WorldWideScience

Sample records for anomalous dispersion effect

  1. Magnetic effects in anomalous dispersion

    International Nuclear Information System (INIS)

    Blume, M.

    1992-01-01

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ''forward scattering'' properties such as the Faraday effect and circular dichroism

  2. Chiral anomalous dispersion

    Science.gov (United States)

    Sadofyev, Andrey; Sen, Srimoyee

    2018-02-01

    The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.

  3. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  4. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  5. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  6. Anomalous dispersion effects in the IR-ATR spectroscopy of water

    Energy Technology Data Exchange (ETDEWEB)

    Hancer, Mehmet [Department of Metallurgical Engineering, 412 William C. Browning Building, University of Utah, Salt Lake City, Utah 84112 (United States); Sperline, Roger P. [4600 N. Ave. del Cazador, Tucson, Arizona 85718 (United States); Miller, Jan D. [Department of Metallurgical Engineering, 412 William C. Browning Building, University of Utah, Salt Lake City, Utah 84112 (United States)

    2000-01-01

    The distortion of band shapes seen in infrared attenuated total reflection (IR-ATR) spectroscopy of strongly absorbing materials such as water, relative to transmission sampling, is shown here to be due to the anomalous dispersion (AD) of water. This distortion occurs in addition to the normal 1/{nu} dependence, and, contrary to previous reports, is shown to not be due to chemical changes of water at the interface between the optical element and bulk solution. IR-ATR spectra of water were modeled with approximation-free calculations. The modeled spectra are compared with experimental ATR spectra for different internal reflection elements, and the results are discussed in terms of the AD optical effect. (c) 2000 Society for Applied Spectroscopy.

  7. Anomalous dispersion enhanced Cerenkov phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  8. Anomalous hydrodynamical dispersion and the Coats-Smith equation: the finite size effects

    International Nuclear Information System (INIS)

    Caceres, Manuel O.

    2003-09-01

    We investigate a family of probability distributions that shows anomalous hydrodynamics dispersion, by solving a particular class of coupled generalized master equations. The Fourier-Laplace solution is obtained analytically in terms of the matrix Green function method; then the Coats-Smith concentration profile is revisited in a particular case. Two models of disorder are worked out explicitly, and the mean current is asymptotically calculated. We present an approximation method to calculate the first passage time distribution for this stochastic transport process, and as an example an exact Markovian result is worked out; scaling results are also shown. We discuss the comparison with other different methods to work out complex diffusion phenomena in the presence of disordered multiple transport paths. Extensions when the models are non diffusive can also be solved in the Fourier-Laplace representation. (author)

  9. Powder diffraction studies using anomalous dispersion

    International Nuclear Information System (INIS)

    Cox, D.E.; Wilkinson, A.P.

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high T c superconductors, ternary alloys, FeCo 2 (PO 4 ) 3 , FeNi 2 BO 5 ), oxidation-state contrast (e.g. YBa 2 Cu 3 O 6+x , Eu 3 O 4 , GaCl 2 , Fe 2 PO 5 ), and the effect of coordination geometry (e.g. Y 3 Ga 5 O l2 )

  10. Anomalous magnetoresistance effect in sputtered TbFeCo relating to dispersed magnetic moment

    International Nuclear Information System (INIS)

    Yumoto, S.; Toki, K.; Okada, O.; Gokan, H.

    1988-01-01

    The electric resistance is sputtered TbFeCo has been measured at room temperature as a function of magnetic field perpendicular to the film plane. Two kinds of anomalous magnetoresistance have been observed. One is a magnetoresistance peak in the magnetization reversal region. The other is reversible change proportional to the applied magnetic field, appearing in the other region. The magnetoresistance peak agrees well with a curve calculated from experimental Hall loop, using a phenomenological relation between anomalous magnetoresistance and anomalous Hall voltage. The magnetoresistance peak is found to originate from magnetic domain walls. The linear magnetoresistance change for TM dominant samples appears in a direction opposite to that for RE dominant samples. The linear change can't be derived from Hall loop

  11. Anomalous dispersion of microcavity trion-polaritons

    Science.gov (United States)

    Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O'Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, Subhro; Vamivakas, A. N.

    2018-02-01

    The strong coupling of excitons to optical cavities has provided new insights into cavity quantum electrodynamics as well as opportunities to engineer nanoscale light-matter interactions. Here we study the interaction between out-of-equilibrium cavity photons and both neutral and negatively charged excitons, by embedding a single layer of the atomically thin semiconductor molybdenum diselenide in a monolithic optical cavity based on distributed Bragg reflectors. The interactions lead to multiple cavity polariton resonances and anomalous band inversion for the lower, trion-derived, polariton branch--the central result of the present work. Our theoretical analysis reveals that many-body effects in an out-of-equilibrium setting result in an effective level attraction between the exciton-polariton and trion-polariton accounting for the experimentally observed inverted trion-polariton dispersion. Our results suggest a pathway for studying interesting regimes in quantum many-body physics yielding possible new phases of quantum matter as well as fresh possibilities for polaritonic device architectures.

  12. Anomalous Dispersion in a Sand Bed River

    Science.gov (United States)

    Bradley, D. N.; Tucker, G. E.; Benson, D. M.

    2009-04-01

    There has been a recent surge of interest in non-local, heavy-tailed models of sediment transport and dispersion that are governed by fractional order differential equations. These models have a firm mathematical foundation and have been successfully applied in a variety of transport systems, but their use in geomorphology has been minimal because the data required to validate the models is difficult to acquire. We use data from a nearly 50-year-old tracer experiment to test a fluvial bed load transport model with a two unique features. First, the model uses a heavy-tailed particle velocity distribution with a divergent second moment to reproduce the anomalously high fraction of tracer mass observed in the downstream tail of the spatial distribution. Second, the model partitions mass into a detectable mobile phase and an undetectable, immobile phase. This two-phase transport model predicts two other features observed in the data: a decrease in the amount of detected tracer mass over the course of the experiment and the high initial velocity of the tracer plume. Because our model uses a heavy-tailed velocity distribution with a divergent second moment it is non-local and non-Fickian and able to reproduce aspects of the data that a local, Fickian model cannot. The model's successful prediction of the observed concentration profiles provides some of the first evidence of anomalous dispersion of bed load in a natural river.

  13. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  14. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  15. Mechanisms of anomalous dispersion in flow through heterogeneous porous media

    Science.gov (United States)

    Tyukhova, Alina; Dentz, Marco; Kinzelbach, Wolfgang; Willmann, Matthias

    2016-11-01

    We study the origins of anomalous dispersion in heterogeneous porous media in terms of the medium and flow properties. To identify and quantify the heterogeneity controls, we focus on porous media which are organized in assemblies of equally sized conductive inclusions embedded in a constant conductivity matrix. We study the behavior of particle arrival times for different conductivity distributions and link the statistical medium characteristics to large-scale transport using a continuous time random walk (CTRW) approach. The CTRW models particle motion as a sequence of transitions in space and time. We derive an explicit map of the conductivity onto the transition time distribution. The derived CTRW model predicts solute transport based on the conductivity distribution and the characteristic heterogeneity length. In this way, heavy tails in solute arrival times and anomalous particle dispersion as measured by the centered mean square displacement are directly related to the medium properties. These findings shed light on the mechanisms of anomalous dispersion in heterogeneous porous media, and provide a basis for the predictive modeling of large-scale transport.

  16. Anomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions

    Directory of Open Access Journals (Sweden)

    Xin Liang

    2018-01-01

    Full Text Available In this paper, an anomalous advection-dispersion model involving a new general Liouville–Caputo fractional-order derivative is addressed for the first time. The series solutions of the general fractional advection-dispersion equations are obtained with the aid of the Laplace transform. The results are given to demonstrate the efficiency of the proposed formulations to describe the anomalous advection dispersion processes.

  17. Anomalous dispersion of magnetic spiky particles for enhanced oil emulsions/water separation.

    Science.gov (United States)

    Chen, Hui-Jiuan; Hang, Tian; Yang, Chengduan; Liu, Guishi; Lin, Di-An; Wu, Jiangming; Pan, Shuolin; Yang, Bo-Ru; Tao, Jun; Xie, Xi

    2018-01-25

    In situ effective separation of oil pollutants including oil spills and oil emulsions from water is an emerging technology yet remains challenging. Hydrophobic micro- or nano-materials with ferromagnetism have been explored for oil removal, yet the separation efficiency of an oil emulsion was compromised due to the limited dispersion of hydrophobic materials in water. A surfactant coating on microparticles prevented particle aggregation, but reduced oil absorption and emulsion cleaning ability. Recently, polystyrene microbeads covered with nanospikes have been reported to display anomalous dispersion in phobic media without surfactants. Inspired by this phenomenon, here magnetic microparticles attached with nanospikes were fabricated for enhanced separation of oil emulsions from water. In this design, the particle surfaces were functionalized to be superhydrophobic/superoleophilic for oil absorption, while the surface of the nanospikes prevented particle aggregation in water without compromising surface hydrophobicity. The magnetic spiky particles effectively absorbed oil spills on the water surface, and readily dispersed in water and offered facile cleaning of the oil emulsion. In contrast, hydrophobic microparticles without nanospikes aggregated in water limiting the particle-oil contact, while surfactant coating severely reduced particle hydrophobicity and oil absorption ability. Our work provides a unique application scope for the anomalous dispersity of microparticles and their potential opportunities in effective oil-water separation.

  18. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  19. Anomalous Dispersion of the S1 Lamb Mode

    Directory of Open Access Journals (Sweden)

    Faiz Ahmad

    2013-01-01

    Full Text Available The S1 mode of the Lamb spectrum of an isotropic plate exhibits negative group velocity in a narrow frequency domain. This anomalous behavior is explained analytically by examining the slope of each mode first in its initial state and then near its turning points.

  20. Anomalous, extreme weather disrupts obligate seed dispersal mutualism: snow in a subtropical forest ecosystem.

    Science.gov (United States)

    Zhou, Youbing; Newman, Chris; Chen, Jin; Xie, Zongqiang; Macdonald, David W

    2013-09-01

    Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January-February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries - migrating ungulates becoming exposed to heightened levels of illegal hunting - causing long-term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant

  1. Anomalous effects of dense matter under rotation

    Science.gov (United States)

    Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki

    2018-02-01

    We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

  2. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  3. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    Science.gov (United States)

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  4. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions

    NARCIS (Netherlands)

    Van Drooge, D.J.; Hinrichs, W.L.J.; Frijlink, H.W.

    2004-01-01

    In this study, anomalous dissolution behaviour of tablets consisting of sugar glass dispersions was investigated. The poorly aqueous soluble diazepam was used as a lipophilic model drug. The release of diazepam and sugar carrier was determined to study the mechanisms governing dissolution behaviour.

  5. Intrinsic anomalous Hall effect and local polarizabilities

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.

    2010-01-01

    Roč. 82, č. 11 (2010), 113303/1-113303/4 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0551 Institutional research plan: CEZ:AV0Z10100521 Keywords : orbital polarization momentum * Berry phase correction * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  6. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  7. Simulating Anomalous Dispersion and Multiphase Segregation in Porous Media with the Lattice Boltzmann Method

    Science.gov (United States)

    Matin, Rastin; Misztal, Marek K.; Hernandez-Garcia, Anier; Mathiesen, Joachim

    2015-11-01

    Many hydrodynamic phenomena such as flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated numerically using the lattice Boltzmann method. By solving the Lattice Boltzmann Equation on three-dimensional unstructured meshes, we efficiently model single-phase fluid flow in real rock samples. We use the flow field to estimate the permeability and further investigate the anomalous dispersion of passive tracers in porous media. By extending our single-phase model with a free-energy based method, we are able to simulate binary systems with moderate density ratios in a thermodynamically consistent way. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  8. Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion

    Science.gov (United States)

    Parra-Rivas, P.; Gomila, D.; Gelens, L.; Knobloch, E.

    2018-04-01

    The origin, stability, and bifurcation structure of different types of bright localized structures described by the Lugiato-Lefever equation are studied. This mean field model describes the nonlinear dynamics of light circulating in fiber cavities and microresonators. In the case of anomalous group velocity dispersion and low values of the intracavity phase detuning these bright states are organized in a homoclinic snaking bifurcation structure. We describe how this bifurcation structure is destroyed when the detuning is increased across a critical value, and determine how a bifurcation structure known as foliated snaking emerges.

  9. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    Science.gov (United States)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in

  10. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    Science.gov (United States)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  11. Generation of pulse trains with high-repetition-rate in anomalous dispersion decreasing fibers

    Science.gov (United States)

    Korobko, Dmitry A.; Okhotnikov, Oleg G.; Sysoliatin, Alex A.; Zolotovskii, Igor O.

    2014-03-01

    Optical pulse generation and compression have been numerically studied in anomalous dispersion decreasing fibers (DDF). We show that evolution of modulation instability observed with chirped wave packets in tapered fibers produces the mechanism for generation of ultra-short pulses with high repetition rates. The role of modulation instability and Raman self-scattering has been also discussed. The simulations show that pulse chirping enhances self-Raman scattering at early stages of pulse propagation and improves compression of the generated pulses. It is also shown that the presence of amplitude and frequency modulation of the seed wave provide essential impact on the pulse train formation. The new method for increasing the pulse train repetition rate through frequency modulation of the seed wave has been proposed.

  12. Anomalous preasymptotic colloid transport by hydrodynamic dispersion in microfluidic capillary flow.

    Science.gov (United States)

    Fridjonsson, Einar Orn; Seymour, Joseph D; Codd, Sarah L

    2014-07-01

    The anomalous preasymptotic transport of colloids in a microfluidic capillary flow due to hydrodynamic dispersion is measured by noninvasive nuclear magnetic resonance (NMR). The data indicate a reduced scaling of mean squared displacement with time from the 〈z(t)(2)〉(c) ∼ t(3) behavior for the interaction of a normal diffusion process with a simple shear flow. This nonequilibrium steady-state system is shown to be modeled by a continuous time random walk (CTRW) on a moving fluid. The full propagator of the motion is measured by NMR, providing verification of the assumption of Gaussian jump length distributions in the CTRW model. The connection of the data to microrheology measurements by NMR, in which every particle in a suspension contributes information, is established.

  13. Anomalous preasymptotic colloid transport by hydrodynamic dispersion in microfluidic capillary flow

    Science.gov (United States)

    Fridjonsson, Einar Orn; Seymour, Joseph D.; Codd, Sarah L.

    2014-07-01

    The anomalous preasymptotic transport of colloids in a microfluidic capillary flow due to hydrodynamic dispersion is measured by noninvasive nuclear magnetic resonance (NMR). The data indicate a reduced scaling of mean squared displacement with time from the c ˜t3 behavior for the interaction of a normal diffusion process with a simple shear flow. This nonequilibrium steady-state system is shown to be modeled by a continuous time random walk (CTRW) on a moving fluid. The full propagator of the motion is measured by NMR, providing verification of the assumption of Gaussian jump length distributions in the CTRW model. The connection of the data to microrheology measurements by NMR, in which every particle in a suspension contributes information, is established.

  14. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  15. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  16. Anomalous dispersion in Lithium Niobate one-dimensional waveguide array in the near-infrared wavelength range

    OpenAIRE

    Apetrei, Alin Marian; Rambu, Alicia Petronela; Minot, Christophe; Moison, Jean-Marie; Belabas, Nadia; Tascu, Sorin

    2016-01-01

    Knowing the dispersion regime (normal vs anomalous) is important for both an isolated waveguide and a waveguide array. We investigate by the Finite Element Method the dispersion properties of a LiNbO3 waveguides array using two techniques. The first one assumes the Coupled Mode Theory in a 2-waveguide system. The other one uses the actual diffraction curve determined in a 7-waveguide system. In both approaches we find that by decreasing the array period, one passes from normal dispersion by a...

  17. Anomalous transport effects and possible environmental symmetry ...

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible ...

  18. Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J; Castor, J I; Iglesias, C A; Cheng, K T; Dunn, J; Johnson, W R; Filevich, J; Purvis, M A; Grava, J; Rocca, J J

    2008-04-15

    Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main calculational tool has been the average atom code. We have recently observed C{sup 2+} plasmas with an index of refraction greater than one at a wavelength of 46.9 nm (26.44 eV). In this paper we compare the average atom method, AVATOMKG, against two more detailed methods, OPAL and CAK, for calculating the index of refraction for the carbon plasmas and discuss the different approximations used. We present experimental measurements of carbon plasmas that display this anomalous dispersion phenomenon. It is shown that the average atom calculation is a good approximation when the strongest lines dominate the dispersion. However, when weaker lines make a significant contribution, the more detailed calculations such as OPAL and CAK are essential. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. With the advent of tunable X-ray lasers the frequency dependent interferometer measurements of the index of refraction may enable us to determine the absorption coefficients and line-shapes and make detailed comparisons against our atomic physics codes.

  19. Anomalous resonance-radiation energy-transfer rate in a scattering dispersive medium

    International Nuclear Information System (INIS)

    Shekhtman, V.L.

    1992-01-01

    This paper describes a generalization of the concept of group velocity as an energy-transfer rate in a dispersive medium with complex refractive index when the polaritons, which are energy carriers, undergo scattering, in contrast to the classical concept of the group velocity of free polaritons (i.e., without scattering in the medium). The concept of delay time from quantum multichannel-scattering, theory is used as the fundamental concept. Based on Maxwell's equations and the new mathematical Φ-function method, a consistent conceptual definition of group velocity in terms of the ratio of the coherent-energy flux density to the coherent-energy density is obtained for the first time, and a critical analysis of the earlier (Brillouin) understanding of energy-transfer rate is given in the light of radiation-trapping theory and the quantum theory of resonance scattering. The role of generalized group velocity is examined for the interpretation of the phenomenon of multiple resonance scattering, or radiation diffusion. The question of causality for the given problem is touched upon; a new relationship is obtained, called the microcausality condition, which limits the anomalous values of group velocity by way of the indeterminacy principle and the relativistic causality principle for macroscopic time intervals directly measurable in experiment, whereby attention is focused on the connection of the given microcausality condition and the well-known Wigner inequality for the time delay of spherical waves. 22 refs

  20. Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser

    Science.gov (United States)

    Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M.; Buczyński, Ryszard

    2016-01-01

    Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra. PMID:26759188

  1. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    Science.gov (United States)

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  2. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    Prat, Eduard

    2009-07-01

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  3. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  4. Effect of anomalous drift during ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, P.A.; Baranova, E.K.; Beloshitskii, V.V.; Demakov, K.D.; Starostin, V.A.

    1986-01-01

    Experimental and theoretical results are presented on Tl-ion implantation into hot silicon substrates (approx. 1200 0 C). a An anomalously large (by more than an order of magnitude) displacement of the peak position of the implanted impurity distribution into the bulk of the substrate is found. b) The conclusion is drawn that the basic process responsible for this displacement of the peak is radiation-enhanced diffusion (RED) due to nonequilibrium concentration of point defects produced in the heated target directly under implantation. c) The crystalline structure of the resulting ion-implanted layer indicates that in-situ annealing of the exposed layer occurs during high-temperature implantation. d) Experimental impurity distributions confirm the possibility of producing an implanted-impurity 'buried layer' below the layer of a single crystal silicon, the 'buried layer' depth depending on the implantation regime. (author)

  5. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  6. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  7. Scattering Effect on Anomalous Hall Effect in Ferromagnetic Transition Metals

    KAUST Repository

    Zhang, Qiang

    2017-11-30

    The anomalous Hall effect (AHE) has been discovered for over a century, but its origin is still highly controversial theoretically and experimentally. In this study, we investigated the scattering effect on the AHE for both exploring the underlying physics and technical applications. We prepared Cox(MgO)100-x granular thin films with different Co volume fraction (34≤≤100) and studied the interfacial scattering effect on the AHE. The STEM HAADF images confirmed the inhomogeneous granular structure of the samples. As decreases from 100 to 34, the values of longitudinal resistivity () and anomalous Hall resistivity (AHE) respectively increase by about four and three orders in magnitude. The linear scaling relation between the anomalous Hall coefficient () and the measured at 5 K holds in both the as-prepared and annealed samples, which suggests a skew scattering dominated mechanism in Cox(MgO)100-x granular thin films. We prepared (Fe36//Au12/), (Ni36//Au12/) and (Ta12//Fe36/) multilayers to study the interfacial scattering effect on the AHE. The multilayer structures were characterized by the XRR spectra and TEM images of cross-sections. For the three serials of multilayers, both the and AHE increase with , which clearly shows interfacial scattering effect. The intrinsic contribution decreases with increases in the three serials of samples, which may be due to the crystallinity decaying or the finite size effect. In the (Fe36//Au12/) samples, the side-jump contribution increases with , which suggests an interfacial scattering-enhanced side jump. In the (Ni36//Au12/) samples, the side-jump contribution decreases with increases, which could be explained by the opposite sign of the interfacial scattering and grain boundary scattering contributed side jump. In the (Ta12//Fe36/) multilayers, the side-jump contribution changed from negative to positive, which is also because of the opposite sign of the interfacial scattering and grain boundary scattering

  8. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation.

    Science.gov (United States)

    Kordts, A; Pfeiffer, M H P; Guo, H; Brasch, V; Kippenberg, T J

    2016-02-01

    High-Q silicon nitride (SiN) microresonators enable optical Kerr frequency comb generation on a photonic chip and have recently been shown to support fully coherent combs based on temporal dissipative Kerr soliton formation. For bright soliton formation, it is necessary to operate SiN waveguides in the multimode regime in order to produce waveguide induced anomalous group velocity dispersion. However, this regime can lead to local disturbances of the dispersion due to avoided crossings caused by coupling between different mode families and, therefore, prevent the soliton formation. Here, we demonstrate that a single-mode "filtering" section inside high-Q resonators enables efficiently suppression of avoided crossings, while preserving high quality factors (Q∼10(6)). We verify the approach by demonstrating single soliton formation in SiN resonators with a filtering section.

  9. Anomalous Nernst effect in type-II Weyl semimetals

    Science.gov (United States)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  10. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  11. Dispersion bias, dispersion effect, and the aerosol-cloud conundrum

    International Nuclear Information System (INIS)

    Liu Yangang; Daum, Peter H; Guo Huan; Peng Yiran

    2008-01-01

    This work examines the influences of relative dispersion (the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) on cloud albedo and cloud radiative forcing, derives an analytical formulation that accounts explicitly for the contribution from droplet concentration and relative dispersion, and presents a new approach to parameterize relative dispersion in climate models. It is shown that inadequate representation of relative dispersion in climate models leads to an overestimation of cloud albedo, resulting in a negative bias of global mean shortwave cloud radiative forcing that can be comparable to the warming caused by doubling CO 2 in magnitude, and that this dispersion bias is likely near its maximum for ambient clouds. Relative dispersion is empirically expressed as a function of the quotient between cloud liquid water content and droplet concentration (i.e., water per droplet), yielding an analytical formulation for the first aerosol indirect effect. Further analysis of the new expression reveals that the dispersion effect not only offsets the cooling from the Twomey effect, but is also proportional to the Twomey effect in magnitude. These results suggest that unrealistic representation of relative dispersion in cloud parameterization in general, and evaluation of aerosol indirect effects in particular, is at least in part responsible for several outstanding puzzles of the aerosol-cloud conundrum: for example, overestimation of cloud radiative cooling by climate models compared to satellite observations; large uncertainty and discrepancy in estimates of the aerosol indirect effect; and the lack of interhemispheric difference in cloud albedo.

  12. Urbanization effects on natural radiation in anomalous areas

    International Nuclear Information System (INIS)

    Affonseca, M.S. de.

    1993-10-01

    The urbanization effects and their possible causes on the environmental gamma radiation levels, in an anomalous area, were studied. The field work was accomplished in Guarapari, located in the seacoast of the Brazilian state of Espirito Santo, which is rich in monazite sands, with thorium and uranium contents. The results show clearly that there was a reduction in the levels of external exposition in the streets and squares of Guarapari. It was ascertained that the reduction was due to the materials used in the urbanization. (L.C.J.A.)

  13. Electrostatic Turbulence and Anomalous Effects in Reconnection Diffusion Region

    Science.gov (United States)

    Khotyaintsev, Y. V.; Graham, D. B.; Norgren, C.; Vaivads, A.; Li, W.; Divin, A. V.; Andre, M.; Markidis, S.; Lindqvist, P. A.; Peng, I. B.; Argall, M. R.; Ergun, R.; Le Contel, O.; Magnes, W.; Russell, C. T.; Giles, B. L.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is a fundamental process whereby microscopicplasma processes cause macroscopic changes in magnetic field topology,so that initially separated plasmas become magnetically connected.Waves can produce particle diffusion, and anomalous resistivity, aswell as heat the plasma and accelerate plasma particles, all of whichcan impact ongoing reconnection. We report electrostatic turbulencedeveloping within the diffusion region of asymmetric magnetopausereconnection using observations by the Magnetospheric Multiscalemission and large-scale particle-in-cell simulations, and characterizeanomalous effects and plasma heating within the diffusion region. Ourobservations demonstrate that electrostatic turbulence plays animportant role in the electron-scale physics of asymmetricreconnection.

  14. Observation of the anomalous Hall effect in GaAs

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2007-01-01

    Devices for the direct detection of the spin current, based on the anomalous Hall effect (AHE), are fabricated on n-type GaAs bulk semiconductor materials. The AHE is observed in the device when the photoinduced spin-polarized electrons are injected into it, and it is found that the effect depends on the applied electric field. The origin of the field-dependent observed Hall effect is discussed based on the D'yakonov-Perel' (DP) spin relaxation mechanism. The spin-dependent Hall effect is also found to be enhanced with increasing doping concentration. The present experimental results might have potential applications in semiconductor spintronic devices since the effect is closely related to the spin Hall effect

  15. Observation of the anomalous Hall effect in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre, School of Science, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2007-03-21

    Devices for the direct detection of the spin current, based on the anomalous Hall effect (AHE), are fabricated on n-type GaAs bulk semiconductor materials. The AHE is observed in the device when the photoinduced spin-polarized electrons are injected into it, and it is found that the effect depends on the applied electric field. The origin of the field-dependent observed Hall effect is discussed based on the D'yakonov-Perel' (DP) spin relaxation mechanism. The spin-dependent Hall effect is also found to be enhanced with increasing doping concentration. The present experimental results might have potential applications in semiconductor spintronic devices since the effect is closely related to the spin Hall effect.

  16. Anomalous Hall effect in Fe/Au multilayers

    KAUST Repository

    Zhang, Q.

    2016-07-22

    To understand the interfacial scattering effect on the anomalous Hall effect (AHE), we prepared multilayers of (Fe(36/n)nm/Au(12/n)nm)n using an e-beam evaporator. This structure design allowed us to investigate the effect of interfacial scattering on the AHE, while keeping the samples\\' thickness and composition unchanged. We measured the (magneto)transport properties of the samples in a wide temperature range (10–310 K) with magnetic fields up to 50 kOe. We found that the scaling between the anomalous Hall resistivity (ρAHE) and longitudinal resistivity (ρxx) can be roughly described by ρAHE∼ργxx with γ=2.65±0.10 and 1.90 ± 0.04 for samples from n=1 to n=4 and samples from n=4 to n=12, respectively. Our quantitative analysis results showed that the interfacial scattering suppresses the contribution of the intrinsic mechanism and gives rise to a side-jump contribution.

  17. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    Science.gov (United States)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  18. Anomalous Hall-like effect probe of antiferromagnetic domain wall.

    Science.gov (United States)

    Lang, Lili; Qiu, Xuepeng; Zhou, Shiming

    2018-01-10

    Of crucial importance to antiferromagnetic (AF) spintronic devices, AF domain wall (AFDW), created in exchange biased Y 3 Fe 5 O 12 /Ni 0.50 Co 0.50 O (NiCoO)/Pt, is characterized by anomalous Hall-like effect through magnetic proximity effect and spin Hall magnetoresistance at NiCoO/Pt interface. The AFDW thickness, in the order of nanometers, has been for the first time proved in experiments to increase with increasing temperature. AF spins within AFDW show the same chirality in decent and ascent branches of ferromagnetic magnetization reversal process. Moreover, the uncompensated magnetic moment at the NiCoO/Pt interface is of perpendicular magnetization anisotropy and changes linearly in magnitude with temperature due to the reduced coordination of the magnetic atoms on the AF surface. This work will help to clarify the mechanism of the spin current propagation in AF materials and fully understand the physics behind exchange bias.

  19. Precise quantization of anomalous Hall effect near zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  20. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.

    2017-10-23

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  1. Studies of Anomalous Shock Wave Propagation and Dispersion in Weakly Ionized Plasma

    National Research Council Canada - National Science Library

    Adamovich, I

    2001-01-01

    .... Temperatures and ionization levels in the flows were measured. It was demonstrated that shocks can be weakened by creating an electric discharge in the flow, but this effect is purely a consequence of the Joule heating of the plasma...

  2. Lineshape studies of quantum oscillations in the ultrasonic absorption and dispersion in indium. The anomalous behaviour of the ultrasonic absorption

    International Nuclear Information System (INIS)

    Wilde, J. de; Groot, D.G. de

    1978-01-01

    Simultaneous measurements of quantum oscillations in the ultrasonic absorption and dispersion in In and dilute In/Pb alloys have been carried out using a sensitive continuous wave technique. A comparison of the field dependencies and the harmonic contents of the quantum oscillations in the absorption, dispersion and magnetisation has shown that the dispersion and magnetisation are in agreement with the existing theories. The absorption oscillations, however, do not follow the well known theories. A modified expression for the absorption lines has been derived by calculating the giant quantum oscillation lineshape in the presence of significant phase smearing. The Dingle temperatures and harmonic content calculated from this modified expression are in excellent agreement with the results obtained from the de Haas-van Alphen effect and the velocity oscillations. (author)

  3. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  4. Anomalous dispersion and band gap reduction in UO{sub 2+x} and its possible coupling to the coherent polaronic quantum state

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D. [Synchrotron Soleil, Saint-Aubin BP-48, 91192 (France); Andersson, David A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bagus, Paul S. [University of North Texas, Denton, TX 76203 (United States); Boland, Kevin S.; Bradley, Joseph A.; Byler, Darrin D.; Clark, David L.; Conradson, Dylan R. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Espinosa-Faller, Francisco J. [Universidad Marista de Merida, Merida, Yucatan 97300 (Mexico); Lezama Pacheco, Juan S.; Martucci, Mary B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nordlund, Dennis [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Seidler, Gerald T. [University of Washington, Seattle, WA 98195 (United States); Valdez, James A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-05-01

    Hypervalent UO{sub 2}, UO{sub 2(+x)} formed by both addition of excess O and photoexcitation, exhibits a number of unusual or often unique properties that point to it hosting a polaronic Bose–Einstein(-Mott) condensate. A more thorough analysis of the O X-ray absorption spectra of UO{sub 2}, U{sub 4}O{sub 9}, and U{sub 3}O{sub 7} shows that the anomalous increase in the width of the spectral features assigned to predominantly U 5f and 6d final states that points to increased dispersion of these bands occurs on the low energy side corresponding to the upper edge of the gap bordered by the conduction or upper Hubbard band. The closing of the gap by 1.5 eV is more than twice as much as predicted by calculations, consistent with the dynamical polaron found by structural measurements. In addition to fostering the excitation that is the proposed mechanism for the coherence, the likely mirroring of this effect on the occupied, valence side of the gap below the Fermi level points to increased complexity of the electronic structure that could be associated with the Fermi topology of BEC–BCS crossover and two band superconductivity.

  5. Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves

    Science.gov (United States)

    Kim, K. Y.; Jeon, K. M.; Hong, M. H.; Park, Young-gyu

    2011-02-01

    To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

  6. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets.

    Science.gov (United States)

    Ishizuka, Hiroaki; Nagaosa, Naoto

    2018-02-01

    Noncoplanar magnetic orders in magnetic metals give rise to an anomalous Hall effect of unconventional origin, which, by the spin Berry phase effect, is known as the topological Hall effect. This effect is pronounced in the low-temperature limit, where the fluctuation of spins is suppressed. In contrast, we here discuss that the fluctuating but locally correlated spins close to the phase boundary give rise to another anomalous Hall effect, that with the opposite sign to the topological Hall effect. Using the Born approximation, we show that the anomalous Hall effect is attributed to the skew scattering induced by the local correlation of spins. The relation of the scalar spin chirality to the skew scattering amplitude is given, and the explicit formula for the Hall conductivity is derived using a semiclassical Boltzmann transport theory. Our theory potentially accounts for the sign change of the anomalous Hall effect observed in chiral magnets in the vicinity of the phase boundary.

  7. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  8. Dynamics of Solitary Wave Pulses Near the Zero-Dispersion Wavelength in Optical Fibers

    National Research Council Canada - National Science Library

    Akylas, Triantaphyllos

    1998-01-01

    .... Near the zero-dispersion wavelength (ZDW), the borderline between normal and anomalous dispersion, however, dispersive effects are relatively weak and it would seem most efficient to operate there, assuming that one can launch solitary wave...

  9. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  10. The effect of anomalous utterances on language production

    OpenAIRE

    Ivanova, I; Wardlow, L; Warker, J; Ferreira, VS

    2017-01-01

    Speakers sometimes encounter utterances that have anomalous linguistic features. Are such features registered during comprehension and transferred to speakers' production systems? In two experiments, we explored these questions. In a syntactic-priming paradigm, speakers heard prime sentences with novel or intransitive verbs as part of prepositional-dative or double-object structures (e.g., The chef munded the cup to the burglar or The doctor existed the pirate the balloon). Speakers then desc...

  11. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT , AND SYSTEM DYNAMICS...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT , AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  12. Anomalous X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g., in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discussion of the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references.

  13. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  14. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  15. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

    Science.gov (United States)

    Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya

    2015-11-01

    In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics—for example, to develop a memory device that produces almost no perturbing stray fields.

  16. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  17. The effect of interfacial intermixing on magnetization and anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2015-05-01

    The effect of interfacial intermixing on magnetization and anomalous Hall effect (AHE) in Co/Pd multilayers is studied by using rapid thermal annealing to enhance the interfacial diffusion. The dependence of saturation magnetization and coercivity on the temperature of rapid thermal annealing at 5 K is discussed. It is found that AHE is closely related to the relative thickness of the Co and Pd layers. Localized paramagnetism has been observed which destroys AHE, while AHE can be enhanced by annealing.

  18. Spin disorder effect in anomalous Hall effect in MnGa

    Science.gov (United States)

    Mendonça, A. P. A.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2017-12-01

    We report on resistivity and Hall effect in MnGa thin films grown by molecular beam epitaxy on GaAs substrates. Highly (1 1 1)-textured MnGa film with L10 structure exhibits hard magnetic properties with coercivities as high as 20 kOe and spin disorder mechanisms contributing to the Hall conductivity at room temperature. Density functional theory calculations were performed to determine the intrinsic Berry curvature in the momentum space with chiral spin structure that results in an anomalous Hall conductivity of 127 (Ωcm)-1 comparable to that measured at low temperature. In addition to residual and side-jump contributions, which are enhanced by thermal activation, both anomalous Hall conductivity and Hall angle increase between 100 K and room temperature. The present results reinforce the potential of Mn-Ga system for developing Hall effect-based spintronic devices.

  19. Anomalous Hall effect from vortex motion in high-Tc superconductors

    International Nuclear Information System (INIS)

    Chen, J.L.; Yang, T.J.

    1994-01-01

    In this work, the unusual Seebeck effect is taken into consideration in explaining the possible origin of the anomalous Hall effect for high-T c superconductors. Combining Maki's theory of transport entropy and Tinkham's theory of resistive transition, we explain why the anomalous Hall effect can be observed in high-T c superconductors, but is absent in most conventional superconductors. The behavior of ρ xy (H,T) in our theory is qualitatively consistent with experiments. In addition, our theory not only predicts that ρ xy will become positive from ρ xy xy |∝ρ xx 2 in the region of ρ xy xy will diminish with increasing defect concentration

  20. Scaling of anomalous hall effect in amorphous CoFeB Films with accompanying quantum correction

    KAUST Repository

    Zhang, Yan

    2015-05-08

    Scaling of anomalous Hall effect in amorphous CoFeB films with thickness ranging from 2 to 160 nm have been investigated. We have found that the scaling relationship between longitudinal (ρxx) and anomalous Hall (ρAH) resistivity is distinctly different in the Bloch and localization regions. For ultrathin CoFeB films, the sheet resistance (Rxx) and anomalous Hall conductance (GAH) received quantum correction from electron localization showing two different scaling relationships at different temperature regions. In contrast, the thicker films show a metallic conductance, which have only one scaling relationship in the entire temperature range. Furthermore, in the dirty regime of localization regions, an unconventional scaling relationship View the MathML sourceσAH∝σxxα with α=1.99 is found, rather than α=1.60 predicted by the unified theory.

  1. Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Bang, Ole

    2013-01-01

    The relative intensity noise (RIN) properties at different wavelengths and power levels for picosecond supercontinuum (SC) generated by pumping a PCF in its normal dispersion regime is investigated. For low power levels the all-normal SC is generated while the generated SC extends beyond the zero...

  2. Employment effects of spatial dispersal of refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    2010-01-01

    Refugees subjected to a spatial dispersal tend to be assigned to a location outside the immigrant-dense cities. We argue that such locations are associated with low place utility. Our partial equilibrium search model with simultaneous job and residential location search predicts that the reservat......Refugees subjected to a spatial dispersal tend to be assigned to a location outside the immigrant-dense cities. We argue that such locations are associated with low place utility. Our partial equilibrium search model with simultaneous job and residential location search predicts...... that the reservation wage for local jobs decreases with place utility. We test the theoretical prediction by estimating the effects of characteristics of the location of assignment on the transition rate into the first job. Our sample is male refugees aged 30-59 who were subjected to the Danish spatial dispersal...

  3. Anomalous Hall effect as the response of the orbital momentum to the gradient of electrochemical potential

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2013-01-01

    Roč. 88, č. 13 (2013), "134422-1"-"134422-5" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68378271 Keywords : anomalous Hall effect * ferromagnetic systems * orbital momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  4. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  5. Enhancement of perpendicular magnetic anisotropy and anomalous hall effect in Co/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yiwei; Zhang, Jingyan, E-mail: jyzhang@ustb.edu.cn; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Yu, Guanghua, E-mail: ghyu@mater.ustb.edu.cn

    2016-12-15

    The perpendicular magnetic anisotropy (PMA) and the anomalous Hall effect (AHE) in Co/Ni multilayer were optimized by manipulating its interface structure (inducing HfO{sub 2} capping layer and Pt insertion) and post-annealing treatment. A strong PMA can be obtained in Co/Ni multilayers with HfO{sub 2} capping layer even after annealing at 400 °C. The heavy metal Hf may improve the interfacial spin-orbit coupling, which responsible for the enhanced PMA and high annealing stability. Moreover, the multilayer containing HfO{sub 2} capping layer also exhibited high saturation anomalous Hall resistivity through post-annealing, which is 0.85 μΩ cm after annealing at 375 °C, 211% larger than in the sample at deposited state which is only 0.27 μΩ cm. The enhancement of AHE is mainly attributed to the interface scattering through post-annealing treatment. - Highlights: • The perpendicular magnetic anisotropy and anomalous Hall effect of Co/Ni multilayer films were studied. • The PMA thermal stability of the Co/Ni ML can be enhanced by HfO{sub 2} capping layer and Pt insertion. • The anomalous Hall resistivity of Co/Ni ML covered by HfO{sub 2} was enhanced by post-annealing treatment.

  6. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang

    2017-12-26

    The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12n/Fe36n)n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρ) increases by 6.4 times and the anomalous Hall resistivity (ρ) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.

  7. On arterial fiber dispersion and auxetic effect.

    Science.gov (United States)

    Volokh, K Y

    2017-08-16

    There are two polar contemporary approaches to the constitutive modeling of arterial wall with anisotropy induced by collagen fibers. The first one is based on the angular integration (AI) of the strain energy on a unit sphere for the analytically defined fiber dispersion. The second one is based on the introduction of the generalized structure tensors (GST). AI approach is very involved computationally while GST approach requires somewhat complicated procedure for the exclusion of compressed fibers. We present some middle ground models, which are based on the use of 16 and 8 structure tensors. These models are moderately involved computationally and they allow excluding compressed fibers easily. We use the proposed models to study the role of the fiber dispersion in the constitutive modeling of the arterial wall. Particularly, we study the auxetic effect which can appear in anisotropic materials. The effect means thickening of the tissue in the direction perpendicular to its stretching. Such an effect was not observed in experiments while some simple anisotropic models do predict it. We show that more accurate account of the fiber dispersion suppresses the auxetic effect in a qualitative agreement with experimental observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An anomalous extinction law in the Cep OB3b young cluster: Evidence for dust processing during gas dispersal

    International Nuclear Information System (INIS)

    Allen, Thomas S.; Prchlik, Jakub J.; Megeath, S. Thomas; Gutermuth, Robert A.; Pipher, Judith L.; Naylor, Tim; Jeffries, R. D.

    2014-01-01

    We determine the extinction law through Cep OB3b, a young cluster of 3000 stars undergoing gas dispersal. The extinction is measured toward 76 background K giants identified with MMT/Hectospec spectra. Color excess ratios were determined toward each of the giants using V and R photometry from the literature, g, r, i, and z photometry from the Sloan Digital Sky Survey and J, H, and K s photometry from the Two Micron All Sky Survey. These color excess ratios were then used to construct the extinction law through the dusty material associated with Cep OB3b. The extinction law through Cep OB3b is intermediate between the R V = 3.1 and R V = 5 laws commonly used for the diffuse atomic interstellar medium and dense molecular clouds, respectively. The dependence of the extinction law on line-of-sight A V is investigated and we find the extinction law becomes shallower for regions with A V > 2.5 mag. We speculate that the intermediate dust law results from dust processing during the dispersal of the molecular cloud by the cluster.

  9. An anomalous extinction law in the Cep OB3b young cluster: Evidence for dust processing during gas dispersal

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Thomas S.; Prchlik, Jakub J.; Megeath, S. Thomas [University of Toledo, Ritter Astrophysical Observatory, Department of Physics and Astronomy, Toledo, OH 43606 (United States); Gutermuth, Robert A. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Pipher, Judith L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Naylor, Tim [School of Physics, University of Exeter, Exeter, UK EX4 4QL (United Kingdom); Jeffries, R. D. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, UK ST5 5BG (United Kingdom)

    2014-05-10

    We determine the extinction law through Cep OB3b, a young cluster of 3000 stars undergoing gas dispersal. The extinction is measured toward 76 background K giants identified with MMT/Hectospec spectra. Color excess ratios were determined toward each of the giants using V and R photometry from the literature, g, r, i, and z photometry from the Sloan Digital Sky Survey and J, H, and K{sub s} photometry from the Two Micron All Sky Survey. These color excess ratios were then used to construct the extinction law through the dusty material associated with Cep OB3b. The extinction law through Cep OB3b is intermediate between the R{sub V} = 3.1 and R{sub V} = 5 laws commonly used for the diffuse atomic interstellar medium and dense molecular clouds, respectively. The dependence of the extinction law on line-of-sight A{sub V} is investigated and we find the extinction law becomes shallower for regions with A{sub V} > 2.5 mag. We speculate that the intermediate dust law results from dust processing during the dispersal of the molecular cloud by the cluster.

  10. Interfacial scattering effect on anomalous Hall effect in Ni/Au multilayers

    KAUST Repository

    Zhang, Qiang

    2017-04-21

    The effect of interfacial scattering on anomalous Hall effect (AHE) was studied in the ${{\\\\left(\\\\text{N}{{\\\\text{i}}_{\\\\frac{36}{n}~\\\\text{nm}}}/\\\\text{A}{{\\\\text{u}}_{\\\\frac{12}{n}~\\\\text{nm}}}\\ ight)}_{n}}$ multilayers. Field-dependent Hall resistivity was measured in the temperature range of 5–300 K with the magnetic field up to 50 kOe. The anomalous Hall resistivity (${{\\ ho}_{\\\\text{AHE}}}$ ) was enhanced by more than six times at 5 K from n  =  1 to n  =  12 due to the increased interfacial scattering, whereas the longitudinal resistivity (${{\\ ho}_{xx}}$ ) was increased nearly three times. A scaling relation ${{\\ ho}_{\\\\text{AHE}}}\\\\sim \\ ho _{xx}^{\\\\gamma}$ with $\\\\gamma =1.85$ was obtained for ${{\\ ho}_{\\\\text{AHE}}}$ and ${{\\ ho}_{xx}}$ measured at 5 K, indicating that the dominant mechanism(s) of the AHE in these multilayers should be side-jump or/and intrinsic in nature. The new scaling relation ${{\\ ho}_{\\\\text{AHE}}}=\\\\alpha {{\\ ho}_{xx0}}+\\\\beta \\ ho _{xx0}^{2}+b\\ ho _{xx}^{2}$ (Tian et al 2009 Phys. Rev. Lett. 103 087206) has been applied to our data to identify the origin of the AHE in this type of multilayer.

  11. Importance of Coulomb correlation on the quantum anomalous Hall effect in V-doped topological insulators

    Science.gov (United States)

    Kim, Jeongwoo; Wang, Hui; Wu, Ruqian

    2018-03-01

    The presence of the quantum anomalous Hall effect in a V-doped topological insulator (TI) has not yet been understood from band-structure studies. Here, we demonstrate the importance of including the correlation effect in density-functional-theory (DFT) calculations, in the format as simple as the Hubbard U , for the determination of the topological properties of these materials. Our results show that the correlation effect turns a V-doped TI thin film into a Mott insulator and facilitates it entering the quantum anomalous Hall phase. Even the ferromagnetic ordering is also strongly affected by the inclusion of the U term. This work satisfactorily explains recent experimental observations and highlights the essentialness of having the Coulomb correlation effect in DFT studies of magnetic TIs.

  12. Compositeness Effects in the Anomalous Weak-Magnetic Moment of Leptons

    CERN Document Server

    González-Garciá, M Concepción

    1996-01-01

    We investigate the effects induced by excited leptons, at the one-loop level, in the anomalous magnetic and weak-magnetic form factors of the leptons. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to the weak-magnetic moment of the $\\tau$ lepton, which can be measured on the $Z$ peak, and we compare it with the contributions to $g_\\mu - 2$, measured at low energies.

  13. Anomalous effect of small doses of ionizing radiation on metals and alloys

    International Nuclear Information System (INIS)

    Chernov, I.P.; Mamontov, A.P.; Botaki, A.A.; Cherdantsev, P.A.; Chakhlov, B.V.; Sharov, S.R.; Timoshnikov, Yu.A.; Filipenko, L.A.

    1986-01-01

    The effect of small doses of 60 Co gamma rays on copper, tungsten, and WCo alloys has been investigated. A decrease in the concentration of material defects under the influence of small doses of ionizing radiation was found. Also the structural rearrangement of the crystal was found to be still in progress after irradiation ceased. The mechanism of the anomalous effect of small doses of ionizing radiation on metals and alloys is discussed in terms of the electron energy scheme. (U.K.)

  14. Anomalous Josephson effect in semiconductor nanowire with strong spin-orbit interaction and Zeeman effect

    Science.gov (United States)

    Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli

    2014-03-01

    We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.

  15. Effects of Earthworms on the Dispersal of Steinernema spp.

    OpenAIRE

    Shapiro, D. I.; Tylka, G. L.; Berry, E. C.; Lewis, L. C.

    1995-01-01

    Previous studies indicated that dispersal of S. carpocapsae may be enhanced in soil with earthworms. The objective of this research was to determine and compare the effects of earthworms on dispersal of other Steinernema spp. Vertical dispersal of Steinernema carpocapsae, S. feltiae, and S. glaseri was tested in soil columns in the presence and absence of earthworms (Lumbricus terrestris). Dispersal was evaluated by a bioassay and by direct extraction of nematodes from soil. Upward dispersal ...

  16. Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi; Fukano, Tatsuo; Ohta, Shingo; Seno, Yoshiki; Katagiri, Hironori; Jimbo, Kazuo

    2012-01-01

    Highlights: ► Cu 2 ZnSnS 4 thin films as a solar cell material were synthesized. ► The wavelength dependences of the diffraction intensity were measured. ► The crystal structures were clearly identified as kesterite structure for all samples. ► Crystal structure analysis revealed that the atomic compositions were Cu/(Zn + Sn) = 0.97 and Zn/Sn = 1.42 for the sample synthesized using stoichiometric amount of starting materials. - Abstract: The crystal structure of Cu 2 ZnSnS 4 (CZTS) thin films fabricated by vapor-phase sulfurization was determined using X-ray anomalous dispersion. High statistic synchrotron radiation X-ray diffraction data were collected from very small amounts of powder. By analyzing the wavelength dependencies of the diffraction peak intensities, the crystal structure was clearly identified as kesterite. Rietveld analysis revealed that the atomic composition deviated from stoichiometric composition, and the compositions were Cu/(Zn + Sn) = 0.97, and Zn/Sn = 1.42.

  17. Rescattering Effects in the Hadronic-Light-by-Light Contribution to the Anomalous Magnetic Moment of the Muon.

    Science.gov (United States)

    Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano; Stoffer, Peter

    2017-06-09

    We present a first model-independent calculation of ππ intermediate states in the hadronic-light-by-light (HLBL) contribution to the anomalous magnetic moment of the muon (g-2)_{μ} that goes beyond the scalar QED pion loop. To this end, we combine a recently developed dispersive description of the HLBL tensor with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-wave resummation. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box a_{μ}^{π box}=-15.9(2)×10^{-11}. We then construct a suitable input for the γ^{*}γ^{*}→ππ helicity partial waves, based on a pion-pole left-hand cut and show that for the dominant charged-pion contribution, this representation is consistent with the two-loop chiral prediction and the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering effects to the full pion box and leads to our final estimate for the sum of these two contributions a_{μ}^{π box}+a_{μ,J=0}^{ππ,π-pole  LHC}=-24(1)×10^{-11}.

  18. Theory of anomalous Hall effect in europium chalcogenides

    International Nuclear Information System (INIS)

    Sinkkonen, J.

    1976-04-01

    Considering the exchange interaction between the conduction electrons in a broad 5d-type band and the magnetic electrons in the localized 4f-shells, it is shown that in addition to the ordinary d-f exchange diagonal in band index, there is also a non-diagonal interaction representing a one particle transfer between the conduction and magnetic electrons. Including the spin-orbit coupling, an effective Hamiltonian for the conductionelectrons is obtained, which contains additional asymmetric scattering terms. The ordinary d-f exchange is treated as the dominating scattering interaction. The anomatous Hall effect results by skew scattering and side jump mechanisms. The density matrix method is used to derive the transport properties. The effect of the correlation of spins at different lattice sites is discussed. The model indicates that the anomatous Hall effect can be seen in heavily doped samples. (author)

  19. Effects of chemical dispersants on oil physical properties and dispersion. Volume 1

    International Nuclear Information System (INIS)

    Khelifa, A.; Fingas, M.; Hollebone, B.P.; Brown, C.E.; Pjontek, D.

    2007-01-01

    Laboratory and field testing have shown that the dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). This study focused on new laboratory experiments that measured the effects on the physical properties and dispersion of oil, with particular reference to the effects of chemical dispersants on IFT and oil viscosity and the subsequent effects on oil droplet formation. Experiments were conducted at 15 degrees C using Arabian Medium, Alaska North Slope and South Louisiana crude and Corexit 9500 and Corexit 9527 chemical dispersants. The dispersants were denser than the 3 oils. The effect of IFT reduction on oil dispersion was measured and showed substantial reduction in the size and enhancement of the concentration of oil droplets in the water column. It was shown that the brine-oil IFT associated with the 3 crudes reduced to less than 3.6 mN/m with the application of the chemical dispersants, even at a low dispersant-to-oil ratio (DOR) value of 1:200. The use of chemical dispersants increased the viscosity of the dispersant-oil mixture up to 40 per cent over the neat crude oil. It was shown that for each mixing condition, an optimum value of DOR exists that provides for maximal dispersant effectiveness. The IFT reaches maximum reduction at optimum DOR. It was suggested that oil spill modelling can be improved with further study of IFT reduction with DOR and variations of critical micelle concentration with the type and solubility of chemical dispersant, oil type and oil to water ratio. 13 refs., 3 tabs., 7 figs

  20. Fast plasma heating by anomalous and inertial resistivity effects in the solar atmosphere

    Science.gov (United States)

    Duijveman, A.; Hoyng, P.; Ionson, J. A.

    1981-01-01

    A simple model is presented to describe fast plasma heating by anomalous and inertial resistivity effects. It is noted that a small fraction of the plasma contains strong currents that run parallel to the magnetic field and are driven by an exponentiating electric field. The anomalous character of the current dissipation derives from the excitation of electrostatic ion-cyclotron and/or ion-acoustic waves. The possible role of resistivity deriving from geometrical effects ('inertial resistivity') is also considered. Using a marginal stability analysis, equations for the average electron and ion temperatures are derived and numerically solved. No loss mechanisms are taken into account. The evolution of the plasma is described as a path in the drift velocity diagram, where the drift velocity is plotted as a function of the electron to ion temperature ratio.

  1. The representation of the anomalous Einstein effects with the aid of an effective metric

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.J.; Gottloeber, S.

    1977-01-01

    An investigation is conducted concerning the possibility of an excess of solar gravitooptical Einstein effects relative to certain theoretical predictions. The anomaly of the Einstein shift is described with the aid of a metric which depends on the solar radiation field, taking into account an approach reported by Treder (1971). It is found that the anomalies of the Einstein effects are frequency dependent. In agreement with radio-astronomical data and the results of radar measurements, there is no excess at low frequencies. It is pointed out that an anomalous Einstein shift with the obtained characteristics, which involves the displacement of the spectral frequencies of the light in proportion to the difference of the square roots of the spectral energy densities at the places of the emission and absorption of the photons, should be detectable in principle also in laboratory measurements.

  2. Effect of entropy on anomalous transport in ITG-modes of magneto-plasma

    Science.gov (United States)

    Yaqub Khan, M.; Qaiser Manzoor, M.; Haq, A. ul; Iqbal, J.

    2017-04-01

    The ideal gas equation and S={{c}v}log ≤ft(P/ρ \\right) (where S is entropy, P is pressure and ρ is the mass density) define the interconnection of entropy with the temperature and density of plasma. Therefore, different phenomena relating to plasma and entropy need to be investigated. By employing the Braginskii transport equations for a nonuniform electron-ion magnetoplasma, two new parameters—the entropy distribution function and the entropy gradient drift—are defined, a new dispersion relation is obtained, and the dependence of anomalous transport on entropy is also proved. Some results, like monotonicity, the entropy principle and the second law of thermodynamics, are proved with a new definition of entropy. This work will open new horizons in fusion processes, not only by controlling entropy in tokamak plasmas—particularly in the pedestal regions of the H-mode and space plasmas—but also in engineering sciences.

  3. Anomalous Wtb coupling effects in the weak radiative B-meson decay

    International Nuclear Information System (INIS)

    Grzadkowski, Bohdan; Misiak, Mikolaj

    2008-01-01

    We study the effect of anomalous Wtb couplings on the B→X s γ branching ratio. The considered couplings are introduced as parts of gauge-invariant dimension-six operators that are built out of the standard model fields only. One-loop contributions from the charged-current vertices are assumed to be of the same order as the tree-level flavor-changing neutral current ones. Bounds on the corresponding Wilson coefficients are derived.

  4. Anomalous Hall effect in stoichiometric Heusler alloys with native disorder: A first-principles study

    Czech Academy of Sciences Publication Activity Database

    Kudrnovský, Josef; Drchal, Václav; Turek, Ilja

    2013-01-01

    Roč. 88, č. 1 (2013), "014422-1"-"014422-8" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : anomalous Hall effect * Heusler alloys * native disorder * halfmetal * first-principles * linear response theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  5. Anomalous effective action, Noether current, Virasoro algebra and Horizon entropy

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Bibhas Ranjan [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India); Hebrew University of Jerusalem, Racah Institute of Physics, Jerusalem (Israel); Chakraborty, Sumanta [IUCAA, Ganeshkhind, Pune University Campus, Post Bag 4, Pune (India)

    2014-05-15

    Several investigations show that in a very small length scale there exist corrections to the entropy of black hole horizon. Due to fluctuations of the background metric and the external fields the action incorporates corrections. In the low energy regime, the one-loop effective action in four dimensions leads to trace anomaly. We start from the Noether current corresponding to the Einstein-Hilbert plus the one-loop effective action to calculate the charge for the diffeomorphisms which preserve the Killing horizon structure. Then a bracket for the charges is calculated. We show that the Fourier modes of the bracket are exactly similar to the Virasoro algebra. Then using the Cardy formula the entropy is evaluated. Finally, the explicit terms of the entropy expression is calculated for a classical background. It turns out that the usual expression for the entropy; i.e. the Bekenstein-Hawking form, is not modified. (orig.)

  6. Anomalous Josephson effect controlled by an Abrikosov vortex

    Science.gov (United States)

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  7. Anomalous doping effects on charge transport in graphene nanoribbons.

    Science.gov (United States)

    Biel, Blanca; Blase, X; Triozon, François; Roche, Stephan

    2009-03-06

    We present first-principles calculations of quantum transport in chemically doped graphene nanoribbons with a width of up to 4 nm. The presence of boron and nitrogen impurities is shown to yield resonant backscattering, whose features are strongly dependent on the symmetry and the width of the ribbon, as well as the position of the dopants. Full suppression of backscattering is obtained on the pi-pi* plateau when the impurity preserves the mirror symmetry of armchair ribbons. Further, an unusual acceptor-donor transition is observed in zigzag ribbons. These unconventional doping effects could be used to design novel types of switching devices.

  8. Anomalous piezoelectric effects, found in the laboratory and reconstructed by numerical simulation

    Directory of Open Access Journals (Sweden)

    K. P. Teisseyre

    2002-06-01

    Full Text Available Various rocks and minerals, which are not piezoelectric in the common sense, exhibit transient electric polarization in response to sudden changes in stress load. This anomalous piezoelectric effect differs from the regular, static piezoelectric response, in which electric charges appear as a result of crystal lattice deformation. The anomalous piezoelectricity is dynamic decaying in a few seconds or a few tens of seconds. However, in some materials different polarization properties are discovered. To explain certain aspects of the polarization signal increase and decay, some complicated mechanisms of electric charge generation and relaxation need to be assumed in their number ? concurrence of two or three relaxation processes. The hypothetical mechanisms are only mentioned, as the purpose of this work is to construct numerical models, behaving like the rocks investigated. Examples of experimental plots are shown together with the results of the numerical simulation of these experiments.

  9. Predicting molecular scale skin-effect in electrochemical impedance due to anomalous subdiffusion mediated adsorption phenomenon

    Science.gov (United States)

    Kushagra, Arindam

    2016-02-01

    Anomalous subdiffusion governs the processes which are not energetically driven, on a molecular scale. This paper proposes a model to predict the response of electrochemical impedance due to such diffusion process. Previous works considered the use of fractional calculus to predict the impedance behaviour in response to the anomalous diffusion. Here, we have developed an expression which predicts the skin-effect, marked by an increase in the impedance with increasing frequency, in this regime. Negative inductances have also been predicted as a consequence of the inertial response of adsorbed species upon application of frequency-mediated perturbations. It might help the researchers in the fields of impedimetric sensors to choose the working frequency and those working in the field of batteries to choose the parameters, likewise. This work would shed some light into the molecular mechanisms governing the impedance when exposed to frequency-based perturbations like electromagnetic waves (microwaves to ionizing radiations) and in charge storage devices like batteries etc.

  10. Investigation on dispersion in the active optical waveguide resonator

    Science.gov (United States)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  11. Anomalous proximity effect and theoretical design for its realization

    Science.gov (United States)

    Ikegaya, Satoshi; Asano, Yasuhiro; Tanaka, Yukio

    2015-05-01

    We discuss the stability of zero-energy states appearing in a dirty normal metal attached to a superconducting thin film with Dresselhaus [110] spin-orbit coupling under an in-plane Zeeman field. The Dresselhaus superconductor preserves an additional chiral symmetry and traps more than one zero-energy state at its edges. All the zero-energy states at an edge belong to the same chirality in large Zeeman fields due to the effective p -wave pairing symmetry. The pure chiral nature of the wave function enables the zero-energy states to penetrate the dirty normal metal while retaining their high degree of degeneracy. We prove the perfect Andreev reflection into the dirty normal metal at zero energy.

  12. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    Science.gov (United States)

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.

  13. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  14. Dispersant effectiveness in the field on fresh oils and emulsions

    International Nuclear Information System (INIS)

    Lunel, T.; Davies, L.

    1996-01-01

    A detailed data set on the effectiveness of dispersants on fresh oils and emulsions, was presented. The data set could be used to calibrate laboratory dispersant tests and dispersion models so that oil spill response teams would have accurate information to make decisions regarding remediation processes. AEA Technology developed steady state continuous release experiments to provide a data set with quantitative measures of dispersant effectiveness in the field. The Sea Empress incident was closely monitored in order to compare the quantification obtained through field trials. It was noted that the prediction of the percentage of oil dispersed chemically is not the only indication of whether or not to use a dispersant. The important determinant to consider should be the extent to which the natural dispersion process would be enhanced by dispersant application. 17 refs., 5 tabs., 18 figs

  15. Is the anomalous effect an experimental evidence for the excitation of new exotic states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, R.; Topor Pop, V.

    1984-10-01

    Lower bound on the mean free path of the projectile fragments from the relativistic heavy ion collisions are drived using generalized Rarita-Schwed's theorems. These bounds are compared with the experimental data on the anomalous mean free path observed in recent experiments. The near saturation of these bounds provide a specific interpretation of the anomalous effects as an experimental evidence for the excitation of those extreme nuclear states which saturate the limits of the convetional nuclear physics. (authors)

  16. Anomalous Josephson Effect in Junctions with Rashba Spin-Orbit Coupling

    Science.gov (United States)

    Nesterov, Konstantin; Houzet, Manuel; Meyer, Julia

    2015-03-01

    We study two-dimensional double-barrier SINIS Josephson junctions in which the inversion symmetry in the normal part is broken by Rashba spin-orbit coupling. In the presence of a suitably oriented Zeeman field in the normal part, the system displays the anomalous Josephson effect: the current is nonzero even at zero phase difference between two superconductors. We investigate this effect by means of the Ginzburg-Landau formalism and microscopic Green's functions approach in the clean limit. This work was supported in part by the Grants No. ANR-12-BS04-0016-03 and an EU-FP7 Marie Curie IRG.

  17. Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection

    International Nuclear Information System (INIS)

    Shin, H.; Kim, N.M.

    1999-01-01

    The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff between soft error rate and cell to cell isolation characteristics should be considered in optimizing the depth of trench oxide

  18. Dispersion engineering for integrated nanophotonics

    CERN Document Server

    Vanbésien, Olivier

    2014-01-01

    This book shows how dispersion engineering in two dimensional dielectric photonic crystals can provide new effects for the precise control of light propagation for integrated nanophotonics.Dispersion engineering in regular and graded photonic crystals to promote anomalous refraction effects is studied from the concepts to experimental demonstration via nanofabrication considerations. Self collimation, ultra and negative refraction, second harmonic generation, mirage and invisibility effects which lead to an unprecedented control of light propagation at the (sub-)wavelength scale for the

  19. Searches for clean anomalous gauge couplings effects at present and future e+e- colliders

    CERN Document Server

    Blondel, A; Trentadue, L G; Verzegnassi, Claudio

    1996-01-01

    We consider the virtual effects of a general type of Anomalous (triple) Gauge Couplings on various experimental observables in the process of electron-positron annihilation into a final fermion-antifermion state. We show that the use of a recently proposed "Z-peak subtracted" theoretical description of the process allows to reduce substantially the number of relevant parameters of the model, so that a calculation of observability limits can be performed in a rather simple way. As an illustration of our approach, we discuss the cases of future measurements at LEP2 and at a new 500 GeV linear collider.

  20. The chiral anomalous Hall effect in PdFe and AuFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolff-Fabris, F. [NHMFL, Los Alamos National Laboratory, MS E536, Los Alamos, NM 87544 (United States)], E-mail: frederikwf@lanl.gov; Pureur, P.; Schaf, J. [Instituto de Fisica, UFRGS, Caixa Postal 15051, Porto Alegre 91501970 (Brazil); Vieira, V. [Instituto de Fisica e Matematica-UFPel, Caixa Postal 354, Pelotas 96010900 (Brazil); Campbell, I.A. [Laboratoire des Colloides, Verres et Nanomateriaux, Universite Montpellier II, Montpellier 34095 (France)

    2008-04-01

    We have made systematic measurements of the anomalous Hall effect in a PdFe and AuFe alloys. The Hall coefficient R{sub h} has been measured as a function of applied magnetic field and temperature. The experimental results demonstrate that it is necessary to consider a negative contribution in addition to the canonical Karplus-Luttinger term. This difference term can be identified to the theoretically predicted chiral or real space Berry phase term and can be understood in terms of the Aharonov-Bohm-like intrinsic microscopic current loops arising from successive scatterings by canted local spins.

  1. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics

    Science.gov (United States)

    Jiang, Yin; Shi, Shuzhe; Yin, Yi; Liao, Jinfeng

    2018-01-01

    The Chiral Magnetic Effect (CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics (AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGeV AuAu collisions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368 (SS and JL), by the National Science Foundation of China under Grant No. 11735007 (JL) and by the U.S. Department of Energy under grant Contract Number No. DE- SC0012704 (BNL)/DE-SC0011090 (MIT) (YY). JL is grateful to the Institute for Nuclear Theory for hospitality during the INT-16-3 Program. The computation of this research was performed on IU’s Big Red II cluster, supported in part by Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute) and in part by the Indiana METACyt

  2. Employment Effects of Dispersal Policies on Refugee Immigrants

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    Do spatial dispersal policies on refugees promote their labour market outcomes? To investigate this we estimate the effects of location characteristics and the average effect of geographical mobility on the hazard rate into first job of refugees subjected to the Danish spatial dispersal policy 1986....... These findings support dispersal policies. Second, on average geographical mobility had large, positive effects on the hazard rate into first job, suggesting that restrictions on placed refugees' subsequent out-migration would hamper labour market integration of refugees....

  3. Transit time dispersion in pulmonary and systemic circulation: effects of cardiac output and solute diffusivity.

    Science.gov (United States)

    Weiss, Michael; Krejcie, Tom C; Avram, Michael J

    2006-08-01

    We present an in vivo method for analyzing the distribution kinetics of physiological markers into their respective distribution volumes utilizing information provided by the relative dispersion of transit times. Arterial concentration-time curves of markers of the vascular space [indocyanine green (ICG)], extracellular fluid (inulin), and total body water (antipyrine) measured in awake dogs under control conditions and during phenylephrine or isoproterenol infusion were analyzed by a recirculatory model to estimate the relative dispersions of transit times across the systemic and pulmonary circulation. The transit time dispersion in the systemic circulation was used to calculate the whole body distribution clearance, and an interpretation is given in terms of a lumped organ model of blood-tissue exchange. As predicted by theory, this relative dispersion increased linearly with cardiac output, with a slope that was inversely related to solute diffusivity. The relative dispersion of the flow-limited indicator antipyrine exceeded that of ICG (as a measure of intravascular mixing) only slightly and was consistent with a diffusional equilibration time in the extravascular space of approximately 10 min, except during phenylephrine infusion, which led to an anomalously high relative dispersion. A change in cardiac output did not alter the heterogeneity of capillary transit times of ICG. The results support the view that the relative dispersions of transit times in the systemic and pulmonary circulation estimated from solute disposition data in vivo are useful measures of whole body distribution kinetics of indicators and endogenous substances. This is the first model that explains the effect of flow and capillary permeability on whole body distribution of solutes without assuming well-mixed compartments.

  4. Anomalous size effect in conductivity of Bi films of small thickness

    International Nuclear Information System (INIS)

    Anopchenko, A.S.; Kashirin, V.Yu.; Komnik, Yu.F.

    1995-01-01

    Experimental data are obtained at helium temperature, which describe the kinetic properties (conductivity, magnetoresistance and Hall coefficient) of Bi films whose thicknesses are within 100-500 A. The small-thickness Bi films display an anomalous size effect- the growing conductivity at decreasing thickness, and pronounced quantum interference effects - weak electron localization and enhancing electron-electron interaction in a disordered system. The information derived on the kinetic properties of the films is used to identify the character of the changes in the electron and hole concentrations and mobilities with a decreasing thickness. The isotropy of the properties in the films plane due to the axial texture has permitted us to use the equations for a conductor with two types of charge carriers. The used kinetic characteristics correctly take into account the contribution of the quantum corrections related to quantum interference. It is found that the concentration of the charge carries increases appreciably (by about two orders of magnitude) as the film thickness decreases to 100 A, which determines the anomalous size effect in the conductivity of the films

  5. Evaluation of three oil spill laboratory dispersant effectiveness tests

    International Nuclear Information System (INIS)

    Sullivan, D.; Farlow, J.; Sahatjian, K.A.

    1993-01-01

    Chemical dispersants can be used to reduce the interfacial tension of floating oil slicks so that the oils disperse more rapidly into the water column and thus pose less of a threat to shorelines, birds, and marine mammals. The laboratory test currently specified in federal regulations to measure dispersant effectiveness is not especially easy or inexpensive, and generates a rather large quantity of oily waste water. This paper describes the results of an effort by the EPA to identify a more suitable laboratory dispersant effectiveness test. EPA evaluated three laboratory methods: the Revised Standard Dispersant Effectiveness Test currently used (and required by regulation) in the United States, the swirling flask test (developed by Environment Canada), and the IFP-dilution test (used in france and other European countries). Six test oils and three dispersants were evaluated; dispersants were applied to the oil at an average 1:10 ratio (dispersant to oil) for each of the three laboratory methods. Screening efforts were used to focus on the most appropriate oil/dispersant combination for detailed study. A screening criterion was established that required a combination that gave at least 20% effectiveness results. The selected combination turned out to be Prudhoe Bay crude oil and the dispersant Corexit 9527. This combination was also most likely to be encountered in US coastal waters. The EPA evaluation concluded that the three tests gave similar precision results, but that the swirling flask test was fastest, cheapest, simplest, and required least operator skill. Further, EPA is considering conducting the dispersant effectiveness test itself, rather than having data submitted by a dispersant manufacturer, and establishing an acceptability criterion (45% efficiency) which would have to be met before a dispersant could be placed on the Product Schedule of the National Contingency Plan (NCP)

  6. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    Science.gov (United States)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  7. Pumping conductance, the intrinsic anomalous Hall effect, and statistics of topological invariants

    Science.gov (United States)

    Dahlhaus, Jan; Ilan, Roni; Freed, Daniel; Freedman, Michael; Moore, Joel E.

    2015-06-01

    The pumping conductance of a disordered two-dimensional Chern insulator scales with increasing size and fixed disorder strength to sharp plateau transitions at well-defined energies between ordinary and quantum Hall insulators. When the disorder strength is scaled to zero as system size increases, the "metallic" regime of fluctuating Chern numbers can extend over the whole band. A simple argument leads to a sort of weighted equipartition of Chern number over minibands in a finite system with periodic boundary conditions: even though there must be strong fluctuations between disorder realizations, the mean Chern number at a given energy is determined by the clean Berry curvature distribution, as in the intrinsic anomalous Hall effect formula for metals. This estimate is compared to numerical results using recently developed operator algebra methods, and indeed the dominant variation of average Chern number is explained by the intrinsic anomalous Hall formula. A mathematical appendix provides more precise definitions and a model for the full distribution of Chern numbers.

  8. Effective viscosity of dispersions approached by a statistical continuum method

    NARCIS (Netherlands)

    Mellema, J.; Willemse, M.W.M.

    1983-01-01

    The problem of the determination of the effective viscosity of disperse systems (emulsions, suspensions) is considered. On the basis of the formal solution of the equations governing creeping flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion

  9. Direct construction of the effective action of chiral gauge fermions in the anomalous sector

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2009-01-01

    The anomaly implies an obstruction to a fully chiral covariant calculation of the effective action in the abnormal-parity sector of chiral theories. The standard approach then is to reconstruct the anomalous effective action from its covariant current. In this work, we use a recently introduced formulation which allows one to directly construct the non-trivial chiral invariant part of the effective action within a fully covariant formalism. To this end we develop an appropriate version of Chan's approach to carry out the calculation within the derivative expansion. The result to four derivatives, i.e., to leading order in two and four dimensions and next-to-leading order in two dimensions, is explicitly worked out. Fairly compact expressions are found for these terms. (orig.)

  10. Employment Effects of Spatial Dispersal of Refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    We argue that spatial dispersal influences labour market assimilation of refugees through two mechanisms: first, the local job offer arrival rate and, second, place utility. Our partial search model with simultaneous job and residential location search predicts that the reservation wage for local...... jobs decreases with place utility. We argue that spatial dispersal decreases average place utility of refugees which decreases the transition rate into first job due to large local reservation wages. We investigate both mechanisms empirically and test the predictions of the theoretical model...

  11. Employment Effects of Spatial Dispersal of Refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    Spatial dispersal policies may influence labour market integration of refugees through two mechanisms. First, it may affect the local job offer arrival rate, and second, it may affect place utility. We investigate the second mechanism theoretically by formulating a partial search model in which...... an individual searches simultaneously for a job and for a new residential location. The model predicts that the reservation wage for local jobs is decreasing in place utility. We argue that spatial dispersal policies decrease average place utility of refugees which decrease the transition rate into first job...

  12. Effect of structural defects on anomalous ultrasound propagation in solids during second-order phase transitions

    International Nuclear Information System (INIS)

    Prudnikov, P. V.; Prudnikov, V. V.; Nosikhin, E. A.

    2008-01-01

    The effect of structural defects on the critical ultrasound absorption and ultrasound velocity dispersion in Ising-like three-dimensional systems is studied. A field-theoretical description of the dynamic effects of acoustic-wave propagation in solids during phase transitions is performed with allowance for both fluctuation and relaxation absorption mechanisms. The temperature and frequency dependences of the scaling functions of the absorption coefficient and the ultrasound velocity dispersion are calculated in a two-loop approximation for homogeneous and structurally disordered systems, and their asymptotic behavior in hydrodynamic and critical regions is separated. As compared to a homogeneous system, the presence of structural defects in it is shown to cause a stronger increase in the sound absorption coefficient and the sound velocity dispersion even in the hydrodynamic region as the critical temperature is reached. As compared to homogeneous analogs, structurally disordered systems should exhibit stronger temperature and frequency dependences of the acoustic characteristics in the critical region

  13. Scaling of Anomalous Hall Effects in Facing-Target Reactively Sputtered Fe4N Films

    KAUST Repository

    Zhang, Yan

    2015-05-13

    Anomalous Hall effect (AHE) in the reactively sputtered epitaxial and polycrystalline γ′-Fe4N films is investigated systematically. The Hall resistivity is positive in the entire temperature range. The magnetization, carrier density and grain boundaries scattering have a major impact on the AHE scaling law. The scaling exponent γ in the conventional scaling of is larger than 2 in both the epitaxial and polycrystalline γ′-Fe4N films. Although γ>2 has been found in heterogeneous systems due to the effects of the surface and interface scattering on AHE, γ>2 is not expected in homogenous epitaxial systems. We demonstrated that γ>2 results from residual resistivity (ρxx0) in γ′-Fe4N films. Furthermore, the side-jump and intrinsic mechanisms are dominant in both epitaxial and polycrystalline samples according to the proper scaling relation.

  14. Oxidized Mn:Ge magnetic semiconductor: Observation of anomalous Hall effect and large magnetoresistance

    Science.gov (United States)

    Duc Dung, Dang; Choi, Jiyoun; Feng, Wuwei; Cao Khang, Nguyen; Cho, Sunglae

    2018-03-01

    We report on the structural and magneto-transport properties of the as-grown and oxidized Mn:Ge magnetic semiconductors. Based on X-ray diffraction and X-ray photoelectron spectroscopy results, the samples annealed at 650 and 700 °C became fully oxidized and the chemical binding energies of Mn was found to be Mn3O4. Thus, the system became Mn3O4 clusters embedded in Ge1-yOy. The as-grown sample showed positive linear Hall effect and negligible negative magnetoresistance (MR), which trend remained for the sample annealed up to 550 °C. Interestingly, for the samples annealed at above 650 °C, we observed the anomalous Hall effect around 45 K and the giant positive MR, which are respectively 59.2% and 78.5% at 7 kOe annealed at 650 °C and 700 °C.

  15. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A. J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    We present an Yb-fiber oscillator with an all-polarizationmaintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity...

  16. Skew scattering dominated anomalous Hall effect in Cox(MgO)100-x granular thin films

    KAUST Repository

    Zhang, Qiang

    2017-07-31

    We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100-nm-thick thin films of Cox(MgO)100-x with a Co volume fraction of 34≤x≤100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity (ρxx) and anomalous Hall resistivity (ρAHE) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of ρxx and ρAHE respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient (Rs) and of ρxx to log(Rs)~γlog(ρxx), we found that our results perfectly fell on a straight line with a slope of γ= 0.97±0.02. This fitting value of γ in Rsρxxγ clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both ρxx and ρAHE significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, γ=0.99±0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scatterings of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.

  17. Effective field theory of an anomalous Hall metal from interband quantum fluctuations

    Science.gov (United States)

    Chua, Victor; Assawasunthonnet, Wathid; Fradkin, Eduardo

    2017-07-01

    We construct an effective field theory, a two-dimensional two-component metallic system described by a model with two Fermi surfaces ("pockets"). This model describes a translationally invariant metallic system with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model, in addition to the O (2 ) rotational invariance, has a U (1 )×U (1 ) symmetry of separate charge conservation for each Fermi surface. For sufficiently attractive interactions in the d -wave (quadrupolar) channel, this model has an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O (2 )×U (1 ) global symmetry associated to spatial isotropy and the internal U (1 ) relative phase symmetries, respectively. We show that the order parameter theory is dynamically local with a dynamical scaling of z =2 and perform a one-loop renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory. The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent Chern-Simons term in the effective action.

  18. Investigation of the spin Seebeck effect and anomalous Nernst effect in a bulk carbon material

    Science.gov (United States)

    Wongjom, Poramed; Pinitsoontorn, Supree

    2018-03-01

    Since the discovery of the spin Seebeck effect (SSE) in 2008, it has become one of the most active topics in the spin caloritronics research field. It opened up a new way to create the spin current by a combination of magnetic fields and heat. The SSE was observed in many kinds of materials including metallic, semiconductor, or insulating magnets, as well as non-magnetic materials. On the other hand, carbon-based materials have become one of the most exciting research areas recently due to its low cost, abundance and some exceptional functionalities. In this work, we have investigated the possibility of the SSE in bulk carbon materials for the first time. Thin platinum film (Pt), coated on the smoothened surface of the bulk carbon, was used as the spin detector via the inverse spin Hall effect (ISHE). The experiment for observing longitudinal SSE in the bulk carbon was set up by applying a magnetic field up to 30 kOe to the sample with the direction perpendicular to the applied temperature gradient. The induced voltage from the SSE was extracted. However, for conductive materials, e.g. carbon, the voltage signal under this set up could be a combination of the SSE and the anomalous Nernst effect (ANE). Therefore, two measurement configurations were carried out, i.e. the in-plane magnetization (IM), and the perpendicular-to-plane magnetization (PM). For the IM configuration, the SSE + ANE signals were detected where as the only ANE signal existed in the PM configuration. The results showed that there were the differences between the voltage signals from the IM and PM configurations implying the possibility of the SSE in the bulk carbon material. Moreover, it was found that the difference in the IM and PM signals was a function of the magnetic field strength, temperature difference, and measurement temperature. Although the magnitude of the possible SSE voltage in this experiment was rather low (less than 0.5 μV at 50 K), this research showed that potential of using

  19. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    This paper reported on dispersion effect and dispersing techniques of nanometer WS2 particles in the green lubricant concocted by us. And it also researched on auto-reconditioning performance of nanometer WS2 particles to the abrasive surfaces of steel ball from four-ball tribology test and piston ring from engine ...

  20. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    The results showed that the combinative method of ultrasonic dispersion, mechanical agitation and surface modification could improve the dispersion uniformity and stability of nanometer WS2 particles in the green lubricant effectively. And the optimal ratio of the mass between surface modifier and nanometer WS2 particles ...

  1. Effective dielectric response of dispersions of graded particles

    Science.gov (United States)

    Sushko, M. Ya.

    2017-12-01

    Based upon our compact group approach and the Hashin-Shtrikman variational theorem, we propose a solution, which effectively incorporates many-particle effects in concentrated systems, to the problem of the effective quasistatic permittivity of dispersions of graded dielectric particles. After the theory is shown to recover existing analytical results and simulation data for dispersions of hard dielectric spheres with power-law permittivity profiles, we use it to describe the effective dielectric response of nonconducting polymer-ceramic composites modeled as dispersions of dielectric core-shell particles. Possible generalizations of the results are specified.

  2. Investigation of surface resistance of copper in classical and anomalous skin-effect region

    International Nuclear Information System (INIS)

    Kutovoj, V.A.; Egorov, A.M.

    2008-01-01

    The surface resistance of copper in classical and anomalous skin-effect region has been investigated, and the surface resistance improvement factor equal to the ratio of the surface resistance of copper at room temperature to that of helium temperature, depending on the electromagnetic field frequency, has been determined. The improvement factor has been shown to have inverse power law dependence on frequency. The frequencies at which the improvement factor of copper equals 10 have been determined. It has been found that the quality factor of a resonance high-frequency system made of copper, operating at temperature T ≥ 4.2 K can be increased 10 times or more as against a quality factor of a resonance high-frequency system operating at room temperature

  3. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  4. Anomalous Hall effect and magnetoresistance behavior in Co/Pd1−xAgx multilayers

    KAUST Repository

    Guo, Z. B.

    2013-02-13

    In this paper, we report anomalous Hall effect (AHE) correlated with the magnetoresistance behavior in [Co/Pd1-xAg x]n multilayers. For the multilayers with n = 6, the increase in Ag content from x = 0 to 0.52 induces the change in AHE sign from negative surface scattering-dominated AHE to positive interface scattering-dominated AHE, which is accompanied with the transition from anisotropy magnetoresistance (AMR) dominated transport to giant magnetoresistance (GMR) dominated transport. For n = 80, scaling analysis with Rs ∝ρ xx γ yields γ ∼ 3.44 for x = 0.52 which presents GMR-type transport, in contrast to γ ∼ 5.7 for x = 0 which presents AMR-type transport. © 2013 American Institute of Physics.

  5. Low-energy effective field theory below the electroweak scale: anomalous dimensions

    Science.gov (United States)

    Jenkins, Elizabeth E.; Manohar, Aneesh V.; Stoffer, Peter

    2018-01-01

    We compute the one-loop anomalous dimensions of the low-energy effective Lagrangian below the electroweak scale, up to terms of dimension six. The theory has 70 dimension-five and 3631 dimension-six Hermitian operators that preserve baryon and lepton number, as well as additional operators that violate baryon number and lepton number. The renormalization group equations for the quark and lepton masses and the QCD and QED gauge couplings are modified by dimension-five and dimension-six operator contributions. We compute the renormalization group equations from one insertion of dimension-five and dimension-six operators, as well as two insertions of dimension-five operators, to all terms of dimension less than or equal to six. The use of the equations of motion to eliminate operators can be ambiguous, and we show how to resolve this ambiguity by a careful use of field redefinitions.

  6. Effective spectral dispersion of refractive index modulation

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek, Petr; Květoň, M.; Richter, I.

    2017-01-01

    Roč. 19, č. 4 (2017), č. článku 045603. ISSN 2040-8978 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : volume gratings * holography * dispersion * refractive index modulation Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.741, year: 2016 http://iopscience.iop.org/article/10.1088/2040-8986/aa6092/meta

  7. Anisotropic magnetoresistance and anomalous Nernst effect in exchange biased permalloy/(1 0 0) NiO single-crystal

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J., E-mail: joseholanda@df.ufpe.br; Maior, D.S.; Azevedo, A.; Rezende, S.M.

    2017-06-15

    Highlights: • We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer Py/(100) NiO single-Crystal. • The shift of the hysteresis loop, measured with the different techniques, yield approximately the same value of H{sub EB}. • In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. • The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films. - Abstract: We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer consisting of a thin film of permalloy deposited on a single crystal antiferromagnetic NiO (1 0 0). The exchange bias field (H{sub EB}) value was obtained by means of AMR, ANE and magnetization hysteresis measurements. The shift of the hysteresis loop, measured with the three different techniques, yield approximately the same value of H{sub EB.} In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films.

  8. Effect of frequency chirping on supercontinuum generation in dispersion flatted and dispersion decreasing fiber

    International Nuclear Information System (INIS)

    Jin Wei; Xu Wencheng; Chen Zhaoxi; Xu Yongzhao; Yu Bingtao; Cui Hu; Liu Songhao

    2004-01-01

    The effect of frequency chirping on supercontinuum (SC) generation in dispersion flatted and dispersion decreasing fiber has been studied by numerical simulation based on the total field nonlinear Schroedinger equation. Our results show that a positive initial frequency chirp can significantly broaden the supercontinuum spectrum by up to approximate 80 nm, and the SC intensity increase about 5 dB. A range of optimal positive frequency chirps is identified to obtain the maximized supercontinuum bandwidth. The mechanism of this enhancement is also discussed detailedly through the evolutions of temporal and spectral width related to different pre-chirped pulses

  9. Reentrant quantum anomalous Hall effect with in-plane magnetic fields in HgMnTe quantum wells

    Science.gov (United States)

    Hsu, Hsiu-Chuan; Liu, Xin; Liu, Chao-Xing

    2013-08-01

    The quantum anomalous Hall effect has been predicted in HgMnTe quantum wells with an out-of-plane magnetization of Mn atoms. However, since HgMnTe quantum wells are paramagnetic, an out-of-plane magnetic field is required to polarize magnetic moments of Mn atoms, which inevitably induces Landau levels and makes it difficult to identify the origin of the quantized Hall conductance experimentally. In this work, we study the quantum anomalous Hall effect in the presence of an in-plane magnetic field in Mn-doped HgTe quantum wells. For a small out-of-plane magnetic field, the in-plane magnetic field can drive the system from a normal insulating state to a quantum anomalous Hall state. When the out-of-plane magnetic field is slightly above the transition point, the system shows a reentrant behavior of Hall conductance, varying from -e2/h to 0 and back to -e2/h, with increasing in-plane magnetic fields. The reentrant quantum anomalous Hall effect originates from the interplay between the exchange coupling of magnetic moments and the direct Zeeman coupling of magnetic fields. The calculation incorporating Landau levels shows that there is no qualitative change of the reentrant behavior.

  10. Extremely Large Magnetoresistance at Low Magnetic Field by Coupling the Nonlinear Transport Effect and the Anomalous Hall Effect.

    Science.gov (United States)

    Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong

    2016-04-13

    The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The effectiveness of dispersants under various temperature and salinity regimes

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Wang, Z.; Environment Canada, Ottawa, ON

    2005-01-01

    A series of tests were conducted to determine the effectiveness of dispersants in Arctic waters where salinity and temperature interactions play a critical role. In particular, Corexit 9500 was tested on Alaska North Slope oil at different temperatures and salinity using the ASTM standard test and variations of this test. Results were compared to the only historically reported test in which both temperature and salinity were changed over a range of values. This series of tests demonstrated that there is an interaction between salinity, temperature and dispersant effectiveness. It was shown that conventional and currently available dispersants are nearly ineffective at 0 salinity. Dispersant effectiveness peaks at 20 to 40 units of salinity, depending on the type of dispersant. Corexit is less sensitive to salinity, while Corexit 9527 is more sensitive to salinity. There is a smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and as it exceeds this value. Results from the 2 field trials in fresh water suggest that laboratory tests correctly conclude that the effectiveness of dispersants is very low in freshwater. The study also examined several analytical factors such as the total petroleum hydrocarbon (TPH) versus relative petroleum hydrocarbon (RPH) methods, specific versus general calibration curves, and automatic versus manual baseline placement. The analytical variations of effectiveness by RPH or TPH methods do not affect the fundamental relationship between salinity and temperature. 6 refs., 6 tabs., 8 figs

  12. Shade Effects on the Dispersal of Airborne Hemileia vastatrix Uredospores.

    Science.gov (United States)

    Boudrot, Audrey; Pico, Jimmy; Merle, Isabelle; Granados, Eduardo; Vílchez, Sergio; Tixier, Philippe; Filho, Elías de Melo Virginio; Casanoves, Fernando; Tapia, Ana; Allinne, Clémentine; Rice, Robert A; Avelino, Jacques

    2016-06-01

    Hemileia vastatrix caused a severe epidemic in Central America in 2012-13. The gradual development of that epidemic on nearly a continental scale suggests that dispersal at different scales played a significant role. Shade has been proposed as a way of reducing uredospore dispersal. The effect of shade (two strata: Erythrina poeppigiana below and Chloroleucon eurycyclum above) and full sun on H. vastatrix dispersal was studied with Burkard traps in relation to meteorological records. Annual and daily patterns of dispersal were observed, with peaks of uredospore capture obtained during wet seasons and in the early afternoon. A maximum of 464 uredospores in 1 day (in 14.4 m(3) of air) was recorded in October 2014. Interactions between shade/full sun and meteorological conditions were found. Rainfall, possibly intercepted by tree cover and redistributed by raindrops of higher kinetic energy, was the main driver of uredospore dispersal under shade. Wind gusts reversed this effect, probably by inhibiting water accumulation on leaves. Wind gusts also promoted dispersal under dry conditions in full sun, whereas they had no effect under shaded conditions, probably because the canopy blocked the wind. Our results indicate the importance of managing shade cover differentially in rainy versus dry periods to control the dispersal of airborne H. vastatrix uredospores.

  13. IUPAP C-10 Award Talk: From Topological Insulators to Quantum Anomalous Hall Effect

    Science.gov (United States)

    Chang, Cui-Zu

    The quantum anomalous Hall (QAH) effect can be considered as the quantum Hall (QH) effect without external magnetic field, which can be realized by time reversal symmetry breaking in a topologically non-trivial system. A QAH system carries spin-polarized dissipationless chiral edge transport channels without the need for external energy input, hence may have huge impact on future electronic and spintronic device applications for ultralow-power consumption. The many decades quest for the experimental realization of QAH phenomenon became a possibility in 2006 with the discovery of topological insulators (TIs). In 2013, the QAH effect was observed in thin films of Cr-doped TI for the first time. Two years later in a near ideal system, V-doped TI, contrary to the negative prediction from first principle calculations, a high-precision QAH quantization with more robust magnetization and a perfectly dissipationless chiral current flow was demonstrated. In this talk, I will introduce the route to the experimental observation of the QAH effect in above-mentioned two systems, and discuss the zero magnetic field dissipationless edge current flow as well as the origin of the dissipative channels in the QAH state. Finally I will talk about our recent progress on the QAH insulator-Anderson insulator quantum phase transition and its scaling behaviors.

  14. Anomalous pulse interaction in dissipative media

    Science.gov (United States)

    Bordyugov, Grigory; Engel, Harald

    2008-06-01

    We review a number of phenomena occurring in one-dimensional excitable media due to modified decay behind propagating pulses. Those phenomena can be grouped in two categories depending on whether the wake of a solitary pulse is oscillatory or not. Oscillatory decay leads to nonannihilative head-on collision of pulses and oscillatory dispersion relation of periodic pulse trains. Stronger wake oscillations can even result in a bistable dispersion relation. Those effects are illustrated with the help of the Oregonator and FitzHugh-Nagumo models for excitable media. For a monotonic wake, we show that it is possible to induce bound states of solitary pulses and anomalous dispersion of periodic pulse trains by introducing nonlocal spatial coupling to the excitable medium.

  15. Abelian and non-Abelian anyons in integer quantum anomalous Hall effect and topological phase transitions via superconducting proximity effect

    Science.gov (United States)

    Liu, Xuele; Wang, Ziqiang; Xie, X. C.; Yu, Yue

    2011-03-01

    We study the quantum anomalous Hall effect described by a class of two-component Haldane models on square lattices. We show that the latter can be transformed into a pseudospin triplet p+ip-wave paired superfluid. In the long wavelength limit, the ground-state wave function is described by Halperin’s (1,1,-1) state of neutral fermions analogous to the double-layer quantum Hall effect. The vortex excitations are charge e/2 Abelian anyons which carry a neutral Dirac fermion zero mode. The superconducting proximity effect induces “tunneling” between “layers” which leads to topological phase transitions whereby the Dirac fermion zero mode fractionalizes and Majorana fermions emerge in the edge states. The charge e/2 vortex excitation carrying a Majorana zero mode is a non-Abelian anyon. The proximity effect can also drive a conventional insulator into a quantum anomalous Hall effect state with a Majorana edge mode and the non-Abelian vortex excitations.

  16. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects

    Science.gov (United States)

    Otrokov, M. M.; Menshchikova, T. V.; Vergniory, M. G.; Rusinov, I. P.; Vyazovskaya, A. Yu; Koroteev, Yu M.; Bihlmayer, G.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V.

    2017-06-01

    An interplay of spin-orbit coupling and intrinsic magnetism is known to give rise to the quantum anomalous Hall and topological magnetoelectric effects under certain conditions. Their realization could open access to low power consumption electronics as well as many fundamental phenomena like image magnetic monopoles, Majorana fermions and others. Unfortunately, being realized very recently, these effects are only accessible at extremely low temperatures and the lack of appropriate materials that would enable the temperature increase is a most severe challenge. Here, we propose a novel material platform with unique combination of properties making it perfectly suitable for the realization of both effects at elevated temperatures. The key element of the computational material design is an extension of a topological insulator (TI) surface by a thin film of ferromagnetic insulator, which is both structurally and compositionally compatible with the TI. Following this proposal we suggest a variety of specific systems and discuss their numerous advantages, in particular wide band gaps with the Fermi level located in the gap.

  17. Anomalous effect of ion velocity on track formation in GeS

    Energy Technology Data Exchange (ETDEWEB)

    Szenes, G., E-mail: szenesgyorgy@caesar.elte.hu [Department of Materials Physics, Eötvös University, P.O. Box 32, H-1518 Budapest (Hungary); Pécz, B. [Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, 1525 Budapest, P.O. Box 49 (Hungary)

    2016-12-15

    Systematic experiments were performed for studying the effect of the projectile velocity (velocity effect, VE) in GeS which has a highly anisotropic conductivity. The prethinned specimens were irradiated by Bi, Au, W, Xe, Ag, Kr, Ni and Fe ions of about E ≈ 1 MeV/nucleon energy. Track radii were measured by transmission electron microscopy. Compared to previous experiments performed with high velocity projectile, there is a marked VE for S{sub e} > 20 keV/nm (S{sub e} – electronic stopping power). However, the VE is gradually reduced and finally disappears as S{sub e} decreases. This effect is described for the first time. The predictions according to the Analytical Thermal Spike Model are in excellent quantitative agreement with the experiments in the range S{sub e} > 20 keV/nm. The anomalous behavior of track evolution at lower values of S{sub e} is attributed to the combination of semiconducting and insulating properties. An explanation of the VE is given based on the Coulomb explosion model.

  18. Partitioning of fresh crude oil between floating, dispersed and sediment phases: Effect of exposure order to dispersant and granular materials.

    Science.gov (United States)

    Boglaienko, Daria; Tansel, Berrin

    2016-06-15

    When three or more high and low energy substrates are mixed, wetting order can significantly affect the behavior of the mixture. We analyzed the phase distribution of fresh floating Louisiana crude oil into dispersed, settled and floating phases depending on the exposure sequence to Corexit 9500A (dispersant) and granular materials. In the experiments artificial sea water at salinity 34‰ was used. Limestone (2.00-0.300 mm) and quartz sand (0.300-0.075 mm) were used as the natural granular materials. Dispersant Corexit 9500A increased the amount of dispersed oil up to 33.76 ± 7.04%. Addition of granular materials after the dispersant increased dispersion of oil to 47.96 ± 1.96%. When solid particles were applied on the floating oil before the dispersant, oil was captured as oil-particle aggregates and removed from the floating layer. However, dispersant addition led to partial release of the captured oil, removing it from the aggregated form to the dispersed and floating phases. There was no visible oil aggregation with the granular materials when quartz or limestone was at the bottom of the flask before the addition of oil and dispersant. The results show that granular materials can be effective when applied from the surface for aggregating or dispersing oil. However, the granular materials in the sediments are not effective neither for aggregating nor dispersing floating oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect

    Science.gov (United States)

    Drożdż, Stanisław; Kwapień, Jarosław; Oświȩcimka, Paweł; Rak, Rafał

    2010-10-01

    We present a systematic study of various statistical characteristics of high-frequency returns from the foreign exchange market. This study is based on six exchange rates forming two triangles: EUR-GBP-USD and GBP-CHF-JPY. It is shown that the exchange rate return fluctuations for all of the pairs considered are well described by the non-extensive statistics in terms of q-Gaussians. There exist some small quantitative variations in the non-extensivity q-parameter values for different exchange rates (which depend also on the time scales studied), and this can be related to the importance of a given exchange rate in the world's currency trade. Temporal correlations organize the series of returns such that they develop the multifractal characteristics for all of the exchange rates, with a varying degree of symmetry of the singularity spectrum f(α), however. The most symmetric spectrum is identified for the GBP/USD. We also form time series of triangular residual returns and find that the distributions of their fluctuations develop disproportionately heavier tails as compared to small fluctuations, which excludes description in terms of q-Gaussians. The multifractal characteristics of these residual returns reveal such anomalous properties as negative singularity exponents and even negative singularity spectra. Such anomalous multifractal measures have so far been considered in the literature in connection with diffusion-limited aggregation and with turbulence. Studying the cross-correlations among different exchange rates, we found that market inefficiency on short time scales leads to the occurrence of the Epps effect on much longer time scales, but comparable to the ones for the stock market. Although the currency market is much more liquid than the stock markets and has a much greater transaction frequency, the building up of correlations takes up to several hours—a duration that does not differ much from what is observed in the stock markets. This may suggest

  20. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Keywords. Anomalous hydrodynamics; gauge anomaly; gravitational anomaly. PACS No. 47.10.ab. The chiral anomaly has played a ubiquitous role in modern physics. It has found appli- cations in several diverse fields like quantum wires, quantum Hall effect, chiral magnetic effect and anomalous hydrodynamics, to name ...

  1. Magnetoresistance and anomalous Hall effect of reactive sputtered polycrystalline Ti1 - XCrxN films

    KAUST Repository

    Duan, Xiaofei

    2013-09-01

    The reactive-sputtered polycrystalline Ti1 - xCrxN films with 0.17 ≤ x ≤ 0.51 are ferromagnetic and at x = 0.47 the Curie temperature TC shows a maximum of ~ 120 K. The films are metallic at 0 ≤ x ≤ 0.47, while the films with x = 0.51 and 0.78 are semiconducting-like. The upturn of resistivity below 70 K observed in the films with 0.10 ≤ x ≤ 0.47 is from the effects of the electron-electron interaction and weak localization. The negative magnetoresistance (MR) of the films with 0.10 ≤ x ≤ 0.51 is dominated by the double-exchange interaction, while at x = 0.78, MR is related to the localized magnetic moment scattering at the grain boundaries. The scaling ρxyA/n ∝ ρxx2.19 suggests that the anomalous Hall effect in the polycrystalline Ti1 - xCrxN films is scattering-independent. © 2013 Elsevier B.V. All rights reserved.

  2. Analysis of dispersed frequency response for ionic glasses: influence of electrode and nearly constant loss effects

    International Nuclear Information System (INIS)

    Macdonald, J Ross

    2005-01-01

    Analysis by D L Sidebottom of the dispersive frequency response of the real-part of the conductivity, σ'(ω), for many alkali phosphate and metaphosphate glasses, using a fitting model involving a 'universal dynamic response' power law with an exponent n and a constant-loss term, led to anomalous n behaviour that he explained as arising from variable constriction of the local cation conduction space. In order to obtain adequate fits, he eliminated from the data all low-frequency decreases of σ'(ω) below the dc plateau, ones actually associated with electrode effects. Such a cut-off does not, however, eliminate electrode effects possibly present in the high-frequency part of the data range. The results of the present detailed analysis and fitting of both synthetic data and several of his experimental data sets show unequivocally that his anomalous n behaviour arose from neglecting electrode effects. Their inclusion, with or without data cut-off in the fitting model, leads to the expected high-frequency slope value of n = 2/3 associated with bulk conduction, as required by recently published topological effective-dimension considerations for dielectric relaxation in conductive systems. Further, the effects of the inclusion in a full fitting model of series and possibly parallel complex constant-phase-element contributions, representing electrode and nearly constant loss effects, respectively, have been investigated in detail. Such composite models usually lead to best fitting of either the full or cut-off complex data when they include the semi-universal, topologically based K1 bulk model, one indirectly derived from the assumption of stretched-exponential temporal behaviour

  3. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Echániz, T. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J. [Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, UPV/EHU, Sarriena s/n, Leioa 48940 (Spain); Instituto de Síntesis y Estudio de Materiales, Universidad del País Vasco, Apdo. 644, Bilbao 48080 (Spain)

    2014-09-07

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well as emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.

  4. The Binary Offset Effect in CCDs: an Anomalous Readout Artifact Affecting Most Astronomical CCDs in Use

    Science.gov (United States)

    Boone, Kyle Robert; Aldering, Gregory; Copin, Yannick; Dixon, Samantha; Domagalski, Rachel; Gangler, Emmanuel; Pecontal, Emmanuel; Perlmutter, Saul; Nearby Supernova Factory Collaboration

    2018-01-01

    We discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications, which we call the “binary offset effect”. Due to feedback in the readout electronics, an offset is introduced in the values read out for each pixel that depends on the binary encoding of the previously read-out pixel values. One consequence of this effect is that a pathological local background offset can be introduced in images that only appears where science data are present on the CCD. The amplitude of this introduced offset does not scale monotonically with the amplitude of the objects in the image, and can be up to 4.5 ADU per pixel for certain instruments. Additionally, this background offset will be shifted by several pixels from the science data, potentially distorting the shape of objects in the image. We tested 22 instruments for signs of the binary offset effect and found evidence of it in 16 of them, including LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. A large amount of archival data is therefore affected by the binary offset effect, and conventional methods of reducing CCD images do not measure or remove the introduced offsets. As a demonstration of how to correct for the binary offset effect, we have developed a model that can accurately predict and remove the introduced offsets for the SNIFS instrument on the UH88 telescope. Accounting for the binary offset effect is essential for precision low-count astronomical observations with CCDs.

  5. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/multi-wavelength anomalous dispersion phasing.

    Science.gov (United States)

    Suzuki, Tatsuya; Makyio, Hisayoshi; Ando, Hiromune; Komura, Naoko; Menjo, Masanori; Yamada, Yusuke; Imamura, Akihiro; Ishida, Hideharu; Wakatsuki, Soichi; Kato, Ryuichi; Kiso, Makoto

    2014-04-01

    Seleno-lactoses have been successfully synthesized as candidates for mimicking carbohydrate ligands for human galectin-9 N-terminal carbohydrate recognition domain (NCRD). Selenium was introduced into the mono- or di-saccharides using p-methylselenobenzoic anhydride (Tol2Se) as a novel selenating reagent. The TolSe-substituted monosaccharides were converted into selenoglycosyl donors or acceptors, which were reacted with coupling partners to afford seleno-lactoses. The seleno-lactoses were converted to the target compounds. The structure of human galectin-9 NCRD co-crystallized with 6-MeSe-lactose was determined with single/multi-wavelength anomalous dispersion (SAD/MAD) phasing and was similar to that of the co-crystal with natural lactose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2006-01-01

    The effect of pore structure on anomalous behaviour of the lithium intercalation into porous V 2 O 5 film electrode has been investigated in terms of fractal geometry by employing ac-impedance spectroscopy combined with N 2 gas adsorption method and atomic force microscopy (AFM). For this purpose, porous V 2 O 5 film electrodes with different pore structures were prepared by the polymer surfactant templating method. From the analysis of N 2 gas adsorption isotherms and the triangulation analysis of AFM images, it was found that porous V 2 O 5 surfaces exhibited self-similar scaling properties with different fractal dimensions depending upon amount of the polymer surfactant in solution and the spatial cut-off ranges. All the ac-impedance spectra measured on porous V 2 O 5 film electrodes showed the non-ideal behaviour of the charge-transfer reaction and the diffusion reaction, which resulted from the interfacial capacitance dispersion and the frequency dispersion of the diffusion impedance, respectively. From the comparison between the surface fractal dimensions by using N 2 gas adsorption method and AFM, and the analysis of ac-impedance spectra by employing a constant phase element (CPE), it is experimentally confirmed that the lithium intercalation into porous V 2 O 5 film electrode is crucially influenced by the pore surface irregularity and the film surface irregularity

  7. Can dispersal mode predict corridor effects on plant parasites?

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Lauren, L.; Johnson, Brenda, L.; Brudvig, Lars, A.; Haddad, Nick, M.

    2011-08-01

    Habitat corridors, a common management strategy for increasing connectivity in fragmented landscapes, have experimentally validated positive influences on species movement and diversity. However, long-standing concerns that corridors could negatively impact native species by spreading antagonists, such as disease, remain largely untested. Using a large-scale, replicated experiment, we evaluated whether corridors increase the incidence of plant parasites. We found that corridor impacts varied with parasite dispersal mode. Connectivity provided by corridors increased incidence of biotically dispersed parasites (galls on Solidago odora) but not of abiotically dispersed parasites (foliar fungi on S. odora and three Lespedeza spp.). Both biotically and abiotically dispersed parasites responded to edge effects, but the direction of responses varied across species. Although our results require additional tests for generality to other species and landscapes, they suggest that, when establishing conservation corridors, managers should focus on mitigating two potential negative effects: the indirect effects of narrow corridors in creating edges and direct effects of corridors in enhancing connectivity of biotically dispersed parasites.

  8. Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2017-11-01

    Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.

  9. Effect of dispersion on convective mixing in porous media

    Science.gov (United States)

    Wen, Baole; Hesse, Marc; Geological porous media group Team

    2017-11-01

    We investigate the effect of dispersion on convection in porous media by performing direct numerical simulations (DNS) in a 2D Rayleigh-Darcy domain. Scaling analysis of the governing equations shows that the dynamics of this system is not only controlled by the classical Rayleigh-Darcy number based on molecular diffusion, Ram , and the domain aspect ratio, but also controlled by two other dimensionless parameters: the dispersive Rayleigh number Rad = H /αt and the dispersivity ratio r =αl /αt , where H is the domain height, αt and αl are the transverse and longitudinal dispersivities, respectively. For Ram > Rad , however, the flow pattern is determined by Rad while the mass transport flux F Ram at high- Ram regime. Our DNS results also show that the increase of the mechanical dispersion (i.e. decreasing Rad) will broaden the plume spacing and coarsen the convective pattern. Moreover, for r >> 1 the anisotropy of dispersion destroys the slender columnar structure of the primary plumes at large Ram and therefore reduces the mass transport rate. This work was supported by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001114.

  10. Anomalous lightning activity over the Metropolitan Region of São Paulo due to urban effects

    Science.gov (United States)

    Farias, W. R. G.; Pinto, O., Jr.; Naccarato, K. P.; Pinto, I. R. C. A.

    2009-02-01

    A significant enhancement in the number of negative cloud-to-ground (CG) lightning and a decrease in the percentage of positive CG flashes are observed over the city of São Paulo, similar to observations in other large urban areas. Strong evidence indicates that this anomalous behavior results from several mechanisms related to the urban effect. In this paper, we investigated the importance of the air pollution using CG lightning data provided by the Brazilian lightning detection network (BrasilDAT) for a 6-year period (1999-2004). Due to the large variations in the CG lightning activity in response to different meteorological processes, it is not an easy task to infer the contribution of air pollution to the enhancement in the lightning activity. In order to overcome such difficulty, two approaches were considered: (1) the weekly variation of the number of days with lightning in comparison to the mean concentration of particulate matter (PM 10), as well as other thermodynamical parameters; (2) the variation of the number of CG flashes and the maximum storm flash rate per individual thunderstorm for different levels of pollution. The results of both analyses suggest that: first, the enhancement in the CG lightning activity during the week days over São Paulo metropolitan region is related to the PM 10 concentration (pollution); second, the PM 10 concentration tends to increase the lifetime of the storms and, in consequence, the number of flashes per storm, and not the flash rate of the thunderstorm; and third, the effect of the pollution in the enhancement of the CG lightning activity is probably less significant compared to the effect of the urban heat island.

  11. Solar Wind MHD Turbulence: Anomalous Scaling and Intermittency Effects in the Slow and Fast Wind

    Science.gov (United States)

    Salem, C.; Mangeney, A.; Bale, S. D.

    2007-12-01

    Although considerable progress has been made in the understanding of MHD turbulence over the past few decades through the analysis of in-situ solar wind data, two of the primary problems of solar wind MHD turbulence that still remain a puzzle are the nature of the nonlinear energy cascade, and the strong intermittent character of solar wind fluctuations in the inertial range. This intermittency modifies significantly the scaling exponents of actual power-law spectra, which are directly related to the physical nature of the energy cascade taking place in the solar wind. The identification of the most intermittent structures and their relation to dissipation represents then a crucial problem in the framework of turbulence. Anomalous scaling of both solar wind magnetic field and velocity fluctuations in the inertial range, as well as intermittency effects have recently been investigated in detail using Wavelet transforms on simultaneous WIND 3s resolution particle and magnetic field data from the 3DP and the MFi experiments respectively. Specifically, the Haar Wavelet transform is used to compute spectra, structure functions and probability distribution functions (PDFs). This powerful technique allows: (1) for a systematic study of intermittency effects on these spectra, structure functions and PDFs, thus for a clear determination of the actual scaling properties in the inertial range, and (2) for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind. The analysis of structure functions and PDFs, as well as new results on the nature of the intermittent coherent structures will be presented. The turbulent properties and intermittency effects in different solar wind regimes will be also discussed.

  12. Generation of high fidelity 62-fs, 7-nJ pulses at 1035 nm from a net normal-dispersion Yb-fiber laser with anomalous dispersion higher-order-mode fiber.

    Science.gov (United States)

    Zhu, L; Verhoef, A J; Jespersen, K G; Kalashnikov, V L; Grüner-Nielsen, L; Lorenc, D; Baltuška, A; Fernández, A

    2013-07-15

    Fiber oscillators operating in the normal dispersion regime allow generating high energy output pulses. The best stability of such oscillators is observed when the intracavity dispersion is close to zero. Intracavity dispersion compensation in such oscillators can be achieved using a higher-order mode fiber, which substantially reduces the higher order dispersion compared to all-normal dispersion oscillators or oscillators using intracavity gratings for dispersion compensation. Using this approach, we are able to obtain relatively high energy pulses, with high fidelity. Our modeling based on an analytic approach for oscillators operating in the normal dispersion regime predicts that at intermediate pulse energies an almost flat chirp can be obtained at the oscillator output enabling good pulse compression with a grating compressor close to Fourier limited duration. Here, we present a mode-locked ytterbium-doped fiber oscillator with a higher-order mode fiber operating in the net normal-dispersion regime, delivering 7.2 nJ pulses that can be dechirped down to 62 fs using a simple grating compressor.

  13. Local orbitals approach to the anomalous Hall and Nernst effects in itinerant ferromagnets

    Directory of Open Access Journals (Sweden)

    Středa Pavel

    2014-07-01

    Full Text Available Linear response of the orbital momentum to the gradient of the chemical potential is used to obtain anomalous Hall conductivity. Transition from the ideal Bloch system for which the conductivity is determined by the Berry phase curvatures to the case of strong disorder for which the conductivity becomes dependent on the relaxation time is analysed. Presented tight-binding model reproduces experimentally observed qualitative features of the anomalous Hall conductivity and the transverse Peltier coefficient in the so called bad-metal and scattering-independent regimes.

  14. Anomalous role change of tertiary amino and ester groups as hydrogen acceptors in eudragit E based solid dispersion depending on the concentration of naproxen.

    Science.gov (United States)

    Ueda, Hiroshi; Wakabayashi, Shinobu; Kikuchi, Junko; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi

    2015-04-06

    Eudragit E (EGE) is a basic polymer incorporating tertiary amino and ester groups. The role of the functional groups of EGE in the formation of solid dispersion (SD) with Naproxen (NAP) was investigated. The glass transition temperature (Tg) of EGE decreased with the plasticizing effect of NAP up to 20% weight ratio. Addition of NAP at over 30% induced a rise in Tg, with the maximum value being reached at 60% NAP. Further addition of NAP led to a rapid drop of the Tg. A dramatic difference of physical stability between the SDs including 60 and 70% NAP was confirmed. The SD including 70% NAP rapidly crystallized at 40 °C with 75% relative humidity, while the amorphous state could be maintained over 6 months in the SD with 60% NAP. The infrared and (13)C solid state-NMR spectra of the SDs suggested a formation of ionic interaction between the carboxylic acid of NAP and the amino group of EGE. The SD with 20% NAP raised the (13)C spin-lattice relaxation (T1) of the amino group, but it decreased with over 30% NAP. The change in the (13)C-T1 disappeared with 70% NAP. The (13)C-T1 of the ester group rose depending on the amount of NAP. From these findings, we concluded that the role as hydrogen acceptor shifted from the amine to the ester group with an increase in amount of NAP. Furthermore, the amino group of EGE did not contribute to the interaction at over 70% NAP. These phenomena could be strongly correlated with Tg and stability.

  15. Atmospheric Dispersion Effects at the Diffraction Limit of TMT

    Science.gov (United States)

    Niehaus, Cyndie; Phillips, A.; Larkin, J.; Moore, A.; Barton, B.; IRIS Team

    2010-01-01

    As part of the design study of the InfraRed Imaging Spectrograph (IRIS) for Thirty Meter Telescope (TMT) we've undertaken an analysis of the effects of atmospheric dispersion at the diffraction limit of the telescope. While dispersion in the near infrared is often only marginally important in seeing limited observations, there are many effects that must be understood in order to achieve astrometric accuracies well below the 0.1 milliarcsecond level. Even with precision dispersion correction, residuals at the level of a few milliarcseconds often remain even for single stars. Field dependent distortion can further limit performance and are also dynamic in orientation and magnitude. We'll present simulations of observed stellar fields based on our expected exposure times. Effects due to stellar color, variable atmospheric conditions and other factors will also be presented.

  16. Employment Effects of Dispersal Policies. Part II: Empirical evidence

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    2003-01-01

    How do dispersal policies affect labour market integration of refugee immigrants subjected to such policy? To investigate this, we estimate the effects of location characteristics and the average effect of geographical mobility on the hazard rate into first job of refugee immigrants subjected to ...

  17. Employment Effects of Dispersal Policies on Refugee Immigrants

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    and the transition rate into employment outside the local labour market, but decreases the transition rate into local employment. Thus, a decrease in current place utility decreases the overall job-finding rate if the local reservation wage effect dominates. We argue that spatial dispersal policies on refugees...... are characterised by low average values of current place utility. Hence, the model predicts that dispersal policies increase the geographical mobility rates of refugees and, for a sufficiently large local reservation wage effect, decrease their job-finding rates....

  18. Visualization of anomalous Ettingshausen effect in a ferromagnetic film: Direct evidence of different symmetry from spin Peltier effect

    Science.gov (United States)

    Seki, T.; Iguchi, R.; Takanashi, K.; Uchida, K.

    2018-04-01

    Spatial distribution of temperature modulation due to the anomalous Ettingshausen effect (AEE) is visualized in a ferromagnetic FePt thin film with in-plane and out-of-plane magnetizations using the lock-in thermography technique. Comparing the AEE of FePt with the spin Peltier effect (SPE) of a Pt/yttrium iron garnet junction provides direct evidence of different symmetries of AEE and SPE. Our experiments and numerical calculations reveal that the distribution of heat sources induced by AEE strongly depends on the direction of magnetization, leading to the remarkable different temperature profiles in the FePt thin film between the in-plane and perpendicularly magnetized configurations.

  19. Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co{sub 2}MnAl film

    Energy Technology Data Exchange (ETDEWEB)

    Meng, K.K., E-mail: kkmeng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, J.; Xu, X.G. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, J.H. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Jiang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-04-04

    We have investigated the thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect (AHE) in single-crystalline full-Heusler alloy Co{sub 2}MnAl (CMA) grown by molecular-beam epitaxy on GaAs(001). The magnetic anisotropy is the interplay of uniaxial and the fourfold anisotropy, and the corresponding anisotropy constants have been deduced. Considering the thickness of CMA is small, we ascribe it to the influence from interface stress. The AHE in CMA is found to be well described by a proper scaling. The intrinsic anomalous conductivity is found to be smaller than the calculated one and is thickness dependent, which is ascribed to the influence of chemical ordering by affecting the band structure and Fermi surface. - Highlights: • Single-crystalline full-Heusler alloy Co{sub 2}MnAl grown by molecular-beam epitaxy. • Uniaxial and the fourfold magnetic anisotropies in Heusler alloys. • Anomalous Hall effect in Heusler alloys. • The intrinsic contributions modified by chemical ordering.

  20. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  1. Dispersive effects on multicomponent transport through porous media

    Science.gov (United States)

    Dutta, Sourav; Daripa, Prabir

    2017-11-01

    We use a hybrid numerical method to solve a global pressure based porous media flow model of chemical enhanced oil recovery. This is an extension of our recent work. The numerical method is based on the use of a discontinuous finite element method and the modified method of characteristics. The impact of molecular diffusion and mechanical dispersion on the evolution of scalar concentration distributions are studied through numerical simulations of various flooding schemes. The relative importance of the advective, capillary diffusive and dispersive fluxes are compared over different flow regimes defined in the parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion coefficients. Such studies are relevant for the design of effective injection policies and determining optimal combinations of chemical components for improving recovery. This work has been possible due to financial support from the U.S. National Science Foundation Grant DMS-1522782.

  2. Factors Affecting Training Effectiveness in Synchronous, Dispersed Virtual Environments

    Science.gov (United States)

    2014-06-01

    Educational Psychology Mediating Processes Cognitive Attitude Bagozzi & Burnkrant, 1985; Yang & Yoo, 2004 Social Psychology, Information...Systems Cognitive Engagement Davis, 2012 Educational Psychology Table 1. Factors contributing to learning in synchronous, dispersed VLE with...effects of performance goals on self-regulatory strategy use? Educational Psychology , 24(2), 231–247. Brett, J. F., & VandeWalle, D. (1999). Goal

  3. Employment Effects of Dispersal Policies. Part I: Theory

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    2003-01-01

    and the transition rate into employment outside the local labour market, but decreases the transition rate into local employment. Thus, a decrease in current place utility decreases the overall job-finding rate if the local reservation wage effect dominates. We argue that dispersal policies on refugee immigrants...

  4. Motional dispersions and ratchet effect in inertial systems

    Indian Academy of Sciences (India)

    For finite frequency field drive the ratchet effect is obtained only numerically. In the ... In the periodic drive case the dispersion behaviour is more complex. ... Department of Physics, North-Eastern Hill University, Shillong 793 022, India; Department of Physics, St. Anthony's College, Shillong 793 001, India; Women's College, ...

  5. The effect of thrombolytic therapy on QT dispersion in acute ...

    African Journals Online (AJOL)

    Purpose: We aimed to determine the effect of intravenous thrombolytic therapy on QT dispersion (QTd) and its role in the prediction of reperfusion arrhythmias. Materials and Methods: Twenty patients with acute myocardial infarction (MI) were enrolled in the study. Measurements of QTd were carried out prior to thrombolytic ...

  6. Acoustomagnetoelectric effect in nondegenerate semiconductor with nonparabolic energy dispersion law

    International Nuclear Information System (INIS)

    Mensah, N.G.; Nkrumah, G.; Mensah, S.Y.; Allotey, F.K.A.

    2007-10-01

    We have studied acoustomagnetoelectric effect in nondegenerate semiconductor with nonparabolic energy dispersion Law. Attention was focused on the surface acoustomagnetoelectric effect (SAME). This is to reduce Joule's energy dissipated in the sample. It was observed that in a weak magnetic field the SAME is proportional to H 2 whiles in strong magnetic field it is independent of H. The effect is also dependent on the the scattering mechanism and finally SAME changes sign when the magnetic field is turned through 90 deg. (author)

  7. Thermally Driven Pure Spin and Valley Currents via the Anomalous Nernst Effect in Monolayer Group-VI Dichalcogenides

    DEFF Research Database (Denmark)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang

    2015-01-01

    The spin and valley-dependent anomalous Nernst effects are analyzed for monolayer MoS2 and other group-VI dichalcogenides. We find that pure spin and valley currents can be generated perpendicular to the applied thermal gradient in the plane of these two-dimensional materials. This effect provides...... a versatile platform for applications of spin caloritronics. A spin current purity factor is introduced to quantify this effect. When time reversal symmetry is violated, e.g., two-dimensional materials on an insulating magnetic substrate, a dip-peak feature appears for the total Nernst coefficient...

  8. Simulating chiral magnetic effect and anomalous transport phenomena in the pre-equilibrium stages of heavy-ion collisions

    Science.gov (United States)

    Mace, Mark; Mueller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2017-11-01

    We present a first principles approach to study the Chiral Magnetic Effect during the pre-equilibrium stage of a heavy-ion collision. We discuss the dynamics of the Chiral Magnetic Effect and Chiral Magnetic Wave based on real-time lattice simulations with dynamical (Wilson and Overlap) fermions simultaneously coupled to color and electromagnetic fields. While for light quarks we observe a dissipation-less transport of charges as in anomalous hydrodynamics, we demonstrate that for heavier quarks the effects of explicit chiral symmetry breaking lead to a significant reduction of the associated currents.

  9. Influence of defects and disorder on anomalous Hall effect and spin Seebeck effect on permalloy and Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vilanova Vidal, Enrique

    2012-09-19

    In this work Heusler thin films have been prepared and their transport properties have been studied. Of particularly interest is the anomalous Hall effect (AHE). The effect is a long known but still not fully understood transport effect. Most theory papers focus on the influence of one particular contribution to the AHE. Actual measured experimental data, however, often are not in accordance with idealized assumptions. This thesis discusses the data analysis for materials with low residual resistivity ratios. As prototypical materials, half metallic Heusler compounds are studied. Here, the influence of defects and disorder is apparent in a material with a complex topology of the Fermi surface. Using films with different degrees of disorder, the different scattering mechanisms can be separated. For Co{sub 2}FeSi{sub 0.6}Al{sub 0.4} and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, the AHE induced by B2-type disorder and temperature-dependent scattering is positive, while DO{sub 3}-type disorder and possible intrinsic contributions possess a negative sign. For these compounds, magneto-optical Kerr effects (MOKE) are investigated. First order contributions as a function of intrinsic and extrinsic parameters are qualitatively analyzed. The relation between the crystalline ordering and the second order contributions to the MOKE signal is studied. In addition, sets of the Heusler compound Co{sub 2}MnAl thin films were grown on MgO(100) and Si(100) substrates by radio frequency magnetron sputtering. Composition, magnetic and transport properties were studied systematically for samples deposited at different conditions. In particular, the anomalous Hall effect resistivity presents an extraordinarily temperature independent behavior in a moderate magnetic field range from 0 to 0.6 T. The off-diagonal transport at temperatures up to 300 C was analyzed. The data show the suitability of the material for Hall sensors working well above room temperature. Recently, the spin Seebeck effect

  10. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X =Ge , Sn, Ga, Ir, Rh, and Pt)

    Science.gov (United States)

    Zhang, Yang; Sun, Yan; Yang, Hao; Železný, Jakub; Parkin, Stuart P. P.; Felser, Claudia; Yan, Binghai

    2017-02-01

    We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that we show are essential to determine the AHC and SHC, are compared for these different compounds. We point out that Mn3Ga shows a large SHC of about 600 (ℏ /e ) (Ωcm) -1 . Our work provides insights into the realization of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.

  11. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1984-01-01

    This report consists of a series of 7 individual review chapters -written between 1980 and 1983- together with a summary document linking and overviewing the work. The topics covered are as follows: ''atmospheric dispersion in urban environments''; ''topographical effects in nuclear safety studies''; coastal effects and transport over water''; ''time-varying meteorology in consequence assessment''; ''building effects in nuclear safety studies''; effect of variations in mixing height on atmospheric dispersion''; ''the effect of turning of the wind with height on lateral dispersion''. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on the assessment of reactor accident consequences. In general the work focuses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development

  12. Self-energy dispersion effects on neutron matter superfluidity

    International Nuclear Information System (INIS)

    Zuo Wei

    2001-01-01

    The effects of the dispersion and ground state correlation of the single particle self-energy on neutron matter superfluidity have been investigated in the framework of the Extended Brueckner-Hartree-Fock and the generalized BCS approaches. A sizable reduction of the energy gap is found due to the energy dependence of the self-energy. And the inclusion of the ground state correlations in the self-energy suppresses further the neutron matter superfluidity

  13. Skew scattering dominated anomalous Hall effect in Co x (MgO)100-x granular thin films.

    Science.gov (United States)

    Zhang, Qiang; Wen, Yan; Zhao, Yuelei; Li, Peng; He, Xin; Zhang, Junli; He, Yao; Peng, Yong; Yu, Ronghai; Zhang, Xixiang

    2017-10-18

    We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100 nm-thick thin films of Co x (MgO) 100-x with a Co volume fraction of 34  ⩽  x  ⩽  100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity ([Formula: see text]) and anomalous Hall resistivity ([Formula: see text]) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of [Formula: see text] and [Formula: see text] respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient ([Formula: see text]) and of [Formula: see text] to [Formula: see text], we found that our results perfectly fell on a straight line with a slope of [Formula: see text] 0.97  ±  0.02. This fitting value of [Formula: see text] in [Formula: see text] clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both [Formula: see text] and [Formula: see text] significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, [Formula: see text]  =  0.99  ±  0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scattering of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.

  14. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  15. Rational three-spin string duals and non-anomalous finite size effects

    DEFF Research Database (Denmark)

    Freyhult, Lisa; Kristjansen, Charlotte

    2005-01-01

    We determine by a one line computation the one-loop conformal dimension and the associated non-anomalous finite size correction for all operators dual to spinning strings of rational type having three angular momenta (J_1,J_2,J_3) on S^5. Finite size corrections are conjectured to encode informat......We determine by a one line computation the one-loop conformal dimension and the associated non-anomalous finite size correction for all operators dual to spinning strings of rational type having three angular momenta (J_1,J_2,J_3) on S^5. Finite size corrections are conjectured to encode...... information about string sigma model loop corrections to the spectrum of type IIB superstrings on AdS_5xS^5. We compare our result to the zero-mode contribution to the leading quantum string correction derived for the stable three-spin string with two out of the three spin labels identical and observe...... agreement. As a side result we clarify the relation between the Bethe root description of three-spin strings of the type (J,J',J') with respectively J>J' and JJ....

  16. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    Science.gov (United States)

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    Administrator

    ash were used in this work. 2.2 Dispersion experiment. A combinative method of ultrasonic dispersion, mechani- cal agitation and surface modification was adopted to disperse nanometer WS2 particles in green lubricant in this study. And to realize this method, we designed a dispersing equipment and figure 2 gives the ...

  18. Anomalous H/D isotope effect in hydrogen bonded systems: H-bonded cyclic structures and transfers of protons

    International Nuclear Information System (INIS)

    Marechal, Y.

    1993-01-01

    The systematic H/D substitution is a precious tool to obtain information on the dynamics of H-bonds. It is particularly useful in IR spectroscopy where H-bonds are at the origin of particularly intense and specific bands and where the particularly great value for the m D /m H ratio ensures strongly marked effects. In most H-bonded systems the effects of these substitutions are normal, in the sense that they are at the origin of bands having intensities, centers (of intensity) and widths smaller in D-bonds by a factor close to √2 as compared to H-bonds. In some systems as carboxylic acid dimers, however, anomalous ratios of intensities are found upon such a substitution. Their origin is still obscure. Experimental results suggest that such anomalous ratios have much to do with the cyclic structure of these systems. It leads to stressing an important property of H-bonded cyclic structures which is that they seem necessary for having transfers of protons between molecules through H-bonds in a neutral aqueous medium (p H =7) at room temperature. The mechanism of such transfers of protons is still poorly known, but these transfers are now suspected to play a fundamental role in such widespread reactions as hydrolysis, peptide synthesis, etc... which may make them soon appear as being a crucial basic mechanism for reactivity of aqueous systems, particularly biological systems

  19. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  20. Effects of Three Types of Oil Dispersants on Biodegradation of Dispersed Crude Oil in Water Surrounding Two Persian Gulf Provinces

    Directory of Open Access Journals (Sweden)

    Azadeh Zolfaghari-Baghbaderani

    2012-01-01

    Full Text Available Objective. To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. Methods. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of the above-mentioned dispersants, as exclusive sources of carbon, the bacteria were grown in culture medium for 28 days at 120 rpm, 30∘C, and their optical density was measured by spectrophotometry. Then, we tested biological oxygen demand (BOD and chemical oxygen demand (COD in microorganisms. Results. The highest growth rate was documented for the growth of microorganisms on either Pars 1 or Pars 2 dispersants or their mixtures with oil. However, the culture having microorganisms grown on Pars 1 had higher BOD and COD than the other two dispersants (9200 and 16800 versus 500 and 960, P<0.05. Mixture of oil and Pars 2 as well as oil and Pars 1 dispersants showed the highest BODs and CODs, respectively. In the Bahregan province, microorganisms grown on Pars 2 had maximum amount of BOD and COD in comparison with Pars 1 and Gamlen dispersants (7100 and 15200 versus 6000 and 10560, P<0.05. Conclusion. Pars 1 and Pars 2 were the most effective dispersants with highest degradability comparing Gamlen. In each region, the most suitable compound for removing oil spill from offshores with least secondary contamination should be investigated.

  1. Anomalous Diffusion Near Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  2. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  3. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3 -xGeTe2

    Science.gov (United States)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; Petrovic, C.

    2018-04-01

    We report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe3 -xGeTe2 (x ≈0.36 ) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρx y/μ0Heff and longitudinal resistivity ρxx 2M /μ0Heff implies that the AHE in Fe3 -xGeTe2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear-M Hall conductivity σxy A below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.

  4. Review of specific effects in atmospheric dispersion calculations

    International Nuclear Information System (INIS)

    Underwood, B.Y.; Cooper, P.J.; Holloway, N.J.; Kaiser, G.D.; Nixon, W.

    1985-01-01

    This work consists of a series of ten individual review Chapters - written between 1980 and 1983 - together with a summary document linking and overviewing the work. The topics covered are as follows: 'Plume Rise in Nuclear Safety Studies'; 'Dry Deposition'; 'Wet Deposition'; 'Atmospheric Dispersion in Urban Environments'; 'Topographical Effects in Nuclear Safety Studies'; 'Coastal Effects and Transport over Water'; 'Time-Varying Meteorology in Consequence Assessment'; 'Building Effects in Nuclear Safety Studies'; 'Effect of Turning of the Wind with Height on Lateral Dispersion'. Although the reviews are, on the whole, general in approach, emphasis has been given where appropriate to the impact of various phenomena on th assessment of reactor accident consequences. In general the work focusses on the 0-100 km range of distance downwind of the source. The reviews fulfil several functions: they serve as introductions to the subject areas; they outline theoretical and experimental developments; they act as reference documents providing a copious source of references for more detailed investigation of particular points; they raise unresolved technical issues and attempt to indicate principal uncertainties; they point to areas requiring further development. (author)

  5. Estimates of dispersive effects in a bent NLC Main Linac

    Energy Technology Data Exchange (ETDEWEB)

    Michael Syphers and Leo Michelotti

    2000-10-31

    An alternative being considered for the Next Linear Collider (NLC) is not to tunnel in a straight line but to bend the Main Linac into an arc so as to follow a gravitational equipotential. The authors begin here an examination of the effects that this would have on vertical dispersion, with its attendant consequences on synchrotron radiation and emittance growth by looking at two scenarios: a gentle continuous bending of the beam to follow an equipotential surface, and an introduction of sharp bends at a few sites in the linac so as to reduce the maximum sagitta produced.

  6. Anomalous transport phenomena in px+i py superconductors

    Science.gov (United States)

    Li, Songci; Andreev, A. V.; Spivak, B. Z.

    2015-09-01

    Spontaneous breaking of time-reversal symmetry in superconductors with the px+i py symmetry of the order parameter allows for a class of effects which are analogous to the anomalous Hall effect in ferromagnets. These effects exist below the critical temperature, T effects. In particular, we consider anomalous Hall thermal conductivity, the polar Kerr effect, the anomalous Hall effect, and the anomalous photo- and acousto-galvanic effects.

  7. In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings.

    Science.gov (United States)

    Jung, Hojoong; Poot, Menno; Tang, Hong X

    2015-11-30

    We propose and demonstrate a dispersion control technique by combination of different waveguide cross sections in an aluminum nitride micro-ring resonator. Narrow and wide waveguides with normal and anomalous dispersion, respectively, are linked with tapering waveguides and enclosed in a ring resonator to produce a total dispersion near zero. The mode-coupling in multimoded waveguides is also effectively suppressed. This technique provides new degrees of freedom and enhanced flexibility in engineering the dispersion of microcomb resonators.

  8. Effects of different dispersal patterns on the presence-absence of multiple species

    Science.gov (United States)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2018-03-01

    Predicting which species will be present (or absent) across a geographical region remains one of the key problems in ecology. Numerous studies have suggested several ecological factors that can determine species presence-absence: environmental factors (i.e. abiotic environments), interactions among species (i.e. biotic interactions) and dispersal process. While various ecological factors have been considered, less attention has been given to the problem of understanding how different dispersal patterns, in interaction with other factors, shape community assembly in the presence of priority effects (i.e. where relative initial abundances determine the long-term presence-absence of each species). By employing both local and non-local dispersal models, we investigate the consequences of different dispersal patterns on the occurrence of priority effects and coexistence in multi-species communities. In the case of non-local, but short-range dispersal, we observe agreement with the predictions of local models for weak and medium dispersal strength, but disagreement for relatively strong dispersal levels. Our analysis shows the existence of a threshold value in dispersal strength (i.e. saddle-node bifurcation) above which priority effects disappear. These results also reveal a co-dimension 2 point, corresponding to a degenerate transcritical bifurcation: at this point, the transcritical bifurcation changes from subcritical to supercritical with corresponding creation of a saddle-node bifurcation curve. We observe further contrasting effects of non-local dispersal as dispersal distance changes: while very long-range dispersal can lead to species extinctions, intermediate-range dispersal can permit more outcomes with multi-species coexistence than short-range dispersal (or purely local dispersal). Overall, our results show that priority effects are more pronounced in the non-local dispersal models than in the local dispersal models. Taken together, our findings highlight

  9. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2005-06-01

    Full Text Available The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the Schumann resonance, possibly associated with two large land earthquakes (one is the Chi-chi earthquake and another one on 2 November 1999 (Chia-yi earthquake with a magnitude again greater than 6.0. Conspicuous effects are observed for the larger Chi-chi earthquake, so that we summarize the characteristics for this event. The anomaly is characterized mainly by the unusual increase in amplitude of the fourth Schumann resonance mode and a significant frequency shift of its peak frequency (~1.0Hz from the conventional value on the By magnetic field component which is sensitive to the waves propagating in the NS meridian plane. Anomalous Schumann resonance signals appeared from about one week to a few days before the main shock. Secondly, the goniometric estimation of the arrival angle of the anomalous signal is found to coincide with the Taiwan azimuth (the unresolved dual direction indicates toward South America. Also, the pulsed signals, such as the Q-bursts, were simultaneously observed with the "carrier" frequency around the peak frequency of the fourth Schumann resonance mode. The anomaly for the second event for the Chia-yi earthquake on 2 November had much in common. But, most likely due to a small magnitude, the anomaly appears one day before and lasts until one day after the main shock, with the enhancement at the fourth Schumann resonance mode being smaller in amplitude than the case of the Chi-chi earthquake. Yet, the other characteristics, including the goniometric direction finding result, frequency shift, etc., are nearly the same. Although the emphasis of

  10. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2005-06-01

    Full Text Available The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the Schumann resonance, possibly associated with two large land earthquakes (one is the Chi-chi earthquake and another one on 2 November 1999 (Chia-yi earthquake with a magnitude again greater than 6.0. Conspicuous effects are observed for the larger Chi-chi earthquake, so that we summarize the characteristics for this event. The anomaly is characterized mainly by the unusual increase in amplitude of the fourth Schumann resonance mode and a significant frequency shift of its peak frequency (~1.0Hz from the conventional value on the By magnetic field component which is sensitive to the waves propagating in the NS meridian plane. Anomalous Schumann resonance signals appeared from about one week to a few days before the main shock. Secondly, the goniometric estimation of the arrival angle of the anomalous signal is found to coincide with the Taiwan azimuth (the unresolved dual direction indicates toward South America. Also, the pulsed signals, such as the Q-bursts, were simultaneously observed with the "carrier" frequency around the peak frequency of the fourth Schumann resonance mode. The anomaly for the second event for the Chia-yi earthquake on 2 November had much in common. But, most likely due to a small magnitude, the anomaly appears one day before and lasts until one day after the main shock, with the enhancement at the fourth Schumann resonance mode being smaller in amplitude than the case of the Chi-chi earthquake. Yet, the other characteristics, including the goniometric direction finding result, frequency shift, etc., are nearly the same. Although the emphasis of the present study is

  11. The impact of local diffusion on longitudinal macrodispersivity and its major effect upon anomalous transport in highly heterogeneous aquifers

    Science.gov (United States)

    Janković, Igor; Fiori, Aldo; Dagan, Gedeon

    2009-05-01

    Flow and transport are solved for a heterogeneous medium modeled as an ensemble of spherical inclusions of uniform radius R and of conductivities K, drawn from a pdf f(K) ( Fig. 1). This can be regarded as a particular discretization scheme, allowing for accurate numerical and semi-analytical solutions, for any given univariate f(Y)(Y=lnK) and integral scale IY. The transport is quantified by the longitudinal equivalent macrodispersivity α, for uniform mean flow of velocity U and for a large (ergodic) plume of a conservative solute injected in a vertical plane ( x=0) and moving past a control plane at x≫IY. In the past we have solved transport for advection solely for highly heterogeneous media of σY2⩽8. We have found that α increases in a strong nonlinear fashion with σY2 and transport becomes anomalous for the subordinate model. This effect is explained by the large residence time of solute particles in inclusions of low K. In the present work we examine the impact of local diffusion as quantified by the Peclet number Pe=UIY/D0, where D0 is the coefficient of molecular diffusion. Transport with diffusion is solved by accurate numerical simulations for flow past spheres of low K and for high Pe=O(102-104). It was found that finite Pe reduces significantly α as compared to advection, for σY2≳3(Pe=1000) and for σY2≳1.4(Pe=100), justifying neglection of the effect of diffusion for weak to moderately heterogeneous aquifers (e.g. σY2⩽1). In contrast, diffusion impacts considerably α for large σY2 due to the removal of solute from low K inclusions. Furthermore, anomalous behavior is eliminated, though α may be still large for Pe≫1.

  12. Effectiveness of primate seed dispersers for an "oversized" fruit, Garcinia benthamii.

    Science.gov (United States)

    McConkey, Kim R; Brockelman, Warren Y; Saralamba, Chanpen; Nathalang, Anuttara

    2015-10-01

    The largest fruits found in tropical forests may depend on complementary seed dispersal strategies. These fruits are dispersed most effectively by megafauna, but populations can persist where megafauna are absent or erratic visitors. Smaller animals often consume these large fruits, but their capacity to disperse these seeds effectively has rarely been assessed. We evaluated the contributions of gibbons (Hylobates lar) and other frugivores in the seed dispersal of the megafaunal fruit Garcinia benthamii, using the SDE (seed dispersal effectiveness) landscape. Gibbons preferentially consumed G. benthamii fruits and were the main seed disperser that we observed. However, gibbons became satiated when availability was high, with 57% of fruits falling to the ground unhandled. Recruitment of seedlings from gibbon-dispersed seeds was also very low. Elephants consumed G. benthamii fruit, but occurred at low density and were rare visitors to the trees. We suggest that gibbons might complement the seed dispersal role of elephants for G. benthamii, allowing limited recruitment in areas (such as the study site) where elephants occur at low density. Fruit availability varied between years; when availability was low, gibbons reliably consumed most of the crop and dispersed some seeds that established seedlings, albeit at low numbers (2.5 seedlings per crop). When fruit availability was high, the fruit supply overwhelmed the gibbons and other arboreal frugivores, ensuring a large abundance of fruit available to terrestrial seed dispersers. Although gibbons effectively dispersed more seeds at these times (20.7 seedlings per crop), there was the potential for elephants to move many more seeds. Complementary seed dispersal strategies may be important for megafaunal fruit, because they ensure that very large fruits are able to benefit from megafaunal dispersal but also persist where this dispersal becomes erratic. However, our data suggest that smaller seed dispersers might not be

  13. Effect of combined treatments on viscosity of whey dispersions

    International Nuclear Information System (INIS)

    Camillo, A.; Sabato, S.F.

    2004-01-01

    Whey proteins, enriched protein fractions from milk, are of great interest as ingredients due to nutritional value associated with its functional properties. These proteins could have their structural properties improved when some treatments are applied, such as thermal and gamma irradiation or when some compounds are added. The current work aimed to study the viscometer behavior of whey dispersions submitted to two different combined treatments: (1) thermal plus irradiation and (2) thermal plus vacuum and N 2 plus irradiation. Dispersions of whey protein in water (5% and 8% protein (w/v) base) and containing proteins and glycerol at ratios 1:1 and 2:1 (protein:glycerol) were submitted to both combined treatments. The irradiation doses were 0, 5, 15 and 25 kGy. The viscosity of the two combined treatments and for four levels of absorbed doses is presented and the combined effects are discussed. The thermal treatment combined with gamma irradiation contributed to increase the viscosity as irradiation doses increases for both (5% and 8%) concentrations of proteins (p<0.05). For protein and glycerol solutions, the irradiation dose seemed to result in a slightly increase. The vacuum applied before the irradiation showed a small contribution

  14. Impact of multiple bird partners on the seed dispersal effectiveness of China's relic trees.

    Science.gov (United States)

    Li, Ning; Li, Xin-Hai; An, Shu-Qing; Lu, Chang-Hu

    2016-01-04

    Frugivorous birds generally exhibit an unequal contribution to dispersal effectiveness of plant species as a function of their habitat adaptation and body size. In our study, we compared the effectiveness of multiple bird species that contribute to the dispersal of the endangered relic Chinese yew, Taxus chinensis. Seven bird species dispersed T. chinensis seeds, with Picus canus, Turdus hortulorum, and Urocissa erythrorhyncha being the main dispersers. The quantity part of dispersal effectiveness was strongly influenced by two inherent characteristics of disperser species: body size and habitat adaptation. However, the quality part of dispersal effectiveness was only influenced by disperser type. For instance, small generalist birds and large specialist birds removed more seeds than other type dispersers. Moreover, small birds and specialist birds contributed slightly more to the dispersal quality of T. chinensis than large birds and generalist birds respectively; however, these differences were not significant. Our results suggest that dispersal effectiveness is affected by variety in the body size and habitat adaptation of different dispersers. Therefore, such variation should be incorporated into spatial and temporal management actions of relic plant species in patchy, human-disturbed habitats.

  15. Diffusion-induced parametric dispersion and amplification in doped ...

    Indian Academy of Sciences (India)

    Using the hydrodynamic model of semiconductor plasma, the diffusion-induced nonlinear current density and the consequent second-order effective susceptibility are obtained under off-resonant laser irradiation. The analysis deals with the qualitative behaviour of the anomalous parametric dispersion and the gain profile ...

  16. Anomalous gauge theories as constrained Hamiltonian systems

    International Nuclear Information System (INIS)

    Fujiwara, T.

    1989-01-01

    Anomalous gauge theories considered as constrained systems are investigated. The effects of chiral anomaly on the canonical structure are examined first for nonlinear σ-model and later for fermionic theory. The breakdown of the Gauss law constraints and the anomalous commutators among them are studied in a systematic way. An intrinsic mass term for gauge fields makes it possible to solve the Gauss law relations as second class constraints. Dirac brackets between the time components of gauge fields are shown to involve anomalous terms. Based upon the Ward-Takahashi identities for gauge symmetry, we investigate anomalous fermionic theory within the framework of path integral approach. (orig.)

  17. Effects of experimental snowmelt and rain on dispersal of six plant species

    NARCIS (Netherlands)

    Sarneel, J. M.

    2016-01-01

    Water flows affect dispersal of propagules of many plant species, and rivers and streams are therefore very important dispersal vectors. However, small water flows such as trough rain and snowmelt are much more common, but their effects on dispersal are barely studied. The importance of this form of

  18. Two-patch population models with adaptive dispersal: the effects of varying dispersal speeds

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil

    2013-01-01

    Roč. 67, č. 2 (2013), s. 329-358 ISSN 0303-6812 Grant - others:The University of Tennessee(US) EF-0832858; National Science Foundation(US) DMS 0931642 Institutional support: RVO:60077344 Keywords : competition * dispersal * evolution Subject RIV: EH - Ecology, Behaviour Impact factor: 2.388, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs00285-012-0548-3.pdf

  19. Magnetoviscous effect in ferrofluids with different dispersion media

    Energy Technology Data Exchange (ETDEWEB)

    Borin, D.Yu [TU Dresden, Institute of Fluid Mechanics, Dresden 01062 (Germany); Korolev, V.V. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Ramazanova, A.G., E-mail: agr@isc-ras.ru [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Odenbach, S. [TU Dresden, Institute of Fluid Mechanics, Dresden 01062 (Germany); Balmasova, O.V.; Yashkova, V.I. [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Korolev, D.V. [Federal Sate Unitary Enterprise all Russian Scientific Research Institute of Aviation Materials (Russian Federation)

    2016-10-15

    Ferrofluids based on magnetite nanoparticles dispersed in different carrier media (dialkyldiphenyl and polyethylsiloxane) have been synthesized using mixed surfactants (oleic acid, stearic acid and alkenyl succinic anhydride). Magnetic properties of the samples and a change of their shear viscosities in an applied magnetic field have been studied in order to evaluate an influence of the carrier medium on a magnetoviscous effect. A significance of the interaction of the carrier medium and surfactant with a consideration of the magnetic and rheological behavior of ferrofluids was demonstrated. - Highlights: • Ferrofluids based on mixed surfactants were synthesized. • Oleic, stearic acid and alkenylsuccinic anhydride were used. • The nature of the surfactant has a high impact on the ferrofluids' shear viscosity. • The core size distribution is not the only determining reason of the structuring. • Significance of the interaction of the carrier medium and surfactant is demonstrated.

  20. Rapid effects of marine reserves via larval dispersal.

    Directory of Open Access Journals (Sweden)

    Richard Cudney-Bueno

    Full Text Available Marine reserves have been advocated worldwide as conservation and fishery management tools. It is argued that they can protect ecosystems and also benefit fisheries via density-dependent spillover of adults and enhanced larval dispersal into fishing areas. However, while evidence has shown that marine reserves can meet conservation targets, their effects on fisheries are less understood. In particular, the basic question of if and over what temporal and spatial scales reserves can benefit fished populations via larval dispersal remains unanswered. We tested predictions of a larval transport model for a marine reserve network in the Gulf of California, Mexico, via field oceanography and repeated density counts of recently settled juvenile commercial mollusks before and after reserve establishment. We show that local retention of larvae within a reserve network can take place with enhanced, but spatially-explicit, recruitment to local fisheries. Enhancement occurred rapidly (2 yrs, with up to a three-fold increase in density of juveniles found in fished areas at the downstream edge of the reserve network, but other fishing areas within the network were unaffected. These findings were consistent with our model predictions. Our findings underscore the potential benefits of protecting larval sources and show that enhancement in recruitment can be manifested rapidly. However, benefits can be markedly variable within a local seascape. Hence, effects of marine reserve networks, positive or negative, may be overlooked when only focusing on overall responses and not considering finer spatially-explicit responses within a reserve network and its adjacent fishing grounds. Our results therefore call for future research on marine reserves that addresses this variability in order to help frame appropriate scenarios for the spatial management scales of interest.

  1. Dispersion and nonlinear effects in OFDM-RoF system

    Science.gov (United States)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  2. Effect of Dispersion and Bleaching on the Mechanical and Optical Properties of Deinked Recycled Pulp

    Directory of Open Access Journals (Sweden)

    yahya hamzeh

    2016-06-01

    Full Text Available In this study the effects of oxidative bleaching and mechanical dispersion in different conditions on the optical and mechanical properties of deinked recycled pulp was investigated. Industrial deinked pulp was treated in the different conditions, including dispersion, combined oxidative bleaching during dispersion, and separate dispersion and then oxidative bleaching. Handsheet papers were made from obtained pulps and then scanned and taken photos were analyzed by Digimizer software, version 4.1.1.0 to analysis spot content. Optical and mechanical properties of obtained handsheets were determined and compared. Results indicated that mechanical dispersion decreased spot content and brightness and increased yellowing of the handsheets. Moreover, mechanical dispersion increased dry and wet tensile and burst strengths, water retention value (WRV, ash content and decreased tear strength of handsheet papers. This study revealed that combined dispersing and oxidative bleaching of de-inked pulp provided superior results in comparison to the separate dispersing and oxidative bleaching.

  3. Effects of chemical dispersants on oil-brine interfacial tension and droplet formation

    International Nuclear Information System (INIS)

    Khelifa, A.; So, L.L.C.

    2009-01-01

    The dispersion of oil spilled in water is influenced by chemical dispersants via the modification of the interfacial properties of the oil, such as oil-brine interfacial tension (IFT). In this study, the physical properties and dispersion of oil were measured in order to determine the effects of chemical dispersants on IFT and oil viscosity and the effects on oil droplet formation. In theory, the maximum size of oil droplet that forms under turbulent mixing increases with IFT. Therefore, a reduction in IFT reduces the size distribution of oil droplets. This paper presented the results of an ongoing project aimed at providing quantitative understanding the influence that chemical dispersants have on the size distribution of oil droplets and oil dispersion. Findings showed that a valid approach is to separate the direct effects of chemical dispersants on oil properties, specifically oil-brine IFT and the effects of mixing on dispersion of chemically treated oil. Under constant mixing conditions, the reduction of the maximum oil droplet size that overcomes the breakage process is determined by the effects of chemical dispersant on oil properties. This correlates well with the dispersant-to-oil ratio (DOR) up to the critical micelle concentration (CMC). This good agreement can be attributed to the reduction of IFT with DOR. It was concluded that the reduction of IFT with dispersant concentration is an additional signature of oil composition on droplet formation, while mixing energy is an external parameter that is independent of oil properties. 17 refs., 3 tabs., 9 figs

  4. Photo- and gas-tuned, reversible thermoelectric properties and anomalous photo-thermoelectric effects of platinum-loaded tungsten trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kenta; Watanabe, Takuya [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2016-06-28

    We report the photo- and gas-controllable properties of platinum-loaded tungsten trioxide (Pt/WO{sub 3}), which is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a Pt/WO{sub 3} thin film generated a thermoelectric power due to the ultraviolet-light-induced band-gap excitation (photochromic (PC) reaction) and/or dark storage in formic acid vapor (gaschromic (GC) reaction) in the absence of O{sub 2}, resulting from the generation of W{sup 5+} ions. After such chromic reactions, the electrical conductivity (σ) is increased, whereas the absolute value of the Seebeck coefficient (S) is decreased. The changes in σ and S and their rate of change for consistency increased in the order of: during the PC reaction < during the GC reaction < during simultaneous PC and GC reactions. The opposite behaviors, a decrease in σ and an increase in S, were exhibited by Pt/WO{sub 3} in the presence of O{sub 2} after dark storage or visible-light irradiation. This reversible cycle could be repeated. Moreover, anomalous, nontrivial photo-thermoelectric effects (a photoconductive effect (photoconductivity, σ{sub photo}) and a photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to the visible-light irradiation of Pt/WO{sub 3} in the absence of O{sub 2} after chromic reactions. Under visible-light irradiation, both σ{sub photo} and the absolute value of S{sub photo} are increased. After the irradiation, both values were decreased, that is, σ and the absolute value of S were smaller than σ{sub photo} and the absolute value of S{sub photo}, respectively. These effects are likely to be due to the photoinduced charge carriers and the accumulated electrons in Pt contributing to the increase in σ{sub photo}. In addition, electrons are extracted from the W{sup 5+} state, decreasing the number of W{sup 5+} in H{sub x}WO{sub 3} and thus contributing to the

  5. Anomalous interactions in confined charge-stabilized colloid

    International Nuclear Information System (INIS)

    Grier, D G; Han, Y

    2004-01-01

    Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are supposed to repel each other. Consequently, experimental evidence for anomalous long-ranged like-charged attractions induced by geometric confinement inspired a burst of activity. This has largely subsided because of nagging doubts regarding the experiments' reliability and interpretation. We describe a new class of thermodynamically self-consistent colloidal interaction measurements that confirm the appearance of pairwise attractions among colloidal spheres confined by one or two bounding walls. In addition to supporting previous claims for this as-yet unexplained effect, these measurements also cast new light on its mechanism

  6. Influence of an anomalous dimension effect on thermal instability in amorphous-InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuan-Hsien; Chou, Wu-Ching, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsin-chu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Chen, Hua-Mao; Tai, Ya-Hsiang [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsin-chu 300, Taiwan (China); Tsai, Ming-Yen; Hung, Pei-Hua; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wu, Ming-Siou; Hung, Yi-Syuan [Department of Electronics Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Yeh, Bo-Liang [Advanced Display Technology Research Center, AU Optronics, No.1, Li-Hsin Rd. 2, Hsinchu Science Park, Hsin-Chu 30078, Taiwan (China)

    2014-10-21

    This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.

  7. Impact of high-frequency pumping on anomalous finite-size effects in three-dimensional topological insulators

    Science.gov (United States)

    Pervishko, Anastasiia A.; Yudin, Dmitry; Shelykh, Ivan A.

    2018-02-01

    Lowering of the thickness of a thin-film three-dimensional topological insulator down to a few nanometers results in the gap opening in the spectrum of topologically protected two-dimensional surface states. This phenomenon, which is referred to as the anomalous finite-size effect, originates from hybridization between the states propagating along the opposite boundaries. In this work, we consider a bismuth-based topological insulator and show how the coupling to an intense high-frequency linearly polarized pumping can further be used to manipulate the value of a gap. We address this effect within recently proposed Brillouin-Wigner perturbation theory that allows us to map a time-dependent problem into a stationary one. Our analysis reveals that both the gap and the components of the group velocity of the surface states can be tuned in a controllable fashion by adjusting the intensity of the driving field within an experimentally accessible range and demonstrate the effect of light-induced band inversion in the spectrum of the surface states for high enough values of the pump.

  8. Effective medium theory for elastic matrix composites containing dispersed particulates

    International Nuclear Information System (INIS)

    Jhon, M.S.; Metz, R.J.; Freed, K.F.

    1988-01-01

    We describe a new, effective medium theory to study the wave propagation and mechanical properties of a composite system with dispersed particulates. One main emphasis here is in formulating the theory and in analyzing the structure of the contribution of the fillers to the elastic response. By constructing the elastic propagator (whose fluid mechanical counterpart is known as the Oseen tensor), we show that an analogy between the theoretical description of the particulate system and of suspension rheology exists when the former corresponds to a high-rigidity solid matrix (or, analogously, when the Poisson ratio is close to 1/2) in steady state. The effective Lame constants for this case are derived by combining this analogy with the theory developed by Freed and Muthukumar for the rheology of a suspension of spheres. The analogy is also useful in our new prediction of the phenomenon of elastic screening, the possible existence of a cutoff frequency below which elastic waves cannot propagate in the filler system

  9. Hard-hard coupling assisted anomalous magnetoresistance effect in amine-ended single-molecule magnetic junction

    Science.gov (United States)

    Tang, Y.-H.; Lin, C.-J.; Chiang, K.-R.

    2017-06-01

    We proposed a single-molecule magnetic junction (SMMJ), composed of a dissociated amine-ended benzene sandwiched between two Co tip-like nanowires. To better simulate the break junction technique for real SMMJs, the first-principles calculation associated with the hard-hard coupling between a amine-linker and Co tip-atom is carried out for SMMJs with mechanical strain and under an external bias. We predict an anomalous magnetoresistance (MR) effect, including strain-induced sign reversal and bias-induced enhancement of the MR value, which is in sharp contrast to the normal MR effect in conventional magnetic tunnel junctions. The underlying mechanism is the interplay between four spin-polarized currents in parallel and anti-parallel magnetic configurations, originated from the pronounced spin-up transmission feature in the parallel case and spiky transmission peaks in other three spin-polarized channels. These intriguing findings may open a new arena in which magnetotransport and hard-hard coupling are closely coupled in SMMJs and can be dually controlled either via mechanical strain or by an external bias.

  10. Anomalous diffusion without scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Hanyga, A [Department of Earth Sciences, University of Bergen, Allegaten 41, N5007 Bergen (Norway)

    2007-05-25

    Asymptotic behaviour of a new class of anomalous diffusion equations for subdiffusive transport defined in terms of generalized distributed fractional-order time derivatives is considered. The effect of slowly varying factors on the scaling function of asymptotic solutions is demonstrated. The origin of slowly varying scaling factors in the CTRW models is discussed.

  11. Measuring the Equilibrium Effects of Unemployment Benefits Dispersion

    NARCIS (Netherlands)

    Vuuren, van Aico; Berg, van den G.J.; Ridder, Geert

    1999-01-01

    We analyze the impact of unemployment benefits and minimum wagesusing an equilibrium search model which allows for dispersion ofbenefits and productivity levels, job-to-job transitions, andstructural and frictional unemployment. The estimation method usesreadily available aggregate data on marginal

  12. Anomalous Hall effect suppression in anatase Co:TiO2 by the insertion of an interfacial TiO2 buffer layer

    NARCIS (Netherlands)

    Lee, Y.J.; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; Kim, Y.; Brock, J.D.

    2010-01-01

    We present the effect of introducing a TiO2 buffer layer at the SrTiO3 /Co:TiO2 interface on the magnetic and structural properties of anatase Co:TiO2 1.4 at. % Co. Inserting the buffer layer leads to suppression of the room-temperature anomalous Hall effect, accompanied by a reduced density of Co

  13. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection

    Directory of Open Access Journals (Sweden)

    Javad Rostami

    2017-06-01

    Full Text Available Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP, the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the

  14. Sparse and Dispersion-Based Matching Pursuit for Minimizing the Dispersion Effect Occurring when Using Guided Wave for Pipe Inspection.

    Science.gov (United States)

    Rostami, Javad; Tse, Peter W T; Fang, Zhou

    2017-06-06

    Ultrasonic guided wave is an effective tool for structural health monitoring of structures for detecting defects. In practice, guided wave signals are dispersive and contain multiple modes and noise. In the presence of overlapped wave-packets/modes and noise together with dispersion, extracting meaningful information from these signals is a challenging task. Handling such challenge requires an advanced signal processing tool. The aim of this study is to develop an effective and robust signal processing tool to deal with the complexity of guided wave signals for non-destructive testing (NDT) purpose. To achieve this goal, Sparse Representation with Dispersion Based Matching Pursuit (SDMP) is proposed. Addressing the three abovementioned facts that complicate signal interpretation, SDMP separates overlapped modes and demonstrates good performance against noise with maximum sparsity. With the dispersion taken into account, an overc-omplete and redundant dictionary of basic atoms based on a narrowband excitation signal is designed. As Finite Element Method (FEM) was used to predict the form of wave packets propagating along structures, these atoms have the maximum resemblance with real guided wave signals. SDMP operates in two stages. In the first stage, similar to Matching Pursuit (MP), the approximation improves by adding, a single atom to the solution set at each iteration. However, atom selection criterion of SDMP utilizes the time localization of guided wave reflections that makes a portion of overlapped wave-packets to be composed mainly of a single echo. In the second stage of the algorithm, the selected atoms that have frequency inconsistency with the excitation signal are discarded. This increases the sparsity of the final representation. Meanwhile, leading to accurate approximation, as discarded atoms are not representing guided wave reflections, it simplifies extracting physical meanings for defect detection purpose. To verify the effectiveness of SDMP for

  15. The comparative effects of oil dispersants and oil/dispersant conjugates on germination of the marine macroalga Phyllospora comosa (Fucales: Phaeophyta)

    International Nuclear Information System (INIS)

    Burridge, T.R.; Shir, M.-A.

    1995-01-01

    Germination inhibition of the marine macrophyte Phyllospora comosa was utilized as a sub-lethal end-point to assess and compare the effects of four oil dispersants and dispersed diesel fuel and crude oil combinations. Inhibition of germination by the water-soluble fraction of diesel fuel increased following the addition of each of the dispersants; the nominal 48-h EC 50 concentration of diesel fuel declined from 6800 to approximately 400 μl 1 -1 nominal for each dispersed combination. This contrasted with crude oil, where the addition of two dispersants resulted in an enhanced germination rate and an increase in nominal EC 50 concentrations from 130 μl 1 -1 for the undispersed crude to 4000 and 2500 μl 1 -1 . The results indicate that, while germination inhibition of P. comosa may be enhanced by the chemical dispersal of oil response varies with type of both oil and oil dispersant. (author)

  16. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  17. Effects of biotic interactions and dispersal on the presence-absence of multiple species

    International Nuclear Information System (INIS)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2017-01-01

    One of the important issues in ecology is to predict which species will be present (or absent) across a geographical region. Dispersal is thought to have an important influence on the range limits of species, and understanding this problem in a multi-species community with priority effects (i.e. initial abundances determine species presence-absence) is a challenging task because dispersal also interacts with biotic and abiotic factors. Here, we propose a simple multi-species model to investigate the joint effects of biotic interactions and dispersal on species presence-absence. Our results show that dispersal can substantially expand species ranges when biotic and abiotic forces are present; consequently, coexistence of multiple species is possible. The model also exhibits ecologically interesting priority effects, mediated by intense biotic interactions. In the absence of dispersal, competitive exclusion of all but one species occurs. We find that dispersal reduces competitive exclusion effects that occur in no-dispersal case and promotes coexistence of multiple species. These results also show that priority effects are still prevalent in multi-species communities in the presence of dispersal process. We also illustrate the existence of threshold values of competitive strength (i.e. transcritical bifurcations), which results in different species presence-absence in multi-species communities with and without dispersal.

  18. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  19. The Effect of Height, Wing Length, and Wing Symmetry on Tabebuia rosea Seed Dispersal

    Directory of Open Access Journals (Sweden)

    Yasmeen Moussa

    2014-12-01

    Full Text Available The relationship between the vertical drop height and the horizontal distance traveled (dispersal ratio was investigated for a sample of fifty Tabebuia rosea seeds by dropping the seeds from five heights ranging from 1.00 to 2.00 meters. The dispersal ratio was found to be a constant 0.16 m/m for these heights. The effects of total seed length and asymmetry of seed wings on dispersal ratio were also measured using separate samples of fifty Tabebuia rosea seeds. It was found that neither seed length nor asymmetry had a significant effect on the dispersal ratio.

  20. Study of the anomalous cross-section lineshape of e{sup +}e{sup -}{yields}DD{sup Macron} at {psi}(3770) with an effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guo-Ying, E-mail: chengy@pku.edu.cn [Department of Physics, Xinjiang University, Urumqi 830046 (China); Zhao, Qiang [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, CAS, Beijing 100049 (China)

    2013-01-29

    We study the anomalous cross-section lineshape of e{sup +}e{sup -}{yields}DD{sup Macron} with an effective field theory. Near the threshold, most of the DD{sup Macron} pairs are from the decay of {psi}(3770). Taking into account the fact that the nonresonance background is dominated by the {psi}(2S) transition, the produced DD{sup Macron} pair can undergo final-state interactions before the pair is detected. We propose an effective field theory for the low-energy DD{sup Macron} interactions to describe these final-state interactions and find that the anomalous lineshape of the DD{sup Macron} cross section observed by the BESII Collaboration can be well described.

  1. ANOMALOUS MICROWAVE-ABSORPTION IN BI-2212 HIGH-TEMPERATURE SUPERCONDUCTORS WITH THE PARAMAGNETIC MEISSNER EFFECT

    NARCIS (Netherlands)

    KATAEV, [No Value; KNAUF, N; BRAUNISCH, W; MULLER, R; BOROWSKI, R; RODEN, B; KHOMSKII, D

    1993-01-01

    The results of the experimental study of an anomaly in low magnetic field microwave absorption in polycrystalline Bi high-temperature superconductors are presented. These results show the presence of the so-called paramagnetic Meissner effect. The data obtained are evidence for the common origin of

  2. Anomalous scattering factors of some rare earth elements evaluated ...

    Indian Academy of Sciences (India)

    The real and imaginary parts, '() and ''() of the dispersion corrections to the forward Rayleigh scattering amplitude (also called anomalous scattering factors) for the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er, have been determined by a numerical evaluation of the dispersion integral that relates them through the ...

  3. Anomalous scattering factors of some rare earth elements evaluated

    Indian Academy of Sciences (India)

    The real and imaginary parts, '() and ''() of the dispersion corrections to the forward Rayleigh scattering amplitude (also called anomalous scattering factors) for the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er, have been determined by a numerical evaluation of the dispersion integral that relates them through the ...

  4. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water–surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface–water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of

  5. Transport theory for disordered multiple-band systems: Anomalous Hall effect and anisotropic magnetoresistance

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Tserkovnyak, Y.; Výborný, Karel; Sinova, J.

    2009-01-01

    Roč. 79, č. 19 (2009), 19529/1-19529/19 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic materials * Hall effect * magnetoresistance * quasiparticles * spin-orbit interactions * two-dimensional electro n gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.79.195129

  6. Anomalous diamagnetism (high-temperature Meissner effect) in the compound CuCl

    International Nuclear Information System (INIS)

    Brandt, N.B.; Kuvshinnikov, S.V.; Rusakov, A.P.; Semenov, M.V.

    1978-06-01

    Polycrystaline CuCl samples under hydrostatic compression of approximately 5 kbar have been cooled rather rapidly (>20 degrees/min). Thereby, starting at approximately 170 K, repeated transitions from the weak diamagnetic state with chi approximately - (10 5 /10 6 ) to the diamagnetic state with a magnetic susceptibility here chi = -1 (Meissner effect) have been observed, in some cases with a simultaneous strong increase (some orders of magnitude) in electrical conductivity. At temperatures below approximately 100 K, CuCl is going to the stationary or quasi-stationary state with chi approximately -1 which is stable in this temperature range for at least some hours. (orig.) [de

  7. Nonequilibrium effects in fixed-bed interstitial fluid dispersion

    NARCIS (Netherlands)

    Kronberg, Alexandre E.; Westerterp, K.R.

    1999-01-01

    Continuum models for the role of the interstitial fluid with respect to mass and heat dispersion in a fixed bed are discussed. It is argued that the departures from local equilibrium and not the concentration and temperature gradients as such should be considered as the driving forces for mass and

  8. Effect of Nanofillers Dispersion in Polymer Matrices: A Review

    Czech Academy of Sciences Publication Activity Database

    Šupová, Monika; Martynková, G.S.; Barabaszová, K.

    2011-01-01

    Roč. 3, č. 1 (2011), s. 1-25 ISSN 1947-2935 R&D Projects: GA ČR(CZ) GA106/09/1000 Institutional research plan: CEZ:AV0Z30460519 Keywords : dispersion * nanocomposite * nanofillers Subject RIV: JI - Composite Materials Impact factor: 3.308, year: 2011

  9. Effect of nonlocal dispersion on self-interacting excitations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Gaididei, Yu.B.

    1996-01-01

    The dynamics of self-interacting quasiparticles in 1Dsystems with long-range dispersive interactions isexpressed in terms of a nonlocal nonlinear Schrödingerequation. Two branches of stationary solutions are found.The new branch which contains a cusp soliton is shown to beunstable and blowup...... is observed. Moving solitons radiatewith a wavelength proportional to the velocity....

  10. Effect of Seed Density on Splash Cup Seed Dispersal

    Science.gov (United States)

    Wigger, Patrick; Pepper, Rachel

    2017-11-01

    Splash cup plants are plants that utilize a small, mm-sized cup filled with seeds as a method of seed dispersal. The cup uses kinetic energy of an incident raindrop in order to project the seeds away from the plant up to 1 meter. The dispersal distance is important to ensure the offspring are not clustered too tightly to the parent plant. It has previously been found that a cup angle of 40 degrees to the horizontal is optimal for maximum dispersal of water from cups with no seeds. In this study we examine if the 40 degree cup is optimal for cups containing seeds with varying densities. We released uniform water drops above 5.0 mm 3D printed models of splash cups, using 1.0 mm plastic and glass microspheres of varying densities to simulate seeds. We observed the dispersal characteristics of each bead type by measuring the final seed locations after each splash, and by recording high speed video to determine the angle and velocity of the seeds as they exited the cup.

  11. Hybrid skew scattering regime of the anomalous Hall effect in Rashba systems: Unifying Keldysh, Boltzmann, and Kubo formalisms

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Výborný, Karel; Sinova, J.

    2008-01-01

    Roč. 78, č. 4 (2008), 041305/1-041305/4 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall efect * Rashba systemy * Keldysh formalism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  12. Effect of anomalous ุ ฯ vertex on decay-lepton distributions in ท-ุุ and ...

    Indian Academy of Sciences (India)

    We also study the lepton energy and beam polarization dependence of certain CP-violating lepton angular asymmetries arising from an anomalous decay vertex and compare them with the asymmetries arising due to CP-violation in the production process due to the top electric or weak dipole moment.

  13. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    Science.gov (United States)

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  14. Reactions of atomic hydrogen with formic acid and carbon monoxide in solid parahydrogen I: Anomalous effect of temperature.

    Science.gov (United States)

    Paulson, Leif O; Mutunga, Fredrick M; Follett, Shelby E; Anderson, David T

    2014-09-11

    Low-temperature condensed phase reactions of atomic hydrogen with closed-shell molecules have been studied in rare gas matrices as a way to generate unstable chemical intermediates and to study tunneling-driven chemistry. Although parahydrogen (pH2) matrix isolation spectroscopy allows these reactions to be studied equally well, little is known about the analogous reactions conducted in a pH2 matrix host. In this study, we present Fourier transform infrared (FTIR) spectroscopic studies of the 193 nm photoinduced chemistry of formic acid (HCOOH) isolated in a pH2 matrix over the 1.7 to 4.3 K temperature range. Upon short-term irradiation the HCOOH readily undergoes photolysis to yield CO, CO2, HOCO, HCO and H atoms. Furthermore, after photolysis at 1.9 K tunneling reactions between migrating H atoms and trapped HCOOH and CO continue to produce HOCO and HCO, respectively. A series of postphotolysis kinetic experiments at 1.9 K with varying photolysis conditions and initial HCOOH concentrations show the growth of HOCO consistently follows single exponential (k = 4.9(7)x10(-3) min(-1)) growth kinetics. The HCO growth kinetics is more complex displaying single exponential growth under certain conditions, but also biexponential growth at elevated CO concentrations and longer photolysis exposures. By varying the temperature after photolysis, we show the H atom reaction kinetics qualitatively change at ∼2.7 K; the reaction that produces HOCO stops at higher temperatures and is only observed at low temperature. We rationalize these results using a kinetic mechanism that involves formation of an H···HCOOH prereactive complex. This study clearly identifies anomalous temperature effects in the reaction kinetics of H atoms with HCOOH and CO in solid pH2 that deserve further study and await full quantitative theoretical modeling.

  15. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?

    Science.gov (United States)

    Lofgren, Lotus; Nguyen, Nhu H; Kennedy, Peter G

    2018-02-07

    Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Anomalous transport effects on switching currents of graphene-based Josephson junctions

    Science.gov (United States)

    Guarcello, Claudio; Valenti, Davide; Spagnolo, Bernardo; Pierro, Vincenzo; Filatrella, Giovanni

    2017-03-01

    We explore the effect of noise on the ballistic graphene-based small Josephson junctions in the framework of the resistively and capacitively shunted model. We use the non-sinusoidal current-phase relation specific for graphene layers partially covered by superconducting electrodes. The noise induced escapes from the metastable states, when the external bias current is ramped, given the switching current distribution, i.e. the probability distribution of the passages to finite voltage from the superconducting state as a function of the bias current, that is the information more promptly available in the experiments. We consider a noise source that is a mixture of two different types of processes: a Gaussian contribution to simulate an uncorrelated ordinary thermal bath, and non-Gaussian, α-stable (or Lévy) term, generally associated to non-equilibrium transport phenomena. We find that the analysis of the switching current distribution makes it possible to efficiently detect a non-Gaussian noise component in a Gaussian background.

  17. Effects of Dispersal and Initial Diversity on the Composition and Functional Performance of Bacterial Communities.

    Science.gov (United States)

    Zha, Yinghua; Berga, Mercè; Comte, Jérôme; Langenheder, Silke

    2016-01-01

    Natural communities are open systems and consequently dispersal can play an important role for the diversity, composition and functioning of communities at the local scale. It is, however, still unclear how effects of dispersal differ depending on the initial diversity of local communities. Here we implemented an experiment where we manipulated the initial diversity of natural freshwater bacterioplankton communities using a dilution-to-extinction approach as well as dispersal from a regional species pool. The aim was further to test whether dispersal effects on bacterial abundance and functional parameters (average community growth rates, respiration rates, substrate utilisation ability) differ in dependence of the initial diversity of the communities. First of all, we found that both initial diversity and dispersal rates had an effect on the recruitment of taxa from a regional source, which was higher in communities with low initial diversity and at higher rates of dispersal. Higher initial diversity and dispersal also promoted higher levels of richness and evenness in local communities and affected, both, separately or interactively, the functional performance of communities. Our study therefore suggests that dispersal can influence the diversity, composition and functioning of bacterial communities and that this effect may be enhanced if the initial diversity of communities is depleted.

  18. Effect of ionizing radiation on cholesterol in aqueous dispersion

    International Nuclear Information System (INIS)

    Lakritz, L.; Maerker, G.

    1989-01-01

    Aqueous sodium stearate dispersions of cholesterol were irradiated at 0-2 degrees C with absorbed doses ranging from 2.5 to 50 kGy. The resulting mixture of cholesterol derivatives was isolated and examined for 7-ketocholesterol and cholesterol 5 alpha, 6 alpha-epoxide and 5 beta, 6 beta-epoxide content. Concentrations of all three compounds increased with dose, while the ratio of 7-ketocholesterol to total epoxides decreased with increasing dose. The ratio of 7-ketocholestrol to the epoxides was approximately 1 or below at all dose levels while the same ratio in autoxidations of cholesterol in dispersions was normally 6 or greater. The change in the keto/epoxide ratio may be a means for determining whether meat or other foods containing cholesterol have been subjected to ionizing radiation

  19. Quasi-Analytic Synthesis of Nonrecursive Optical Delay Line Filters for Reliable Compensation of Dispersion Effects

    Science.gov (United States)

    Duthel, Thomas; Fritzsche, Daniel; Michael, Falk; Schäffer, Christian G.; Breuer, Dirk

    2006-11-01

    A quasi-analytic synthesis algorithm is presented to determine the coefficients of nonrecursive optical delay line filters with approximately constant or linear dispersion. These filters can be used to compensate the dispersion and dispersion slope effects in high-speed optical transmission systems. The synthesis of the coefficients is based on a rigorous analysis of the impact of transfer function on the filter's dispersion behavior. The advantages of this algorithm are that filters of arbitrary order have similar dispersion shapes and that the dispersion values of the filters can be adjusted by controlling a single parameter instead of optimizing all the filter coefficients independently. The realized dispersion shapes are reproducible, and no iterative algorithms are needed for the calculation. The abilities of the synthesized filters are proven in system simulations at 40 Gb/s. Therefore, filters of different orders were investigated in the static case (i.e., with a fixed dispersion) and the dynamic case, where the dispersion of the filter is adapted to the requirements of the simulated optical transmission channel. In addition, the influences of the filter's free spectral range and of the utilized bandwidth inside a filter period were investigated. To the best of our knowledge, both the analytical synthesis approach and the investigation of the optimal filter configuration are presented for the first time.

  20. Timing of dispersal: effect of ants on aphids

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Hullé, M.; Stadler, B.

    2007-01-01

    Roč. 152, č. 4 (2007), s. 625-631 ISSN 0029-8549 R&D Projects: GA AV ČR IAA6087301; GA MŠk LC06073; GA ČR(CZ) GEDIV/06/E013 Grant - others:-(DE) BMBF No. PT BEO 51-0339476D Institutional research plan: CEZ:AV0Z60870520 Keywords : Ant attendance * Dispersal * Mutualistic systems * Suction traps Subject RIV: EH - Ecology, Behaviour Impact factor: 2.973, year: 2007

  1. Anomalous Charge Transport in Disordered Organic Semiconductors

    International Nuclear Information System (INIS)

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-01-01

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  2. Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty

    Science.gov (United States)

    de Barros, Felipe P. J.; Dentz, Marco

    2016-05-01

    Solute transport models tend to use coarse numerical grid blocks to alleviate computational costs. Aside from computational issues, the subsurface environment is usually characterized over a coarse measurement network where only large scale fluctuations of the flow field are captured. Neglecting the subscale velocity fluctuations in transport simulators can lead to erroneous predictions with consequences in risk analysis and remediation. For such reasons, upscaled dispersion coefficients in spatially heterogeneous flow fields must (1) account for the subscale variability that is filtered out by homogenization and (2) be modeled as a random function to incorporate the uncertainty associated with non-ergodic solute bodies. In this work, we examine the low order statistical properties of the blockscale dispersion tensor. The blockscale is defined as the scale upon which the spatially variable flow field is homogenized (e.g. the numerical grid block). Using a Lagrangian framework, we discuss different conceptualizations of the blockscale dispersion tensor. We distinguish effective and ensemble blockscale dispersion, which measure the impact of subscale velocity fluctuations on solute dispersion. Ensemble dispersion quantifies subscale velocity fluctuations between realizations, which overestimates the actual velocity variability. Effective dispersion on the other hand quantifies the actual blockscale velocity variability and thus reflects the impact of subscale velocity fluctuations on mixing and spreading. Based on these concepts, we quantify the impact of subscale velocity fluctuations on solute particle spreading and determine the governing equations for the coarse-grained concentration distributions. We develop analytical and semi-analytical expressions for the average and variance of the blockscale dispersion tensor in 3D flow fields as a function of the structural parameters characterizing the subsurface. Our results illustrate the relevance of the blockscale

  3. Suppression of the Neoclassical Tearing Modes in Tokamaks under Anomalous Transverse Transport Conditions when the Magnetic Well Effect Predominates over the Bootstrap Drive

    International Nuclear Information System (INIS)

    Konovalov, S.V.; Mikhailovskii, A.B.; Shirokov, M.S.; Ozeki, T.; Tsypin, V.S.

    2005-01-01

    A study is made of the suppression of neoclassical tearing modes in tokamaks under anomalous transverse transport conditions when the magnetic well effect predominates over the bootstrap drive. It is stressed that the corresponding effect, which is called the compound suppression effect, depends strongly on the profiles of the electron and ion temperature perturbations. Account is taken of the fact that the temperature profile can be established as a result of the competition between anomalous transverse heat transport, on the one hand, and longitudinal collisional heat transport, longitudinal heat convection, longitudinal inertial transport, and transport due to the rotation of magnetic islands, on the other hand. The role of geodesic effects is discussed. The cases of competition just mentioned are described by the model sets of reduced transport equations, which are called, respectively, collisional, convective, inertial, and rotational plasmophysical models. The magnetic well is calculated with allowance for geodesic effects. It is shown that, for strong anomalous heat transport conditions, the contribution of the magnetic well to the generalized Rutherford equation for the island width W is independent of W not only in the collisional model (which has been investigated earlier) but also in the convective and inertial models and depends very weakly (logarithmically) on W in the rotational model. It is this weak dependence that gives rise to the compound effect, which is the subject of the present study. A criterion for the stabilization of neoclassical tearing modes by the compound effect at an arbitrary level of the transverse heat transport by electrons and ions is derived and is analyzed for two cases: when the electron heat transport and ion heat transport are both strong, and when the electron heat transport is strong and the ion heat transport is weak

  4. Effects of nonlocal dispersive interactions on self-trapping excitations

    DEFF Research Database (Denmark)

    Gaididei, Yu.B.; Mingaleev, S.F.; Christiansen, Peter Leth

    1997-01-01

    -site and intersite states. It is shown that for s sufficiently large all features of the model are qualitatively the same as in the NLS model with a nearest-neighbor interaction. For s less than some critical value s(cr), there is an interval of bistability where two stable stationary states exist at each excitation...... number N = Sigma(n)\\psi(n)\\(2). For cubic nonlinearity the bistability of on-site solitons may occur for dipole-dipole dispersive interaction (s = 3), while s(cr) for intersite solitons is close to 2.1. For increasing degree of nonlinearity sigma, s(cr) increases. The long-distance behavior...

  5. Preparation of alkyd resins containing PEG unit and their dispersing effects of inorganic particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chill Won; Gong, Myoung Seon [Dept. of Chemistry, Dankook University, Cheonan (Korea); Kim, Chang Bae [Dept. of Chemistry, Dankook University, Seoul (Korea)

    2000-02-01

    Poly(ethylene glycol)-containing alkyd resins were prepared for the dispersing agent and binder by reacting the carboxy-terminated poly(ethylene glycol) with 1,1,1-trimethylolpropane monostearate obtained from 1,1,1-trimethylolpropane and stearic acid. Dispersing properties of titanium dioxide and talc were compared by measuring transmittance of the dispersing solutions, and rate of the sedimentation in 1,1,1-trichloroethane. These alkyd resins, which contained both hydrophilic and lipophilic parts, showed a good dispersion of the polar inorganic particles in the non-polar solvent. The dispersing effect of the PEG-containing alkyd resins showed its maximum when the molecular weights of hydrophilic and lipophilic parts were almost the same. This happened when the alkyd resin was prepared from PEG 1000, which turned out to agree well with HLB value 10.25. 10 refs., 5 figs., 2 tabs.

  6. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the method are also discussed. © 2012 Elsevier B.V.

  7. Effects of dispersal and environmental heterogeneity on the replacement and nestedness components of β-diversity.

    Science.gov (United States)

    Gianuca, Andros T; Declerck, Steven A J; Lemmens, Pieter; De Meester, Luc

    2017-02-01

    Traditionally metacommunity studies have quantified the relative importance of dispersal and environmental processes on observed β-diversity. Separating β-diversity into its replacement and nestedness components and linking such patterns to metacommunity drivers can provide richer insights into biodiversity organization across spatial scales. It is often very difficult to measure actual dispersal rates in the field and to define the boundaries of natural metacommunities. To overcome those limitations, we revisited an experimental metacommunity dataset to test the independent and interacting effects of environmental heterogeneity and dispersal on each component of β-diversity. We show that the balance between the replacement and nestedness components of β-diversity resulting from eutrophication changes completely depending on dispersal rates. Nutrient enrichment negatively affected local zooplankton diversity and generated a pattern of β-diversity derived from nestedness in unconnected, environmentally heterogeneous landscapes. Increasing dispersal erased the pattern of nestedness, whereas the replacement component gained importance. In environmentally homogeneous metacommunities, dispersal limitation created community dissimilarity via species replacement whereas the nestedness component remained low and unchanged across dispersal levels. Our study provides novel insights into how environmental heterogeneity and dispersal interact and shape metacommunity structure. © 2016 by the Ecological Society of America.

  8. Motivational effects of pay dispersion in pay for performance programs implemented in Romanian companies

    Directory of Open Access Journals (Sweden)

    Urieşi Sebastian

    2016-07-01

    Full Text Available The present study investigates the motivational effects in a sample of Romanian employees in private companies that implement pay for performance programs of one of the characteristics of these programs, namely pay dispersion, and on the potential mediating role of organizational justice in these effects. To this aim, we examined the relationships between the amounts of pay dispersion introduced by the respective financial incentive system, employee perceptions of distributive and procedural justice, work motivation, and base salary, respectively. The results of the data analysis, performed through structural equation modeling, support our hypotheses concerning the positive effect of performance – related pay dispersion on motivation and the mediating role of the two dimensions of organizational justice in this effect. Larger financial rewards allocated by the financial incentive system for high performers increase employee perceptions of distributive and procedural justice, which, in turn, foster work motivation. Base salary was also found to influence pay dispersion, as well as perceived distributive justice.

  9. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields

    DEFF Research Database (Denmark)

    Vibe-Petersen, Solveig; Leirs, Herwig; de Bruyn, L

    2006-01-01

    ), excluding predators by nets and attracting avian predators by nest boxes and perch poles. Because dispersal of the rodents could mask the predation pressure treatment effects, control and predator exclusion treatments were repeated with enclosed rodent populations. 3.  Population growth during the annual......1.  We investigate the effects of different levels of predation pressure and rodent dispersal on the population dynamics of the African pest rodent Mastomys natalensis in maize fields in Tanzania. 2.  Three levels of predation risk were used in an experimental set-up: natural level (control...... risk. Reducing dispersal of rodents removed the effect of predation on population growth and peak size, suggesting that local predators may play a role in driving rodent dispersal, but have otherwise little direct effect on population dynamics....

  10. Effect of dispersants on the growth of indigenous bacterial population and biodegradation of crude oil

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Row, A.

    Oil dispersants (5 from Castrol Ltd., Bombay and 2 from British Petroleum, London) were studied individually and in combination with Saudi Arabian crude oil for their effect on the growth of indigenous bacteria and on the biodegradation of oil. None...

  11. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    Science.gov (United States)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  12. Motivational effects of pay dispersion in pay for performance programs implemented in Romanian companies

    OpenAIRE

    Urieşi Sebastian

    2016-01-01

    The present study investigates the motivational effects in a sample of Romanian employees in private companies that implement pay for performance programs of one of the characteristics of these programs, namely pay dispersion, and on the potential mediating role of organizational justice in these effects. To this aim, we examined the relationships between the amounts of pay dispersion introduced by the respective financial incentive system, employee perceptions of distributive and procedural ...

  13. Uncoupling the effects of seed predation and seed dispersal by granivorous ants on plant population dynamics.

    Directory of Open Access Journals (Sweden)

    Xavier Arnan

    Full Text Available Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation and benefits (seed dispersal, the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength.

  14. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  15. Chromatic and Dispersive Effects in Nonlinear Integrable Optics

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen D. [RadiaSoft, Boulder; Bruhwiler, David L. [RadiaSoft, Boulder; Valishev, Alexander [Fermilab; Nagaitsev, Sergei N. [Fermilab; Danilov, Viatcheslav V. [Oak Ridge

    2015-04-22

    Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker and fewer correcting magnet families are required, thus minimizing the impact on dynamic aperture.

  16. Atypical effects of incorporated surfactants on stability and dissolution properties of amorphous polymeric dispersions.

    Science.gov (United States)

    Al-Obaidi, Hisham; Lawrence, M Jayne; Buckton, Graham

    2016-11-01

    To understand the impact of ionic and non-ionic surfactants on the dissolution and stability properties of amorphous polymeric dispersions using griseofulvin (GF) as a model for poorly soluble drugs. Solid dispersions of the poorly water-soluble drug, griseofulvin (GF) and the polymers, poly(vinylpyrrolidone) (PVP) and poly(2-hydroxypropyl methacrylate) (PHPMA), have been prepared by spray drying and bead milling and the effect of the ionic and non-ionic surfactants, namely sodium dodecyl sulphate (SDS) and Tween-80, on the physico-chemical properties of the solid dispersions studied. The X-ray powder diffraction data and hot-stage microscopy showed a fast re-crystallisation of GF. While dynamic vapour sorption (DVS) measurements indicated an increased water uptake, slow dissolution rates were observed for the solid dispersions incorporating surfactants. The order by which surfactants free dispersions were prepared seemed critical as indicated by DVS and thermal analysis. Dispersions prepared by milling with SDS showed significantly better stability than spray-dried dispersions (drug remained amorphous for more than 6 months) as well as improved dissolution profile. We suggest that surfactants can hinder the dissolution by promoting aggregation of polymeric chains, however that effect depends mainly on how the particles were prepared. © 2016 Royal Pharmaceutical Society.

  17. The effect of inertially viscous interphase interaction on the acoustic characteristics of disperse media

    International Nuclear Information System (INIS)

    Vladimir S Fedotovsky; Tatiana N Vereshchagina; Alexey V Derbenev

    2005-01-01

    Full text of publication follows: The vibratory-wave dynamics of disperse media with uniformly distributed spherical and ellipsoidal inclusions is considered on the basis of the concept of effective dynamic properties. The notions of effective dynamic density and translation viscosity taking account of the effects of the inertial and viscous interaction of liquid and disperse inclusions are introduced. The effective dynamic properties governing the process of wave propagation in disperse media depend both on the density, viscosity and concentration of components and on the form and orientation of inclusions. It is shown that for disperse media with inclusions as oblate ellipsoids of rotation the effective dynamic density takes the maximum value, whereas for the medium with inclusions as extended ellipsoids - the minimum one. The dynamic density of the medium with spherical inclusions takes the intermediate value. Based on the offered concept, the relations for sound velocity and attenuation in disperse media are derived. It is shown that the acoustic characteristics of disperse media essentially depend on the form of the ellipsoidal inclusions and their orientation relative to the direction of wave propagation. (authors)

  18. Combined effect of magnetic field and thermal dispersion on a non-darcy mixed convection

    KAUST Repository

    El-Amin, Mohamed

    2011-05-21

    This paper is devoted to investigate the influences of thermal dispersion and magnetic field on a hot semi-infinite vertical porous plate embedded in a saturated Darcy-Forchheimer-Brinkman porous medium. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The effects of transverse magnetic field parameter (Hartmann number Ha), Reynolds number Re (different velocities), Prandtl number Pr (different types of fluids) and dispersion parameter on the wall shear stress and the heat transfer rate are discussed. © 2011 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg.

  19. Dispersion relations from the hard thermal loop effective action in a magnetic field

    CERN Document Server

    Elmfors, Per

    1995-01-01

    Dispersion relations for fermions at high temperature and in a background magnetic field are calculated in two different ways. First from a straightforward one-loop calculation where, in the weak field limit, we find an expression closely related to the standard dispersion relations in the absence of the magnetic field. Secondly, we derive the dispersion relations directly from the Hard Thermal Loop effective action, which allows for an exact solution (i.e. to all orders in the external field), up to the last numerical integrals.

  20. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  1. Effect of Undensified Silica Fume on the Dispersion of Carbon Nanotubes within a Cementitious Composite

    Science.gov (United States)

    Alrekabi, S.; Cundy, A.; Whitby, Raymond L. D.; Lampropoulos, A.; Savina, I.

    2017-04-01

    The synergistic effect of multi-walled carbon nanotubes (MWCNTs) and Undensified Silica Fume (USF) on the microstructure of cementitious composites has been studied. In the current work, USF was used to enhance the dispersion of nanotubes throughout the composite and prevent the re-agglomeration of nanotubes by providing a physical barrier of particles of small size. Ultrasonication was employed to disperse MWCNTs in water in the presence of polycarboxylate-based superplasticizer (PCE) as a dispersion agent. The results indicate that incorporation of USF considerably improves the dispersion of nanotubes in the composites, with subsequent enhancement of composite packing density. This enhancement can be attributed to the synergistic effect of MWCNTs and USF in reducing the volume of pores through the cementitious composites.

  2. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  3. Anomalous and resonance small angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs

  4. Effects of HfO{sub 2}/Co interface and Co/HfO{sub 2} interface on anomalous Hall behavior in perpendicular Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Long [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Guang [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Teng, Jiao, E-mail: tengjiao@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Qi-Xun; Liu, Yi-Wei; Li, Xu-Jing [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Guang-Hua, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-07-01

    Highlights: • Anomalous Hall effect in perpendicular Co/Pt multilayers is studied. • Thermally stable AHE feature is obtained in [Pt/Co]{sub 3}/HfO{sub 2}/Pt multilayers. • Good thermal stability is due to enhanced intrinsic and side-jump contributions. - Abstract: Effects of the HfO{sub 2}/Co interface and the Co/HfO{sub 2} interface on thermal stability of anomalous Hall effect (AHE) in perpendicular Co/Pt multilayers have been studied. It is observed that thermally stable AHE behavior cannot be obtained in perpendicular Co/Pt multilayers with the HfO{sub 2}/Co interface, mainly due to Co-Pt interdiffusion during annealing. In contrast, thermally stable AHE feature is observed in perpendicular Co/Pt multilayers with the Co/HfO{sub 2} interface despite Co-Pt interdiffusion, which is owing to the enhancement of the side jump and intrinsic contributions to the AHE through interfacial modification after annealing.

  5. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    Science.gov (United States)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  6. Spill-of-opportunity testing of dispersant effectiveness at the Mega Borg oil spill

    International Nuclear Information System (INIS)

    Payne, J.R.; Martrano, R.J.; Reilly, T.J.; Lindblom, G.P.; Kennicutt, M.C. II; Brooks, J.M.

    1993-01-01

    The release of 3.9 million gallons of Angola Planca crude oil from the stricken tanker Mega Borg 57 miles offshore of Galveston, Texas in June 1990 provided a valuable opportunity to document dispersant effectiveness under field conditions. Aerial application of Corexit 9527 (968 gallons total in four adjacent passes) onto an identified test portion of the slick was evaluated by concurrent observations from a command-and-control aircraft and surface vessels (with videotape and 35-mm photographic documentation) and ground truth measurements, including continuous 4-meter-depth ultraviolet/fluorescence and a discrete water sampling program. Using the study plan outlined by Payne and colleagues, target and control areas were designated before dispersant application by deployment of smoke bombs and coded three-meter drogues. Postdispersant surface vessel placement and 30 liter water sampling activities from the Texas A ampersand M research vessel HOS Citation were aided by the smoke bombs, the free-drifting drogues, and directions from the command-and-control aircraft. Subsequent FID GC and GC/MS analyses of water sample extracts allowed quantitation of the dispersed oil concentrations under both treated and control areas. Although the spilled oil was extremely light (API gravity 39.0) and subject to significant natural dispersion, the field observations, filmed documentation, and water column data clearly demonstrated an increase in dispersed oil concentrations beneath the treated slick. The distribution of dispersed oil droplets was very heterogeneous and reflected the patchy distribution of oil on the water surface before dispersant application. Maximum concentrations of dispersed hydrocarbons in the center of the treated zone were 22,000 μg/L (22 ppm) for total aliphatic and 5.6 μg/L (5.6 ppb) for total aromatics 60 to 90 minutes after dispersant application. Elevated levels were generally limited to the upper 1 to 3 meters of the water column

  7. Disentangling the effects of habitat suitability, dispersal, and fragmentation on the distribution of river fishes.

    Science.gov (United States)

    Radinger, Johannes; Wolter, Christian

    2015-06-01

    Habitat suitability, dispersal potential, and fragmentation influence the distribution of stream fishes; however, their relative influence and interacting effects on species distributions are poorly understood, which may result in uncertain outcomes of river rehabilitation and conservation. Using empirical data describing 17 relatively common stream fishes, we combine (1) species habitat suitability models (MaxEnt) with a (2) species dispersal model (FIDIMO) and a (3) worst-case scenario of the influence of river fragmentation on dispersal. Using generalized linear mixed models, we aimed to uncover the role of these factors in explaining the probability of presence. Simulations over nine years allowed for assessing the relative importance of dispersal over time for structuring species occurrences vs. the importance of habitat suitability. Models combining all three structuring factors performed consistently better in predicting the spatial occurrence patterns than models including only single factors. Our results confirmed that distribution patterns of stream fishes are jointly controlled by species dispersal and habitat suitability. An increase of 0.1 habitat suitability probability more than doubled the odds of species occurrence; an increase of 0.1 dispersal probability yielded a 14-fold increase of the odds of species occurrence. Temporal simulations revealed that over short time frames (1-2 years) dispersal from nearby source populations is four times more important than habitat suitability for species presence. However, over longer time periods, the importance of habitat suitability increases relative to the importance of dispersal. Surprisingly, fragmentation by migration barriers did not appear as a significant driver of occurrence patterns. Concluding, these findings demonstrate the importance of the spatial arrangement of suitable habitats and potential source populations, as well as their relative position in relation to barriers. We emphasize

  8. Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks

    Science.gov (United States)

    Fedotov, Sergei; Korabel, Nickolay

    2015-12-01

    We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.

  9. Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks.

    Science.gov (United States)

    Fedotov, Sergei; Korabel, Nickolay

    2015-12-01

    We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.

  10. Nanoclay Dispersion and its Effect on Properties of Waterborne Polyurethanes

    Directory of Open Access Journals (Sweden)

    H. Honarkar

    2014-01-01

    Full Text Available In recent years, waterborne polyurethanes as in coatings and adhesives formulations have attracted considerable attention because they are non-toxic, non-flammable and friendly to environment. Besides environmental management, the flexibility, low temperature property, high tensile strength, good adhesion and improved rheological property are specific properties of waterborne polyurethanes. Also low production cost of water borne polyurethanes over solvent-borne polyurethanes is also a reason for their applications. However, these materials have some defects such as weak water resistance and low adhesion in the moisture environment due to sensitivity of their hydrophilic ionic bonds, ether groups, urethane and ester groups to hydrolysis which need to be improved. Also, low heat resistance of these materials is due to a relatively low crystalline melting point or glass transition temperature of hard segments. One of the ways to solve this problem and improve its properties for different applications is the addition of inorganic fillers especially nano-sized layered silicates within polyurethane matrix. In this way water resistance, heat resistance, mechanical properties and modulus increase simultaneously. In this research, waterborne polyurethane nanocomposites with PTMG polyol, IPDI, DMPA (internal emulsifier, TEA (neutralizer and 1, 3 and 5weight % of Cloisite 30B as reinforcement were synthesized and characterized. Polarity of the samples was investigated by contact angle test and dispersion of nano particles in the samples was characterized by X-Ray and TEM, Thermal properties and dynamic mechanical properties were measured by TGA and DMTA, respectively. The results showed that incorporation of clay into polyurethanes did reduce water absorption and increased heat resistance, modulus, particle size and contact angle.In recent years, waterborne polyurethanes including coatings and adhesives have attracted considerable attention because they

  11. Effect of solvent composition on dispersing ability of reaction sialon suspensions.

    Science.gov (United States)

    Xu, Xin; Oliveira, Marta; Ferreira, José M F

    2003-03-15

    This work focuses on the optimization of the rheological behavior of suspensions considering different solvent compositions. The effects of methyl ethyl ketone (MEK)/ethanol (E) solvent mixtures on reaction sialon suspensions were investigated by measuring sedimentation behavior, adsorption of dispersant, and flow behavior. It was shown that both the flow behavior and the sedimentation behavior strongly depended on selection of solvent composition. Using 3 wt% KD1 as dispersant, well-dispersed colloidal suspensions could be obtained in MEK-rich solvents. The suspensions with 60 vol% MEK/40 vol% E as solvent could be fitted to the Bingham model with very low yield stress, while suspensions with pure MEK or ethanol-rich mixtures as solvent showed pseudo plastic behavior with relatively high yield stress values. A model was proposed to explain the different flow behaviors of suspensions considering the different configurations of dispersant at particles' surfaces.

  12. ttH anomalous coupling in double Higgs production

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Kenji; Niyogi, Saurabh; Shivaji, Ambresh [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute,Chhatnag Road, Junsi, Allahabad-211019 (India)

    2014-04-02

    We study the effects of top-Higgs anomalous coupling in the production of a pair of Higgs boson via gluon fusion at the Large Hadron Collider (LHC). The introduction of anomalous ttH coupling can alter the hadronic double Higgs boson cross section and can lead to characteristic changes in certain kinematic distributions. We perform a global analysis based on available LHC data on the Higgs to constrain the parameters of ttH anomalous coupling. Possible overlap of the predictions due to anomalous ttH coupling with those due to anomalous trilinear Higgs coupling is also studied. We briefly discuss the effect of the anomalous ttH coupling on the HZ production via gluon fusion which is one of the main backgrounds in the HH→γγbb-macron channel.

  13. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites.

    Science.gov (United States)

    Khoshkava, V; Kamal, M R

    2013-09-09

    Dispersion quality and polymer-filler interaction are important factors in determining the final properties of polymer nanocomposites. Surface energy of nanocrystalline cellulose (NCC) and some polymers (polypropylene, PP, and polylactic acid, PLA) was measured at room and high temperatures. NCC had higher polarity and surface energy than PP and PLA at room temperature but had a lower surface energy at higher temperatures. The effect of surface modification with alkenyl succinic anhydride (ASA) on NCC surface energy at room and high temperature was studied. Total surface energy of NCC was lowered after surface modification. Thermodynamic work of adhesion for PP/NCC and PLA/NCC was lowered by NCC surface modification. A thermodynamic analysis is proposed to estimate the dispersion energy, based on surface energy measurements at room and high temperatures. Also, a dispersion factor is defined to provide a quantitative indication of the dispersibility of nanoparticles in a polymer matrix under various conditions. The required dispersion energy was reduced by lowering the interfacial tension. On the other hand, it increased as the quality of NCC dispersion (i.e., the nanoparticle surface area) in the system was improved. Surface modification of NCC with ASA had a negative effect on the compatibility between NCC and PLA, whereas it had a positive influence on compatibility between PP and NCC.

  14. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous...

  15. Effectiveness of selected dispersants on magnetite deposition at simulated PWR heat-transfer surfaces

    International Nuclear Information System (INIS)

    Burgmayer, P.; Crovetto, R.; Turner, C.; Klimas, S.J.

    1999-07-01

    The effectiveness of 3 different dispersants-a polyphosphonic acid (PIPPA), a polymethacrylic acid (PMA), and a hydroxyethylidene methacrylic acid (HEME)-at controlling magnetite deposition was examined under steam generator operating conditions. Tests in a cycling research model boiler showed that the dispersants resulted in corrosion products of a smaller average size and a bimodal size distribution. At a concentration in the boiler of 10 mg/kg, density weight deposit on heated probes was reduced 4-, 3-, and 2-fold for PMA, PIPPA, and HEME, respectively. PIPPA was the most effective at increasing iron transport out of the boiler. In deposition loop tests using an 59 Fe radiotracer, only PIPPA and HEME were effective at reducing the particle deposition rate under flow-boiling conditions. None of the dispersants had any effect on deposition under single-phase forced-convective flow. (author)

  16. Effects of Atorvastatin on Ventricular Late Potentials and Repolarization Dispersion in Patients with Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Chih-Sheng Chu

    2007-05-01

    Full Text Available Emerging evidence suggests that statins have a favorable impact on the reduction of arrhythmia events and sudden cardiac death in patients with structural heart disease. We aimed to investigate the possibly and directly favorable effects of statins on ventricular late potentials, QT dispersion, and transmural dispersion of repolarization attained by analyzing clinical electrocardiography (ECG risk stratification parameters in patients with hypercholesterolemia without structural heart disease. In total, 82 patients (45 females; mean age, 62 ± 10 years with hypercholesterolemia were enrolled in this prospective study to examine the effects of statin therapy (atorvastatin 10mg/day for 3 months on ECG risk stratification parameters. Surface 12-lead ECG and signal-average ECG (SAECG were recorded before and after statin treatment. The SAECG parameters, QT dispersion, Bazett-corrected QT (QTc dispersion, T wave peak-to-end interval (Tpe, and percentage of Tpe/QT interval were calculated and compared before and after statin therapy. Twelve-lead ambulatory 24-hour ECGs were recorded in 12 patients. The results demonstrated that after statin therapy for 3 months, serum levels of total cholesterol and low-density lipoprotein cholesterol were significantly reduced (both p values < 0.001. However, neither significant changes of each SAECG parameter nor the frequency of late potentials were demonstrated after atorvastatin therapy. In addition, no significant changes in QT dispersion, QTc dispersion, Tpe, or Tpe/QT were found. However, 24-hour ambulatory ECG revealed a flattening effect of circadian variation of QTc dispersion after atorvastatin therapy. In conclusion, the favorable antiarrhythmia effect of atorvastatin (10 mg/day therapy cannot be directly reflected by analyzing these noninvasive ECG risk stratification parameters in low-risk patients with hypercholesterolemia.

  17. Dark matter velocity dispersion effects on CMB and matter power spectra

    International Nuclear Information System (INIS)

    Piattella, O.F.; Casarini, L.; Fabris, J.C.; Pacheco, J.A. de Freitas

    2016-01-01

    Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which act as a pressure perturbation

  18. Giant magnetic anisotropy and robust quantum anomalous Hall effect in boron-doped graphene with Re-adsorption

    Science.gov (United States)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan

    2018-04-01

    Recently topological materials have attracted much attention due to their quantization transports as well as edge states. It will be excellent to realize the robust quantum anomalous Hall transports in graphene-based devices. Using density-functional theory and tight-binding method, we investigated the structural, magnetic and topological properties for the boron-doped graphene with Re-adsorption. A large band-gap of 32.5 meV is opened by the Rashba spin-orbital coupling, and the band-gap is robust against the shape deformation of  ± 4% along the zigzag direction. Giant magnetic anisotropy emerges in this adsorption system together with the Fermi level lying in the band gap. Both the magnetic anisotropy and the band gap can be tuned by a moderate electric field. Calculations reveal that the system exhibits the quantization transports with the Chern number C=2 .

  19. A laboratory approach for determining the effect of oils and dispersants on mangroves

    Energy Technology Data Exchange (ETDEWEB)

    Baca, B.J.

    1982-10-01

    An experimental approach was developed and applied to testing the effects of oil and dispersant combinations on the growth of mangrove seedlings (trees of the intertidal tropics). A controlled growth chamber was employed to test the effects of different oils and dispersed oils in an array of dosages applied to different parts of the plants. Preliminary test results are reported for two species of mangroves collected from five localities, including both oiled and unoiled estuaries. Differences occurred between species, substances, dosages, the part of the plant dosed, and the presence of chronic oil pollution at localities from which the stocks were collected. Avicennia germinans (L.) L. (black mangrove) was more sensitive than Rhizophora mangle L. (red mangrove) when exposed to almost all substances tested. Light Arabian crude oil (LA) and light Arabian crude oil dispersed (LAD) were the most toxic substances tested. No. 2 fuel oil (N2) and No. 2 fuel oil dispersed (N2D) were as toxic as LA and LAD, except for an increase (an enhancement effect) in foliage and stem growth in Avicennia at lower dosages. Bunker C oil (BC) was the least toxic of the oils tested, resulting in the reduction of foliage and stem growth only at the highest dosage tested in Avicennia. Bunker C oil dispersed (BCD) failed to show effects in either species at any dosage tested. The leaves of Rhizophora were the most sensitive part of the plant tested.

  20. Boundary effects and gapped dispersion in rotating fermionic matter

    Directory of Open Access Journals (Sweden)

    Shu Ebihara

    2017-01-01

    Full Text Available We discuss the importance of boundary effects on fermionic matter in a rotating frame. By explicit calculations at zero temperature we show that the scalar condensate of fermion and anti-fermion cannot be modified by the rotation once the boundary condition is properly implemented. The situation is qualitatively changed at finite temperature and/or in the presence of a sufficiently strong magnetic field that supersedes the boundary effects. Therefore, to establish an interpretation of the rotation as an effective chemical potential, it is crucial to consider further environmental effects such as the finite temperature and magnetic field.

  1. Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Soulestin

    2012-03-01

    Full Text Available The effect of injection molding parameters (screw rotational speed, back pressure, injec-tion flow rate and holding pressure on the nanofiller dispersion of melt-mixed PP/clay nanocomposites was investigated. The nanocomposites containing 4 wt% clay were obtained by dilution of a PP/clay masterbatch into a PP matrix. The evaluation of the dispersion degree was obtained from dynamic rheological measurements. The storage modulus and complex viscosity exhibit significant dependence on the injection molding parameters. PP/clay nanocomposite molded using more severe injection parameters (high shear and long residence time displays the highest storage modulus and complex viscosity, which illustrates the improved dispersion of clay platelets. This better dispersion leads to better mechanical properties particularly higher Young modulus, tensile strength and unnotched impact strength. A Taguchi analysis was used to identify the influence of individual process parameters. The major individual parameter is the injection flow rate, whose increase improves nanoclay dispersion. The combination of high back pressure and high screw rotational speed is also necessary to optimize the dispersion of clay nanoplatelets.

  2. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Q.; Hendrickson, W.

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  3. Motional dispersions and ratchet effect in inertial systems

    Indian Academy of Sciences (India)

    without the application of any time-averaged external field is termed as ratchet effect [1]. This is necessarily a ... The effect can also be obtained if the system is driven periodically but time asymmetrically in such a way that the ..... Govt. of India for financial assistance (SR/FTP/PS-33/2004). References. [1] P Reimann, Phys.

  4. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Yang, Xiaojun, E-mail: 10100201@wit.edu.cn [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Cao, Shuo, E-mail: cao23@email.sc.edu [North America R& D Center, Clariant BU Catalysts, Louisville, 40209, KY (United States); Zhou, Jie [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Wu, Yuanxin [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Han, Jinyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Yan, Zhiguo [Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205 (China); Zheng, Mingming [Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Polyvinyl alcohol (PVA) inhibited the sintering and reduction of Pd nanoparticles. • Activity was improved for supported Pd catalysts with PVA modified method. • PVA modified method minimized the catalyst deactivation. • This work provides an insight of the regeneration strategies for Pd catalysts. - Abstract: A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  5. Topography and its effects on atmospheric dispersion in a risk study for nuclear facilities

    International Nuclear Information System (INIS)

    Wittek, P.

    1985-07-01

    In the consequence assessment model, applied in the German Reactor Risk Study (GRRS), atmospheric dispersion of radioactive substances is beeing treated with a straight line Gaussian dispersion model. But some of the German nuclear power plants are located in complex terrain. In this report, the 19 sites which are considered in the GRRS, are described and classified by two different methods in respect to terrain complexity. The relevant effects of the terrain on the dispersion are commented. Two modifications of the GRRS consequence assessment code UFOMOD take into account in a simple way the terrain elevation and the enhanced turbulence effected eventually by the terrain structure. Sample calculations for two release categories of the GRRS demonstrate the effect of these modifications on the calculated number of early fatalities. (orig.) [de

  6. Effectiveness of selected dispersants on magnetite deposition at simulated PWR heat transfer surfaces

    International Nuclear Information System (INIS)

    Burgmayer, P.; Crovetto, R.; Turner, C.; Klimas, S.

    1998-01-01

    The effectiveness of three different dispersants - a polyphosphonic acid (PIPPA); a polymethacrylic acid (PMA); and a hydroxyethylidene methacrylic acid (HEME) - at controlling magnetite deposition has been examined under steam generator operating conditions. Tests in a cycling research model boiler showed that the dispersants resulted in corrosion products with a smaller average size and a bimodal size distribution. At a concentration in the boiler of 10 mg/kg, density weight deposit on heated probes was reduced 4-, 3-, and 2-fold for PMA, PIPPA, and HEME, respectively. PIPPA was the most effective at increasing iron transport out of the boiler. In deposition loop tests using a 59-Fe radiotracer, only PIPPA and HEME were effective at reducing the particle deposition rate under flow-boiling conditions. None of the dispersants had any impact on deposition under single-phase forced-convective flow. (author)

  7. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......, however, show high attenuation and velocity dispersion remaining at high confining stress. Such dispersion is proposed to be caused by pressure gradients induced by compliant porosity within clay inclusions. By modeling the response of two extreme systems we quantify the possible effects of such clay......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...

  8. A literature review of the variation of dispersant effectiveness and salinity

    International Nuclear Information System (INIS)

    Fingas, M.

    2005-01-01

    Surfactants have varying solubilities in water and varying actions toward oil and water. This paper presents a summary of the effects of water salinity on chemical dispersion. Literature reveals that effectiveness testing with salinity variations shows a consistent decrease in effectiveness at lower salinities and a decrease after a maximum salinity is reached between 20 to 40 units of salinity. In waters with 0 salinity, conventional and currently available dispersants have a very low effectiveness or are sometimes even completely ineffective, a fact which is consistent in surfactant literature. Dispersant effectiveness peaks in waters with a salinity ranging from 20 to 40. Corexit 9500 appears to be less sensitive to salinity, but still peaks at about 35. There is a relatively smooth gradient of effectiveness with salinity both as the salinity rises to a peak point of effectiveness and after it exceeds this value. The curves for this salinity effect appear to be Gaussian. While there is some evidence for a temperature-salinity interaction as noted in the data, there is not enough data to make solid conclusions. Recent data is almost exclusively measured using Corexit 9527 and Corexit 9500. Since these have the same surfactant packages, there is a concern that the results may be more relevant to these formulations than to all possible formulations. Observations on 2 field trials in freshwater appear to indicate that the laboratory tests were correct in concluding very low dispersant effectiveness in freshwater. There were few studies on the biological effects of varying salinity and given oil exposure. It was concluded that the findings in the dispersant literature reviewed here are in agreement with those in the theoretical and basic surfactant literature. The effect of ionic strength and salinity on both hydrophilic-lipophilic balance and stability is the reason for the decreased effectiveness noted at low salinities and the same decrease at high salinities

  9. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    Science.gov (United States)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  10. Effective Block-Scale Dispersion and Its Self-Averaging Behavior in Heterogeneous Porous Media

    Science.gov (United States)

    de Barros, Felipe; Dentz, Marco

    2015-04-01

    Upscaled (effective) dispersion coefficients in spatially heterogeneous flow fields must (1) account for the sub-scale variability that is filtered out by homogenization and (2) be modeled as a random function to incorporate the uncertainty associated with non-ergodic solute bodies. In this study, we use the framework developed in de Barros and Rubin (2011) [de Barros F.P.J. and Rubin Y., Modelling of block-scale macrodispersion as a random function. Journal of Fluid Mechanics 676 (2011): 514-545] to develop novel semi-analytical expressions for the first two statistical moments of the block-effective dispersion coefficients in three-dimensional spatially random flow fields as a function of the key characteristic length scales defining the transport problem. The derived expressions are based on perturbation theory and limited to weak-to-mild heterogeneity and uniform-in-the-mean steady state flow fields. The semi-analytical solutions provide physical insights of the main controlling factors influencing the temporal scaling of the dispersion coefficient of the solute body and its self-averaging dispersion behavior. Our results illustrate the relevance of the joint influence of the block-scale and local-scale dispersion in diminishing the macrodispersion variance under non-ergodic conditions. The impact of the statistical anisotropy ratio in the block-effective macrodispersion self-averaging behavior is also investigated. The analysis performed in this work has implications in numerical modeling and grid design.

  11. Functional Equivalence in Seed Dispersal Effectiveness of Podocarpus parlatorei in Andean Fruit-Eating Bird Assemblages

    Directory of Open Access Journals (Sweden)

    Pedro G. Blendinger

    2017-06-01

    Full Text Available Most fleshy-fruited plants establish strong local interactions with a few fruit-eating species across their distribution range, which can differ among sites and have a major impact for the plant population dynamics. In turn, human disturbances alter both the original animal assemblage with which plants interact and the outcome of the mutualistic interaction. Negative consequences of human disturbances can be weakened when different seed dispersers exert similar effects on plant populations, being functionally equivalent. To understand the consequences of variability in seed dispersers on the recruitment of a long-lived tree species, I assessed changes in the assemblages of avian dispersers of Podocarpus parlatorei in subtropical Andean cloud-forests, and how these changes affect the outcome of the interaction at different spatial scales. The seed dispersal effectiveness (SDE concept, defined as the likelihood of a seed removed by a fruit-eating bird to be dispersed to a suitable site for seed survival and germination, provides the framework to compare the contributions of different birds to seed dispersal. I compared the SDE in two old-growth forests dominated by P. parlatorei and a human disturbed forest, and in the main habitat types of these sites. In all sites, highest SDE values were provided by “gulpers” that swallow the whole fleshy cone (“fruit”, predominantly Elaenia and Turdus species. SDE was highest in forest edges and secondary forests, and negligible in other habitats. Equivalence in SDE was relatively low both within and between forest sites. Human forest disturbance modified the functional equivalence, the generalization in mutualistic interactions and the strength of SDE. Secondary forests showed the higher SDE and the greater richness of dispersers high in SDE; as a consequence, the ecological equivalence increased in the most suitable habitat for recruitment. This could lead to greater resilience of plant populations

  12. Effects of acclimation on poststocking dispersal and physiological condition of age-1 pallid sturgeon

    Science.gov (United States)

    Oldenburg, E.W.; Guy, C.S.; Cureton, E.S.; Webb, M.A.H.; Gardner, W.M.

    2011-01-01

    The objective of this study was to evaluate the effects of acclimation to flow and site-specific physicochemical water conditions on poststocking dispersal and physiological condition of age-1 hatchery-reared pallid sturgeon. Fish from three acclimation treatments were radio-tagged, released at two locations (Missouri River and Marias River), and monitored using passive telemetry stations. Marias treatment was acclimated to flow and site-specific physicochemical conditions, Bozeman treatment was acclimated to flow only, and controls had no acclimation (reared under traditional conservation propagation protocol). During both years, fish released in the Missouri River dispersed less than fish released in the Marias River. In 2005, Marias treatment dispersed less and nearly twice as many fish remained in the Missouri River reach as compared to control fish. In 2006, pallid sturgeon dispersed similarly among treatments and the number of fish remaining in the Missouri River reach was similar among all treatments. Differences in poststocking dispersal between years were related to fin curl which was present in all fish in 2005 and only 26% in 2006. Pallid sturgeon from all treatments in both years had a greater affinity for the lower reaches of the Missouri River than the upper reaches. Thus, release site influenced poststocking dispersal more than acclimation treatment. No difference was observed in relative growth rate among treatments. However, acclimation to flow (i.e., exercise conditioning) prevented fat accumulation from rupturing hepatocytes. Acclimation conditions used in this study did not benefit pallid sturgeon unless physiological maladies were present. Overriding all treatment effects was stocking location; thus, natural resource agencies need to consider stocking location carefully to reduce poststocking dispersal. ?? 2011 Blackwell Verlag, Berlin.

  13. The assessment of terrain effect on the atmospheric dispersion using the CTDMPLUS code

    International Nuclear Information System (INIS)

    Jeong, Jong Tae; Yu, Dong Han; Kim, Seung Hwan; Han, Byoung Sub

    1996-12-01

    When the movement of a plume is analyzed under stable conditions in the CTDMPLUS model, the concept of critical height is introduced and the dispersion equation is applied separately to the lift conditions and the wrap conditions, When this model is applied to the dispersion of a plume under stable conditions whose height is larger than the critical height, it is shown that there are some irregular characteristics in the front and back of a hill. This is due to the fact that the value of terrain factor which is determined by the meteorological conditions and terrain characteristics influences the calculation of the dispersion coefficients. Based on these results we can find that these phenomena are determined by the slope of a hill, the location of a hill, height, and the range of long and short axis of vertical cross-section of a hill at each height. The influence of factors related with the dispersion is larger than in vertical direction than in horizontal direction. And as the height of a hill is larger, the influence of terrain factor seems to be proportional to the dispersion coefficients which have relatively small values. Therefore, in the back of a hill which have a smaller value of terrain factor. The vertical dispersion coefficients is influenced by the presence of a hill much more as the atmospheric condition is stable. As a result, the terrain effect is much larger when the atmospheric condition is maintained stable or the distance between the source an the hill is shorter. Through this study we find that the model which can treat terrain effect is essential in the atmospheric dispersion of radioactive materials and the CTDMPLUS model can be used as a useful tool. And it is suggested that modification of a model and experimental study should be made through the continuous effort. (author). 2 tabs., 24 figs., 11 refs

  14. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  15. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    International Nuclear Information System (INIS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-01-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  16. Effect of hybridization and dispersion of quasiparticles on the ...

    Indian Academy of Sciences (India)

    The effect of hybridization of conduction electrons and f-level on superconductivity (SC) and antiferromagnetism (AFM) in the coexistent phase of rare-earth nickel borocarbide superconductors (Ni2B2C) is reported. The Hamiltonian of the system is a mean field one and has been solved by writing equations of motion for ...

  17. A dispersion-balanced Discrete Fourier Transform of repetitive pulse sequences using temporal Talbot effect

    Science.gov (United States)

    Fernández-Pousa, Carlos R.

    2017-11-01

    We propose a processor based on the concatenation of two fractional temporal Talbot dispersive lines with balanced dispersion to perform the DFT of a repetitive electrical sequence, for its use as a controlled source of optical pulse sequences. The electrical sequence is used to impart the amplitude and phase of a coherent train of optical pulses by use of a modulator placed between the two Talbot lines. The proposal has been built on a representation of the action of fractional Talbot effect on repetitive pulse sequences and a comparison with related results and proposals. It is shown that the proposed system is reconfigurable within a few repetition periods, has the same processing rate as the input optical pulse train, and requires the same technical complexity in terms of dispersion and pulse width as the standard, passive pulse-repetition rate multipliers based on fractional Talbot effect.

  18. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  19. Causes of natal dispersal and emigration and their effects on harem formation in Misaki feral horses.

    Science.gov (United States)

    Kaseda, Y; Ogawa, H; Khalil, A M

    1997-07-01

    Misaki feral horses were separated into 2 herds and the difference between dispersal from natal group (natal dispersal) and dispersal from natal area (natal emigration) was studied. The causes of dispersal and emigration and their effects on harem formation were studied 1979-1994. The number of horses ranged from 73 (mature males: 8, mature females: 26, young males: 8, young females: 3, colt foals: 6, filly foals: 10 and geldings: 12) in 1979 and 86 (mature males: 14, mature females: 37, young males: 12, young females: 7, colt foals: 5, filly foals: 7 and geldings: 4) in 1994 when the present study ended. All 29 males which survived to age 4 years and 58 females which survived to age 3 years left their natal or mother groups at age one to 3. Seventeen of 22 dispersing males and 29 of 39 dispersing females left their natal groups around the birth of their siblings and significant correlations were found between natal dispersal and birth of a sibling. The number of emigrating young males correlated negatively and significantly with the total number of young males in another herd and the number of emigrating young females correlated positively and significantly with the total number of young females in the natal herd. All 13 emigrating stallions which survived to age 5 years formed stable harem groups and a significant correlation was found between natal emigration and harem formation. Twenty-three of 35 resident mares formed stable consort relations with harem stallions and a significant correlation was found between residence and formation of stable consort relations.

  20. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  1. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  2. Inclusion of Dispersion Effects in Density Functional Theory

    DEFF Research Database (Denmark)

    Møgelhøj, Andreas

    In this thesis, applications and development will be presented within the field of van der Waals interactions in density functional theory. The thesis is based on the three projects: i) van der Waals interactions effect on the structure of liquid water at ambient conditions, ii) development...... lower first peak consistent with recent experiments, while the outer structure is completely smeared out. The water structures obtained from the ab initio van der Waals simulations clearly resemble high-density liquid water, whereas the PBE molecular dynamics simulation with equivalent computational...... setup resembles low-density liquid. Mixing the vdW-DF2 and the experimental low-density liquid in a 70/30% ratio gives agreement with experimental results. This is consistent with the bimodal picture of water. Also, in this thesis the BEEF-vdW exchange-correlation functional is presented based...

  3. 40 CFR Appendix C to Part 300 - Swirling Flask Dispersant Effectiveness Test, Revised Standard Dispersant Toxicity Test, and...

    Science.gov (United States)

    2010-07-01

    ... distillation profile Infrared spectrum UV fluorescence spectrum Pour Point +25 °F 0 °F Viscosity at 40 °C 14.09... Dispersant/Surface Washing Agent/Surface Collecting Agent/Miscellaneous Oil Spill Control Agent: 1. Flash.../DIS 8708 “Crude Petroleum Oil—Determination of Distillation Characteristics Using 15 Theoretical...

  4. Effect of silica nanoparticles on the phase inversion of liquid-liquid dispersions

    International Nuclear Information System (INIS)

    Asadabadi, Maliheh Raji; Abolghasemi, Hossein; Nasab, Payman Davoodi; Maragheh, Mohammad Ghannadi

    2013-01-01

    The effect of silica nanoparticles on phase inversion of liquid-liquid dispersions in a stirred vessel was investigated. The studied systems were toluene dispersed in water and vice versa. In the first set of experiments, phase inversion behavior of systems without Silica nanoparticles was evaluated and subsequent experiments were conducted in the presence of the nanoparticles. For this purpose, Silica nanoparticles of different concentrations (0.01, 0.03, 0.05, 0.07 wt%) were dispersed in water. The nanofluid stability was examined using an ultraviolet-visible (UV-vis) spectrophotometer. The results indicated that increase in silica nanoparticle concentrations up to 0.07 wt% led to increase in agitation speed of phase inversion 43-53.5% and 38.5-45% in the case of O/W and W/O dispersions, respectively. Consequently, the tendency of dispersions to inversion diminished as nanoparticle concentrations increased. Finally, 0.05 wt% of silica nanoparticle was selected as the optimum on the range studied

  5. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    Science.gov (United States)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  6. The Effects of Dispersal and Predator Density on Prey Survival in an Insect-Red Clover Metacommunity.

    Science.gov (United States)

    Stasek, David J; Radl, James N; Crist, Thomas O

    2018-01-01

    Trophic interactions are often studied within habitat patches, but among-patch dispersal of individuals may influence local patch dynamics. Metacommunity concepts incorporate the effects of dispersal on local and community dynamics. There are few experimental tests of metacommunity theory using insects compared to those conducted in microbial microcosms. Using connected experimental mesocosms, we varied the density of the leafhopper Agallia constricta Van Duzee (Homoptera: Cicadellidae) and a generalist insect predator, the damsel bug (Nabis spp., Heteroptera: Nabidae), to determine the effects of conspecific and predator density and varying the time available to dispersal among mesocosms on predation rates, dispersal rates, and leafhopper survival. Conspecific and damsel bug density did not affect dispersal rates in leafhoppers, but this may be due to leafhoppers' aversion to leaving the host plants or the connecting tubes between mesocosms hindering leafhopper movement. Leafhopper dispersal was higher in high-dispersal treatments. Survival rates of A. constricta were also lowest in treatments where dispersal was not limited. This is one of the first experimental studies to vary predator density and the time available to dispersal. Our results indicate that dispersal is the key to understanding short-term processes such as prey survival in predator-prey metacommunities. Further work is needed to determine how dispersal rates influence persistence of communities in multigenerational studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  7. Anomalous Statistics of Bose-Einstein Condensate in an Interacting Gas: An Effect of the Trap’s Form and Boundary Conditions in the Thermodynamic Limit

    Directory of Open Access Journals (Sweden)

    Sergey Tarasov

    2018-02-01

    Full Text Available We analytically calculate the statistics of Bose-Einstein condensate (BEC fluctuations in an interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations. We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit. We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend on the trap’s form and boundary conditions. Remarkably, these effects persist with increasing interparticle interaction and even in the thermodynamic limit—only the mean BEC occupation, not BEC fluctuations, becomes independent on the trap’s form and boundary conditions.

  8. Ferromagnetism in reactive sputtered Cu0.96Fe 0.04O1-δ nanocrystalline films evidenced by anomalous Hall effect

    KAUST Repository

    Mi, Wenbo

    2011-03-14

    Cu0.96Fe0.04O1-δ nanocrystalline films were fabricated using reactive sputtering at different oxygen partial pressures (PO2). The electrical transport properties of the films were measured in a broad temperature range (10-300 K) under magnetic fields of up to 5T. Anomalous Hall effect (AHE) of up to 0.4μΩ cm was observed at 10 K and decreased to 0.2μΩ cm at 300 K. The characteristic AHE clearly indicated the existence of ferromagnetism in these materials. The AHE weakened as PO2 increased because the increasing PO2 reduced the fraction of Fe2+ ions, and consequently weakened the double exchange coupling between Fe2+-O2--Cu2+ in the materials. © 2011 The Japan Society of Applied Physics.

  9. Electron's anomalous magnetic-moment effects on electron-hydrogen elastic collisions in the presence of a circularly polarized laser field

    International Nuclear Information System (INIS)

    Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.

    2010-01-01

    The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.

  10. Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film

    Science.gov (United States)

    Li, W.; Claassen, M.; Chang, Cui-Zu; Moritz, B.; Jia, T.; Zhang, C.; Rebec, S.; Lee, J. J.; Hashimoto, M.; Lu, D.-H.; Moore, R. G.; Moodera, J. S.; Devereaux, T. P.; Shen, Z.-X.

    2016-09-01

    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb)2Te3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb)2Te3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Dirac point. Our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy.

  11. Effect of Additional Structure on Effective Stack Height of Gas Dispersion in Atmosphere

    Directory of Open Access Journals (Sweden)

    Takenobu Michioka

    2016-03-01

    Full Text Available Wind-tunnel experiments were conducted to evaluate the effect of additional structure (building, sea wall and banking on the effective stack height, which is usually used in safety analyses of nuclear power facilities in Japan. The effective stack heights were estimated with and without the additional structure in addition to the reactor building while varying several conditions such as the source height, the height of additional structure and the distance between the source position and the additional structure. When the source height is equivalent to the reactor building height, the additional structure enhances both the vertical and horizontal gas dispersion widths and decreases the ground gas concentration, and it means that the additional structure does not decrease the effective stack height. When the source height is larger than the reactor height, the additional structures might affect the effective stack height. As the distance between the source and the additional structure decreases, or as the height of the additional structure increases, the structure has a larger effect on the effective stack height.

  12. Ab initio phonon dispersions of face centered cubic Pb: effects of spin-orbit coupling

    International Nuclear Information System (INIS)

    Dal Corso, Andrea

    2008-01-01

    I present the ab initio phonon dispersions of face centered cubic Pb calculated within the framework of density functional perturbation theory, with plane waves and a fully relativistic ultrasoft pseudopotential which includes spin-orbit coupling effects. I find that, within the local density approximation, the theory gives phonon frequencies close to the experimental inelastic neutron scattering data. Many of the anomalies present in these dispersions are well reproduced by the fully relativistic pseudopotential theory and can be shown to appear only for small values of the smearing parameter that controls the sharpness of the Fermi surface.

  13. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  14. Blackbody emission from light interacting with an effective moving dispersive medium.

    Science.gov (United States)

    Petev, M; Westerberg, N; Moss, D; Rubino, E; Rimoldi, C; Cacciatori, S L; Belgiorno, F; Faccio, D

    2013-07-26

    Intense laser pulses excite a nonlinear polarization response that may create an effective flowing medium and, under appropriate conditions, a blocking horizon for light. Here, we analyze in detail the interaction of light with such laser-induced flowing media, fully accounting for the medium dispersion properties. An analytical model based on a first Born approximation is found to be in excellent agreement with numerical simulations based on Maxwell's equations and shows that when a blocking horizon is formed, the stimulated medium scatters light with a blackbody emission spectrum. Based on these results, diamond is proposed as a promising candidate medium for future studies of Hawking emission from artificial, dispersive horizons.

  15. Fibre Optical Parametric Amplification in Defect Bragg Fibres with Zero Dispersion Slow Light Effect

    International Nuclear Information System (INIS)

    Li, Xiao; Wei, Zhang; Yi-Dong, Huang; Jiang-De, Peng; Hong, Zhao; Ke-Wu, Yang

    2008-01-01

    Nonlinearity enhancement by slow light effect and strong light confinement in defect Bragg fibres is demonstrated and analysed in applications of fibre optical parametric amplifiers. Broadband low group velocity and zero dispersion as well as the strong light confinement by band gap enhances the nonlinear coefficient up to more than one order than the conventional high nonlinear fibres. Moreover, the zero dispersion wavelength of coupled core mode can be designed arbitrarily, under which the phase-matching bandwidth of the nonlinear process can be extended. (fundamental areas of phenomenology (including applications))

  16. Stability of nano-metric colloidal dispersions of titanium: effect of surface complexation

    International Nuclear Information System (INIS)

    Peyre, Veronique

    1996-01-01

    This research thesis reports the study of the adsorption of small organic molecules at the surface of nano-particles of mineral oxides (zirconia), and of its effects on the stability of the colloidal dispersion. Adsorption has been quantified by adsorption isotherms and surface titrations. Processes and mechanisms are thus discussed with respect to pH. The influence of various protecting molecules (acetyl acetone, but also acetic acid, citric acid and diethanolamine) has been studied, and notably highlighted the role of the outer face of the complexing agent in the assessment of reactions between particles which govern the compression and re-dispersability properties of protected dispersions. This study is performed by osmotic pressure measurements and by X-ray diffusion at small angles, completed by statistical mechanics calculations [fr

  17. Equality versus differentiation: the effects of power dispersion on group interaction

    NARCIS (Netherlands)

    Greer, L.L.; van Kleef, G.A.

    2010-01-01

    Power is an inherent characteristic of social interaction, yet research has yet to fully explain what power and power dispersion may mean for conflict resolution in work groups. We found in a field study of 42 organizational work groups and a laboratory study of 40 negotiating dyads that the effects

  18. Defoliation effects on seed dispersal and seedling recruitment in a tropical rain forest understorey palm

    NARCIS (Netherlands)

    Lent, van J.; Hernandez-Barrios, J.C.; Anten, N.P.R.; Martinez-Ramos, M.

    2014-01-01

    1. Assessing the demographic effects of leaf area losses in perennial plants is important to determine population resilience to natural and anthropogenic disturbances. Yet, while impacts of defoliation on vital rates of adult plants have been well documented, consequences for seed dispersal and

  19. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  20. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  1. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  2. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    International Nuclear Information System (INIS)

    Uddin, Md. Elias; Kuila, Tapas; Nayak, Ganesh Chandra; Kim, Nam Hoon; Ku, Bon-Cheol; Lee, Joong Hee

    2013-01-01

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml −1 . X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m −1 ) was comparatively higher than SDS and Triton X-100 functionalized graphene

  3. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  4. Soft theorems from anomalous symmetries

    Science.gov (United States)

    Huang, Yu-tin; Wen, Congkao

    2015-12-01

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α' expansion of string theory amplitudes, we study the matrix elements of operator R 4 with half maximal supersymmetry. We construct the non-linear completion of R 4 that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R 4.

  5. Soft theorems from anomalous symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, ROC (China); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-12-22

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α{sup ′} expansion of string theory amplitudes, we study the matrix elements of operator R{sup 4} with half maximal supersymmetry. We construct the non-linear completion of R{sup 4} that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R{sup 4}.

  6. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-05-15

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  7. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping

    2018-04-13

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  8. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    International Nuclear Information System (INIS)

    Chen, Li; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-01-01

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  9. Species coexistence in a lattice-structured habitat: effects of species dispersal and interactions.

    Science.gov (United States)

    Ying, Zhixia; Liao, Jinbao; Wang, Shichang; Lu, Hui; Liu, Yongjie; Ma, Liang; Li, Zhenqing

    2014-10-21

    Opinions differ on how the spatial distribution of species over space affects species coexistence. Here, we constructed both mean-field and pair approximation (PA) models to explore the effects of interspecific and intraspecific interactions and dispersal modes on species coexistence. We found that spatial structure resulting from species dispersal traits and neighboring interactions in PA model did not promote coexistence if two species had the same traits, though it might intensify the contact frequency of intraspecific competition. If two species adopt different dispersal modes, the spatial structure in PA would make the coexistence or founder control less likely since it alters the species effective birth rate. This suggests that the spatial distribution caused by neighboring interactions and local dispersal does not affect species coexistence unless it adequately alters the effective birth rate for two species. Besides, we modeled how the initial densities and patterns affected population dynamics and revealed how the final spatial pattern was generated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Fractal model of anomalous diffusion

    OpenAIRE

    Gmachowski, Lech

    2015-01-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...

  11. Effects of Single Dose Energy Drink on QT and P-Wave Dispersion

    Directory of Open Access Journals (Sweden)

    Huseyin Arinc

    2013-12-01

    Full Text Available INTRODUCTION: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull on QT and P duration and dispersion on surface electrocardiogram. METHODS: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or those P-waves and QT intervals unavailable in at least eight ECG leads were excluded. Subjects having insomnia, lactose intolerance, caffeine allergy, recurrent headaches, depression, any psychiatric condition, and history of alcohol or drug abuse, pregnant or lactating women were also excluded from participation. 12 lead ECG was obtained before and after consumption of 250 cc enegry drink. QT and P-wave dispersion was calculated. RESULTS: No significant difference have occurred in heart rate (79 ± 14 vs.81 ±13, p=0.68, systolic pressure (114 ± 14 vs.118 ± 16,p=0.38, diastolic blood pressure (74 ± 12 vs.76 ± 14, p=0.64, QT dispersion (58 ± 12 vs. 57 ± 22, p= 0.785 and P-wave dispersion (37 ± 7 vs. 36 ± 13, p= 0.755 between before and 2 hours after consumption of energy drink. DISCUSSION AND CONCLUSION: Consumption of single dose energy drink doesn't affect QT dispersion and P-wave dispersion, heart rate and blood pressure in healthy adults.

  12. Study of the anomalous presence of iron in olive trees leaves by energy dispersion X-ray fluorescence; Estudo da presenca anomala de ferro em folhas de oliveiras por fluorescencia de raios-X por dispersao em energia

    Energy Technology Data Exchange (ETDEWEB)

    Aragao, P.H.A. [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica; Cesareo, R. [Universita degli Studi di Sassari, Sardegna (Italy). Ist. di Matematica e Fisica; Melo, M.A.C. de; Paesano Junior, A. [Universidade Estadual de Maringa, PR (Brazil). Dept. de Fisica; Prota, U.; Fiori, M. [Universita degli Studi di Sassari, Sardegna (Italy). Faculta di Agraria; Marceddu, S. [Universita degli Studi di Sassari, Sardegna (Italy). Centro de Microscopia Eletronica

    2000-07-01

    In this work, we made use of the technique of X-ray fluorescence for dispersion in energy, to study a phytopathology denominated 'sooty mould' on leaves of Olive trees of Mediterranean area. The Olive trees are quite common and of great economical value in that area,especially in the island of Sardegna in Italy, where this work was developed, for treating one of the income main sources of the local economy. We observed a correlation between the elements Fe and Ca among infected leaves of Olive trees and not infected that is: leaves infected by the sooty mould present a large concentration of Fe and a low concentration of Ca when compared to the leaves not infected by the sooty mould. The oxidation state of Fe was determined by Moessbauer spectroscopy that revealed that this was Fe{sup 3+}. (author)

  13. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  14. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    Science.gov (United States)

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  15. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  16. Intraspecific variation in fruit-frugivore interactions: effects of fruiting neighborhood and consequences for seed dispersal.

    Science.gov (United States)

    Guerra, Tadeu J; Dayrell, Roberta L C; Arruda, André J; Dáttilo, Wesley; Teixido, Alberto L; Messeder, João V S; Silveira, Fernando A O

    2017-10-01

    The extent of specialization/generalization continuum in fruit-frugivore interactions at the individual level remains poorly explored. Here, we investigated the interactions between the Neotropical treelet Miconia irwinii (Melastomataceae) and its avian seed dispersers in Brazilian campo rupestre. We built an individual-based network to derive plant degree of interaction specialization regarding disperser species. Then, we explored how intraspecific variation in interaction niche breadth relates to fruit availability on individual plants in varying densities of fruiting conspecific neighbors, and how these factors affect the quantity of viable seeds dispersed. We predicted broader interaction niche breadths for individuals with larger fruit crops in denser fruiting neighborhoods. The downscaled network included nine bird species and 15 plants, which varied nearly five-fold in their degree of interaction specialization. We found positive effects of crop size on visitation and fruit removal rates, but not on degree of interaction specialization. Conversely, we found that an increase in the density of conspecific fruiting neighbors both increased visitation rate and reduced plant degree of interaction specialization. We suggest that tracking fruit-rich patches by avian frugivore species is the main driver of density-dependent intraspecific variation in plants' interaction niche breadth. Our study shed some light on the overlooked fitness consequences of intraspecific variation in interaction niches by showing that individuals along the specialization/generalization continuum may have their seed dispersed with similar effectiveness. Our study exemplifies how individual-based networks linking plants to frugivore species that differ in their seed dispersal effectiveness can advance our understanding of intraspecific variation in the outcomes of fruit-frugivore interactions.

  17. Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay

    International Nuclear Information System (INIS)

    Lauprêtre, T; Goldfarb, F; Bretenaker, F; Schwartz, S; Ghosh, R; Carusotto, I

    2012-01-01

    The propagation of light pulses through negative group velocity media is known to give rise to a number of paradoxical situations that seem to violate causality. The solution of these paradoxes has triggered the investigation of a number of interesting and unexpected features of light propagation. Here, we report a combined theoretical and experimental study of the ring-down oscillations in optical cavities filled with a medium with a sufficiently negative frequency dispersion to give a negative round-trip group delay time. We theoretically anticipate that causality imposes the existence of additional resonance peaks in the cavity transmission, resulting in a non-exponential decay of the cavity field and in a breakdown of the cavity decay rate concept. Our predictions are validated by simulations and by an experiment using a room-temperature gas of metastable helium atoms in the detuned electromagnetically induced transparency regime as the cavity medium. (paper)

  18. The effect of the dispersal kernel on isolation-by-distance in a continuous population

    Directory of Open Access Journals (Sweden)

    Tara N. Furstenau

    2016-03-01

    Full Text Available Under models of isolation-by-distance, population structure is determined by the probability of identity-by-descent between pairs of genes according to the geographic distance between them. Well established analytical results indicate that the relationship between geographical and genetic distance depends mostly on the neighborhood size of the population which represents a standardized measure of gene flow. To test this prediction, we model local dispersal of haploid individuals on a two-dimensional landscape using seven dispersal kernels: Rayleigh, exponential, half-normal, triangular, gamma, Lomax and Pareto. When neighborhood size is held constant, the distributions produce similar patterns of isolation-by-distance, confirming predictions. Considering this, we propose that the triangular distribution is the appropriate null distribution for isolation-by-distance studies. Under the triangular distribution, dispersal is uniform over the neighborhood area which suggests that the common description of neighborhood size as a measure of an effective, local panmictic population is valid for popular families of dispersal distributions. We further show how to draw random variables from the triangular distribution efficiently and argue that it should be utilized in other studies in which computational efficiency is important.

  19. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate.

    Science.gov (United States)

    Sèbe, Gilles; Ham-Pichavant, Frédérique; Pecastaings, Gilles

    2013-08-12

    The surface of cotton cellulose nanowhiskers (CNW's) was esterified by vinyl acetate (VAc) and vinyl cinnamate (VCin), in the presence of potassium carbonate as catalyst. Reactions were performed under microwave activation and monitored by Fourier transform infrared (FT-IR) spectroscopy. The supramolecular structure of CNW's before and after modification was characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). Distinctively from the acetylation treatment, an increase in particles dimensions was noted after esterification with VCin, which was assigned to π-π stacking interactions that may exist between cinnamoyl moieties. The dispersibility and emulsion stabilizing effect of acylated CNW's was examined in ethyl acetate, toluene, and cyclohexane, three organic solvents of medium to low polarity. The acylated nanoparticles could never be dispersed in toluene nor cyclohexane, but they formed stable dispersions in ethyl acetate while remaining dispersible in water. Stable ethyl acetate-in-water, toluene-in-water, and cyclohexane-in-water emulsions were successfully prepared with CNW's grafted with acetyl moieties, whereas the VCin-treated particles could stabilize only the cyclohexane-in-water emulsions. The impact of esterification treatment on emulsion stability and droplets size was particularly discussed.

  20. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    Science.gov (United States)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  1. Anomalous Evidence, Confidence Change, and Theory Change.

    Science.gov (United States)

    Hemmerich, Joshua A; Van Voorhis, Kellie; Wiley, Jennifer

    2016-08-01

    A novel experimental paradigm that measured theory change and confidence in participants' theories was used in three experiments to test the effects of anomalous evidence. Experiment 1 varied the amount of anomalous evidence to see if "dose size" made incremental changes in confidence toward theory change. Experiment 2 varied whether anomalous evidence was convergent (of multiple types) or replicating (similar finding repeated). Experiment 3 varied whether participants were provided with an alternative theory that explained the anomalous evidence. All experiments showed that participants' confidence changes were commensurate with the amount of anomalous evidence presented, and that larger decreases in confidence predicted theory changes. Convergent evidence and the presentation of an alternative theory led to larger confidence change. Convergent evidence also caused more theory changes. Even when people do not change theories, factors pertinent to the evidence and alternative theories decrease their confidence in their current theory and move them incrementally closer to theory change. Copyright © 2015 Cognitive Science Society, Inc.

  2. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  3. Dinotor model for anomalous nuclei

    International Nuclear Information System (INIS)

    Castillejo, L.; Goldhaber, A.S.; Jackson, A.D.; Johnson, M.B.

    1986-01-01

    The simplest version of the MIT bag model implies the existence of metastable toroidal bags, with large radius proportional to the enclosed baryon number, and small radius comparable to that of an ordinary nucleon (we refer to those toroidal bags as dinotors). Considerations of various possible instabilities, and of the effects of quark interactions through intermediate gluons, suggest that the metastability is still valid when the model is treated more realistically. These results might provide an explanation for reports of anomalously large interaction cross sections of secondary fragments (''anomalons'') observed in visual track detectors. However, it appears that the most likely characteristics of toroidal bags would not be compatible with those of anomalons, and would not be as easy to detect in emulsions. copyright 1986 Academic Press, Inc

  4. Anomalous Lorentz and CPT violation

    Science.gov (United States)

    Klinkhamer, F. R.

    2018-01-01

    If there exists Lorentz and CPT violation in nature, then it is crucial to discover and understand the underlying mechanism. In this contribution, we discuss one such mechanism which relies on four-dimensional chiral gauge theories defined over a spacetime manifold with topology ℛ3 × S 1 and periodic spin structure for the compact dimension. It can be shown that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. For arbitrary Abelian U(1) gauge fields with trivial holonomies in the compact direction, this anomalous Lorentz and CPT violation has recently been established perturbatively with a Pauli-Villars-type regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  5. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  6. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  7. On Dispersive Effects In Inviscid Fluids And Non-Uniqueness Of Weak Wave Maps

    Science.gov (United States)

    Widmayer, Klaus

    This work is devoted to the study of some aspects of the well-posedness theory of evolution differential equations in mathematical physics. In Part I we explore the effects of dispersion in incompressible, inviscid fluids in a variety of settings. In the absence of the strongly regularizing mechanism of viscosity, even in only two spatial dimensions effects such as the rotation of the earth or unidirectional gravitational forces are not understood well. For these we bring to light a mechanism that disperses waves, i.e. we show that in such systems waves or disturbances at different frequencies travel at distinct speeds, often also in different directions. On the one hand, this allows us to improve the well-posedness theory of a wide range of problems. In some scenarios this yields a theory that holds on a very large timespan. On the other hand, it may also resolve questions regarding the qualitative behavior of more complicated systems, where effects other than the dispersion play a dominant role. In Part II we study the well-posedness theory of the so-called wave maps equation, which arises in quantum physics. The corresponding energy conservation law suggests a natural mathematical framework. For this problem, however, we show that in the physically relevant setting this consideration does not provide a satisfactory theory: For a given initial setup, the time evolution is not unique.

  8. Comparison of the effects of different protocols on the particle size distribution of TiO2 dispersions

    DEFF Research Database (Denmark)

    Tantra, Ratna; Sikora, Aneta; Hartmann, Nanna Isabella Bloch

    2015-01-01

    studies, the degree of variability in TiO2 nanomaterial dispersions was assessed by differential centrifugal sedimentation (DCS) methods. Case study 1 addresses the variability that arises from variations within one protocol, investigating the effects of dispersion aging, sonication exposure time...

  9. Condition factor variations over time and trophic position among four species of Characidae from Amazonian floodplain lakes: effects of an anomalous drought.

    Science.gov (United States)

    Tribuzy-Neto, I A; Conceição, K G; Siqueira-Souza, F K; Hurd, L E; Freitas, C E C

    2017-08-17

    The effects of extreme droughts on freshwater fish remain unknown worldwide. In this paper, we estimated the condition factor, a measure of relative fitness based on the relationship of body weight to length, in four fish species representing two trophic levels (omnivores and piscivores) from Amazonian floodplain lakes for three consecutive years: 2004, 2005 (an anomalous drought year), and 2006. The two omnivores, Colossoma macropomum and Mylossoma duriventre, exhibited trends consistent with their life cycles in 2004 and 2006: high values during the hydrologic seasons of high water, receding water, and low water, with a drop following reproduction following the onset of rising water. However during the drought year of 2005 the condition factor was much lower than normal during receding and low water seasons, probably as a result of an abnormal reduction in resource availability in a reduced habitat. The two piscivorous piranhas, Serrasalmus spilopleura and S. elongatus, maintained relatively stable values of condition factor over the hydrologic cycles of all three years, with no apparent effect of the drought, probably because the reduction in habitat is counterbalanced by the resulting increase in relative prey density. We suggest that if predictions of increasing drought in the Amazon are correct, predatory species may benefit, at least in the short run, while omnivores may be negatively affected.

  10. Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is

  11. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Oats, W.J.; Ozdemir, O.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). School of Chemical Engineering

    2010-04-15

    Fine minerals, mostly clays, are known to have a detrimental effect on coal flotation. This paper focuses on the effect of mechanical and chemical removals of fine minerals by hydrocyclone and dispersants on coal flotation. The experimental results showed that the flotation recovery slightly increased from medium acidic to medium alkaline ranges. The flotation experiments carried out with dispersants at different dosages showed that the dispersants did not enhance the flotation recovery significantly. However, the removal of the fine fraction from the feed using a hydrocyclone significantly increased the flotation recovery. The bubble-particle attachment tests also indicated that the attachment time between an air bubble and the coal particles increased in the presence of clay particles. These attachment time results clearly showed that the clay particles adversely affected the flotation of coal particles by covering the coal surfaces which reduced the efficiency of bubble-coal attachment. An analysis based on the colloid stability theory showed that the clay coating was governed by the van der Waals attraction and that the double-layer interaction played a secondary role. It was also concluded that the best way to increase the flotation recovery in the presence of clays was to remove these fine minerals by mechanical means such as hydrocylones.

  12. Responses of Polystyrene/MWCNT Nanocomposites to Electromagnetic Waves and the Effect of Nanotubes Dispersion

    Directory of Open Access Journals (Sweden)

    Ehsan Aghajari

    2014-08-01

    Full Text Available Electromagnetic compatibility (EMC and electromagnetic interference (EMI have emerged as key issues with respect to commercial and military purposes in association with electromagnetic waves. The importance of protection against electromagnetic interference in wireless communication and electronic toll collection (ETC systems has undoubtedly increased over the years. Generally, the electromagnetic absorption properties of material depend on their intrinsic electromagnetic properties such as conductivity, magnetic permeability and dielectric constant and also factors such as thickness and frequency. The effect of each parameter on the absorption performance is yet difficult to comprehend due to the complexity of electromagnetic waves propagation in different media. Addition of pure dielectric or magnetic material to a polymer matrix is a possible way to change electromagnetic properties of the materials. In this study nanocomposites of polystyrene/multi-walled carbon nanotubes were prepared using a solution method with three different homogenizer speeds for the purpose of nanotube dispersion and evaluation of the effect of nanotube dispersion on the electromagnetic wave absorption properties. The morphology of the nanocomposits was investigated by scanning electron microscopy (SEM. The capability and properties of electromagnetic wave absorption of nanocomposites were studied in the frequency range of 5 to 8 GHz using a vector network analyzer and finally the results of their absorption were compared with each other. It was found that by improving the dispersion of nanoparticles, both the amount and bandwidth of absorption increase. Moreover, by increasing the homogenizer speed up to 10000 rpm the maximum reflection loss was reported to occur at 8 GHz.

  13. Effective Pore-Scale Dispersion Upscaling with the Correlated Continuous Time Random Walk Approach

    Energy Technology Data Exchange (ETDEWEB)

    Le Borgne, Tanguy; Bolster, Diogo; Dentz, Marco; de Anna, Pietro; Tartakovsky, Alexandre M.

    2011-12-29

    We propose a general framework for upscaling dispersion in porous media. A key challenge of the upscaling procedure is to relate the temporal evolution of spreading to the small scale velocity field properties. The representation of the Lagrangian velocity transition process as a Markovian process in space provides a simple way to quantify complex correlation properties, i.e. non-Gaussian velocity distributions. The resulting effective transport model is a correlated CTRW. We use this framework to upscale pore scale dispersion for a periodic pore geometry. The correlated CTRW model is defined by the transit time distribution across one pore and the transition probability density quantifying the correlation between successive transit times. The latter is of central importance since it accounts for incomplete mixing at the pore throats. The predictions of the correlated CTRW model are in good agreement with the pore scale simulations over the pre-asymptotic and asymptotic regimes. We investigate the representation of this effective dispersion model in phase space (position, velocity) in a form similar to a Boltzmann transport equation.

  14. Effect of dispersion of carbon nanotubes in polyacrylonitrile matrix on mechanical and thermal behavior of nanocomposites

    International Nuclear Information System (INIS)

    Fraczek, A; Blazewicz, S

    2009-01-01

    The work deals with preparation of polyacrylonitrile (PAN)-based nanocomposites containing multi wall carbon nanotubes (MWCNTs). The effect of nanotubes addition to the PAN solution on selected properties of the obtained samples is discussed. The nanocomposites were characterized by scanning electron microscopy (SEM) and thermogravimetry. Agglomeration and dispersion of MWCNT in polymer solution were studied using Zetananosizer. The mechanical properties of the nanocomposites before and after optimization dispersion process were examined. It is found that improperly prepared PAN suspension containing nanotubes causes a significant reduction of the tensile strength of nanocomposite samples. The preparation procedure of the polymeric solution with carbon nanotubes and the sonication sequence have a significant impact on mechanical properties of the obtained samples. The thermogravimetry analysis of nanocomposite samples shows a raise of the temperature of maximum thermal degradation in the case of sample containing 1wt% of MWCNT.

  15. Experimental and Numerical Investigation of Effect of Air Stability on Exhaled Air Dispersion

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter Vilhelm

    2014-01-01

    As more and more investigations have reported the influence of thermal stratification indoors on contaminant dispersion, this paper focuses on investigating this phenomenon from the perspective of air stability which is defined in accordance with atmospheric stability. One breathing thermal manikin...... studies. As the thermal stratification under displacement ventilation blocks the vertical movement of exhaled air, the exhaled contaminant may be trapped between temperature stratifications. As the dispersion of contaminant is closely related to the health of human indoors, the temperature structure...... was used for experimental study, and a numerical person was built to simulate the manikin. The velocity, temperature and concentration of tracer gas in exhaled air are affected by air stability to different degrees. The similarity of this effect among these parameters can also be observed through numerical...

  16. CFD simulation of effects of dimension changes of buildings on pollution dispersion in the built environment

    Directory of Open Access Journals (Sweden)

    Ehsan Bijad

    2016-12-01

    Full Text Available As pollutions impose adverse effects on human health and environment, assessment of their dispersion within the urban regions can much help to control them. In urban regions, dynamics of pollutants will be affected by buildings and barriers, and to investigate the dispersion of the pollutants, these barriers must be considered. In this article, CFD simulation is done by applying the 3D approach, the k − ε Realizable turbulence model and two Schmidt numbers (0.3 and 0.7. It has seen that height, length and width of the building in front of the wind, and, the distance between the two buildings back to the main building (the building on which the stack is present, have much influence on the concentration of pollutions. Although there are some differences between the results with different Schmidt numbers, the trend of changes of the concentration in different locations is identical for the two Schmidt numbers.

  17. Incorporating cache management behavior into seed dispersal: the effect of pericarp removal on acorn germination.

    Directory of Open Access Journals (Sweden)

    Xianfeng Yi

    Full Text Available Selecting seeds for long-term storage is a key factor for food hoarding animals. Siberian chipmunks (Tamias sibiricus remove the pericarp and scatter hoard sound acorns of Quercus mongolica over those that are insect-infested to maximize returns from caches. We have no knowledge of whether these chipmunks remove the pericarp from acorns of other species of oaks and if this behavior benefits seedling establishment. In this study, we tested whether Siberian chipmunks engage in this behavior with acorns of three other Chinese oak species, Q. variabilis, Q. aliena and Q. serrata var. brevipetiolata, and how the dispersal and germination of these acorns are affected. Our results show that when chipmunks were provided with sound and infested acorns of Quercus variabilis, Q. aliena and Q. serrata var. brevipetiolata, the two types were equally harvested and dispersed. This preference suggests that Siberian chipmunks are incapable of distinguishing between sound and insect-infested acorns. However, Siberian chipmunks removed the pericarp from acorns of these three oak species prior to dispersing and caching them. Consequently, significantly more sound acorns were scatter hoarded and more infested acorns were immediately consumed. Additionally, indoor germination experiments showed that pericarp removal by chipmunks promoted acorn germination while artificial removal showed no significant effect. Our results show that pericarp removal allows Siberian chipmunks to effectively discriminate against insect-infested acorns and may represent an adaptive behavior for cache management. Because of the germination patterns of pericarp-removed acorns, we argue that the foraging behavior of Siberian chipmunks could have potential impacts on the dispersal and germination of acorns from various oak species.

  18. Anomalous Hall effect and current spin polarization in Co2Fe X Heusler compounds (X =Al , Ga , In , Si , Ge , and Sn ): A systematic ab initio study

    Science.gov (United States)

    Huang, Hung-Lung; Tung, Jen-Chuan; Guo, Guang-Yu

    2015-04-01

    Co-based Heusler compounds are ferromagnetic with a high Curie temperature and a large magnetization density, and thus are promising for spintronic applications. In this paper, we perform a systematic ab initio study of two principal spin-related phenomena, namely, anomalous Hall effect and current spin polarization, in Co2-based Heusler compounds Co2Fe X (X =Al , Ga , In , Si , Ge , Sn ) in the cubic L2 1 structure within the density functional theory with the generalized gradient approximation (GGA). The accurate all-electron full-potential linearized augmented plane-wave method is used. First, we find that the spin polarization of the longitudinal current (PL) in Co2Fe X (X =Al , Ga , In , Al0.5Si0.5 , and Sn ) is ˜100 % even though that of the electronic states at the Fermi level (PD) is not. Further, the other compounds also have a high current spin polarization with PL>85 %. This indicates that all the Co2Fe X compounds considered are promising for spin-transport devices. Interestingly, PD is negative in Co2Fe X (X =Si , Ge , and Sn ), differing in sign from the PL as well as that from the transport experiments. Second, the calculated anomalous Hall conductivities (AHCs) are moderate, being within 200 S/cm, and agree well with the available experiments on a highly L2 1 ordered Co2FeSi specimen although they differ significantly from the reported experiments on other compounds where the B2 antisite disorders were present. Surprisingly, the AHC in Co2FeSi decreases and then changes sign when Si is replaced by Ge and finally by Sn. Third, the calculated total magnetic moments agree well with the corresponding experimental ones in all the studied compounds except Co2FeSi where a difference of 0.3 μB/f .u . exists. We also perform the GGA plus on-site Coulomb interaction U calculations in the GGA + U scheme. We find that including the U affects the calculated total magnetic moment, spin polarization and AHC significantly, and in most cases, unfortunately

  19. Assessing intraspecific variation in effective dispersal along an altitudinal gradient: a test in two Mediterranean high-mountain plants.

    Directory of Open Access Journals (Sweden)

    Carlos Lara-Romero

    Full Text Available Plant recruitment depends among other factors on environmental conditions and their variation at different spatial scales. Characterizing dispersal in contrasting environments may thus be necessary to understand natural intraspecific variation in the processes underlying recruitment. Silene ciliata and Armeria caespitosa are two representative species of cryophilic pastures above the tree line in Mediterranean high mountains. No explicit estimations of dispersal kernels have been made so far for these or other high-mountain plants. Such data could help to predict their dispersal and recruitment patterns in a context of changing environments under ongoing global warming.We used an inverse modelling approach to analyse effective seed dispersal patterns in five populations of both Silene ciliata and Armeria caespitosa along an altitudinal gradient in Sierra de Guadarrama (Madrid, Spain. We considered four commonly employed two-dimensional seedling dispersal kernels exponential-power, 2Dt, WALD and log-normal.No single kernel function provided the best fit across all populations, although estimated mean dispersal distances were short (<1 m in all cases. S. ciliata did not exhibit significant among-population variation in mean dispersal distance, whereas significant differences in mean dispersal distance were found in A. caespitosa. Both S. ciliata and A. caespitosa exhibited among-population variation in the fecundity parameter and lacked significant variation in kernel shape.This study illustrates the complexity of intraspecific variation in the processes underlying recruitment, showing that effective dispersal kernels can remain relatively invariant across populations within particular species, even if there are strong variations in demographic structure and/or physical environment among populations, while the invariant dispersal assumption may not hold for other species in the same environment. Our results call for a case-by-case analysis in a

  20. Normal-dispersion microresonator Kerr frequency combs

    Directory of Open Access Journals (Sweden)

    Xue Xiaoxiao

    2016-06-01

    Full Text Available Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.

  1. Study of the Energy Dependence of the Anomalous Mean Free Path Effect by Means of High-energy ($\\geq$12 GeV/nucleon) Helium Nuclei

    CERN Multimedia

    2002-01-01

    The proposal concerns an extension to higher energies of previous experiments which have provided evidence for anomalously short reaction mean free paths among projectile fragments from heavy ion interactions.\\\\ \\\\ It is intended to provide information on the interaction properties of projectile fragments, mainly 3He, P, D, T as well as of scattered 4He nuclei in passive detectors exposed to beams of energies exceeding those available in previous experim factor of about 7. \\\\ \\\\ Interaction mean free paths and event topologies will be measured in a nuclear emulsion stack (LBL) of 7.5~cm~x~5~cm~x~25~cm dimensions. Decay effects will be recorded by comparing the activity of spallation residues in dense and diluted copper target assemblies (Marburg). Target fragmentation will be studied in a stack of silverchloride crystal foils (Frankfurt) of about 7~cm~x~6~cm~x~1~cm dimensions. The \\alpha beam ejected at EJ~62 will be used to provide both exposures at high intensity of 10|1|2 alphas on th and at low intensity ...

  2. Lateral Dispersion of Pollutants in a Very Stable Atmosphere - The Effect of Meandering

    DEFF Research Database (Denmark)

    Kristensen, Leif; Jensen, Niels Otto; Lundtang Petersen, Erik

    1981-01-01

    A model based on single particle diffusion is introduced to account for the effect of “meandering” on lateral plume dispersion in a very stable atmosphere. It is assumed that small scale atmospheric turbulence is absent, so that only large horizontal eddies are effective. A formula for the lateral....... Meteorological data from Risø and the small island Sprogø have been analysed in order to identify all situations in which the atmosphere is so stable that small scale turbulence cannot exist. The purpose is to see in how many of these situations meandering is also absent. The results show that, as a rule...

  3. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show......We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...

  4. [Effect of different bone cement dispersion types in the treatment of osteoporotic vertebral compression fracture].

    Science.gov (United States)

    Zhao, Yong-Sheng; Li, Qiang; Li, Qiang; Zheng, Yan-Ping

    2017-05-25

    To observe different bone cement dispersion types of PVP, PKP and manipulative reduction PVP and their effects in the treatment of senile osteoporotic vertebral compression fractures and the bone cement leakage rate. The clinical data of patients with osteoporotic vertebral compression fractures who underwent unilateral vertebroplasty from January 2012 to January 2015 was retrospectively analyzed. Of them, 56 cases including 22 males and 34 females aged from 60 to 78 years old were treated by PVP operation; Fouty-eight cases including 17 males and 31 females aged from 61 to 79 years old were treated by PKP operation; Forty-three cases including 15 males and 28 females aged from 60 to 76 years old were treated by manipulative reduction PVP operation. AP and lateral DR films were taken after the operation; the vertebral bone cement diffusion district area and mass district area were calculated with AutoCAD graphics processing software by AP and lateral DR picture, then ratio(K) of average diffusion area and mass area were calculated, defining K100% as diffusion type. Different bone cement dispersion types of PVP, PKP and manipulative reduction PVP operation were analyzed. According to bone cement dispersion types, patients were divided into diffusion type, mixed type and mass type groups.Visual analogue scale (VAS), vertebral body compression rate, JOA score and bone cement leakage rate were observed. All patients were followed up for 12-24 months with an average of 17.2 months. There was significant difference in bone cement dispersion type among three groups ( P <0.05). The constituent ratio of diffusion type, mixed type and mass type in PVP operation was 46.43%, 35.71%, 17.86%, in PKP was 16.67%, 37.50% , 45.83%, and in manipulative reduction PVP was 37.21%, 44.19% and 18.60%, respectively. PVP operation and manipulative reduction PVP were mainly composed of diffusion type and mixed type, while PKP was mainly composed of mass type and mixed type. There was no

  5. Effect of ozone exposure on the dispersion of inhaled aerosol boluses in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, M.J.; Bennett, W.D.; Dewitt, P.; Seal, E.; Strong, A.A.

    1990-12-06

    Acute exposure of humans to low levels of ozone are known to cause decreases FVC and increases sRaw. These alterations in lung function do not, however, elucidate the potential for acute small airways responses. In the study the authors employed a test of aerosol dispersion to examine the potential effects of ozone on small airways in humans. Twenty-two healthy non-smoking male volunteers were exposed to 0.4 ppm ozone for one hour while exercising at 20 l/min/m{sup 2} (BSA). Prior to and immediately following exposure, tests of spirometry (FVC, FEV1, and FEF25-75) and plethysmography (Raw and sRaw) were performed. Subjects also performed an aerosol dispersion test before and after exposure. Each test involved a subject inhaling five to seven breaths of a 300 ml bolus of a 0.5 micrometers triphenyl phosphate (TPP) aerosol injected into a 2 liters tidal volume. The bolus was injected into the tidal breath at three different depths: at depth A the bolus was injected after 1.6 liters of clean air was inhaled from FRC; at depth B after 1.2 liters; and at depth C after 1.2 liters but with inhalation beginning from RV. The primary measure of bolus dispersion was the expired half-width (HW).

  6. Iodine dispersion and effects on groundwater chemistry following a release to a peat bog, Manitoba, Canada

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Thibault, D.H.; Smith, P.A.

    1989-01-01

    The migration and behaviour of I was investigated in a sphagnum bog on the precambrian Shield in eastern Manitoba, Canada. A 6 M solution of K1 was released at the base of the bog to simulate a pulse discharge of contaminated groundwater from a fracture in the granitic rock. A network of piezometer tubes was used to monitor the dispersion of the I and the groundwater chemistry over 1 year. Cores of peat were also taken for analysis to supplement the groundwater data and to investigate the sorption of I. The introduced I dispersed 2 m horizontally and 1 m vertically within a month. After this, the system stabilized and further migration was insignificant. The pattern of I dispersion indicated that the bog hydrology was very complex with flow directions changing substantially with depth. The groundwater concentrations of the major cations rose in response to the mass action effect of K displacing them from reaction sites in the peat. Humic materials in the groundwater decreased in size after the KI release and returned to their pre-release conformation one month later. The geometric mean soil distribution coefficient value, K d , for I in the bog was 1.361/kg, but it was strongly related to pore water concentration. Thus, a single K d value was insufficient for describing the system. (author)

  7. Effect of dispersing nano-materials into structural adhesive on the electrical and mechanical properties

    Science.gov (United States)

    Chinnabhandar, Anil; Narasimha Murthy, H. N.; Krishna, M.

    2007-12-01

    This paper highlights a systematic investigation (related to percentage addition of solvents) of finding the appropriate solvent to reduce the viscosity of the structural grade of resin (AV138M) within castable range to effectively disperse the nano-fillers (Carbon Nano Powder - CNP and Multi Walled Carbon Nano Tubes - MWCNT). AV138M + HY998/CNP and AV138 + HY998/MWCNT were cast within-process degassing using a vacuum pump of capacity 4 torr. High energy sonic waves (27000 kHz) were used for dispersion. Morphological studies were undertaken to analyze the uniformity in dispersion of nano-fillers. The cured specimens were subjected to: Resistivity measurements using a Resistivity Meter, Glass Transition Temperature (T g) using a Differential Scanning Calorimetry (DSC) and Tensile properties using UTM. The properties have been determined for the nanocomposites with different wt % of the fillers. It has been found that for 0.6 wt % of filler (CNP / MWCNT), there is an increase in UTS of 10 times for MWCNT compared to CNP; for 1.0 wt % of the fillers, the T g improved by 10 ºC for MWCNT and by 4 ºC for CNP when compared with neat resin. Both CNP and MWCNT showed drop in electrical resistivity of the neat resin; a drop to the extent of 10 3 has been achieved with 1 wt % MWCNT and the same was 2 wt % in case of CNP.

  8. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compean-González, C.L. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Arredondo-Torres, V.M. [Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan #173, Col. Matamoros, Morelia, Michoacán C.P. 58240 (Mexico); Zarazúa-Morin, M.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Figueroa-Torres, M.Z., E-mail: m.zyzlila@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico)

    2015-09-15

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr{sub 2}Ta{sub 2}O{sub 7} on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr{sub 2}Ta{sub 2}O{sub 7} surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained.

  9. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    International Nuclear Information System (INIS)

    Compean-González, C.L.; Arredondo-Torres, V.M.; Zarazúa-Morin, M.E.; Figueroa-Torres, M.Z.

    2015-01-01

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr 2 Ta 2 O 7 on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr 2 Ta 2 O 7 surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained

  10. Weathering of hydrocarbons in mangrove sediments: testing the effects of using dispersants to treat oil spills

    International Nuclear Information System (INIS)

    Burns, K.A.; Codi, S.; Pratt, C.; Duke, N.C.

    1999-01-01

    This field study was a combined chemical and biological investigation of the relative effects of using dispersants to treat oil spills impacting mangrove habitats. The aim of the chemistry was to determine whether dispersant affected the short- or long-term composition of a medium range crude oil (Gippsland) stranded in a tropical mangrove environment in Queensland, Australia. Sediment cores from three replicate plots of each treatment (oil only and oil plus dispersant) were analyzed for total hydrocarbons and for individual molecular markers (alkanes, aromatics, triterpanes, and steranes). Sediments were collected at 2 days, then 1, 7, 13 and 22 months post-spill. Over this time, oil in the six treated plots decreased exponentially from 36.6 ± 16.5 to 1.2 ± 0.8 mg/g dry wt. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between oiled or dispersed oil plots. At 13 months, alkanes were > 50% degraded, aromatics were ∼30% degraded based upon ratios of labile to resistant markers. However, there was no change in the triterpane or sterane biomarker signatures of the retained oil. This is of general forensic interest for pollution events. The predominant removal processes were evaporation (≤27%) and dissolution (≥56%), with a lag-phase of 1 month before the start of significant microbial degradation (≤17%). The most resistant fraction of the oil that remained after 7 months (the higher molecular weight hydrocarbons) correlated with the initial total organic carbon content of the soil. Removal rate in the Queensland mangroves was significantly faster than that observed in the Caribbean and was related to tidal flushing. (author)

  11. Contagious deposition of seeds in spider monkeys' sleeping trees limits effective seed dispersal in fragmented landscapes.

    Directory of Open Access Journals (Sweden)

    Arturo González-Zamora

    Full Text Available The repeated use of sleeping sites by frugivorous vertebrates promotes the deposition and aggregation of copious amounts of seeds in these sites. This spatially contagious pattern of seed deposition has key implications for seed dispersal, particularly because such patterns can persist through recruitment. Assessing the seed rain patterns in sleeping sites thus represents a fundamental step in understanding the spatial structure and regeneration of plant assemblages. We evaluated the seed rain produced by spider monkeys (Ateles geoffroyi in latrines located beneath 60 sleeping trees in two continuous forest sites (CFS and three forest fragments (FF in the Lacandona rainforest, Mexico. We tested for differences among latrines, among sites, and between forest conditions in the abundance, diversity (α-, β- and, γ-components and evenness of seed assemblages. We recorded 45,919 seeds ≥ 5 mm (in length from 68 species. The abundance of seeds was 1.7 times higher in FF than in CFS, particularly because of the dominance of a few plant species. As a consequence, community evenness tended to be lower within FF. β-diversity of common and dominant species was two times greater among FF than between CFS. Although mean α-diversity per latrine did not differ among sites, the greater β-diversity among latrines in CFS increased γ-diversity in these sites, particularly when considering common and dominant species. Our results support the hypothesis that fruit scarcity in FF can 'force' spider monkeys to deplete the available fruit patches more intensively than in CFS. This feeding strategy can limit the effectiveness of spider monkeys as seed dispersers in FF, because (i it can limit the number of seed dispersers visiting such fruit patches; (ii it increases seed dispersal limitation; and (iii it can contribute to the floristic homogenization (i.e., reduced β-diversity among latrines in fragmented landscapes.

  12. Positron-atom dispersion relations

    International Nuclear Information System (INIS)

    Dumbrajs, O.; Martinis, M.

    1983-01-01

    The singularity structure of the forward positron-atom scattering amplitude is studied within the framework of perturbation theory with the use of the Landau rules. The unphysical and anomalous regions in the positron-atom forward dispersion relations are discussed. It is shown that the unphysical region starts at E 0 = -Vertical BarE(Ps)Vertical Bar+Vertical BarE 1 Vertical Bar and the anomalous region at E/sub a/ = -(√2Vertical BarE(Ps)Vertical Bar - √Vertical BarE 1 Vertical Bar ) 2 , where E(Ps) and E 1 are correspondingly the positronium and the atomic-electron binding energies. The anomalous region is on the physical sheet if Vertical BarE(Ps)Vertical Bar/2>Vertical BarE 1 Vertical Bar

  13. Small-scale indirect effects determine the outcome of a tripartite plant-disperser-granivore interaction.

    Science.gov (United States)

    Boulay, Raphaël; Carro, Francisco; Soriguer, Ramón C; Cerdá, Xim

    2009-09-01

    The microhabitat in which plants grow affects the outcome of their interactions with animals, particularly non-specialist consumers. Nevertheless, as most research on this topic has dealt with either mutualists or antagonists, little is known about the indirect effects of plant microhabitats on the outcome of tripartite interactions involving plants and both mutualists (e.g. seed dispersers) and antagonists (e.g. granivores). During three consecutive years, we analysed small-scale variations in the interaction of a perennial myrmecochore, Helleborus foetidus, with its seed dispersers and consumers as a function of the intensity of plant cover. Most seeds were released during the day and were rapidly removed by ants. Nevertheless, the proportion of ant-removed seeds was higher for plants located in open microhabitats than for plants surrounded by dense vegetation and rocky cover. Ant sampling revealed that seed removers were equally abundant, irrespective of the level of cover. By contrast, a few tiny ant species that feed on the reward without transporting the seeds were more abundant in highly covered microhabitats, irrespective of hellebore diaspore availability. These "cheaters" decrease the chance of removal by removers and increase the probability of seeds remaining on the ground until night, when granivore mice Apodemus sylvaticus become active. Mice also preferred foraging in covered microhabitats, where they consumed a larger proportion of seeds. Therefore, the density of cover indirectly increased seed predation risk by attracting more seed predators and cheater ants that contribute to increase seed availability for seed predators. Our results emphasize the importance of considering the indirect effects of plant microhabitat on their dispersal success. They highlight the indirect effect of cheaters that are likely to interfere in mutualisms and may lead to their collapse unless external factors such as spatio-temporal heterogeneity in seed availability

  14. Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna.

    Science.gov (United States)

    Toyota, Kenji; McNabb, Nicole A; Spyropoulos, Demetri D; Iguchi, Taisen; Kohno, Satomi

    2017-02-01

    In 2010, approximately 2.1 million gallons of chemical dispersants, mainly Corexit 9500, were applied in the Gulf of Mexico to prevent the oil slick from reaching shorelines and to accelerate biodegradation of oil during the Deepwater Horizon oil spill. Recent studies have revealed toxic effects of Corexit 9500 on marine microzooplankton that play important roles in food chains in marine ecosystems. However, there is still little known about the toxic effects of Corexit 9500 on freshwater zooplankton, even though oil spills do occur in freshwater and chemical dispersants may be used in response to these spills. The cladoceran crustacean, water flea Daphnia magna, is a well-established model species for various toxicological tests, including detection of juvenile hormone-like activity in test compounds. In this study, we conducted laboratory experiments to investigate the acute and chronic toxicity of Corexit 9500 using D. magna. The acute toxicity test was conducted according to OECD TG202 and the 48 h EC 50 was 1.31 ppm (CIs 0.99-1.64 ppm). The reproductive chronic toxicity test was performed following OECD TG211 ANNEX 7 and 21 days LOEC and NOEC values were 4.0 and 2.0 ppm, respectively. These results indicate that Corexit 9500 has toxic effects on daphnids, particularly during the neonatal developmental stage, which is consistent with marine zooplankton results, whereas juvenile hormone-like activity was not identified. Therefore, our findings of the adverse effects of Corexit 9500 on daphnids suggest that application of this type of chemical dispersant may have catastrophic impacts on freshwater ecosystems by disrupting the key food chain network. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  16. Negative and matrix-dependent effects of dispersal corridors in an experimental metacommunity.

    Science.gov (United States)

    Aström, Jens; Pärt, Tomas

    2013-01-01

    Negative effects of habitat fragmentation are well-known phenomena in ecology, and the use of corridors is one suggested remedy to ameliorate community disassembly. Most experiments of landscape structure, however, do not consider matrix quality and environmental conditions, despite their potential to affect both landscape permeability and population densities. For the first time in fragmented landscapes, we simultaneously investigated the effects of local disturbance, dispersal corridors, matrix quality, and environmental stress, as well as their interactions, on species richness and abundance. We used a natural micro-ecosystem of bryophyte patches with microarthropods as a model system. Contrary to expectations, there were no negative responses to fragmentation of large continuous habitats. Surprisingly, connecting fragmented patches with dispersal corridors had negative effects on the abundance and species richness of the most species-rich group, oribatid mites. It had also negative effects on the abundance of collembolans and predatory mites in landscapes with complex matrix, which was also generally detrimental. Environmental stress was detrimental for all taxa but interacted with matrix type for oribatid species richness and juvenile oribatid abundance. Our results indicate that interactions can strongly alter community responses to common explanatory factors such as fragmentation, disturbance, connectivity, and environmental quality. Future studies of metacommunity dynamics need to consider the potential for such interactions in order to produce robust predictions of spatially structured landscapes.

  17. Final thermal conditions override the effects of temperature history and dispersal in experimental communities.

    Science.gov (United States)

    Limberger, Romana; Low-Décarie, Etienne; Fussmann, Gregor F

    2014-10-22

    Predicting the effect of climate change on biodiversity is a multifactorial problem that is complicated by potentially interactive effects with habitat properties and altered species interactions. In a microcosm experiment with communities of microalgae, we analysed whether the effect of rising temperature on diversity depended on the initial or the final temperature of the habitat, on the rate of change, on dispersal and on landscape heterogeneity. We also tested whether the response of species to temperature measured in monoculture allowed prediction of the composition of communities under rising temperature. We found that the final temperature of the habitat was the primary driver of diversity in our experimental communities. Species richness declined faster at higher temperatures. The negative effect of warming was not alleviated by a slower rate of warming or by dispersal among habitats and did not depend on the initial temperature. The response of evenness, however, did depend on the rate of change and on the initial temperature. Community composition was not predictable from monoculture assays, but higher fitness inequality (as seen by larger variance in growth rate among species in monoculture at higher temperatures) explained the faster loss of biodiversity with rising temperature.

  18. Improved dissolution and anti-inflammatory effect of ibuprofen by solid dispersion.

    Science.gov (United States)

    Chen, Liyuan; Dang, Qifeng; Liu, Chengsheng; Chen, Jun; Song, Lei; Chen, Xiguang

    2012-06-01

    The purpose of this study was to improve the dissolution rate and anti-inflammatory effect of ibuprofen by a solid dispersion (SD) method. Initial screening was developed based on drug solubility in carriers in the liquid state to select a suitable water-soluble carrier system for the preparation of SDs. The dissolution of ibuprofen in urea was higher than in PEG4000 or mannitol. Thus, urea was selected as the carrier for the preparation of SDs. SDs were characterized in terms of dissolution, differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. Solid dispersion-based (SDBT) and conventional (CT) tablets were prepared by the wet granulation method. The anti-inflammatory effect of SDBT was evaluated using the mouse ear edema test with xylene. In vitro release results indicated that the ibuprofen dissolution rate was improved by the SD. SD characterization results suggested that ibuprofen partly precipitates in crystalline and amorphous forms after SD preparation and that ibuprofen and urea do not interact. SDBT displayed more significant anti-inflammatory effects than CT. The dissolution rate and anti-inflammatory effect of ibuprofen were significantly enhanced by the ibuprofen-urea SD.

  19. Biharmonic split ring resonator metamaterial: Artificially dispersive effective density in thin periodically perforated plates

    KAUST Repository

    Farhat, Mohamed

    2014-08-01

    We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.

  20. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments

    International Nuclear Information System (INIS)

    Myint, Wazo; Ishima, Rieko

    2009-01-01

    In the analysis of the constant-time Carr-Purcell-Meiboom-Gill (CT-CPMG) relaxation dispersion experiment, chemical exchange parameters, such as rate of exchange and population of the exchanging species, are typically optimized using equations that predict experimental relaxation rates recorded as a function of effective field strength. In this process, the effect of chemical exchange during the CPMG pulses is typically assumed to be the same as during the free-precession. This approximation may introduce systematic errors into the analysis of data because the number of CPMG pulses is incremented during the constant-time relaxation period, and the total pulse duration therefore varies as a function of the effective field strength. In order to estimate the size of such errors, we simulate the time-dependence of magnetization during the entire constant time period, explicitly taking into account the effect of the CPMG pulses on the spin relaxation rate. We show that in general the difference in the relaxation dispersion profile calculated using a practical pulse width from that calculated using an extremely short pulse width is small, but under certain circumstances can exceed 1 s -1 . The difference increases significantly when CPMG pulses are miscalibrated

  1. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution

    Directory of Open Access Journals (Sweden)

    Moreshwar Pandharinath Patil

    2011-03-01

    Full Text Available The present study was initiated with the objective of studying the in vitro dissolution behavior of gliclazide from its solid dispersion with polyethylene glycol 6000. In this work, a solid dispersion of gliclazide with polyethylene glycol was prepared by the fusion method. In vitro dissolution study of gliclazide, its physical mixture and solid dispersion were carried out to demonstrate the effect of PEG 6000. Analytical techniques of FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry were used to characterize the drug in the physical mixtures and solid dispersions. The dissolution studies of solid dispersion and physical mixture showed greater improvement compared to that of the pure drug. The mechanisms for increased dissolution rate may include reduction of crystallite size, a solubilization effect of the carrier, absence of aggregation of drug crystallites, improved wettability and dispersbility of the drug from the dispersion, dissolution of the drug in the hydrophilic carrier or conversion of drug to an amorphous state. The FT-IR spectra suggested that there was no interaction between gliclazide and PEG 6000 when prepared as a solid dispersion. DSC and XRD study indicated that the drug was converted in the amorphous form.O presente trabalho foi realizado com o objetivo de estudar o comportamento in vitro da dissolução da gliclazida a partir da sua dispersão sólida com polietileno glicol 6000. Neste trabalho, as dispersões sólidas de gliclazida com polietileno glicol foram preparadas pelo método de fusão. Os estudo de dissolução in vitro da gliclazida, na mistura física e nas dispersões sólidas foram realizados para demonstrar o efeito de PEG 6000. Técnicas analíticas como espectroscopia FT-IR, calorimetria diferencial de varredura e difração de raios-X foram empregadas para caracterizar o fármaco nas misturas físicas e nas dispersoes sólidas. Os estudos de dissolução demonstraram maior

  2. Anomalous diffusion of fermions in superlattices

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.

    1996-03-01

    Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)

  3. Bi- and polydentate organophosphorous compounds as extractants for actinides from liquid waste (use of effect of anomalous aryl stability increase)

    International Nuclear Information System (INIS)

    Rozen, A.M.; Nikolotova, Z.I.; Kartasheva, N.A.

    1988-01-01

    Extraction of actinides (Am) and lanthanides (Eu) from nitric acid liquid wastes by bi-, tri- and polydentate organophosphoric extractants, characteristic of purex-process, and effect of more electronegative aryl groups substitution for alkyl groups in the latter have been studied. The observed increase in distribution factors are explained from the viewpoint of molecular and electronic structure extractants. 10 refs.; 6 figs

  4. Optimization of effective atom centered potentials for london dispersion forces in density functional theory.

    Science.gov (United States)

    von Lilienfeld, O Anatole; Tavernelli, Ivano; Rothlisberger, Ursula; Sebastiani, Daniel

    2004-10-08

    We add an effective atom-centered nonlocal term to the exchange-correlation potential in order to cure the lack of London dispersion forces in standard density functional theory. Calibration of this long-range correction is performed using density functional perturbation theory and an arbitrary reference. Without any prior assignment of types and structures of molecular fragments, our corrected generalized gradient approximation density functional theory calculations yield correct equilibrium geometries and dissociation energies of argon-argon, benzene-benzene, graphite-graphite, and argon-benzene complexes.

  5. Anomalous Lorentz and CPT violation from a local Chern–Simons-like term in the effective gauge-field action

    Directory of Open Access Journals (Sweden)

    K.J.B. Ghosh

    2018-01-01

    Full Text Available We consider four-dimensional chiral gauge theories defined over a spacetime manifold with topology R3×S1 and periodic boundary conditions over the compact dimension. The effective gauge-field action is calculated for Abelian U(1 gauge fields Aμ(x which depend on all four spacetime coordinates (including the coordinate x4∈S1 of the compact dimension and have vanishing components A4(x (implying trivial holonomies in the 4-direction. Our calculation shows that the effective gauge-field action contains a local Chern–Simons-like term which violates Lorentz and CPT invariance. This result is established perturbatively with a generalized Pauli–Villars regularization and nonperturbatively with a lattice regularization based on Ginsparg–Wilson fermions.

  6. Anomalous Lorentz and CPT violation from a local Chern-Simons-like term in the effective gauge-field action

    Science.gov (United States)

    Ghosh, K. J. B.; Klinkhamer, F. R.

    2018-01-01

    We consider four-dimensional chiral gauge theories defined over a spacetime manifold with topology R3 ×S1 and periodic boundary conditions over the compact dimension. The effective gauge-field action is calculated for Abelian U (1) gauge fields Aμ (x) which depend on all four spacetime coordinates (including the coordinate x4 ∈S1 of the compact dimension) and have vanishing components A4 (x) (implying trivial holonomies in the 4-direction). Our calculation shows that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. This result is established perturbatively with a generalized Pauli-Villars regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  7. A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal.

    Science.gov (United States)

    Pflüger, Femke J; Balkenhol, Niko

    2014-05-01

    Landscape genetics has tremendous potential for enhancing our understanding about landscape effects on effective dispersal and resulting genetic structures. However, the vast majority of landscape genetic studies focus on effects of the landscape among sampling locations on dispersal (i.e. matrix quality), while effects of local environmental conditions are rather neglected. Such local environmental conditions include patch size, habitat type or resource availability and are commonly used in (meta-) population ecology and population genetics. In our opinion, landscape genetic studies would greatly benefit from simultaneously incorporating both matrix quality and local environmental conditions when assessing landscape effects on effective dispersal. To illustrate this point, we first outline the various ways in which environmental heterogeneity can influence different stages of the dispersal process. We then propose a three-step approach for assessing local and matrix effects on effective dispersal and review how both types of effects can be considered in landscape genetic analyses. Using simulated data, we show that it is possible to correctly disentangle the relative importance of matrix quality vs. local environmental conditions for effective dispersal. We argue that differentiating local and matrix effects in such a way is crucial for predicting future species distribution and persistence, and for optimal conservation decisions that are based on landscape genetics. In sum, we think it is timely to move beyond purely statistical, pattern-oriented analyses in landscape genetics and towards process-oriented approaches that consider the full range of possible landscape effects on dispersal behaviour and resulting gene flow. © 2014 John Wiley & Sons Ltd.

  8. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2.

    Science.gov (United States)

    Sefat, Athena S; Li, Li; Cao, Huibo B; McGuire, Michael A; Sales, Brian; Custelcean, Radu; Parker, David S

    2016-02-12

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba(1-x)Tl(x)Fe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (T(N) = T(s) = 133 K) increase for x = 0.05 (T(N) = 138 K, T(s) = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (T(N) = T(s) = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.

  9. Anomalous magneto-elastic and charge doping effects in thallium-doped BaFe2As2

    Science.gov (United States)

    Sefat, Athena S.; Li, Li; Cao, Huibo B.; McGuire, Michael A.; Sales, Brian; Custelcean, Radu; Parker, David S.

    2016-02-01

    Within the BaFe2As2 crystal lattice, we partially substitute thallium for barium and report the effects of interlayer coupling in Ba1-xTlxFe2As2 crystals. We demonstrate the unusual effects of magneto-elastic coupling and charge doping in this iron-arsenide material, whereby Néel temperature rises with small x, and then falls with additional x. Specifically, we find that Néel and structural transitions in BaFe2As2 (TN = Ts = 133 K) increase for x = 0.05 (TN = 138 K, Ts = 140 K) from magnetization, heat capacity, resistivity, and neutron diffraction measurements. Evidence from single crystal X-ray diffraction and first principles calculations attributes the stronger magnetism in x = 0.05 to magneto-elastic coupling related to the shorter intraplanar Fe-Fe bond distance. With further thallium substitution, the transition temperatures decrease for x = 0.09 (TN = Ts = 131 K), and this is due to charge doping. We illustrate that small changes related to 3d transition-metal state can have profound effects on magnetism.

  10. Genetics of dispersal

    Science.gov (United States)

    Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria

    2017-01-01

    ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts

  11. Electrochromic coatings made of surface modified rutile and anatase pigments: Influence of trisilanol POSS dispersant on electrochromic effect

    International Nuclear Information System (INIS)

    Mihelčič, Mohor; Francetič, Vojmir; Pori, Pavli; Gradišar, Helena; Kovač, Janez; Orel, Boris

    2014-01-01

    roughness (up to 20 nm) and uniform morphology. mTiA/trisilanol POSS interactions were assessed from the frequency shifts of the Si-O-Si stretching modes of trisilanol POSS, while the adsorption of the dispersant was followed from the intensity changes of the corresponding -CH 3 and -CH 2 stretching modes, confirming the gradual occupation of the mTiA crystalline sites by trisilanol POSS dispersant. Examination of IR vibrational spectra showed that trisilanol POSS interacted with the mTiA surface by establishing hydrogen bonding. The advantage of using trisilanol POSS dispersant was demonstrated by the enhanced electrochromic effect of the mTiA pigment coatings

  12. Effect of dispersing and stabilizing additives on rheological characteristics of the upgraded brown coal water mixture

    International Nuclear Information System (INIS)

    Umar, Datin Fatia; Muta'alim; Usui, Hiromoto; Komoda, Yoshiyuki

    2009-01-01

    Upgraded brown coal water mixture (UBCWM) preparation by using an Indonesian upgraded coal produced by upgraded brown coal (UBC) process, was carried out to study the effect of dispersing and stabilizing additives on rheological behavior of the UBCWM. Three kinds of anionic dispersing additives, naphthalene sulfonic formaldehyde condensate (NSF), poly (meth) acrylate (PMA) and poly styrene sulfonic acid (PSS) and three kinds of stabilizing additives, carboxyl methyl cellulose (CMC), rhansam gum (S-194) and gellan gum (S-60) were used in this study. Results indicate that the addition of NSF 0.3 wt.% together with S-194 0.01 wt.% is effective in preparing UBCWM with good slurryability and stability, based on its rheological characteristics with the apparent viscosity at shear rate of 100 s - 1 and yield stress at zero point of shear rate. The rheological behavior of all of the UBCWM that prepared, exhibits non-Newtonian Bingham plastic. From the economical point of view, the price of S-194 is expensive. On the other hand, CMC is cheap and abundant. Therefore, the addition of CMC 0.01 wt.% together with NSF 0.3 wt.% is also effective in preparing UBCWM with good fluidity and stability. (author)

  13. Assessing Dispersal Patterns of Fish Propagules from an Effective Mediterranean Marine Protected Area

    Science.gov (United States)

    Di Franco, Antonio; Coppini, Giovanni; Pujolar, José Martin; De Leo, Giulio A.; Gatto, Marino; Lyubartsev, Vladyslav; Melià, Paco; Zane, Lorenzo; Guidetti, Paolo

    2012-01-01

    Successfully enforced marine protected areas (MPAs) have been widely demonstrated to allow, within their boundaries, the recovery of exploited species and beyond their boundaries, the spillover of juvenile and adult fish. Little evidence is available about the so-called ‘recruitment subsidy’, the augmented production of propagules (i.e. eggs and larvae) due to the increased abundance of large-sized spawners hosted within effective MPAs. Once emitted, propagules can be locally retained and/or exported elsewhere. Patterns of propagule retention and/or export from MPAs have been little investigated, especially in the Mediterranean. This study investigated the potential for propagule production and retention/export from a Mediterranean MPA (Torre Guaceto, SW Adriatic Sea) using the white sea bream, Diplodus sargus sargus, as a model species. A multidisciplinary approach was used combining 1) spatial distribution patterns of individuals (post-settlers and adults) assessed through visual census within Torre Guaceto MPA and in northern and southern unprotected areas, 2) Lagrangian simulations of dispersal based on an oceanographic model of the region and data on early life-history traits of the species (spawning date, pelagic larval duration) and 3) a preliminary genetic study using microsatellite loci. Results show that the MPA hosts higher densities of larger-sized spawners than outside areas, potentially guaranteeing higher propagule production. Model simulations and field observation suggest that larval retention within and long-distance dispersal across MPA boundaries allow the replenishment of the MPA and of exploited populations up to 100 km down-current (southward) from the MPA. This pattern partially agrees with the high genetic homogeneity found in the entire study area (no differences in genetic composition and diversity indices), suggesting a high gene flow. By contributing to a better understanding of propagule dispersal patterns, these findings provide

  14. Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor

    Science.gov (United States)

    Alarcón, J. M.; Weiss, C.

    2017-11-01

    We propose a method for calculating the nucleon form factors (FFs) of G -parity-even operators by combining chiral effective field theory (χ EFT ) and dispersion analysis. The FFs are expressed as dispersive integrals over the two-pion cut at t >4 Mπ2 . The spectral functions are obtained from the elastic unitarity condition and expressed as products of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF. χ EFT is used to calculate the ratio of the partial-wave amplitudes and the pion FF, which is real and free of π π rescattering in the t channel (N /D method). The rescattering effects are then incorporated by multiplying with the squared modulus of the empirical pion FF. The procedure results in a marked improvement compared to conventional χ EFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function, the scalar radius, the t -dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are estimated through the π N low-energy constants. Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several other interesting aspects of our method. The results show proper scaling behavior in the large-Nc limit of QCD because the χ EFT calculation includes N and Δ intermediate states. The squared modulus of the timelike pion FF required by our method can be extracted from lattice QCD calculations of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized parton distributions).

  15. The Effect of Uncertainties on the Operating Temperature of U-Mo/Al Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sweidana, Faris B.; Mistarihia, Qusai M.; Ryu Ho Jin [KAIST, Daejeon (Korea, Republic of); Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, uncertainty and combined uncertainty studies have been carried out to evaluate the uncertainty of the parameters affecting the operational temperature of U-Mo/Al fuel. The uncertainties related to the thermal conductivity of fuel meat, which consists of the effects of thermal diffusivity, density and specific heat capacity, the interaction layer (IL) that forms between the dispersed fuel and the matrix, fuel plate dimensions, heat flux, heat transfer coefficient and the outer cladding temperature were considered. As the development of low-enriched uranium (LEU) fuels has been pursued for research reactors to replace the use of highly-enriched uranium (HEU) for the improvement of proliferation resistance of fuels and fuel cycle, U-Mo particles dispersed in an Al matrix (UMo/Al) is a promising fuel for conversion of the research reactors that currently use HEU fuels to LEUfueled reactors due to its high density and good irradiation stability. Several models have been developed for the estimation of the thermal conductivity of U–Mo fuel, mainly based on the best fit of the very few measured data without providing uncertainty ranges. The purpose of this study is to provide a reasonable estimation of the upper bounds and lower bounds of fuel temperatures with burnup through the evaluation of the uncertainties in the thermal conductivity of irradiated U-Mo/Al dispersion fuel. The combined uncertainty study using RSS method evaluated the effect of applying all the uncertainty values of all the parameters on the operational temperature of U-Mo/Al fuel. The overall influence on the value of the operational temperature is 16.58 .deg. C at the beginning of life and it increases as the burnup increases to reach 18.74 .deg. C at a fuel meat fission density of 3.50E+21 fission/cm{sup 3}. Further studies are needed to evaluate the behavior more accurately by including other parameters uncertainties such as the interaction layer thermal conductivity.

  16. The Effect of Uncertainties on the Operating Temperature of U-Mo/Al Dispersion Fuel

    International Nuclear Information System (INIS)

    Sweidana, Faris B.; Mistarihia, Qusai M.; Ryu Ho Jin; Yim, Jeong Sik

    2016-01-01

    In this study, uncertainty and combined uncertainty studies have been carried out to evaluate the uncertainty of the parameters affecting the operational temperature of U-Mo/Al fuel. The uncertainties related to the thermal conductivity of fuel meat, which consists of the effects of thermal diffusivity, density and specific heat capacity, the interaction layer (IL) that forms between the dispersed fuel and the matrix, fuel plate dimensions, heat flux, heat transfer coefficient and the outer cladding temperature were considered. As the development of low-enriched uranium (LEU) fuels has been pursued for research reactors to replace the use of highly-enriched uranium (HEU) for the improvement of proliferation resistance of fuels and fuel cycle, U-Mo particles dispersed in an Al matrix (UMo/Al) is a promising fuel for conversion of the research reactors that currently use HEU fuels to LEUfueled reactors due to its high density and good irradiation stability. Several models have been developed for the estimation of the thermal conductivity of U–Mo fuel, mainly based on the best fit of the very few measured data without providing uncertainty ranges. The purpose of this study is to provide a reasonable estimation of the upper bounds and lower bounds of fuel temperatures with burnup through the evaluation of the uncertainties in the thermal conductivity of irradiated U-Mo/Al dispersion fuel. The combined uncertainty study using RSS method evaluated the effect of applying all the uncertainty values of all the parameters on the operational temperature of U-Mo/Al fuel. The overall influence on the value of the operational temperature is 16.58 .deg. C at the beginning of life and it increases as the burnup increases to reach 18.74 .deg. C at a fuel meat fission density of 3.50E+21 fission/cm 3 . Further studies are needed to evaluate the behavior more accurately by including other parameters uncertainties such as the interaction layer thermal conductivity.

  17. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon

    2017-10-01

    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  18. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Parente, P., E-mail: pparente@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Savoini, B. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Ferrari, B. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Sanchez-Herencia, A.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain)

    2013-03-01

    The capability of the colloidal method to produce yttria (Y{sub 2}O{sub 3}) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y{sub 2}O{sub 3} has been applied, and the effect of 10 wt.% Y{sub 2}O{sub 3} addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y{sub 2}O{sub 3} addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y{sub 2}O{sub 3} as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca{sup 2+} with Y{sup 3+} ions appears to promote the formation of OH{sup -} vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: Black-Right-Pointing-Pointer We reveal the influence of Y{sub 2}O{sub 3} on thermal stability of hydroxyapatite. Black-Right-Pointing-Pointer Incorporation of Y{sub 2}O{sub 3} delays decomposition of hydroxyapatite to calcium phosphates. Black-Right-Pointing-Pointer Addition of Y{sub 2}O{sub 3} enables sintering conditions more favorable to the densification.

  19. Dispersive dielectric and conductive effects in 2D resistor-capacitor networks.

    Science.gov (United States)

    Hamou, R F; Macdonald, J R; Tuncer, E

    2009-01-14

    How to predict and better understand the effective properties of disordered material mixtures has been a long-standing problem in different research fields, especially in condensed matter physics. In order to address this subject and achieve a better understanding of the frequency-dependent properties of these systems, a large 2D L × L square structure of resistors and capacitors was used to calculate the immittance response of a network formed by random filling of binary conductor/insulator phases with 1000 Ω resistors and 10 nF capacitors. The effects of percolating clusters on the immittance response were studied statistically through the generation of 10 000 different random network samples at the percolation threshold. The scattering of the imaginary part of the immittance near the dc limit shows a clear separation between the responses of percolating and non-percolating samples, with the gap between their distributions dependent on both network size and applied frequency. These results could be used to monitor connectivity in composite materials. The effects of the content and structure of the percolating path on the nature of the observed dispersion were investigated, with special attention paid to the geometrical fractal concept of the backbone and its influence on the behavior of relaxation-time distributions. For three different resistor-capacitor proportions, the appropriateness of many fitting models was investigated for modeling and analyzing individual resistor-capacitor network dispersed frequency responses using complex-nonlinear-least-squares fitting. Several remarkable new features were identified, including a useful duality relationship and the need for composite fitting models rather than either a simple power law or a single Davidson-Cole one. Good fits of data for fully percolating random networks required two dispersive fitting models in parallel or series, with a cutoff at short times of the distribution of relaxation times of one of

  20. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    G. Penido

    Full Text Available This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM. The complete model (with effects from edge distance and site and its interaction was significative (F3=4.43; p=0.005. Seeds had a larger predation rates in fragment’s interior in both areas, but in the controlled area (no disturbance this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001. We did not verify predator’s species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  1. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    Science.gov (United States)

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  2. Tailoring dispersion and aggregation of Au nanoparticles in the BHJ layer of polymer solar cells: plasmon effects versus electrical effects.

    Science.gov (United States)

    Kim, Wanjung; Cha, Bong Geun; Kim, Jung Kyu; Kang, Woonggi; Kim, Eunchul; Ahn, Tae Kyu; Wang, Dong Hwan; Du, Qing Guo; Cho, Jeong Ho; Kim, Jaeyun; Park, Jong Hyeok

    2014-12-01

    Plasmonic effects that arise from embedding metallic nanoparticles (NPs) in polymer solar cells (PSCs) have been extensively studied. Many researchers have utilized metallic NPs in PSCs by either incorporating them into the PSC interlayers (e.g., the hole extraction and electron extraction layers) or blending them into the bulk heterojunction (BHJ) active layer. In such studies, the dispersity of the metallic NPs in each layer may vary due to both the different nature of the ligands and the amount of ligands on the metallic NPs. This in turn can produce different PSC performance parameters. Here, we systematically control the amount of attached organic ligands on Au NPs to control their dispersion behavior in the BHJ active layer of PSCs. By controlling the number of capping organic ligands on the Au NPs, the dispersity of the NPs in the BHJ layer is also controlled and the positive effects (particularly the plasmonic and electrical effects) of the Au NPs in the PSCs are investigated. From the obtained results, we find that the electrical contribution of the Au NPs is a more dominant factor for enhancing cell efficiency when compared to the plasmonic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Anomalous Cherenkov spin-orbit sound

    Science.gov (United States)

    Smirnov, Sergey

    2011-02-01

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  4. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  5. Effect of the Dispersibility of Nano-CuO Catalyst on Heat Releasing of AP/HTPB Propellant

    OpenAIRE

    Yi Yang; Xinjie Yu; Jun Wang; Yaxue Wang

    2011-01-01

    Kneading time is adjusted to change the dispersibility of nano-CuO in AP/HTPB (Ammonia Perchlorate/Hydroxyl-Terminated Polybutadiene) composite propellants. Nano-CuO/AP is prepared to serve as the other dispersing method of nano-CuO, named predispersing procedure. Several kinds of heat releasing, thermal decomposition by DSC, combustion heat in oxygen environment, and explosion heat in nitrogen environment, are characterized to learn the effect of dispersibility of nano-CuO catalyst on heat r...

  6. Computing "anomalous" contaminant transport in porous media: the CTRW MATLAB toolbox.

    Science.gov (United States)

    Cortis, Andrea; Berkowitz, Brian

    2005-01-01

    We describe the continuous time random walk (CTRW) MATLAB toolbox, a collection of MATLAB scripts and functions that compute breakthrough curves (BTCs) and one-dimensional/two-dimensional (1D/2D) resident concentration profiles for passive tracer dispersion. The transport model is based on the CTRW theory. CTRW includes as special cases the classical Fickian dispersion based advection-dispersion equation, multirate and mobile-immobile models, and the fractional-in-time derivative transport equation. Several models for treating the memory effects responsible for the anomalous character of dispersion have been implemented in the CTRW toolbox. In the current version of the toolbox, it is possible to solve explicitly for the forward problem (concentration prediction) in 1D and 2D and for the inverse problem (parameter identification from experimental BTC data) in 1D. Future extensions will include explicit treatment of sorbing tracers, simple subroutines for treating radial flow from wells, introduction of arbitrary initial conditions, treatment of heterogeneous domains by use of the Fokker-Planck with Memory equation, and treatment of transport in multidimensional systems.

  7. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  8. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  9. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  10. DNS of Dispersed Multiphase Flows with Heat Transfer and Rarefaction Effects

    Directory of Open Access Journals (Sweden)

    Henrik Ström

    2014-09-01

    Full Text Available We propose a method for DNS of particle motion in non-isothermal systems. The method uses a shared set of momentum and energy balance equations for the carrier-and the dispersed phases. Measures are taken to ensure that non-deformable entities (solid particles behave like rigid bodies. Moreover, deformable entities (e.g. bubbles as well as rarefaction effects can be accommodated. The predictions of the method agree well with the available data for isothermal solid particles motion in the presence of walls and other particles, natural convection around a stationary particle, solid particles motion accompanied with heat transfer effects and isothermal solid particles motion under rarefied conditions. The method is used to investigate the simultaneous effects of heat transfer and rarefaction on the motion of a solid catalyst particle in an enclosure, the interaction of a solid particle and a microbubble in a flotation cell and a case with more than 1000 particles.

  11. Effective parameters and neutrography dispersion in the RP-10 reactor: Preliminary study

    International Nuclear Information System (INIS)

    Lopez, Alcides; Ticona, Santiago

    2014-01-01

    This paper presents a breakthrough in the study of the most important effective parameters, alternative to the standards, of the neutrography acquisition system, considering an irradiation point source and an effective register distance, as well as the dispersive effect that some kind of materials can produce when free neutrons impact them. It was observed that they do not only depend on the shape and distance from the object to the photographic screen or the neutron beam divergence, but also on the constitution of these materials. Hydrogenated materials as well as micro and nano structured solids are capable to produce significant neutron scattering. The study is developed through the analysis of images obtained by neutrography using the neutron beam of the RP-10 nuclear reactor. False color applications to the intensity of the neutron flux which gives a color contrast and simulation of 3D images intensities have helped to interpret the obtained information. (authors).

  12. Effects of upper-limit water temperatures on the dispersal of the Asian clam Corbicula fluminea.

    Directory of Open Access Journals (Sweden)

    Inês Correia Rosa

    Full Text Available Temperature is a determinant environmental variable in metabolic rates of organisms ultimately influencing important physiological and behavioural features. Stressful conditions such as increasing temperature, particularly within high ranges occurring in the summer, have been suggested to induce flotation behaviour in Corbicula fluminea which may be important in dispersal of this invasive species. However, there has been no experimental evidence supporting this hypothesis. It was already proven that C. fluminea drift is supported by a mucilaginous drogue line produced by mucocytes present in the ctenidia. Detailed microscopic examination of changes in these cells and quantification of clam flotation following one, two and three weeks of exposure to 22, 25 and 30°C was carried out so that the effects of increasing water temperatures in dispersal patterns could be discussed. Results show that changes in temperature triggered an acceleration of the mucocytes production and stimulated flotation behaviour, especially following one week of exposure. Dilution of these effects occurred following longer exposure periods. It is possible that these bivalves perceive changing temperature as a stress and respond accordingly in the short-term, and then acclimate to the new environmental conditions. The response patterns suggest that increasing water temperatures could stimulate C. fluminea population expansion.

  13. Effects of upper-limit water temperatures on the dispersal of the Asian clam Corbicula fluminea.

    Science.gov (United States)

    Rosa, Inês Correia; Pereira, Joana Luísa; Costa, Raquel; Gonçalves, Fernando; Prezant, Robert

    2012-01-01

    Temperature is a determinant environmental variable in metabolic rates of organisms ultimately influencing important physiological and behavioural features. Stressful conditions such as increasing temperature, particularly within high ranges occurring in the summer, have been suggested to induce flotation behaviour in Corbicula fluminea which may be important in dispersal of this invasive species. However, there has been no experimental evidence supporting this hypothesis. It was already proven that C. fluminea drift is supported by a mucilaginous drogue line produced by mucocytes present in the ctenidia. Detailed microscopic examination of changes in these cells and quantification of clam flotation following one, two and three weeks of exposure to 22, 25 and 30°C was carried out so that the effects of increasing water temperatures in dispersal patterns could be discussed. Results show that changes in temperature triggered an acceleration of the mucocytes production and stimulated flotation behaviour, especially following one week of exposure. Dilution of these effects occurred following longer exposure periods. It is possible that these bivalves perceive changing temperature as a stress and respond accordingly in the short-term, and then acclimate to the new environmental conditions. The response patterns suggest that increasing water temperatures could stimulate C. fluminea population expansion.

  14. Estimation of Phonon Dispersion Relations Using Correlation Effects Among Thermal Displacements of Atoms

    Directory of Open Access Journals (Sweden)

    Y. Ishikawa

    2015-04-01

    Full Text Available Neutron diffraction measurement of powder α-Fe sample at 295 K was carried out at the high resolution powder diffractometer installed at Japan Proton Accelerator Research Complex (J-PARC. Crystal parameters were determined from Rietveld analysis. The correlation effects among thermal displacements of atoms were estimated from a generalized equation based on the results of fomer diffuse scattering analysis. The force constants among atoms were obtained using an equation for transforming of the correlation effects to force constants. The force constants and the crystal structure of α-Fe were used to estimate the phonon dispersion relations, phonon density of states, and specific heat by computer simulation. The obtained force constants among first-nearest-neighboring atoms is 2.3 eV/Å2 at 295 K and the specific heat is 185 meV/K at 150 K. The calculated phonon dispersion relations and specific heat of α-Fe are similar to those obtained from inelastic neutron scattering and specific heat measurements, respectively

  15. Thermal dispersion in a granular medium: detection of the wall effects

    Energy Technology Data Exchange (ETDEWEB)

    Fiers, B.; Moumini, N.; Testu, A.; Maillet, D. [Institut National Polytechnique, LEMTA, 54 - Vandoeuvre les Nancy (France)

    2007-07-01

    Thermal dispersion in a granular medium results from the combined effects of heat diffusion in both the fluid and solid phases and of thermal conduction in the fluid. These phenomena require some kind of averaging in order to be modelled at the mesoscopic scale. A model using a local mean 'enthalpic' temperature and a filtration velocity has been developed and its two dispersion coefficients have been experimentally estimated and presented under the form of correlations, for water or air flow. This model is valid far from the wall, but in the near-wall region, local heterogeneity should be taken into account. The purpose of this study is to detect the effects of such a heterogeneity, by the mean of an experimental parameter estimation validated by a Monte Carlo-type simulation. The results show that the thermocouple locations are biased at the end of this process. So a better model with at last two layers has to be designed in order to model the observed measurements. (authors)

  16. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides.

    Science.gov (United States)

    Capdevila, Pol; Linares, Cristina; Aspillaga, Eneko; Riera, Joan Lluís; Hereu, Bernat

    2018-01-01

    Dispersal and recruitment are fundamental processes for population recovery following disturbances in sessile species. While both processes are well understood for many terrestrial species, they still remain poorly resolved for some macroalgal species. Here we experimentally investigated the effective dispersal and recruit survival of a mesophotic Mediterranean fucoid, Cystoseira zosteroides. In three isolated populations, four sets of settlement collectors were placed at increasing distances (from 0 to 10 m) and different orientations (North, South, East and West). We observed that effective dispersal was restricted to populations' vicinity, with an average of 6.43 m and not further than 13.33 m, following a Weibull distribution. During their first year of life, survival was up to 50%, but it was lower underneath the adult canopy, suggesting a negative density-dependence. To put our results in a broader context we compared the effective dispersal of other fucoid and kelp species reported in the literature, which confirmed the low dispersal ability of brown algae, in particular for fucoids, with an effective dispersal of few meters. Given the importance of recruitment for the persistence and recovery of populations after disturbances, these results underline the vulnerability of C. zosteroides and other fucoid species to escalating threats.

  17. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides.

    Directory of Open Access Journals (Sweden)

    Pol Capdevila

    Full Text Available Dispersal and recruitment are fundamental processes for population recovery following disturbances in sessile species. While both processes are well understood for many terrestrial species, they still remain poorly resolved for some macroalgal species. Here we experimentally investigated the effective dispersal and recruit survival of a mesophotic Mediterranean fucoid, Cystoseira zosteroides. In three isolated populations, four sets of settlement collectors were placed at increasing distances (from 0 to 10 m and different orientations (North, South, East and West. We observed that effective dispersal was restricted to populations' vicinity, with an average of 6.43 m and not further than 13.33 m, following a Weibull distribution. During their first year of life, survival was up to 50%, but it was lower underneath the adult canopy, suggesting a negative density-dependence. To put our results in a broader context we compared the effective dispersal of other fucoid and kelp species reported in the literature, which confirmed the low dispersal ability of brown algae, in particular for fucoids, with an effective dispersal of few meters. Given the importance of recruitment for the persistence and recovery of populations after disturbances, these results underline the vulnerability of C. zosteroides and other fucoid species to escalating threats.

  18. Anomalous diffusion process applied to magnetic resonance image enhancement

    Science.gov (United States)

    Senra Filho, A. C. da S.; Garrido Salmon, C. E.; Murta Junior, L. O.

    2015-03-01

    Diffusion process is widely applied to digital image enhancement both directly introducing diffusion equation as in anisotropic diffusion (AD) filter, and indirectly by convolution as in Gaussian filter. Anomalous diffusion process (ADP), given by a nonlinear relationship in diffusion equation and characterized by an anomalous parameters q, is supposed to be consistent with inhomogeneous media. Although classic diffusion process is widely studied and effective in various image settings, the effectiveness of ADP as an image enhancement is still unknown. In this paper we proposed the anomalous diffusion filters in both isotropic (IAD) and anisotropic (AAD) forms for magnetic resonance imaging (MRI) enhancement. Filters based on discrete implementation of anomalous diffusion were applied to noisy MRI T2w images (brain, chest and abdominal) in order to quantify SNR gains estimating the performance for the proposed anomalous filter when realistic noise is added to those images. Results show that for images containing complex structures, e.g. brain structures, anomalous diffusion presents the highest enhancements when compared to classical diffusion approach. Furthermore, ADP presented a more effective enhancement for images containing Rayleigh and Gaussian noise. Anomalous filters showed an ability to preserve anatomic edges and a SNR improvement of 26% for brain images, compared to classical filter. In addition, AAD and IAD filters showed optimum results for noise distributions that appear on extreme situations on MRI, i.e. in low SNR images with approximate Rayleigh noise distribution, and for high SNR images with Gaussian or non central χ noise distributions. AAD and IAD filter showed the best results for the parametric range 1.2 MRI. This study indicates the proposed anomalous filters as promising approaches in qualitative and quantitative MRI enhancement.

  19. Bodily Sensory Inputs and Anomalous Bodily Experiences in Complex Regional Pain Syndrome: Evaluation of the Potential Effects of Sound Feedback

    Directory of Open Access Journals (Sweden)

    Ana Tajadura-Jiménez

    2017-07-01

    Full Text Available Neuroscientific studies have shown that human's mental body representations are not fixed but are constantly updated through sensory feedback, including sound feedback. This suggests potential new therapeutic sensory approaches for patients experiencing body-perception disturbances (BPD. BPD can occur in association with chronic pain, for example in Complex Regional Pain Syndrome (CRPS. BPD often impacts on emotional, social, and motor functioning. Here we present the results from a proof-of-principle pilot study investigating the potential value of using sound feedback for altering BPD and its related emotional state and motor behavior in those with CRPS. We build on previous findings that real-time alteration of the sounds produced by walking can alter healthy people's perception of their own body size, while also resulting in more active gait patterns and a more positive emotional state. In the present study we quantified the emotional state, BPD, pain levels and gait of twelve people with CRPS Type 1, who were exposed to real-time alteration of their walking sounds. Results confirm previous reports of the complexity of the BPD linked to CRPS, as participants could be classified into four BPD subgroups according to how they mentally visualize their body. Further, results suggest that sound feedback may affect the perceived size of the CRPS affected limb and the pain experienced, but that the effects may differ according to the type of BPD. Sound feedback affected CRPS descriptors and other bodily feelings and emotions including feelings of emotional dominance, limb detachment, position awareness, attention and negative feelings toward the limb. Gait also varied with sound feedback, affecting the foot contact time with the ground in a way consistent with experienced changes in body weight. Although, findings from this small pilot study should be interpreted with caution, they suggest potential applications for regenerating BDP and its related

  20. The effect of ozone exposure on the dispersion of inhaled aerosol boluses in healthy human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, M.J.; Bennett, W.D.; DeWitt, P.; Seal, E.; Strong, A.A.; Gerrity, T.R. (Clinical Research Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC (USA))

    1991-07-01

    Acute exposure of humans to low levels of ozone are known to cause decreases in FVC and increases in SRaw. These alterations in lung function do not, however, elucidate the potential for acute small airway responses. In this study we employed a test of aerosol dispersion to examine the potential effects of ozone on small airways in humans. Twenty-two healthy nonsmoking male volunteers were exposed to 0.4 ppm ozone for 1 h while exercising at 20 L/min/m2 body surface area. Before and immediately after exposure, tests of spirometry (FVC, FEV1, and FEF25-75) and plethysmography (Raw and SRaw) were performed. Subjects also performed an aerosol dispersion test before and after exposure. Each test involved a subject inhaling five to seven breaths of a 300-ml bolus of a 0.5 micron triphenyl phosphate aerosol injected into a 2-L tidal volume. The bolus was injected into the tidal breath at three different depths: at Depth A the bolus was injected after 1.6 L of clean air were inhaled from FRC, at Depth B after 1.2 L, and at Depth C after 1.2 L but with inhalation beginning from RV. The primary measure of bolus dispersion was the expired half-width (HW). Secondary measures were the ratio (expressed as percent) of peak exhaled aerosol concentration to peak inhaled concentration (PR), shift in the median bolus volume between inspiration and expiration (VS), and percent of total aerosol recovered (RC). Changes in pulmonary function after ozone exposure were consistent with previous findings.

  1. Rare associations of tetralogy of Fallot with anomalous left coronary artery from pulmonary artery and totally anomalous pulmonary venous connection.

    Science.gov (United States)

    Sen, Supratim; Rao, Suresh G; Kulkarni, Snehal

    2016-06-01

    We describe the cases of two patients with tetralogy of Fallot, aged 4 years and 8 months, who were incidentally detected to have concomitant anomalous left coronary artery from pulmonary artery and total anomalous pulmonary venous connection, respectively, on preoperative imaging. They underwent surgical correction with good mid-term outcomes. In this study, we discuss the embryological basis, physiological effects, and review the literature of these two unusual associations. Awareness of these rare associations will avoid missed diagnoses and consequent surgical surprises.

  2. The effect of hydrochloric acid addition to increase carbon nanotubes dispersibility as drug delivery system by covalent functionalization

    Science.gov (United States)

    Wulan, P. P. D. K.; Ulwani, S. H.; Wulandari, H.; Purwanto, W. W.; Mulia, K.

    2018-03-01

    This study is to obtain the effect of adding hydrochloric acid (HCl) to the mixture of sulfuric acid (H2SO4) and HNO3 in CNT covalent functionalization. HCl expected to increase the dispersibility of functionalized CNT by improving the dispersion time period done with H2SO4 or HNO3. Functionalization used mixture of H2SO4 and HNO3 with volume ratio of 3:1. Covalent functionalization used 0.5 grams of MWCNT ultra sonicated in 50mL HNO3 with and mixture of H2SO4 and HNO3. Additions of 200 mL HCl used variation of molarity from 1M, 2M, 3M, 4M, 5M to 6M. CNT were oxidized to form carboxylic and hydroxyl bonds on the surface that increase dispersibility of CNT. FTIR spectrums showed the existences of carboxyl and hydroxyl group on spectra of 2600-3700 cm-1 and 900-1400 cm-1. Dispersion tests, which showed functionalized CNT (f-CNT) dispersion capabilities, were done by dissolving f-CNT in water. The study resulted that 6M f-CNT (NSC6) gave the best dispersion with zeta potential value of -37.1mV. NSC6 gave the longest dispersion time which was 20 days until f-CNT settle again. SEM-EDS micrographs showed the surface structure of 6M f-CNT without significant damage and no longer contain impurities of Fe, Ni, and Cl.

  3. Effect of ball milling on structures and properties of dispersed-type dental amalgam.

    Science.gov (United States)

    Chern Lin, Jiin-Huey; Chen, Fred Ying-Yi; Chiang, Hui-Ju; Ju, Chien-Ping

    2011-04-01

    The purpose of the present study was to investigate the effect of ball milling on the initial mercury vapor release rate and mechanical properties such as compressive strength, diametral tensile strength and creep value, of the dispersed-type dental amalgam, and comparison was made with respect to two commercial amalgam alloys. Ball milling was employed to modify the configuration of the originally spherical-shaped Ag-Cu-Pd dispersant alloy particles. Improvement in mechanical properties while maintaining a low early-stage mercury vapor release rate of the amalgam is attempted. The experimental results show that the amalgam (AmB10) which was made from Ag-Cu-Pd dispersant alloy particles that were ball-milled for 10 min and heat-treated at 300 °C for 2 days exhibited a low initial mercury vapor release rate of 69 pg/mm(2)/s, which was comparable with that of commercial amalgam alloy Tytin (68 pg/mm(2)/s), and was lower than that of Dispersalloy (73 pg/mm(2)/s). As for mechanical properties, amalgam AmB10 exhibited the highest 1h compressive strength (228 MPa), which was higher than that of commercial amalgam alloy Dispersalloy by 72%; while its 24h diametral tensile strength was also the highest (177 MPa), and was higher than that of Dispersalloy by 55%. Furthermore, the creep value of the amalgams made from Ag-Cu-Pd alloy particles with 10 min ball-milling and heat treatment at 300 °C for 2 days was measured to be 0.12%, which was about 20% that of Dispersalloy. It is found that ball milling of the dispersant Ag-Cu-Pd alloy particles for 10 min was able to modify the configuration of the alloy particles into irregular-shapes. Subsequently, heat treatment at 300 °C significantly lowered the initial mercury vapor release rate, increased its 1h compressive strength and 1h diametral tensile strength, and lowered its creep value. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    Science.gov (United States)

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  5. Optical Dispersion, Permittivity Spectrum and Thermal-Lensing Effect in Nickel-Doped Zinc Sulfide Nanoparticles

    Science.gov (United States)

    Abbasi, F.; Koushki, E.; Majles Ara, M. H.; Sahraei, R.

    2017-11-01

    In this paper, Ni-doped ZnS (ZnS:Ni2+) nanoparticles (NPs) have been prepared through a chemical method. The average size of the particle is 45 nm. Thin films of the particles have been prepared by using the spin-coating method. The linear and nonlinear optical properties of Ni-doped ZnS thin films and the colloidal solution of them have been studied widely. Using a precise numerical method, the refractive index curve (dispersion curve), absorption coefficient and optical permittivity of Ni-doped ZnS film have been obtained. Using these values, the absorption coefficient of the colloidal solution of Ni-doped ZnS particles has been simulated and compared with experimental results. Finally, using the z-scan method at low laser irradiation, the thermo-optical effect has been studied and the nonlinear refractive index due to this effect has been reported.

  6. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  7. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host.

    Science.gov (United States)

    Alzate, A; Bisschop, K; Etienne, R S; Bonte, D

    2017-11-01

    Dispersal and competition have both been suggested to drive variation in adaptability to a new environment, either positively or negatively. A simultaneous experimental test of both mechanisms is however lacking. Here, we experimentally investigate how population dynamics and local adaptation to a new host plant in a model species, the two-spotted spider mite (Tetranychus urticae), are affected by dispersal from a stock population (no-adapted) and competition with an already adapted spider mite species (Tetranychus evansi). For the population dynamics, we find that competition generally reduces population size and increases the risk of population extinction. However, these negative effects are counteracted by dispersal. For local adaptation, the roles of competition and dispersal are reversed. Without competition, dispersal exerts a negative effect on adaptation (measured as fecundity) to a novel host and females receiving the highest number of immigrants performed similarly to the stock population females. By contrast, with competition, adding more immigrants did not result in a lower fecundity. Females from populations with competition receiving the highest number of immigrants had a significantly higher fecundity than females from populations without competition (same dispersal treatment) and than the stock population females. We suggest that by exerting a stronger selection on the adapting populations, competition can counteract the migration load effect of dispersal. Interestingly, adaptation to the new host does not significantly reduce performance on the ancestral host, regardless of dispersal rate or competition. Our results highlight that assessments of how species can adapt to changing conditions need to jointly consider connectivity and the community context. © 2017 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on Behalf of European Society for Evolutionary Biology.

  8. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  9. Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry.

    Science.gov (United States)

    Niu, Yan; Zhang, Xiaofang; He, Xu; Zhao, Jiangqi; Zhang, Wei; Lu, Canhui

    2015-01-01

    A mechanochemical approach to improve the dispersion and the degree of crosslinking between cellulose fiber and polymer matrix is presented herein to create high performance poly(vinyl alcohol) (PVA)/cellulose biocomposites in a solvent-free and catalyst-free system. During a pan-milling process, the hydrogen bonds in both cellulose and PVA were effectively broken up, and the released hydroxyl groups could react with succinic anhydride (SA) to form covalent bonds between the two components. This stress-induced chemical reaction was verified by fourier transform infrared spectroscopy. The reaction kinetics was discussed according to the conversion rate of SA during the pan-milling process. Soxhlet extraction with hot water showed that the crosslinked PVA/cellulose retained more PVA in the composites due to the homogeneous and heterogeneous crosslinking. Scanning electron microscope images indicated the dispersion and interfacial interactions between PVA and cellulose were largely improved. The resulting composites exhibited remarkably enhanced mechanical properties. The tensile strength increased from 8.8 MPa (without mechanochemical treatment) to 18.2 MPa, and elongation at break increased from 76.8 to 361.7% after the treatment. Their thermal stability was also significantly improved. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Polystyrene Microbeads by Dispersion Polymerization: Effect of Solvent on Particle Morphology

    Directory of Open Access Journals (Sweden)

    Lei Jinhua

    2014-01-01

    Full Text Available Polystyrene microspheres (PS were synthesized by dispersion polymerization in ethanol/2-Methoxyethanol (EtOH/EGME blend solvent using styrene (St as monomer, azobisisobutyronitrile (AIBN as initiator, and PVP (polyvinylpyrrolidone K-30 as stabilizer. The typical recipe of dispersion polymerization is as follows: St/Solvent/AIBN/PVP = 10 g/88 g/0.1 g/2 g. The morphology of polystyrene microspheres was characterized by the scanning electron microscopy (SEM and the molecular weights of PS particles were measured by the Ubbelohde viscometer method. The effect of ethanol content in the blend solvent on the morphology and molecular weight of polystyrene was studied. We found that the size of polystyrene microspheres increased and the molecular weight of polystyrene microspheres decreased with the decreasing of the ethanol content in the blend solvent from 100 wt% to 0 wt%. What is more, the size monodispersity of polystyrene microspheres was quite good when the pure ethanol or pure 2-Methoxyethanol was used; however when the blend ethanol/2-Methoxyethanol solvent was used, the polystyrene microspheres became polydisperse. We further found that the monodispersity of polystyrene microspheres can be significantly improved by adding a small amount of water into the blend solvent; the particles became monodisperse when the content of water in the blend solvent was up to 2 wt%.

  11. Effect of sequence dispersity on morphology of tapered diblock copolymers from molecular dynamics simulations.

    Science.gov (United States)

    Levine, William G; Seo, Youngmi; Brown, Jonathan R; Hall, Lisa M

    2016-12-21

    Tapered diblock copolymers are similar to typical AB diblock copolymers but have an added transition region between the two blocks which changes gradually in composition from pure A to pure B. This tapered region can be varied from 0% (true diblock) to 100% (gradient copolymer) of the polymer length, and this allows some control over the microphase separated domain spacing and other material properties. We perform molecular dynamics simulations of linearly tapered block copolymers with tapers of various lengths, initialized from fluids density functional theory predictions. To investigate the effect of sequence dispersity, we compare systems composed of identical polymers, whose taper has a fixed sequence that most closely approximates a linear gradient, with sequentially disperse polymers, whose sequences are created statistically to yield the appropriate ensemble average linear gradient. Especially at high segregation strength, we find clear differences in polymer conformations and microstructures between these systems. Importantly, the statistical polymers are able to find more favorable conformations given their sequence, for instance, a statistical polymer with a larger fraction of A than the median will tend towards the A lamellae. The conformations of the statistically different polymers can thus be less stretched, and these systems have higher overall density. Consequently, the lamellae formed by statistical polymers have smaller domain spacing with sharper interfaces.

  12. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    Science.gov (United States)

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and E f) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

  13. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Muhammad A. Fareed

    2014-01-01

    Full Text Available Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt% were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR spectroscopy and gel permeation chromatography (GPC were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and Ef of cements (n = 20 were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation.

  14. Mixing time effects on the dispersion performance of adhesive mixtures for inhalation.

    Directory of Open Access Journals (Sweden)

    Floris Grasmeijer

    Full Text Available This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de- agglomeration of the drug (and fine lactose particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables.

  15. Mixing Time Effects on the Dispersion Performance of Adhesive Mixtures for Inhalation

    Science.gov (United States)

    Grasmeijer, Floris; Hagedoorn, Paul; Frijlink, Henderik W.; de Boer, H. Anne

    2013-01-01

    This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de-) agglomeration of the drug (and fine lactose) particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol) and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables. PMID:23844256

  16. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaozhong; Zhang, Saifeng, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn; Cheng, Xin; Dong, Ningning; Zhang, Long; Wang, Jun, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Umran, Fadhil A. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Laser for Post Graduate Studies, Baghdad University, Baghdad (Iraq); Coghlan, Darragh; Blau, Werner J. [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Cheng, Ya [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-04-07

    Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphene dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.

  17. Investigation of Effect of Adding Hydrophobically Modified Water Soluble Polymers on the Structure and Viscosity of Anionic Vesicle Dispersion

    Directory of Open Access Journals (Sweden)

    Marco Sandjaja

    2017-04-01

    Full Text Available This present study was conducted to investigate the effect of adding hydrophobically modified end-capped (HM polymers with various polyethylene oxide (PEO chain lengths on the structure and viscosity of anionic vesicles dispersion. A pronounced increase in viscosity was observed upon adding small amount of such polymers. Based on the dynamic light scattering (DLS and small angle neutron scattering (SANS analysis, 10 to 30 polymer molecules per vesicles can reach maximum viscosity and where polymer molecules can interconnect the vesicles without disrupting their structure. In addition, the kinetic stability of the vesicle dispersion also enhanced. From the measurement of the electrical conductivity of the dispersion, it was observed that the presence of the PEO and polypropylene oxide (PPO group could induce the permeability of the vesicle membrane by altering their internal structure. Controlling viscosity of vesicles dispersion without changing its structure is useful for the further application of vesicles system such as in drug delivery, cosmetics and biomedical.

  18. Computational fluid dynamics simulation of wind-driven inter-unit dispersion around multi-storey buildings: Upstream building effect

    DEFF Research Database (Denmark)

    Ai, Zhengtao; Mak, C.M.; Dai, Y.W.

    2017-01-01

    gas technique was used to simulate the dispersion of infectious agents between units. Based on the predicted concentration field, a mass conservation based parameter, namely re-entry ratio, was used to evaluate quantitatively the inter-unit dispersion possibilities and thus assess risks along......Previous studies on inter-unit dispersion around multi-storey buildings focused mostly on an isolated building. Considering that the presence of an upstream building(s) would significantly modify the airflow pattern around a downstream building, this study intends to investigate the influence...... of such changed airflow patterns on inter-unit dispersion characteristics around a multi-storey building due to wind effect. Computational fluid dynamics (CFD) method in the framework of Reynolds-averaged Navier-stokes modelling was employed to predict the coupled outdoor and indoor airflow field, and the tracer...

  19. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  20. Structural controls on anomalous transport in fractured porous rock

    Science.gov (United States)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  1. An Improved Traveling-Wave-Based Fault Location Method with Compensating the Dispersion Effect of Traveling Wave in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Huibin Jia

    2017-01-01

    Full Text Available The fault generated transient traveling waves are wide band signals which cover the whole frequency range. When the frequency characteristic of line parameters is considered, different frequency components of traveling wave will have different attenuation values and wave velocities, which is defined as the dispersion effect of traveling wave. Because of the dispersion effect, the rise or fall time of the wavefront becomes longer, which decreases the singularity of traveling wave and makes it difficult to determine the arrival time and velocity of traveling wave. Furthermore, the dispersion effect seriously affects the accuracy and reliability of fault location. In this paper, a novel double-ended fault location method has been proposed with compensating the dispersion effect of traveling wave in wavelet domain. From the propagation theory of traveling wave, a correction function is established within a certain limit band to compensate the dispersion effect of traveling wave. Based on the determined arrival time and velocity of traveling wave, the fault distance can be calculated precisely by utilizing the proposed method. The simulation experiments have been carried out in ATP/EMTP software, and simulation results demonstrate that, compared with the traditional traveling-wave fault location methods, the proposed method can significantly improve the accuracy of fault location. Moreover, the proposed method is insensitive to different fault conditions, and it is adaptive to both transposed and untransposed transmission lines well.

  2. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  3. Awn length variation and its effect on dispersal unit burial of Trachypogon spicatus (Poaceae).

    Science.gov (United States)

    Johnson, Erica E; Baruch, Zdravko

    2014-03-01

    Trachypogon spicatus, formerly known as Trachypogon plumosus, is a dominant grass in some savannas of Northern South America. Its dispersal unit, like many other species of the Andropogoneae tribe, bears a hygroscopic awn which facilitates its establishment in favorable microsites. Some authors have previously proposed that there is a positive correlation between awn length and dispersal unit burial, and that this relationship increases the probability of seed survival in the event of a fire, since soil acts as insulator. In this study we experimentally tested this relationship for T. spicatus. A total of 192 diaspores were placed in randomized blocks, in aluminum trays filled with soil under greenhouse conditions. Diaspores were sprayed with water daily for a month to guarantee awn movement; on the last day of the experiment, they were sprayed with red aerosol paint to determine burial depth. The effects of awn length, presence of caryopses, and presence of a pivot for the passive segment of the awn on diaspore burial were evaluated. Germination viability was tested using a tetrazolium salt test for 35 caryopses. No significant differences in diaspore burial were observed between diaspores with and without caryopses (F(2,126) = 0.034, p=0.853). A positive correlation between awn length and diaspore burial was observed only if the passive awn lacked a pivot (r(66)=0.394, pDiaspores whose awns had a pivot point achieved significantly deeper burial distances than their counterparts (F(2,126)=7.063, p=0.005). Viability test found that 0% of caryopses tested were able to germinate; this is possibly due to the time difference between sampling and testing. We considered the presence or absence of caryopsis as an important factor, since previous studies have not yet considered it and the high production of sterile diaspores in grasses. These results suggest that the physical mechanism behind T. spicatus diaspore burial is awn torque. This would explain why our results

  4. Awn length variation and its effect on dispersal unit burial of Trachypogon spicatus (Poaceae

    Directory of Open Access Journals (Sweden)

    Erica E. Johnson

    2014-03-01

    Full Text Available Trachypogon spicatus, formerly known as Trachypogon plumosus, is a dominant grass in some savannas of Northern South America. Its dispersal unit, like many other species of the Andropogoneae tribe, bears a hygroscopic awn which facilitates its establishment in favorable microsites. Some authors have previously proposed that there is a positive correlation between awn length and dispersal unit burial, and that this relationship increases the probability of seed survival in the event of a fire, since soil acts as insulator. In this study we experimentally tested this relationship for T. spicatus. A total of 192 diaspores were placed in randomized blocks, in aluminum trays filled with soil under greenhouse conditions. Diaspores were sprayed with water daily for a month to guarantee awn movement; on the last day of the experiment, they were sprayed with red aerosol paint to determine burial depth. The effects of awn length, presence of caryopses, and presence of a pivot for the passive segment of the awn on diaspore burial were evaluated. Germination viability was tested using a tetrazolium salt test for 35 caryopses. No significant differences in diaspore burial were observed between diaspores with and without caryopses (F(2,126= 0.034, p=0.853. A positive correlation between awn length and diaspore burial was observed only if the passive awn lacked a pivot (r(66=0.394, p<0.05. Diaspores whose awns had a pivot point achieved significantly deeper burial distances than their counterparts (F(2,126=7.063, p=0.005. Viability test found that 0% of caryopses tested were able to germinate; this is possibly due to the time difference between sampling and testing. We considered the presence or absence of caryopsis as an important factor, since previous studies have not yet considered it and the high production of sterile diaspores in grasses. These results suggest that the physical mechanism behind T. spicatus diaspore burial is awn torque. This would

  5. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} samples showing the paramagnetic Meissner effect

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T., E-mail: fabio.dias@ufpel.edu.br [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Vieira, V.N.; Garcia, E.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden (Germany); Gouvêa, C.P. [National Institute of Metrology, Quality and Technology (Inmetro), Material Metrology Division, 25250-020, Duque de Caxias, Rio de Janeiro (Brazil); Schaf, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193, Bellaterra (Spain); Roa, J.J. [Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028, Barcelona (Spain)

    2016-10-15

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) samples with 30 wt% of Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  6. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Muhsan, Ali Samer, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Ahmad, Faiz, E-mail: alisameer2007@gmail.com, E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt, E-mail: puteris@petronas.com.my [Department of Mechanical Engineering, Universiti Teknologi PETRONAS (UTP) (Malaysia); Mohamed, Norani M., E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia); Raza, M. Rafi, E-mail: rafirazamalik@gmail.com [Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor (Malaysia)

    2014-10-24

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050°C for 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.

  7. Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure

    International Nuclear Information System (INIS)

    Baranwal, R.; Burke, M.G.

    2003-01-01

    Oxide dispersion strengthened (ODS) molybdenum has been characterized using transmission electron microscopy (TEM) to determine the effects of irradiation on material microstructure. This work describes the results-to-date from TEM characterization of unirradiated and irradiated ODS molybdenum. The general microstructure of the unirradiated material consists of fine molybdenum grains (< 5 (micro)m average grain size) with numerous low angle boundaries and isolated dislocation networks. 'Ribbon'-like lanthanum oxides are aligned along the working direction of the product form and are frequently associated with grain boundaries, serving to inhibit grain boundary and dislocation movement. In addition to the 'ribbons', discrete lanthanum oxide particles have also been detected. After irradiation, the material is characterized by the presence of nonuniformly distributed large (∼ 20 to 100 nm in diameter), multi-faceted voids, while the molybdenum grain size and oxide morphology appear to be unaffected by irradiation

  8. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate....... Determination of band-gaps and the corresponding attenuation levels is an im-portant practical problem. Most existing analytical methods in the field are based on Floquet theory; e.g. this holds for the classical Hill’s method of infinite determinants, and the method of space-harmonics. However, application....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed...

  9. Micro-meteorological modelling in urban areas: pollutant dispersion and radiative effects modelling

    International Nuclear Information System (INIS)

    Milliez, Maya

    2006-01-01

    Atmospheric pollution and urban climate studies require to take into account the complex processes due to heterogeneity of urban areas and the interaction with the buildings. In order to estimate the impact of buildings on flow and pollutant dispersion, detailed numerical simulations were performed over an idealized urban area, with the three-dimensional model Mercure-Saturne, modelling both concentration means and their fluctuations. To take into account atmospheric radiation in built up areas and the thermal effects of the buildings, we implemented a three-dimensional radiative model adapted to complex geometry. This model, adapted from a scheme used for thermal radiation, solves the radiative transfer equation in a semi-transparent media, using the discrete ordinate method. The new scheme was validated with idealized cases and compared to a complete case. (author) [fr

  10. Effects of molecule anchoring and dispersion on nanoscopic friction under electrochemical control

    International Nuclear Information System (INIS)

    De Wijn, A S; Fasolino, A; Filippov, A E; Urbakh, M

    2016-01-01

    The application of electric fields is a promising strategy for in situ control of friction. While there have recently been many experimental studies on friction under the influence of electric fields, theoretical understanding is very limited. Recently, we introduced a simple theoretical model for friction under electrochemical conditions that focused on the interaction of a force microscope tip with adsorbed molecules whose orientation was dependent on the applied electric field. Here we focus on the effects of anchoring of the molecules on friction. We show that anchoring affects the intensity and width of the peak in the friction that occurs near a reorientation transition of adsorbed molecules, and explain this by comparing the strength of molecule–molecule and molecule–tip interactions. We derive a dispersion relation for phonons in the layer of adsorbed molecules and demonstrate that it can be used to understand important features of the frictional response. (paper)

  11. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  12. A role for analytical chemistry in advancing our understanding of the occurrence, fate, and effects of Corexit Oil Dispersants

    Science.gov (United States)

    Place, Ben; Anderson, Brian; Mekebri, Abdou; Furlong, Edward T.; Gray, James L.; Tjeerdema, Ron; Field, Jennifer

    2010-01-01

    On April 24, 2010, the sinking of the Deepwater Horizon oil rig resulted in the release of oil into the Gulf of Mexico. As of July 19, 2010, the federal government's Deepwater Horizon Incident Joint Information Center estimates the cumulative range of oil released is 3,067,000 to 5,258,000 barrels, with a relief well to be completed in early August. By comparison, the Exxon Valdez oil spill released a total of 260,000 barrels of crude oil into the environment. As of June 9, BP has used over 1 million gallons of Corexit oil dispersants to solubilize oil and help prevent the development of a surface oil slick. Oil dispersants are mixtures containing solvents and surfactants that can exhibit toxicity toward aquatic life and may enhance the toxicity of components of weathered crude oil. Detailed knowledge of the composition of both Corexit formulations and other dispersants applied in the Gulf will facilitate comprehensive monitoring programs for determining the occurrence, fate, and biological effects of the dispersant chemicals. The lack of information on the potential impacts of oil dispersants has caught industry, federal, and state officials off guard. Until compositions of Corexit 9500 and 9527 were released by the U.S. Environmental Protection Agency online, the only information available consisted of Material Safety Data Sheets (MSDS), patent documentation, and a National Research Council report on oil dispersants. Several trade and common names are used for the components of the Corexits. For example, Tween 80 and Tween 85 are oligomeric mixtures.

  13. Dispersant field monitoring procedures

    International Nuclear Information System (INIS)

    Hillman, S. O.; Hood, S. D.; Bronson, M. T.; Shufelt, G.

    1997-01-01

    Alyeska Pipeline Service Company's (APSC) dispersant response capability in the Port of Valdez, Prince William Sound, and in the Gulf of Alaska was described. APSC provides dispersal equipment, aerial spray delivery systems, helibucket delivery systems, vessel delivery systems, along with a minimum of 600,000 gallon stockpile of the dispersant Corexit 9527. Effectiveness and effects are monitored by visual observation. In addition, fluorometer and water sample analysis are also used to provide field analytical data indicative of the environmental effects of dispersant applications. The field monitoring plan was field tested in December 1996. Details of the monitoring procedures are outlined in this paper. 18 refs., 5 tabs

  14. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components.

    Science.gov (United States)

    Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye

    2017-01-15

    This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Coupled Continuous Time Random Walks for Anomalous Transport in Media Characterized by Heterogeneous Mass Transfer Properties

    Science.gov (United States)

    Comolli, A.; Dentz, M.

    2015-12-01

    Solute transport in geological media is in general non-Fickian as it cannot be explained in terms of equivalent homogeneous media. This anomalous character can be traced back to the existence of multiscale heterogeneity and strong correlations within the medium. Here we investigate the impact of fast heterogeneous mass transfer properties as represented by a spatially varying retardation coefficient (mass exchange between mobile and immobile regions, linear sorption-desorption reactions, variable porosity). In order to estimate the effects of spatial correlation, and disorder distribution on the average transport, we consider 2D media characterized by complex multiscale geometries and point distributions of retardation of increasing heterogeneity. Within a Lagrangian framework, we coarse-grain the Langevin equation for the transport of solute particles due to advection and diffusion in the heterogeneous medium. The large-scale transport properties are derived within a stochastic modeling approach by ensemble averaging of the coarse-grained Langevin equation . This approach shows that the effective particle motion can be described by a coupled CTRW that is fully parametrized by the distribution of the retardation coefficient and the spatial medium organization. This allows for the explicit relation of the heterogeneous medium properties to observed anomalous transport in terms of solute dispersion, breakthrough curves and spatial concentration profiles.

  16. Investigation of alloying effects in aluminum dispersion strengthened with Al2O3

    International Nuclear Information System (INIS)

    Copeland, G.L.

    1975-10-01

    Two types of alloying elements were investigated to determine if the room-temperature strength could be improved and if, through lowering the oxide content, the high-temperature ductility could be improved. Mg was investigated for its solid solution strengthening in one type alloy. The other type alloy involved further dispersion strengthening through adding Fe, Mo, Zr, Cr, V, and Ti which form highly stable intermetallic compounds with Al. Fabrication techniques were developed which produced uniform and reproducible rods for testing. Prealloyed powders were produced by atomizing the molten alloys and collecting the powders in water. This procedure produced uniform powders with a very fine distribution of the intermetallic compounds. Fabrication into rods then included ball-milling, vacuum hot pressing, vacuum heat treating, and hot extrusion. Mg additions improved strengths up to 200 0 C with little effect above that temperature. Room-temperature tensile strengths up to 77,000 psi were obtained which are comparable to the strengths obtained in conventional aluminum alloys. The additional dispersion strengthening of the intermetallic compounds is additive to that of the oxide from room temperature to 450 0 C. No significant improvements in ductility are obtained by reducing the oxide content since even at very low ball-milling times (i.e., low oxide contents) the uniform elongation at 450 0 C is typically 0.5 percent. Good combinations of strength and ductility at 450 0 C were obtained in some of the alloys containing intermetallic compounds with no ball-milling. Typical properties at this temperature were tensile strengths of 7,000 psi, uniform elongation of 3 percent, and total elongation of 35 percent. (21 tables, 33 fig, 43 references) (auth)

  17. Effects of exchangeable Ca:Mg ratio on the dispersion of soils some ...

    African Journals Online (AJOL)

    Soil surface sealing and erosion which are the result of soil dispersion can be harmful or detrimental to soil, soil resources and also agricultural production thereby leading to great economic loss. Soil samples were collected at 0-30cm depth in eight locations in southern Nigeria. Dispersion behaviours of soil contents were ...

  18. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    Science.gov (United States)

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  19. Effects of dispersion and longitudinal chromatic aberration on the focusing of isodiffracting pulsed Gaussian light beam

    International Nuclear Information System (INIS)

    Deng Dongmei; Guo Hong; Han Dingan; Liu Mingwei; Li Changfu

    2005-01-01

    Taking into account the dispersion and the longitudinal chromatic aberration (LCA) of the material of the lens, focusing of isodiffracting pulsed Gaussian light beam through single lens is analyzed. The smaller the cycle number of the isodiffracting pulsed Gaussian light beam is, the higher the order of the material dispersion should be considered

  20. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    Science.gov (United States)

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Calculation Of Phonon Dispersion Frequencies For Bcc Tantalum ...

    African Journals Online (AJOL)

    The phonon dispersion frequencies are calculated from first principles for bcc Tantalum using a resonance pseudopotential model. It was also possible, using this scheme, to account for the anomalous feature of the Ta dispersion curve observed experimentally in the (ε,o,o,) direction where the frequencies of the transverse ...

  2. Ophthalmic effects of petroleum dispersant exposure on common murres (Uria aalge): An experimental study.

    Science.gov (United States)

    Fiorello, Christine V; Freeman, Kate; Elias, Becky A; Whitmer, Emily; Ziccardi, Michael H

    2016-12-15

    The safety of chemical dispersants used during oil spill responses is largely unknown in birds. We captured common murres in Monterey Bay, CA and exposed them to Corexit EC9500a, crude oil, or a combination in artificial seawater. We performed ophthalmic examinations and measured intraocular pressures and tear production before and after exposure. Loglinear analysis found that exposure to oil or dispersant was related to the development of conjunctivitis and corneal ulcers. Odds ratios for birds exposed to oil or dispersant were positive and significant for the development of conjunctivitis, while odds ratios for the development of corneal ulcers were positive and significant only for birds exposed to a high concentration of oil. Ocular exposure to dispersants and petroleum in seabirds may cause conjunctivitis and may play a role in the development of corneal ulcers. These results have implications for policymakers who develop protocols for the use of dispersants during marine oil spills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The influence of temperature on the lubricating effectiveness of MoS2 dispersed in mineral oils

    Science.gov (United States)

    Rolek, R. J.; Cusano, C.; Sliney, H. E.

    1984-01-01

    The effects of oil viscosity, base oil temperature, and surface-active agents naturally present in mineral oils on the lubricating effectiveness of MoS2 dispersions under boundary lubrication conditions are investigated. Friction and wear data are obtained from tests conducted under a wide range of oil viscosities and operating temperatures. The dispersion temperature at which the friction dropped below that obtained with the base oils, depended upon the base oil viscosity and the concentration of surface-active agents present in the oil. White oils showed reductions in friction before mineral oils of like viscosity, and lower viscosity oils showed reductions in friction before heavier viscosity oils. The results show that for a given base oil, wear increases as temperature increases, while the wear obtained from a MoS2 dispersion made from the base oil remains approximately constant as temperature is increased.

  4. [The effect of different dispersive methods on flexural strength nano-ZrO(2) reinforced denture polymethyl methacrylate].

    Science.gov (United States)

    Zhang, Xiu-yin; Wu, Wei-li; Bian, Yi-ming; Zhu, Bang-shang; Yu, Wei-Qiang

    2009-06-01

    To study the effect of different dispersive methods on flexural strength of nano-ZrO(2)/polymethl methacrylate(PMMA) composite samples. The nanometer ZrO2 particles which were modified by coupling agent Z-6030 were mixed to PMMA as the filler materials (3%) by means of handle disperse, ball milling disperse and ultrasonic wet disperse, respectively. Pure PMMA was used as blank control .With reference to the standard of ISO-1567:1999, standard samples were made and tested by three-point bending test. Then the data of flexural strength of the four groups were analyzed statistically with SAS 6.12 software package for one-way ANOVA(Newman-Keuls test). And the optimized synthesis way of the PMMA composite materials was selected. The flexural strength of the ball milling group and the ultrasonic group were significantly higher than the handle group and blank group(P0.05). Dispersal ways have effect on the flexural strength of PMMA composite materials which are filled with ZrO(2) particles.

  5. Hydrodynamic modeling of juvenile mussel dispersal in a large river: The potential effects of bed shear stress and other parameters

    Science.gov (United States)

    Daraio, J.A.; Weber, L.J.; Newton, T.J.

    2010-01-01

    Because unionid mussels have a parasitic larval stage, they are able to disperse upstream and downstream as larvae while attached to their host fish and with flow as juveniles after excystment from the host. Understanding unionid population ecology requires knowledge of the processes that affect juvenile dispersal prior to establishment. We examined presettlement (transport and dispersion with flow) and early postsettlement (bed shear stress) hydraulic processes as negative censoring mechanisms. Our approach was to model dispersal using particle tracking through a 3-dimensional flow field output from hydrodynamic models of a reach of the Upper Mississippi River. We tested the potential effects of bed shear stress (??b) at 5 flow rates on juvenile mussel dispersal and quantified the magnitude of these effects as a function of flow rate. We explored the reach-scale relationships of Froude number (Fr), water depth (H), local bed slope (S), and unit stream power (QS) with the likelihood of juvenile settling (??). We ran multiple dispersal simulations at each flow rate to estimate ??, the parameter of a Poisson distribution, from the number of juveniles settling in each grid cell, and calculated dispersal distances. Virtual juveniles that settled in areas of the river where b > critical shear stress (c) were resuspended in the flow and transported further downstream, so we ran simulations at 3 different conditions for ??c (??c = ??? no resuspension, 0.1, and 0.05 N/m2). Differences in virtual juvenile dispersal distance were significantly dependent upon c and flow rate, and effects of b on settling distribution were dependent upon c. Most simulations resulted in positive correlations between ?? and ??b, results suggesting that during early postsettlement, ??b might be the primary determinant of juvenile settling distribution. Negative correlations between ?? and ??b occurred in some simulations, a result suggesting that physical or biological presettlement processes

  6. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    We have performed full charge-density calculations for the equilibrium atomic volumes of the alpha-phase light actinide metals using the local density approximation (LDA) and the generalized gradient approximation (GGA). The average deviation between the experimental and the GGA atomic radii is 1.......3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  7. The effect of dispersion status with functionalized graphenes for electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-R., E-mail: d98527015@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan (China); Department of Materials Science and Engineering, Feng Chia University, 100 Wen Hwa Rd, 407 Taichung, Taiwan (China); Chiu, K.-F. [Department of Materials Science and Engineering, Feng Chia University, 100 Wen Hwa Rd, 407 Taichung, Taiwan (China); Lin, H.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan (China); Hsieh, C.-Y. [Enerage Inc., No. 5, Ligong 3rd Rd, Wujie Township, Yilan County 26841, Taiwan (China); Tsai, C.B. [Taiwan Textile Research Institute, No. 6, Chengtian Rd, Tucheng City, Taipei 23674, Taiwan (China); Chu, B.T.T. [Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf (Switzerland)

    2014-12-15

    Highlights: • MrGO/NMP can reduce the IR drops and R{sub ct} of the supercapacitors. • M-rGO can provide excellent plane-to-point conducting network. • M-rGO can effectively enhance high rate performance of supercapacitors. • M-rGO additive can deliver high capacity under high rate cycling. - Abstract: Graphene with oxygen (M-rGO and H-rGO) and nitrogen (N-rGO) related functional groups have been fabricated. Reduced graphenes including H-rGO, M-rGO and N-rGO were mixed with activated carbons as the composite electrodes and characterized for supercapacitors. The effects of the functional groups on graphenes as the conductive additive have been investigated. It was found that a suitable content of functional groups can improve the stability of dispersion, and therefore reduce the internal resistance (IR drop) and charge transfer resistance (R{sub ct}) resulting in higher rate capability. The supercapacitor with M-rGO and KS6 as additive at the activated carbon electrode can be operated at a rate as high as 6 A/g and exhibits a capacitance of 208 F/g, whereas the supercapacitor using only KS6 as additive shows a capacitance of only 107 F/g. The graphene contained supercapacitor has been cycled over 2000 times at 4 A/g with almost no capacitance fading.

  8. Environmental Effects on Two-Qubit Correlation in the Dispersive Jaynes-Cummings Model

    Science.gov (United States)

    Ban, Masashi

    2018-02-01

    Total, classical and quantum correlations as well as entanglement are studied for a two-qubit system, where each qubit is placed in a micro cavity described by the dispersive Jaynes-Cummings model. Not only the loss of cavity photons but also the effect of the qubit-photon interaction on the loss is taken into account. The two-qubit system is initially prepared in a Bell diagonal state with a single mixing parameter and the cavity photon is either in a superposition of vacuum and single-photon states or in a weak coherent state. It is shown that more correlation of the two qubits can survive as an initial value of the cavity photon number is smaller. There is a threshold value of the cavity photon number, below which the stationary state becomes inseparable. Furthermore it is found that the external environment which causes the cavity loss has two effects; one brings about the decay of the correlations and the other suppresses the decay.

  9. The effect of spatial light modulator (SLM) dependent dispersion on spatial beam shaping

    CSIR Research Space (South Africa)

    Spangenberg, D-M

    2013-08-01

    Full Text Available . This introduces a phase difference between the different wavelengths of the light thereby causing the different wavelengths to disperse as it propagates through the medium. Spatial dispersion occurs when light with different wavelengths is incident on some mask... SLM and adjusts the wave front of light passing through it by no more than a few wavelengths. The combination of many pixels allows us to generate a mask which causes spatial dispersion to occur. The refractive index of the LC cells of the SLM has a...

  10. A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons.

    Science.gov (United States)

    Kim, Jae-Jin; Baik, Jong-Jin

    1999-09-01

    This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k- turbulent closure scheme is developed, and the heat transfer between the air and the building wall or street-canyon bottom is effectively represented by a wall function. For each of seven cases with different aspect ratios (building height/width between buildings = 0.5, 1, 1.5, 2, 2.5, 3, and 3.5), four thermal situations (no heating, upwind building-wall heating, street-canyon bottom heating, and downwind building-wall heating) are considered.In the cases of upwind building-wall heating, one vortex appears regardless of aspect ratio. When the aspect ratio is greater than or equal to 1.5, the upward motion forced by upwind building-wall heating overcomes the downward motion that appears in the cases of no heating. In the cases of street-canyon bottom heating, when the aspect ratio is less than 3, flow patterns are similar to those in the cases of upwind building-wall heating. This similarity is because the maximum temperature axis is shifted toward the upwind side by the horizontal motion. However, when the aspect ratio is 3 or 3.5, the horizontal velocity is not strong enough to shift the maximum temperature axis toward the upwind side. When the maximum temperature axis is located near the center of the street canyon, two counterrotating vortices appear side by side in the lower layer due to the thermal upward motion around the axis, while the vortex in the upper layer is little influenced by bottom heating. With downwind building-wall heating, two counterrotating vortices appear except in the 0.5 aspect ratio case. To a large extent, the vortex in the upper layer is mechanically induced by the ambient wind, while the vortex in the lower layer is thermally induced by downwind building-wall heating.The dispersion of pollutants released at the street level is shown to be quite dependent upon aspect ratio and heat source

  11. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design.

    Science.gov (United States)

    Djuris, Jelena; Ioannis, Nikolakakis; Ibric, Svetlana; Djuric, Zorica; Kachrimanis, Kyriakos

    2014-02-01

    This study investigates the application of hot-melt extrusion for the formulation of carbamazepine (CBZ) solid dispersions, using polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus, BASF, Germany) and polyoxyethylene-polyoxypropylene block copolymer (Poloxamer 407). In agreement with the current Quality by Design principle, formulations of solid dispersions were prepared according to a D-optimal mixture experimental design, and the influence of formulation composition on the properties of the dispersions (CBZ heat of fusion and release rate) was estimated. Prepared solid dispersions were characterized using differential scanning calorimetry, attenuated total reflectance infrared spectroscopy and hot stage microscopy, as well as by determination of the dissolution rate of CBZ from the hot-melt extrudates. Solid dispersions of CBZ can be successfully prepared using the novel copolymer Soluplus. Inclusion of Poloxamer 407 as a plasticizer facilitated the processing and decreased the hardness of hot-melt extrudates. Regardless of their composition, all hot-melt extrudates displayed an improvement in the release rate compared to the pure CBZ, with formulations having the ratio of CBZ : Poloxamer 407 = 1 : 1 showing the highest increase in CBZ release rate. Interactions between the mixture components (CBZ and polymers), or quadratic effects of the components, play a significant role in overall influence on the CBZ release rate. © 2013 Royal Pharmaceutical Society.

  12. Effect of the Dispersibility of Nano-CuO Catalyst on Heat Releasing of AP/HTPB Propellant

    International Nuclear Information System (INIS)

    Yang, Y.; Yu, X.; Wang, J.; Wang, Y.

    2011-01-01

    Kneading time is adjusted to change the dispersibility of nano-CuO in AP/HTPB (Ammonia Perchlorate/Hydroxyl-Terminated Polybutadiene) composite propellants. Nano-CuO/AP is prepared to serve as the other dispersing method of nano-CuO, named pre dispersing procedure. Several kinds of heat releasing, thermal decomposition by DSC, combustion heat in oxygen environment, and explosion heat in nitrogen environment, are characterized to learn the effect of dispersibility of nano-CuO catalyst on heat releasing of propellants. With pre-dispersing procedures, thermal decomposition temperature of nano-CuO/AP and its propellant are about 25 degree C and 8.6 degree C lower than that of AP simple mixed with nano-CuO and its propellant, respectively. Comparing propellant with simple mixed nano-CuO kneading 3 hours, combustion heat and explosion heat of propellant with nano-CuO/AP increase about 1.4% and 1.7%, respectively. However, because of the breaking of nano-CuO/AP structure during kneading procedure, combustion heat and explosion heat of all the samples are decreased with the increase of kneading time after 3 hours.

  13. Nanoparticle dispersion effect of laser-surface melting in ZrB{sub 2p}/6061Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen, E-mail: lz-tju@163.com [Tianjin University, School of Material Science and Engineering (China); Huang, Yongxian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (China)

    2017-04-15

    Zirconium diboride (ZrB{sub 2p}, 15 vol%)/6061 aluminum (Al) composites were fabricated via in situ reaction. The existence, morphologies, and dispersion degree of the in situ ZrB{sub 2} particles with size from tens to hundreds of nanometers were studied by X-ray diffractometry, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. As the particle-settlement effect becomes dominant during the composite fabrication process, ZrB{sub 2} nanoparticles agglomerate to a certain extent in some areas of the as-cast composites. A laser-surface melting (LSM) strategy was applied to disperse agglomerated ZrB{sub 2} nanoparticles in as-cast composites, and the ZrB{sub 2} nanoparticle dispersion is affected visibly by LSM. After LSM, nanoparticles tend to distribute along the grain boundary. Particle clusters were dispersed in an explosive orientation and the particle diffusion distance varied in terms of its radius and melt-viscosity vicinity. High-resolution transmission electron microscopy showed the existence of a subgrain structure near the ZrB{sub 2}–Al interface after LSM. This may increase the yield strength when a dislocation tangle forms.

  14. Nanoparticle dispersion effect of laser-surface melting in ZrB2p/6061Al composites

    International Nuclear Information System (INIS)

    Zeng, Yida; Chao, Yuhjin; Luo, Zhen; Huang, Yongxian

    2017-01-01

    Zirconium diboride (ZrB 2p , 15 vol%)/6061 aluminum (Al) composites were fabricated via in situ reaction. The existence, morphologies, and dispersion degree of the in situ ZrB 2 particles with size from tens to hundreds of nanometers were studied by X-ray diffractometry, energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. As the particle-settlement effect becomes dominant during the composite fabrication process, ZrB 2 nanoparticles agglomerate to a certain extent in some areas of the as-cast composites. A laser-surface melting (LSM) strategy was applied to disperse agglomerated ZrB 2 nanoparticles in as-cast composites, and the ZrB 2 nanoparticle dispersion is affected visibly by LSM. After LSM, nanoparticles tend to distribute along the grain boundary. Particle clusters were dispersed in an explosive orientation and the particle diffusion distance varied in terms of its radius and melt-viscosity vicinity. High-resolution transmission electron microscopy showed the existence of a subgrain structure near the ZrB 2 –Al interface after LSM. This may increase the yield strength when a dislocation tangle forms.

  15. Effects on suspensions dispersed particles & water purification produced by Cardon Dato mucilage, Iron Chloride, alum, and their combinations

    OpenAIRE

    Henríquez-Rodríguez, Manuel; Gascó Montes, José María; Pérez Arias, Juana; Rodríguez Rodríguez, Orlando

    2008-01-01

    Pressure to use dispersive soils has increased worldwide, soil conservation against erosion is crucial and water contamination by eroded materials is a relevant problem. Organic and inorganic conditioners reduce soils’ particles dispersion, improve soils´ structure and permeability, and reduce water sources contamination. The effects of a Cardon Dato (Stenocereus griseus (Haw.) F. Buxb) mucilage (CD), FeCl3.6H2O and AlCl3.6H2O, on flocculating suspensions and arrangement of suspended particle...

  16. The effects of oil and oil dispersants on the skeletal growth of the hermatypic coral Diploria strigosa

    Science.gov (United States)

    Dodge, Richard E.; Wyers, Sheila C.; Frith, H. R.; Knap, Anthony H.; Smith, S. R.; Sleeter, T. D.

    1984-12-01

    Specimens of the hermatypic coral species Diploria strigosa were exposed to various concentrations (1 50 ppm) of oil or oil plus dispersant for 6 24 h periods in four laboratory and two field experiments. After dosing, corals were transplanted to, or left in, the field and recollected approximately one year later for extension (linear) growth analysis by the alizarin stain method. The experiments were designed to assess the long-term effects of brief low-level concentrations of chemically dispersed oil and oil alone on corals in a situation, for example, where an oil slick (treated and non-treated with dispersants) passes over a reef. No significant differences between extension growth parameters (Septa increase, Columella increase) and a calical shape parameter (New Endotheca Length) of treated corals versus controls were found in any of the experiments. In two summer experiments calical relief (Fossa length) was found to be depressed in corals of some of the experimental treatments.

  17. Colligative properties of anomalous water.

    Science.gov (United States)

    Everett, D H; Haynes, J M; McElroy, P J

    1970-06-13

    Investigations of the phase behaviour on freezing and subsequent melting and of other properties indicate that anomalous water is a solution containing a fixed amount of relatively involatile material in normal water. There seems to be no need to postulate the existence of a new polymer of water in such solutions. If only water and silica are present, the properties are consistent with those of a silicic acid gel.

  18. Horizon universality and anomalous conductivities

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Umut [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Tarrío, Javier [Departament de Física Fonamental and Institut de Ciències del Cosmos,Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain)

    2015-10-08

    We show that the value of chiral conductivities associated with anomalous transport is universal in a general class of strongly coupled quantum field theories that admit a gravitational holographic dual in the large N limit. Our result only applies to theories in the presence of external gauge fields with no dynamical gluon fields. On the gravity side the result follows from near horizon universality of the fluctuation equations, similar to the holographic calculation of the shear viscosity.

  19. Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli–Euler beam

    DEFF Research Database (Denmark)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2016-01-01

    The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...

  20. Linking habitat suitability and seed dispersal models in order to analyse the effectiveness of hydrological fen restoration strategies

    NARCIS (Netherlands)

    Loon, A.H. van; Soomers, H.; Schot, P.P.; Bierkens, M.F.P.; Griffioen, J.; Wassen, M.J.

    2011-01-01

    The effectiveness of measures targeted at the restoration of populations of endangered species in anthropogenically dominated regions is often limited by a combination of insufficient restoration of habitat quality and dispersal failure. Therefore, the joint prediction of suitable habitat and seed