WorldWideScience

Sample records for anomalous flux-ratio gravitational

  1. SHARP - II: Revealing a bias in observational measurements of dark matter substructure with gravitational lens flux ratios

    CERN Document Server

    Hsueh, J - W; Vegetti, S; McKean, J P; Spingola, C; Auger, M W; Koopmans, L V E; Lagattuta, D J

    2016-01-01

    Gravitational lens flux-ratio anomalies provide a powerful technique for measuring dark matter substructure in distant galaxies. However, before using these flux-ratio anomalies to test galaxy formation models, it is imperative to ascertain that the given anomalies are indeed due to the presence of dark matter substructure and not due to some other component of the lensing galaxy halo or to propagation effects. Here we present the case of CLASS~B1555+375, which has a strong radio-wavelength flux-ratio anomaly. Our high-resolution near-infrared Keck~II adaptive optics imaging and archival Hubble Space Telescope data reveal the lensing galaxy in this system to have a clear edge-on disc component that crosses directly over the pair of images that exhibit the flux-ratio anomaly. We find simple models that include the disc can reproduce the cm-wavelength flux-ratio anomaly without requiring additional dark matter substructure. Although further studies are required, our results suggest the assumption that all flux-...

  2. Anomalous ultraviolet line flux ratios in the cataclysmic variables 1RXSJ232953.9+062814, CE315, BZ UMa and EY Cyg observed with HST/STIS

    CERN Document Server

    Gänsicke, B T; De Martino, D; Beuermann, K; Long, K S; Sion, E M; Knigge, C; Marsh, T; Hubeny, I; G\\"ansicke, Boris T.; Szkody, Paula; Martino, Domitilla de; Beuermann, Klaus; Long, Knox S.; Sion, Edward M.; Knigge, Christian; Marsh, Tom; Hubeny, Ivan

    2003-01-01

    Brief HST/STIS spectroscopic snapshot exposures of the cataclysmic variables 1RXSJ232953.9+062814, CE315, BZ UMa and EY Cyg reveal very large NV/CIV line flux ratios, similar to those observed in AE Aqr. Such anomalous line flux ratios have so far been observed in 10 systems, and presumably reflect a different composition of the accreted material compared to the majority of cataclysmic variables. We discuss the properties of this small sample in the context of the recent proposal by Schenker et al. (2002) that a significant fraction of the present-day population of cataclysmic variables may have passed through a phase of thermal time-scale mass transfer.

  3. Anomalous CMB polarization and gravitational chirality

    CERN Document Server

    Contaldi, Carlo R; Smolin, Lee

    2008-01-01

    We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB measurement would provide the easiest way to detect a gravitational wave background. We speculate on the theoretical implications of such an observation.

  4. Anomalous center of mass shift gravitational dipole moment

    CERN Document Server

    Jeong, E J

    1996-01-01

    The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black ...

  5. Anomalous CMB polarization and gravitational chirality

    OpenAIRE

    Contaldi, Carlo R.; Magueijo, Joao; Smolin, Lee

    2008-01-01

    We consider the possibility that gravity breaks parity, with left and right handed gravitons coupling to matter with a different Newton's constant and show that this would affect their zero-point vacuum fluctuations during inflation. Should there be a cosmic background of gravity waves, the effect would translate into anomalous CMB polarization. Non-vanishing TB (and EB) polarization components emerge, revealing interesting experimental targets. Indeed if reasonable chirality is present a TB ...

  6. Anomalous center of mass shift: gravitational dipole moment.

    Science.gov (United States)

    Jeong, Eue Jin

    1997-02-01

    The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.

  7. Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars

    Science.gov (United States)

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-02-01

    By using observations of the Hulse-Taylor pulsar, we constrain the gravitational wave (GW) speed to the level of 1 0-2 . We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows us to directly constrain the cosmological couplings in the effective field theory of dark energy formalism.

  8. Using Spectral Flux Ratios to Standardize SN Ia Luminosities

    CERN Document Server

    Bailey, S; Antilogus, P; Aragon, C; Baltay, C; Bongard, S; Buton, C; Childress, M; Chotard, N; Copin, Y; Gangler, E; Loken, S; Nugent, P; Pain, R; Pécontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigaudier, G; Runge, K; Scalzo, R; Smadja, G; Swift, H; Tao, C; Thomas, R C; Wu, C

    2009-01-01

    We present a new method to standardize Type Ia supernova (SN Ia) luminosities to ~<0.13 magnitudes using flux ratios from a single flux-calibrated spectrum per SN. Using Nearby Supernova Factory spectrophotomery of 58 SNe Ia, we performed an unbiased search for flux ratios which correlate with SN Ia luminosity. After developing the method and selecting the best ratios from a training sample, we verified the results on a separate validation sample and with data from the literature. We identified multiple flux ratios whose correlations with luminosity are stronger than those of light curve shape and color, previously identified spectral feature ratios, or equivalent width measurements. In particular, the flux ratio R(642/443) = F(642 nm) / F(443 nm) has a correlation of 0.95 with SN Ia absolute magnitudes. Using this single ratio as a correction factor produces a Hubble diagram with a residual scatter standard deviation of 0.125 +- 0.011 mag, compared with 0.161 +- 0.015 mag when fit with the SALT2 light cur...

  9. Particle with spin 2 and anomalous magnetic moment in external electromagnetic and gravitational fields

    CERN Document Server

    Kisel, V V; Red'kov, V M

    2011-01-01

    Tensor 50-component form of the first order relativistic wave equation for a particle with spin 2 and anomalous magnetic moment is extended to the case of an arbitrary curved space-time geometry. An additional parameter considered in the presence of only electromagnetic field as related to anomalous magnetic moment, turns to determine additional interaction terms with external geometrical background through Ricci R_{kl} and Riemann R_{klmn} tensors.

  10. SHARP - II. Mass structure in strong lenses is not necessarily dark matter substructure: a flux ratio anomaly from an edge-on disc in B1555+375

    Science.gov (United States)

    Hsueh, J.-W.; Fassnacht, C. D.; Vegetti, S.; McKean, J. P.; Spingola, C.; Auger, M. W.; Koopmans, L. V. E.; Lagattuta, D. J.

    2016-11-01

    Gravitational lens flux-ratio anomalies provide a powerful technique for measuring dark matter substructure in distant galaxies. However, before using these flux-ratio anomalies to test galaxy formation models, it is imperative to ascertain that the given anomalies are indeed due to the presence of dark matter substructure and not due to some other component of the lensing galaxy halo or to propagation effects. Here we present the case of CLASS~B1555+375, which has a strong radio-wavelength flux-ratio anomaly. Our high-resolution near-infrared Keck~II adaptive optics imaging and archival Hubble Space Telescope data reveal the lensing galaxy in this system to have a clear edge-on disc component that crosses directly over the pair of images that exhibit the flux-ratio anomaly. We find that simple models that include the disc can reproduce the cm-wavelength flux-ratio anomaly without requiring additional dark matter substructure. Although further studies are required, our results suggest the assumption that all flux-ratio anomalies are due to a population of dark matter sub-haloes may be incorrect, and analyses that do not account for the full complexity of the lens macro-model may overestimate the substructure mass fraction in massive lensing galaxies.

  11. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media.

  12. Gravitation

    CERN Multimedia

    Without gravity, you would float into space. Gravity pulls matter together: it holds us onto the Earth, it holds the Earth in orbit around the sun and it holds our solar system in orbit about the centre of the galaxy. Everything with mass feels the attraction of gravity. The strength of the attraction between 2 objects depends on their masses. Despite its omnipresence, gravity is the weakest of the 4 forces. It is insignificant at the scale of human beings: when a group of visitors walks past, gravity doesn't pull you towards them! At even smaller scales, the gravitational pull between the electron and the proton is about 1040 times weaker than the electromagnetic attraction between them. Text for the interactive: Why does the same mass weigh more on the Earth than on the moon ?

  13. Effect of OH depletion on measurements of the mass-to-flux ratio in molecular cloud cores

    CERN Document Server

    Tassis, K; Yorke, H W; Turner, N J

    2014-01-01

    The ratio of mass and magnetic flux determines the relative importance of magnetic and gravitational forces in the evolution of molecular clouds and their cores. Its measurement is thus central in discriminating between different theories of core formation and evolution. Here we discuss the effect of chemical depletion on measurements of the mass-to-flux ratio using the same molecule (OH) both for Zeeman measurements of the magnetic field and the determination of the mass of the region. The uncertainties entering through the OH abundance in determining separately the magnetic field and the mass of a region have been recognized in the literature. It has been proposed however that, when comparing two regions of the same cloud, the abundance will in both cases be the same. We show that this assumption is invalid. We demonstrate that when comparing regions with different densities, the effect of OH depletion in measuring changes of the mass-to-flux ratio between different parts of the same cloud can even reverse ...

  14. PG 1115+080: variations of the A2/A1 flux ratio and new values of the time delays

    CERN Document Server

    Tsvetkova, V S; Shulga, V M; Schild, R E; Dudinov, V N; Minakov, A A; Nuritdinov, S N; Artamonov, B P; Kochetov, A Ye; Smirnov, G V; Sergeyev, A A; Konichek, V V; Sinelnikov, I Ye; Zheleznyak, A P; Bruevich, V V; Gaysin, R; Akhunov, T; Burkhonov, O

    2010-01-01

    We report the results of our multicolor observations of PG 1115+080 with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan, Central Asia) in 2001-2006. Monitoring data in filter R spanning the 2004, 2005 and 2006 seasons (76 data points) demonstrate distinct brightness variations of the source quasar with the total amplitude of almost 0.4 mag. Our R light curves have shown image C leading B by 16.4d and image (A1+A2) by 12d that is inconsistent with the previous estimates obtained by Schechter et al. in 1997 - 24.7d between B and C and 9.4d between (A1+A2) and C. The new values of time delays in PG 1115+080 must result in larger values for the Hubble constant, thus reducing difference between its estimates taken from the gravitational lenses and with other methods. Also, we analyzed variability of the A2/A1 flux ratio, as well as color changes in the archetypal "fold" lens PG 1115+080. We found the A1/A2 flux ratio to grow during 2001-2006 and to be larger at longer wavelengths. In particular, the A...

  15. Reanalyses of Anomalous Gravitational Microlensing Events in the OGLE-III Early Warning System Database with Combined Data

    CERN Document Server

    Jeong, J; Han, C; Gould, A; Udalski, A; Szymański, M K; Pietrzyński, G; Soszyński, I; Poleski, R; Ulaczyk, K; Wyrzykowski, Ł; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Rattenbury, N J; Saito, To; Sullivan, D J; Sweatman, W L; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Albrow, M D; Batista, V; Beaulieu, J -P; Caldwell, J A R; Cassan, A; Cole, A; Coutures, C; Dieters, S; Dominik, M; Prester, D Dominis; Donatowicz, J; Fouqué, P; Greenhill, J; Hoffman, M; Huber, M; Jørgensen, U G; Kane, S R; Kubas, D; Martin, R; Marquette, J -B; Menzies, J; Pitrou, C; Pollard, K; Sahu, K C; Vinter, C; Wambsganss, J; Williams, A; Allen, W; Bolt, G; Choi, J -Y; Christie, G W; DePoy, D L; Drummond, J; Gaudi, B S; Hwang, K -H; Jung, Y K; Lee, C -U; Mallia, F; Maoz, D; Maury, A; McCormick, J; Monard, L A G; Moorhouse, D; Natusch, T; Ofek, E O; Park, B -G; Pogge, R W; Santallo, R; Shin, I -G; Thornley, G; Yee, J C; Bramich, D M; Horne, K; Hundertmark, M; Kains, N; Snodgrass, C; Steele, I; Street, R; Tsapras, Y

    2015-01-01

    We reanalyze microlensing events in the published list of anomalous events that were observed from the OGLE lensing survey conducted during 2004-2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of 8 events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of 5 events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for 6 events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein ...

  16. On the origin of the flux ratio anomaly in quadruple lens systems

    Science.gov (United States)

    Inoue, Kaiki Taro

    2016-09-01

    We explore the origin of the flux ratio anomaly in quadruple lens systems. Using a semi-analytic method based on N-body simulations, we estimate the effect of a possible magnification perturbation caused by subhaloes with a mass scale of ≲109 h-1 M⊙ in lensing galaxy haloes. Taking into account astrometric shifts and assuming that the primary lens is described by a singular isothermal ellipsoid, the expected change to the flux ratios for a multiply lensed image is just a few per cent and the mean of the expected convergence perturbation at the effective Einstein radius of the lensing galaxy halo is = 0.003, corresponding to the mean of the ratio of a projected dark matter mass fraction in subhaloes at the effective Einstein radius = 0.006. In contrast, the expected change to the flux ratio caused by line-of-sight structures is typically ˜10 per cent and the mean of the convergence perturbation is = 0.008, corresponding to = 0.017. The contribution of the magnification perturbation caused by subhaloes is ˜40 per cent of the total at a source redshift zS = 0.7 and decreases monotonically in zS to ˜20 per cent at zS = 3.6. Assuming statistical isotropy, the convergence perturbation estimated from 11 observed quadruple lens systems has a positive correlation with the source redshift zS, which is much stronger than that with the lens redshift zL. This feature also supports that the flux ratio anomaly is caused mainly by line-of-sight structures rather than subhaloes. We also discuss a possible imprint of line-of-sight structures in the demagnification of minimum images due to locally underdense structures in the line of sight.

  17. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools.

  18. Estimating the Isotope Ratio of Ecosystem Respiration Using the Keeling Plot and the Flux Ratio Method

    Science.gov (United States)

    Zhang, J.; Griffis, T. J.; Baker, J. M.

    2004-12-01

    Stable carbon isotope analyses have been used in identifying global carbon sources and sinks and in partitioning ecosystem CO2 exchange into component fluxes. The isotope ratio of ecosystem respiration (δ 13Cr) is a critical parameter in applying stable isotope techniques to carbon cycle problems. The commonly used Keeling plot method in estimating δ 13Cr has limitations related to: 1) insufficient range of CO2 mixing ratio; 2) high sensitivity to curve-fitting techniques; and 3) extrapolation of CO2 mixing ratio beyond observations. In this study, the Keeling plot method was examined and compared with the flux ratio approach using continuous measurements of the mixing ratios of 12CO2 and 13CO2 over an extensive corn canopy during the 2003 growing season. The seasonal variation of δ 13Cr estimated from both methods harmonized with the ecosystem phenology. The δ 13Cr started to increase (became more positive) from mid June and peaked in early August, followed by a decrease into October. The Keeling plot method agreed well with the flux ratio method in the seasonal pattern of δ 13Cr, but tended to give lower values (more negative). The discrepancy between the two approaches was significant in July and August (about 5 per mil) and relatively small in June and September (about 1 to 2 per mil). We examined this discrepancy with respect to wind direction/advection and measurement footprints. In addition, our analysis of high-frequency data (every two minutes) using the flux ratio method indicates that δ 13Cr may vary significantly at short time-scales (e.g., hourly), which could have significant implications for flux partitioning studies.

  19. Infrared Supernova Remnants and their Infrared to X-ray Flux Ratios

    CERN Document Server

    Koo, Bon-Chul; Jeong, Il-Gyo; Seok, Ji Yeon; Kim, Hyun-Jeong

    2016-01-01

    Recent high-resolution infrared space missions have revealed supernova remnants (SNRs) of diverse morphology in infrared (IR) dust emission that is often very different from their X-ray appearance. The observed range of infrared-to-X-ray (IRX) flux ratios of SNRs are also wide. For a sample of 20 Galactic SNRs, we obtain their IR and X-ray properties and investigate the physical causes for such large differences. We find that the observed IRX flux ratios ($R_{IRX.obs}$) are related to the IRX morphology, with SNRs with the largest $R_{IRX,obs}$ showing anticorrelated IRX morphology. By analyzing the relation of $R_{IRX,obs}$ to X-ray and IR parameters, we show that the $R_{IRX,obs}$ of some SNRs agree with theoretical ratios of SNR shocks in which dust grains are heated and destroyed by collisions with plasma particles. For the majority of SNRs, however, $R_{IRX,obs}$ values are either significantly smaller or significantly larger than the theoretical ratios. The latter SNRs have relatively low dust temperatu...

  20. On the Anticorrelation Between Galaxy Light Concentration and X-ray-to-Optical Flux Ratio

    CERN Document Server

    Pović, M; García, A M Pérez; Bongiovanni, A; Cepa, J; Lorenzo, M Fernández; Lara-López, M A; González-Serrano, J I; Alfaro, E J

    2009-01-01

    Active Galactic Nuclei (AGN) play an important role in many aspects of the modern cosmology, and of particular interest is the issue of the interplay between AGN and their host galaxy. Using X-ray and optical data sets, we have explored the properties of a large sample of AGNs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and studied their evolution in relation with the evolution of their host galaxy. We present here an anticorrelation between X-ray-to-optical flux ratio (X/O) and galaxy light concentration (C), which has been found for the first time and might suggest that early type galaxies, having poor matter supply to feed the AGN activity, have lower Eddington rates than those of late type galaxies.

  1. How well can cold-dark-matter substructures account for the observed radio flux-ratio anomalies?

    CERN Document Server

    Xu, Dandan; Gao, Liang; Wang, Jie; Frenk, Carlos; Mao, Shude; Schneider, Peter; Springel, Volker

    2014-01-01

    Discrepancies between the observed and model-predicted radio flux ratios are seen in a number of quadruply-lensed quasars. The most favored interpretation of these anomalies is that CDM substructures present in lensing galaxies perturb the lens potentials and alter image magnifications and thus flux ratios. So far no consensus has emerged regarding whether or not the predicted CDM substructure abundance fully accounts for the lensing flux anomaly observations. Accurate modeling relies on a realistic lens sample in terms of both the lens environment and internal structures and substructures. In this paper we construct samples of generalised and specific lens potentials, to which we add (rescaled) subhalo populations from the galaxy-scale Aquarius and the cluster-scale Phoenix simulation suites. We further investigate the lensing effects from subhalos of masses several orders of magnitude below the simulation resolution limit. The resulting flux ratio distributions are compared to the currently best available s...

  2. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis.

    Science.gov (United States)

    Kogadeeva, Maria; Zamboni, Nicola

    2016-09-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses.

  3. Effects of Dark Matter Substructures on Gravitational Lensing: Results from the Aquarius Simulations

    CERN Document Server

    Xu, D D; Wang, J; Springel, V; Gao, L; White, S D M; Frenk, C S; Jenkins, A; Li, G; Navarro, J F

    2009-01-01

    We use high-resolution Aquarius simulations of Milky Way-sized haloes in the LCDM cosmology to study the effects of dark matter substructures on gravitational lensing. Each halo is resolved with ~ 10^8 particles (at a mass resolution ~ 10^3-4 M_sun/h) within its virial radius. Subhaloes with masses larger than 10^5 M_sun/h are well resolved, an improvement of at least two orders of magnitude over previous lensing studies. We incorporate a baryonic component modelled as a Hernquist profile and account for the response of the dark matter via adiabatic contraction. We focus on the "anomalous" flux ratio problem, in particular on the violation of the cusp-caustic relation due to substructures. We find that subhaloes with masses less than ~ 10^8 M_sun/h play an important role in causing flux anomalies; such low mass subhaloes have been unresolved in previous studies. There is large scatter in the predicted flux ratios between different haloes and between different projections of the same halo. In some cases, the f...

  4. Constraints on mixed dark matter from anomalous strong lens systems

    CERN Document Server

    Kamada, Ayuki; Takahashi, Tomo

    2016-01-01

    Recently it has been claimed that the warm dark matter (WDM) model cannot at the same time reproduce the observed Lyman-{\\alpha} forests in distant quasar spectra and solve the small-scale issues in the cold dark matter (CDM) model. As an alternative candidate, it was shown that the mixed dark matter (MDM) model that consists of WDM and CDM can satisfy the constraint from Lyman-{\\alpha} forests and account for the "missing satellite problem" as well as the reported 3.5 keV anomalous X-ray line. We investigate observational constraints on the MDM model using strong gravitational lenses. We first develop a fitting formula for the nonlinear power spectra in the MDM model by performing N-body simulations and estimate the expected perturbations caused by line-of-sight structures in four quadruply lensed quasars that show anomaly in the flux ratios. Our analysis indicates that the MDM model is compatible with the observed anomaly if the mass fraction of the warm component is smaller than 0.47 at the 95% confidence ...

  5. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico

    Directory of Open Access Journals (Sweden)

    McAnulty Michael J

    2012-05-01

    Full Text Available Abstract Background Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. Results A new method called “flux balance analysis with flux ratios (FBrAtio” was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490 that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i acetate, (ii lactate, (iii butyrate, (iv acetone, (v butanol, (vi ethanol, (vii CO2 and (viii H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. Conclusions FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.

  6. Evidence of Decay of Flux Ratio of Fe to Fe–Ni Line Features with Electron Temperature in Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2010-09-01

    We report observational evidence of the decay of the flux ratio of Fe to Fe–Ni line features as a function of plasma electron temperature in solar flares in comparison to that theoretically predicted by Phillips (2004). We present the study of spectral analysis of 14 flares observed by the Solar X-ray Spectrometer (SOXS) – Low Energy Detector (SLD) payload. The SLD payload employs the state-of-the-art solid state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices. The sub-keV energy resolution of Si PIN detector allows us to study the Fe-line and Fe–Ni line features appearing at 6.7 and 8 keV, respectively, in greater detail. In order to best-fit the whole spectrum at one time in the desired energy range between 4 and 25 keV we considered Gaussian-line, the multi-thermal power-law and broken power-law functions. We found that the flux ratio of Fe to Fe–Ni line features decays with flare electron temperature by the asymptotic form of polynomial of inverse third order. The relative flux ratio is ∼ 30 at temperature 12 MK which drops to half, ∼ 15 at 20 MK, and at further higher temperatures it decreases smoothly reaching to ∼ 8 at ∼ 50 MK. The flux ratio, however, at a given flare plasma temperature, and its decrease with temperature is significantly lower than that predicted theoretically. We propose that the difference may be due to the consideration of higher densities of Fe and Fe–Ni lines in the theoretical model of Phillips (2004). We suggest revising the Fe and Fe–Ni line densities in the corona. The decay of flux ratio explains the variation of equivalent width and peak energy of these line features with temperature.

  7. Anomalous transport due to scale anomaly

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that the scale anomaly in field theories leads to new anomalous transport effects that emerge in external electromagnetic field in inhomogeneous gravitational background. In inflating geometry the QED scale anomaly generates electric current which flows in opposite direction with respect to background electric field. In static spatially inhomogeneous gravitational background the dissipationless electric current flows transversely both to the magnetic field axis and to the gradient of the inhomogeneity. The anomalous currents are proportional to the beta function of the theory.

  8. Exploring the Active Galactic Nuclei population with extreme X-ray to optical flux ratios (Fx/Fo >50)

    CERN Document Server

    Della Ceca, R; Caccianiga, A; Severgnini, P; Ballo, L; Braito, V; Corral, A; Del Moro, A; Mateos, S; Ruiz, A; Watson, M G

    2015-01-01

    The cosmic history of the growth of supermassive black holes in galactic centers parallels that of star-formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (Fx/Fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with Fx/Fo >50, EXO50 sources hereafter), using a well defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (about 70 percent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) > 1.5E-13 cgs) are associated with obscured AGN (Nh > 1.0E22 cm-2), spanning a redshift range between 0.75 and 1 and characterised by 2-10 keV intrinsic luminosities in the QSO regime...

  9. Statistical analysis of the mass-to-flux ratio in turbulent cores: effects of magnetic field reversals and dynamo amplification

    CERN Document Server

    Bertram, Erik; Banerjee, Robi; Klessen, Ralf S

    2011-01-01

    We study the mass-to-flux ratio (M/\\Phi) of clumps and cores in simulations of supersonic, magnetohydrodynamical turbulence for different initial magnetic field strengths. We investigate whether the (M/\\Phi)-ratio of core and envelope, R = (M/\\Phi)_{core}/(M/\\Phi)_{envelope} can be used to distinguish between theories of ambipolar diffusion and turbulence-regulated star formation. We analyse R for different Lines-of-Sight (LoS) in various sub-cubes of our simulation box. We find that, 1) the average and median values of |R| for different times and initial magnetic field strengths are typically greater, but close to unity, 2) the average and median values of |R| saturate at average values of |R| ~ 1 for smaller magnetic fields, 3) values of |R| < 1 for small magnetic fields in the envelope are caused by field reversals when turbulence twists the field lines such that field components in different directions average out. Finally, we propose two mechanisms for generating values |R| ~< 1 for the weak and st...

  10. Measurement of Cosmic Ray antiproton/proton flux ratio at TeV energies with ARGO-YBJ

    CERN Document Server

    Di Sciascio, G

    2011-01-01

    Cosmic ray antiprotons provide an important probe for the study of cosmic-ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$), is the only experiment exploiting the full coverage approach at very high altitude presently at work. The ARGO-YBJ experiment is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays Moon shadowing effect. Based on all the data recorded during the period from July 2006 through November 2009 and a full Monte Carlo simulation, we searched for the existence of the shadow produced by antiprotons at the few-TeV energy region. No evidence of the existence of antiprotons was found in this energy region. Upper limits to the antip/p flux ratio are set to 5 % at a median energy of 2 TeV and 6 % at 5 TeV with a confidence level of 90 %. In the few-TeV energy range this resul...

  11. Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device

    Science.gov (United States)

    Wei, Zian; Ma, Jinxiu; Li, Yuanrui; Sun, Yan; Jiang, Zhengqi

    2016-11-01

    Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hot-cathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio supported by National Natural Science Foundation of China (Nos. 11575183, 11175177)

  12. A Monte Carlo Study of Flux Ratios of Raman Scattered O vi Features at 6825 and 7082 Å in Symbiotic Stars

    Science.gov (United States)

    Lee, Young-Min; Lee, Dae-Sub; Chang, Seok-Jun; Heo, Jeong-Eun; Lee, Hee-Won; Hwang, Narae; Park, Byeong-Gon; Lee, Ho-Gyu

    2016-12-01

    Symbiotic stars are regarded as wide binary systems consisting of a hot white dwarf and a mass losing giant. They exhibit unique spectral features at 6825 and 7082 Å, which are formed via Raman scattering of O vi λλ 1032 and 1038 with atomic hydrogen. We adopt a Monte Carlo technique to generate the same number of O vi λ1032 and λ1038 line photons and compute the flux ratio F(6825)/F(7082) of these Raman scattered O vi features formed in neutral regions with a simple geometric shape as a function of H i column density N H i . In cylindrical and spherical neutral regions with the O vi source embedded inside, the flux ratio F(6825)/F(7082) shows an overall decrease from 3 to 1 as N H i increases in the range {10}22{--24} {{cm}}-2. In cases of slab geometry and other geometries with the O vi source outside the H i region, Rayleigh escape operates to lower the flux ratio considerably. For moderate values of {N}{{H}{{I}}}˜ {10}23 {{cm}}-2 the flux ratio behaves in a complicated way to exhibit a broad bump with a peak value of 3.5 in the case of a sphere geometry. We find that the ratio of Raman conversion efficiencies of O vi λλ 1032, 1038 ranges from 0.8 to 3.5. Our high resolution spectra of “D” type HM Sge and “S” type AG Dra obtained with the Canada-France-Hawaii Telescope show that the flux ratio F(6825)/F(7082) of AG Dra is significantly smaller than that of HM Sge, implying that “S” type symbiotics are characterized by higher N H i than “D” type symbiotics.

  13. Exploring the active galactic nuclei population with extreme X-ray-to-optical flux ratios (fx/fo > 50)

    Science.gov (United States)

    Della Ceca, R.; Carrera, F. J.; Caccianiga, A.; Severgnini, P.; Ballo, L.; Braito, V.; Corral, A.; Del Moro, A.; Mateos, S.; Ruiz, A.; Watson, M. G.

    2015-03-01

    The cosmic history of the growth of supermassive black holes in galactic centres parallels that of star formation in the Universe. However, an important fraction of this growth occurs inconspicuously in obscured objects, where ultraviolet/optical/near-infrared emission is heavily obscured by dust. Since the X-ray flux is less attenuated, a high X-ray-to-optical flux ratio (fx/fo) is expected to be an efficient tool to find out these obscured accreting sources. We explore here via optical spectroscopy, X-ray spectroscopy and infrared photometry the most extreme cases of this population (those with fx/fo > 50, EXO50 sources hereafter), using a well-defined sample of seven X-ray sources extracted from the 2XMM catalogue. Five EXO50 sources (˜70 per cent of the sample) in the bright flux regime explored by our survey (f(2-10 keV) ≥ 1.5 × 10-13 erg cm-2 s-1) are associated with obscured AGN (NH > 1022 cm-2), spanning a redshift range between 0.75 and 1 and characterized by 2-10 keV intrinsic luminosities in the QSO regime (e.g. well in excess to 1044 erg s-1). We did not find compelling evidence of Compton thick active galacic nuclei (AGN). Overall, the EXO50 type 2 QSOs do not seem to be different from standard X-ray-selected type 2 QSOs in terms of nuclear absorption; a very high AGN/host galaxy ratio seems to play a major role in explaining their extreme properties. Interestingly, three out of five EXO50 type 2 QSO objects can be classified as extreme dust-obscured galaxies (EDOGs, f24 μm/fR ≥ 2000), suggesting that a very high AGN/host ratios (along with the large amount of dust absorption) could be the natural explanation also for a part of the EDOG population. The remaining two EXO50 sources are classified as BL Lac objects, having rather extreme properties, and which are good candidates for TeV emission.

  14. 15 GHz monitoring of the gravitational lens MG 0414+0534

    NARCIS (Netherlands)

    Moore, CB; Hewitt, JN

    1997-01-01

    We report the results of monitoring the four images of the gravitational lens MG 0414+0534 at 15 GHz. In 35 VLA maps spanning 180 days, we measure root mean square variations in the image light curves of similar to 3.5% mostly due to variations in the flux density calibration. The flux ratios, which

  15. Gravitational lensing by gravitational waves

    OpenAIRE

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2008-01-01

    Gravitational lensing by gravitational wave is considered. We notice that although final and initial direction of photons coincide, displacement between final and initial trajectories occurs. This displacement is calculated analytically for the plane gravitational wave pulse. Estimations for observations are discussed.

  16. Natural wormholes as gravitational lenses

    CERN Document Server

    Cramer, J G; Morris, M S; Visser, M; Benford, G; Landis, G A; Cramer, John G; Forward, Robert L; Morris, Michael S; Visser, Matt; Benford, Gregory; Landis, Geoffrey A

    1995-01-01

    Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.

  17. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    Science.gov (United States)

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  18. A Monte Carlo Study of Flux Ratios of Raman Scattered O~VI Features at 6825 \\AA\\ and 7082 \\AA\\ in Symbiotic Stars

    CERN Document Server

    Lee, Young-Min; Chang, Seok-Jun; Heo, Jeong-Eun; Lee, Hee-Won

    2016-01-01

    Symbiotic stars are regarded as wide binary systems consisting of a hot white dwarf and a mass losing giant. They exhibit unique spectral features at 6825 \\AA\\ and 7082 \\AA, which are formed via Raman scattering of \\ion{O}{6}$\\lambda\\lambda$ 1032 and 1038 with atomic hydrogen. We adopt a Monte Carlo technique to generate the same number of \\ion{O}{6}$\\lambda$1032 and $\\lambda$1038 line photons and compute the flux ratio $F(6825)/F(7082)$ of these Raman scattered \\ion{O}{6} features formed in neutral regions with a simple geometric shape as a function of \\ion{H}{1} column density $N_{HI}$. In cylindrical and spherical neutral regions with the \\ion{O}{6} source embedded inside, the flux ratio $F(6825)/F(7082)$ shows an overall decrease from 3 to 1 as $N_{HI}$ increases in the range $10^{22-24}{\\rm\\ cm^{-2}}$. In the cases of a slab geometry and other geometries with the \\ion{O}{6} source outside the \\ion{H}{1} region, Rayleigh escape operates to lower the flux ratio considerably. For moderate values of $N_{HI}\\...

  19. Increased bismuth concentration in MBE GaAs{sub 1−x}Bi{sub x} films by oscillating III/V flux ratio during growth

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Adam W., E-mail: awood4@wisc.edu; Babcock, Susan E. [Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Li, Jincheng; Brown, April S. [Electrical and Computer Engineering, Duke University, Durham, North Carolina 27707 (United States)

    2015-05-15

    The authors have examined bismuth concentration profiles in GaAs{sub 1−x}Bi{sub x} films grown by molecular beam epitaxy using high angle annular dark field imaging (Z-contrast imaging) in an aberration-corrected scanning transmission electron microscope in conjunction with x-ray diffraction. Samples were grown with a gradient in each of the component fluxes, and therefore, the III/V ratio across the substrate. Rotating the sample during growth exposed the growth surface to an oscillating III/V flux ratio. Sinusoidal [Bi] profiles resulted in the growth direction, the wavelength and number of which were consistent with the growth rate and the rate of substrate rotation. However, the magnitude of [Bi] in the observed fluctuations was greater than the maximum [Bi] achieved using the same Bi flux and Ga/As flux ratios in steady-state conditions on a stationary substrate, suggesting that varying the III/V flux ratio during growth promotes the incorporation of Bi in GaAs{sub 1−x}Bi{sub x} films. A proposed qualitative model for how this enhancement might occur hypothesizes a critical role for alternating growth and shrinkage of Ga-Bi predroplet clusters on the surface as the growing material is rotated through Ga-rich and As-rich flux compositions.

  20. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly

    CERN Document Server

    Megias, Eugenio

    2013-01-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

  1. Predicting Intrinsic mid-IR to optical flux ratios for galaxies of different types using Spectral Synthesis Models of Composite Stellar Populations

    Science.gov (United States)

    Kim, Duho; Jansen, Rolf A.; Windhorst, Rogier A.

    2016-01-01

    We analyze the intrinsic flux ratios of simple and composite stellar populations for various visible--near-infrared filters with respect to ˜3.5μm (L-band), and their dependence on metallicity, star-formation history, and effective mean age. This study is motivated by the fact that light from galaxies is reddened and attenuated by dust via scattering and absorption, where different sightlines across the face of a galaxy suffer various amounts of extinction. Ignoring the effects of this extinction could lead one to infer lower stellar mass, and SFR, or higher metallicity. Tamura et al. (2009) developed an approximate method, dubbed the "βV" method, which corrects for dust-extinction on a pixel-by-pixel basis, by comparing the observed flux ratio and empirical estimate of the intrinsic flux ratio of optical and ˜3.5μm broadband data. Here, we aim to validate and test the limits of the βV method for various filters spanning the visible through near-infrared wavelength range. Through extensive modeling, we test their assumptions for the intrinsic flux ratios for a wide variety of simple and composite stellar populations. We build spectral energy distributions (SEDs) of simple stellar populations (SSPs), by adopting Starburst99 and BC03 models for young (100Myr) stellar populations, respectively, and linear combinations of these for intermediate ages. We then construct composite stellar population (CSP) SEDs by combining SSP SEDs for various realistic star-formation histories (SFHs). We convolve filter response curves of visible--near-infrared filters for HST imaging surveys and mid-infrared filters in current (WISE, Spitzer/IRAC) and near-future use (JWST/NIRCam) with each model SED, to obtain intrinsic flux ratios (βλ,0). We find that βNIR,0 is only varying slightly as a function of metallicity but is insensitive to SFH or redshift (z≤2). We also find a narrow range of βV,0 (0.7+0.05-0.08) for early Hubble type galaxies (E and S0) using SEDs of randomly

  2. Gravitational vacuum

    Science.gov (United States)

    Grigoryan, L. S.; Saakyan, G. S.

    1984-09-01

    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  3. Metabolic flux ratio analysis and multi-objective optimization revealed a globally conserved and coordinated metabolic response of E. coli to paraquat-induced oxidative stress.

    Science.gov (United States)

    Shen, Tie; Rui, Bin; Zhou, Hong; Zhang, Ximing; Yi, Yin; Wen, Han; Zheng, Haoran; Wu, Jihui; Shi, Yunyu

    2013-01-27

    The ability of a microorganism to adapt to changes in the environment, such as in nutrient or oxygen availability, is essential for its competitive fitness and survival. The cellular objective and the strategy of the metabolic response to an extreme environment are therefore of tremendous interest and, thus, have been increasingly explored. However, the cellular objective of the complex regulatory structure of the metabolic changes has not yet been fully elucidated and more details regarding the quantitative behaviour of the metabolic flux redistribution are required to understand the systems-wide biological significance of this response. In this study, the intracellular metabolic flux ratios involved in the central carbon metabolism were determined by fractional (13)C-labeling and metabolic flux ratio analysis (MetaFoR) of the wild-type E. coli strain JM101 at an oxidative environment in a chemostat. We observed a significant increase in the flux through phosphoenolpyruvate carboxykinase (PEPCK), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (MEZ) and serine hydroxymethyltransferase (SHMT). We applied an ε-constraint based multi-objective optimization to investigate the trade-off relationships between the biomass yield and the generation of reductive power using the in silico iJR904 genome-scale model of E. coli K-12. The theoretical metabolic redistribution supports that the trans-hydrogenase pathway should not play a direct role in the defence mounted by E. coli against oxidative stress. The agreement between the measured ratio and the theoretical redistribution established the significance of NADPH synthesis as the goal of the metabolic reprogramming that occurs in response to oxidative stress. Our work presents a framework that combines metabolic flux ratio analysis and multi-objective optimization to investigate the metabolic trade-offs that occur under varied environmental conditions. Our results led to the proposal that the metabolic response of E

  4. Gravitational induction

    CERN Document Server

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2008-01-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show {\\it explicitly} that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  5. Analysis of the Intrinsic Mid-Infrared L-band to Visible--Near-Infrared Flux Ratios in Spectral Synthesis Models of Composite Stellar Populations

    CERN Document Server

    Kim, Duho; Windhorst, Rogier A

    2016-01-01

    We analyze the intrinsic flux ratios of various visible--near-infrared filters with respect to 3.5micron for simple and composite stellar populations, and their dependence on age, metallicity and star formation history. UV/optical light from stars is reddened and attenuated by dust, where different sightlines across a galaxy suffer varying amounts of extinction. Tamura et al. (2009) developed an approximate method to correct for dust extinction on a pixel-by-pixel basis, dubbed the "beta_V" method, by comparing the observed flux ratio to an empirical estimate of the intrinsic ratio of visible and ~3.5micron data. Through extensive modeling, we aim to validate the "beta_V" method for various filters spanning the visible through near-infrared wavelength range, for a wide variety of simple and composite stellar populations. Combining Starburst99 and BC03 models, we built spectral energy distributions (SEDs) of simple (SSP) and composite (CSP) stellar populations for various realistic star formation histories (SF...

  6. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  7. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  8. Gravitational analogue of the Witten effect

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (International Centre for Theoretical Physics, Trieste (Italy))

    1985-07-22

    In the presence of massive fermions, and assuming a non-vanishing theta-parameter as the only source of CP violation, the Witten effect (a shift in the electric charge of a magnetic monopole due to CP non-conservation) is shown to follow from an anomalous chiral commutator. Next, given the gravitational contribution to the chiral anomaly, the corresponding anomalous commutator for Dirac fermion currents in a gravitational background is derived. From that, we infer the equivalence of a thetaR tildeR term in the lagrangian to a shift in the mass parameter of the NUT metric, in proportion to theta. This is interpreted as the gravitational analogue of the Witten effect. Its relevance to certain Kaluza-Klein monopoles is briefly discussed.

  9. Classical Gravitational Interactions and Gravitational Lorentz Force

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In quantum gauge theory of gravity, the gravitational field is represented by gravitational gauge field.The field strength of gravitational gauge field has both gravitoelectric component and gravitomagnetic component. In classical level, gauge theory of gravity gives classical Newtonian gravitational interactions in a relativistic form. Besides,it gives gravitational Lorentz force, which is the gravitational force on a moving object in gravitomagnetic field The direction of gravitational Lorentz force is not the same as that of classical gravitational Newtonian force. Effects of gravitational Lorentz force should be detectable, and these effects can be used to discriminate gravitomagnetic field from ordinary electromagnetic magnetic field.

  10. Gravitating lumps

    CERN Document Server

    Galtsov, D V

    2001-01-01

    Recent progress in the study of solitons and black holes in non-Abelian field theories coupled to gravity is reviewed. New topics include gravitational binding of monopoles, black holes with non-trivial topology, Lue-Weinberg bifurcation, asymptotically AdS lumps, solutions to the Freedman-Schwarz model with applications to holography, non-Abelian Born-Infeld solutions

  11. Estimating the size and abundance of dark matter subhaloes with gravitational millilensing

    Science.gov (United States)

    Vives-Arias, H.; Jiménez-Vicente, J.; Muñoz, J. A.; Mediavilla, E.

    2017-03-01

    We use 8 gravitational lens systems with quadruply imaged quasars and their observed flux ratio anomalies obtained using data in mid-infrared, radio or spectral narrow lines as a baseline, to estimate the amount of substructure in the dark matter halo of lens galaxies. We assume that the smooth gravitational potential of the galaxies is well modeled by a Singular Isothermal Ellipsoid (SIE) plus external shear (γ) and an additional Singular Isothermal Sphere (SIS) in some cases, and that the cause of the flux ratio anomalies is dark matter subhalos described by pseudo-Jaffe density profiles. Our Bayesian estimate for the Einstein radius of the subhalos is b = 0.0003^{+0.0005}_{-0.0002} arcsec, and their abundance (as a fraction of the total surface density of the lens galaxy at the image positions) is α =Ê0.075^{+0.030}_{-0.021}.

  12. Conformal Anomalies and Gravitational Waves

    CERN Document Server

    Meissner, Krzysztof A

    2016-01-01

    We argue that the presence of conformal anomalies in gravitational theories can lead to observable modifications to Einstein's equations via the induced anomalous effective actions, whose non-localities can overwhelm the smallness of the Planck scale. The fact that no such effects have been seen in recent cosmological or gravitational wave observations therefore imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. We then show that, among presently known theories, a complete cancellation of conformal anomalies in $D=4$ for both the $C^2$ invariant and the Euler (Gauss-Bonnet) invariant $E_4$ can only be achieved for $N$-extended supergravities with $N\\geq 5$, as well as for M theory compactified to four dimensions.

  13. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  14. Gravitational Radiation from Oscillating Gravitational Dipole

    OpenAIRE

    De Aquino, Fran

    2002-01-01

    The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.

  15. Gravitational induction

    OpenAIRE

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-01-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show {\\it explicitly} that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrod...

  16. ANOMALOUS MAGNETIC FILMS,

    Science.gov (United States)

    Three types of anomalous nickel-iron magnetic films characterized by hysteresigraph and torque-magnetometer measurements; bitter-pattern observations; reprint from ’ Journal of Applied Physics .’

  17. Quasar structure from microlensing in gravitationally lensed quasars

    Science.gov (United States)

    Morgan, Christopher Warren

    2008-02-01

    I analyze microlensing in gravitationally lensed quasars to yield measurements of the structure of their continuum emission regions. I first describe our lensed quasar monitoring program and RETROCAM, the auxiliary port camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I describe the application of our Monte Carlo microlensing analysis technique to SDSS 0924+0219, a system with a highly anomalous optical flux ratio. For an inclination angle i, I find an optical scale radius log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] . I extrapolate the best-fitting light curves into the future to find a roughly 45% probability that the anomalous image (D) will brighten by at least an order of magnitude during the next decade. I expand our method to make simultaneous estimates of the time delays and structure of HE1104-1805 and QJ0158-4325, two doubly-imaged quasars with microlensing and intrinsic variability on comparable time scales. For HE1104- 1805 I find a time delay of D t AB = t A - t B = [Special characters omitted.] days and estimate a scale radius of log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] at 0.2mm in the rest frame. I am unable to measure a time delay for QJ0158-4325, but the scale radius is log[( r s /cm) [Special characters omitted.] ] = 14.9 ±1 0.3 at 0.3mm in the rest frame. I then apply our Monte Carlo microlensing analysis technique to the optical light curves of 11 lensed quasar systems to show that quasar accretion disk sizes at 2500Å are related to black hole mass ( M BH ) by log( R 2500 /cm) = (15.7 ± 0.16) + (0.64± 0.18) log( M BH /10 9 [Special characters omitted.] ). This scaling is consistent with the expectation from thin disk theory (R 0( [Special characters omitted.] ), but it implies that black holes radiate with relatively low efficiency, log(e) = -1.54 ± 0.36 + log( L/L E ) where e=3D L / ( M c 2 ). These sizes are also larger, by a factor of ~ 3, than

  18. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2016-08-01

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 ×1 05 antiproton events and 2.42 ×1 09 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ˜60 to ˜500 GV , the antiproton p ¯, proton p , and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e- flux exhibits a different rigidity dependence. Below 60 GV, the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios each reaches a maximum. From ˜60 to ˜500 GV , the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  19. Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station.

    Science.gov (United States)

    Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-08-26

    A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500  GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500  GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.

  20. Hydrodynamic Waves in an Anomalous Charged Fluid

    CERN Document Server

    Abbasi, Navid; Rezaei, Zahra

    2015-01-01

    We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...

  1. Conditions for stimulated emission in anomalous gravity-superconductors interactions

    CERN Document Server

    Modanese, G

    2009-01-01

    Several authors have studied the generation of gravitational fields by condensed-matter systems in non-extreme density conditions. General Relativity and lowest-order perturbative Quantum Gravity predict in this case an extremely small emission rate, so these phenomena can become relevant only if some strong quantum effect occurs. Quantum aspects of gravity are still poorly understood. It is believed that they could play a role in systems which exhibit macroscopic quantum coherence, like superconductors and superfluids, leading to an "anomalous" coupling between matter and field. We mention here recent work in this field by Woods, Chiao, Becker, Agop et al., Ummarino, Kiefer and Weber. New results are presented concerning anomalous stimulated gravitational emission in a layered superconductor like YBCO. We model the superconductor as an array of intrinsic Josephson junctions. The superconducting parameters are defined by our preliminary measurements with melt-textured samples. We write explicitly and solve nu...

  2. Anomalous law of cooling

    Science.gov (United States)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  3. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  4. Anomalous law of cooling.

    Science.gov (United States)

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  5. A new gravitational lens from the MUSCLES survey: ULAS J082016.1 081216

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Neal; /Manchester U.; Ofek, Eran O.; /Caltech; Oguri, Masamune; /KIPAC, Menlo Park

    2009-06-19

    We present observations of a new double-image gravitational lens system, ULAS J082016.1+081216, of image separation 2.3 and high ({approx}6) flux ratio. The system is selected from the Sloan Digital Sky Survey spectroscopic quasar list using new high-quality images from the UKIRT Deep Sky Survey (UKIDSS). The lensed quasar has a source redshift of 2.024, and we identify the lens galaxy as a faint red object of redshift 0.803 {+-} 0.001. Three other objects from the UKIDSS survey, selected in the same way, were found not to be lens systems. Together with the earlier lens found using this method, the SDSS-UKIDSS lenses have the potential to significantly increase the number of quasar lenses found in SDSS, to extend the survey to higher flux ratios and lower separations, and to give greater completeness which is important for statistical purposes.

  6. Anomalous pion decay revisited

    CERN Document Server

    Battistel, O A; Nemes, M C; Hiller, B

    1999-01-01

    An implicit four dimensional regularization is applied to calculate the axial-vector-vector anomalous amplitude. The present technique always complies with results of Dimensional Regularization and can be easily applied to processes involving odd numbers of $\\gamma_5$ matrices. This is illustrated explicitely in the example of this letter.

  7. Anomalous law of cooling

    OpenAIRE

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Oliveira, Fernando A.; Rubí, J. Miguel

    2014-01-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergo a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature ma...

  8. Anomalous diffusion of epicentres

    CERN Document Server

    Sotolongo-Costa, Oscar; Posadas, A; Luzon, F

    2007-01-01

    The classification of earthquakes in main shocks and aftershocks by a method recently proposed by M. Baiesi and M. Paczuski allows to the generation of a complex network composed of clusters that group the most correlated events. The spatial distribution of epicentres inside these structures corresponding to the catalogue of earthquakes in the eastern region of Cuba shows anomalous anti-diffusive behaviour evidencing the attractive nature of the main shock and the possible description in terms of fractional kinetics.

  9. Detection of gravitational radiation

    Energy Technology Data Exchange (ETDEWEB)

    Holten, J.W. van [ed.

    1994-12-31

    In this report the main contributions presented at the named symposium are collected. These concern astrophysical sources of gravitational radiation, ultracryogenic gravitational wave experiments, read out and data analysis of gravitational wave antennas, cryogenic aspects of large mass cooling to mK temperatures, and metallurgical and engineering aspects of large Cu structure manufacturing. (HSI).

  10. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  11. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  12. Conformal Anomaly and Large Scale Gravitational Coupling

    CERN Document Server

    Salehi, H

    2000-01-01

    We present a model in which the breackdown of conformal symmetry of a quantum stress-tensor due to the trace anomaly is related to a cosmological effect in a gravitational model. This is done by characterizing the traceless part of the quantum stress-tensor in terms of the stress-tensor of a conformal invariant classical scalar field. We introduce a conformal frame in which the anomalous trace is identified with a cosmological constant. In this conformal frame we establish the Einstein field equations by connecting the quantum stress-tensor with the large scale distribution of matter in the universe.

  13. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2017-01-01

    This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the “gauge” theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational inter...

  14. Hydrodynamic waves in an anomalous charged fluid

    Science.gov (United States)

    Abbasi, Navid; Davody, Ali; Hejazi, Kasra; Rezaei, Zahra

    2016-11-01

    We study the collective excitations in a relativistic fluid with an anomalous U (1) current. In 3 + 1 dimensions at zero chemical potential, in addition to ordinary sound modes we find two propagating modes in presence of an external magnetic field. The first one which is a transverse degenerate mode, propagates with a velocity proportional to the coefficient of gravitational anomaly; this is in fact the Chiral Alfvén wave recently found in [1]. Another one is a wave of density perturbation, namely a chiral magnetic wave (CMW). The velocity dependence of CMW on the chiral anomaly coefficient is well known. We compute the dependence of CMW's velocity on the coefficient of gravitational anomaly as well. We also show that the dissipation splits the degeneracy of CAW. At finite chiral charge density we show that in general there may exist five chiral hydrodynamic waves. Of these five waves, one is the CMW while the other four are mixed Modified Sound-Alfvén waves. It turns out that in propagation transverse to the magnetic field no anomaly effect appears while in parallel to the magnetic field we find sound waves become dispersive due to anomaly.

  15. Beta Function and Anomalous Dimensions

    CERN Document Server

    Pica, Claudio

    2010-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  16. Anomalous Dimensions of Conformal Baryons

    CERN Document Server

    Pica, Claudio

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.

  17. Anomalous radiative transitions

    CERN Document Server

    Ishikawa, Kenzo; Tobita, Yutaka

    2014-01-01

    Anomalous transitions involving photons derived by many-body interaction of the form, $\\partial_{\\mu} G^{\\mu}$, in the standard model are studied. This does not affect the equation of motion in the bulk, but makes wave functions modified, and causes the unusual transition characterized by the time-independent probability. In the transition probability at a time-interval T expressed generally in the form $P=T \\Gamma_0 +P^{(d)}$, now with $\\Gamma_0=0, P^{(d)} \

  18. Gravitational waves from inflation

    Science.gov (United States)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  19. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  20. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  1. Gravitational waves from inflation

    CERN Document Server

    Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between t...

  2. Theory of gravitational interactions

    CERN Document Server

    Gasperini, Maurizio

    2013-01-01

    This reference textbook is an up-to-date and self-contained introduction to the theory of gravitational interactions. The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field. A second, advanced part then discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap which is present in the context of the traditional approach to general relativity, and which usually makes students puzzled about the role of gravity. The necessary notions of differential geometry are reduced to the minimum, leaving more room for those aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. Theory of Gravitational Interactions will be o...

  3. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  4. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...

  5. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...

  6. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  7. Detection of anomalous events

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, Erik M.; Laska, Jason A.; Bridges, Robert A.

    2016-06-07

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The system can include a plurality of anomaly detectors that together implement an algorithm to identify low-probability events and detect atypical traffic patterns. The anomaly detector provides for comparability of disparate sources of data (e.g., network flow data and firewall logs.) Additionally, the anomaly detector allows for regulatability, meaning that the algorithm can be user configurable to adjust a number of false alerts. The anomaly detector can be used for a variety of probability density functions, including normal Gaussian distributions, irregular distributions, as well as functions associated with continuous or discrete variables.

  8. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  9. Optical-Gravitation Nonlinearity: A Change of Gravitational Coefficient G induced by Gravitation Field

    OpenAIRE

    R. Vlokh; M. Kostyrko

    2006-01-01

    Nonlinear effect of the gravitation field of spherically symmetric mass on the gravitational coefficient G has been analysed. In frame of the approaches of parametric optics and gravitation nonlinearity we have shown that the gravitation field of spherically symmetric mass can lead to changes in the gravitational coefficient G.

  10. Anomalous precession of planets on a Weyl conformastatic solution

    CERN Document Server

    Capistrano, Abraão J S; Alárcon, Manuel S

    2016-01-01

    In this paper, we investigate the anomalous planets precession in the so-called nearly-newtonian gravitational regime. This limit is obtained from the application of the slow motion condition to the geodesic equations without altering the geodesic deviation equations, which leads to an intermediate gravitational field stronger than the newtonian one. Using a non-standard expression for the perihelion advance from the Weyl conformastatic vacuum solution as a model, we can describe the anomaly in planets precession compared with different observational data from Ephemerides of the Planets and the Moon (EPM2008 and EPM2011) and Planetary and Lunar Ephemeris (INPOP10a). As a result, using the Levenberg-Marquardt algorithm and calculating the related Chi-squared statistic, we find that the anomaly is statistical irrelevant in accordance with INPOP10a observations. As a complement to this work, we also do application to the relativistic precession of giant planets using observational data calibrated with the EPM201...

  11. Theory of Gravitational Waves

    CERN Document Server

    Tiec, Alexandre Le

    2016-01-01

    The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...

  12. Gravitation Is Torsion

    CERN Document Server

    Schucking, Engelbert L

    2008-01-01

    The mantra about gravitation as curvature is a misnomer. The curvature tensor for a standard of rest does not describe acceleration in a gravitational field but the \\underline{gradient} of the acceleration (e.g. geodesic deviation). The gravitational field itself (Einstein 1907) is essentially an accelerated reference system. It is characterized by a field of orthonormal four-legs in a Riemann space with Lorentz metric. By viewing vectors at different events having identical leg-components as parallel (teleparallelism) the geometry in a gravitational field defines torsion. This formulation of Einstein's 1907 principle of equivalence uses the same Riemannian metric and the same 1916 field equations for his theory of gravitation and fulfills his vision of General Relativity.

  13. Gravitational Effects of a Crystalline Quantum Foam

    Science.gov (United States)

    Crouse, David

    2017-01-01

    In this work, concepts in quantum mechanics and general relativity are used to derive the quantums of space and time. After showing that space and time, at the Planck scale, must be discrete and not continuous, various anomalous gravitational effects are described. It is discussed how discrete space necessarily imposes order upon Wheeler's quantum foam, changing the foam into a crystal. The forces in this crystal are gravitational forces due to the ordered array of electrically neutral Planck masses, and with a lattice constant on the order of the Planck length. Thus the crystal is a gravity crystal rather than the more common crystals (e.g., silicon) that rely on electromagnetic forces. It is shown that similar solid-state physics techniques can be applied to this universe-wide gravity crystal to calculate particles' dispersion curves. It is shown that the crystal produces typical crystalline effects, namely bandgaps, Brillouin zones, and effective inertial masses that may differ from the gravitational masses with possible values even being near zero or negative. It is shown that the gravity crystal can affect the motion of black holes in dramatic ways, imbuing them with a negative inertial mass such that they are pushed by the pull of gravity.

  14. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Machate, F.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2016-12-01

    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B /C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B /C spectral index is reported for the first time. The B /C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B /C ratio is well described by a single power law RΔ with index Δ =-0.333 ±0.014 (fit ) ±0.005 (syst ) , in good agreement with the Kolmogorov theory of turbulence which predicts Δ =-1 /3 asymptotically.

  15. Generalized Gravitational Entropy of Interacting Scalar Field and Maxwell Field

    CERN Document Server

    Huang, Wung-Hong

    2014-01-01

    The generalized gravitational entropy proposed by Lewkowycz and Maldacena in recent is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the spacetime. The associated modified area law is consistent with the generalized gravitational entropy. Our investigations have not found the unexpected anomalous surface term.

  16. Gravitational Waves and the Fate of Scalar-Tensor Gravity

    CERN Document Server

    Bettoni, Dario; Hinterbichler, Kurt; Zumalacárregui, Miguel

    2016-01-01

    We investigate the propagation speed of gravitational waves (GWs) in generic scalar-tensor gravity. A difference in the speed of gravity relative to the speed of light can be caused by the emergence of a disformal geometry in the gravitational sector. This requires the background scalar configuration to both spontaneously break Lorentz symmetry and couple to second derivatives of the metric perturbations through the Weyl tensor or higher derivatives of the scalar. The latter requirement allows a division of gravitational theories into two families: those that predict that GWs propagate exactly at the speed of light and those that allow for anomalous speed. Neutron star binary mergers and other GW events with an associated electromagnetic counterpart can place extremely tight constraints on the speed of GWs relative to the speed of light. However, such observations become impossible if the speed is modified too much, as predicted by some models of cosmic acceleration. Complementary measurements of the speed of...

  17. Presenting Newtonian gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Counihan, Martin [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2007-11-15

    The basic principles of the Newtonian theory of gravitation are presented in a way which students may find more logically coherent, mathematically accessible and physically interesting than other approaches. After giving relatively simple derivations of the circular hodograph and the elliptical orbit from the inverse-square law, the concept of gravitational energy is developed from vector calculus. It is argued that the energy density of a gravitational field may reasonably be regarded as -g{sup 2}/8{pi}G, and that the inverse-square law may be replaced by a Schwarzschild-like force law without the need to invoke non-Euclidean geometry.

  18. Solar gravitation and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, J.A. (Departamento de Fisica, Facultad de Humanidades y Ciencias, Montevideo (Uruguay))

    1984-08-11

    The objective of this paper is to discuss some implications of a scalar of gravitation developed in a previous paper. At the beginning we shall show that, on the basis of a scalar theory of gravitation, it is possible to predict a gravitational light drag. The remainder of this paper is devoted to cosmology. We shall prove that Hubble's red shift, the existence of an age and an ''effective radius'' of the Universe can be deduced from a model of the universe that is Euclidean, infinite and nonexpanding. Finally, we discuss briefly Olbers' paradox and the thermal evolution of the universe.

  19. Petrology of Anomalous Eucrites

    Science.gov (United States)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  20. Gravitational wave astronomy

    CERN Document Server

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  1. Gravitation and Duality Symmetry

    CERN Document Server

    D'Andrade, V C; Pereira, J G

    2005-01-01

    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.

  2. On the gravitational redshift

    CERN Document Server

    Wilhelm, Klaus

    2013-01-01

    The study of the gravitational redshift -- a relative wavelength increase of $\\approx 2 \\times 10^{-6}$ was predicted for solar radiation by Einstein in 1908 -- is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect -- we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the gravitational force acting on an electron in a hydrogen atom situated in the Sun's photosphere to the electrostatic force between the proton and the electron is approximately $3 \\times 10^{-21}$. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. Here we show, with Einstein's early assumption of the frequency of spe...

  3. Gravitation Gauge Group

    CERN Document Server

    Ter-Kazarian, G T

    1997-01-01

    Suggested theory involves a drastic revision of a role of local internal symmetries in physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries is generalized. The gravitation gauge group is proposed, which is generated by hidden local internal symmetries. The developed mechanism enables one to infer Einstein's equation of gravitation, but only with strong difference from Einstein's theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as general distortion of manifold G(2.2.3) with hidden group U(1) was considered.

  4. Smooth sandwich gravitational waves

    CERN Document Server

    Podolsky, J

    1999-01-01

    Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

  5. Gravitation in material media

    Energy Technology Data Exchange (ETDEWEB)

    Ridgely, Charles T, E-mail: charles@ridgely.w [Thienes Engineering, Inc, La Mirada, CA 90638 (United States)

    2011-03-15

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  6. Gravitation and Electricity

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2008-04-01

    Full Text Available The equations of gravitation together with the equations of electromagnetism in terms of the General Theory of Relativity allow to conceive an interdependence between the gravitational field and the electromagnetic field. However the technical difficulties of the relevant problems have precluded from expressing clearly this interdependence. Even the simple problem related to the field generated by a charged spherical mass is not correctly solved. In the present paper we reexamine from the outset this problem and propose a new solution.

  7. Consequences of Coupled Electromagnetic-Gravitational Fields

    Science.gov (United States)

    Smalley, Larry

    2002-01-01

    In the late 1980s there was a flurry of activities involving the newly discovered high Tc superconductors in the development of new devices such as more efficient current transmission, transformers, generators, and motors. One such developmental project by Podkletnov in 1992 noted some small, anomalous gravitational behaviors. A following unpublished paper by Podkletnov 1995 provided data with larger effects using a larger (approx. 25 cm) superconducting disk. Unfortunately this disk was extremely fragile and was broken beyond repair. To date, these experiments have not been successfully repeated because of the difficulties of producing stable, durable (and fired) superconducting disks. This problem with firing these disks has been solved by Li. What remains is to install the disk in "motor", at superconducting temperatures in the presence of appropriately tailored magnetic fields.

  8. Electric and magnetic aspects of gravitational theories

    CERN Document Server

    Dehouck, François

    2011-01-01

    This thesis deals with the construction of conserved charges for asymptotically flat spacetimes at spatial infinity in four spacetime dimensions in a hopefully pedagogical way. As a first motivation of this work, it highlights the difficulties one encounters when trying to understand the gravitational duality, present at the linearized level, in the full non-linear Einstein's theory or even just in an asymptotic regime of it. In the first part, we restrict the discussion to the Noetherian surface charges, called "electric charges", and study the existence of a larger phase space, than previously known in the literature, where the awkward parity boundary conditions, firstly imposed by T. Regge and C. Teitelboim, are relaxed. In the absence of these parity conditions, we show how the Einstein-Hilbert action is a correct variational principle when it is supplemented by an anomalous counter-term and construct conserved and finite charges associated to the larger asymptotic symmetry group. The second and third par...

  9. Gravitation gauge group

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Kazarian, G. T. [Byurakan Astrophysical Observatory (Armenia)

    1997-06-01

    The suggested theory involves a drastic revision of the role of local internal symmetries in the physical concept of curved geometry. Under the reflection of fields and their dynamics from Minkowski to Riemannian space a standard gauge principle of local internal symmetries has been generalized. A gravitation gauge group is proposed, which is generated by hidden local internal symmetries. In all circumstances, it seemed to be of the greatest importance for the understanding of the physical nature of gravity. The most promising aspect in their approach so far is the fact that the energy-momentum conservation laws of gravitational interacting fields are formulated quite naturally by exploiting all the advantages of auxiliary shadow fields on flat shadow space. The mechanism developed here enables one to infer Einstein`s equation of gravitation, but only with a strong difference from Einstein`s theory at the vital point of well-defined energy-momentum tensor of gravitational field and conservation laws. The gravitational interaction as well as the general distortion of the manifold G(2.2.3) with hidden group U{sup loc} (1) has been considered.

  10. Velocity Anisotropy in Self-gravitating Molecular Clouds. I. Simulation

    Science.gov (United States)

    Otto, Frank; Ji, Weiguang; Li, Hua-bai

    2017-02-01

    The complex interplay between turbulence, magnetic fields, and self-gravity leads to the formation of molecular clouds out of the diffuse interstellar medium (ISM). One avenue of studying this interplay is by analyzing statistical features derived from observations, where the interpretation of these features is greatly facilitated by comparisons with numerical simulations. Here we focus on the statistical anisotropy present in synthetic maps of velocity centroid data, which we derive from three-dimensional magnetohydrodynamic simulations of a turbulent, magnetized, self-gravitating patch of ISM. We study how the orientation and magnitude of the velocity anisotropy correlate with the magnetic field and with the structures generated by gravitational collapse. Motivated by recent observational constraints, our simulations focus on the supersonic (sonic Mach number { M }≈ 2{--}17) but sub- to trans-alfvénic (alfvénic Mach number {{ M }}{{A}}≈ 0.2{--}1.2) turbulence regime, and we consider clouds that are barely to mildly magnetically supercritical (mass-to-flux ratio equal to once or twice the critical value). Additionally we explore the impact of the turbulence driving mechanism (solenoidal or compressive) on the velocity anisotropy. While we confirm previous findings that the velocity anisotropy generally aligns well with the plane-of-sky magnetic field, our inclusion of the effects of self-gravity reveals that in regions of higher column density, the velocity anisotropy may be destroyed or even reoriented to align with the gravitationally formed structures. We provide evidence that this effect is not necessarily due to the increase of {{ M }}{{A}} inside the high-density regions.

  11. Cosmology of gravitational vacuum

    CERN Document Server

    Burdyuzha, V; Pacheco, J

    2008-01-01

    Production of gravitational vacuum defects and their contribution to the energy density of our Universe are discussed. These topological microstructures (defects) could be produced in the result of creation of the Universe from "nothing" when a gravitational vacuum condensate has appeared. They must be isotropically distributed over the isotropic expanding Universe. After Universe inflation these microdefects are smoothed, stretched and broken up. A part of them could survive and now they are perceived as the structures of Lambda-term and an unclustered dark matter. It is shown that the parametrization noninvariance of the Wheeler-De Witt equation can be used to describe phenomenologically vacuum topological defects of different dimensions (worm-holes, micromembranes, microstrings and monopoles). The mathematical illustration of these processes may be the spontaneous breaking of the local Lorentz-invariance of the quasi-classical equations of gravity. Probably the gravitational vacuum condensate has fixed tim...

  12. A Gedankenexperiment in Gravitation

    CERN Document Server

    Gaspar, Yves

    2011-01-01

    In this paper we consider a thought experiment involving the effect of gravitation on an ideal scale containing a photon. If the tidal forces inherent to a gravitational field are neglected, then one is led to scenario which seems to bring about perpetual motion violating the first and second principle of thermodynamics. The tidal effects of gravity must neccessarily be included in order to obtain a consistent physical theory. As a result, Albert Einstein's thought experiments according to which the physical effects of inertia in an accelerated reference frame are equivalent to the effects of gravity in a frame at rest on the surface of a massive body must be reconsidered, since linearly accelerated frames do not produce tidal effects. We argue that the equivalence between inertial effects and gravitation can be restored for rotating frames and in this context a relation with the possible nature of quantum gravity is conjectured.

  13. Essay on gravitation

    OpenAIRE

    Perez, Jérôme

    2007-01-01

    Le présent document constitue le rapport de mon habilitation à diriger des recherches. Le sujet général est la gravitation qui constitue mon thème de recherche. Trois parties indépendantes forment le corps de ce document.Un essai de gravitation relativiste traite des propriétés dynamiques de l'Univers homogène et anisotrope. Un essai de gravitation classique rassemble trois de mes articles emblématiques sur ce sujet préfacés chacun d'une introduction. La dernière partie est consacrée à des in...

  14. Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station.

    Science.gov (United States)

    Aguilar, M; Ali Cavasonza, L; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeğmez-du Pree, S; Battarbee, M; Battiston, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindel, K F; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demakov, O; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guo, K H; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lordello, V D; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Machate, F; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mikuni, V M; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P

    2016-12-02

    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R^{Δ} with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.

  15. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  16. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    Science.gov (United States)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  17. Anomalous magnetic moment of anyons

    CERN Document Server

    Gat, G; Gat, Gil; Ray, Rashmi

    1994-01-01

    The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.

  18. Gravitational form factors and nucleon spin structure

    Science.gov (United States)

    Teryaev, O. V.

    2016-10-01

    Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

  19. Gravitational Waves: The Evidence Mounts

    Science.gov (United States)

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  20. Nonlinear Gravitational Lagrangians revisited

    CERN Document Server

    Magnano, Guido

    2016-01-01

    The Legendre transformation method, applied in 1987 to deal with purely metric gravitational Lagrangians with nonlinear dependence on the Ricci tensor, is extended to metric-affine models and is shown to provide a concise and insightful comparison of the dynamical content of the two variational frameworks.

  1. Gravitation radiation observations

    OpenAIRE

    Glass, E. N.

    2017-01-01

    The notion of gravitational radiation begins with electromagnetic radiation. In 1887 Heinrich Hertz, working in one room, generated and received electromagnetic radiation. Maxwell's equations describe the electromagnetic field. The quanta of electromagnetic radiation are spin 1 photons. They are fundamental to atomic physics and quantum electrodynamics.

  2. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  3. Static Gravitational Global Monopoles

    CERN Document Server

    Liebling, S L

    2000-01-01

    Static solutions in spherical symmetry are found for gravitating global monopoles. Regular solutions lacking a horizon are found for $\\eta \\sqrt{3/8\\pi} \\approx 0.3455$ is consistent with findings that topological inflation begins at $\\eta \\approx 0.33$.

  4. Spitzer observations of a gravitationally lensed quasar, QSO 2237+0305

    CERN Document Server

    Agol, Eric; Gorjian, Varoujan; Kimball, Amy; 10.1088/0004-637X/697/2/1010

    2009-01-01

    The four-image gravitationally lensed quasar QSO 2237+0305 is microlensed by stars in the lens galaxy. The amplitude of microlensing variability can be used to infer the relative size of the quasar as a function of wavelength; this provides a test of quasar models. Toward this end, we present Spitzer Space Telescope Infrared Spectrograph and Infrared Array Camera (IRAC) observations of QSO 2237+0305, finding the following. (1) The infrared (IR) spectral energy distribution (SED) is similar to that of other bright radio-quiet quasars, contrary to an earlier claim. (2) A dusty torus model with a small opening angle fits the overall shape of the IR SED well, but the quantitative agreement is poor due to an offset in wavelength of the silicate feature. (3) The flux ratios of the four lensed images can be derived from the IRAC data despite being unresolved. We find that the near-IR fluxes are increasingly affected by microlensing toward shorter wavelengths. (4) The wavelength dependence of the IRAC flux ratios is ...

  5. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Rabin Banerjee

    2016-02-01

    A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, in the absence of the gauge sector, reproduce the results found by the gradient expansion approach.

  6. First Numerical Simulations of Anomalous Hydrodynamics

    CERN Document Server

    Hongo, Masaru; Hirano, Tetsufumi

    2013-01-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters ($v_2^\\pm$) as a function of the net charge asymmetry $A_\\pm$, we quantitatively verify that the linear dependence of $\\Delta v_2 \\equiv v_2^- - v_2^+$ on the net charge asymmetry $A_\\pm$ cannot be regarded as a sensitive signal of anomalous transports, contrary to previous studies. We, however, find that the intercept $\\Delta v_2(A_\\pm=0)$ is sensitive to anomalous transport effects.

  7. Anomalous Thermalization in Ergodic Systems

    Science.gov (United States)

    Luitz, David J.; Bar Lev, Yevgeny

    2016-10-01

    It is commonly believed that quantum isolated systems satisfying the eigenstate thermalization hypothesis (ETH) are diffusive. We show that this assumption is too restrictive since there are systems that are asymptotically in a thermal state yet exhibit anomalous, subdiffusive thermalization. We show that such systems satisfy a modified version of the ETH ansatz and derive a general connection between the scaling of the variance of the off-diagonal matrix elements of local operators, written in the eigenbasis of the Hamiltonian, and the dynamical exponent. We find that for subdiffusively thermalizing systems the variance scales more slowly with system size than expected for diffusive systems. We corroborate our findings by numerically studying the distribution of the coefficients of the eigenfunctions and the off-diagonal matrix elements of local operators of the random field Heisenberg chain, which has anomalous transport in its thermal phase. Surprisingly, this system also has non-Gaussian distributions of the eigenfunctions, thus, directly violating Berry's conjecture.

  8. Faraday anomalous dispersion optical tuners

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  9. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  10. Anomalous Proper-Motions in the Cygnus Super Bubble Region

    Science.gov (United States)

    Comeron, F.; Torra, J.; Jordi, C.; Gomez, A. E.

    1993-10-01

    In an analysis of proper motions of O and B stars contained in the Input Catalogue for Hipparcos, we have found a clear deviation from the expected pattern of systematic motions which can be readily identified with the associations Cygnus OB1 and Cygnus OB9, located near the edge of the Cygnus Superbubble. The anomalous motions are directed outwards from the center of the Superbubble, which is coincident with the association Cygnus OB2. This seems to support the hypothesis of a strong stellar and supernova activity in Cygnus OB2 giving rise to the Superbubble and, by means of gravitational instabilities in its boundaries, to Cygnus CB1 and Cygnus OB9. New uvbyβ aperture photometry of selected O and B stars in the area of Cygnus OB1 and Cygnus OB9 is also presented and analyzed in this paper.

  11. Anomalous precession of planets for a Weyl conformastatic solution

    Science.gov (United States)

    Capistrano, Abraão J. S.; Peñagos, Joice A. M.; Alárcon, Manuel S.

    2016-12-01

    In this article, we investigate the anomalous precession of planets in the nearly Newtonian gravitational regime. This limit is obtained by application of the slow motion condition to the geodesic equations without altering the geodesic deviation equations. Using a non-standard expression for the perihelion advance from the Weyl conformastatic vacuum solution as a model, we can describe the anomaly in planetary precession compared with different observational data, consisting of ephemerides of planets and the Moon (EPM2008 and EPM2011) and Fienga et al.'s planetary and lunar ephemeris (INPOP10a). As a result, using the Levenberg-Marquardt algorithm and calculating the related χ-squared statistic, we find that the anomaly is statistically irrelevant, in accordance with the INPOP10a observations. As a complement to this work, we also perform an application to the relativistic precession of giant planets using observational data calibrated with EPM2011.

  12. Spacetime, Geometry and Gravitation

    CERN Document Server

    Sharan, Pankaj

    2009-01-01

    This introductory textbook on the general theory of relativity presents a solid foundation for those who want to learn about relativity. The subject is presented in a physically intuitive, but mathematically rigorous style. The topic of relativity is covered in a broad and deep manner. Besides, the aim is that after reading the book a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The book consists of three parts: An introduction to the general theory of relativity. Geometrical mathematical background material. Topics that include the action principle, weak gravitational fields and gravitational waves, Schwarzschild and Kerr solution, and the Friedman equation in cosmology. The book is suitable for advanced graduates and graduates, but also for established researchers wishing to be educated about the field.

  13. Matrix theory of gravitation

    CERN Document Server

    Koehler, Wolfgang

    2011-01-01

    A new classical theory of gravitation within the framework of general relativity is presented. It is based on a matrix formulation of four-dimensional Riemann-spaces and uses no artificial fields or adjustable parameters. The geometrical stress-energy tensor is derived from a matrix-trace Lagrangian, which is not equivalent to the curvature scalar R. To enable a direct comparison with the Einstein-theory a tetrad formalism is utilized, which shows similarities to teleparallel gravitation theories, but uses complex tetrads. Matrix theory might solve a 27-year-old, fundamental problem of those theories (sec. 4.1). For the standard test cases (PPN scheme, Schwarzschild-solution) no differences to the Einstein-theory are found. However, the matrix theory exhibits novel, interesting vacuum solutions.

  14. Gravitating lepton bag model

    CERN Document Server

    Burinskii, Alexander

    2015-01-01

    As is known, the gravitational and electromagnetic (EM) field of the Dirac electron is described by an over-extremal Kerr-Newman (KN) black hole (BH) solution which has the naked singular ring and two-sheeted topology. This space is regulated by the formation of a regular source based on the Higgs mechanism of broken symmetry. This source shares much in common with the known MIT- and SLAC-bag models, but has the important advantage, of being in accordance with gravitational and electromagnetic field of the external KN solution. The KN bag model is flexible. At rotations, it takes the shape of a thin disk, and similar to other bag models, under deformations it creates a string-like structure which is positioned along the sharp border of the disk.

  15. Gravitationally induced quantum transitions

    Science.gov (United States)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  16. Gravitationally induced quantum transitions

    CERN Document Server

    Landry, A

    2016-01-01

    In this letter, we calculate the probability for resonantly induced transitions in quantum states due to time dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultra cold neutrons (UCN), which are organized according to the energy levels of the Schr\\"odinger equation in the presence of the earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency $\\omega$. The driving force is created by oscillating a macroscopic mass in the neighbourhood of the system of neutrons. The neutrons decay in 880 seconds while the probability of transitions increase as $t^2$. Hence the optimal strategy is to drive the system for 2 lifetimes. The transition amplitude then is of the order of $1.06\\times 10^{-5}$ hence with a million ultra cold neutrons, one should be able to observe transitions.

  17. COSMOLOGY WITH GRAVITATIONAL LENSES

    Directory of Open Access Journals (Sweden)

    Emilio E. Falco

    2009-01-01

    Full Text Available Gravitational lenses yield a very high rate of return on observational investment. Given their scarcity, their impact on our knowledge of the universe is very signi cant. In the weak- eld limit, lensing studies are based on well-established physics and thus o er a straightforward approach to pursue many currently pressing problems of astrophysics. Examples of these are the signi cance of dark matter and the density, age and size of the universe. I present recent developments in cosmological applications of gravitational lenses, regarding estimates of the Hubble constant using strong lensing of quasars. I describe our recent measurements of time delays for the images of SDSS J1004+4112, and discuss prospects for the future utilizing synoptic telescopes, planned and under construction.

  18. A (gravitational) toy story

    CERN Document Server

    Barreto, W; Rodriguez-Mueller, B

    2016-01-01

    Usually in computational physics, conclusions about realistic scenarios can be drawn from {\\it ab initio} idealized models. In some ways, the discovery of critical behavior in the gravitational collapse of a massless scalar field leads to the simulation of binary black holes, from its coalescence, to merging and ringdown. We have been lucky enough to have been working on a toy model to explore our way in as these events unfold. We revisited the gravitational instability of a kink problem. During that study, we confirmed a conjecture related to the mass gap, in the context of critical behavior, at the threshold of black hole formation. What is the meaning of this mass gap? Does it have physical relevance? This essay is about these issues.

  19. Dimensions and Gravitational Waves

    Science.gov (United States)

    van Haasteren, Rutger

    2014-10-01

    High-precision timing of Galactic millisecond pulsars with radio telescopes holds great promise for the detection of astrophysical gravitational-waves in frequency range 10--100 nHz. Modern Bayesian data analysis methods rely mostly on Markov Chain Monte Carlo (MCMC) to explore the model parameter space when searching for signals in the pulsar timing data. Current challenges involve parameter spaces with large dimensionality, and linear algebra of high-dimensional systems. I will present sampling methods (taken from the Planck analysis team), and rank-reduction methods for large linear systems, that have enabled us to decrease the dimensionality of such problems. These methods are now being used to search for gravitational-waves in pulsar timing array projects. Especially our rank-reduction techniques are useful for any data analysis problem that involve large linear least-squares systems.

  20. Gravitation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sidharth, B.G. [Birla Science Centre, Adarsh Nagar, Hyderabad (India)

    2001-06-01

    The realms of gravitation, belonging to classical physics, and of electromagnetism, belonging to the theory of the electron and quantum mechanics have remained apart as two separate pillars, in spite of a century of effort by physicists to reconcile them. In this paper it is argued that if ideas of classical spacetime have been extended to include in addition to non-integrability non-commutavity also, then such a reconciliation is possible.

  1. Gravitational Lenses of Wormholes

    CERN Document Server

    Nandi, K K; Zhang, Y Z; Nandi, Kamal Kanti; Zakharov, Alexander V.; Zhang, Yuan-Zhong

    2006-01-01

    Gravitational lensing by traversable Lorentzian wormholes is a new possibility and is analyzed in the strong field limit. Wormhole solutions are considered in the Einstein minimally coupled theory and in the brane world model. The observables in both the theories show significant differences from those in the Schwarzschild black hole lensing. It is shown that the zero mass wormholes act as photon sinks. Some special features of the considered solutions are pointed out.

  2. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    or quasars which are strongly magnified and sheared. In the last decade, double and quadruply imaged systems due to galactic lenses have been studied with optical and radio observations. An interesting result obtained from the flux ratio 'anomalies' of quadruply imaged systems is the statistical detection of dark sub-clumps in galaxy halos. More broadly, while we have learned a lot about the mass distribution in lens galaxies and improved time delay constraints on the Hubble constant, the limitations of cosmological studies with strong lensing due to uncertainties in lens mass models have also come to be appreciated. That said, progress will no doubt continue with qualitative advances in observations such as astrometric counterparts to the flux anomalies, clever ideas such as the use of spectroscopic signatures to assemble the SLACS lens sample, and combining optical imaging, spectroscopy and radio data to continue the quest for a set of golden lenses to measure the Hubble constant. Galaxy clusters are a fascinating arena for studying the distribution of dark and baryonic matter. Weak and strong lensing information can be combined with dynamical information from the spectroscopic measurements of member galaxies and x-ray/Sunyaev Zeldovich measurements of the hot ionized gas. Hubble Space Telescope observations have yielded spectacular images of clusters, such as Abell 1689, which has over a hundred multiply imaged arcs. Mass measurements have progressed to the level of 10 percent accuracy for several clusters. Unfortunately, it is unclear if one can do much better for individual clusters given inherent limitations such as unknown projection effects. The statistical study of clusters is likely to remain a promising way to study dark matter, gravity theories, and cosmology. Techniques to combine weak and strong lensing information to obtain the mass distribution of clusters have also advanced, and work continues on parameter-free techniques that are agnostic to the

  3. Gravitational Waves Astronomy: a cornerstone for gravitational theories

    CERN Document Server

    Corda, Christian

    2010-01-01

    Realizing a gravitational wave (GW) astronomy in next years is a great challenge for the scientific community. By giving a significant amount of new information, GWs will be a cornerstone for a better understanding of gravitational physics. In this paper we re-discuss that the GW astronomy will permit to solve a captivating issue of gravitation. In fact, it will be the definitive test for Einstein's general relativity (GR), or, alternatively, a strong endorsement for extended theories of gravity (ETG).

  4. Gravitomagnetic corrections on gravitational waves

    CERN Document Server

    Capozziello, S; Forte, L; Garufi, F; Milano, L

    2009-01-01

    Gravitational waveforms and production could be considerably affected by gravitomagnetic corrections considered in relativistic theory of orbits. Beside the standard periastron effect of General Relativity, new nutation effects come out when c^{-3} corrections are taken into account. Such corrections emerge as soon as matter-current densities and vector gravitational potentials cannot be discarded into dynamics. We study the gravitational waves emitted through the capture, in the gravitational field of massive binary systems (e.g. a very massive black hole on which a stellar object is inspiralling) via the quadrupole approximation, considering precession and nutation effects. We present a numerical study to obtain the gravitational wave luminosity, the total energy output and the gravitational radiation amplitude. From a crude estimate of the expected number of events towards peculiar targets (e.g. globular clusters) and in particular, the rate of events per year for dense stellar clusters at the Galactic Cen...

  5. Anomalous Transport Foundations and Applications

    CERN Document Server

    Klages, Rainer; Sokolov, Igor M

    2008-01-01

    This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma

  6. Gravitational Waves from the Phase Transition of a Non-linearly Realised Electroweak Gauge Symmetry

    CERN Document Server

    Kobakhidze, Archil; Yue, Jason

    2016-01-01

    Within the Standard Model with non-linearly realised electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self- coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We find that for the range of relatively large cubic couplings, $111~{\\rm GeV}~ \\lesssim |\\kappa| \\lesssim 118~{\\rm GeV}$, $\\sim $mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, $0.1-10~$mHz.

  7. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  8. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    Science.gov (United States)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  9. Superstatistics and Gravitation

    Directory of Open Access Journals (Sweden)

    Octavio Obregón

    2010-09-01

    Full Text Available We suggest to consider the spacetime as a non-equilibrium system with a long-term stationary state that possess as a spatio-temporally fluctuating quantity ß . These systems can be described by a superposition of several statistics, superstatistics. We propose a Gamma distribution for f(ß that depends on a parameter ρ1. By means of it the corresponding entropy is calculated, ρ1 is identified with the probability corresponding to this model. A generalized Newton’s law of gravitation is then obtained following the entropic force formulation. We discuss some of the difficulties to try to get an associated theory of gravity.

  10. Gravitational Lensing & Stellar Dynamics

    CERN Document Server

    Koopmans, L V E

    2005-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.

  11. Piecewise flat gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)

    2011-04-07

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.

  12. Pinning Down Gravitational Settling

    CERN Document Server

    Korn, A J; Grundahl, F; Barklem, P; Gustafsson, B; Korn, Andreas J.; Piskunov, Nikolai; Grundahl, Frank; Barklem, Paul; Gustafsson, Bengt

    2006-01-01

    We analyse high-resolution archival UVES data of turnoff and subgiant stars in the nearby globular cluster NGC 6397 ([Fe/H] = -2). Balmer-profile analyses are performed to derive reddening-free effective temperatures. Due to the limited S/N and uncertainties related to blaze removal, we find the data quality insufficient to exclude the existence of gravitational settling. If the newly derived effective temperatures are taken as a basis for an abundance analysis, the photospheric iron (Fe II) abundance in the turnoff stars is 0.11 dex lower than in the (well-mixed) subgiants.

  13. Gravitationally induced electromagnetism at the Compton scale

    Energy Technology Data Exchange (ETDEWEB)

    Rosquist, Kjell [Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm (Sweden)

    2006-05-07

    It is shown that Einstein gravity tends to modify the electric and magnetic fields appreciably at length scales of the order of the Compton wavelength. At that scale the gravitational field becomes spin dominated rather than mass dominated. The gravitational field couples to the electromagnetic field via the Einstein-Maxwell equations which in the simplest model (Kerr-Newman) causes the electrostatic field of charged spinning particles to acquire an oblate structure relative to the spin direction. For electrons and protons, the Coulomb field is therefore likely to be modified by general relativity at the Compton scale. In the Kerr-Newman model, the magnetic dipole is known to correspond to the Dirac g-factor, g 2. Also, the electric dipole moment vanishes, in agreement with current experimental limits for the electron. Quantitatively, the classical Einstein-Maxwell field represented by the Kerr-Newman solution models the magnetic and electric dipoles of the electron to an accuracy of about one part in 10{sup -3} or better taking into account also the anomalous magnetic moment. Going to the next multipole order, one finds for the Kerr-Newman model that the first non-vanishing higher multipole is the electric quadrupole moment which acquires the value -124 b for the electron. Any non-zero value of the electric quadrupole moment for the electron or the proton would be a clear sign of curvature due to the implied violation of rotation invariance. There is also a possible spherical modification of the Coulomb force proportional to r{sup -4}. However, the size of this effect is well below current experimental limits. The corrections to the hydrogen spectrum are expected to be small but possibly detectable.

  14. Quantum theory of gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.S. [Department of Physics and Mathematical Physics, University of Adelaide, Adelaide, SA (Australia)

    1998-12-31

    It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein`s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein`s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation. Copyright (1998) CSIRO Australia 33 refs.

  15. Gravitating lepton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Burinskii, A., E-mail: burinskii@mail.ru [Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)

    2015-08-15

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.

  16. Gravitating lepton bag model

    Science.gov (United States)

    Burinskii, A.

    2015-08-01

    The Kerr-Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag-string-quark system.

  17. General Relativity and Gravitation

    Science.gov (United States)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  18. The Gravitational Universe

    CERN Document Server

    Danzmann, K

    2013-01-01

    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any devia...

  19. Anomalous osmosis resulting from preferential absorption

    NARCIS (Netherlands)

    Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.

    1965-01-01

    An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly an

  20. Gravitational Repulsion and Dirac Antimatter

    Science.gov (United States)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  1. Gravitational Correction to Vacuum Polarization

    CERN Document Server

    Jentschura, U D

    2015-01-01

    We consider the gravitational correction to (electronic) vacuum polarization in the presence of a gravitational background field. The Dirac propagators for the virtual fermions are modified to include the leading gravitational correction (potential term) which corresponds to a coordinate-dependent fermion mass. The mass term is assumed to be uniform over a length scale commensurate with the virtual electron-positron pair. The on-mass shell renormalization condition ensures that the gravitational correction vanishes on the mass shell of the photon, i.e., the speed of light is unaffected by the quantum field theoretical loop correction, in full agreement with the equivalence principle. Nontrivial corrections are obtained for off-shell, virtual photons. We compare our findings to other works on generalized Lorentz transformations and combined quantum-electrodynamic gravitational corrections to the speed of light which have recently appeared in the literature.

  2. Anomalous transport at weak coupling

    CERN Document Server

    Chowdhury, Subham Dutta

    2015-01-01

    We evaluate the contribution of chiral fermions in $d=2, 4, 6$, chiral bosons, a chiral gravitino like theory in $d=2$ and chiral gravitinos in $d=6$ to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in $d=2$ and chiral gravitinos in $d=6$, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop dia...

  3. Anomalous diffraction in hyperbolic materials

    CERN Document Server

    Alberucci, Alessandro; Boardman, Allan D; Assanto, Gaetano

    2016-01-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, spatial analogue of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  4. Anomalous diffraction in hyperbolic materials

    Science.gov (United States)

    Alberucci, Alessandro; Jisha, Chandroth P.; Boardman, Allan D.; Assanto, Gaetano

    2016-09-01

    We demonstrate that light is subject to anomalous (i.e., negative) diffraction when propagating in the presence of hyperbolic dispersion. We show that light propagation in hyperbolic media resembles the dynamics of a quantum particle of negative mass moving in a two-dimensional potential. The negative effective mass implies time reversal if the medium is homogeneous. Such property paves the way to diffraction compensation, i.e., spatial analog of dispersion compensating fibers in the temporal domain. At variance with materials exhibiting standard elliptic dispersion, in inhomogeneous hyperbolic materials light waves are pulled towards regions with a lower refractive index. In the presence of a Kerr-like optical response, bright (dark) solitons are supported by a negative (positive) nonlinearity.

  5. Feynman Lectures on Gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Borcherds, P

    2003-05-21

    In the early 1960s Feynman lectured to physics undergraduates and, with the assistance of his colleagues Leighton and Sands, produced the three-volume classic Feynman Lectures in Physics. These lectures were delivered in the mornings. In the afternoons Feynman was giving postgraduate lectures on gravitation. This book is based on notes compiled by two students on that course: Morinigo and Wagner. Their notes were checked and approved by Feynman and were available at Caltech. They have now been edited by Brian Hatfield and made more widely available. The book has a substantial preface by John Preskill and Kip Thorne, and an introduction entitled 'Quantum Gravity' by Brian Hatfield. You should read these before going on to the lectures themselves. Preskill and Thorne identify three categories of potential readers of this book. 1. Those with a postgraduate training in theoretical physics. 2. 'Readers with a solid undergraduate training in physics'. 3. 'Admirers of Feynman who do not have a strong physics background'. The title of the book is perhaps misleading: readers in category 2 who think that this book is an extension of the Feynman Lectures in Physics may be disappointed. It is not: it is a book aimed mainly at those in category 1. If you want to get to grips with gravitation (and general relativity) then you need to read an introductory text first e.g. General Relativity by I R Kenyon (Oxford: Oxford University Press) or A Unified Grand Tour of Theoretical Physics by Ian D Lawrie (Bristol: IoP). But there is no Royal Road. As pointed out in the preface and in the introduction, the book represents Feynman's thinking about gravitation some 40 years ago: the lecture course was part of his attempts to understand the subject himself, and for readers in all three categories it is this that makes the book one of interest: the opportunity to observe how a great physicist attempts to tackle some of the hardest challenges of physics

  6. Bubble collision with gravitation

    CERN Document Server

    Hwang, Dong-il; Lee, Wonwoo; Yeom, Dong-han

    2012-01-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  7. Gravitational anomalies and one dimensional behaviour of black holes

    CERN Document Server

    Majhi, Bibhas Ranjan

    2015-01-01

    It has been pointed out by Bekenstein and Mayo that the behavior of the Black hole's entropy or information flow is similar to that through one-dimensional channel. Here I analyse the same issue with the use of gravitational anomalies. The rate of the entropy change ($\\dot{S}$) and the power ($P$) of the Hawking emission are calculated from the relevant components of the anomalous stress-tensor under the Unruh vacuum condition. I show that the dependence of $\\dot{S}$ on power is $\\dot{S}\\propto P^{1/2}$ which is identical to that for the information flow in one dimensional system. This is established by using the ($1+1$) dimensional gravitational anomalies first. Then the fact is further bolstered by considering the ($1+3$) dimensional gravitational anomalies. It is found that in the former case, the proportionality constant is exactly identical to one dimensional situation, known as Pendry's formula, while in later situation its value decreases.

  8. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam (India)

    2015-12-08

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S{sup .}) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S{sup .} on the power is S{sup .} ∝P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases.

  9. Gravitational anomalies and one-dimensional behavior of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)

    2015-12-15

    It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)

  10. Earth Gravitational Model 2020

    Science.gov (United States)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  11. Gravitational gradients in gravitational wave detectors: data analysis methods

    Science.gov (United States)

    Garrison, David; Gonzalez, Gabriela; Khanna, Gaurav

    2000-04-01

    We present a method of analyzing seismic data at the sites of gravitational wave detectors to determine the possible influence of gravitational gradients as a noise source in the detectors. We use statistical methods to distinguish between local and gobal noise sources, as well as compare our findings to models of gravitational gradients (S. A. Hughes and K. S. Thorne, Physical Review D, Volume 58, 122002). We apply these methods to data taken at the Hanford LIGO site, and present preliminary results. This work was supported by Pennsylvannia State University and the National Science Foundation. We acknowledge the collaboration of the LIGO project while taking the data presented.

  12. New cylindrical gravitational soliton waves and gravitational Faraday rotation

    CERN Document Server

    Tomizawa, Shinya

    2013-01-01

    In terms of gravitational solitons, we study gravitational non-linear effects of gravitational solitary waves such as Faraday rotation. Applying the Pomeransky's procedure for inverse scattering method, which has been recently used for constructing stationary black hole solutions in five dimensions to a cylindrical spacetime in four dimensions, we construct a new cylindrically symmetric soliton solution. This is the first example to be applied to the cylindrically symmetric case. In particular, we clarify the difference from the Tomimatsu's single soliton solution, which was constructed by the Belinsky-Zakharov's procedure.

  13. Demonstration of a Tunable-Bandwidth White Light Interferometer using Anomalous Dispersion in Atomic Vapor

    CERN Document Server

    Pati, G S; Salit, M; Shahriar, M S

    2006-01-01

    The concept of the 'white-light cavity' has recently generated considerable research interest in the context of gravitational wave detection. Cavity designs are proposed using negative (or anomalous) dispersion in an intracavity medium to make the cavity resonate over a large range of frequencies and still maintain a high cavity build-up. This paper presents the first experimental attempt and demonstration of white-light effect in a meter long ring cavity using an intracavity atomic medium. The medium's negative dispersion is caused by bi-frequency Raman gain in an atomic vapor cell. Although the white light condition was not perfectly achieved and improvements in experimental control are still desirable, significantly broad cavity response over bandwidth greater than 20 MHz has been observed. These devices will have potential applications in new generation laser interferometer gravitational wave detectors.

  14. Phonon creation by gravitational waves

    CERN Document Server

    Sabín, Carlos; Ahmadi, Mehdi; Fuentes, Ivette

    2014-01-01

    We show that gravitational waves create phonons in a Bose-Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances that correspond to the dynamical Casimir effect in a BEC phononic field contained in a cavity-type trap. We propose to use this effect to detect gravitational waves. The amplitude of the wave can be estimated applying recently developed relativistic quantum metrology techniques. We provide the optimal precision bound on the estimation of the wave's amplitude. Finally, we show that the parameter regime required to detect gravitational waves with this technique is within experimental reach.

  15. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  16. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    Science.gov (United States)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  17. Gravitational Waves From Supermassive Black Holes

    Science.gov (United States)

    di Girolamo, Tristano

    2016-10-01

    In this talk, I will present the first direct detections of gravitational waves from binary stellar-mass black hole mergers during the first observing run of the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory, which opened the field of gravitational-wave astronomy, and then discuss prospects for observing gravitational waves from supermassive black holes with future detectors.

  18. Testing local Lorentz invariance with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Kostelecký, V. Alan, E-mail: kostelec@indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Mewes, Matthew [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)

    2016-06-10

    The effects of local Lorentz violation on dispersion and birefringence of gravitational waves are investigated. The covariant dispersion relation for gravitational waves involving gauge-invariant Lorentz-violating operators of arbitrary mass dimension is constructed. The chirp signal from the gravitational-wave event GW150914 is used to place numerous first constraints on gravitational Lorentz violation.

  19. Considerations on Gravitational Wave in Economics

    OpenAIRE

    Ovidiu Racorean

    2002-01-01

    A proposal for a dynamical potential of population displacements (named gravitational potential) between economic regions will be given. For a particular ideal chosen case,the gravitational potential is acting as a wave. An equation of the wave form will be given for gravitational potential-gravitational wave in economics.

  20. Current status of gravitational-wave observations

    OpenAIRE

    Fairhurst, Stephen; Guidi, Gianluca M.; Hello, Patrice; Whelan, John T; Woan, Graham

    2009-01-01

    The first generation of gravitational wave interferometric detectors has taken data at, or close to, their design sensitivity. This data has been searched for a broad range of gravitational wave signatures. An overview of gravitational wave search methods and results are presented. Searches for gravitational waves from unmodelled burst sources, compact binary coalescences, continuous wave sources and stochastic backgrounds are discussed.

  1. Modified Entropic Gravitation in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2011-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravit...

  2. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  3. Gravitational radiation sources and signatures

    CERN Document Server

    Finn, L S

    2001-01-01

    The goal of these lecture notes is to introduce the developing research area of gravitational-wave phenomenology. In more concrete terms, they are meant to provide an overview of gravitational-wave sources and an introduction to the interpretation of real gravitational wave detector data. They are, of course, limited in both regards. Either topic could be the subject of one or more books, and certainly more than the few lectures possible in a summer school. Nevertheless, it is possible to talk about the problems of data analysis and give something of their flavor, and do the same for gravitational wave sources that might be observed in the upcoming generation of sensitive detectors. These notes are an attempt to do just that.

  4. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  5. Gravitational quantum cohomology

    CERN Document Server

    Eguchi, Tohru; Xiong, C S; Eguchi, Tohru; Hori, Kentaro; Xiong, Chuan Sheng

    1996-01-01

    We discuss how the theory of quantum cohomology may be generalized to ``gravitational quantum cohomology'' by studying topological sigma models coupled to two-dimensional gravity. We first consider sigma models defined on a general Fano manifold M (manifold with a positive first Chern class) and derive new recursion relations for its two point functions. We then derive bi-Hamiltonian structures of the theories and show that they are completely integrable at least at the level of genus 0. We next consider the subspace of the phase space where only a marginal perturbation (with a parameter t) is turned on and construct Lax operators (superpotentials) L whose residue integrals reproduce correlation functions. In the case of M=CP^N the Lax operator is given by L= Z_1+Z_2+\\cdots +Z_N+e^tZ_1^{-1}Z_2^{-1}\\cdots Z_N^{-1} and agrees with the potential of the affine Toda theory of the A_N type. We also obtain Lax operators for various Fano manifolds; Grassmannians, rational surfaces etc. In these examples the number of...

  6. Gauge Theories of Gravitation

    CERN Document Server

    Blagojević, Milutin

    2012-01-01

    During the last five decades, gravity, as one of the fundamental forces of nature, has been formulated as a gauge field theory of the Weyl-Cartan-Yang-Mills type. The resulting theory, the Poincar\\'e gauge theory of gravity, encompasses Einstein's gravitational theory as well as the teleparallel theory of gravity as subcases. In general, the spacetime structure is enriched by Cartan's torsion and the new theory can accommodate fermionic matter and its spin in a perfectly natural way. The present reprint volume contains articles from the most prominent proponents of the theory and is supplemented by detailed commentaries of the editors. This guided tour starts from special relativity and leads, in its first part, to general relativity and its gauge type extensions a la Weyl and Cartan. Subsequent stopping points are the theories of Yang-Mills and Utiyama and, as a particular vantage point, the theory of Sciama and Kibble. Later, the Poincar\\'e gauge theory and its generalizations are explored and specific topi...

  7. Gravitational N-body Simulations

    CERN Document Server

    Trenti, M

    2008-01-01

    Gravitational N-body simulations, that is numerical solutions of the equations of motions for N particles interacting gravitationally, are widely used tools in astrophysics, with applications from few body or solar system like systems all the way up to galactic and cosmological scales. In this article we present a summary review of the field highlighting the main methods for N-body simulations and the astrophysical context in which they are usually applied.

  8. Long pendulums in gravitational gradients

    Energy Technology Data Exchange (ETDEWEB)

    Suits, B H [Physics Department, Michigan Technological University, Houghton, MI 49931 (United States)

    2006-03-01

    Previous results for long pendulums above a spherical Earth are generalized for arbitrary non-uniform gravitational fields in the limit of small oscillation. As is the case for the previous results, gravitational gradients are multiplied by the length of the string even though the string is assumed massless. The effect is shown to arise from the constraint on the motion imposed by the string. The significance of these results for real gradients is discussed. (letters and comments)

  9. Atom gravimeters and gravitational redshift

    CERN Document Server

    Wolf, Peter; Borde, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude; 10.1038/nature09340

    2010-01-01

    In a recent paper, H. Mueller, A. Peters and S. Chu [A precision measurement of the gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010)] argued that atom interferometry experiments published a decade ago did in fact measure the gravitational redshift on the quantum clock operating at the very high Compton frequency associated with the rest mass of the Caesium atom. In the present Communication we show that this interpretation is incorrect.

  10. The charmonium dissociation in an "anomalous wind"

    CERN Document Server

    Sadofyev, Andrey V

    2016-01-01

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries ``anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the ``anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the ``anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and {\\it qualitative} difference between anomalous effects on the charmonium color screening length which are {\\it model-dependent} and those on the heavy quark drag force which are fixed by the second law of thermodynamics. We speculate on the possible charmonium dissociation induced by chiral anomaly in heavy ion collisions.

  11. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  12. Anomalous Fractional Diffusion Equation for Transport Phenomena

    Institute of Scientific and Technical Information of China (English)

    QiuhuaZENG; HouqiangLI; 等

    1999-01-01

    We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.

  13. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)

    2014-02-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  14. Anomalous magnetic moment with heavy virtual leptons

    CERN Document Server

    Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias

    2013-01-01

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  15. Gravitational wave in Lorentz violating gravity

    OpenAIRE

    Li, Xin; Chang, Zhe(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100049, Beijing, China)

    2011-01-01

    By making use of the weak gravitational field approximation, we obtain a linearized solution of the gravitational vacuum field equation in an anisotropic spacetime. The plane-wave solution and dispersion relation of gravitational wave is presented explicitly. There is possibility that the speed of gravitational wave is larger than the speed of light and the casuality still holds. We show that the energy-momentum of gravitational wave in the ansiotropic spacetime is still well defined and cons...

  16. Extended X-ray Monitoring of Gravitational Lenses with Chandra and Joint Constraints on X-ray Emission Regions

    CERN Document Server

    Guerras, Eduardo; Steele, Shaun; Liu, Ang; Kochanek, Christopher S; Chartas, George; Morgan, Christopher W; Chen, Bin

    2016-01-01

    We present an X-ray photometric analysis of six gravitationally lensed quasars spanning from 5 to 14 years, measuring the total (0.83-21.8 keV restframe), soft (0.83-3.6 keV), and hard (3.6-21.8 keV) band image flux ratios for each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing curves and obtain joint likelihood functions for the average X-ray emission region sizes. Our analysis yields a Probability Distribution Function for the average half-light radius of the X-Ray emission region in the sample that peaks slightly above 1 gravitational radius, and yields nearly indistinguishable 68 % confidence (one-sided) upper limits of 17.8 (18.9) gravitational radii for the soft (hard) X-ray emitting region, assuming a mean stellar mass of 0.3 solar masses. We see hints of energy dependent microlensing between the soft and hard bands in two of the objects. In a separate analysis on the root-mean-square (RMS) of the microlensing variability, we find si...

  17. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))

    1983-03-11

    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  18. Modified entropic gravitation in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Clovis Jacinto de, E-mail: clovis.de.matos@esa.int [European Space Agency, 8-10 rue Mario Nikis, 75015 Paris (France)

    2012-01-15

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  19. Gravitational Collapse of Gravitational Waves in 3D Numerical Relativity

    CERN Document Server

    Alcubierre, M; Brügmann, B; Lanfermann, G; Seidel, E; Suen, W M; Tobias, M; Alcubierre, Miguel; Allen, Gabrielle; Bruegmann, Bernd; Lanfermann, Gerd; Seidel, Edward; Suen, Wai-Mo; Tobias, Malcolm

    2000-01-01

    We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be followed in numerical relativity, hence allowing many interesting studies of both fundamental and observational consequences. We study the evolution of time-symmetric, axisymmetric {\\it and} non-axisymmetric Brill waves, including waves so strong that they collapse to form black holes under their own self-gravity. The critical amplitude for black hole formation is determined. The gravitational waves emitted in the black hole formation process are compared to those emitted in the head-on collision of two Misner black holes.

  20. Spin gravitational resonance and graviton detection

    CERN Document Server

    Quach, James Q

    2016-01-01

    We develop a gravitational analogue of spin magnetic resonance, called spin gravitational resonance, whereby a gravitational wave interacts with a magnetic field to produce a spin transition. In particular, an external magnetic field separates the energy spin states of a spin-1/2 particle, and the presence of the gravitational wave produces a perturbation in the components of the magnetic field orthogonal to the gravitational wave propagation. In this framework we test Dyson's conjecture that individual gravitons cannot be detected. Although we find no fundamental laws preventing single gravitons being detected with spin gravitational resonance, we show that it cannot be used in practice, in support of Dyson's conjecture.

  1. Gravitational waves and multimessenger astronomy

    Directory of Open Access Journals (Sweden)

    Ricci Fulvio

    2016-01-01

    Full Text Available It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  2. Gravitational waves and multimessenger astronomy

    Science.gov (United States)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  3. Gravitational collapse and naked singularities

    Indian Academy of Sciences (India)

    Tomohiro Harada

    2004-10-01

    Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of gravitational collapse. Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has limitation in its application at the high-energy end. The appearance of naked singularities is not detestable but can open a window for the new physics of strongly curved space-times.

  4. Gravitational Instabilities in Circumstellar Disks

    CERN Document Server

    Kratter, Kaitlin M

    2016-01-01

    [Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analyt...

  5. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.

  6. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  7. Gravitational Lensing - Einstein's Unfinished Symphony

    CERN Document Server

    Treu, Tommaso

    2014-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of General Relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a...

  8. Gravitational Origin of Dark Matter

    CERN Document Server

    Babichev, Eugeny; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; von Strauss, Mikael

    2016-01-01

    Observational evidence for the existence of Dark Matter is limited to its gravitational effects. The extensive program for dedicated searches has yielded null results so far, challenging the most popular models. Here we propose that this is the case because the very existence of cold Dark Matter is a manifestation of gravity itself. The consistent bimetric theory of gravity, the only known ghost-free extension of General Relativity involving a massless and a massive spin-2 field, automatically contains a perfect Dark Matter candidate. We demonstrate that the massive spin-2 particle can be heavy, stable on cosmological scales, and that it interacts with matter only through a gravitational type of coupling. Remarkably, these features persist in the same region of parameter space where bimetric theory satisfies the current gravity tests. We show that the observed Dark Matter abundance can be generated via freeze-in and suggest possible particle physics and gravitational signatures of our bimetric Dark Matter mod...

  9. The postulates of gravitational thermodynamics

    CERN Document Server

    Martínez, E A

    1996-01-01

    The general principles and logical structure of a thermodynamic formalism that incorporates strongly self-gravitating systems are presented. This framework generalizes and simplifies the formulation of thermodynamics developed by Callen. The definition of extensive variables, the homogeneity properties of intensive parameters, and the fundamental problem of gravitational thermodynamics are discussed in detail. In particular, extensive parameters include quasilocal quantities and are naturally incorporated into a set of basic general postulates for thermodynamics. These include additivity of entropies (Massieu functions) and the generalized second law. Fundamental equations are no longer homogeneous first-order functions of their extensive variables. It is shown that the postulates lead to a formal resolution of the fundamental problem despite non-additivity of extensive parameters and thermodynamic potentials. Therefore, all the results of (gravitational) thermodynamics are an outgrowth of these postulates. T...

  10. Gravitational baryogenesis after anisotropic inflation

    Science.gov (United States)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  11. Thought Experiments on Gravitational Forces

    CERN Document Server

    Lynden-Bell, Donald

    2013-01-01

    Large contributions to the near closure of the Universe and to the acceleration of its expansion are due to the gravitation of components of the stress-energy tensor other than its mass density. To familiarise astronomers with the gravitation of these components we conduct thought experiments on gravity, analogous to the real experiments that our forebears conducted on electricity. By analogy to the forces due to electric currents we investigate the gravitational forces due to the flows of momentum, angular momentum, and energy along a cylinder. Under tension the gravity of the cylinder decreases but the 'closure' of the 3-space around it increases. When the cylinder carries a torque the flow of angular momentum along it leads to a novel helical interpretation of Levi-Civita's external metric and a novel relativistic effect. Energy currents give gravomagnetic effects in which parallel currents repel and antiparallel currents attract, though such effects must be added to those of static gravity. The gravity of...

  12. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  13. On the Source of Astrometric Anomalous Refraction

    Science.gov (United States)

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-01

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed "anomalous refraction" by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale (~2°) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  14. Quantum gravitational effects on boundary

    CERN Document Server

    Park, I Y

    2016-01-01

    Quantum gravitational effects may hold the key to some of the outstanding problems in theoretical physics. In this work we analyze the perturbative quantum effects on the boundary of a gravitational system and Dirichlet boundary condtion imposed at the classical level. Our analysis reveals that for a black hole solution there exists a clash between the quantum effects and Dirichlet boundary condition: the solution of the one-particle-irreducible (1PI) action no longer obeys the Dirichlet boundary condition. The analysis also suggests that the violation of the Dirichlet boundary condition should be tied with a certain mechanism of information storage on the boundary.

  15. Gravitational-wave mediated preheating

    Directory of Open Access Journals (Sweden)

    Stephon Alexander

    2015-04-01

    Full Text Available We propose a new preheating mechanism through the coupling of the gravitational field to both the inflaton and matter fields, without direct inflaton–matter couplings. The inflaton transfers power to the matter fields through interactions with gravitational waves, which are exponentially enhanced due to an inflation–graviton coupling. One such coupling is the product of the inflaton to the Pontryagin density, as in dynamical Chern–Simons gravity. The energy scales involved are constrained by requiring that preheating happens fast during matter domination.

  16. General relativity and gravitational waves

    CERN Document Server

    Weber, J

    2004-01-01

    An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field.Approximately a quarter of the contents explores theoretical and experimenta

  17. Soft-/rapidity- anomalous dimensions correspondence

    CERN Document Server

    Vladimirov, Alexey A

    2016-01-01

    We establish a correspondence between ultraviolet singularities of soft factors for multi-particle production and rapidity singularities of soft factors for multi-parton scattering. This correspondence is a consequence of a conformal mapping between scattering geometries. The correspondence is valid to all orders of perturbation theory and in this way provides a proof of rapidity renormalization procedure for multi-parton scattering soft factors (including the transverse momentum dependent (TMD) soft factor as a special case). As a by-product we obtain an exact relation between the rapidity anomalous dimension and the well-known soft anomalous dimension. The three-loop rapidity anomalous dimensions for TMD and a general multi-parton scattering are derived.

  18. Minimal flavour violation and anomalous top decays

    Energy Technology Data Exchange (ETDEWEB)

    Faller, Sven; Mannel, Thomas [Theoretische Physik 1, Department Physik, Universitaet Siegen, D-57068 Siegen (Germany); Gadatsch, Stefan [Nikhef, National Institute for Subatomatic Physics, P.O. Box 41882, 1009 Amsterdam (Netherlands)

    2013-07-01

    Any experimental evidence of anomalous top-quark couplings will open a window to study physics beyond the standard model (SM). However, all current flavour data indicate that nature is close to ''minimal flavour violation'', i.e. the pattern of flavour violation is given by the CKM matrix, including the hierarchy of parameters. In this talk we present results of the conceptual test of minimal flavour violation for the anomalous charged as well as flavour changing top-quark couplings. Our analysis is embedded in two-Higgs doublet model of type II (2HDM-II). Including renormalization effects, we calculate the top decay rates taking into account anomalous couplings constrained by minimal flavour violation.

  19. Neoclassical Viscosities and Anomalous Flows in Stellarators

    Science.gov (United States)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  20. Theory of the Muon Anomalous Magnetic Moment

    CERN Document Server

    Melnikov, Kirill

    2006-01-01

    The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.

  1. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  2. Electroweak Baryogenesis with Anomalous Higgs Couplings

    CERN Document Server

    Kobakhidze, Archil; Yue, Jason

    2015-01-01

    We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the 'symmetric' phase and are suppressed in the 'broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomal...

  3. Merging Black Holes and Gravitational Waves

    Science.gov (United States)

    Centrella, Joan

    2009-01-01

    This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.

  4. Gravitating BPS dyons witout a dilaton

    CERN Document Server

    Lee, C; Lee, Choonkyu; Park, Q Han

    1996-01-01

    We describe curved-space BPS dyon solutions, the ADM mass of which saturates the gravitational version of the Bogomol'nyi bound. This generalizes self-gravitating BPS monopole solutions of Gibbons et al. when there is no dilaton.

  5. Anomalous Feeding of the Left Upper Lobe.

    Science.gov (United States)

    Hazzard, Christopher; Itagaki, Shinobu; Lajam, Fouad; Flores, Raja M

    2016-09-01

    We report the case of a 53-year-old woman who presented with massive hemoptysis. Computed tomographic angiography revealed an anomalous vessel arising from the abdominal aorta, coursing anteriorly and through the diaphragm, and feeding the left upper lobe. At operation the vessel was found to anastomose to the left upper lobe lingula, which contained multiple vascular abnormalities and arteriovenous fistulas. The vessel was ligated, and the affected portion of the left upper lobe was resected. Anomalous systemic arterial supply of an upper lobe is an especially rare form of a Pryce type 1 abnormality. Recognition of these unusual anatomic variants is crucial to successful treatment and avoidance of adverse events.

  6. Anomalous mass dimension in multiflavor QCD

    Science.gov (United States)

    Doff, A.; Natale, A. A.

    2016-10-01

    Models of strongly interacting theories with a large mass anomalous dimension (γm) provide an interesting possibility for the dynamical origin of the electroweak symmetry breaking. A laboratory for these models is QCD with many flavors, which may present a nontrivial fixed point associated to a conformal region. Studies based on conformal field theories and on Schwinger-Dyson equations have suggested the existence of bounds on the mass anomalous dimension at the fixed points of these models. In this note we discuss γm values of multiflavor QCD exhibiting a nontrivial fixed point and affected by relevant four-fermion interactions.

  7. A potassium Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  8. The gravitational-wave memory effect

    OpenAIRE

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly-growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational-wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite ...

  9. Precursory singularities in spherical gravitational collapse

    Science.gov (United States)

    Lake, Kayll

    1992-05-01

    General conditions are developed for the formation of naked precursory ('shell-focusing') singularities in spherical gravitational collapse. These singularities owe their nakedness to the fact that the gravitational potential fails to be single valued prior to the onset of a true gravitational singularity. It is argued that they do not violate the spirit of cosmic censorship. Rather, they may well be an essentially generic feature of relativistic gravitational collapse.

  10. On the polarization of nonlinear gravitational waves

    OpenAIRE

    Poplawski, Nikodem J.

    2011-01-01

    We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.

  11. Normalization of Gravitational Acceleration Models

    Science.gov (United States)

    Eckman, Randy A.; Brown, Aaron J.; Adamo, Daniel R.

    2011-01-01

    Unlike the uniform density spherical shell approximations of Newton, the con- sequence of spaceflight in the real universe is that gravitational fields are sensitive to the nonsphericity of their generating central bodies. The gravitational potential of a nonspherical central body is typically resolved using spherical harmonic approximations. However, attempting to directly calculate the spherical harmonic approximations results in at least two singularities which must be removed in order to generalize the method and solve for any possible orbit, including polar orbits. Three unique algorithms have been developed to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3]. This paper documents the methodical normalization of two1 of the three known formulations for singularity-free gravitational acceleration (namely, the Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defining normalization parameters used to generate normalized Legendre Polynomials and ALFs for any algorithm. A treatment of the conventional formulation of the gravitational potential and acceleration is also provided, in addition to a brief overview of the philosophical differences between the three known singularity-free algorithms.

  12. Cosmological Acceleration from Gravitational Waves

    CERN Document Server

    Marochnik, Leonid

    2015-01-01

    It is shown that the classical gravitational waves of super-horizon wavelengths are able to form the de Sitter accelerated expansion of the empty (with no matter fields) Universe. The contemporary Universe is about 70% empty and asymptotically is going to become completely empty, so the effect caused by emptiness should be already very noticeable. It could manifest itself as the dark energy.

  13. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  14. Unification of Electromagnetic Interactions and Gravitational Interactions

    Institute of Scientific and Technical Information of China (English)

    WUNing

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper.Based on gauge principle,electromagnetic interactions and gravitational interactions are formulated in the same manner and are unified in a semi-direct product group of U(1) Abelian gauge group and gravitational gauge group.

  15. Unification of Electromagnetic Interactions and Gravitational Interactions

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2002-01-01

    Unified theory of gravitational interactions and electromagnetic interactions is discussed in this paper.Based on gauge principle, electromagnetic interactions and gravitational interactions are formulated in the same mannerand are unified in a semi-direct product group of U(1) Abelian gauge group and gravitational gauge group.

  16. Anomalous human behavior detection: An Adaptive approach

    NARCIS (Netherlands)

    Leeuwen, C. van; Halma, A.; Schutte, K.

    2013-01-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous b

  17. Anomalous pulmonary venous return: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Min; Kang, MinJin; Lee, Han Bee; Bae, Kyung Eun; Lee, Jaehe; Kim, Jae Hyung; Jeong, Myeong Ja; Kang, Tae Kyung [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2013-10-15

    Partial anomalous pulmonary venous return is a type of congenital pulmonary venous anomaly. We present a rare type of partial pulmonary venous return, subaortic vertical vein drains left lung to superior vena cava, accompanying hypoplasia of the ipsilateral lung and pulmonary artery. We also review the previous report and relationship of these structures.

  18. Anomalous Hall Effect for chiral fermions

    CERN Document Server

    Zhang, P -M

    2014-01-01

    Semiclassical chiral fermions manifest the anomalous spin-Hall effect: when put into a pure electric field, they suffer a side jump, analogous to what happens to their massive counterparts in non-commutative mechanics. The transverse shift is consistent with the conservation of the angular momentum. In a pure magnetic field a cork-screw-like, spiraling motion is found.

  19. ACS SBC Recovery from Anomalous Shutdown

    Science.gov (United States)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the SBC {FUV MAMA} detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flag 2 is used to prevent inadvertent MAMA usage. The recovery procedure consists of four separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, high-voltage ramp-up to an intermediate voltage, 3} a slow high-voltage ramp-up to the nominal operating HV, and 4} fold analysis test. Each must be completed successfully before proceeding onto the next. During the two high-voltage ramp-ups, dark ACCUM exposures are taken. At high voltage, dark ACCUM exposures and diagnostics are taken. This proposal is based on Proposal 13163 from Cycle 20. For additional MAMA recovery information, see STIS ISR 98-02R.

  20. Total least squares for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Matsekh, Anna M [Los Alamos National Laboratory

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  1. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    .3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  2. Gravitational Gauge Interactions of Dirac Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2004-01-01

    Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge tield, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.

  3. Gravitational Waves in Effective Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; Kuntz, Ibere; Mohapatra, Sonali [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)

    2016-08-15

    In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration. (orig.)

  4. Anomalous transports in a time-delayed system subjected to anomalous diffusion

    Science.gov (United States)

    Chen, Ru-Yin; Tong, Lu-Mei; Nie, Lin-Ru; Wang, Chaojie; Pan, Wanli

    2017-02-01

    We investigate anomalous transports of an inertial Brownian particle in a time-delayed periodic potential subjected to an external time-periodic force, a constant bias force, and the Lévy noise. By means of numerical calculations, effect of the time delay and the Lévy noise on its mean velocity are discussed. The results indicate that: (i) The time delay can induce both multiple current reversals (CRs) and absolute negative mobility (ANM) phenomena in the system; (ii) The CRs and ANM phenomena only take place in the region of superdiffusion, while disappear in the regions of normal diffusion; (iii) The time delay can cause state transition of the system from anomalous →normal →anomalous →normal →anomalous →normal transport in the case of superdiffusion.

  5. Gravitational cooling of self-gravitating Bose-Condensates

    CERN Document Server

    Guzman, F S

    2006-01-01

    Equilibrium configurations for a self-gravitating scalar field with self-interaction are constructed. The corresponding Schr\\"odinger-Poisson (SP) system is solved using finite differences assuming spherical symmetry. It is shown that equilibrium configurations of the SP system are late-time attractor solutions for initially quite arbitrary density profiles, which relax and virialize through the emission of scalar field bursts; a process dubbed gravitational cooling. Among other potential applications, these results indicate that scalar field dark matter models (in its different flavors) tolerate the introduction of a self-interaction term in the SP equations. This study can be useful in exploring models in which dark matter in galaxies is not point-like.

  6. Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen

    CERN Document Server

    Nieto, Michael Martin; Anderson, J D; Lau, E L; Pérez-Mercader, J; Nieto, Michael Martin; Goldman, T; Anderson, John D; Lau, Eunice L; Perez-Mercader, J

    1994-01-01

    We know that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when we try to combine these theories, we must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem and the anomalous spacecraft data which we announce here. This all has led some ``intrepid" theorists to consider a new gravitational regime, that of antimatter. Even more ``daring" experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter, including low-energy antiprotons and, perhaps most enticing, antihydrogen.

  7. Spherical gravitational curvature boundary-value problem

    Science.gov (United States)

    Šprlák, Michal; Novák, Pavel

    2016-08-01

    Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.

  8. Towards a Better Understanding of the Anomalous Hall Effect

    Science.gov (United States)

    Yue, Di; Jin, Xiaofeng

    2017-01-01

    Recent experimental efforts to identify the intrinsic and extrinsic contributions in the anomalous Hall effect are reviewed. Benefited from the experimental control of artificial impurity density in single crystalline magnetic thin films, a comprehensive physical picture of the anomalous Hall effect involving multiple competing scattering processes has been established. Some new insights into the microscopic mechanisms of the anomalous Hall effect are discussed.

  9. The gravitational dynamics of galaxies

    Indian Academy of Sciences (India)

    Rajaram Nityananda

    2009-07-01

    The broad area of galactic dynamics is presented for a physics audience, with the requisite astronomy background in outline, and focusing on gravitational effects. The basic underlying model is a large number of particles (which could be stars or dark matter) moving in their self-consistent gravitational potential. The effects of two-particle correlations/scattering, although weak, can be cumulative and hence important for a class of systems such as star clusters which are hence termed collisional. On the larger scale of galaxies, we have collisionless behaviour which is different and in some ways richer. The basic ideas and applications in both these regimes are described, and some issues highlighted in conclusion.

  10. A Classical Model of Gravitation

    Directory of Open Access Journals (Sweden)

    Wagener P.

    2008-07-01

    Full Text Available A classical model of gravitation is proposed with time as an independent coordinate. The dynamics of the model is determined by a proposed Lagrangian. Applying the canonical equations of motion to its associated Hamiltonian gives conservation equa- tions of energy, total angular momentum and the z component of the angular momen- tum. These lead to a Keplerian orbit in three dimensions, which gives the observed values of perihelion precession and bending of light by a massive object. An expression for gravitational redshift is derived by accepting the local validity of special relativity at all points in space. Exact expressions for the GEM relations, as well as their associated Lorentz-type force, are derived. An expression for Mach’s Principle is also derived.

  11. Loop Quantum Cosmology Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...

  12. Classifying self-gravitating radiations

    CERN Document Server

    Kim, Hyeong-Chan

    2016-01-01

    We study static systems of self-gravitating radiations confined in a sphere by using numerical and analytic calculations. We classify and analyze the solutions systematically. Due to the scaling symmetry, any solution can be represented as a segment of a solution curve on a plane of two-dimensional scale invariant variables. We find that a system can be conveniently parametrized by three parameters representing the solution curve, the scaling, and the system size, instead of the parameters defined at the outer boundary. The solution curves are classified to three types representing regular solutions, conically singular solutions with, and without an object which resembles an event horizon up to causal disconnectedness. For the last type, the behavior of a self-gravitating system is simple enough to allow analytic calculations.

  13. Conformal gravity and "gravitational bubbles"

    CERN Document Server

    Berezin, V A; Eroshenko, Yu N

    2015-01-01

    We describe the general structure of the spherically symmetric solutions in the Weyl conformal gravity. The corresponding Bach equations are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions, consisting of two classes, is found. The first one contains the solutions with constant two-dimensional curvature scalar, and the representatives are the famous Robertson--Walker metrics. We called one of them the "gravitational bubbles", which is compact and with zero Weyl tensor. These "gravitational bubbles" are the pure vacuum curved space-times (without any material sources, including the cosmological constant), which are absolutely impossible in General Relativity. This phenomenon makes it easier to create the universe from "nothing". The second class consists of the solutions with varying curvature scalar. We found its representative as the one-parameter family, which can be conformally covered by the thee-para...

  14. Gravitational waves from compact objects

    Institute of Scientific and Technical Information of China (English)

    José Antonio de Freitas Pacheco

    2010-01-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and,consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a "pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  15. A gravitating electroweak bag model

    Science.gov (United States)

    Burinskii, Alexander

    2016-02-01

    Gravitational and electromagnetic (EM) field of electron is described by the Kerr-Newman (KN) black hole solution with a topological defect. Regularization of this defect by the Higgs field leads to the smooth source which shares much in common with the known MIT- and SLAC- bag models, but has the advantage, of matching gravitational and electromagnetic fields of the electron. This model is flexible, and the rotating KN bag takes the shape of a thin disk with a circular string positioned on the sharp border of the disk. We consider the lowest excitations of the KN solution and the corresponding deformations of the bag surface, setting a preliminary correspondence with electroweak sector of the SM.

  16. Gravitational wave science from space

    Science.gov (United States)

    Gair, Jonathan R.

    2016-05-01

    The rich millihertz gravitational wave band can only be accessed with a space- based detector. The technology for such a detector will be demonstrated by the LISA Pathfinder satellite that is due to launch this year and ESA has selected gravitational wave detection from space as the science theme to be addressed by the L3 large mission to be launched around 2034. In this article we will discuss the sources that such an instrument will observe, and how the numbers of events and precision of parameter determination are affected by modifications to the, as yet not finalised, mission design. We will also describe some of the exciting scientific applications of these observations, to astrophysics, fundamental physics and cosmology.

  17. Nonadiabatic charged spherical gravitational collapse

    CERN Document Server

    Di Prisco, A; Denmat, G Le; MacCallum, M A H; Santos, N O

    2007-01-01

    We present a complete set of the equations and matching conditions required for the description of physically meaningful charged, dissipative, spherically symmetric gravitational collapse with shear. Dissipation is described with both free-streaming and diffusion approximations. The effects of viscosity are also taken into account. The roles of different terms in the dynamical equation are analyzed in detail. The dynamical equation is coupled to a causal transport equation in the context of Israel-Stewart theory. The decrease of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamic state, is reobtained, with the viscosity terms included. In accordance with the equivalence principle, the same decrease factor is obtained for the gravitational force term. The effect of the electric charge on the relation between the Weyl tensor and the inhomogeneity of energy density is discussed.

  18. Bayesian Inference on Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Asad Ali

    2015-12-01

    Full Text Available The Bayesian approach is increasingly becoming popular among the astrophysics data analysis communities. However, the Pakistan statistics communities are unaware of this fertile interaction between the two disciplines. Bayesian methods have been in use to address astronomical problems since the very birth of the Bayes probability in eighteenth century. Today the Bayesian methods for the detection and parameter estimation of gravitational waves have solid theoretical grounds with a strong promise for the realistic applications. This article aims to introduce the Pakistan statistics communities to the applications of Bayesian Monte Carlo methods in the analysis of gravitational wave data with an  overview of the Bayesian signal detection and estimation methods and demonstration by a couple of simplified examples.

  19. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  20. Gravitating Dyons in Vaidya Geometry

    CERN Document Server

    Tripathi, Buddhi Vallabh; Dehnen, Heinz; Purohit, K D

    2014-01-01

    Gravitating monopoles and dyons in Einstein-Yang-Mills (EYM) or Einstein-Yang-Mills-Higgs (EYMH) systems have been extensively studied for various curved spacetimes, including those of black holes. We construct dyonic solutions of the EYMH theory in Vaidya spacetime using a set of generalized Julia-Zee ansatz for the fields. It is found that the dyonic charge is static in nature and it does not contribute to the energy of the null dust.

  1. Gravitational Global Monopoles with Horizons

    CERN Document Server

    Maison, D

    1999-01-01

    We give arguments for the existence of ``radial excitations'' of gravitational global monopoles with any number of zeros of the Higgs field and present numerical results for solutions with up to two zeros. All these solutions possess a de Sitter like cosmological horizon, outside of which they become singular. In addition we study corresponding static ``hairy'' black hole solutions, representing black holes sitting inside a global monopole core. In particular, we determine their existence domains as a function of their horizon radius rh.

  2. Self-gravitating accretion discs

    OpenAIRE

    Lodato, G.

    2008-01-01

    I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature whe...

  3. Gravitational lens surveys with LOFAR

    CERN Document Server

    Wucknitz, O

    2008-01-01

    Deep surveys planned as a Key Science Project of LOFAR provide completely new opportunities for gravitational lens searches. For the first time do large-scale surveys reach the resolution required for a direct selection of lens candidates using morphological criteria. We briefly describe the strategies that we will use to exploit this potential. The long baselines of an international E-LOFAR are essential for this project.

  4. A Study of Gravitational Lens Chromaticity with the Hubble Space Telescope

    CERN Document Server

    Muñoz, José A; Kochanek, Christopher S; Falco, Emilio; Mosquera, Ana María

    2011-01-01

    We report Hubble Space Telescope observations of 6 gravitational lenses with the Advanced Camera for Surveys. We measured the flux ratios between the lensed images in 6 filters from 8140\\AA\\ to 2200\\AA. In 3 of the systems, HE0512$-$3329, B1600+434, and H1413+117, we were able to construct UV extinction curves partially overlapping the 2175\\AA\\ feature and characterize the properties of the dust relative to the Galaxy and the Magellanic Clouds. In HE1104$-$1804 we detect chromatic microlensing and use it to study the physical properties of the quasar accretion disk. For a Gaussian model of the disk $\\exp(-r^2/2 r_s^2)$, scaling with wavelength as $r_s \\propto \\lambda^p$, we estimate $r_s(\\lambda3363)=4^{+4}_{-2}$ ($7\\pm 4$) light-days and $p=1.1\\pm 0.6$ ($1.0\\pm 0.6$) for a logarithmic (linear) prior on $r_s$. The remaining two systems, FBQ0951+2635 and SBS1520+530, yielded no useful estimates of extinction or chromatic microlensing.

  5. Study of Gravitational Lens Chromaticity from Ground-based Narrow Band Photometry

    CERN Document Server

    Mosquera, Ana M; Mediavilla, Evencio; Kochanek, Christopher S

    2010-01-01

    We present observations of wavelength-dependent flux ratios for 4 gravitational lens systems (SDSS~J1650+4251, HE~0435$-$1223, FBQ 0951+2635, and Q~0142$-$100) obtained with the Nordic Optical telescope (NOT). The use of narrow band photometry, as well as the excellent seeing conditions during the observations, allow us to set good baselines to study their chromatic behavior. For SDSS~J1650+4251 we determine the extinction curve of the dust in the $z_L=0.58$ lens galaxy, and find that the 2175 \\AA \\ feature is absent. In the case of HE~0435$-$1223 we clearly detect chromatic microlensing. This allows us to estimate the wavelength dependent size of the accretion disk. We found an R-band disk size of $r^{R}_s=13\\pm5$ light days for a linear prior on $r^{R}_s$ and of $r^{R}_s=7\\pm6$ light days for a logarithmic prior. For a power law size-wavelength scaling of $r_s\\propto\\lambda^{p}$, we were able to constrain the value of the exponent to $p=1.3\\pm0.3$ for both $r^{R}_s$ priors, which is in agreement with the te...

  6. Anomalous feedback and negative domain wall resistance

    Science.gov (United States)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-11-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.

  7. Anomalous electromagnetism of pions and magnons

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, U.-J. [Institute for Theoretical Physics, Bern University Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2005-04-15

    Pions and magnons - the Goldstone bosons of the strong interactions and of magnetism - share a number of common features. Pion and magnon fields couple anomalously to electromagnetism through the conserved Goldstone-Wilczek current of their topological Skyrmion excitations. In the pion case, this coupling gives rise to the decay of the neutral pion into two photons. In the magnon case, the anomalous coupling leads to photonmagnon conversion in an external magnetic field. A measurement of the conversion rate in quantum Hall ferromagnets determines the anyon statistics angle of baby-Skyrmions. If photon-magnon conversion also occurs in antiferromagnets, baby-Skyrmions carry electric charge and may represent the Cooper-pairs of high-temperature superconductors.

  8. Remote sensing and characterization of anomalous debris

    Science.gov (United States)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  9. Anomalous Coronary Artery: Run of a Lifetime.

    Science.gov (United States)

    Green, Michael Stuart; Sehgal, Sankalp; Smukler, Naomi; Suber, LaDouglas Jarod; Saththasivam, Pooven

    2016-09-01

    The anatomy of the coronary circulation is well described with incidence of congenital anomalies of approximately 0.3% to 1.0%. Although often incidental, 20% are life-threatening. A 25-year-old woman with syncopal episodes collapsed following a 10-km run. Coronary anatomy evaluation showed an anomalous left main coronary artery originating from the right sinus of valsalva and following a course between the aorta and the pulmonary outflow tract. Percutaneous coronary intervention was followed by eventual surgical revascularization. Abnormal course of coronary arteries plays a role in the pathogenesis of sudden death on exertion. Origin of the left main coronary from the right sinus of valsalva is a rare congenital anomaly. The expansion of the roots of the aorta and pulmonary trunk with exertion lead to compression of the coronary artery and syncope. Our patient raises awareness of a potentially fatal coronary artery path. Intraoperative identification of anomalous coronaries by utilizing intraoperative transesophageal echocardiography was critical.

  10. Anomalous interactions at a linear collider

    Indian Academy of Sciences (India)

    Sudhansu S Biswal; Debajyoti Choudhury; Rohini M Godbole; Ritesh K Singh

    2007-11-01

    We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating at a center of mass energy of 500 GeV and with an integrated luminosity of 500 fb-1 is shown to be able to constrain the vertex at the few per cent level, with even higher sensitivity for some of the couplings. However, lack of sufficient number of observables as well as contamination from the vertex limits the precision to which anomalous part of the coupling can be probed.

  11. The Discovery of Anomalous Microwave Emission

    OpenAIRE

    Leitch, Erik M.; Readhead, A. C. R.

    2013-01-01

    We discuss the first detection of anomalous microwave emission, in the Owens Valley RING5M experiment, and its interpretation in the context of the ground-based cosmic microwave background (CMB) experiments of the early 1990s. The RING5M experiment was one of the first attempts to constrain the anisotropy power on sub-horizon scales, by observing a set of -size fields around the North Celestial Pole (NCP). Fields were selected close to the NCP to allow continuous integrati...

  12. Blow up Analysis for Anomalous Granular Gases

    OpenAIRE

    Rey, Thomas

    2012-01-01

    20 p.; International audience; We investigate in this article the long-time behaviour of the solutions to the energy-dependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is ''anomalous'', in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. W...

  13. Anomalous Mirror Symmetry Generated by Optical Illusion

    Directory of Open Access Journals (Sweden)

    Kokichi Sugihara

    2016-04-01

    Full Text Available This paper introduces a new concept of mirror symmetry, called “anomalous mirror symmetry”, which is physically impossible but can be perceived by human vision systems because of optical illusion. This symmetry is characterized geometrically and a method for creating cylindrical surfaces that create this symmetry is constructed. Examples of solid objects constructed by a 3D printer are also shown.

  14. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  15. Anomalous water drop bouncing on a nanotextured surface by the Leidenfrost levitation

    Science.gov (United States)

    Lee, Doo Jin; Song, Young Seok

    2016-05-01

    We report an anomalous liquid drop bouncing phenomenon that is generated by the Leidenfrost levitation due to a vapor layer reducing energy dissipation during the collision. The Leidenfrost levitation of water drops on both a hydrophobic surface and nanotextured Cassie surface is investigated. When the water drop is positioned onto the hydrophobic surface, a superhydrophobic feature is observed by the levitation effect due to the vapor film, which results in a slow evaporation of the drop due to the low thermal conductivity of the vapor layer that inhibits heat transfer between the heated surface and the water drop. In contrast, for the nanotextured surface, the water drop can bounce off after impact on the surface when it overcomes gravitational and adhesion forces. The spontaneous water drop bouncing on the nanotextured surface is powered by the combination effect of the Leidenfrost levitation and the non-wetting Cassie state.

  16. Anomalous dominance, immune parameters, and spatial ability.

    Science.gov (United States)

    Hassler, M

    1993-02-01

    In a sample of male and female subjects in late adolescence, we investigated the relationship of spatial abilities to anomalous dominance and immune parameters as suggested by Geschwind's model of cerebral lateralization (Geschwind & Galaburda, 1985) In addition to the behavioral markers asthma/allergies, migraine, and myopia, we measured IgE and Ig total in blood serum. Atypical handedness, atypical language dominance, and atypical visuospatial dominance were found to be connected with spatial giftedness, and atypical handedness was related to immune vulnerability in males. This outcome provided some support for the Geschwind model in men. In women, spatial giftedness was related to immune vulnerability, but no indicator of anomalous dominance was connected with either giftedness, or immune parameters. Thus, the central thesis of the Geschwind model, i.e., elevated prenatal testosterone effects on the developing brain cause anomalous dominance and, as side effects, spatial giftedness and immune vulnerability, and all these consequences should be related to each other, was not confirmed by our data for females.

  17. Neoclassical and anomalous flows in stellarators

    Science.gov (United States)

    Ware, A. S.; Marine, T.; Spong, D. A.

    2009-11-01

    The impact of magnetic geometry and plasma profiles on flows and viscosities in stellarators is investigated. This work examines both neoclassical and anomalous flows for a number of configurations including a particular focus on the Helically Symmetric Experiment (HSX) and other quasi-symmetric configurations. Neoclassical flows and viscosities are calculated using the PENTA code [1]. For anomalous flows, the neoclassical viscosities from PENTA are used in a transport code that includes Reynolds stress flow generation [2]. This is done for the standard quasi-helically symmetric configuration of HSX, a symmetry-breaking mirror configuration and a hill configuration. The impact of these changes in the magnetic geometry on neoclassical viscosities and flows in HSX are discussed. Due to variations in neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. These effects are shown to vary as the ratio of electron to ion temperature varies. In particular, as the ion temperature increases relative to the electron flow shear is shown to increase. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  18. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  19. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  20. Gravitational Gauge Interactions of Scalar Field

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  1. Gravitational Gauge Interactions of Scalar Field

    Institute of Scientific and Technical Information of China (English)

    WUNing

    2003-01-01

    Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.

  2. Universal Gravitation as Lorentz-covariant Dynamics

    CERN Document Server

    Kauffmann, Steven Kenneth

    2014-01-01

    Einstein's equivalence principle implies that the acceleration of a particle in a "specified" gravitational field is independent of its mass. While this is certainly true to great accuracy for bodies we observe in the Earth's gravitational field, a hypothetical body of mass comparable to the Earth's would perceptibly cause the Earth to fall toward it, which would feed back into the strength as a function of time of the Earth's gravitational field affecting that body. In short, Einstein's equivalence principle isn't exact, but is an approximation that ignores recoil of the "specified" gravitational field, which sheds light on why general relativity has no clearly delineated native embodiment of conserved four-momentum. Einstein's 1905 relativity of course doesn't have the inexactitudes he unwittingly built into GR, so it is natural to explore a Lorentz-covariant gravitational theory patterned directly on electromagnetism, wherein a system's zero-divergence overall stress-energy, including all gravitational fee...

  3. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    Bala R Iyer

    2011-07-01

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.

  4. Gravitational Couplings on D-brane Revisited

    CERN Document Server

    Ghodsi, Ahmad

    2016-01-01

    Gravitational couplings in bulk space-time include those terms which are fixed by scattering amplitude of strings and ambiguous terms that are coming from the field redefinitions. These field redefinitions can be fixed in the bulk by ghost-free condition. In this paper we have revised the effective gravitational couplings on D-branes by including the field redefinitions. We find the gravitational effective action up to $\\alpha'^2$-order.

  5. On Gravitational Entropy of de Sitter Universe

    CERN Document Server

    Ulhoa, S C

    2013-01-01

    The paper deals with the calculation of the gravitational entropy in the context of teleparallel gravity for de Sitter space-time. In such a theory it is possible to define gravitational energy and pressure, thus we use those expressions to construct the gravitational entropy. We interpret the cosmological constant as the temperature and write the first law of thermodynamics. In the limit $\\Lambda\\ll 1$ we find that the entropy is proportional to volume and $\\Delta S\\geq 0$.

  6. Generalized Gravitational Entropy from Various Matter Fields

    OpenAIRE

    Huang, Wung-Hong

    2016-01-01

    The generalized gravitational entropy proposed in recent by Lewkowycz and Maldacena [1] is extended to the systems of Boson fields, Fermion fields and Maxwell fields which have arbitrary frequency and mode numbers on the BTZ spacetime. We find the associated regular wave solution in each case and use it to calculate the exact gravitational entropy. The results show that there is a threshold frequency below which the Fermion fields could not contribute the generalized gravitational entropy. Al...

  7. Response of massive bodies to gravitational waves

    CERN Document Server

    Hannibal, L; Hannibal, Ludger; Warkall, Jens

    2000-01-01

    The repsonse of a massive body to gravitational waves is decribed on the microscopic level, taking the metric perturbations of the electromagnetic and gravitational forces into account. The effects found substantially differ from those obtained in the commonly used oscillator model. The electromagnetic coupling induces a dominant surface effect, the gravitational coupling gives rise to the excitation of quadrupole modes, but several oredes of magnitude smaller.

  8. Astrophysical Gravitational Wave Sources Literature Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...

  9. Gravitational Wave Detection with Michelson Interferometers

    CERN Document Server

    Sivasubramanian, S; Widom, A

    2003-01-01

    Electromagnetic methods recently proposed for detecting gravitational waves modify the Michelson phase shift analysis (historically employed for special relativity). We suggest that a frequency modulation analysis is more suited to general relativity. An incident photon in the presence of a very long wavelength gravitational wave will have a finite probability of being returned as a final photon with a frequency shift whose magnitude is equal to the gravitational wave frequency. The effect is due to the non-linear coupling between electromagnetic and gravitational waves. The frequency modulation is derived directly from the Maxwell-Einstein equations.

  10. Gravitational Wave Astrophysics: Opening the New Frontier

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    A new era in astronomy will begin when the gravitational wave window onto the universe opens in approx. 5 years, as ground-based detectors make the first detections in the high-frequency regime. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources - such as masses, spins, luminosity distances, and orbital parameters - through dense, obscured regions across cosmic time. This talk will explore gravitational waves as cosmic messengers, highlighting key sources and opportunities for multi-messenger astronomy across the gravitational wave spectrum.

  11. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  12. Matrix Models and Gravitational Corrections

    CERN Document Server

    Dijkgraaf, R; Temurhan, M; Dijkgraaf, Robbert; Sinkovics, Annamaria; Temurhan, Mine

    2002-01-01

    We provide evidence of the relation between supersymmetric gauge theories and matrix models beyond the planar limit. We compute gravitational R^2 couplings in gauge theories perturbatively, by summing genus one matrix model diagrams. These diagrams give the leading 1/N^2 corrections in the large N limit of the matrix model and can be related to twist field correlators in a collective conformal field theory. In the case of softly broken SU(N) N=2 super Yang-Mills theories, we find that these exact solutions of the matrix models agree with results obtained by topological field theory methods.

  13. Exploring gravitational theories beyond Horndeski

    CERN Document Server

    Gleyzes, Jérôme; Piazza, Federico; Vernizzi, Filippo

    2014-01-01

    We have recently proposed a new class of gravitational scalar-tensor theories free from ghost instabilities. As they generalize Horndeski theories, or "generalized" galileons, we call them G$^3$. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they do not suffer from Ostrogradski instabilities by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations, which also allow subfamilies of G$^3$ to be mapped into Horndeski theories.

  14. The Scales of Gravitational Lensing

    CERN Document Server

    De Paolis, Francesco; Ingrosso, Gabriele; Manni, Luigi; Nucita, Achille; Strafella, Francesco

    2016-01-01

    After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge) of supermassive black holes in the center of ours and nearby galaxies.

  15. Gravitational effects on inflaton decay

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei [Department of Physics, University of Tokyo,Tokyo 113-0033 (Japan); Nakayama, Kazunori [Department of Physics, University of Tokyo,Tokyo 113-0033 (Japan); Kavli IPMU, TODIAS, University of Tokyo,Kashiwa 277-8583 (Japan)

    2015-05-22

    We point out that the inflaton inevitably couples to all non-conformally coupled matters gravitationally through an oscillation in the Hubble parameter or the cosmic scale factor. It leads to particle production during the inflaton oscillation regime, which is most efficient just after inflation. Moreover, the analysis is extended to the model with non-minimal inflaton couplings to gravity, in which the Hubble parameter oscillates more violently. We apply our results to the graviton production by the inflaton: gravitons are also produced just after inflation, but the non-minimal coupling does not induce inflaton decay into the graviton pair.

  16. Gravitational Effects on Inflaton Decay

    CERN Document Server

    Ema, Yohei; Mukaida, Kyohei; Nakayama, Kazunori

    2015-01-01

    We point out that the inflaton inevitably couples to all non-conformally coupled matters gravitationally through an oscillation in the Hubble parameter or the cosmic scale factor. It leads to particle production during the inflaton oscillation regime, which is most efficient just after inflation. Moreover, the analysis is extended to the model with non-minimal inflaton couplings to gravity, in which the Hubble parameter oscillates more violently. We apply our results to the graviton production by the inflaton: gravitons are also produced just after inflation, but the non-minimal coupling does not induce inflaton decay into the graviton pair.

  17. The Scales of Gravitational Lensing

    Directory of Open Access Journals (Sweden)

    Francesco De Paolis

    2016-03-01

    Full Text Available After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge of supermassive black holes in the center of ours and nearby galaxies.

  18. The Future of Gravitational Optics

    CERN Document Server

    Blandford, R D

    2001-01-01

    In this speculative, millenial essay, I try to anticipate what sort of novel gravitational optics investigations might be observed, after it becomes possible to map and monitor roughly a trillion sources (of which a billion may be usefully variable) comprehensively throughout electromagnetic and other spectra over the whole sky. Existing techniques suffice to produce three dimensional maps of the dark matter distribution of the accessible universe, to explore black hole spacetimes and to magnify images of the first luminous sources, terrestrial planets and compact objects.

  19. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  20. Chaotic zones around gravitating binaries

    CERN Document Server

    Shevchenko, Ivan I

    2014-01-01

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound bodies (a double star, a double black hole, a binary asteroid, etc.) is estimated analytically, in function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the binary periods. The binary's mass ratio, above which such a chaotic zone is universally present, is also estimated.

  1. Gravitational entropy of cosmic expansion

    CERN Document Server

    Sussman, Roberto A

    2014-01-01

    We apply a recent proposal to define "gravitational entropy" to the expansion of cosmic voids within the framework of non-perturbative General Relativity. By considering CDM void configurations compatible with basic observational constraints, we show that this entropy grows from post-inflationary conditions towards a final asymptotic value in a late time fully non-linear regime described by the Lemaitre-Tolman-Bondi (LTB) dust models. A qualitatively analogous behavior occurs if we assume a positive cosmological constant consistent with a $\\Lambda$-CDM background model. However, the $\\Lambda$ term introduces a significant suppression of entropy growth with the terminal equilibrium value reached at a much faster rate.

  2. Gravitational Waves from Warped Spacetime

    CERN Document Server

    Randall, Lisa; Randall, Lisa; Servant, Geraldine

    2007-01-01

    We argue that the RSI model can provide a strong signature in gravitational waves. This signal is a relic stochastic background generated during the cosmological phase transition from an AdS-Schwarschild phase to the RS1 geometry that should occur at a temperature in the TeV range. We estimate the amplitude of the signal in terms of the parameters of the potential stabilizing the radion and show that over much of the parameter region in which the phase transition completes, a signal should be detectable at the planned space interferometer, LISA.

  3. Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients

    Science.gov (United States)

    Pitoňák, Martin; Šprlák, Michal; Hamáčková, Eliška; Novák, Pavel

    2016-04-01

    Regional recovery of the disturbing gravitational potential in the area of Central Europe from satellite gravitational gradients data is discussed in this contribution. The disturbing gravitational potential is obtained by inverting surface integral formulas which transform the disturbing gravitational potential onto disturbing gravitational gradients in the spherical local north-oriented frame. Two numerical approaches that solve the inverse problem are considered. In the first approach, the integral formulas are rigorously decomposed into two parts, that is, the effects of the gradient data within near and distant zones. While the effect of the near zone data is sought as an inverse problem, the effect of the distant zone data is synthesized from the global gravitational model GGM05S using spectral weights given by truncation error coefficients up to the degree 150. In the second approach, a reference gravitational field up to the degree 180 is applied to reduce and smooth measured gravitational gradients. In both cases we recovered the disturbing gravitational potential from each of the four well-measured gravitational gradients of the GOCE satellite separately as well as from their combination. Obtained results are compared with the EGM2008, DIR-r2, TIM-r2 and SPW-r2 global gravitational models. The best fit was achieved for EGM2008 and the second approach combining all four well-measured gravitational gradients with rms of 1.231 m2 s-2.

  4. Omnidirectional Gravitational Wave Detector with a Laser-Interferometric Gravitational Compass

    CERN Document Server

    Maia, M D; Sousa, Claudio M G; Magalhaes, Nadja S; Frajuca, Carlos

    2016-01-01

    Based on the Szekeres-Pirani gravitational compass we suggest the addition of a fourth, non-coplanar mass/mirror to the presently existing laser based gravitational wave observatories, enabling them to operate omnidirectionally, to filter out ambiguous interpretations and to point out the direction of the gravitational wave source.

  5. A Possible Interpretation on Distance-Dependent Effect of Gravitational Constant in Newton's Theory of Gravitation

    Institute of Scientific and Technical Information of China (English)

    QIAN Shang-Wu

    2005-01-01

    Based on the new metric theory of gravitation suggested by the author of this article, it gives a possible theoretical interpretation on the famous experiment done by D.R. Long in 1976, i.e. the distance-dependent effect of the gravitational constant in Newton's theory of gravitation.

  6. Gravitational instabilities in astrophysical fluids

    Science.gov (United States)

    Tohline, Joel E.

    1990-01-01

    Over the past decade, the significant advancements that have been made in the development of computational tools and numerical techniques have allowed astrophysicists to begin to model accurately the nonlinear growth of gravitational instabilities in a variety of physical systems. The fragmentation or rotationally driven fission of dynamically evolving, self-gravitating ``drops and bubbles'' is now routinely modeled in full three-dimensional generality as we attempt to understand the behavior of protostellar clouds, rotating stars, galaxies, and even the primordial soup that defined the birth of the universe. A brief review is presented here of the general insights that have been gained from studies of this type, followed by a somewhat more detailed description of work, currently underway, that is designed to explain the process of binary star formation. A short video animation sequence, developed in conjunction with some of the research being reviewed, illustrates the basic-nature of the fission instability in rotating stars and of an instability that can arise in a massive disk that forms in a protostellar cloud.

  7. Gravitational waves from axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T. [Institute for Theoretical Physics, University of Heidelberg,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-11-02

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this “dynamical phase decomposition' phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  8. Gravitational Waves: Elusive Cosmic Messengers

    Science.gov (United States)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest g ravitational wave source for ground-based interferometers such as LIG O, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires t hat we know the radiation waveforms they emit. Since these mergers ta ke place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate t hese waveforms. For more than 30 years, scientists have tried to comp ute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could comple te even a single orbit. Within the past few years, however, this situ ation has changed dramatically, with a series of remarkable breakthro ughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applic ations in gravitational wave detection, data analysis, and astrophysi cs.

  9. Gravitational-wave Mission Study

    Science.gov (United States)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  10. Quasar evolution and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A.; Giallongo, E.; Vagnetti, F.; Messina, A.

    1983-06-01

    The paper presents three convergent results concerning the sources in theactive nuclei of quasars and radio galaxies that derive their power fromconversion of gravitational energy. We first derive, for several leading modelsbased on liberation of gravitational energy from mass in a compact supply, thelaws governing the secular change L of the primary power driving the individual sources, and identify their common and key property: L increases, and eventually decreases, linearly or faster with the power itself, so that the associated time scales t/sub s/ = L/Vertical BarLVertical Bar obey dt/sub s/, (L)/dL<0. We then describe a general statistical framework to populate with sources the (luminosity, cosmic time)-plane, based on a continuity equation that embodies a given L. We show how the main features of the populations depend primarily on L, while the memory of the initial details is easily erased. With L as derived above, we obtain basic evolutions of the density (L>0) and of the luminosity (L<0) type, with a global differential character. Finally we compute the full evolution functions, comprising a brightening (L>0) and a dimming (L<0) phase, corresponding to three such models. Sub-Eddington accretion onto a massive black hole from a star cluster that self-destroys by collisions is close to reproduce the general course of the empirical models for the optical QSO population.

  11. Gravitational waves from axion monodromy

    Science.gov (United States)

    Hebecker, Arthur; Jaeckel, Joerg; Rompineve, Fabrizio; Witkowski, Lukas T.

    2016-11-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possibly within reach of next-generation interferometers. We also note that this ``dynamical phase decomposition" phenomenon and its gravitational wave signal are more general and may apply to other inflationary or reheating scenarios with axions and modulated potentials.

  12. Relativity in Combinatorial Gravitational Fields

    Directory of Open Access Journals (Sweden)

    Mao Linfan

    2010-04-01

    Full Text Available A combinatorial spacetime $(mathscr{C}_G| uboverline{t}$ is a smoothly combinatorial manifold $mathscr{C}$ underlying a graph $G$ evolving on a time vector $overline{t}$. As we known, Einstein's general relativity is suitable for use only in one spacetime. What is its disguise in a combinatorial spacetime? Applying combinatorial Riemannian geometry enables us to present a combinatorial spacetime model for the Universe and suggest a generalized Einstein gravitational equation in such model. Forfinding its solutions, a generalized relativity principle, called projective principle is proposed, i.e., a physics law ina combinatorial spacetime is invariant under a projection on its a subspace and then a spherically symmetric multi-solutions ofgeneralized Einstein gravitational equations in vacuum or charged body are found. We also consider the geometrical structure in such solutions with physical formations, and conclude that an ultimate theory for the Universe maybe established if all such spacetimes in ${f R}^3$. Otherwise, our theory is only an approximate theory and endless forever.

  13. Confusion in Cosmology and Gravitation

    Science.gov (United States)

    Corda, C.; Katebi, R.; Schmidt, N. O.

    2016-10-01

    In a series of papers, Santilli and collaborators released various strong statements against the general theory of relativity (GTR) and the standard ΛCDM model of cosmology. In this paper we show that such claims are due to misunderstandings of basic concepts of gravitation and cosmology. In particular, we show that Santilli and collaborators demonstrated neither that the GTR is wrong, nor that the Universe is not expanding. We also show that the so-called iso-gravitation theory (IGT) of Santilli is in macroscopic contrast with geodesic motion and, in turn, with the Equivalence Principle (EP) and must therefore be ultimately rejected. Finally, we show that, although the so called iso-redshift could represent an interesting alternative (similar to the tired light theory historically proposed by Zwicky) to the Universe expansion from a qualitative point of view, it must be rejected from a quantitative point of view because the effect of iso-redshift is 10-6 smaller than the effect requested to achieve the cosmological redshift.

  14. Conformal Sigma Models with Anomalous Dimensions and Ricci Solitons

    CERN Document Server

    Nitta, M

    2004-01-01

    We present new non-Ricci-flat Kahler metrics with U(N) and O(N) isometries as target manifolds of conformally invariant sigma models with an anomalous dimension. They are so-called Ricci solitons, special solutions to a Ricci-flow equation. These metrics explicitly contain the anomalous dimension and reduce to Ricci-flat Kahler metrics on the canonical line bundles over certain coset spaces in the limit of vanishing anomalous dimension.

  15. A discerning gravitational property for gravitational equation in higher dimensions

    CERN Document Server

    Dadhich, Naresh

    2015-01-01

    It is well-known that Einstein gravity is kinematic (no non-trivial vacuum solution;i.e. Riemann vanishes whenever Ricci does so) in $3$ dimension because Riemann is entirely given in terms of Ricci. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one $N$th order term in action) gravity for which $N$th order Lovelock Riemann tensor is indeed given in terms of corresponding Ricci for all odd $d=2N+1$ dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good discerning and guiding criterion for gravitational equation in higher dimensions.

  16. A distinguishing gravitational property for gravitational equation in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Dadhich, Naresh [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Pune (India)

    2016-03-15

    It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)

  17. Gravitational force between two electrons in superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    The attractive gravitational force between two electrons in superconductors is deduced from the Eddington-Dirac large number relation, together with Beck and Mackey electromagnetic model of vacuum energy in superconductors. This force is estimated to be weaker than the gravitational attraction between two electrons in the vacuum.

  18. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.

  19. Vanishing Vierbein in Gauge Theories of Gravitation

    CERN Document Server

    Jadczyk, A

    1999-01-01

    We discuss the problem of a degenerate vierbein in the framework of gauge theories of gravitation (thus including torsion). We discuss two examples: Hanson-Regge gravitational instanton and Einstein-Rose bridge.We argue that a region of space-time with vanishing vierbein but smooth principal connection can be, in principle, detected by scattering experiments.

  20. Singularities from colliding plane gravitational waves

    Science.gov (United States)

    Tipler, Frank J.

    1980-12-01

    A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

  1. Singularities from colliding plane gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, F.J.

    1980-12-15

    A simple geometrical argument is given which shows that a collision between two plane gravitational waves must result in singularities. The argument suggests that these singularities are a peculiar feature of plane waves, because singularities are also a consequence of a collision between self-gravitating plane waves of other fields with arbitrarily small energy density.

  2. Gravitational radiation from a rotating magnetic dipole

    CERN Document Server

    Hacyan, Shahen

    2016-01-01

    The gravitational radiation emitted by a rotating magnetic dipole is calculated. Formulas for the polarization amplitudes and the radiated power are obtained in closed forms, considering both the near and radiation zones of the dipole. For a neutron star, a comparison is made with other sources of gravitational and electromagnetic radiation.

  3. Gravitational Perturbation in Topological Phonon Space

    Institute of Scientific and Technical Information of China (English)

    李芳昱; 罗俊; 唐孟希

    1994-01-01

    The effect of gravitational wave (GW) on phonon in crystal lattice space with spiral dislocation is expressed as a gravitational perturbation in topological phonon space with background of the spiral dislocation.This is a new-type effect form of the GW field to the phonon.The corresponding phonon solutions are given.

  4. Onthe static and spherically symmetric gravitational field

    Science.gov (United States)

    Gottlieb, Ioan; Maftei, Gheorghe; Mociutchi, Cleopatra

    Starting from a generalization of Einstein 's theory of gravitation, proposed by one of the authors (Cleopatra Mociutchi), the authors study a particular spherical symmetric case. Among other one obtain the compatibility conditions for the existence of the static and spherically symmetruic gravitational filed in the case of extended Einstein equation.

  5. Anomalous Redshift of Some Galactic Objects

    CERN Document Server

    Zheng, Yi-Jia

    2013-01-01

    Anomalous redshifts of some galactic objects such as binary stars, early-type stars in the solar neighborhood, and O stars in a star clusters are discussed. It is shown that all these phenomena have a common characteristic, that is, the redshifts of stars increase as the temperature rises. This characteristic cannot be explained by means of the Doppler Effect but can by means of the soft-photon process proposed by Yijia Zheng (arXiv:1305.0427 [astro-ph.HE]).

  6. Anomalous Hall Effect in a Kagome Ferromagnet

    Science.gov (United States)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  7. The anomalous magnetic moment of the muon

    CERN Document Server

    Hughes, V W; Earle, W; Efstathiadis, E F; Hare, M; Hazen, E S; Krienen, F; Miller, J P; Rind, O; Roberts, B L; Sulak, Lawrence R; Trofimov, A V; Brown, H N; Bunce, G M; Danby, G T; Larsen, R; Lee, Y Y; Meng, W; Mi, J L; Morse, W M; Pai, C; Prigl, R; Sanders, R; Semertzidis, Y K; Tanaka, M; Warburton, D; Orlov, Yu F; Winn, D; Grossmann, A; Jungmann, Klaus; zu Putlitz, Gisbert; Debevec, P T; Deninger, W; Hertzog, D W; Polly, C; Sedykh, S; Urner, D; Haeberlen, U; Cushman, P B; Duong, L; Giron, S; Kindem, J; McNabb, R; Miller, D; Timmermans, C; Zimmerman, D; Druzhinin, V P; Fedotovich, G V; Khazin, B I; Logashenko, I B; Ryskulov, N M; Serednyakov, S I; Shatunov, Yu M; Solodov, E P; Yamamoto, A; Iwasaki, M; Kawamura, M; Deng, H; Dhawan, S K; Farley, Francis J M; Grosse-Perdekamp, M; Hughes, V W; Kawall, D; Redin, S I; Steinmetz, A

    1998-01-01

    A new experiment is underway at Brookhaven National Laboratory to measure the g-2 value of the muon to a precision of 0.35 ppm, which would improve our present knowledge by a factor of 20. In its initial run the muon anomalous g-value was found to be a/sub mu //sup + /=1165925(15)*10/sup -9/ [13 ppm], in good agreement with the previous CERN measurements and with approximately the same uncertainty. The current scientific motivations for this experiment are discussed, and the experiment is described. (30 refs).

  8. Hic Sunt Leones: Anomalous Scaling In Rainfall

    Science.gov (United States)

    Ferraris, L.; Gabellani, S.; Provenzale, A.; Rebora, N.

    In recent years the spatio-temporal intermittency of precipitation fields has often been quantified in terms of scaling and/or multifractal behaviour. In this work we anal- yse the spatial scaling properties of precipitation intensity fields measured during the GATE radar experiment, and compare the results with those obtained from surrogate data generated by nonlinearly filtered, linear stochastic processes and from random shuffling of the original data. The results of the study suggest a spurious nature of the spatial multifractal behaviour of the GATE fields and indicate that claims of multifrac- tality and anomalous scaling in rainfall may have to be reconsidered.

  9. Gravitational Mass, Its Mechanics - What It Is; How It Operates

    OpenAIRE

    Ellman, Roger

    1999-01-01

    The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hypotheses involve th...

  10. Gravitational Waves in G4v

    CERN Document Server

    Mead, Carver

    2015-01-01

    Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in flat space-time. Coupling at the momentum level rather than at the "force-law" level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation of matter wave functions. The theory reproduces, to first order beyond Newton, the standard GR results for Gravity-Probe B, deflection of light by massive bodies, precession of orbits, gravitational red shift, and total gravitational-wave energy radiated by a circular binary system. Its predictions of total radiated energy from highly eccentric Kepler systems are slightly larger than those of similar GR treatments. G4v predictions differ markedly from those of GR for the gravitational-wave radiation patterns from rotating massive systems, and for the LIGO antenna pattern. The predicted antenna patterns have been shown t...

  11. Gravitational wave signal from massive gravity

    CERN Document Server

    Gumrukcuoglu, A Emir; Lin, Chunshan; Mukohyama, Shinji; Tanahashi, Norihiro

    2012-01-01

    We discuss the detectability of gravitational waves with a time dependent mass contribution, by means of the stochastic gravitational wave observations. Such a mass term typically arises in the cosmological solutions of massive gravity theories. We conduct the analysis based on a general quadratic action, and thus the results apply universally to any massive gravity theories in which modification of general relativity appears primarily in the tensor modes. The primary manifestation of the modification in the gravitational wave spectrum is a sharp peak. The position and height of the peak carry information on the present value of the mass term, as well as the duration of the inflationary stage. We also discuss the detectability of such a gravitational wave signal using the future-planned gravitational wave observatories.

  12. Probing inflation models with gravitational waves

    CERN Document Server

    Domcke, Valerie

    2016-01-01

    A direct detection of primordial gravitational waves is the ultimate probe for any inflation model. While current CMB bounds predict the generic scale-invariant gravitational wave spectrum from slow-roll inflation to be below the reach of upcoming gravitational wave interferometers, this prospect may dramatically change if the inflaton is a pseudoscalar. In this case, a coupling to any abelian gauge field leads to a tachyonic instability for the latter and hence to a new source of gravitational waves, directly related to the dynamics of inflation. In this contribution we discuss how this setup enables the upcoming gravitational wave interferometers advanced LIGO/VIRGO and eLISA to probe the microphysics of inflation, distinguishing between different universality classes of single-field slow-roll inflation models. We find that the prime candidate for an early detection is a Starobinsky-like model.

  13. Optics in a nonlinear gravitational wave

    CERN Document Server

    Harte, Abraham I

    2015-01-01

    Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.

  14. Optics in a nonlinear gravitational plane wave

    Science.gov (United States)

    Harte, Abraham I.

    2015-09-01

    Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.

  15. Probing Cosmic Superstrings with Gravitational Waves

    CERN Document Server

    Sousa, Lara

    2016-01-01

    We compute the stochastic gravitational wave background generated by cosmic superstrings using a semi-analytical velocity-dependent model to describe their dynamics. We show that heavier string types may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in which the physical size of loops is determined by the gravitational backreaction scale and use NANOGRAV data to derive a conservative constraint of $G\\mu_F<3.2 \\times 10^{-9}$ on the tension of fundamental strings. We demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which is often done in the literature) leads, in general, to weaker observational constraints on $G\\mu_F$. We show that the inclusion of heavier string types is required for a more accurate cha...

  16. Comparing numerical and analytic approximate gravitational waveforms

    Science.gov (United States)

    Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration

    2016-03-01

    A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.

  17. Gravitational Instability of a Kink

    CERN Document Server

    Barreto, W; Lehner, L; Winicour, J

    1996-01-01

    We study the equilibria of a self-gravitating scalar field in the region outside a reflecting barrier. By introducing a potential difference between the barrier and infinity, we create a kink which cannot decay to a zero energy state. In the realm of small amplitude, the kink decays to a known static solution of the Einstein-Klein-Gordon equation. However, for larger kinks the static equilibria are degenerate, forming a system with two energy levels. The upper level is unstable and, under small perturbations, decays to the lower energy stable equilibrium. Under large perturbations, the unstable upper level undergoes collapse to a black hole. The equilibrium of the system provides a remarkably simple and beautiful illustration of a turning point instability.

  18. Exploring gravitational theories beyond Horndeski

    Science.gov (United States)

    Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo

    2015-02-01

    We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in ref. [1]. As they generalize Horndeski theories, or "generalized" galileons, we call them G3. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G3 into Horndeski theories.

  19. Gravitational Forces on the Branes

    CERN Document Server

    Arnowitt, R L

    2005-01-01

    We examine the gravitational forces in a brane-world scenario felt by point particles on two 3-branes bounding a 5-dimensional AdS space with $S^{1}/Z_2$ symmetry. The particles are treated as perturbations on the vacuum metric and coordinate conditions are chosen so that no brane bending effects occur. We make an ADM type decomposition of the metric tensor and solve Einstein's equations to linear order in the static limit. While no stabilization mechanism is assumed, all the 5D Einstein equations are solved and are seen to have a consistent solution. We find that Newton's law is reproduced on the Planck brane at the origin while particles on the TeV brane a distance $y_2$ from the origin experience an attractive force that has a growing exponential dependence on the brane position.

  20. Gauss-Bonnet Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the $R+F(\\mathcal{G})$ gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  1. Gauss-Bonnet gravitational baryogenesis

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the R + F (G) gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  2. Gravitational action with null boundaries

    CERN Document Server

    Lehner, Luis; Poisson, Eric; Sorkin, Rafael D

    2016-01-01

    We present a complete discussion of the boundary term in the action functional of general relativity when the boundary includes null segments in addition to the more usual timelike and spacelike segments. We confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary choice of parametrization for the generators. We also show that similar ambiguities appear in the contribution from a codimension-two surface at which a null segment is joined to another (spacelike, timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-motivated rules that ensure the additivity of the gravitational action. Enforcing t...

  3. Self-gravitating branes again

    CERN Document Server

    Kofinas, Georgios

    2013-01-01

    We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is twofold: First, the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit (even the geodesic limit of the Israel matching conditions is not acceptable since being the geodesic equation a kinematical fact it should be preserved for all gravitational theories or defects, which is not the case for these conditions). Second, in our D-dimensional spacetime (maybe D=4), classical defects of any possible codimension should be compatible. These matching conditions fail to accept codimension-2 and 3 defects for D=4 (which represents effectively the spacetime at certain length and energy scales) and most probably fail to accept high enough codimensional defects for any D since there is no high enough Lovelock density to support them. Here, we prop...

  4. Classifying self-gravitating radiations

    Science.gov (United States)

    Kim, Hyeong-Chan

    2017-02-01

    We study a static system of self-gravitating radiations confined in a sphere by using numerical and analytical calculations. Because of the scaling symmetry of radiations, most of the main properties of a solution can be represented as a segment of a solution curve on a plane of two-dimensional scale invariant variables. We define an "approximate horizon" (AH) from the analogy with an apparent horizon. Any solution curve contains a unique point that corresponds to the AH. A given solution is uniquely labeled by three parameters representing the solution curve, the size of the AH, and the sphere size, which are an alternative to the data at the outer boundary. Various geometrical properties including the existence of an AH and the behaviors around the center can be identified from the parameters. We additionally present an analytic solution of the radiations on the verge of forming a black hole. Analytic formulas for the central mass of the naked singularity are given.

  5. Astrophysical Applications of Gravitational Microlensing

    CERN Document Server

    Mao, Shude

    2012-01-01

    Since the first discovery of microlensing events nearly two decades ago, gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications. The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights. (1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs). This confirms most dark matter is non-baryonic, consistent with other observations. (2) Microlensing has discovered about 20 extrasolar planets (16 published), including the first two Jupiter-Saturn like systems and the only "cold Neptunes" yet detected. They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation. (3) Microlensing provides a unique way to measure the mass of isolated stars, including brown dwarfs to normal stars. Half a dozen or so stellar...

  6. Folding gravitational-wave interferometers

    Science.gov (United States)

    Sanders, J. R.; Ballmer, Stefan W.

    2017-01-01

    The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.

  7. Horizon Thermodynamics and Gravitational Tension

    CERN Document Server

    Widom, A; Srivastava, Y N

    2016-01-01

    We consider the thermodynamics of a horizon surface from the viewpoint of the vacuum tension $\\tau =(c^4/4G )$. Numerically, $\\tau \\approx 3.026\\times 10^{43}$ Newton. In order of magnitude, this is the tension that has been proposed for microscopic string models of gravity. However, after decades of hard work on string theory models of gravity, there is no firm scientific evidence that such models of gravity apply empirically. Our purpose is thereby to discuss the gravitational tension in terms of the conventional Einstein general theory of relativity that apparently does explain much and maybe all of presently known experimental gravity data. The central result is that matter on the horizon surface is bound by the entropy-area law by tension in the closely analogous sense that the Wilson action-area law also describes a surface confinement.

  8. Gravitational Collapse in Gravity's Rainbow

    CERN Document Server

    Ali, Ahmed Farag; Majumder, Barun; Mistry, Ravi

    2015-01-01

    In this paper, we will analyze the gravitational collapse in the framework of gravity's rainbow. We will demonstrate that the position of the horizon for a particle inside the black hole depends on the energy of that particle. It will also be observe that the position of the horizon for a particle falling radially into the black hole also depends on its energy. Thus, it is possible for a particle coming from outside to interact with a particle inside the black, and take some information outside the black hole. This is because for both these particles the position of horizon is different. So, even though the particle from inside the black hole is in its own horizon, it is not in the horizon of the particle coming from outside. Thus, we will demonstrate that in gravity's rainbow information can get out of a black hole.

  9. Three hundred years of gravitation

    CERN Document Server

    Hawking, Stephen William

    1987-01-01

    To commemorate the 300th anniversary of the publication of Isaac Newton's Philosophiae Naturalis Principia Mathematica, Stephen Hawking and Werner Israel have assembled a series of unique review papers by many of the world's foremost researchers in cosmology, relativity and particle physics. The resulting volume reflects the significant and exciting advances that have been made in these fields since the editor's acclaimed volume published in 1979: General Relativity: An Einstein Centenary Survey. Newton's immense contribution to the physical sciences is assessed, and its relevance to today's physics made clear. The international contributors then chart the major developments in the study of gravitation, from Newtonian gravity to black hole physics. In the fields of galaxy formation, inflationary and quantum cosmology, and superstring unification, the book provides important overviews written by workers involved in many of the advances described. By shaping such a wide-ranging and scholarly series of articles ...

  10. Inflation with large gravitational waves

    CERN Document Server

    Vikman, A

    2006-01-01

    It is well known that in manifestly Lorentz invariant theories with nontrivial kinetic terms, perturbations around some classical backgrounds can travel faster than light. These exotic "supersonic" models may have interesting consequences for cosmology and astrophysics. In particular, one can show that in such theories the contribution of the gravitational waves to the CMB fluctuations can be significantly larger than that in standard inflationary models. This increase of the tensor-to-scalar perturbation ratio leads to a larger B-component of the CMB polarization, thus making the prospects for future detection much more promising. Interestingly, the spectral index of scalar perturbations and mass of the scalar field considered in the model are practically indistinguishable from the standard case. Whereas the energy scale of inflation and hence the reheating temperature can be much higher compared to a simple chaotic inflation.

  11. Gravitation, Causality, and Quantum Consistency

    CERN Document Server

    Hertzberg, Mark P

    2016-01-01

    We examine the role of consistency with causality and quantum mechanics in determining the properties of gravitation. We begin by constructing two different classes of interacting theories of massless spin 2 particles -- gravitons. One involves coupling the graviton with the lowest number of derivatives to matter, the other involves coupling the graviton with higher derivatives to matter, making use of the linearized Riemann tensor. The first class requires an infinite tower of terms for consistency, which is known to lead uniquely to general relativity. The second class only requires a finite number of terms for consistency, which appears as a new class of theories of massless spin 2. We recap the causal consistency of general relativity and show how this fails in the second class for the special case of coupling to photons, exploiting related calculations in the literature. In an upcoming publication [1] this result is generalized to a much broader set of theories. Then, as a causal modification of general ...

  12. Minimal flavor violation and anomalous top decays

    Science.gov (United States)

    Faller, Sven; Mannel, Thomas; Gadatsch, Stefan

    2013-08-01

    Top-quark physics at the LHC may open a window to physics beyond the Standard Model and even lead us to an understanding of the phenomenon of “flavor.” However, current flavor data is a strong hint that no “new physics” with a generic flavor structure can be expected at the TeV scale. In turn, if there is “new physics” at the TeV scale, it must be “minimally flavor violating.” This has become a widely accepted assumption for “new physics” models. In this paper we propose a model-independent scheme to test minimal flavor violation for the anomalous charged Wtq, q∈{d,s,b} and flavor-changing Vtq, q∈{u,c} and V∈{Z,γ,g} couplings within an effective field theory framework, i.e., in a model-independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II, under the assumption that the top-quark is produced at a high-energy collision and decays as a quasi-free particle.

  13. Minimal Flavour Violation and Anomalous Top Decays

    CERN Document Server

    Faller, Sven; Mannel, Thomas

    2013-01-01

    Top quark physics at the LHC may open a window to physics beyond the standard model and even lead us to an understanding of the phenomenon "flavour". However, current flavour data is a strong hint that no "new physics" with a generic flavour structure can be expected in the TeV scale. In turn, if there is "new physics" at the TeV scale, it must be "minimally flavour violating". This has become a widely accepted assumption for "new physics" models. In this paper we propose a way to test the concept of minimal flavour violation for the anomalous charged $Wtq$, $q\\in\\{d,s,b\\}$, and flavour-changing $Vtq$, $q\\in\\{u,c\\}$ and $V\\in\\{Z,\\gamma,g\\}$, couplings within an effective field theory framework, i.e. in a model independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II (2HDM-II), under the assumption that the top-q...

  14. Diffraction Anomalous Near-Edge Structure

    Science.gov (United States)

    Moltaji, Habib O., Jr.

    1995-11-01

    To determine the atomic structure about atom of an element in a sample of a condensed multicomponent single crystal, contrast radiation is proposed with the use of Diffraction Anomalous Near-Edge Structure (DANES), which combines the long-range order sensitivity of the x-ray diffraction and short-range order of the x-ray absorption near-edge techniques. This is achieved by modulating the photon energy of the x-ray beam incident on the sample over a range of energies near an absorption edge of the selected element. Due to anomalous dispersion, x-ray diffraction, and x-ray absorption, the DANES intensity with respect to the selected element is obtained in a single experiment. I demonstrate that synchrotron DANES measurements for the single crystal of thin film and the powder samples and provide the same local atomic structural information as the x-ray absorption near-edge with diffraction condition and can be used to provide enhanced site selectivity. I demonstrate calculations of DAFS intensity and measurements of polarized DANES and XANES intensity.

  15. Anomalous Enthalpy Relaxation in Vitreous Silica

    Directory of Open Access Journals (Sweden)

    Yuanzheng eYue

    2015-08-01

    Full Text Available It is a challenge to calorimetrically determine the glass transition temperature (Tg of vitreous silica. Here we demonstrate that this challenge mainly arises from the extreme sensitivity of the Tg to the hydroxyl content in vitreous silica, but also from the irreversibility of its glass transition when repeating the calorimetric scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling has impact on enthalpy relaxation in glass. Here we find that vitreous silica (as a strong system exhibits striking anomalies in both glass transition and enthalpy relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica.

  16. Self-gravitating branes again

    Science.gov (United States)

    Kofinas, Georgios; Irakleidou, Maria

    2014-03-01

    We raise on theoretical grounds the question of the physical relevance of Israel matching conditions and their generalizations to higher codimensions, the standard cornerstone of the braneworld and other membrane scenarios. Our reasoning is based on the incapability of the conventional matching conditions to accept the Nambu-Goto probe limit, the inconsistency of codimension-2 and -3 classical defects for D=4 and the probable inconsistency of high enough codimensional defects for any D since there is no high enough Lovelock density to support them. We propose alternative matching conditions which seem to overcome the previous puzzles. Instead of varying the brane-bulk action with respect to the bulk metric at the brane position, we vary with respect to the brane embedding fields so that the gravitational backreaction is included ("gravitating Nambu-Goto matching conditions"). Here, we consider in detail the case of a codimension-2 brane in 6-dim Einstein-Gauss-Bonnet gravity, prove its consistency for an axially symmetric cosmological configuration and show that the theory possesses richer structure compared to the standard theory. The cosmologies found have the Friedmann behavior and extra correction terms. For a radiation brane one solution avoids a cosmological singularity and undergoes accelerated expansion near the minimum scale factor. In the presence of an induced gravity term, there naturally appears in the theory the effective cosmological constant scale λ /(M64rc2), which for a brane tension λ ˜M64 (e.g. TeV4) and rc˜H0-1 gives the observed value of the cosmological constant.

  17. Gravitational Effects on Human Physiology.

    Science.gov (United States)

    Atomi, Yoriko

    2015-01-01

    Physical working capacity decreases with age and also in microgravity. Regardless of age, increased physical activity can always improve the physical adaptability of the body, although the mechanisms of this adaptability are unknown. Physical exercise produces various mechanical stimuli in the body, and these stimuli may be essential for cell survival in organisms. The cytoskeleton plays an important role in maintaining cell shape and tension development, and in various molecular and/or cellular organelles involved in cellular trafficking. Both intra and extracellular stimuli send signals through the cytoskeleton to the nucleus and modulate gene expression via an intrinsic property, namely the "dynamic instability" of cytoskeletal proteins. αB-crystallin is an important chaperone for cytoskeletal proteins in muscle cells. Decreases in the levels of αB-crystallin are specifically associated with a marked decrease in muscle mass (atrophy) in a rat hindlimb suspension model that mimics muscle and bone atrophy that occurs in space and increases with passive stretch. Moreover, immunofluorescence data show complete co-localization of αB-crystallin and the tubulin/microtubule system in myoblast cells. This association was further confirmed in biochemical experiments carried out in vitro showing that αB-crystallin acts as a chaperone for heat-denatured tubulin and prevents microtubule disassembly induced by calcium. Physical activity induces the constitutive expression of αB-crystallin, which helps to maintain the homeostasis of cytoskeleton dynamics in response to gravitational forces. This relationship between chaperone expression levels and regulation of cytoskeletal dynamics observed in slow anti-gravitational muscles as well as in mammalian striated muscles, such as those in the heart, diaphragm and tongue, may have been especially essential for human evolution in particular. Elucidation of the intrinsic properties of the tubulin/microtubule and chaperone

  18. Gravitating sphalerons in the Skyrme model

    CERN Document Server

    Shnir, Ya

    2015-01-01

    We construct self-gravitating axially symmetric sphaleron solutions of the 3+1 dimensional Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat, they are characterized by two integers n and m, where n is the winding numbers of the constituents and the second integer m defines type of the solution. These configuration correspond to the chains of charge n Skyrmions and charge -n anti-Skyrmions placed along the axis of symmetry in alternating order. We investigate the dependency of the masses of the gravitating sphalerons on the gravitational coupling. We find new chains of self-gravitating |n| = 1 Skyrmions-anti-Skyrmions (S-A) which emerge at some critical non-zero value of the gravitational coupling and do not have flat space limit. In contrast, the branches of self-gravitating |n| $\\ge$ 2 S-A chains emerge from the corresponding flat space configurations. In both cases these branches merge at some maximal value of the effective gravitational coupling the branches of diff...

  19. Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ye; Zhu, Hua Xing

    2017-01-01

    Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.

  20. Bootstrapping Rapidity Anomalous Dimension for Transverse-Momentum Resummation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ye [Fermilab; Zhu, Hua Xing [MIT, Cambridge, CTP

    2016-04-05

    Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.

  1. An algorithm for DLP on anomalous elliptic curves over Fp

    Institute of Scientific and Technical Information of China (English)

    祝跃飞; 裴定一

    2002-01-01

    This paper improves the method of discrete logarithm on anomalous elliptic curves, and establishes an isomorphism from E(Fp) to Fp which can be more easily implemented. Fruthermore, we give an optimized algorithm for discrete logarithm on anomalous elliptic curves E(Fp).

  2. Electromagnetic Effects in Superconductors in Gravitational Field

    CERN Document Server

    Ahmedov, B J

    2005-01-01

    The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\

  3. Gravitational brainwaves, quantum fluctuations and stochastic quantization

    CERN Document Server

    Bar, D

    2007-01-01

    It is known that the biological activity of the brain involves radiation of electric waves. These waves result from ionic currents and charges traveling among the brain's neurons. But it is obvious that these ions and charges are carried by their relevant masses which should give rise, according to the gravitational theory, to extremely weak gravitational waves. We use in the following the stochastic quantization (SQ) theory to calculate the probability to find a large ensemble of brains radiating similar gravitational waves. We also use this SQ theory to derive the equilibrium state related to the known Lamb shift.

  4. The theory of space, time and gravitation

    CERN Document Server

    Fock, V

    2015-01-01

    The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner

  5. Non-Euclidean Geometry and Gravitation

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2006-04-01

    Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.

  6. A Gravitational Edge Detection for Multispectral Images

    Directory of Open Access Journals (Sweden)

    Genyun Sun

    2013-07-01

    Full Text Available Gravitational edge detection is one of the new edge detection algorithms that is based on the law of gravity. This algorithm assumes that each image pixel is a celestial body with a mass represented by its grayscale intensity and their interactions are based on the Newtonian laws of gravity. In this article, a multispectral version of the algorithm is introduced. The method uses gravitational techniques in combination with metric tensor to detect edges of multispectral images including color images. To evaluate the performances of the proposed algorithm, several experiments are performed. The experimental results confirm the efficiency of the multispectral gravitational edge detection.  

  7. Gravitational radiation in dynamical noncommutative spaces

    CERN Document Server

    Alavi, S A

    2015-01-01

    The gravitational radiation in dynamical non-commutative spaces (DNCS) is explored. we derive the corrections due to dynamical noncommutativity on the gravitational potential. We obtain the DNC corrections on the angular velocity as well as the radiated power of the system. By calculating the period decay of the system and using the observational data we obtain an upper bound for the DNS parameter {\\tau} . We also study quantum interference induced by gravitational potential in usual non-commutative and dynamical non-commutative spaces. The phase difference induced by gravity is calculated on two different paths and then, it is compared with the phase difference induced by gravity in commutative space.

  8. Gravitational Wave & Relativity Impact Electronic Communication & Engineering

    Directory of Open Access Journals (Sweden)

    Zakaria Shahrudin

    2017-01-01

    Full Text Available About a few months ago (Feb 11, 2016, the LIGO (Laser Interferometer Gravitational-Wave Observatory scientist team researchers made an announcement that they had confirmed the gravitational wave already detected on Sept 14, 2015 (by LIGO’s twin detectors in Livingston, Louisiana and Hanford, Washington. The wave was predicted by Einstein back in 1916 with his theory of General Relativity. This paper is about gravitational wave and relativity theory that may contribute to the field of Telecommunication and other engineering as well.

  9. Generalized gravitational entropy from total derivative action

    Science.gov (United States)

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  10. Generalized Gravitational Entropy from Total Derivative Action

    CERN Document Server

    Dong, Xi

    2015-01-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  11. Relic Gravitational Waves and Their Detection

    CERN Document Server

    Grishchuk, L P

    2001-01-01

    The range of expected amplitudes and spectral slopes of relic (squeezed)gravitational waves, predicted by theory and partially supported byobservations, is within the reach of sensitive gravity-wave detectors. In themost favorable case, the detection of relic gravitational waves can be achievedby the cross-correlation of outputs of the initial laser interferometers inLIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advancedground-based and space-based laser interferometers will be needed. The specificstatistical signature of relic gravitational waves, associated with thephenomenon of squeezing, is a potential reserve for further improvement of thesignal to noise ratio.

  12. Newtorites in bar detectors of gravitational wave

    CERN Document Server

    Ronga, F

    2016-01-01

    The detection of particles with only gravitational interactions (Newtorites) in gravitational bar detectors was studied in 1984 by Bernard, De Rujula and Lautrup. The negative results of dark matter searches suggest to look to exotic possibilities like Newtorites. The limits obtained with the Nautilus bar detector will be presented and the possible improvements will be discussed. Since the gravitational coupling is very weak, the possible limits are very far from what is needed for dark matter, but for large masses are the best limits obtained on the Earth. An update of limits for MACRO particles will be given.

  13. Detecting quark anomalous electroweak couplings at the LHC

    CERN Document Server

    Zhao, Sheng-Zhi

    2015-01-01

    We study the dimension-6 quark anomalous electroweak couplings in the formulation of linearly realized effective Lagrangian. We investigate the constraints on these anomalous couplings from the $pp \\rightarrow W^+W^-$ process in detail at the LHC. With additional kinematic cuts, we find that the 14 TeV LHC can provide a test of anomalous couplings of $O(0.1-1)\\,{\\rm TeV}^{-2}$. The $pp \\rightarrow ZZ/Z\\gamma/\\gamma\\gamma$ processes can provide a good complement as they are sensitive to those anomalous couplings which do not affect the $pp \\rightarrow W^+W^-$ process. Those processes that only contain anomalous triple vertices, like $p p \\to W^* \\to l \

  14. Anomalous Evidence, Confidence Change, and Theory Change.

    Science.gov (United States)

    Hemmerich, Joshua A; Van Voorhis, Kellie; Wiley, Jennifer

    2016-08-01

    A novel experimental paradigm that measured theory change and confidence in participants' theories was used in three experiments to test the effects of anomalous evidence. Experiment 1 varied the amount of anomalous evidence to see if "dose size" made incremental changes in confidence toward theory change. Experiment 2 varied whether anomalous evidence was convergent (of multiple types) or replicating (similar finding repeated). Experiment 3 varied whether participants were provided with an alternative theory that explained the anomalous evidence. All experiments showed that participants' confidence changes were commensurate with the amount of anomalous evidence presented, and that larger decreases in confidence predicted theory changes. Convergent evidence and the presentation of an alternative theory led to larger confidence change. Convergent evidence also caused more theory changes. Even when people do not change theories, factors pertinent to the evidence and alternative theories decrease their confidence in their current theory and move them incrementally closer to theory change.

  15. Anomalous Abelian symmetry in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ramond, P.

    1995-12-31

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin {sup 2}{theta}{sub {omega}} = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector.

  16. Communication: Probing anomalous diffusion in frequency space

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, Sławomir [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr [Centre de Biophys. Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France); Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette (France); Université d’Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans (France)

    2015-11-21

    Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecular dynamics simulations of molecular diffusion in a lipid POPC bilayer.

  17. Anomalous conductances in an ultracold quantum wire

    CERN Document Server

    Kanász-Nagy, Márton; Esslinger, Tilman; Demler, Eugene A

    2016-01-01

    We analyze the recently measured anomalous transport properties of an ultracold gas through a ballistic constriction [S. Krinner et al., PNAS 201601812 (2016)]. The quantized conductance observed at weak interactions increases several-fold as the gas is made strongly interacting, which cannot be explained by the Landauer theory of single-channel transport. We show that this phenomenon is due to the multichannel Andreev reflections at the edges of the constriction, where the interaction and confinement result in a superconducting state. Andreev processes convert atoms of otherwise reflecting channels into the condensate propagating through the constriction, leading to a significant excess conductance. Furthermore, we find the spin conductance being suppressed by superconductivity; the agreement with experiment provides an additional support for our model.

  18. Latest results on $J/$ anomalous suppression

    Indian Academy of Sciences (India)

    Sérgio Ramos; NA50 Collaboration; B Allessandro; C Alexa; R Arnaldi; M Atayan; C Baglin; A Baldit; M Bedjidian; S Beolè; V Boldea; P Bordalo; S R Borenstein; G Borges; A Bussière; L Capelli; C Castanier; J Castor; B Chaurand; B Cheynis; E Chiavassa; C Cicalo; T Claudino; M P Comets; S Constantinescu; P Cortese; J Cruz; A DeFalco; N DeMarco; G Dellacasa; A Devaux; S Dita; O Drapier; B Espagnon; J Fargeix; P Force; M Gallio; Y K Gavrilov; C Gerschel; P Giubellino; M B Golubeva; M Gonin; A A Grigorian; S Grigorian; J Y Grossiord; F F Guber; A Guichard; H Gulkanyan; R Hakobyan; R Haroutunian; M Idzik; D Jouan; T L Karavitcheva; L Kluberg; A B Kurepin; Y Le Bornée; C Lourenço; P Macciotta; M Mac Cormick; A Marzari-Chiesa; M Masera; A Masoni; M Monteno; A Musso; P Petiau; A Piccotti; J R Pizzi; W L Prado da Silva; F Prino; G Puddu; C Quintans; L Ramello; S Ramos; P Rato Mendes; L Riccati; A Romana; H Santos; P Saturnini; E Scalas; E Scomparin; S Serci; R Shahoyan; F Sigaudo; M Sitta; P Sonderegger; X Tarrago; N S Topilskaya; G L Usai; E Vercellin; L Villatte; N Willis; T Wu

    2004-03-01

    The NA50 experiment deals with Pb–Pb collisions at 158 GeV/nucleon at the CERN SPS accelerator. The $J/$ production is studied through the muon decay channel, using the Drell–Yan dimuons as a reference. New results based on recent analyses, from data taken with improved experimental conditions and using different centrality estimators, are presented and compared to an update of those already obtained from previous data samples. The stepwise pattern of the anomalous $J/$ suppression as a function of centrality, already present in these previous results, is confirmed. This observation could be a fingerprint of the theoretically predicted melting of charmonia resonances in a deconfined quark–gluon plasma.

  19. Chiral magnetic plasmons in anomalous relativistic matter

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  20. Anomalous transport from holography: Part I

    CERN Document Server

    Bu, Yanyan; Sharon, Amir

    2016-01-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations...

  1. Heterogeneous anomalous diffusion in view of superstatistics

    CERN Document Server

    Itto, Yuichi

    2014-01-01

    It is experimentally known that virus exhibits stochastic motion in cytoplasm of a living cell in the free form as well as the form being contained in the endosome and the exponent of anomalous diffusion of the virus fluctuates depending on localized areas of the cytoplasm. Here, a theory is developed for establishing a generalized fractional kinetics for the infection pathway of the virus in the cytoplasm in view of superstatistics, which offers a general framework for describing nonequilibrium complex systems with two largely separated time scales. In the present theory, the existence of a large time-scale separation in the infection pathway is explicitly taken into account. A comment is also made on scaling nature of the motion of the virus that is suggested by the theory.

  2. The Anomalous Acceleration of the Pioneer Spacecrafts

    CERN Document Server

    de Diego, Jose A

    2008-01-01

    Radiometric data from the Pioneer 10 and 11 spacecrafts have revealed an unexplained constant acceleration of a_A = (8.74 +/- 1.33) x 10^(-10) m s^(-2) towards the Sun, also known as the Pioneer anomaly. Different groups have analyzed the Pioneer data and have got the same results, which rules out computer programming and handling errors. Attempts to explain this phenomenon arguing intrinsic causes on-board the spacecrafts failed or have lead to inconclusive results. Therefore, the Pioneer anomalous acceleration has motivated the interest of researchers to find out explanations that could bring insight upon the forces acting in the outer Solar Systems or a hint to discover new natural laws.

  3. Anomalous magnetoresistance in magnetized topological insulator cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Zhuo Bin, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)

    2015-05-07

    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  4. Observation of photonic anomalous Floquet topological insulators

    Science.gov (United States)

    Maczewsky, Lukas J.; Zeuner, Julia M.; Nolte, Stefan; Szameit, Alexander

    2017-01-01

    Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges -- independently of the fine details of the system and of the edge -- due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specific bandgap is equal to the net number of chiral edge modes traversing this gap. However, this is strictly valid only in settings with static Hamiltonians. The Chern numbers do not give a full characterization of the topological properties of periodically driven systems. In our work, we implement a system where chiral edge modes exist although the Chern numbers of all bands are zero. We employ periodically driven photonic waveguide lattices and demonstrate topologically protected scatter-free edge transport in such anomalous Floquet topological insulators.

  5. Anomalous Dynamical Responses in a Driven System

    CERN Document Server

    Dutta, Suman

    2016-01-01

    The interplay between structure and dynamics in non-equilibrium steady-state is far from understood. We address this interplay by tracking Brownian Dynamics trajectories of particles in a binary colloid of opposite charges in an external electric field, undergoing cross-over from homogeneous to lane state, a prototype of heterogeneous structure formation in non-equilibrium systems. We show that the length scale of structural correlations controls heterogeneity in diffusion and consequent anomalous dynamic responses, like the exponential tail in probability distributions of particle displacements and stretched exponential structural relaxation. We generalise our observations using equations for steady state density which may aid to understand microscopic basis of heterogeneous diffusion in condensed matter systems.

  6. More Modular Invariant Anomalous U(1) Breaking

    CERN Document Server

    Gaillard, Mary Katherin; Gaillard, Mary K.; Giedt, Joel

    2002-01-01

    We consider the case of several scalar fields, charged under a number of U(1) factors, acquiring vacuum expectation values due to an anomalous U(1). We demonstrate how to make redefinitions at the superfield level in order to account for tree-level exchange of vector supermultiplets in the effective supergravity theory of the light fields in the supersymmetric vacuum phase. Our approach builds upon previous results that we obtained in a more elementary case. We find that the modular weights of light fields are typically shifted from their original values, allowing an interpretation in terms of the preservation of modular invariance in the effective theory. We address various subtleties in defining unitary gauge that are associated with the noncanonical Kahler potential of modular invariant supergravity, the vacuum degeneracy, and the role of the dilaton field. We discuss the effective superpotential for the light fields and note how proton decay operators may be obtained when the heavy fields are integrated o...

  7. Blow up Analysis for Anomalous Granular Gases

    CERN Document Server

    Rey, Thomas

    2011-01-01

    We investigate in this article the long-time behaviour of the solutions to the energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that the energy dissipation increases when the temperature decreases. This allows the gas to cool down in finite time. We study the existence, uniqueness and attractiveness of blow up profiles for this model and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we give some new estimates about the third order moment of the inelastic Boltzmann equation with drift term and we introduce new strongly "non-linear" self-similar variables

  8. The anomalous quadrupole collectivity in Te isotopes

    CERN Document Server

    Qi, Chong

    2016-01-01

    We present systematic calculations on the spectroscopy and transition properties of even-even Te isotopes by using the large-scale configuration interaction shell model approach with a realistic interaction. These nuclei are of particular interest since their yrast spectra show a vibrational-like equally-spaced pattern but the few known E2 transitions show anomalous rotational-like behavior, which cannot be reproduced by collective models. Our calculations reproduce well the equally-spaced spectra of those isotopes as well as the constant behavior of the $B(E2)$ values in $^{114}$Te. The calculated $B(E2)$ values for neutron-deficient and heavier Te isotopes show contrasting different behaviors along the yrast line. The $B(E2)$ of light isotopes can exhibit a nearly constant bevavior upto high spins. We show that this is related to the enhanced neutron-proton correlation when approaching $N=50$.

  9. Anomalous rectification in a purely electronic memristor

    Science.gov (United States)

    Wang, Jingrui; Pan, Ruobing; Cao, Hongtao; Wang, Yang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Zhuge, Fei

    2016-10-01

    An anomalous rectification was observed in a purely electronic memristive device Ti/ZnO/Pt. It could be due to (1) an Ohmic or quasi-Ohmic contact at the ZnO/Pt interface and (2) a Schottky contact at the Ti/ZnO interface. The Ohmic contact originates from the reduction of ZnO occurring in the whole film instead of only at the Ti/ZnO interface. The Schottky contact may come from moisture adsorbed in the nanoporous ZnO. The conduction in the electroformed device is controlled by the carrier trapping/detrapping of the trap sites, inducing a poor rectification and high nonlinearity. Furthermore, a complementary resistive switching was achieved.

  10. Examination of anomalous self-experience

    DEFF Research Database (Denmark)

    Raballo, Andrea; Parnas, Josef

    2012-01-01

    -disorders [SDs]), has been shown to constitute a core feature of both clinically overt and latent (schizotaxic) spectrum phenotypes. However, a major limitation for the translational implementation of this research evidence has been a lack of assessment tools capable of encompassing the clinical richness of SDs....... Here, we present the initial normative data and psychometric properties of a newly developed instrument (Examination of Anomalous Self-experience [EASE]), specifically designed to support the psychopathological exploration of SDs in both research and "real world" clinical settings. Our results support...... the clinical validity of the EASE as a tool for assessing anomalies of self-awareness (SDs) and lend credit to the translational potential of a phenomenological exploration of the subjective experience of vulnerability to schizophrenia....

  11. 44th Annual Anomalous Absorption Conference

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  12. Anomalous anisotropic magnetoresistance effects in graphene

    Directory of Open Access Journals (Sweden)

    Yiwei Liu

    2014-09-01

    Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

  13. Can Anomalous Amplification be Attained Without Postselection?

    CERN Document Server

    Martínez-Rincón, Julián; Viza, Gerardo I; Howell, John C

    2015-01-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without the need of postselection, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected, and a phase controls the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. The effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique...

  14. Anomalous diffusion in geophysical and laboratory turbulence

    Directory of Open Access Journals (Sweden)

    A. Tsinober

    1994-01-01

    Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  15. Powder diffraction studies using anomalous dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.E. [Brookhaven National Lab., Upton, NY (United States); Wilkinson, A.P. [California Univ., Santa Barbara, CA (United States). Dept. of Materials

    1993-05-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f` for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high {Tc} superconductors, ternary alloys, FeCo{sub 2}(PO{sub 4}){sub 3}, FeNi{sub 2}BO{sub 5}), oxidation-state contrast (e.g. YBa{sub 2}Cu{sub 3}O{sub 6+x}, Eu{sub 3}O{sub 4}, GaCl{sub 2}, Fe{sub 2}PO{sub 5}), and the effect of coordination geometry (e.g. Y{sub 3}Ga{sub 5}O{sub l2}).

  16. Powder diffraction studies using anomalous dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.E. (Brookhaven National Lab., Upton, NY (United States)); Wilkinson, A.P. (California Univ., Santa Barbara, CA (United States). Dept. of Materials)

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high [Tc] superconductors, ternary alloys, FeCo[sub 2](PO[sub 4])[sub 3], FeNi[sub 2]BO[sub 5]), oxidation-state contrast (e.g. YBa[sub 2]Cu[sub 3]O[sub 6+x], Eu[sub 3]O[sub 4], GaCl[sub 2], Fe[sub 2]PO[sub 5]), and the effect of coordination geometry (e.g. Y[sub 3]Ga[sub 5]O[sub l2]).

  17. Universal Spin Structure in Gauge Gravitation Theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1997-01-01

    Building on the universal covering group of the general linear group, we introduce the composite spinor bundle whose subbundles are Lorentz spin structures associated with different gravitational fields. General covariant transformations of this composite spinor bundle are canonically defined.

  18. Reheating After Quintessential Inflation and Gravitational Waves

    CERN Document Server

    Tashiro, H; Sasaki, M; Tashiro, Hiroyuki; Chiba, Takeshi; Sasaki, Misao

    2004-01-01

    We investigate the dependence of the gravitational wave spectrum from quintessential inflation on the reheating process. We consider two extreme reheating processes. One is the gravitational reheating by particle creation in the expanding universe in which the beginning of the radiation dominated epoch is delayed due to the presence of the epoch of domination of the kinetic energy of the inflaton (kination). The other is the instant preheating considered by Felder et al. in which the Universe becomes radiation dominated soon after the end of inflation. We find that the spectrum of the gravitational waves at $\\sim 100$ GHz is quite sensitive to the reheating process. Conversely, the detection or non-detection of primordial gravitational waves at $\\sim$100 MHz would provide useful information regarding the reheating process in quintessential inflation.

  19. Geometrical vs wave optics under gravitational waves

    CERN Document Server

    Angélil, Raymond

    2015-01-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...

  20. Gravitational wave astronomy: the current status

    CERN Document Server

    Blair, David; Zhao, Chunnong; Wen, Linqing; Chu, Qi; Fang, Qi; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Reitze, David H; Arai, Koji; Zhang, Fan; Flaminio, Raffaele; Zhu, Xingjiang; Hobbs, George; Manchester, Richard N; Shannon, Ryan M; Baccigalupi, Carlo; Xu, Peng; Bian, Xing; Cao, Zhoujian; Chang, ZiJing; Dong, Peng; Gong, XueFei; Huang, ShuangLin; Ju, Peng; Luo, ZiRen; Qiang, Li'E; Tang, WenLin; Wan, XiaoYun; Wang, Yue; Xu, ShengNian; Zhang, YunLong; Zhang, HaiPeng; Lau, Yun-Kau; Ni, Wei-Tou

    2016-01-01

    In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravit...

  1. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  2. Approximation methods in gravitational-radiation theory

    Science.gov (United States)

    Will, C. M.

    1986-02-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913+16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. The author summarizes recent developments in two areas in which approximations are important: (1) the quadrupole approximation, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (2) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  3. Looking for Lorentz violation with gravitational waves

    CERN Document Server

    Schreck, M

    2016-01-01

    The current letter has been inspired by the recent direct detection of gravitational waves reported by Advanced LIGO. In this context, a particular Lorentz-violating framework for classical, massive particles is on the focus. The latter is characterized by a preferred direction in spacetime comprised of CPT-odd components with mass dimension 1. Curvature effects in spacetime, which are caused by a propagating gravitational wave, are assumed to deform the otherwise constant background field. In accordance with spontaneous Lorentz violation, a particular choice for the vector field is taken, which was proposed elsewhere. The geodesic equations for a particle that is subject to this type of Lorentz violation are obtained. Subsequently, their numerical solutions are computed and discussed. The particular model considered leads to changes in the particle trajectory, which interferometric gravitational-wave experiments could be sensitive for. Since such effects have not been observed in the gravitational-wave event...

  4. Gravitation and quantummechanical localization of macroobjects

    CERN Document Server

    Diósi, L

    2015-01-01

    We propose nonlinear Schr\\"odinger equation with gravitational self-interacting term. The separability conditions of Bialynicki-Birula are satisfied in asymptotic sense. Solitonlike solutions were found.

  5. Environmental Effects for Gravitational-wave Astrophysics

    CERN Document Server

    Barausse, Enrico; Pani, Paolo

    2014-01-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly-dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors -the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals- and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, ...

  6. Hunting for Dark Particles with Gravitational Waves

    CERN Document Server

    Giudice, Gian F; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  7. Exact plane gravitational waves and electromagnetic fields

    CERN Document Server

    Montanari, E; Montanari, Enrico; Calura, Mirco

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exactgravitational plane wave is investigated in the framework of Einstein's generalrelativity. We have expressed the general solution to the de Rham equations asa Fourier-like integral. In the general case we have reduced the problem to aset of ordinary differential equations and have explicitly written the solutionin the case of linear polarization of the gravitational wave. We have expressedour results by means of Fermi Normal Coordinates (FNC), which define the properreference frame of the laboratory. Moreover we have provided some "gedankenexperiments", showing that an external gravitational wave induces measurableeffects of non tidal nature via electromagnetic interaction. Consequently it isnot possible to eliminate gravitational effects on electromagnetic field, evenin an arbitrarily small spatial region around an observer freely falling in thefield of a gravitational wave. This is opposite to the case of mechanicalinteraction invo...

  8. Gravitational Waves from Coalescing Binary Sources

    CERN Document Server

    Maia, M D

    2010-01-01

    Coalescing binary systems (eg pulsars, neutron stars and black holes) are the most likely sources of gravitational radiation, yet to be detected on or near Earth, where the local gravitational field is negligible and the Poincar\\'e symmetry rules. On the other hand, the general theory of gravitational waves emitted by axially symmetric rotating sources predicts the existence of a non-vanishing news function. The existence of such function implies that, for a distant observer, the asymptotic group of isometries, the BMS group, has a translational symmetry that depends on the orbit periodicity of the source, thus breaking the isotropy o the Poincar\\'e translations. These results suggest the application of the asymptotic BMS-covariant wave equation to obtain a proper theoretical basis for the gravitational waves observations.

  9. The gravitational-wave memory effect

    CERN Document Server

    Favata, Marc

    2010-01-01

    The nonlinear memory effect is a slowly-growing, non-oscillatory contribution to the gravitational-wave amplitude. It originates from gravitational waves that are sourced by the previously emitted waves. In an ideal gravitational-wave interferometer a gravitational-wave with memory causes a permanent displacement of the test masses that persists after the wave has passed. Surprisingly, the nonlinear memory affects the signal amplitude starting at leading (Newtonian-quadrupole) order. Despite this fact, the nonlinear memory is not easily extracted from current numerical relativity simulations. After reviewing the linear and nonlinear memory I summarize some recent work, including: (1) computations of the memory contribution to the inspiral waveform amplitude (thus completing the waveform to third post-Newtonian order); (2) the first calculations of the nonlinear memory that include all phases of binary black hole coalescence (inspiral, merger, ringdown); and (3) realistic estimates of the detectability of the ...

  10. Testing the Gravitational Redshift with Atomic Gravimeters?

    CERN Document Server

    Wolf, Peter; Bordé, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2011-01-01

    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, M\\"uller, Peters and Chu [Nature {\\bf 463}, 926-929 (2010)] argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In the present paper we analyze this claim in the frame of general relativity and of different alternative theories, and conclude that the interpretation of atom interferometers as testing the gravitational redshift ...

  11. The Bianchi identity and weak gravitational lensing

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Thomas P; Keith, Brian [Department of Physics, Bridgewater State College, Bridgewater, MA 02325 (United States)

    2005-07-21

    We consider the Bianchi identity as a field equation for the distortion of the shapes of images produced by weak gravitational lensing. Using the spin coefficient formalism of Newman and Penrose (1962 J. Math. Phys. 3 566-78), we show that certain complex components of the Weyl and Ricci curvature tensors are directly related to fundamental observables in weak gravitational lensing. In the case of weak gravitational fields, we then show that the Bianchi identity provides a field equation for the Ricci tensor assuming a known Weyl tensor. From the Bianchi identity, we derive the integral equation for weak lensing presented by Miralda-Escude (1996 IAU Symp. vol 173 p 131), thus making the Bianchi identity a first principles equation of weak gravitational lensing. This equation is integrated in the important case of an axially symmetric lens and explicitly demonstrated in the case of a point lens and a singular isothermal sphere (SIS) model.

  12. Update on gravitational-wave research

    CERN Document Server

    Grishchuk, L P

    2003-01-01

    The recently assembled laser-beam detectors of gravitational waves are approaching the planned level of sensitivity. In the coming 1 - 2 years, we may be observing the rare but powerful events of inspiral and merger of binary stellar-mass black holes. More likely, we will have to wait for a few years longer, until the advanced detectors become operational. Their sensitivity will be sufficient to meet the most cautious evaluations of the strength and event rates of astrophysical sources of gravitational waves. The experimental and theoretical work related to the space-based laser-beam detectors is also actively pursued. The current gravitational wave research is broad and interesting. Experimental innovations, source modelling, methods of data analysis, theoretical issues of principle are being studied and developed at the same time. The race for direct detection of relatively high-frequency waves is accompanied by vigorous efforts to discover the very low-frequency relic gravitational waves through the measur...

  13. The gravitational field and brain function

    Science.gov (United States)

    Mei, Lei; Zhou, Chuan-Dai; Lan, Jing-Quan; Wang, Zhi-Ging; Wu, Wen-Can; Xue, Xin-Min

    The frontal cortex is recognized as the highest adaptive control center of the human brain. The principle of the ``frontalization'' of human brain function offers new possibilities for brain research in space. There is evolutionary and experimental evidence indicating the validity of the principle, including it's role in nervous response to gravitational stimulation. The gravitational field is considered here as one of the more constant and comprehensive factors acting on brain evolution, which has undergone some successive crucial steps: ``encephalization'', ``corticalization'', ``lateralization'' and ``frontalization''. The dominating effects of electrical responses from the frontal cortex have been discovered 1) in experiments under gravitational stimulus; and 2) in processes potentially relating to gravitational adaptation, such as memory and learning, sensory information processing, motor programing, and brain state control. A brain research experiment during space flight is suggested to test the role of the frontal cortex in space adaptation and it's potentiality in brain control.

  14. Cosmological inference using gravitational wave observations alone

    CERN Document Server

    Del Pozzo, Walter; Messenger, Chris

    2015-01-01

    Gravitational waves emitted during the coalescence of binary neutron star systems are self-calibrating signals. As such they can provide a direct measurement of the luminosity distance to a source without the need for a cosmic distance scale ladder. In general, however, the corresponding redshift measurement needs to be obtained electromagnetically since it is totally degenerate with the total mass of the system. Nevertheless, recent Fisher matrix studies has shown that if information about the equation of state of the neutron stars is available, it is indeed possible to extract redshift information from the gravitational wave signal alone. Therefore, measuring the cosmological parameters in pure gravitational wave fashion is possible. Furthermore, the huge number of sources potentially observable by the Einstein Telescope has led to speculations that the gravitational wave measurement is potentially competitive with traditional methods. The Einstein telescope is a conceptual study for a third generation grav...

  15. Hunting for dark particles with gravitational waves

    Science.gov (United States)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-10-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  16. Thermal gravitational waves in accelerating universe

    Directory of Open Access Journals (Sweden)

    B Ghayour

    2013-10-01

    Full Text Available Gravitational waves are considered in thermal vacuum state. The amplitude and spectral energy density of gravitational waves are found enhanced in thermal vacuum state compared to its zero temperature counterpart. Therefore, the allowed amount of enhancement depends on the upper bound of WMAP-5 and WMAP-7 for the amplitude and spectral energy density of gravitational waves. The enhancement of amplitude and spectral energy density of the waves in thermal vacuum state is consistent with current accelerating phase of the universe. The enhancement feature of amplitude and spectral energy density of the waves is independent of the expansion model of the universe and hence the thermal effect accounts for it. Therefore, existence of thermal gravitational waves is not ruled out

  17. Hunting for dark particles with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  18. Gravitational Waves from Oscillons after Inflation

    Science.gov (United States)

    Antusch, Stefan; Cefalà, Francesco; Orani, Stefano

    2017-01-01

    We investigate the production of gravitational waves during preheating after inflation in the common case of field potentials that are asymmetric around the minimum. In particular, we study the impact of oscillons, comparatively long lived and spatially localized regions where a scalar field (e.g., the inflaton) oscillates with large amplitude. Contrary to a previous study, which considered a symmetric potential, we find that oscillons in asymmetric potentials associated with a phase transition can generate a pronounced peak in the spectrum of gravitational waves that largely exceeds the linear preheating spectrum. We discuss the possible implications of this enhanced amplitude of gravitational waves. For instance, for low scale inflation models, the contribution from the oscillons can strongly enhance the observation prospects at current and future gravitational wave detectors.

  19. Some Remarks on Gravitational Global Monopoles

    CERN Document Server

    Maison, D; Maison, Dieter; Liebling, Steven L.

    1999-01-01

    Using mainly analytical arguments, we derive the exact relation static gravitational global monopoles. For this value, the global monopole bifurcates with the de Sitter solution obtained for vanishing Higgs field. In addition, we analyze the stability properties of the solutions.

  20. Gravitational Wave Physics with Binary Love Relations

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolas

    2016-03-01

    Gravitational waves from the late inspiral of neutron star binaries encode rich information about their internal structure at supranuclear densities through their tidal deformabilities. However, extracting the individual tidal deformabilities of the components of a binary is challenging with future ground-based gravitational wave interferometers due to degeneracies between them. We overcome this difficulty by finding new, approximate universal relations between the individual tidal deformabilities that depend on the mass ratio of the two stars and are insensitive to their internal structure. Such relations have applications not only to gravitational wave astrophysics, but also to nuclear physics as they improve the measurement accuracy of tidal parameters. Moreover, the relations improve our ability to test extreme gravity and perform cosmology with gravitational waves emitted from neutron star binaries.

  1. Accurate X-ray position of the Anomalous X-ray Pulsar XTE J1810-197 and identification of its likely IR counterpart

    CERN Document Server

    Israel, G L; Mangano, V; Testa, V; Perna, R; Hummel, W; Mignani, R P; Ageorges, N; Curto, G L; Marco, O; Angelini, L; Campana, S; Covino, S; Marconi, G; Mereghetti, S; Stella, L

    2004-01-01

    We report the accurate sub-arcsec X-ray position of the new Anomalous X-ray Pulsar (AXP) XTE J1810-197, derived with a Chndra-HRC Target of Opportunity observation carried out in November 2003. We also report the discovery of a likely IR counterpart based on a VLT (IR band) Target of Opportunity observation carried out in October 2003. Our proposed counterpart is the only IR source (Ks=20.8) in the X-ray error circle. Its IR colors as well as the X-ray/IR flux ratio, are consistent with those of the counterparts of all other AXPs (at variance with field star colors). Deep Gunn-i band images obtained at the 3.6m ESO telescope detected no sources down to a limiting magnitude of 24.3. Moreover, we find that the pulsed fraction and count rates of XTE J1810-197 remained nearly unchanged since the previous Chandra and XMM-Newton observations (2003 August 27th and September 8th, respectively). We briefly discuss the implications of these results. In particular, we note that the transient (or at least highly variable...

  2. The Gravitational Wave Detector EXPLORER

    CERN Multimedia

    2002-01-01

    %RE5 EXPLORER is a cryogenic resonant-mass gravitational wave (GW) detector. It is in operation at CERN since 1984 and it has been the first cryogenic GW antenna to perform continuous observations (since 1990).\\\\ \\\\EXPLORER is actually part of the international network of resonant-mass detectors which includes ALLEGRO at the Louisiana State University, AURIGA at the INFN Legnaro Laboratories, NAUTILUS at the INFN Frascati Laboratories and NIOBE at the University of Western Australia. The EXPLORER sensitivity, at present of the same order of the other antennas, is 10$^{-20}$ Hz$^{-1/2}$ over a bandwidth of 20 Hz and 6 10$^{-22}$ Hz$^{-1/2}$ with a bandwidth of about 0.5 Hz, corresponding to a sensitivity to short GW bursts of \\textit{h} = 6 10$^{-19}$.\\\\ \\\\This sensitivity should allow the detection of the burst sources in our Galaxy and in the Local Group. No evidence of GW signals has been reported up to now.\\\\ \\\\The principle of operation is based on the assumption that any vibrational mode of a resonant bo...

  3. Boyle's law and gravitational instability

    CERN Document Server

    Lombardi, M; Lombardi, Marco; Bertin, Giuseppe

    2001-01-01

    We have re-examined the classical problem of the macroscopic equation of state for a hydrostatic isothermal self-gravitating gas cloud bounded by an external medium at constant pressure. We have obtained analytical conditions for its equilibrium and stability without imposing any specific shape and symmetry to the cloud density distribution. The equilibrium condition can be stated in the form of an upper limit to the cloud mass; this is found to be inversely proportional to the power 3/2 of a form factor \\mu characterizing the shape of the cloud. In this respect, the spherical solution, associated with the maximum value of the form factor, \\mu = 1, turns out to correspond to the shape that is most difficult to realize. Surprisingly, the condition that defines the onset of the Bonnor instability (or gravothermal catastrophe) can be cast in the form of an upper limit to the density contrast within the cloud that is independent of the cloud shape. We have then carried out a similar analysis in the two-dimensiona...

  4. Gravitational spectra from direct measurements

    Science.gov (United States)

    Wagner, C. A.; Colombo, O. L.

    1978-01-01

    A simple rapid method is described for determining the spectrum of a surface field from harmonic analysis of direct measurements along great circle arcs. The method is shown to give excellent overall trends to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point-masses using (1) altimetric heights from a low orbiting spacecraft, (2) velocity residuals between a low and a high satellite in circular orbits, and (3) range-rate data between a station at infinity and a satellite in highly eccentric orbit. In particular, the smoothed spectrum of the Earth's gravitational field is determined to about degree 400(50 km half wavelength) from 1 D x 1 D gravimetry and the equivalent of 11 revolutions of Geos 3 and Skylab altimetry. This measurement shows there is about 46 cm of geoid height remaining in the field beyond degree 180.

  5. Gravitational Waves from Axion Monodromy

    CERN Document Server

    Hebecker, Arthur; Rompineve, Fabrizio; Witkowski, Lukas T

    2016-01-01

    Large field inflation is arguably the simplest and most natural variant of slow-roll inflation. Axion monodromy may be the most promising framework for realising this scenario. As one of its defining features, the long-range polynomial potential possesses short-range, instantonic modulations. These can give rise to a series of local minima in the post-inflationary region of the potential. We show that for certain parameter choices the inflaton populates more than one of these vacua inside a single Hubble patch. This corresponds to a dynamical phase decomposition, analogously to what happens in the course of thermal first-order phase transitions. In the subsequent process of bubble wall collisions, the lowest-lying axionic minimum eventually takes over all space. Our main result is that this violent process sources gravitational waves, very much like in the case of a first-order phase transition. We compute the energy density and peak frequency of the signal, which can lie anywhere in the mHz-GHz range, possib...

  6. On aberration in gravitational lensing

    CERN Document Server

    Sereno, M

    2008-01-01

    It is known that a relative translational motion between the deflector and the observer affects gravitational lensing. In this paper, a lens equation is obtained to describe such effects on actual lensing observables. Results can be easily interpreted in terms of aberration of light-rays. Both radial and transverse motions with relativistic velocities are considered. The lens equation is derived by first considering geodesic motion of photons in the rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection in the moving observer's frame. Due to the transverse motion images are displaced and distorted in the observer's celestial sphere, whereas the radial velocity along the line of sight causes an effective re-scaling of the lens mass. The Einstein ring is distorted to an ellipse whereas the caustics in the source plane are still point-like. Either for null transverse motion or up to linear order in velocities, the critical curve is still a circle with its radius corrected by a factor (1+z...

  7. Gravitational action with null boundaries

    Science.gov (United States)

    Lehner, Luis; Myers, Robert C.; Poisson, Eric; Sorkin, Rafael D.

    2016-10-01

    We present a complete discussion of the boundary term in the action functional of general relativity when the boundary includes null segments in addition to the more usual timelike and spacelike segments. We confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary choice of parametrization for the generators. We also show that similar ambiguities appear in the contribution from a codimension-two surface at which a null segment is joined to another (spacelike, timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-motivated rules that ensure the additivity of the gravitational action. Enforcing these rules, we calculate the time rate of change of the action when it is evaluated for a so-called "Wheeler-DeWitt patch" of a black hole in asymptotically anti de Sitter space. We recover a number of results cited in the literature, obtained with a less complete analysis.

  8. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Ivan I., E-mail: iis@gao.spb.ru [Pulkovo Observatory of the Russian Academy of Sciences, Pulkovskoje ave. 65, St. Petersburg 196140 (Russian Federation)

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  9. Global gravitational anomalies and transport

    Science.gov (United States)

    Chowdhury, Subham Dutta; David, Justin R.

    2016-12-01

    We investigate the constraints imposed by global gravitational anomalies on parity odd induced transport coefficients in even dimensions for theories with chiral fermions, gravitinos and self dual tensors. The η-invariant for the large diffeomorphism corresponding to the T transformation on a torus constraints the coefficients in the thermal effective action up to mod 2. We show that the result obtained for the parity odd transport for gravitinos using global anomaly matching is consistent with the direct perturbative calculation. In d = 6 we see that the second Pontryagin class in the anomaly polynomial does not contribute to the η-invariant which provides a topological explanation of this observation in the `replacement rule'. We then perform a direct perturbative calculation for the contribution of the self dual tensor in d = 6 to the parity odd transport coefficient using the Feynman rules proposed by Gaumé and Witten. The result for the transport coefficient agrees with that obtained using matching of global anomalies.

  10. Gravitational Effects upon Locomotion Posture

    Science.gov (United States)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  11. Gravitational wave detection in space

    CERN Document Server

    Ni, Wei-Tou

    2016-01-01

    Gravitational wave (GW) detection in space is aimed at low frequency band (100 nHz - 100 mHz) and middle frequency band (100 mHz - 10 Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000 km to 1.3 x 109 km (8.6 AU) including (a) Solar orbiting detectors -- ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for GW detection), BBO (Big Bang Observer), DECIGO (DECi-hertz Interferometer GW Observatory), e-LISA (evolved LISA [Laser Interferometer Space Antenna]), LISA, other LISA-type ...

  12. Planar Gravitational Corrections For Supersymmetric Gauge Theories

    CERN Document Server

    Dijkgraaf, R; Ooguri, H; Vafa, C; Zanon, D

    2004-01-01

    In this paper we discuss the contribution of planar diagrams to gravitational F-terms for N=1 supersymmetric gauge theories admitting a large N description. We show how the planar diagrams lead to a universal contribution at the extremum of the glueball superpotential, leaving only the genus one contributions, as was previously conjectured. We also discuss the physical meaning of gravitational F-terms.

  13. A Phase Space Approach to Gravitational Enropy

    CERN Document Server

    Rothman, T

    2000-01-01

    We examine the definition S = ln Omega as a candidate "gravitational entropy" function. We calculate its behavior for gravitationl and density perturbations in closed, open and flat cosmologies and find that in all cases it increases monotonically. Using the formalism to calculate the gravitational entropy produced during inflation gives the canonical answer. We compare the behavior of S with the behavior of the square of the Weyl tensor. Applying the formalism to black holes has proven more problematical.

  14. Physical optics in a uniform gravitational field

    Science.gov (United States)

    Hacyan, Shahen

    2012-01-01

    The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.

  15. Relic Gravitational Waves and Their Detection

    OpenAIRE

    Grishchuk, L. P.

    2000-01-01

    The range of expected amplitudes and spectral slopes of relic (squeezed) gravitational waves, predicted by theory and partially supported by observations, is within the reach of sensitive gravity-wave detectors. In the most favorable case, the detection of relic gravitational waves can be achieved by the cross-correlation of outputs of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advanced ground-based and space-based laser interferom...

  16. On the Possibility to Construct Gravitational Eye

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-Tian

    2007-01-01

    The possibility of modifying a conventional Cavendish torsion pendulum into a half-armed pendulum oscillator to measure the horizontal gravitational acceleration is discussed. A new kind of gravitational detector, gravieye,as we named, can be made by a proper combination of such oscillators to "see" remote objects and to be used, e.g. to detect the movement of huge mass at a long distance.

  17. Frequency shifts in gravitational resonance spectroscopy

    CERN Document Server

    Baeßler, S; Pignol, G; Protasov, K V; Rebreyend, D; Kupriyanova, E A; Voronin, A Yu

    2015-01-01

    Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.

  18. Gravitational Higgs Mechanism in Neutron Star Interiors

    CERN Document Server

    Coates, Andrew; Sotiriou, Thomas P

    2016-01-01

    We suggest that nonminimally coupled scalar fields can lead to modifications of the microphysics in the interiors of relativistic stars. As a concrete example, we consider the generation of a non-zero photon mass in such high-density environments. This is achieved by means of a light gravitational scalar, and the scalarization phase transition in scalar-tensor theories of gravitation. Two distinct models are presented, and phenomenological implications are briefly discussed.

  19. Exact plane gravitational waves and electromagnetic fields

    OpenAIRE

    Enrico MontanariUniversity of Ferrara and INFN sezione di Ferrara, Italy; Mirco Calura(University of Ferrara and INFN sezione di Ferrara, Italy)

    2000-01-01

    The behaviour of a "test" electromagnetic field in the background of an exact gravitational plane wave is investigated in the framework of Einstein's general relativity. We have expressed the general solution to the de Rham equations as a Fourier-like integral. In the general case we have reduced the problem to a set of ordinary differential equations and have explicitly written the solution in the case of linear polarization of the gravitational wave. We have expressed our ...

  20. Gravitational wave astronomy: the current status

    Science.gov (United States)

    Blair, David; Ju, Li; Zhao, ChunNong; Wen, LinQing; Chu, Qi; Fang, Qi; Cai, RongGen; Gao, JiangRui; Lin, XueChun; Liu, Dong; Wu, Ling-An; Zhu, ZongHong; Reitze, David H.; Arai, Koji; Zhang, Fan; Flaminio, Raffaele; Zhu, XingJiang; Hobbs, George; Manchester, Richard N.; Shannon, Ryan M.; Baccigalupi, Carlo; Gao, Wei; Xu, Peng; Bian, Xing; Cao, ZhouJian; Chang, ZiJing; Dong, Peng; Gong, XueFei; Huang, ShuangLin; Ju, Peng; Luo, ZiRen; Qiang, Li'E.; Tang, WenLin; Wan, XiaoYun; Wang, Yue; Xu, ShengNian; Zang, YunLong; Zhang, HaiPeng; Lau, Yun-Kau; Ni, Wei-Tou

    2015-12-01

    In the centenary year of Einstein's General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einstein's first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.

  1. Neutrino oscillations in the gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, S. I., E-mail: sgodunov@itep.ru; Pastukhov, G. S., E-mail: grigoriypas@gmail.com [Moscow Institute of Physics and Technology (Russian Federation)

    2011-02-15

    We calculate the gravitational correction to the phase difference between neutrino mass eigenstates for the spherically symmetric gravitational field described by the Schwarzschild metric. This correction was calculated in a number of works, but the results of these works differ from each other. Our result does not coincide with the results ever published. In this work, we make calculations in the simplest way and verify our result by several tests.

  2. Entangled States and the Gravitational Quantum Well

    CERN Document Server

    Alves, Rui; Bertolami, Orfeu

    2016-01-01

    We study the continuous variable entanglement of a system of two particles under the influence of Earth's gravitational field. We determine a phase-space description of this bipartite system by calculating its Wigner function and verify its entanglement by applying a generalization of the PPT criterion for non-Gaussian states. We also examine the influence of gravity on an idealized entanglement protocol to be shared between stations at different potentials based on the correlation of states of the gravitational quantum well.

  3. Measuring gravitational effects on antimatter in space

    CERN Document Server

    Piacentino, Giovanni Maria; Venanzoni, Graziano

    2016-01-01

    We propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP~violating decay $K_\\mathrm{L} \\to \\pi^{+} \\pi^{-}$ in space. We show that at the altitude of the International Space Station, gravitational effects may change the level of CP~violation such that a 5$\\sigma$ discrimination may be obtained by collecting the $K_\\mathrm{L}$ produced by the cosmic proton flux within a few years.

  4. Resonant speed meter for gravitational wave detection

    CERN Document Server

    Nishizawa, Atsushi; Sakagami, Masa-aki

    2008-01-01

    Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.

  5. Dynamical Space-Time and Gravitational Waves

    CERN Document Server

    van Holten, J W

    2016-01-01

    According to General Relativity gravity is the result of the interaction between matter and space-time geometry. In this interaction space-time geometry itself is dynamical: it can store and transport energy and momentum in the form of gravitational waves. We give an introductory account of this phenomenon and discuss how the observation of gravitational waves may open up a fundamentally new window on the universe.

  6. Gravitational wave asteroseismology with protoneutron stars

    Science.gov (United States)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  7. An Imitation Game concerning gravitational wave physics

    CERN Document Server

    Collins, Harry

    2016-01-01

    The 'Imitation Game' is a Turing Test played with a human participant instead of a computer. Here the author, a sociologist, who has been immersed in the field of gravitational wave physics since 1972, tried to pass an Imitation Game as a gravitational wave physicist. He already passed such a test in mid-2000s but this test was more elaborate and compared his performance with that of other kinds of physicists and with other sociologists as well as gravitational wave physicists. The test was based on 8 technical questions about gravitational wave physics asked by Professor Sathyprakash of Cardiff University. Collins marks compared well with that of the other gravitational wave physicists and were markedly better than that of other classes of respondent. Collins also marked the test and it can be seen that the way he marked was also much closer to the gravitational wave physicists than other categories. Though Collins's expertise can be shown to have degraded a little in the last ten years it seems not to have ...

  8. Gravitational Waves and Light Cosmic Strings

    CERN Document Server

    Depies, Matthew R

    2009-01-01

    Gravitational wave signatures from cosmic strings are analyzed numerically. Cosmic string networks form during phase transistions in the early universe and these networks of long cosmic strings break into loops that radiate energy in the form of gravitational waves until they decay. The gravitational waves come in the form of harmonic modes from individual string loops, a "confusion noise" from galactic loops, and a stochastic background of gravitational waves from a network of loops. In this study string loops of larger size $\\alpha$ and lower string tensions $G\\mu$ (where $\\mu$ is the mass per unit length of the string) are investigated than in previous studies. Several detectors are currently searching for gravitational waves and a space based satellite, the Laser Interferometer Space Antenna (LISA), is in the final stages of pre-flight. The results for large loop sizes ($\\alpha=0.1$) put an upper limit of about $G\\mu<10^{-9}$ and indicate that gravitational waves from string loops down to $G\\mu \\approx...

  9. Particle production in a gravitational wave background

    CERN Document Server

    Jones, Preston; Singleton, Douglas

    2016-01-01

    We study the possibility that massless particles, such as photons, are produced by a gravitational wave. That such a process should occur is implied by tree-level, Feynman diagrams such as two gravitons turning into two photons {\\it i.e.} $g + g \\rightarrow \\gamma + \\gamma$. Here we calculate the rate at which a gravitational wave creates a massless, scalar field. This is done by placing the scalar field in the background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in the vacuum limit of the scalar field it has a non-zero vacuum expectation value (similar to what occurs in the Higgs mechanism) and a non-zero current. We associate this with the production of scalar field quanta by the gravitational field. This effect has potential consequences for the attenuation of gravitational waves since the massless particles are being produced at the expense of the gravitational field. This is related to the (time-dependent) Schwinger effect but with the electric field replaced b...

  10. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    Science.gov (United States)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; Marshall, P. J.; Wood, D. L.; Ajello, M.; Bastieri, D.; Chekhtman, A.; D'Ammando, F.; Giroletti, M.; Grove, J. E.; Lott, B.; Ohja, R.; Orienti, M.; Perkins, J. S.; Razzano, M.; Smith, A. W.; Thompson, D. J.; Wood, K. S.

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  11. FERMI LARGE AREA TELESCOPE DETECTION OF GRAVITATIONAL LENS DELAYED γ-RAY FLARES FROM BLAZAR B0218+357

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C. C.; Grove, J. E. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Larsson, S. [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Scargle, J. D. [Space Sciences Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Amin, M. A. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Blandford, R. D.; Chiang, J.; Marshall, P. J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bulmash, D. [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Ciprini, S. [Agenzia Spaziale Italiana (ASI) Science Data Center, I-00133 Roma (Italy); Corbet, R. H. D. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Falco, E. E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Wood, D. L. [Praxis Inc., Alexandria, VA 22303 (United States); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Chekhtman, A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); D' Ammando, F.; Giroletti, M. [INAF Istituto di Radioastronomia, I-40129 Bologna (Italy); Lott, B. [Centre d' Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Ojha, R., E-mail: Teddy.Cheung@nrl.navy.mil, E-mail: stefan@astro.su.se [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-02-20

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear γ-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced γ-ray activity with peak fluxes consistently observed to reach >20-50 × its previous average flux. An auto-correlation function analysis identified a delay in the γ-ray data of 11.46 ± 0.16 days (1σ) that is ∼1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing γ-ray flares/delayed emissions. In three such ∼8-10 day-long sequences within a ∼4 month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ∼1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of ∼3-6 hr implying as well extremely compact γ-ray emitting regions.

  12. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-ray Flares from Blazar B0218+357

    CERN Document Server

    Cheung, C C; Scargle, J D; Amin, M A; Blandford, R D; Bulmash, D; Chiang, J; Ciprini, S; Corbet, R H D; Falco, E E; Marshall, P J; Wood, D L; Ajello, M; Bastieri, D; Chekhtman, A; D'Ammando, F; Giroletti, M; Grove, J E; Lott, B; Ojha, R; Orienti, M; Perkins, J S; Razzano, M; Smith, A W; Thompson, D J; Wood, K S

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach >20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 +/- 0.16 days (1 sigma) that is ~1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such ~8-10 day-long sequences within a ~4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ~1, thus systematically smaller than those from radio observations. During the ...

  13. Design of photonic crystal fibers with anomalous dispersion

    Institute of Scientific and Technical Information of China (English)

    CHI Hao; ZHANG Xian-min; SHEN Lin-fang

    2006-01-01

    Photonic crystal fibers (PCFs) with anomalous dispersion in short wavelength region are significant for some applications, such as short wavelength soliton propagation, super continuum generation and short pulse fiber lasing.In this paper,a systematic method for designing PCFs with required anomalous dispersion region is proposed by using a finite difference solver and the scaling transformation of the waveguide dispersion of PCFs.Designed PCF can be anomalously dispersive in the region less than 1.3 μm,which is very difficult to realize in the traditional standard single-mode fibers.The effectiveness of the proposed method is approved by numerical results.

  14. Search for Anomalous Couplings in the Higgs Sector at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV ffbar, H -> gamma gamma, H -> Z\\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates.

  15. Gravitation Astrometric Measurement Experiment (GAME)

    Science.gov (United States)

    Gai, M.; Vecchiato, A.; Ligori, S.; Riva, A.; Lattanzi, M. G.; Busonero, D.; Fienga, A.; Loreggia, D.; Crosta, M. T.

    2012-07-01

    GAME is a recent concept for a small/medium class mission aimed at Fundamental Physics tests in the Solar system, by means of an optimised instrument in the visible, based on smart combination of coronagraphy and Fizeau interferometry. The targeted precision on the γ and β parameters of the Parametrised Post-Newtonian formulation of General Relativity are respectively in the 10-7-10-8 and 10-5-10-6 range, improving by one or two orders of magnitude with respect to the expectations on current or near future experiments. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy from a Solar system scale experiment. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing variation (Cassini). The instrument concept is based on multiple field, multiple aperture Fizeau interferometry, observing simultaneously regions close to the Solar limb (requiring the adoption of coronagraphic techniques), and others in opposition to the Sun. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. The multiple field observation is aimed at cost-effective control of systematic effects through simultaneous calibration. We describe the science motivation, the proposed mission profile, the instrument concept and the expected performance.

  16. Astrophysical applications of gravitational microlensing

    Institute of Scientific and Technical Information of China (English)

    Shude Mao

    2012-01-01

    Since the first discovery of microlensing events nearly two decades ago,gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications.The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights.(1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs).This confirms most dark matter is non-baryonic,consistent with other observations.(2) Microlensing has discovered about 20 extrasolar planets (16 published),including the first two Jupiter-Saturn like systems and the only five "cold Neptunes" yet detected.They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation.(3) Microlensing provides a unique way to measure the mass of isolated stars,including brown dwarfs and normal stars.Half a dozen or so stellar mass black hole candidates have also been proposed.(4) High-resolution,target-of-opportunity spectra of highly-magnified dwarf stars provide intriguing "age" determinations which may either hint at enhanced helium enrichment or unusual bulge formation theories.(5) Microlensing also measured limb-darkening profiles for close to ten giant stars,which challenges stellar atmosphere models.(6) Data from surveys also provide strong constraints on the geometry and kinematics of the Milky Way bar (through proper motions); the latter indicates predictions from current models appear to be too anisotropic compared with observations.The future of microlensing is bright given the new capabilities of current surveys and forthcoming new telescope networks from the ground and from space.Some open issues in the field are identified and briefly discussed.

  17. Nearby Stars as Gravitational Wave Detectors

    Science.gov (United States)

    Lopes, Ilídio; Silk, Joseph

    2015-07-01

    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main-sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from {10}-7 to {10}-2 Hz. In particular, these stars can probe the {10}-6-{10}-4 Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as the Square Kilometre Array and Evolved Laser Interferometer Space Antenna. The Planetary Transits and Oscillations of State (PLATO) stellar seismic mission will achieve photospheric velocity amplitude accuracy of {cm} {{{s}}}-1. For a gravitational wave search, we will need to achieve accuracies of the order of {10}-2 {cm} {{{s}}}-1, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.

  18. Wave convection regimes in a binary mixture in a modulated gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Myznikova, B. I. [Russian Academy of Sciences, Institute of Mechanics of Continuous Media, Ural Branch (Russian Federation); Smorodin, B. L., E-mail: bsmorodin@yandex.ru [Perm State University (Russian Federation)

    2011-03-15

    Nonlinear wave convection regimes are studied in a horizontal layer of an incompressible binary mixture with anomalous thermal diffusion in the gravitational field modulated with an arbitrary amplitude and finite frequency. Oscillation regimes are numerically simulated by the finite difference method for the case of a layer with impenetrable rigid boundaries, which better corresponds to experimental laboratory conditions. A qualitative difference is found in the dynamics of nonlinear quasi-periodic and subharmonic oscillations appearing in the initially stratified mixture and behaving as modulated and regular standing waves. The dependences of the intensity of convective flows on the modulation amplitude are obtained. The results of nonlinear calculations are compared with data on the boundaries of the equilibrium stability found from the linear theory. It is shown that a region of parameters exists where alternating action suppresses the convective motion.

  19. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  20. Dynamical Screening of Gravitational Interaction and Planetary Motions in Modified Solar Potential

    CERN Document Server

    Bashkirov, A G; Pechernikova, G V

    2001-01-01

    A density disturbance in a system of gravitating mass, induced by a moving selected body gives rise to a dynamical screening of Newtonian potential of this body. When applied to the solar planetary system it means that as a result of the motion of the Sun in the Galaxy its effective force potential appears more weak than the Newtonian potential. The relevant modifications of main relations of the solar dynamics are considered here and it is found in particular that the reestimated period of the Earth revolution around the Sun rises in 1 second per year and semimajor axis of the Earth orbit increases on 4 kilometers. Similar relations are obtained for other planets too. It may be supposed that the inclusion of these effects can help to explain the observable anomalous acceleration of spacecrafts Pioneer 10 and 11.

  1. Gravitational properties of light - The gravitational field of a laser pulse

    CERN Document Server

    Rätzel, Dennis; Menzel, Ralf

    2015-01-01

    The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are associated with the emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experien...

  2. Anomalous transfer of syntax between languages.

    Science.gov (United States)

    Vaughan-Evans, Awel; Kuipers, Jan Rouke; Thierry, Guillaume; Jones, Manon W

    2014-06-11

    Each human language possesses a set of distinctive syntactic rules. Here, we show that balanced Welsh-English bilinguals reading in English unconsciously apply a morphosyntactic rule that only exists in Welsh. The Welsh soft mutation rule determines whether the initial consonant of a noun changes based on the grammatical context (e.g., the feminine noun cath--"cat" mutates into gath in the phrase y gath--"the cat"). Using event-related brain potentials, we establish that English nouns artificially mutated according to the Welsh mutation rule (e.g., "goncert" instead of "concert") require significantly less processing effort than the same nouns implicitly violating Welsh syntax. Crucially, this effect is found whether or not the mutation affects the same initial consonant in English and Welsh, showing that Welsh syntax is applied to English regardless of phonological overlap between the two languages. Overall, these results demonstrate for the first time that abstract syntactic rules transfer anomalously from one language to the other, even when such rules exist only in one language.

  3. Anomalous transport from holography: Part II

    CERN Document Server

    Bu, Yanyan; Sharon, Amir

    2016-01-01

    This is a second study of chiral anomaly induced transport within a holographic model consisting of anomalous $U(1)_V\\times U(1)_A$ Maxwell theory in Schwarzschild-$AdS_5$ spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in presence of a static spatially-inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative $B^2$-correction to the diffusion constant. We also find non-linear modifications to the chiral magnetic wave (CMW). In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (...

  4. Quantum anomalous Hall effect in real materials

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-11-01

    Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field. Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.

  5. Anomalous Transfer of Syntax between Languages

    Science.gov (United States)

    Vaughan-Evans, Awel; Kuipers, Jan Rouke; Thierry, Guillaume

    2014-01-01

    Each human language possesses a set of distinctive syntactic rules. Here, we show that balanced Welsh-English bilinguals reading in English unconsciously apply a morphosyntactic rule that only exists in Welsh. The Welsh soft mutation rule determines whether the initial consonant of a noun changes based on the grammatical context (e.g., the feminine noun cath—“cat” mutates into gath in the phrase y gath—“the cat”). Using event-related brain potentials, we establish that English nouns artificially mutated according to the Welsh mutation rule (e.g., “goncert” instead of “concert”) require significantly less processing effort than the same nouns implicitly violating Welsh syntax. Crucially, this effect is found whether or not the mutation affects the same initial consonant in English and Welsh, showing that Welsh syntax is applied to English regardless of phonological overlap between the two languages. Overall, these results demonstrate for the first time that abstract syntactic rules transfer anomalously from one language to the other, even when such rules exist only in one language. PMID:24920636

  6. Anomalous flows in a sunspot penumbra

    CERN Document Server

    Louis, Rohan E; Mathew, Shibu K; Venkatakrishnan, P

    2014-01-01

    High-resolution spectropolarimetric observations of active region NOAA 11271 were obtained with the spectro-polarimeter on board Hinode to analyze the properties of an anomalous flow in the photosphere in a sunspot penumbra. We detect a blue-shifted feature that appeared on the limb-side penumbra of a sunspot and that was present intermittently during the next two hours. It exhibited a maximum blue-shift of 1.6 km/s, an area of 5.2 arcsec^2, and an uninterrupted lifetime of 1 hr. The blue-shifted feature, when present, lies parallel to red-shifts. Both blue and red shifts flank a highly inclined/horizontal magnetic structure that is radially oriented in the penumbra. The low-cadence SP maps reveal changes in size, radial position in the penumbra and line-of-sight velocity of the blue-shifted feature, from one scan to the other. There was an increase of nearly 500 G in the field strength and a marginal reduction in the field inclination of about 10 deg with the onset of the blue-shifts. In the chromosphere, in...

  7. Anomalous diffusion on the Hanoi networks

    Science.gov (United States)

    Boettcher, S.; Gonçalves, B.

    2008-11-01

    Diffusion is modeled on the recently proposed Hanoi networks by studying the mean-square displacement of random walks with time, langr2rang~t2/dw. It is found that diffusion —the quintessential mode of transport throughout Nature— proceeds faster than ordinary, in one case with an exact, anomalous exponent dw=2- log2(phi)=1.30576... . It is an instance of a physical exponent containing the "golden ratio"\\phi=(1+\\sqrt{5})/2 that is intimately related to Fibonacci sequences and since Euclid's time has been found to be fundamental throughout geometry, architecture, art, and Nature itself. It originates from a singular renormalization group fixed point with a subtle boundary layer, for whose resolution phi is the main protagonist. The origin of this rare singularity is easily understood in terms of the physics of the process. Yet, the connection between network geometry and the emergence of phi in this context remains elusive. These results provide an accurate test of recently proposed universal scaling forms for first passage times.

  8. Anomalous human behavior detection: an adaptive approach

    Science.gov (United States)

    van Leeuwen, Coen; Halma, Arvid; Schutte, Klamer

    2013-05-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous behavior in videos from DARPA's Mind's Eye program, containing a variety of human activities. In this semi-unsupervised task a set of normal instances is provided for training, after which unknown abnormal behavior has to be detected in a test set. The features extracted from the video data have high dimensionality, are sparse and inhomogeneously distributed in the feature space making it a challenging task. Given these characteristics a distance-based method is preferred, but choosing a threshold to classify instances as (ab)normal is non-trivial. Our novel aproach, the Adaptive Outlier Distance (AOD) is able to detect outliers in these conditions based on local distance ratios. The underlying assumption is that the local maximum distance between labeled examples is a good indicator of the variation in that neighborhood, and therefore a local threshold will result in more robust outlier detection. We compare our method to existing state-of-art methods such as the Local Outlier Factor (LOF) and the Local Distance-based Outlier Factor (LDOF). The results of the experiments show that our novel approach improves the quality of the anomaly detection.

  9. The Chelyabinsk Meteorite Hits an Anomalous Zone in the Urals

    Science.gov (United States)

    Kochemasov, G. G.

    2013-09-01

    The Chelyabinsk meteorite is "strange" because it hits an area in the Urals where anomalous events are observed: shining skies, light balls, UFOs, electrphonic bolids. The area tectonically occurs at the intersection of two fold belts: Urals and Timan.

  10. In-plane magnetization-induced quantum anomalous Hall effect.

    Science.gov (United States)

    Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2013-08-23

    The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.

  11. Theoretical model for a Stark anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1993-01-01

    A theoretical model for the first atomic Stark anomalous dispersion optical filter is reported. The results show the filter may serve as a widely tunable narrow bandwidth and high throughput optical filter for freespace laser communications and remote sensing.

  12. Sampling and Characterization of 618-2 Anomalous Material

    Energy Technology Data Exchange (ETDEWEB)

    A.E. Zacharias

    2006-04-27

    Excavation of the 618-2 Burial Ground has produced many items of anomalous waste. Prior to temporary packaging and/or storage, these items have been characterized in the field to identify radiological and industrial safety conditions.

  13. Anomalous scaling of a scalar field advected by turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  14. The Interacting Boson Model for Anomalous Rotational Bands

    Institute of Scientific and Technical Information of China (English)

    QIANCheng-De; LIUDang-Bo; 等

    2002-01-01

    The interacting boson model for anomalous rotational bands is proposed.In the rotational SU(3) limit an asymptotic limit is discussed.Within the framework of the model several analytic relations for energies and electromagnetic transition rates are derived.

  15. Testing Gravity with Gravitational Wave Source Counts

    CERN Document Server

    Calabrese, Erminia; Spergel, David N

    2016-01-01

    We show that the gravitational wave source counts distribution can test how gravitational radiation propagates on cosmological scales. This test does not require obtaining redshifts for the sources. If the signal-to-noise from a gravitational wave source is proportional to the strain then it falls as $R^{-1}$, thus we expect the source counts to follow $dN/dS \\propto S^{-4}$. However, if gravitational waves decay as they propagate or can propagate into other dimensions, then there can be deviations from this generic prediction. We consider the possibility that the signal-to-noise falls as $R^{-\\gamma}$, where $\\gamma=1$ recovers the expected predictions in a Euclidean uniformly-filled universe. We forecast the sensitivity of future observations in constraining gravitational wave physics using this method by simulating sources distributed over a finite range of signal-to-noise. We first consider the case of few objects, 7 sources, with a signal-to-noise from 8 to 24, and impose a lower limit on $\\gamma$, findi...

  16. Basic Gravitational Reflexes in the Larval Frog

    Science.gov (United States)

    Cochran, Stephen L.

    1996-01-01

    This investigation was designed to determine how a primitive vertebrate, the bullfrog tadpole, is able to sense and process gravitational stimuli. Because of the phylogenetic similarities of the vestibular systems in all vertebrates, the understanding of the gravitational reflexes in this relatively simple vertebrate should elucidate a skeletal framework on a elementary level, upon which the more elaborate reflexes of higher vertebrates may be constructed. The purpose of this study was to understand how the nervous system of the larval amphibian processes gravitational information. This study involved predominantly electrophysiological investigations of the isolated, alert (forebrain removed) bullfrog tadpole head. The focus of these experiments is threefold: (1) to understand from whole extraocular nerve recordings the signals sent to the eye following static gravitational tilt of the head; (2) to localize neuronal centers responsible for generating these signals through reversible pharmacological ablation of these centers; and (3) to record intracellularly from neurons within these centers in order to determine the single neuron's role in the overall processing of the center. This study has provided information on the mechanisms by which a primitive vertebrate processes gravitational reflexes.

  17. Gravitational waves from cosmic bubble collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Ewha Womans University, Basic Science Research Institute, Seoul (Korea, Republic of); Ewha Womans University, Institute for the Early Universe, Seoul (Korea, Republic of); Lee, Bum-Hoon [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Sogang University, Department of Physics, Seoul (Korea, Republic of); Lee, Wonwoo [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Yang, Jongmann [Ewha Womans University, Basic Science Research Institute, Seoul (Korea, Republic of); Ewha Womans University, Institute for the Early Universe, Seoul (Korea, Republic of); Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Yeom, Dong-han [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China)

    2015-03-01

    Cosmic bubbles are nucleated through the quantum tunneling process. After nucleation they would expand and undergo collisions with each other. In this paper, we focus in particular on collisions of two equal-sized bubbles and compute gravitational waves emitted from the collisions. First, we study the mechanism of the collisions by means of a real scalar field and its quartic potential. Then, using this model, we compute gravitational waves from the collisions in a straightforward manner. In the quadrupole approximation, time-domain gravitational waveforms are directly obtained by integrating the energy-momentum tensors over the volume of the wave sources, where the energy-momentum tensors are expressed in terms of the scalar field, the local geometry and the potential. We present gravitational waveforms emitted during (i) the initial-to-intermediate stage of strong collisions and (ii) the final stage of weak collisions: the former is obtained numerically, in full General Relativity and the latter analytically, in the flat spacetime approximation. We gain qualitative insights into the time-domain gravitational waveforms from bubble collisions: during (i), the waveforms show the non-linearity of the collisions, characterized by a modulating frequency and cusp-like bumps, whereas during (ii), the waveforms exhibit the linearity of the collisions, featured by smooth monochromatic oscillations. (orig.)

  18. Anomalous origin of right coronary artery from pulmonary artery

    Directory of Open Access Journals (Sweden)

    Rajat Gupta

    2012-01-01

    Full Text Available Anomalous origin of coronary artery from the pulmonary artery is a rare anomaly that most frequently involves the left coronary artery and very rarely the right coronary artery. These lesions can be missed on echocardiography unless carefully looked for. We describe a case of isolated anomalous origin of right coronary artery from pulmonary artery diagnosed on echocardiography and confirmed by computed tomography (CT angiography.

  19. Searching for the fourth family quarks through anomalous decays

    Science.gov (United States)

    Sahin, M.; Sultansoy, S.; Turkoz, S.

    2010-09-01

    The flavor democracy hypothesis predicts the existence of the fourth standard model family. Because of the high masses of the fourth family quarks, their anomalous decays could be dominant if certain criteria are met. This will drastically change the search strategy at hadron colliders. We show that the fourth standard model family down quarks with masses up to 400-450 GeV can be observed (or excluded) via anomalous decays by Tevatron.

  20. Anomalous drift of spiral waves in heterogeneous excitable media

    CERN Document Server

    Sridhar, S; Panfilov, Alexander V

    2009-01-01

    We study the drift of spiral waves in a simple model of heterogeneous excitable medium, having gradients in local excitability or cellular coupling. For the first time, we report the anomalous drift of spiral waves towards regions having higher excitability, in contrast to all earlier observations in reaction-diffusion models of excitable media. Such anomalous drift can promote the onset of complex spatio-temporal patterns, e.g., those responsible for life-threatening arrhythmias in the heart.

  1. Design of apochromatic telescope without anomalous dispersion glasses

    Institute of Scientific and Technical Information of China (English)

    Qinghua Yang; Baochang Zhao; Renkui Zhou

    2008-01-01

    A novel lens 8vstem with correction of secondary spectrum without using anomalous glasses is presented.The lens system comprises four separated lens components,with three of them being subapertures.Two examples of apochromatic telescope are presented,both with the use of typical normal glasses,namely crown K9 and flint F5 glasses,and low-cost slightly anomalous dispersion glasses.Secondary spectrum and other chromatic aberrations of the two design examples are corrected.

  2. Simulation framework for spatio-spectral anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Harvey, Neal R [Los Alamos National Laboratory; Porter, Reid B [Los Alamos National Laboratory; Wohlberg, Brendt E [Los Alamos National Laboratory

    2009-01-01

    The authors describe the development of a simulation framework for anomalous change detection that considers both the spatial and spectral aspects of the imagery. A purely spectral framework has previously been introduced, but the extension to spatio-spectral requires attention to a variety of new issues, and requires more careful modeling of the anomalous changes. Using this extended framework, they evaluate the utility of spatial image processing operators to enhance change detection sensitivity in (simulated) remote sensing imagery.

  3. Search for Gravitational Wave Bursts from Six Magnetars

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.

    2011-06-01

    Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely ~1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >1044 erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band- and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 × 1044 d 2 1 erg and 1.4 × 1047 d 2 1 erg, respectively, where d_{1} = \\frac{d_{{0501}}}{1\\,{kpc}} and d 0501 is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.

  4. Structural controls on anomalous transport in fractured porous rock

    Science.gov (United States)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  5. Constraints of the gravitational Local Position Invariance from Solar System planetary precessions

    CERN Document Server

    Iorio, Lorenzo

    2014-01-01

    In the framework of the Parameterized Post-Newtonian (PPN) formalism, we calculate the long-term Preferred Location (PL) effects, proportional to the Whitehead parameter \\xi, affecting all the Keplerian orbital elements of a localized two-body system, apart from the semimajor axis a. They violate the gravitational Local Position Invariance (LPI), fulfilled by General Relativity (GR). We constrain \\xi by using the latest results in the field of the Solar System planetary ephemerides. The non-detection of any anomalous perihelion precession for Mars allows us to indirectly infer |\\xi| <= 5.8 x 10^-6. The ratio of the anomalous perihelion precessions for Venus and Jupiter, preliminarily determined with the EPM2011 ephemerides at the < 3\\sigma level, if confirmed as genuine physical effects needing explanation by future studies, rules out the hypothesis \\xi not equal to 0. A critical discussion of the |\\xi| <= 10^-6-10^-7 upper bounds obtained in the literature from the close alignment of the Sun's spin ...

  6. Anomalous Transport In Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Zlatan Dimitrov

    2016-01-01

    After the initial stage of fast expanding of the hot Universe comes epoch of temperature fall and subsequent formation of dense clouds of hydrogen. Due to process of accretion some of this clouds became compact objects. Initially accretion is spherical, but then take the shape of the disk, and this 2D disk collect matter more efficient than 3D sphere. Accretion disks provide the mechanism of redistribution of angular moment and extraction of potential energy,leads to occurrence of compact objects from gas clouds. To fall moving along a spiral trajectory on the central gravitating body, a particle rotation around must reduce angular moment and energy. Outward of angular moment and movement of gas particles in the opposite direction (to the central body) happens due to of viscose friction. We can think that the disc is composed of multiple adjacent rings friction each other, each inner ring has a large angular velocity to the adjacent outer ring and thus friction of the drive ring decreased the rate of internal...

  7. Self-gravitating Interferometry and Intrinsic Decoherence

    CERN Document Server

    Gooding, Cisco

    2014-01-01

    To investigate the possibility that intrinsic gravitational decoherence can be theoretically demonstrated within canonical quantum gravity, we develop a model of a self-gravitating interferometer. We search for evidence in the resulting interference pattern that would indicate coherence is fundamentally limited due to general relativistic effects. To eliminate the occurence of gravitational waves, we work in spherical symmetry, and construct the "beam" of the interferometer out of WKB states for an infinitesimally thin shell of matter. For internal consistency, we encode information about the beam optics within the dynamics of the shell itself, by arranging an ideal fluid on the surface of the shell with an equation of state that enforces beam-splitting and reflections. We then determine sufficient conditions for (interferometric) coherence to be fully present even after general relativistic corrections are introduced, test whether or not they can be satisfied, and remark on the implications of the results.

  8. Universal decoherence due to gravitational time dilation

    CERN Document Server

    Pikovski, Igor; Costa, Fabio; Brukner, Caslav

    2013-01-01

    Phenomena inherent to quantum theory on curved space-time, such as Hawking radiation, are typically assumed to be only relevant at extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of weak gravitational time dilation and show that the latter leads to universal decoherence of quantum superpositions. Time dilation induces a universal coupling between internal degrees-of-freedom and the centre-of-mass of a composite particle and we show that the resulting entanglement causes the particle's position to decohere. We derive the decoherence timescale and show that the weak time dilation on Earth is already sufficient to decohere micro-scale objects. No coupling to an external environment is necessary, thus even completely isolated composite systems will decohere on curved space-time. In contrast to gravitational collapse models, no modification of quantum theory is assumed. General relativity therefore can account for the e...

  9. Trapping light by mimicking gravitational lensing

    CERN Document Server

    Sheng, C; Wang, Y; Zhu, S N; Genov, D A

    2013-01-01

    One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking's radiation. However, the development of experimental toy models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications.

  10. Orbital Motion During Gravitational Lensing Events

    CERN Document Server

    Di Stefano, Rosanne

    2014-01-01

    Gravitational lensing events provide unique opportunities to discover and study planetary systems and binaries. Here we build on previous work to explore the role that orbital motion can play in both identifying and learning more about multiple-mass systems that serve as gravitational lenses. We find that a significant fraction of planet-lens and binary-lens light curves are influenced by orbital motion. Furthermore, the effects of orbital motion extend the range of binaries for which lens multiplicity can be discovered and studied. Orbital motion will play an increasingly important role as observations with sensitive photometry, such as those made by the space missions Kepler, Transiting Exoplanet Survey Satellite, (TESS), and WFIRST discover gravitational lensing events. Similarly, the excellent astrometric measurements made possible by GAIA will allow it to study the effects of orbital motion. Frequent observations, such as those made possible with the Korean Microlensing Telescope Network, KMTNet, will al...

  11. Gravitational scaling in Beijing Subway Network

    CERN Document Server

    Leng, Biao; Wang, Jianyuan; Xiong, Zhang; Havlin, Shlomo; Li, Daqing

    2016-01-01

    Recently, with the availability of various traffic datasets, human mobility has been studied in different contexts. Researchers attempt to understand the collective behaviors of human movement with respect to the spatio-temporal distribution in traffic dynamics, from which a gravitational scaling law characterizing the relation between the traffic flow, population and distance has been found. However, most studies focus on the integrated properties of gravitational scaling, neglecting its dynamical evolution during different hours of a day. Investigating the hourly traffic flow data of Beijing subway network, based on the hop-count distance of passengers, we find that the scaling exponent of the gravitational law is smaller in Beijing subway system compared to that reported in Seoul subway system. This means that traffic demand in Beijing is much stronger and less sensitive to the travel distance. Furthermore, we analyzed the temporal evolution of the scaling exponents in weekdays and weekends. Our findings m...

  12. Gravitational wave asteroseismology with protoneutron stars

    CERN Document Server

    Sotani, Hajime

    2016-01-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and radius of protoneutron star become equivalent to the results obtained from the numerical simulations. Then, we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and radius of protoneutron stars, but almost independently of the profiles of electron fraction and entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of protoneutron star irrespectively the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and radius is different from that of ...

  13. General relativity and gravitation a centennial perspective

    CERN Document Server

    Berger, Beverly K; Isenberg, James; MacCallum, Malcolm

    2015-01-01

    Explore spectacular advances in cosmology, relativistic astrophysics, gravitational wave science, mathematics, computational science, and the interface of gravitation and quantum physics with this unique celebration of the centennial of Einstein's discovery of general relativity. Twelve comprehensive and in-depth reviews, written by a team of world-leading international experts, together present an up-to-date overview of key topics at the frontiers of these areas, with particular emphasis on the significant developments of the last three decades. Interconnections with other fields of research are also highlighted, making this an invaluable resource for both new and experienced researchers. Commissioned by the International Society on General Relativity and Gravitation, and including accessible introductions to cutting-edge topics, ample references to original research papers, and informative colour figures, this is a definitive reference for researchers and graduate students in cosmology, relativity, and grav...

  14. The gravitational wave symphony of the Universe

    Indian Academy of Sciences (India)

    B S Sathyaprakash

    2001-04-01

    The new millennium will see the upcoming of several ground-based interferometric gravitational wave antennas. Within the next decade a space-based antenna may also begin to observe the distant Universe. These gravitational wave detectors will together operate as a network taking data continuously for several years, watching the transient and continuous phenomena occurring in the deep cores of astronomical objects and dense environs of the early Universe where gravity was extremely strong and highly nonlinear. The network will listen to the waves from rapidly spinning non-axisymmetric neutron stars, normal modes of black holes, binary black hole inspiral and merger, phase transitions in the early Universe, quantum fluctuations resulting in a characteristic background in the early Universe. The gravitational wave antennas will open a new window to observe the dark Universe unreachable via other channels of astronomical observations.

  15. Gravitational Waves- a new window to Cosmos

    CERN Document Server

    Prasanna, A R

    2016-01-01

    With the detection of Gravitational waves just about an year ago Einstein`s general theory of relativity- a space-time theory of gravity, got established on a firmer footing than any other theory in physics. Gravitational waves are just propagating disturbances in the gravitational field of extremely strong sources caused by some catastrophic event associated with cosmic bodies, like binary black hole coalescence, or neutron star mergers. As these events happen very far away in cosmos, and the signal strength would be extremely weak, it requires extraordinary detection and analysis technology to observe an event on earth. Luckily the joint collaboration LIGO-VIRGO, have so far detected two events in September and December of 2015 during their analysis of observations made with the laser interferometers over the last few observing sessions. The talk will give a brief theoretical sketch of the analysis required for describing the waves resulting from mass motion in the realm of general relativity, and point out...

  16. The dawn of gravitational wave astronomy

    CERN Document Server

    CERN. Geneva

    2016-01-01

    On Sep 14 2015, gravitational waves were for the first time detected directly. This observation by the LIGO interferometric detectors marks the dawn of a new era in our observational study of the cosmos as a qualitatively new window to its exploration has been opened. This talk reviews some of the fundamental concepts of gravitational waves and the methodology employed for their observation. The first event, dubbed GW150914, and the properties of its source, as inferred from the observation, will be discussed. The talk concludes with a selected set of the most important topics where we expect gravitational-wave observations to deepen and either challenge or confirm our present understanding of the laws and the history of our universe.

  17. Summary of session C9: experimental gravitation

    Science.gov (United States)

    Lämmerzahl, Claus; Müller, Jürgen

    2014-05-01

    General relativity (GR) is based on the Universality of Free Fall, the Universality of the Gravitational Redshift, and Local Lorentz Invariance, alltogether called the Einstein Equivalence principle. This implies that gravity has to be described by a metrical theory. Such theories in general give rise to the standard effects like perihelion shift, light deflection, gravitational time delay, Lense-Thirring effect, and the Schiff effect. Only if the underlying theory is Einstein's GR we have certain values for these effects. GR in turn predicts the existence, certain properties, and a particular dynamics of gravitational waves, black holes, binary systems, etc. which are also subject to experimental/observational proof. This includes practical applications in clock synchronization, positioning, navigation and geodesy.

  18. Tests of Gravitational Symmetries with Radio Pulsars

    CERN Document Server

    Shao, Lijing

    2016-01-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  19. Gravitational perturbations of the Higgs field

    CERN Document Server

    Albareti, Franco D; Prada, Francisco

    2016-01-01

    We study the possible effects of classical gravitational fields on the Higgs vacuum expectation value through the modifications induced in the one-loop effective potential. We concentrate our study on the Higgs self-interactions contribution in a perturbed FRW background. For weak and slowly-varying gravitational fields, a complete set of mode solutions for the Klein-Gordon equation is obtained to leading order in the adiabatic approximation. The mode integrations are calculated using standard dimensional regularization techniques. As expected, the regularized effective potential contains the same divergences as in flat space-time, which can be renormalized without the need of additional counterterms. However, we find new finite non-local contributions which depend on the gravitational potentials, and introduce an explicit space-time dependence on the Higgs potential coefficients. Being finite, the new terms are free of renormalization ambiguities. Inhomogeneities in the effective potential translate into per...

  20. Do gravitational waves travel at light velocity?

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M.; De Lorenci, V.A. [Laboratorio de Cosmologia e Fisica Experimental de Altas Energias, Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro CEP 22290-180-RJ (Brazil); de Freitas, L.R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao-CT-Bloco A, Rio de Janeiro-RJ (Brazil)

    1997-02-01

    We extend the standard Feynman{endash}Deser approach of field theoretical derivation of Einstein{close_quote}s gravitational theory. We show that it is possible to obtain a theory that incorporates a great part of general relativity (GR) and can be interpreted in the standard geometrical way like GR, as far as the interaction of matter to gravity is concerned. The most important distinction of the new theory concerns the gravity-to-gravity interaction. This theory satisfies all standard tests of gravity and leads to new predictions about gravitational propagation. Since there is a strong expectation that the detection of gravitational waves will occur in the near future, the question of which theory describes nature better will probably be settled soon. {copyright} 1997 Academic Press, Inc.