced dimension space. If a linear relationship can be established, the posterior distribution of the forecast can be directly sampled using a Gaussian process regression where the field data scores are the conditioning data. In this paper, we demonstrate PFA for various physical property distributions. We also develop a framework to propagate the estimated noise level in the reduced dimension space. We validate the results by a Monte Carlo study on the posterior distribution and demonstrate that PFA yields accurate uncertainty for the cases studied.

  15. CO2 injection effect on physical properties of greensand from the North Sea

    DEFF Research Database (Denmark)

    Hossain, Zakir; Fabricius, Ida Lykke

    2011-01-01

    The objective of this study is to investigate CO2 injection effects on physical properties of greensand reservoir rocks from the North Sea. Greensands are sandstones composed of a mixture of clastic quartz grains and glauconite grains. A CO2 flooding experiments was carried to inject the CO2...

  16. Pelleted biochar: chemical and physical properties show potential use as a substrate in container nurseries

    Science.gov (United States)

    R. Kasten Dumroese; Juha Heiskanen; Karl Englund; Arja Tervahauta

    2011-01-01

    We found that peat moss, amended with various ratios of pellets comprised of equal proportions of biochar and wood flour, generally had chemical and physical properties suitable for service as a substrate during nursery production of plants. High ratios of pellets to peat (>50%) may be less desirable because of high C:N, high bulk density, swelling associated with...

  17. Species comparison of the physical properties of loblolly and slash pine wood and bark

    Science.gov (United States)

    Thomas L. Eberhardt; Joseph Dahlen; Laurence Schimleck

    2017-01-01

    Composition of the southern pine forest is now predominated by two species, loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.), owing to fire suppression activities, natural regeneration on abandoned agricultural lands, and extensive planting. Comparison of the wood and bark physical properties of these...

  18. Critical literature review of relationships between processing parameters and physical properties of particleboard

    Science.gov (United States)

    Myron W. Kelly

    1977-01-01

    The pertinent literature has been reviewed, and the apparent effects of selected processing parameters on the resultant particleboard properties, as generally reported in the literature, have been determined. Resin efficiency, type and level, furnish, and pressing conditions are reviewed for their reported effects on physical, strength, and moisture and dimensional...

  19. Analysis of the effect of pore geometry in the physical properties of rocks

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Oliveira Lima Roque

    2012-12-01

    Full Text Available Pore geometry is one of the main factors influencing the flow of reservoir fluids under pressure. Pores with narrower formats are more easily compressed when subject to pressure. Pressure modifies pore geometry by opening or closing cracks, causing increase or decrease in the elastic modulus, porosity, permeability, and other parameters. Rock physical properties depend on the size and shape of pores. Thus, in order to analyze changes on the physical properties behavior according to the pores geometry, it is necessary to study and improve mathematical models of the porous media by taking into account the pore shape factor for estimating rock elastic properties. Differential effective medium model (DEM, Hertz-Mindlin theory and coherent potential approximation (CPA are some of the theoretical paradigms that take into account pore geometry in changes in elastic moduli. Given the importance of the pore structure effect on the behavior of physical parameters, this article proposes an analysis of some mathematical models that consider the influence of pore shapes in the physical properties of rocks.

  20. Effect of tillage on soil physical properties, growth and yield of ...

    African Journals Online (AJOL)

    ... ploughing plus harrowing plus bedding (PHB), on soil physical properties, growth and shoot yield of large-green leafy amaranth (Amaranth sp.). Soil moisture retention and infiltration rates were also measured in two cropping seasons. Soil moisture retention did not reflect any significant differences in the first and second ...