WorldWideScience

Sample records for anomalous diffusion induced

  1. Anomalous Diffusion Near Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  2. Fractal model of anomalous diffusion.

    Science.gov (United States)

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  3. Fractal model of anomalous diffusion

    OpenAIRE

    Gmachowski, Lech

    2015-01-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...

  4. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  5. Anomalous diffusion without scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Hanyga, A [Department of Earth Sciences, University of Bergen, Allegaten 41, N5007 Bergen (Norway)

    2007-05-25

    Asymptotic behaviour of a new class of anomalous diffusion equations for subdiffusive transport defined in terms of generalized distributed fractional-order time derivatives is considered. The effect of slowly varying factors on the scaling function of asymptotic solutions is demonstrated. The origin of slowly varying scaling factors in the CTRW models is discussed.

  6. Anomalous diffusion of fermions in superlattices

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.

    1996-03-01

    Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)

  7. Demographic fluctuations in a population of anomalously diffusing individuals.

    Science.gov (United States)

    Olla, Piero

    2012-02-01

    The phenomenon of spatial clustering induced by death and reproduction in a population of anomalously diffusing individuals is studied analytically. The possibility of social behaviors affecting the migration strategies has been taken into exam, in the case that anomalous diffusion is produced by means of a continuous time random walk (CTRW). In the case of independently diffusing individuals, the dynamics appears to coincide with that of (dying and reproducing) Brownian walkers. In the strongly social case, the dynamics coincides with that of nonmigrating individuals. In both limits, the growth rate of the fluctuations becomes independent of the Hurst exponent of the CTRW. The social behaviors that arise when transport in a population is induced by a spatial distribution of random traps have been analyzed. © 2012 American Physical Society

  8. Conformable derivative approach to anomalous diffusion

    Science.gov (United States)

    Zhou, H. W.; Yang, S.; Zhang, S. Q.

    2018-02-01

    By using a new derivative with fractional order, referred to conformable derivative, an alternative representation of the diffusion equation is proposed to improve the modeling of anomalous diffusion. The analytical solutions of the conformable derivative model in terms of Gauss kernel and Error function are presented. The power law of the mean square displacement for the conformable diffusion model is studied invoking the time-dependent Gauss kernel. The parameters related to the conformable derivative model are determined by Levenberg-Marquardt method on the basis of the experimental data of chloride ions transportation in reinforced concrete. The data fitting results showed that the conformable derivative model agrees better with the experimental data than the normal diffusion equation. Furthermore, the potential application of the proposed conformable derivative model of water flow in low-permeability media is discussed.

  9. Anomalous diffusion and diffusion anomaly in confined Janus dumbbells.

    Science.gov (United States)

    B Krott, Leandro; Gavazzoni, Cristina; Bordin, José Rafael

    2016-12-28

    Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.

  10. Anomalous diffusion and diffusion anomaly in confined Janus dumbbells

    Science.gov (United States)

    Krott, Leandro B.; Gavazzoni, Cristina; Bordin, José Rafael

    2016-12-01

    Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.

  11. Anomalous diffusion in geophysical and laboratory turbulence

    Directory of Open Access Journals (Sweden)

    A. Tsinober

    1994-01-01

    Full Text Available We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926. The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc. - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992 and Kit et al. (1993. The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  12. Anomalous diffusion in geophysical and laboratory turbulence

    Science.gov (United States)

    Tsinober, A.

    We present an overview and some new results on anomalous diffusion of passive scalar in turbulent flows (including those used by Richardson in his famous paper in 1926). The obtained results are based on the analysis of the properties of invariant quantities (energy, enstrophy, dissipation, enstrophy generation, helicity density, etc.) - i.e. independent of the choice of the system of reference as the most appropriate to describe physical processes - in three different turbulent laboratory flows (grid-flow, jet and boundary layer, see Tsinober et al. (1992) and Kit et al. (1993). The emphasis is made on the relations between the asymptotic properties of the intermittency exponents of higher order moments of different turbulent fields (energy, dissipation, helicity, spontaneous breaking of isotropy and reflexional symmetry) and the variability of turbulent diffusion in the atmospheric boundary layer, in the troposphere and in the stratosphere. It is argued that local spontaneous breaking of isotropy of turbulent flow results in anomalous scaling laws for turbulent diffusion (as compared to the scaling law of Richardson) which are observed, as a rule, in different atmospheric layers from the atmospheric boundary layer (ABL) to the stratosphere. Breaking of rotational symmetry is important in the ABL, whereas reflexional symmetry breaking is dominating in the troposphere locally and in the stratosphere globally. The results are of speculative nature and further analysis is necessary to validate or disprove the claims made, since the correspondence with the experimental results may occur for the wrong reasons as happens from time to time in the field of turbulence.

  13. Anomalous water diffusion in salt solutions

    Science.gov (United States)

    Ding, Yun; Hassanali, Ali A.; Parrinello, Michele

    2014-01-01

    The dynamics of water exhibits anomalous behavior in the presence of different electrolytes. Recent experiments [Kim JS, Wu Z, Morrow AR, Yethiraj A, Yethiraj A (2012) J Phys Chem B 116(39):12007–12013] have found that the self-diffusion of water can either be enhanced or suppressed around CsI and NaCl, respectively, relative to that of neat water. Here we show that unlike classical empirical potentials, ab initio molecular dynamics simulations successfully reproduce the qualitative trends observed experimentally. These types of phenomena have often been rationalized in terms of the “structure-making” or “structure-breaking” effects of different ions on the solvent, although the microscopic origins of these features have remained elusive. Rather than disrupting the network in a significant manner, the electrolytes studied here cause rather subtle changes in both structural and dynamical properties of water. In particular, we show that water in the ab initio molecular dynamics simulations is characterized by dynamic heterogeneity, which turns out to be critical in reproducing the experimental trends. PMID:24522111

  14. Anomalous diffusion process applied to magnetic resonance image enhancement

    Science.gov (United States)

    Senra Filho, A. C. da S.; Garrido Salmon, C. E.; Murta Junior, L. O.

    2015-03-01

    Diffusion process is widely applied to digital image enhancement both directly introducing diffusion equation as in anisotropic diffusion (AD) filter, and indirectly by convolution as in Gaussian filter. Anomalous diffusion process (ADP), given by a nonlinear relationship in diffusion equation and characterized by an anomalous parameters q, is supposed to be consistent with inhomogeneous media. Although classic diffusion process is widely studied and effective in various image settings, the effectiveness of ADP as an image enhancement is still unknown. In this paper we proposed the anomalous diffusion filters in both isotropic (IAD) and anisotropic (AAD) forms for magnetic resonance imaging (MRI) enhancement. Filters based on discrete implementation of anomalous diffusion were applied to noisy MRI T2w images (brain, chest and abdominal) in order to quantify SNR gains estimating the performance for the proposed anomalous filter when realistic noise is added to those images. Results show that for images containing complex structures, e.g. brain structures, anomalous diffusion presents the highest enhancements when compared to classical diffusion approach. Furthermore, ADP presented a more effective enhancement for images containing Rayleigh and Gaussian noise. Anomalous filters showed an ability to preserve anatomic edges and a SNR improvement of 26% for brain images, compared to classical filter. In addition, AAD and IAD filters showed optimum results for noise distributions that appear on extreme situations on MRI, i.e. in low SNR images with approximate Rayleigh noise distribution, and for high SNR images with Gaussian or non central χ noise distributions. AAD and IAD filter showed the best results for the parametric range 1.2 MRI. This study indicates the proposed anomalous filters as promising approaches in qualitative and quantitative MRI enhancement.

  15. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  16. Absolute negative mobility in the anomalous diffusion

    Science.gov (United States)

    Chen, Ruyin; Chen, Chongyang; Nie, Linru

    2017-12-01

    Transport of an inertial Brownian particle driven by the multiplicative Lévy noise was investigated here. Numerical results indicate that: (i) The Lévy noise is able to induce absolute negative mobility (ANM) in the system, while disappearing in the deterministic case; (ii) the ANM can occur in the region of superdiffusion while disappearing in the region of normal diffusion, and the appropriate stable index of the Lévy noise makes the particle move along the opposite direction of the bias force to the maximum degree; (iii) symmetry breaking of the Lévy noise also causes the ANM effect. In addition, the intrinsic physical mechanism and conditions for the ANM to occur are discussed in detail. Our results have the implication that the Lévy noise plays an important role in the occurrence of the ANM phenomenon.

  17. Self-similar Gaussian processes for modeling anomalous diffusion

    Science.gov (United States)

    Lim, S. C.; Muniandy, S. V.

    2002-08-01

    We study some Gaussian models for anomalous diffusion, which include the time-rescaled Brownian motion, two types of fractional Brownian motion, and models associated with fractional Brownian motion based on the generalized Langevin equation. Gaussian processes associated with these models satisfy the anomalous diffusion relation which requires the mean-square displacement to vary with tα, 0Brownian motion and time-rescaled Brownian motion all have the same probability distribution function, the Slepian theorem can be used to compare their first passage time distributions, which are different. Finally, in order to model anomalous diffusion with a variable exponent α(t) it is necessary to consider the multifractional extensions of these Gaussian processes.

  18. Boundary conditions of normal and anomalous diffusion from thermal equilibrium.

    Science.gov (United States)

    Korabel, Nickolay; Barkai, Eli

    2011-05-01

    Infiltration of diffusing particles from one material to another, where the diffusion mechanism is either normal or anomalous, is a widely observed phenomenon. Starting with an underlying continuous-time random-walk model, we derive the boundary conditions for the diffusion equations describing this problem. We discuss a simple method showing how the boundary conditions can be determined from equilibrium experiments. When the diffusion processes are close to thermal equilibrium, the boundary conditions are determined by a thermal Boltzmann factor, which in turn controls the solution of the problem.

  19. The anomalous self-diffusion in α-Zr

    International Nuclear Information System (INIS)

    Hood, G.M.

    1985-01-01

    In a very recent publication, Horvath, Dyment and Mehrer, henceforth HDM, presented measurements of the self-diffusion coefficient Dsub(m) 0 for α-Zr as a function of temperature. The results of that study, done on a single crystal sample, were anomalous in the sense that a plot of log Dsub(m) 0 vs. 1/T(K -1 ) was not only non-linear, but exhibited two regions of downward curvature with increasing 1/T. HDM indicated that they were unable to see any explanation of their anomalous self-diffusion results. It is the purpose of this letter to indicate a means whereby these anomalous results may be ''explained'' and to suggest some experiments which might be undertaken to test the proposal. (orig./RK)

  20. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  1. Anomalous diffusion in a symbolic model

    International Nuclear Information System (INIS)

    Ribeiro, H V; Lenzi, E K; Mendes, R S; Santoro, P A

    2011-01-01

    In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.

  2. Path Integral Formulation of Anomalous Diffusion Processes

    OpenAIRE

    Friedrich, Rudolf; Eule, Stephan

    2011-01-01

    We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...

  3. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    Science.gov (United States)

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  4. Electrostatic Turbulence and Anomalous Effects in Reconnection Diffusion Region

    Science.gov (United States)

    Khotyaintsev, Y. V.; Graham, D. B.; Norgren, C.; Vaivads, A.; Li, W.; Divin, A. V.; Andre, M.; Markidis, S.; Lindqvist, P. A.; Peng, I. B.; Argall, M. R.; Ergun, R.; Le Contel, O.; Magnes, W.; Russell, C. T.; Giles, B. L.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Magnetic reconnection is a fundamental process whereby microscopicplasma processes cause macroscopic changes in magnetic field topology,so that initially separated plasmas become magnetically connected.Waves can produce particle diffusion, and anomalous resistivity, aswell as heat the plasma and accelerate plasma particles, all of whichcan impact ongoing reconnection. We report electrostatic turbulencedeveloping within the diffusion region of asymmetric magnetopausereconnection using observations by the Magnetospheric Multiscalemission and large-scale particle-in-cell simulations, and characterizeanomalous effects and plasma heating within the diffusion region. Ourobservations demonstrate that electrostatic turbulence plays animportant role in the electron-scale physics of asymmetricreconnection.

  5. Characterization of diffusion processes: Normal and anomalous regimes

    Science.gov (United States)

    Alves, Samuel B.; de Oliveira, Gilson F.; de Oliveira, Luimar C.; Passerat de Silans, Thierry; Chevrollier, Martine; Oriá, Marcos; de S. Cavalcante, Hugo L. D.

    2016-04-01

    Many man-made and natural processes involve the diffusion of microscopic particles subject to random or chaotic, random-like movements. Besides the normal diffusion characterized by a Gaussian probability density function, whose variance increases linearly in time, so-called anomalous-diffusion regimes can also take place. They are characterized by a variance growing slower (subdiffusive) or faster (superdiffusive) than normal. In fact, many different underlying processes can lead to anomalous diffusion, with qualitative differences between mechanisms producing subdiffusion and mechanisms resulting in superdiffusion. Thus, a general description, encompassing all three regimes and where the specific mechanisms of each system are not explicit, is desirable. Here, our goal is to present a simple method of data analysis that enables one to characterize a model-less diffusion process from data observation, by observing the temporal evolution of the particle spread. To generate diffusive processes in different regimes, we use a Monte-Carlo routine in which both the step-size and the time-delay of the diffusing particles follow Pareto (inverse-power law) distributions, with either finite or diverging statistical momenta. We discuss on the application of this method to real systems.

  6. Fluorescence recovery after photobleaching: the case of anomalous diffusion.

    Science.gov (United States)

    Lubelski, Ariel; Klafter, Joseph

    2008-06-01

    The method of FRAP (fluorescence recovery after photobleaching), which has been broadly used to measure lateral mobility of fluorescent-labeled molecules in cell membranes, is formulated here in terms of continuous time random walks (CTRWs), which offer both analytical expressions and a scheme for numerical simulations. We propose an approach based on the CTRW and the corresponding fractional diffusion equation (FDE) to analyze FRAP results in the presence of anomalous subdiffusion. The FDE generalizes the simple diffusive picture, which has been applied to FRAP when assuming regular diffusion, to account for subdiffusion. We use a subordination relationship between the solutions of the fractional and normal diffusion equations to fit FRAP recovery curves obtained from CTRW simulations, and compare the fits to the commonly used approach based on the simple diffusion equation with a time dependent diffusion coefficient (TDDC). The CTRW and TDDC describe two different dynamical schemes, and although the CTRW formalism appears to be more complicated, it provides a physical description that underlies anomalous lateral diffusion.

  7. Anomalous diffusion on 2d randomly oriented diode networks

    International Nuclear Information System (INIS)

    Aydiner, E.; Kiymach, K.

    2002-01-01

    In this work, we have studied the diffusion properties of a randomly oriented two- dimensional diode network, using Monte Carlo Simulation method. The characteristic exponent α of the diffusion is obtained against the reverse transition probability W γ . We have found two critical values of W γ ; 0.003 and 0.4. α has been found to be 0.376 for W γ ≤ 0.003, and ≅ 1 for W γ ≥ 0.4 . For W γ >0.4 normal diffusion, and for 0.003≤W γ ≤0.4 anomalous sub-diffusion are observed. But for W γ ≤0.003 there seems to be no diffusion at all

  8. Anomalous quantum diffusion and the topological metal

    Science.gov (United States)

    Tian, Chushun

    2012-09-01

    Electron wave scattering off disorders provides a key to many fascinating transport phenomena recently observed in topological insulators. Here, we present a nonperturbative diagrammatic theory of this subject. Surprisingly, quantum superdiffusion is found on the surface of three-dimensional strong topological insulators regardless of disorder strength (but not vanishing), where the diffusion coefficient grows in time logarithmically. Such a transport anomaly serves as a main characteristic of the novel quantum metal, the so-called “topological metal,” and indicates that it is a hybridization of Ohmic and perfect metals. It washes out the Anderson transition occurring in two-dimensional normal metals with disordered spin-orbit coupling, and leads to a logarithmic divergence of the conductance in the sample size instead. Therefore, the present work provides an analytical proof of the transport anomaly discovered numerically [Nomura, Koshino, and Ryu, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.146806 99, 146806 (2007); Bardarson , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.99.106801 99, 106801 (2007)].

  9. Anomalous diffusion and scaling in coupled stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Bel, Golan [Los Alamos National Laboratory; Nemenman, Ilya [Los Alamos National Laboratory

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

  10. Anomalous Momentum Diffusion in the Classical Kicked Rotor

    Science.gov (United States)

    Zheng, Yindong; Kobe, Donald H.

    2004-10-01

    For the classical kicked rotor or standard map we have made a numerical simulation of the momentum diffusion . A plot of ratio of the momentum diffusion rate to K^2/2 as a function of the control parameter K from 0 to 100 is generally well fit by a formula of Meiss, et al.(J.D. Meiss, et al., Physica 6D, 375 (1983).) that includes correlations, but not the effect of accelerator islands. For values of K near maxima in this formula large deviations, called resonances, occur periodically due to accelerator islands. At these values of K the momentum diffusion is anomalous. The anomalous diffusion can be fit by =DN^β, where N is time in units of the kick period. For the resonances, D and β are obtained as functions of K. It is found that β (K) is slightly less than 2 and almost constant and D(K) shows three distinct sections within the regions of K for the fundamental accelerator modes. For values of K not on resonances the momentum diffusion is linear, but not generally at a rate K^2/2.

  11. Self-similar anomalous diffusion and Levy-stable laws

    International Nuclear Information System (INIS)

    Uchaikin, Vladimir V

    2003-01-01

    Stochastic principles for constructing the process of anomalous diffusion are considered, and corresponding models of random processes are reviewed. The self-similarity and the independent-increments principles are used to extend the notion of diffusion process to the class of Levy-stable processes. Replacing the independent-increments principle with the renewal principle allows us to take the next step in generalizing the notion of diffusion, which results in fractional-order partial space-time differential equations of diffusion. Fundamental solutions to these equations are represented in terms of stable laws, and their relationship to the fractality and memory of the medium is discussed. A new class of distributions, called fractional stable distributions, is introduced. (reviews of topical problems)

  12. Relationship between the anomalous diffusion and the fractal dimension of the environment

    Science.gov (United States)

    Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter

    2018-03-01

    In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.

  13. Normal and anomalous diffusion of gravel tracer particles in rivers

    Science.gov (United States)

    Ganti, Vamsi; Meerschaert, Mark M.; Foufoula-Georgiou, Efi; Viparelli, Enrica; Parker, Gary

    2010-06-01

    One way to study the mechanism of gravel bed load transport is to seed the bed with marked gravel tracer particles within a chosen patch and to follow the pattern of migration and dispersal of particles from this patch. In this study, we invoke the probabilistic Exner equation for sediment conservation of bed gravel, formulated in terms of the difference between the rate of entrainment of gravel into motion and the rate of deposition from motion. Assuming an active layer formulation, stochasticity in particle motion is introduced by considering the step length (distance traveled by a particle once entrained until it is deposited) as a random variable. For step lengths with a relatively thin (e.g., exponential) tail, the above formulation leads to the standard advection-diffusion equation for tracer dispersal. However, the complexity of rivers, characterized by a broad distribution of particle sizes and extreme flood events, can give rise to a heavy-tailed distribution of step lengths. This consideration leads to an anomalous advection-diffusion equation involving fractional derivatives. By identifying the probabilistic Exner equation as a forward Kolmogorov equation for the location of a randomly selected tracer particle, a stochastic model describing the temporal evolution of the relative concentrations is developed. The normal and anomalous advection-diffusion equations are revealed as its long-time asymptotic solution. Sample numerical results illustrate the large differences that can arise in predicted tracer concentrations under the normal and anomalous diffusion models. They highlight the need for intensive data collection efforts to aid the selection of the appropriate model in real rivers.

  14. Simulations of anomalous ion diffusion in experimentally measured turbulent potential

    Czech Academy of Sciences Publication Activity Database

    Seidl, Jakub; Krlín, Ladislav; Pánek, Radomír; Pavlo, Pavol; Stöckel, Jan; Svoboda, V.

    2009-01-01

    Roč. 54, č. 2 (2009), s. 399-407 ISSN 1434-6060. [Symposium on Plasma Physics and Technology/23rd./. Prague, 16.06.2008-19.06.2008] R&D Projects: GA ČR GA202/07/0044; GA AV ČR IAA100430502 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma turbulence * Lévy- walk * anomalous diffusion * plasma impurities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2009 http://www.springerlink.com/content/hn8041u48795847m/

  15. Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion

    Science.gov (United States)

    Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin

    2018-02-01

    Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

  16. A tutorial on inverse problems for anomalous diffusion processes

    Science.gov (United States)

    Jin, Bangti; Rundell, William

    2015-03-01

    Over the last two decades, anomalous diffusion processes in which the mean squares variance grows slower or faster than that in a Gaussian process have found many applications. At a macroscopic level, these processes are adequately described by fractional differential equations, which involves fractional derivatives in time or/and space. The fractional derivatives describe either history mechanism or long range interactions of particle motions at a microscopic level. The new physics can change dramatically the behavior of the forward problems. For example, the solution operator of the time fractional diffusion diffusion equation has only limited smoothing property, whereas the solution for the space fractional diffusion equation may contain weak singularity. Naturally one expects that the new physics will impact related inverse problems in terms of uniqueness, stability, and degree of ill-posedness. The last aspect is especially important from a practical point of view, i.e., stably reconstructing the quantities of interest. In this paper, we employ a formal analytic and numerical way, especially the two-parameter Mittag-Leffler function and singular value decomposition, to examine the degree of ill-posedness of several ‘classical’ inverse problems for fractional differential equations involving a Djrbashian-Caputo fractional derivative in either time or space, which represent the fractional analogues of that for classical integral order differential equations. We discuss four inverse problems, i.e., backward fractional diffusion, sideways problem, inverse source problem and inverse potential problem for time fractional diffusion, and inverse Sturm-Liouville problem, Cauchy problem, backward fractional diffusion and sideways problem for space fractional diffusion. It is found that contrary to the wide belief, the influence of anomalous diffusion on the degree of ill-posedness is not definitive: it can either significantly improve or worsen the conditioning of

  17. Anomalous diffusion of an ellipsoid in quasi-2D active fluids

    Science.gov (United States)

    Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang

    Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.

  18. Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media

    Directory of Open Access Journals (Sweden)

    Albinali Ali

    2016-07-01

    Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.

  19. An application of fractional calculus to anomalous diffusion and imaging in inhomogeneous media

    Science.gov (United States)

    Buonocore, Salvatore

    In recent years several studies have shown that field transport phenomena in media with non-homogeneous properties are characterized by unconventional behaviors. These processes, usually denoted as anomalous transport phenomena, are accurately described by fractional order mathematical models, whereas the classical integer order models fail to capture their properties. There are several examples of anomalous diffusion throughout the different fields of physics, such as wave propagation and diffusion processes in viscoelastic and heterogeneous media (e.g. soil, porous materials, etc.) fluid flow in porous media, non classical heat transfer. In particular, the diffusion processes in heterogeneous materials have shown to develop anomalous features characterized by non-local behavior due to the onset of long-range interactions. While integer order transport models are not able to explain these effects, fractional order models have shown to be able to capture these phenomena. The aim of this thesis is to investigate the occurrence of anomalous transport mechanisms associated to wave-like fields propagating in highly scattering media and to diffusive fields propagating in inhomogeneous media. Anomalous diffusion models are applicable to complex and inhomogeneous environments where classical diffusion theory ceases to be valid. Anomalous diffusion shows a nonlinear time dependence for the mean-squared displacement, and predicts stretched exponential decay for the temporal evolution of the system response. These unique characteristics of anomalous diffusion enable to probe complex media, with an approach that is not permitted by classical diffusion imaging. The behavior of the initial wave-like field turning into a diffused one will be governed by a classical or anomalous diffusive mechanism depending on the density of the medium. In this work this conversion phenomenon will be studied via a combination of stochastic molecular and fractional continuum models in order to

  20. Trapped ion depletion by anomalous diffusion due to the dissipative trapped ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-07-01

    At high temperatures the KADOMTSEV-POGUTSE diffusion in tokamaks can become so large as to cause depletion of trapped ions if these are replaced with free ions by means of collisions rather than being directly recycled or injected. Modified KADOMTSEV-POGUTSE diffusion formulas are employed in order to estimate this effect in the cases of classical and anomalous collisions. The maximum trapped-ion depletion is estimated from the PENROSE stability condition. For anomalous collisions a BOHM-type diffusion is derived. Numerical examples are given for JET-like parameters (JET = Joint European Torus). Depletion is found to reduce diffusion by factors of up to 10 and more. (orig.) [de

  1. Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach.

    Science.gov (United States)

    Burnecki, Krzysztof; Kepten, Eldad; Garini, Yuval; Sikora, Grzegorz; Weron, Aleksander

    2015-06-11

    Accurately characterizing the anomalous diffusion of a tracer particle has become a central issue in biophysics. However, measurement errors raise difficulty in the characterization of single trajectories, which is usually performed through the time-averaged mean square displacement (TAMSD). In this paper, we study a fractionally integrated moving average (FIMA) process as an appropriate model for anomalous diffusion data with measurement errors. We compare FIMA and traditional TAMSD estimators for the anomalous diffusion exponent. The ability of the FIMA framework to characterize dynamics in a wide range of anomalous exponents and noise levels through the simulation of a toy model (fractional Brownian motion disturbed by Gaussian white noise) is discussed. Comparison to the TAMSD technique, shows that FIMA estimation is superior in many scenarios. This is expected to enable new measurement regimes for single particle tracking (SPT) experiments even in the presence of high measurement errors.

  2. Anomalous diffusion and ion heating in the presence of electrostatic hydrogen cyclotron instabilities

    International Nuclear Information System (INIS)

    Okuda, H.; Cheng, C.Z.; Lee, W.W.

    1980-11-01

    One- and two-dimensional simulations have been carried out to study electrostatic ion cyclotron instabilities for a hydrogen plasma in a strong magnetic field. It is found that strong ion heating and anomalous cross-field diffusion comparable to Bohm diffusion take place associated with the instability. Implications of the instability to the recent observations in fusion devices and space plasmas are discussed

  3. A new model of anomalous phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    Budil, M.; Poetzl, H.; Stingeder, G.; Grasserbauer, M.

    1989-01-01

    A model is presented to describe the 'kink and tail' diffusion of phosphorus. The diffusion behaviour of phosphorus is expplained by the motion of phosphorus-interstitial and phosphorus-vacancy pairs in different charge states. The model yields the enhancement of diffusion in the tail region depending on surface concentration. Furthermore it yields the same selfdiffusion coefficient for interstitials as the gold diffusion experiments. A transformation of the diffusion equation was found to reduce the number of simulation equations. (author) 7 refs., 5 figs

  4. Anomalous self-diffusion in rare earths and actinides

    International Nuclear Information System (INIS)

    Marbach, G.; Boidron, M.; Fromont, M.; Calais, D.

    1977-01-01

    Self-diffusion parameters were measured in Pu, Np, Ce, La, Yt and Gd. In the close packed phases at low temperature and in europium (metal which has a bcc phase only), the diffusion parameters are normal. In the bcc lattices, the diffusion parameters can be interpreted in a simple manner by a mechanism involving very relaxed vacancies or the associated defects of the OMEGA cluster type described by Sanchez and de Fontaine [fr

  5. On mean square displacement behaviors of anomalous diffusions with variable and random orders

    International Nuclear Information System (INIS)

    Sun Hongguang; Chen Wen; Sheng Hu; Chen Yangquan

    2010-01-01

    Mean square displacement (MSD) is used to characterize anomalous diffusion. Recently, models of anomalous diffusion with variable-order and random-order were proposed, but no MSD analysis has been given so far. The purpose of this Letter is to offer a concise derivation of MSD functions for the variable-order model and the random-order model. Numerical results are presented to illustrate the analytical results. In addition, we show how to establish a variable-random-order model for a given MSD function which has clear application potentials.

  6. Diffusion-induced parametric dispersion and amplification in doped ...

    Indian Academy of Sciences (India)

    Using the hydrodynamic model of semiconductor plasma, the diffusion-induced nonlinear current density and the consequent second-order effective susceptibility are obtained under off-resonant laser irradiation. The analysis deals with the qualitative behaviour of the anomalous parametric dispersion and the gain profile ...

  7. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    Science.gov (United States)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  8. Oscillatory variation of anomalous diffusion in pendulum systems

    Indian Academy of Sciences (India)

    The effect of constant bias in the damped version of (2) on homoclinic bifurcation was reported [22]. For small amplitudes of oscillations ..... in porous media, atom on solid surfaces [26], energy and signal in biological systems. [27] and so on. The diffusion dynamics reported in the present work through numerical simulation ...

  9. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  10. Diffusion of a particle in the spatially correlated exponential random energy landscape: Transition from normal to anomalous diffusion

    Science.gov (United States)

    Novikov, S. V.

    2018-01-01

    Diffusive transport of a particle in a spatially correlated random energy landscape having exponential density of states has been considered. We exactly calculate the diffusivity in the nondispersive quasi-equilibrium transport regime for the 1D transport model and found that for slow decaying correlation functions the diffusivity becomes singular at some particular temperature higher than the temperature of the transition to the true non-equilibrium dispersive transport regime. It means that the diffusion becomes anomalous and does not follow the usual ∝ t1/2 law. In such situation, the fully developed non-equilibrium regime emerges in two stages: first, at some temperature there is the transition from the normal to anomalous diffusion, and then at lower temperature the average velocity for the infinite medium goes to zero, thus indicating the development of the true dispersive regime. Validity of the Einstein relation is discussed for the situation where the diffusivity does exist. We provide also some arguments in favor of conservation of the major features of the new transition scenario in higher dimensions.

  11. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    Science.gov (United States)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  12. Fractional and fractal dynamics approach to anomalous diffusion in porous media: application to landslide behavior

    Science.gov (United States)

    Martelloni, Gianluca; Bagnoli, Franco

    2016-04-01

    In the past three decades, fractional and fractal calculus (that is, calculus of derivatives and integral of any arbitrary real or complex order) appeared to be an important tool for its applications in many fields of science and engineering. This theory allows to face, analytically and/or numerically, fractional differential equations and fractional partial differential equations. In particular, one of the several applications deals with anomalous diffusion processes. The latter phenomena can be clearly described from the statistical viewpoint. Indeed, in various complex systems, the diffusion processes usually no longer follow Gaussian statistics, and thus Fick's second law fails to describe the related transport behavior. In particular, one observes deviations from the linear time dependence of the mean squared displacement ⟨x2(t)⟩ ∝ t, (1) which is characteristic of Brownian motion, i.e., a direct consequence of the central limit theorem and the Markovian nature of the underlying stochastic process [1-17]. Instead, anomalous diffusion is found in a wide diversity of systems and its feature is the non-linear growth of the mean squared displacement over time. Especially the power-law pattern, with exponent γ different from 1 ⟨ ⟩ x2(t) ∝ tγ, (2) characterizes many systems [18, 19], but a variety of other rules, such as a logarithmic time dependence, exist [20]. The anomalous diffusion, as expressed in Eq. (2) is connected with the breakdown of the central limit theorem, caused by either broad distributions or long-range correlations, e.g., the extreme statistics and the power law distributions, typical of the self-organized criticality [42, 43]. Instead, anomalous diffusion rests on the validity of the Levy-Gnedenko generalized central limit theorem [21-23]. Particularly, broad spatial jumps or waiting time distributions lead to non-Gaussian distribution and non-Markovian time evolution of the system. Anomalous diffusion has been known since

  13. Distinguishing free and anomalous diffusion by rectangular fluorescence recovery after photobleaching: a Monte Carlo study.

    Science.gov (United States)

    De Clercq, Ben; Cleuren, Bart; Deschout, Hendrik; Braeckmans, Kevin; Ameloot, Marcel

    2013-07-01

    Fluorescence recovery after photobleaching (FRAP) is a common technique to probe mobility of fluorescently labeled proteins in biological membranes by monitoring the time-dependence of the spatially integrated fluorescence signals after a bleaching pulse. Discrimination by FRAP between free diffusion with an immobile fraction (FDIM) and the phenomenological model for anomalous diffusion based on the time-dependent diffusion coefficient (TDDC) is a challenging problem, requiring extremely long observation times for differentiation. Recently, rectangular FRAP (rFRAP) has been introduced for normal diffusion by considering not only the temporal but also spatial information, taking the effective point spread function of the optical system into account. In this work we provide an extension of rFRAP toward anomalous diffusion according to the continuous time random walk (CTRW). We explore whether the spatial information in rFRAP allows for enhanced discrimination between FDIM, TDDC, and CTRW in a single experiment within a feasible time window. Simulations indicate that rFRAP can indeed differentiate the different models by evaluating the spatial autocorrelation of the differences between the measured and fitted pixel values. Hence, rFRAP offers a tool that is capable of discriminating different types of diffusion at shorter time scales than in the case where spatial information is discarded.

  14. Random walks exhibiting anomalous diffusion: elephants, urns and the limits of normality

    Science.gov (United States)

    Kearney, Michael J.; Martin, Richard J.

    2018-01-01

    A random walk model is presented which exhibits a transition from standard to anomalous diffusion as a parameter is varied. The model is a variant on the elephant random walk and differs in respect of the treatment of the initial state, which in the present work consists of a given number N of fixed steps. This also links the elephant random walk to other types of history dependent random walk. As well as being amenable to direct analysis, the model is shown to be asymptotically equivalent to a non-linear urn process. This provides fresh insights into the limiting form of the distribution of the walker’s position at large times. Although the distribution is intrinsically non-Gaussian in the anomalous diffusion regime, it gradually reverts to normal form when N is large under quite general conditions.

  15. Anomalous diffusion and long-range correlations in the score evolution of the game of cricket

    Science.gov (United States)

    Ribeiro, Haroldo V.; Mukherjee, Satyam; Zeng, Xiao Han T.

    2012-08-01

    We investigate the time evolution of the scores of the second most popular sport in the world: the game of cricket. By analyzing, event by event, the scores of more than 2000 matches, we point out that the score dynamics is an anomalous diffusive process. Our analysis reveals that the variance of the process is described by a power-law dependence with a superdiffusive exponent, that the scores are statistically self-similar following a universal Gaussian distribution, and that there are long-range correlations in the score evolution. We employ a generalized Langevin equation with a power-law correlated noise that describes all the empirical findings very well. These observations suggest that competition among agents may be a mechanism leading to anomalous diffusion and long-range correlation.

  16. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.

    Science.gov (United States)

    Berry, Hugues; Chaté, Hugues

    2014-02-01

    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent αmotion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.

  17. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.

    Directory of Open Access Journals (Sweden)

    Eldad Kepten

    Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.

  18. Structural disorder and anomalous water diffusion in random packing of spheres

    Science.gov (United States)

    Gabrielli, Andrea; Capuani, Silvia; Palombo, Marco; Servedio, Vito D. P.; Ruocco, Giancarlo

    2014-03-01

    Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this method is not able to describe structural disorder and transitions in complex systems. In this talk we show that, according to the continuous time random walk framework, the dNMR measurable parameter α, quantifying the anomalous regime of D(t) , provides a quantitative characterization of structural disorder and structural transition in heterogeneous systems. This is demonstrated by comparing α measurements obtained in random packed monodisperse micro-spheres with Molecular Dynamics simulations of disordered porous media and 3D Monte Carlo simulation of particles diffusion in these kind of systems. Experimental results agree well with simulations that correlate the most used parameters and functions characterizing the disorder in porous media.

  19. Study of microparticles' anomalous diffusion in active bath using speckle light fields (Presentation Recording)

    Science.gov (United States)

    Pince, Ercag; Sabareesh, Sabareesh K. P.; Volpe, Giorgio; Gigan, Sylvain; Volpe, Giovanni S.

    2015-08-01

    Particles undergoing a stochastic motion within a disordered medium is a ubiquitous physical and biological phenomenon. Examples can be given from organelles as molecular machines of cells performing physical tasks in a populated cytoplasm to human mobility in patchy environment at larger scales. Our recent results showed that it is possible to use the disordered landscape generated by speckle light fields to perform advanced manipulation tasks at the microscale. Here, we use speckle light fields to study the anomalous diffusion of micron size silica particles (5 μm) in the presence of active microswimmers. The microswimmers we used in the experiments are motile bacteria, Escherichia coli (E.coli). They constitute an active background constantly agitating passive silica particles within complex optical potentials. The speckle fields are generated by mode mixing inside a multimode optical fiber where a small amount of incident laser power (maximum power = 12 μW/μm2) is needed to obtain an effective random landscape pattern for the purpose of optical manipulation. We experimentally show how complex potentials contribute to the anomalous diffusion of silica particles undergoing collisions with swimming bacteria. We observed an enhanced diffusion of particles interacting with the active bath of E.coli inside speckle light fields: this effect can be tuned and controlled by varying the intensity and the statistical properties of the speckle pattern. Potentially, these results could be of interest for many technological applications, such as the manipulation of microparticles inside optically disordered media of biological interests.

  20. Classification of fractional order biomarkers for anomalous diffusion using q-space entropy.

    Science.gov (United States)

    Magin, Richard L; Ingo, Carson; Triplett, William; Colon-Perez, Louis; Mareci, Tom H

    2014-01-01

    In this study, we applied continuous random walk theory (CTRW) to develop a new model that characterizes anomalous diffusion in magnetic resonance imaging experiments. Furthermore, we applied a classification scheme based on information theoretic a techniques to characterize the degree of heterogeneity and complexity in biological tissues. From a CTRW approach, the Fourier transform of the generalized solution to the diffusion equation comes in the form of the Mittag-Leffler function. In this solution form, the relative stochastic uncertainty in the diffusion process can be computed with spectral entropy. We interrogated both white and gray matter regions of a fixed rat brain with diffusion - weighted magnetic resonance imaging experiments up to 26,000 s/mm² by independently weighting q and Δ. to investigate the effects on the diffusion phenomena. Our model fractional order parameters, α and β, and entropy measure, H(q, Δ), differentiated between tissue types and extracted differing information within a region of interest based on the type of diffusion experiment performed. By combining fractional order modeling and information theory, new and powerful biomarkers are available to characterize tissue microstructure and provide contextual information about the anatomical complexity.

  1. Anomalous diffusion and radial electric field generation due to edge plasma turbulence

    Czech Academy of Sciences Publication Activity Database

    Pánek, Radomír; Krlín, Ladislav; Taskhakaya, D.; Kuhn, S.; Stöckel, Jan; Pavlo, Pavol; Tender, M.; Svoboda, Vojtěch; Petržílka, Václav

    2004-01-01

    Roč. 44, 1-3 (2004), s. 203-204 ISSN 0863-1042. [International Workshop on Plasma Edge Theory in Fusion Devices/9th./. San Diego, 03.09.2003-05.09.2003] R&D Projects: GA AV ČR(CZ) IAA1043201; GA ČR GP202/03/P062; GA ČR(CZ) GA202/03/0786 Institutional research plan: CEZ:AV0Z2043910 Keywords : anomalous diffusion * transport * radial electric field Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.701, year: 2004

  2. Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins

    Czech Academy of Sciences Publication Activity Database

    Jeon, J. H.; Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2016-01-01

    Roč. 6, č. 2 (2016), č. článku 021006. ISSN 2160-3308 Institutional support: RVO:61388963 Keywords : protein crowding * membranes * simulations * diffusion * non-Gaussian anomalous diffusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.789, year: 2016 http://journals. aps .org/prx/abstract/10.1103/PhysRevX.6.021006

  3. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  4. Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy.

    Science.gov (United States)

    Magin, Richard L; Ingo, Carson; Colon-Perez, Luis; Triplett, William; Mareci, Thomas H

    2013-09-15

    In this high-resolution magnetic resonance imaging (MRI) study at 17.6 Tesla of a fixed rat brain, we used the continuous time random walk theory (CTRW) for Brownian motion to characterize anomalous diffusion. The complex mesoporus structure of biological tissues (membranes, organelles, and cells) perturbs the motion of the random walker (water molecules in proton MRI) introducing halts between steps (waiting times) and restrictions on step sizes (jump lengths). When such waiting times and jump lengths are scaled with probability distributions that follow simple inverse power laws ( t -(1+α) , | x | -(1+β) ) non-Gaussian motion gives rise to sub- and super- diffusion. In the CTRW approach, the Fourier transform yields a solution to the generalized diffusion equation that can be expressed by the Mittag-Leffler function (MLF), E α (- D α, β | q | β Δ α ). We interrogated both white and gray matter regions in a 1 mm slice of a fixed rat brain (190 μ m in plane resolution) with diffusion weighted MRI experiments using b -values up to 25,000 s / mm 2 , by independently varying q and Δ. When fitting these data to our model, the fractional order parameters, α and β, and the entropy measure, [Formula: see text], were found to provide excellent contrast between white and gray matter and to give results that were sensitive to the type of diffusion experiment performed.

  5. Analytical study on the fractional anomalous diffusion in a half-plane

    Science.gov (United States)

    Li, Xicheng; Chen, Wen

    2010-12-01

    In this study, anomalous diffusion in a half-plane with a constant source and a perfect sink at each half of the boundary is considered. The discontinuity of the boundary condition is erased by decomposing the solution into two parts—a symmetric part and an antisymmetric part. The symmetric part which has been studied extensively can be solved by an integral transform method, Green's function method or others. To obtain the solution of the antisymmetric part, a separable similarity solution is assumed and the Erdélyi-Kober-type fractional derivative is used. By doing so, the partial differential equation reduces to an ordinary one. Using the Mellin transform method, the solution of the antisymmetric part in terms of a Fox-H function is obtained. Some figures are given to show the characters of the diffusion process and the influences of different orders of fractional derivatives.

  6. Analytical study on the fractional anomalous diffusion in a half-plane

    International Nuclear Information System (INIS)

    Li Xicheng; Chen Wen

    2010-01-01

    In this study, anomalous diffusion in a half-plane with a constant source and a perfect sink at each half of the boundary is considered. The discontinuity of the boundary condition is erased by decomposing the solution into two parts-a symmetric part and an antisymmetric part. The symmetric part which has been studied extensively can be solved by an integral transform method, Green's function method or others. To obtain the solution of the antisymmetric part, a separable similarity solution is assumed and the Erdelyi-Kober-type fractional derivative is used. By doing so, the partial differential equation reduces to an ordinary one. Using the Mellin transform method, the solution of the antisymmetric part in terms of a Fox-H function is obtained. Some figures are given to show the characters of the diffusion process and the influences of different orders of fractional derivatives.

  7. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  8. Stochastic foundations in movement ecology anomalous diffusion, front propagation and random searches

    CERN Document Server

    Méndez, Vicenç; Bartumeus, Frederic

    2014-01-01

    This book presents the fundamental theory for non-standard diffusion problems in movement ecology. Lévy processes and anomalous diffusion have shown to be both powerful and useful tools for qualitatively and quantitatively describing a wide variety of spatial population ecological phenomena and dynamics, such as invasion fronts and search strategies. Adopting a self-contained, textbook-style approach, the authors provide the elements of statistical physics and stochastic processes on which the modeling of movement ecology is based and systematically introduce the physical characterization of ecological processes at the microscopic, mesoscopic and macroscopic levels. The explicit definition of these levels and their interrelations is particularly suitable to coping with the broad spectrum of space and time scales involved in bio-ecological problems.   Including numerous exercises (with solutions), this text is aimed at graduate students and newcomers in this field at the interface of theoretical ecology, mat...

  9. An anomalous non-self-similar infiltration and fractional diffusion equation

    Science.gov (United States)

    Gerasimov, D. N.; Kondratieva, V. A.; Sinkevich, O. A.

    2010-08-01

    Problems of anomalous infiltration in porous media are considered. As follows from the analysis of experimental data, modification of the infiltration equation is necessary. A fractional diffusion equation with variable order of the time-derivative operator for describing the liquid infiltration in porous media is proposed. The physical meaning of this fractional equation is explained. This equation provides good agreement with existing experimental data for both the subdiffusion and the superdiffusion. The treatment of experimental data for the absorption of water in a fired-clay brick and for water infiltration in cement mortar using this fractional equation of diffusion is presented. Various formulae, which can be useful for applications, have been developed.

  10. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  11. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  12. Continuous-time random-walk model for anomalous diffusion in expanding media

    Science.gov (United States)

    Le Vot, F.; Abad, E.; Yuste, S. B.

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  13. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.

    Science.gov (United States)

    Marquez-Lago, T T; Leier, A; Burrage, K

    2012-08-01

    There have been many recent studies from both experimental and simulation perspectives in order to understand the effects of spatial crowding in molecular biology. These effects manifest themselves in protein organisation on the plasma membrane, on chemical signalling within the cell and in gene regulation. Simulations are usually done with lattice- or meshless-based random walks but insights can also be gained through the computation of the underlying probability density functions of these stochastic processes. Until recently much of the focus had been on continuous time random walks, but some very recent work has suggested that fractional Brownian motion may be a good descriptor of spatial crowding effects in some cases. The study compares both fractional Brownian motion and continuous time random walks and highlights how well they can represent different types of spatial crowding and physical obstacles. Simulated spatial data, mimicking experimental data, was first generated by using the package Smoldyn. We then attempted to characterise this data through continuous time anomalously diffusing random walks and multifractional Brownian motion (MFBM) by obtaining MFBM paths that match the statistical properties of our sample data. Although diffusion around immovable obstacles can be reasonably characterised by a single Hurst exponent, we find that diffusion in a crowded environment seems to exhibit multifractional properties in the form of a different short- and long-time behaviour.

  14. THE DIFFUSE INTERSTELLAR BANDS AND ANOMALOUS MICROWAVE EMISSION MAY ORIGINATE FROM THE SAME CARRIERS

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, L. S.; Cline, J. A. [Spectral Sciences, Inc., 4 Fourth Avenue, Burlington, MA 01803 (United States); Clark, F. O. [Wopeco Research 125 South Great Road, Lincoln, MA 01773 (United States); Lynch, D. K., E-mail: larry@spectral.com, E-mail: jcline@spectral.com, E-mail: frank.clark@gmail.com, E-mail: dave@thulescientific.com [Thule Scientific, P.O. Box 953, Topanga, CA 90290 (United States)

    2015-11-10

    We argue that the observed spectroscopic and statistical properties of the diffuse interstellar band (DIB) carriers are those that are needed to produce the anomalous microwave emission (AME). We explore this idea using a carrier-impartial model for AME based on the observed DIB statistical properties. We show that an observed distribution of profile widths for narrow DIBs can be mapped into an AME spectrum. The mapping model is applied to width distributions observed for HD 204827 and HD 183143, selected because their spectroscopic and statistical properties bracket those for most other sight lines. The predicted AME spectra for these sight lines agree well with the range of spectral shapes, and peak frequencies, ∼23–31 GHz, typically observed for AME. We use the AME spectral profiles to derive a strong constraint between the average carrier size and its rotational temperature. The constraint is applied to a variety of postulated molecular carrier classes, including polycyclic aromatic hydrocarbons, fulleranes, hydrocarbon chains, and amorphous hydrocarbon clusters. The constraint favors small, cold carriers with average sizes of ∼8–15 carbon atoms, and average rotational temperatures of ∼3–10 K, depending on carrier type. We suggest new observations, analyses, and modeling efforts to help resolve the ambiguities with regard to carrier size and class, and to further clarify the DIB–AME relationship.

  15. Anomalous diffusion and q-Weibull velocity distributions in epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Tatiane Souza Vilela Podestá

    Full Text Available In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, the control of cell motion is a major demand in the creation of artificial tissues and organs. Here, cell migration assays on plastic 2D surfaces involving normal (MDCK and tumoral (B16F10 epithelial cell lines were performed varying the initial density of plated cells. Through time-lapse microscopy quantities such as speed distributions, velocity autocorrelations and spatial correlations, as well as the scaling of mean-squared displacements were determined. We find that these cells exhibit anomalous diffusion with q-Weibull speed distributions that evolves non-monotonically to a Maxwellian distribution as the initial density of plated cells increases. Although short-ranged spatial velocity correlations mark the formation of small cell clusters, the emergence of collective motion was not observed. Finally, simulational results from a correlated random walk and the Vicsek model of collective dynamics evidence that fluctuations in cell velocity orientations are sufficient to produce q-Weibull speed distributions seen in our migration assays.

  16. Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diffusion

    Science.gov (United States)

    Fan, Niannian; Xie, Yushu; Nie, Ruihua

    2017-10-01

    The stochastic nature of bed load transport induces diffusion of sediment tracers, which is governed by the dynamics of their bulk behavior over time. By deploying both numerical simulations and flume experiments, the emergent particle diffusion regimes for both uniform and mixed tracer particles were studied and compared. For uniform particles, power-law-distributed resting times Tr produced super-, sub- or normal diffusion regimes for certain values of the tail exponent ν . Based on the assumption that heterogeneity in particle size leads to a power-law distribution of Tr , a completely different diffusion regime emerges in mixtures compared with those obtained from uniform particles with the same value of the tail exponent ν . Mixtures exhibited the same ballistic regime (the variance of travel distance grows as time squared) for different values of ν , and ballistic regimes for mixtures also emerged from several other tested models. Furthermore, our experimental results confirmed the ballistic regime; however, the decreasing number of tracked particles may result in apparent but deceptive sub-diffusion. We conclude that ballistic regimes for mixtures result from violations of the independent and identically distributed (i.i.d.) assumptions, attributing to downstream sorting processes.

  17. Investigating the interplay between mechanisms of anomalous diffusion via fractional Brownian walks on a comb-like structure

    International Nuclear Information System (INIS)

    Ribeiro, Haroldo V; Alves, Luiz G A; Zola, Rafael S; Lenzi, Ervin K; Tateishi, Angel A

    2014-01-01

    The comb model is a simplified description for anomalous diffusion under geometric constraints. It represents particles spreading out in a two-dimensional space where the motions in the x-direction are allowed only when the y coordinate of the particle is zero. Here, we propose an extension for the comb model via Langevin-like equations driven by fractional Gaussian noises (long-range correlated). By carrying out computer simulations, we show that the correlations in the y-direction affect the diffusive behavior in the x-direction in a non-trivial fashion, resulting in a quite rich diffusive scenario characterized by usual, superdiffusive or subdiffusive scaling of second moment in the x-direction. We further show that the long-range correlations affect the probability distribution of the particle positions in the x-direction, making their tails longer when noise in the y-direction is persistent and shorter for anti-persistent noise. Our model thus combines and allows the study/analysis of the interplay between different mechanisms of anomalous diffusion (geometric constraints and long-range correlations) and may find direct applications for describing diffusion in complex systems such as living cells. (paper)

  18. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets.

    Science.gov (United States)

    Ishizuka, Hiroaki; Nagaosa, Naoto

    2018-02-01

    Noncoplanar magnetic orders in magnetic metals give rise to an anomalous Hall effect of unconventional origin, which, by the spin Berry phase effect, is known as the topological Hall effect. This effect is pronounced in the low-temperature limit, where the fluctuation of spins is suppressed. In contrast, we here discuss that the fluctuating but locally correlated spins close to the phase boundary give rise to another anomalous Hall effect, that with the opposite sign to the topological Hall effect. Using the Born approximation, we show that the anomalous Hall effect is attributed to the skew scattering induced by the local correlation of spins. The relation of the scalar spin chirality to the skew scattering amplitude is given, and the explicit formula for the Hall conductivity is derived using a semiclassical Boltzmann transport theory. Our theory potentially accounts for the sign change of the anomalous Hall effect observed in chiral magnets in the vicinity of the phase boundary.

  19. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores

    International Nuclear Information System (INIS)

    Bordin, José Rafael; Krott, Leandro B.; Barbosa, Marcia C.

    2014-01-01

    The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales

  20. Anomalous temperature-induced volume contraction in GeTe

    Science.gov (United States)

    Chatterji, Tapan; Kumar, C. M. N.; Wdowik, Urszula D.

    2015-02-01

    The recent surge of interest in phase-change materials GeTe, Ge2Sb2Te5 , and related compounds motivated us to revisit the structural phase transition in GeTe in more detail than was done before. The rhombohedral-to-cubic ferroelectric phase transition in GeTe has been studied using high-resolution neutron powder diffraction on a spallation neutron source. We determined the temperature dependence of the structural parameters in a wide temperature range extending from 309 to 973 K. The results of our studies clearly show an anomalous volume contraction of 0.6% at the phase transition from the rhombohedral-to-cubic phase. In order to better understand the phase transition and the associated anomalous volume decrease in GeTe, we have performed phonon calculations based on the density functional theory. Results of the present investigations are also discussed with respect to the experimental data obtained for single crystals of GeTe.

  1. The impact of local diffusion on longitudinal macrodispersivity and its major effect upon anomalous transport in highly heterogeneous aquifers

    Science.gov (United States)

    Janković, Igor; Fiori, Aldo; Dagan, Gedeon

    2009-05-01

    Flow and transport are solved for a heterogeneous medium modeled as an ensemble of spherical inclusions of uniform radius R and of conductivities K, drawn from a pdf f(K) ( Fig. 1). This can be regarded as a particular discretization scheme, allowing for accurate numerical and semi-analytical solutions, for any given univariate f(Y)(Y=lnK) and integral scale IY. The transport is quantified by the longitudinal equivalent macrodispersivity α, for uniform mean flow of velocity U and for a large (ergodic) plume of a conservative solute injected in a vertical plane ( x=0) and moving past a control plane at x≫IY. In the past we have solved transport for advection solely for highly heterogeneous media of σY2⩽8. We have found that α increases in a strong nonlinear fashion with σY2 and transport becomes anomalous for the subordinate model. This effect is explained by the large residence time of solute particles in inclusions of low K. In the present work we examine the impact of local diffusion as quantified by the Peclet number Pe=UIY/D0, where D0 is the coefficient of molecular diffusion. Transport with diffusion is solved by accurate numerical simulations for flow past spheres of low K and for high Pe=O(102-104). It was found that finite Pe reduces significantly α as compared to advection, for σY2≳3(Pe=1000) and for σY2≳1.4(Pe=100), justifying neglection of the effect of diffusion for weak to moderately heterogeneous aquifers (e.g. σY2⩽1). In contrast, diffusion impacts considerably α for large σY2 due to the removal of solute from low K inclusions. Furthermore, anomalous behavior is eliminated, though α may be still large for Pe≫1.

  2. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    Science.gov (United States)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  3. Model for Anomalous Moisture Diffusion through a Polymer-Clay Nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2003-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests showed that water transport in the neat resin is Fickian, whereas...... platelets. Constitutive equations are developed for moisture diffusion through and the elastoplastic behavior of a nanocomposite. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical...

  4. A model for anomalous moisture diffusion through a polymer-clay nanocomposite

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville; Gupta, R.K.

    2002-01-01

    Experimental data are reported on moisture diffusion and the elastoplastic response in uniaxial tensile tests of an intercalated nanocomposite with vinyl ester resin matrix and montmorillonite clay filler at room temperature. Observations in diffusion tests show that the moisture transport...... diffusion through a nanocomposite and for its elastoplastic behavior. Adjustable parameters in these relations are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation....

  5. Diffuse Transcranial Electrical Stimulation (DTES)-induced ...

    African Journals Online (AJOL)

    Status epilepticus (SE) was induced in male and female Wistar rats by passing low direct current across the brain via steel electrodes clipped to their ear lobes, and the effects of some anti-convulsants on these animals were studied in a motility counter chamber. Sodium valproate was found to significantly attenuate diffuse ...

  6. Strain induced anomalous red shift in mesoscopic iron oxide ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nano magnetic oxides are promising candidates for high density magnetic storage and other appli- cations. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural.

  7. Strain induced anomalous red shift in mesoscopic iron oxide ...

    Indian Academy of Sciences (India)

    Wintec

    iron oxide particles are synthesized employing a novel technique and using starch/water/ethylene glycol as com- plexing agents. Their structural, magnetic and optical properties are evaluated. Emphasis is laid in studying the shape induced optical properties of gamma iron oxide nanoparticles. Thermogravimetric (TG) and ...

  8. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux

    Science.gov (United States)

    Liu, Lin; Zheng, Liancun; Liu, Fawang; Zhang, Xinxin

    2016-09-01

    An improved Cattaneo-Christov flux model is proposed which can be used to capture the effects of the time and spatial relaxations, the time and spatial inhomogeneous diffusion and the spatial transition probability of cell transport in a highly non-homogeneous medium. Solutions are obtained by numerical discretization method where the time and spatial fractional derivative are discretized by the L1-approximation and shifted Grünwald definition, respectively. The solvability, stability and convergence of the numerical method for the special case of the Cattaneo-Christov equation are proved. Results indicate that the fractional convection diffusion-wave equation is an evolution equation which displays the coexisting characteristics of parabolicity and hyperbolicity. In other words, for α in (0, 1), the cells transport occupies the characteristics of coupling convection diffusion and wave spreading. Moreover, the effects of pertinent time parameter, time and spatial fractional derivative parameters, relaxation parameter, weight coefficient and the convection velocity on the anomalous transport of cells are shown graphically and analyzed in detail.

  9. Large Amplitude Electrostatic Waves and Anomalous Resistivity Near the Electron Diffusion Region

    Science.gov (United States)

    Webster, J.; Burch, J. L.; Reiff, P. H.; Genestreti, K.; Dorelli, J.; Rager, A. C.; Daou, A.; Sazykin, S. Y.; Marshall, A.; Graham, D. B.; Chen, L. J.; Wang, S.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission explores the electron-scale physics of magnetic reconnection. During the asymmetric reconnection process at the dayside magnetopause, MMS has repeatedly observed electrostatic waves with amplitudes significantly larger than those predicted by particle-in-cell (PIC) simulations. We fit Maxwellian distributions to each spacecraft's measured particle data and employ an established model (Waves in Homogenous Anisotropic Magnetized Plasma, or "WHAMP") in an effort to study possible temporal evolutions of the predicted dispersion relations for several short durations of time. A comparison between the dispersion relation and the recorded waves is provided, along with a polarization analysis. We utilize both standard resolution (30 ms) electron moments data and newly available 7.5 ms electron moments data. An Ohm's Law analysis is also conducted to check for possible evidence of significant anomalous resistivity simultaneous with the large amplitude electrostatic waves.

  10. Anomalous diffusion in body-centred and face-centred cubic metals

    International Nuclear Information System (INIS)

    Zanghi, J.-P.

    1975-10-01

    The initial rates of contraction due to self-irradiation damage at 4.2K in three PuSc alloys (5, 12, 18 at % Sc) stabilized in f.c.c. delta-phase were measured. The high negative value of the formation volume of a Frenkel pair which is deduced by extrapolating for pure Pu, can only be explained by assuming that the interstitial Pu may partly recover its distortion energy by creating bonds with its neighbours, by a localized enhancement of the d.f. hybridization and especially by provoking the formation of bonds between its very neighbours. It is shown that about twenty atoms around the interstitial Pu are affected by these bonds. The self-irradiation at 4.2K of a b.c.c. UPuMo alloy was also studied. The activation volume for self-diffusion of Pu in b.c.c. PuZr alloys (10 and 40 at % Zr) was determined. So the validity of Nachtrieb's melting-diffusion correlation could be checked. Indeed, in the Pu 40 at % Zr alloy, which has a pressure temperature diagram the liquidus of which has a positive slope, a positive activation volume was found, whereas in pure epsilon Pu which as a negative slope, the activation volume is negative. A self-diffusion mechanism in PuZr alloys is proposed. A study of the diffusion of Am in these alloys showed that Am and Pu likely diffuse by the same mechanism [fr

  11. General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2017-01-01

    Full Text Available In this paper we address the general fractional calculus of Liouville-Weyl and Liouville-Caputo general fractional derivative types with non-singular power-law kernel for the first time. The Fourier transforms and the anomalous diffusions are discussed in detail. The formulations are adopted to describe complex phenomena of the heat transfer problems.

  12. Modelling of cation displacements in SrTiO.sub.3./sub. by means of multi-energy anomalous X-ray diffuse scattering

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří

    2016-01-01

    Roč. 49, Jun (2016), 1016-1020 ISSN 1600-5767 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : X-ray diffuse scattering * atomic displacements * anomalous X-ray scattering * SrTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.495, year: 2016

  13. Normal and anomalous diffusion of non-interacting particles in linear nanopores

    NARCIS (Netherlands)

    Zschiegner, S.; Russ, S.; Valiullin, R.; Coppens, M.O.; Dammers, A.J.; Bunde, A.; Kärger, J.

    2008-01-01

    The diffusion of gas molecules in pores is determined by the collisions between the molecules as well as by the collisions of the molecules with the pore walls. In many applications the so-called Knudsen regime is of particular interest. In this regime the collisions of the molecules with the pore

  14. Anomalous changes of diffuse CO_{2} emission and seismic activity at Teide volcano, Tenerife, Canary Islands

    Science.gov (United States)

    García-Hernández, Rubén; Melián, Gladys; D'Auria, Luca; Asensio-Ramos, María; Alonso, Mar; Padilla, Germán D.; Rodríguez, Fátima; Padrón, Eleazar; Barrancos, José; García-Merino, Marta; Amonte, Cecilia; Pérez, Aarón; Calvo, David; Hernández, Pedro A.; Pérez, Nemesio M.

    2017-04-01

    Tenerife (2034 km2) is the largest of the Canary Islands and hosts four main active volcanic edifices: three volcanic rifts and a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system, Pico Viejo and Teide, has been developed. Although there are no visible gas emanations along the volcanic rifts of Tenerife, the existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999, to determine the diffuse CO2 emission from the summit crater and to evaluate the temporal variations of CO2 efflux and their relationships with seismic-volcanic activity. Soil CO2 efflux and soil temperature have been always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method by means of a non-dispersive infrared (NDIR) LICOR-820 CO2 analyzer. Historical seismic activity in Tenerife has been characterized by low- to moderate-magnitude events (M peak of diffuse CO2 emission was tested following the Material Failure Forecast Method (FFM). To do so, a Geochemical Window Precursory Signal (GWPS) was selected between October 11 and December 13, 2016. Plotting the inverse of diffuse CO2 emission rate versus time, the interception of the linear fit of the data with the time axis indicates the theoretical moment when seismicity is most likely to occur. Surprisingly, interception of the linear fit occurred for a time window between January 6 and 9, 2017, showing an excellent correlation with the occurrence of the M 2.5 earthquake registered at Teide in January 6, 2017.

  15. Testing the association between anomalous microwave emission and PAHs in the diffuse ISM

    Science.gov (United States)

    Berkeley, Matthew R.; Chuss, David; Kogut, Al

    2018-01-01

    Testing cosmic inflation is currently a primary focus of the Cosmology community. In order to verify the theory and to determine the energy scale of inflation, it is necessary to identify the characteristic B-mode polarization signal in the CMB. This signal, predicted by inflation theory, is expected to be very faint. It is therefore important to accurately characterize and remove foreground polarization components such as thermal dust and synchrotron emission.Some of these components have already been accurately characterized, but there are others that are not so well understood. In 1996, a new galactic foreground emission component was discovered. Dubbed 'anomalous microwave emission' (AME), this new foreground has yet to be identified. Though its physical origin remains uncertain, the leading hypothesis for the origin of this foreground proposes that the emission comes from rapidly rotating small dust grains called Polycyclic Aromatic Hydrocarbons (PAHs), or 'spinning dust'. PAHs are a family of hydrocarbon molecules with characteristic bending and stretching modes that have identifiable emission spectra in the mid-infrared region. The Wide-field Infrared Survey Explorer (WISE) is a satellite that was launched in 2010 into a polar orbit, enabling it to take images of the entire sky at four different mid-infrared wavelengths. These wavelengths cover the spectral region with the aforementioned PAH emission features in the mid-infrared. WISE archival data therefore makes it possible to construct a full-sky map of PAH emission.We present full sky maps using WISE data as a preliminary result towards creating a full sky PAH map.

  16. Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    DEFF Research Database (Denmark)

    Priego, M.; Garcia, O.E.; Naulin, V.

    2005-01-01

    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive......-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise...

  17. Radiation-induced diffusion at ionic etching

    International Nuclear Information System (INIS)

    Protsenko, A.N.; Chajkovskij, Eh.F.

    1986-01-01

    Effect of radiation-induced diffusion (RID) on profiles of cesium implanted into tantalum, tungsten and molybdenum with 100 keV energy was studied. Layer-by-layer analysis was performed by means of 4 keV argon ions and 100 μA/cm 2 beam density. For the case under investigation an integral equation, which solution permitted to determine impurity true distribution, has been derived. It is shown that RID taking place on ionic etching results in broadening and shifting cesium profiles peaks into the deep of a specimen and so perverts results of the layer-by-layer analysis

  18. Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection

    International Nuclear Information System (INIS)

    Shin, H.; Kim, N.M.

    1999-01-01

    The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff between soft error rate and cell to cell isolation characteristics should be considered in optimizing the depth of trench oxide

  19. Anomalous stress diffusion, Omori's law and Continuous Time Random Walk in the 2010 Efpalion aftershock sequence (Corinth rift, Greece)

    Science.gov (United States)

    Michas, Georgios; Vallianatos, Filippos; Karakostas, Vassilios; Papadimitriou, Eleftheria; Sammonds, Peter

    2014-05-01

    result that is in accordance to earthquake triggering in global scale (Huc and Main, 2003) and aftershocks diffusion in California (Helmstetter et al., 2003). While other mechanisms may be plausible, the results indicate that anomalous stress transfer due to the occurrence of the two major events control the migration of the aftershock activity, activating different fault segments and having strong implications for the seismic hazard of the area. Acknowledgments. G. Michas wishes to acknowledge the partial financial support from the Greek State Scholarships Foundation (IKY). This work has been accomplished in the framework of the postgraduate program and co-funded through the action "Program for scholarships provision I.K.Y. through the procedure of personal evaluation for the 2011-2012 academic year" from resources of the educational program "Education and Life Learning" of the European Social Register and NSRF 2007- 2013. References Ganas, A., Chousianitis, K., Batsi, E., Kolligri, M., Agalos, A., Chouliaras, G., Makropoulos, K. (2013). The January 2010 Efpalion earthquakes (Gulf of Corinth, central Greece): Earthquake interactions and blind normal faulting. J. of Seism., 17(2), 465-484. Helmstetter, A., Ouillon, G., Sornette, D. (2003). Are aftershocks of large California earthquakes diffusing? J. of Geophys. Res. B, 108(10), 2483. Huc, M., Main, I. G. (2003). Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality. J. of Geophys. Res. B, 108(7), 2324. Karakostas, V., Karagianni, E., Paradisopoulou, P. (2012). Space-time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth gulf. Nat.Haz., 63(2), 1181-1202. Metzler, R., Klafter, J. (2000). The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339, 1-77. Michas, G., Vallianatos, F., Sammonds, P. (2013). Non-extensivity and long-range correlations in the earthquake activity at the West Corinth

  20. From localization to anomalous diffusion in the dynamics of coupled kicked rotors

    Science.gov (United States)

    Notarnicola, Simone; Iemini, Fernando; Rossini, Davide; Fazio, Rosario; Silva, Alessandro; Russomanno, Angelo

    2018-02-01

    We study the effect of many-body quantum interference on the dynamics of coupled periodically kicked systems whose classical dynamics is chaotic and shows an unbounded energy increase. We specifically focus on an N -coupled kicked rotors model: We find that the interplay of quantumness and interactions dramatically modifies the system dynamics, inducing a transition between energy saturation and unbounded energy increase. We discuss this phenomenon both numerically and analytically through a mapping onto an N -dimensional Anderson model. The thermodynamic limit N →∞ , in particular, always shows unbounded energy growth. This dynamical delocalization is genuinely quantum and very different from the classical one: Using a mean-field approximation, we see that the system self-organizes so that the energy per site increases in time as a power law with exponent smaller than 1. This wealth of phenomena is a genuine effect of quantum interference: The classical system for N ≥2 always behaves ergodically with an energy per site linearly increasing in time. Our results show that quantum mechanics can deeply alter the regularity or ergodicity properties of a many-body-driven system.

  1. Anomalous spreading of a density front from an infinite continuous source in a concentration-dependent lattice gas automaton diffusion model

    CERN Document Server

    Kuentz, M

    2003-01-01

    A two-dimensional lattice gas automaton (LGA) is used for simulating concentration-dependent diffusion in a microscopically random heterogeneous structure. The heterogeneous medium is initialized at a low density rho sub 0 and then submitted to a steep concentration gradient by continuous injection of particles at a concentration rho sub 1 >rho sub 0 from a one-dimensional source to model spreading of a density front. Whereas the nonlinear diffusion equation generally used to describe concentration-dependent diffusion processes predicts a scaling law of the type phi = xt sup - sup 1 sup / sup 2 in one dimension, the spreading process is shown to deviate from the expected t sup 1 sup / sup 2 scaling. The time exponent is found to be larger than 1/2, i.e. diffusion of the density front is enhanced with respect to standard Fickian diffusion. It is also established that the anomalous time exponent decreases as time elapses: anomalous spreading is thus not a timescaling process. We demonstrate that occurrence of a...

  2. Radiation induced diffusion as a method to protect surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  3. Extended diffusion weighted magnetic resonance imaging with two-compartment and anomalous diffusion models for differentiation of low-grade and high-grade brain tumors in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Burrowes, Delilah; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Fangusaro, Jason R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Hematology/Oncology, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pediatrics-Hematology, Oncology, and Stem Cell Transplantation, Chicago, IL (United States); Nelson, Paige C.; Rozenfeld, Michael J. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Department of Biostatistics and Epidemiology, Cincinnati, OH (United States); Wadhwani, Nitin R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pathology and Laboratory Medicine, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL (United States)

    2017-08-15

    The purpose of this study was to examine advanced diffusion-weighted magnetic resonance imaging (DW-MRI) models for differentiation of low- and high-grade tumors in the diagnosis of pediatric brain neoplasms. Sixty-two pediatric patients with various types and grades of brain tumors were evaluated in a retrospective study. Tumor type and grade were classified using the World Health Organization classification (WHO I-IV) and confirmed by pathological analysis. Patients underwent DW-MRI before treatment. Diffusion-weighted images with 16 b-values (0-3500 s/mm{sup 2}) were acquired. Averaged signal intensity decay within solid tumor regions was fitted using two-compartment and anomalous diffusion models. Intracellular and extracellular diffusion coefficients (D{sub slow} and D{sub fast}), fractional volumes (V{sub slow} and V{sub fast}), generalized diffusion coefficient (D), spatial constant (μ), heterogeneity index (β), and a diffusion index (index{sub d}iff = μ x V{sub slow}/β) were calculated. Multivariate logistic regression models with stepwise model selection algorithm and receiver operating characteristic (ROC) analyses were performed to evaluate the ability of each diffusion parameter to distinguish tumor grade. Among all parameter combinations, D and index{sub d}iff jointly provided the best predictor for tumor grades, where lower D (p = 0.03) and higher index{sub d}iff (p = 0.009) were significantly associated with higher tumor grades. In ROC analyses of differentiating low-grade (I-II) and high-grade (III-IV) tumors, index{sub d}iff provided the highest specificity of 0.97 and D provided the highest sensitivity of 0.96. Multi-parametric diffusion measurements using two-compartment and anomalous diffusion models were found to be significant discriminants of tumor grading in pediatric brain neoplasms. (orig.)

  4. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  5. Anomalous increase of diffuse CO_{2} emission from Brava (Cape Verde): evidence of volcanic unrest or increase gas release from a stationary magma body?

    Science.gov (United States)

    García-Merino, Marta; García-Hernández, Rubén; Montrond, Eurico; Dionis, Samara; Fernandes, Paulo; Silva, Sonia V.; Alfama, Vera; Cabral, Jeremías; Pereira, Jose M.; Padrón, Eleazar; Pérez, Nemesio M.

    2017-04-01

    Brava (67 km2) is the southwestern most and the smallest inhabited island of the Cape Verde archipelago. It is located 18 km west of Fogo Island and rises 976 m from the sea level. Brava has not any documented historical eruptions, but its Holocene volcanism and relatively high seismic activity clearly indicate that it is an active volcanic island. Since there have been no historic eruptions in Brava, volcanic hazard awareness among the population and the authorities is very low; therefore, its volcano monitoring program is scarce. With the aim of helping to provide a multidisciplinary monitoring program for the volcanic surveillance of the island, diffuse CO2 emission surveys have been carried out since 2010; approximately every 2 years. Soil CO2 efflux measurements are periodically performed at ˜ 275 observation sites all over the island and after taking into consideration their accessibility and the island volcano-structural characteristics. At each sampling site, soil CO2 efflux measurement was performed by means of a portable NDIR sensor according to the accumulation chamber method. To quantify the total diffuse CO2 emission from Brava volcanic system, soil CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). An increase trend of diffuse CO2 emission rate from 42 to 681 t d-1at Brava was observed; just one year prior the 2014-2015 Fogo eruption and almost three years before the anomalous seismic activity recorded on August 2016 with more than 1000 seismic events registered by the INMG on August 1st, 2016 (Bruno Faria, personal communication). Due to this anomalous seismic activity, a diffuse CO2 emission survey at Brava was performed from August 2 to 10, 2016, and the estimated degassing rate yield a value about 72 t d-1; typical background values. An additional survey was carried out from October 22 to November 6, 2016. For this last survey, the estimated diffuse CO2 emission from Brava showed the highest observed value with a

  6. Anomalous diffusion in the evolution of soccer championship scores: Real data, mean-field analysis, and an agent-based model

    Science.gov (United States)

    da Silva, Roberto; Vainstein, Mendeli H.; Gonçalves, Sebastián; Paula, Felipe S. F.

    2013-08-01

    Statistics of soccer tournament scores based on the double round robin system of several countries are studied. Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer tournaments obtained by an agent-based model which successfully describes the final scoring distribution [da Silva , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2012.10.030 184, 661 (2013)]. Such model yields random walks of scores over time with the same anomalous diffusion as observed in real data.

  7. Anomalous genotoxic responses induced in mouse lymphoma L5178Y cells by potassium bromate

    International Nuclear Information System (INIS)

    Priestley, Catherine C.; Green, Richard M.; Fellows, Michael D.; Doherty, Ann T.; Hodges, Nikolas J.; O'Donovan, Michael R.

    2010-01-01

    from the magnitude of the other genotoxic responses. It was considered unlikely that these anomalous observations were due to the inability of L5178Y cells to recognise 8-OHdG because these cells were shown to express mOGG1 and have functional cleavage activity at the adducted site. It appears that the responses of L5178Y cells to KBrO 3 are complex and differ from those induced by other oxidising agents.

  8. Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations.

    Science.gov (United States)

    Czégel, Dániel; Balogh, Sámuel G; Pollner, Péter; Palla, Gergely

    2018-01-30

    Many physical, biological or social systems are governed by history-dependent dynamics or are composed of strongly interacting units, showing an extreme diversity of microscopic behaviour. Macroscopically, however, they can be efficiently modeled by generalizing concepts of the theory of Markovian, ergodic and weakly interacting stochastic processes. In this paper, we model stochastic processes by a family of generalized Fokker-Planck equations whose stationary solutions are equivalent to the maximum entropy distributions according to generalized entropies. We show that at asymptotically large times and volumes, the scaling exponent of the anomalous diffusion process described by the generalized Fokker-Planck equation and the phase space volume scaling exponent of the generalized entropy bijectively determine each other via a simple algebraic relation. This implies that these basic measures characterizing the transient and the stationary behaviour of the processes provide the same information regarding the asymptotic regime, and consequently, the classification of the processes given by these two exponents coincide.

  9. Anomalous Induced Seismicity due to Hydraulic Fracturing. Case of study in the Montney Formation, Northeast British Columbia.

    Science.gov (United States)

    Longobardi, M.; Bustin, A. M. M.; Johansen, K.; Bustin, R. M.

    2017-12-01

    One of our goals is to investigate the variables and processes controlling the anomalous induced seismicity and its associated ground motions, to better understand the anomalous induced seismicity (AIS) due to hydraulic fracturing in Northeast British Columbia. Our other main objective is to optimize-completions and well design. Although the vast majority of earthquakes that occur in the world each year have natural causes, some of these earthquakes and a number of lesser magnitude seismic events are induced by human activities. The recorded induced seismicity resulting from the fluid injection during hydraulic fracturing is generally small in magnitude (early earthquake detectors installed in BC schools for the Earthquake Early Warning System for British Columbia. We have developed a new technique for locating hypocenters and applied it to our dataset. The technique will enable near real-time event location, aiding in both mitigating induced events and adjusting completions to optimize the stimulation. Our hypocenter program assumes to consider a S wave speed, fitting the arrival times to the hypocenter, and using an "amoebae method" multivariate. We have used this method because it is well suited to minimizing of the chi-squared function of the arrival time deviation. We show some preliminary results on the Montney dataset.

  10. Computation of shear-induced collective-diffusivity in emulsions

    Science.gov (United States)

    Malipeddi, Abhilash Reddy; Sarkar, Kausik

    2017-11-01

    The shear-induced collective-diffusivity of drops in an emulsion is calculated through simulation. A front-tracking finite difference method is used to integrate the Navier-Stokes equations. When a cloud of drops is subjected to shear flow, after a certain time, the width of the cloud increases with the 1/3 power of time. This scaling of drop-cloud-width with time is characteristic of (sub-)diffusion that arises from irreversible two-drop interactions. The collective diffusivity is calculated from this relationship. A feature of the procedure adopted here is the modest computational requirement, wherein, a few drops ( 70) in shear for short time ( 70 strain) is found to be sufficient to get a good estimate. As far as we know, collective-diffusivity has not been calculated for drops through simulation till now. The computed values match with experimental measurements reported in the literature. The diffusivity in emulsions is calculated for a range of Capillary (Ca) and Reynolds (Re) numbers. It is found to be a unimodal function of Ca , similar to self-diffusivity. A sub-linear increase of the diffusivity with Re is seen for Re limited to a viscosity matched case.

  11. Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts. Final Technical Report

    International Nuclear Information System (INIS)

    Pigarov, Alexander

    2012-01-01

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  12. Thermo-diffusive Darcy flow induced by a concentrated source

    Directory of Open Access Journals (Sweden)

    R. Ganapathy

    2016-12-01

    Full Text Available An analytic study is made of Soret-induced double diffusive Darcy flow produced in an unbounded homogeneous porous medium of uniform porosity and low permeability when a concentrated source embedded instantaneously in the medium starts liberating heat and at the same time a chemical substance too at a constant rate in a regime where the temperature gradient produces mass flux as well. A perturbation analysis in the limit of small Rayleigh number is employed to obtain analytical solution for the determination of the transient and steady-state development of the flow field and heat and mass transfer. Due to double diffusion, a bifurcation of the flow field is noticed when the buoyancy mechanisms are opposed and due to the Soret-induced cross-diffusion, the region in which the thermal effect of the source is felt, gets minimized with a simultaneous reduction in the rate of momentum and heat transfer.

  13. Water diffusion in q-space imaging as a probe of cell local viscosity and anomalous diffusion in grey and white matter

    OpenAIRE

    Nicolas, Renaud; Aubry, Florent; Pariente, Jérémie; Franceries, Xavier; Chauveau, Nicolas; Saint-Aubert, Laure; Chollet, François; Breil, Stephane; Celsis, Pierre

    2015-01-01

    Extraction of accurate quantitative parameters to characterize water diffusion in complex porous media like brain tissue in neuroimaging is a challenging inverse problem, that depends on medium\\'s structural and geometrical factors [1,3]. If the role of membranes is generally invoked, probe collisions with the insoluble cytoskeleton network and water hydrodynamic interactions with dissolved macromolecules and cytoskeleton occur as well [2]. The latter two interactions have been shown to de...

  14. Micromechanics of diffusion-induced damage evolution in reinforced polymers

    DEFF Research Database (Denmark)

    Abhilash, A.S.; Joshi, Shailendra P.; Mukherjee, Abhijit

    2011-01-01

    –matrix interfacial debonding under moisture ingress. The heterogeneity of fiber distribution (clustering) is characterized by the coefficient of variation Cv of the center-to-center distances between interacting fibers, determined by identifying a cut-off radius around a typical fiber. The initial moisture diffusion......-induced damage provides synergistic conditions for the rapid evolution of debonding under subsequent mechanical loading. The results indicate that microstructural heterogeneity strongly affects the moisture diffusion characteristics that in turn hurt the overall load carrying capacity of a composite due...

  15. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  16. Investigation of stickiness influence in the anomalous transport and diffusion for a non-dissipative Fermi-Ulam model

    Science.gov (United States)

    Livorati, André L. P.; Palmero, Matheus S.; Díaz-I, Gabriel; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-02-01

    We study the dynamics of an ensemble of non interacting particles constrained by two infinitely heavy walls, where one of them is moving periodically in time, while the other is fixed. The system presents mixed dynamics, where the accessible region for the particle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analysis for the root mean square velocity, considering high and low velocity ensembles, leads the dynamics to the same steady state plateau for long times. A transport investigation of the dynamics via escape basins reveals that depending of the initial velocity ensemble, the decay rates of the survival probability present different shapes and bumps, in a mix of exponential, power law and stretched exponential decays. After an analysis of step-size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for the bumps and different shapes of the survival probability.

  17. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    Science.gov (United States)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  18. Anomalous K-Pg-aged seafloor attributed to impact-induced mid-ocean ridge magmatism.

    Science.gov (United States)

    Byrnes, Joseph S; Karlstrom, Leif

    2018-02-01

    Eruptive phenomena at all scales, from hydrothermal geysers to flood basalts, can potentially be initiated or modulated by external mechanical perturbations. We present evidence for the triggering of magmatism on a global scale by the Chicxulub meteorite impact at the Cretaceous-Paleogene (K-Pg) boundary, recorded by transiently increased crustal production at mid-ocean ridges. Concentrated positive free-air gravity and coincident seafloor topographic anomalies, associated with seafloor created at fast-spreading rates, suggest volumes of excess magmatism in the range of ~10 5 to 10 6 km 3 . Widespread mobilization of existing mantle melt by post-impact seismic radiation can explain the volume and distribution of the anomalous crust. This massive but short-lived pulse of marine magmatism should be considered alongside the Chicxulub impact and Deccan Traps as a contributor to geochemical anomalies and environmental changes at K-Pg time.

  19. Low temperature diffusion of hydrogenic species in oxide crystals: Radiation induced diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. [Oak Ridge National Lab., TN (United States); Gonzalez, R. [Universidad `Carlos III` de Madrid (Spain). Dept. de Ingenieria

    1993-10-01

    Normally stable configurations of substitutional protons or deuterons in oxide crystal become highly unstable during ionizing radiation at room temperature, resulting in the displacements of these species. The cross section for radiation-induced-displacements of protons is exceedingly large and is a strong function of temperature. The displacement cross section of protons from cation sites is twice that of deuterons. Diffusion of these species can be induced at temperatures not otherwise possible by thermal means. For example, using electron irradiation near room temperature the O-H bond is readily broken and the hydrogenic species can be channeled along the c-axis in TiO{sub 2} by an applied electric field. Radiation induced displacements of protons from anion sites (hydride ions) at room temperature are also discussed.

  20. Pump, sodium, inducer, intermediate size (ISIP) (impeller/inducer/diffuser retrofit)

    International Nuclear Information System (INIS)

    Paradise, D.R.

    1978-01-01

    This specification defines the requirements for the Intermediate-Size Inducer Pump (ISIP), which is to be made by replacing the impeller of the FFTF Prototype Pump with a new inducer, impeller, diffuser, seal, and necessary adapter hardware. Subsequent testing requirements of the complete pump assembly are included

  1. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  2. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  3. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  4. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    Science.gov (United States)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  5. Anomalous dose-response characteristics induced by caffeine in ultraviolet-irradiated V79-79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Schroy, C.B.; Todd, P.

    1979-01-01

    Cultured Chinese hamster cell line V79-79 exhibited an increase in survival with increasing UV fluence after a sharp decrease when exposed to 2.5 mM caffeine for 44 h after far-UV irradiation resulting in an anomalous maximum in the survival curve. No survival maximum was evident when either 0 or 1 mM caffeine is administered under the same conditions. The UV survival curve for 2.5 mM caffeine crossed the corresponding 1 mM curve and apparently became asymptotic to the 0 mM curve as UV fluence was increased. Chinese hamster cell lines V79-753B (related to V79-79 by derivation from the same parental line) and M3-1F3 (unrelated) exhibited only potentiation of post-UV lethality by the same concentration of caffeine and had no caffeine-induced anomalies in their survival curves. Xanthine, used alone or in combination with caffeine, only potentiated a slight amount of lethality and appeared not to be a major causative factor of the anomaly. (author)

  6. Anomalous soft photon production from the induced currents in Dirac sea

    Science.gov (United States)

    Kharzeev, Dmitri E.; Loshaj, Frashër

    2014-04-01

    The propagation of a high-energy quark disturbs the confining QCD vacuum inducing the currents in Dirac sea. Since quarks possess electric charge, these induced vacuum quark currents act as a source of soft photon radiation. This can lead to the enhancement of the soft photon production above the expectations based on the charged hadron yields and the Low theorem. We illustrate the phenomenon by using the exactly soluble 1+1 dimensional massless Abelian gauge model that shares with QCD all of the ingredients involved in this mechanism: confinement, chiral symmetry breaking, axial anomaly, and the periodic θ vacuum. We show that the propagating quark throughout the process of hadronization induces in the vacuum charged transition currents that lead to a strong resonant enhancement of the soft photon yield; the Low theorem, however, remains accurate in the limit of very soft momenta. We then construct on the basis of our result a simple phenomenological model and apply it to the soft photon production in the fragmentation of jets produced in Z0 decays. We find a qualitative agreement with the recent result from the DELPHI Collaboration.

  7. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  8. Illusions and delusions: relating experimentally-induced false memories to anomalous experiences and ideas

    Directory of Open Access Journals (Sweden)

    Philip R Corlett

    2009-11-01

    Full Text Available The salience hypothesis of psychosis rests on a simple but profound observation that subtle alterations in the way that we perceive and experience stimuli have important consequences for how important these stimuli become for us, how much they draw our attention, how they embed themselves in our memory and, ultimately, how they shape our beliefs. We put forward the idea that a classical memory illusion – the Deese-Roediger-McDermott (DRM effect – offers a useful way of exploring processes related to such aberrant belief formation. The illusion occurs when, as a consequence of its relationship to previous stimuli, a stimulus is asserted to be remembered even when has not been previously presented. Such illusory familiarity is thought to be generated by the surprising fluency with which the stimulus is processed. In this respect, the illusion relates directly to the salience hypothesis and may share common cognitive underpinnings with aberrations of perception and attribution that are found in psychosis. In this paper, we explore the theoretical importance of this experimentally-induced illusion in relation to the salience model of psychosis. We present data showing that, in healthy volunteers, the illusion relates directly to self reported anomalies of experience and magical thinking. We discuss this finding in terms of the salience hypothesis and of a broader Bayesian framework of perception and cognition which emphasizes the salience both of predictable and unpredictable experiences..

  9. New macroscopic theory of anamalous diffusion induced by the dissipative trapped-ion instability

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1975-03-01

    For an axisymmetric toroidal plasma of the TOKAMAK type a new set of dissipative trapped-fluid equations is established. In addition to E vector x B vector drifts and collisions of the trapped particles, these equations take full account of the effect of Esub(//) (of the trapped ion modes) on free and trapped particles, and of the effect of grad delta 0 (delta 0 = equilibrium fraction of trapped particles). From the new equations the linear-mode properties of the dissipative trapped-ion instability and the anomalous diffusion flux of the trapped particles are derived. (orig.) [de

  10. Scaling theory for anomalous semiclassical quantum transport

    Science.gov (United States)

    Sena-Junior, M. I.; Macêdo, A. M. S.

    2016-01-01

    Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample's average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry-Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry-Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov's universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels.

  11. Effects of arsenic deactivation on arsenic-implant induced enhanced diffusion in silicon

    International Nuclear Information System (INIS)

    Dokumaci, O.; Law, M.E.; Krishnamoorthy, V.; Jones, K.S.

    1996-01-01

    The enhanced diffusion of boron due to high dose arsenic implantation into silicon is studied as a function of arsenic dose. The behavior of both the type-V and end-of-range loops is investigated by transmission electron microscopy (TEM). The role of arsenic deactivation induced interstitials and type-V loops on enhanced diffusion is assessed. Reduction of the boron diffusivity is observed with increasing arsenic dose at three different temperatures. The possible explanations for this reduction are discussed

  12. Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions

    NARCIS (Netherlands)

    Breedveld, L.V.A.; van den Ende, Henricus T.M.; Bosscher, M.; Bosscher, M.; Jongschaap, R.J.J.; Mellema, J.

    2002-01-01

    The full diffusion tensor of shear-induced self-diffusion has been measured experimentally for the first time. In addition to the well-known components in the velocity gradient, Dyy, and vorticity direction, Dzz, the coefficients Dxx and Dxy have been determined for concentrated suspensions of

  13. Free energy in plasmas under wave-induced diffusion

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1993-05-01

    When waves propagate through a bounded plasma, the wave may be amplified or damped at the expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma diffusion in velocity and configuration space. In the absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain structures are mixed and fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the consideration of specific examples, certain strategies for maximizing energy extraction are identified

  14. Strong field line shapes and photon statistics from a single molecule under anomalous noise.

    Science.gov (United States)

    Sanda, Frantisek

    2009-10-01

    We revisit the line-shape theory of a single molecule with anomalous stochastic spectral diffusion. Waiting time profiles for bath induced spectral jumps in the ground and excited states become different when a molecule, probed by continuous-wave laser field, reaches the steady state. This effect is studied for the stationary dichotomic continuous-time-random-walk spectral diffusion of a single two-level chromophore with power-law distributions of waiting times. Correlated waiting time distributions, line shapes, two-point fluorescence correlation function, and Mandel Q parameter are calculated for arbitrary magnitude of laser field. We extended previous weak field results and examined the breakdown of the central limit theorem in photon statistics, indicated by asymptotic power-law growth of Mandel Q parameter. Frequency profile of the Mandel Q parameter identifies the peaks of spectrum, which are related to anomalous spectral diffusion dynamics.

  15. Expanding wave solutions of the Einstein equations that induce an anomalous acceleration into the Standard Model of Cosmology.

    Science.gov (United States)

    Temple, Blake; Smoller, Joel

    2009-08-25

    We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.

  16. A magnetic gradient induced force in NMR restricted diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S., E-mail: w.price@uws.edu.au [Nanoscale Organisation and Dynamics Group, University of Western Sydney, Penrith, NSW 2751 (Australia)

    2014-03-28

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  17. A magnetic gradient induced force in NMR restricted diffusion experiments

    Science.gov (United States)

    Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.

    2014-03-01

    We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested.

  18. Observed anomalous changes on diffuse CO2 emission at the summit crater of Teide volcano (Tenerife, Canary Islands, Spain): a geochemical evidence of volcanic unrest?

    Science.gov (United States)

    Perez, N. M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Alonso Cótchico, M.; Hernández, P. A.; Rodríguez, F.; D'Auria, L.; García-Merino, M.; Padilla, G. D.; Burns, F.; Amonte, C.; García, E.; García-Hernández, R.; Barrancos, J.; Morales-Ocaña, C.; Calvo, D.; Vela, V.; Pérez, A.

    2017-12-01

    Tenerife (2034 km2) is the largest of the Canary Islands and hosts a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system Pico Viejo and Teide, has been developed. Although Teide volcano shows weak fumarolic system, volcanic gas emissions observed in the summit area are mainly controlled by high rates of diffuse CO2 degassing. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999 according to the accumulation chamber method to monitor changes of volcanic activity. Soil CO2 efflux and soil temperature have been measured in sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Historical seismic activity in Tenerife has been mainly characterized by low- to moderate-magnitude events (M volcano. Since November 2016 more than 100 small magnitude earthquakes, with typical features of the microseismicity of hydrothermal systems, at depths usually ranging between 5 and 15 km located beneath Teide volcano have been recorded. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest events recorded since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered preceding the occurrence of the 2.5 seismic event, from 21.3±2.0 to 101.7±20.7 t d-1. In Febraury 2017, the diffuse CO2 emission rate showed a maximum value (176±35 t/d) and has remained at relatively high values in the range 67-176 t/d. The observed increase on the diffuse CO2 emission, likely due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife, might be a geochemical evidence of a future volcanic unrest at Tenerife Island.

  19. Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pranab; Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Halder, Nripendra N. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Kundu, Souvik [School of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331–5501 (United States); Shripathi, T.; Gupta, M. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India)

    2014-05-15

    The diffusion behavior of arsenic (As) and gallium (Ga) atoms from semi-insulating GaAs (SI-GaAs) into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 10{sup 18} cm{sup −3} and 2.8 × 10{sup 19} cm{sup −3} respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 10{sup 16} cm{sup −3}. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (As{sub Zn}–2V{sub Zn}), by substituting Zn atoms (As{sub Zn}) and thereby creating two zinc vacancies (V{sub Zn}). Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, Ga{sub Zn}. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

  20. Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation

    Directory of Open Access Journals (Sweden)

    Pranab Biswas

    2014-05-01

    Full Text Available The diffusion behavior of arsenic (As and gallium (Ga atoms from semi-insulating GaAs (SI-GaAs into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 1018 cm−3 and 2.8 × 1019 cm−3 respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 1016 cm−3. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (AsZn–2VZn, by substituting Zn atoms (AsZn and thereby creating two zinc vacancies (VZn. Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, GaZn. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

  1. Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves

    International Nuclear Information System (INIS)

    Krlin, L.

    1992-10-01

    The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)

  2. Laser-induced diffusion decomposition in Fe–V thin-film alloys

    Energy Technology Data Exchange (ETDEWEB)

    Polushkin, N.I., E-mail: nipolushkin@fc.ul.pt [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Duarte, A.C.; Conde, O. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Alves, E. [Associação Euratom/IST e Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS (Portugal); García-García, A.; Kakazei, G.N.; Ventura, J.O.; Araujo, J.P. [Departamento de Física, Universidade do Porto e IFIMUP, 4169-007 Porto (Portugal); Oliveira, V. [Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, 1959-007 Lisboa (Portugal); Vilar, R. [Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Instituto de Ciência e Engenharia de Materiais e Superfícies, 1049-001 Lisboa (Portugal)

    2015-05-01

    Highlights: • Irradiation of an Fe–V alloy by femtosecond laser triggers diffusion decomposition. • The decomposition occurs with strongly enhanced (∼4 orders) atomic diffusivity. • This anomaly is associated with the metallic glassy state achievable under laser quenching. • The ultrafast diffusion decomposition is responsible for laser-induced ferromagnetism. - Abstract: We investigate the origin of ferromagnetism induced in thin-film (∼20 nm) Fe–V alloys by their irradiation with subpicosecond laser pulses. We find with Rutherford backscattering that the magnetic modifications follow a thermally stimulated process of diffusion decomposition, with formation of a-few-nm-thick Fe enriched layer inside the film. Surprisingly, similar transformations in the samples were also found after their long-time (∼10{sup 3} s) thermal annealing. However, the laser action provides much higher diffusion coefficients (∼4 orders of magnitude) than those obtained under standard heat treatments. We get a hint that this ultrafast diffusion decomposition occurs in the metallic glassy state achievable in laser-quenched samples. This vitrification is thought to be a prerequisite for the laser-induced onset of ferromagnetism that we observe.

  3. Diffusive Imaging of Hydraulically Induced and Natural Fracture Systems

    Science.gov (United States)

    Eftekhari, B.; Marder, M. P.; Patzek, T. W.

    2017-12-01

    Hydraulic fracturing of tight shales continues to provide the US with a major source of energy. Efficiency of gas recovery in shales depends upon the geometry of the resulting network of fractures, the details of which are not yet fully understood. The present research explores how much of the underlying geometry can be deduced from the time dependence of the flow of gas out of the reservoir. We consider both ideal and real gas. In the case of real gas, we calculate production rate for parallel planar hydrofractures embedded in an infinite reservoir. Transport is governed by a nonlinear diffusion equation, which we solve exactly with a scaling curve. The scaling curve production rate declines initially as 1 over square root time, then as an exponential, and finally as 1 over square root of time again at late time. We show that for a given hydraulically fractured well, the onsets of transition between different decline regimes provides a direct estimate of a characteristic spacing of the underlying fracture network. We show that the scaling solution accurately fits the production history of more than 15,000 wells in the Barnett Shale. Almost all of the wells either have not yet transitioned into the late time decline or have been refractured while in exponential decline. However, there are 36 wells which show the late time transition. These allow us to calculate the characteristic spacing, which turns out to have a mode at about 10 m, a minimum at 1.6 m and a maximum at 13.3 m. We estimate that over 30 years these wells will produce on average about 45% more gas because of diffusion from the infinite external reservoir than they would if this contribution is neglected. Finally, we compute the rate at which ideal gas diffuses within an infinite region of rock into a specific absorbing fractal fracture network, which we model using geological constraints and percolation theory. Our solution employs a Brownian walk and the first passage kinetic Monte Carlo algorithm

  4. The water-induced linear reduction gas diffusivity model extended to three pore regions

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; De Jonge, Lis Wollesen; Kawamoto, Ken

    2015-01-01

    An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development. Charact......An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development....... Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...... gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip...

  5. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system.

    Science.gov (United States)

    Mahara, Hitoshi; Okada, Koichi; Nomura, Atsushi; Miike, Hidetoshi; Sakurai, Tatsunari

    2009-07-01

    We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales.

  6. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  7. Laser-induced desorption determinations of surface diffusion on Rh(111)

    International Nuclear Information System (INIS)

    Seebauer, E.G.; Schmidt, L.D.

    1987-01-01

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab

  8. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  9. Anomalous transport from holography. Pt. II

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan; Sharon, Amir [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Lublinsky, Michael [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); University of Connecticut, Physics Department, Storrs, CT (United States)

    2017-03-15

    This is a second study of chiral anomaly-induced transport within a holographic model consisting of anomalous U(1){sub V} x U(1){sub A} Maxwell theory in Schwarzschild-AdS{sub 5} spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in the presence of a static spatially inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative B{sup 2}-correction to the diffusion constant. We also find modifications to the chiral magnetic wave nonlinear in B. In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (b) weak electric field limit but resuming all orders in the derivative expansion. A non-vanishing nonlinear axial current (CSE) is found in the first case. The dependence on magnetic field and frequency of linear transport coefficient functions is explored in the second. (orig.)

  10. Anomalous transport from holography. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269-3046 (United States); Sharon, Amir [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel)

    2016-11-17

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1){sub V}×U(1){sub A} Maxwell theory in Schwarzschild-AdS{sub 5}. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  11. Effects of translational symmetry breaking induced by the boundaries in a driven diffusive system

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Leung, Kwan-tai

    1991-01-01

    We study the effects of the boundary conditions in a driven diffusive lattice-gas model which is known to display kinetic phase transitions. We find, in the case of attractive interaction, that a boundary-condition-induced symmetry breaking of the translational invariance, along the direction...

  12. Persistent wind-induced enhancement of diffusive CO2 transport in a mountain forest snowpack

    Science.gov (United States)

    D. R. Bowling; W. J. Massman

    2011-01-01

    Diffusion dominates the transport of trace gases between soil and the atmosphere. Pressure gradients induced by atmospheric flow and wind interacting with topographical features cause a small but persistent bulk flow of air within soil or snow. This forcing, called pressure pumping or wind pumping, leads to a poorly quantified enhancement of gas transport beyond the...

  13. Productivity effects of technology diffusion induced by an energy tax

    International Nuclear Information System (INIS)

    Walz, R.

    1999-01-01

    In the political discussion, the economy-wide effects of an energy tax have gained considerable attention. So far, macroeconomic analyses have focused on either (positive or negative) costs triggered by an energy tax, or on the efficiency gains resulting from new energy taxes combined with lower distortionary taxes. By contrast, the innovative effects of climate protection measures have not yet been thoroughly analysed. This paper explores the productivity effects of a 50 per cent energy tax in the German industry sector employing a technology-based, three-step bottom-up approach. In the first step, the extensive IKARUS database is used to identify the technological adjustments arising from an energy tax. In the second step, the technologies are classified into different clusters. In the third step, the productivity effects generated by the technological adjustments are examined. The results imply that an energy tax induces mainly sector-specific and process-integrated technologies rather than add-on and cross-cutting technologies. Further, it is shown that the energy-saving technologies tend to increase productivity. This is particularly the case for process-integrated, sector specific technologies. (author)

  14. The effect of diffusion induced lattice stress on the open-circuit voltage in silicon solar cells

    Science.gov (United States)

    Weizer, V. G.; Godlewski, M. P.

    1984-01-01

    It is demonstrated that diffusion induced stresses in low resistivity silicon solar cells can significantly reduce both the open-circuit voltage and collection efficiency. The degradation mechanism involves stress induced changes in both the minority carrier mobility and the diffusion length. Thermal recovery characteristics indicate that the stresses are relieved at higher temperatures by divacancy flow (silicon self diffusion). The level of residual stress in as-fabricated cells was found to be negligible in the cells tested.

  15. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system

    Science.gov (United States)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2018-01-01

    In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.

  16. Anomalous effects of dense matter under rotation

    Science.gov (United States)

    Huang, Xu-Guang; Nishimura, Kentaro; Yamamoto, Naoki

    2018-02-01

    We study the anomaly induced effects of dense baryonic matter under rotation. We derive the anomalous terms that account for the chiral vortical effect in the low-energy effective theory for light Nambu-Goldstone modes. The anomalous terms lead to new physical consequences, such as the anomalous Hall energy current and spontaneous generation of angular momentum in a magnetic field (or spontaneous magnetization by rotation). In particular, we show that, due to the presence of such anomalous terms, the ground state of the quantum chromodynamics (QCD) under sufficiently fast rotation becomes the "chiral soliton lattice" of neutral pions that has lower energy than the QCD vacuum and nuclear matter. We briefly discuss the possible realization of the chiral soliton lattice induced by a fast rotation in noncentral heavy ion collisions.

  17. Diffusion voltage in polymer light emitting diodes measured with electric field induced second harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.K.; Rafaelsen, J.; Pedersen, T.G.; Pedersen, K. [Department of Physics and Nanotechnology, Aalborg University, Pontoppidanstraede 103, 9220 Aalborg East (Denmark)

    2005-12-01

    We apply electric field induced second harmonic (EFISH) to polymer light emitting diodes (PLEDs) and demonstrate the ability to determine the diffusion voltage in PLED devices. The EFISH signal is proportional to the square of the effective field, which is the sum of the diffusion voltage and the applied voltage. By minimizing the EFISH-signal as a function of the applied voltage, the diffusion voltage is determined by measuring the applied voltage that cancels out the diffusion voltage. The PLEDs are fabricated with indium tin oxide (ITO) as the hole injecting contact and two different electron injecting contacts, namely aluminum and calcium. The diffusion voltage originates from the rearranged charges caused by the difference in Fermi levels in the materials in the PLEDs. Different contacts will thus cause different diffusion voltages. We demonstrate here that the EFISH signal is proportional to the square of the effective field in both reverse and forward bias, and discuss the dependence on contact materials. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    Science.gov (United States)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2013-06-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and

  19. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Tsien, Christina I; Cao, Yue

    2013-01-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test–retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability

  20. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  1. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  2. Anomalous photo-induced response by double-pulse excitation in the organic conductor (EDO-TTF)2PF6

    Science.gov (United States)

    Onda, Ken; Ogihara, Sho; Ishikawa, Tadahiko; Okimoto, Yoichi; Shao, Xiangfeng; Nakano, Yoshiaki; Yamochi, Hideki; Saito, Gunzi; Koshihara, Shin-ya

    2009-02-01

    We measured ultrafast reflectivity changes induced by double-pulse excitation in the organic conductor (EDO-TTF)2PF6. Using double-pulse excitation with a relatively high intensity, the sign of reflectivity change became reversed at around 0.8 ps and subsequently the reflectivity change reverted to that of the normal photo-induced state after about 1 ps. Using a optically phase-locked double-pulse with low intensity, we found that the temporal profile excited by an in-phase double-pulse differs from that by an out-of-phase double-pulse despite the time difference between the double-pulses being only 1.31 fs. This was true even when there is almost no overlap between each pulse in the double-pulse. These results indicate that the photo-response in this material to double-pulse excitation differs greatly from the linear sum of the responses to single pulses.

  3. Creep and stress relaxation induced by interface diffusion in metal matrix composites

    Science.gov (United States)

    Li, Yinfeng; Li, Zhonghua

    2013-03-01

    An analytical solution is developed to predict the creep rate induced by interface diffusion in unidirectional fiber-reinforced and particle reinforced composites. The driving force for the interface diffusion is the normal stress acting on the interface, which is obtained from rigorous Eshelby inclusion theory. The closed-form solution is an explicit function of the applied stress, volume fraction and radius of the fiber, as well as the modulus ratio between the fiber and the matrix. It is interesting that the solution is formally similar to that of Coble creep in polycrystalline materials. For the application of the present solution in the realistic composites, the scale effect is taken into account by finite element analysis based on a unit cell. Based on the solution, a closed-form solution is also given as a description of stress relaxation induced by interfacial diffusion under constant strain. In addition, the analytical solution for the interface stress presented in this study gives some insight into the relationship between the interface diffusion and interface slip. This work was supported by the financial support from the Nature Science Foundation of China (No. 10932007), the National Basic Research Program of China (No. 2010CB631003/5), and the Doctoral Program of Higher Education of China (No. 20100073110006).

  4. Mixed Herbal Medicine Induced Diffuse Infiltrative Lung Disease: The HRCT and Histopathologic Findings

    International Nuclear Information System (INIS)

    Kim, Tae Gyu; Shin, Eun A; Kim, Joung Sook

    2010-01-01

    The purpose of this study was to evaluate the high-resolution CT (HRCT) and pathologic findings of mixed herbal medicine-induced diffuse interstitial lung disease. Eight patients (6 women and 2 men, age range: 31 to 81 years, mean age: 51.4 years) who presented with cough or dyspnea after taking mixed herbal medicine were included in this study. All the patients underwent plain chest radiography and HRCT. We obtained pathologic specimens from 7 patients via fluoroscopy guided large bore cutting needle biopsy and transbronchial lung biopsy. All the patients were treated with steroid therapy. The most common HRCT finding was bilateral diffuse ground glass opacity (n=7), followed by peribronchial consolidation (n=5) and inter- or intralobular septal thickening (n=2). For the disease distribution, the lower lung zone was dominantly involved. The pathologic results of 7 patients were nonspecific interstitial pneumonia (n=3), bronchiolitis obliterans organizing pneumonia (n=2), hypersensitivity pneumonitis (n=1) and eosinophilic pneumonia (n=1). Irrespective of the pathologic results, all 8 patients improved clinically and radiologically after steroid treatment. The HRCT findings of mixed herbal medicine-induced diffuse infiltrative lung disease were mainly bilateral diffuse ground glass opacity, peribronchial consolidation and dominant involvement of the lower lung zone. Those pathologic findings were nonspecific and the differential diagnosis could include interstitial pneumonia, bronchiolitis obliterans organizing pneumonia, hypersensitivity pneumonitis and eosinophilic pneumonia

  5. Mixed Herbal Medicine Induced Diffuse Infiltrative Lung Disease: The HRCT and Histopathologic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Gyu; Shin, Eun A [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Kim, Joung Sook [Mokdong Hospital, Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2010-12-15

    The purpose of this study was to evaluate the high-resolution CT (HRCT) and pathologic findings of mixed herbal medicine-induced diffuse interstitial lung disease. Eight patients (6 women and 2 men, age range: 31 to 81 years, mean age: 51.4 years) who presented with cough or dyspnea after taking mixed herbal medicine were included in this study. All the patients underwent plain chest radiography and HRCT. We obtained pathologic specimens from 7 patients via fluoroscopy guided large bore cutting needle biopsy and transbronchial lung biopsy. All the patients were treated with steroid therapy. The most common HRCT finding was bilateral diffuse ground glass opacity (n=7), followed by peribronchial consolidation (n=5) and inter- or intralobular septal thickening (n=2). For the disease distribution, the lower lung zone was dominantly involved. The pathologic results of 7 patients were nonspecific interstitial pneumonia (n=3), bronchiolitis obliterans organizing pneumonia (n=2), hypersensitivity pneumonitis (n=1) and eosinophilic pneumonia (n=1). Irrespective of the pathologic results, all 8 patients improved clinically and radiologically after steroid treatment. The HRCT findings of mixed herbal medicine-induced diffuse infiltrative lung disease were mainly bilateral diffuse ground glass opacity, peribronchial consolidation and dominant involvement of the lower lung zone. Those pathologic findings were nonspecific and the differential diagnosis could include interstitial pneumonia, bronchiolitis obliterans organizing pneumonia, hypersensitivity pneumonitis and eosinophilic pneumonia

  6. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  7. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3.

    Science.gov (United States)

    Wu, Zhigang; Cohen, Ronald E

    2005-07-15

    We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg(1/3)Nb(2/3))O3-PbTiO3, which are expected to revolutionize electromechanical applications. Our results show that morphotropic phase boundaries and giant piezoelectric effects do not require intrinsic disorder, and open the possibility of studying this effect in simple systems.

  8. The potential role of diffusion-induced grain-boundary migration in extended life prediction

    International Nuclear Information System (INIS)

    Handwerker, C.A.; Blendell, J.E.; Interrante, C.G.; Ahn, T.M.

    1993-01-01

    The selection of materials that are suitable for various high-level waste-packaging designs must reflect the need to meet requirements for long-term performance in repository environments that change with time. With this in mind, we examine how grain boundaries in materials are induced to migrate as a result of solute diffusion even at low temperatures, how the composition of the matrix material is changed significantly by this diffusion-induced grain boundary migration (DIGM), and how the changing microstructures and compositions during DIGM lead to major changes in materials performance, such as corrosion or embrittlement. Methods are discussed for prediction of the long-term behavior of materials affected by DIGM

  9. Earthquakes in Kansas Induced by Extremely Far-Field Pressure Diffusion

    Science.gov (United States)

    Peterie, Shelby L.; Miller, Richard D.; Intfen, John W.; Gonzales, Julio B.

    2018-02-01

    Pressure diffusion from high-volume saltwater disposal wells near the Kansas-Oklahoma border appears to have contributed to triggering earthquakes as far as 90 km away. Elevated seismicity that began in southern Kansas in 2013 is largely believed to be induced by pore pressure increase from dozens of disposal wells injecting unprecedented volumes. Earthquakes initially occurred in dense swarms near the wells, and in subsequent years migrated into surrounding areas with minimal fluid injection. By 2017, earthquakes advanced 90 km from areas surrounding the high-volume injection wells into areas with considerable fluid injection volumes but historically consistent rates. Fluid pressure within the injection interval in southern Kansas increased subsequent to high-volume saltwater disposal in southern Kansas and northern Oklahoma. Temporal pressure trends across central Kansas suggest that fluid migration and pressure diffusion from cumulative disposal to the south likely induced earthquakes much farther than previously documented for individual injection wells.

  10. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  11. Voltage Control of Two-Magnon Scattering and Induced Anomalous Magnetoelectric Coupling in Ni–Zn Ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xu [Electronic Materials; amp,; Dong, Guohua [Electronic Materials; amp,; Zhou, Ziyao [Electronic Materials; amp,; Xian, Dan [Collaborative Innovation Center of High-End Manufacturing; Hu, Zhongqiang [Electronic Materials; amp,; Ren, Wei [Electronic Materials; amp,; Collaborative Innovation Center of High-End Manufacturing; Ye, Zuo-Guang [Electronic Materials; amp,; Department; Chen, Wei [Materials; Jiang, Zhuang-De [Collaborative Innovation Center of High-End Manufacturing; Liu, Ming [Electronic Materials; amp,; Collaborative Innovation Center of High-End Manufacturing

    2017-12-01

    Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni0.5Zn0.5Fe2O4 (NZFO)/Pb(Mg2/3Nb1/3)-PbTiO3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.

  12. Application of aluminum diffusion coatings to mitigate the KCl-induced high-temperature corrosion

    DEFF Research Database (Denmark)

    Kiamehr, Saeed; Lomholt, T. N.; Dahl, Kristian Vinter

    2017-01-01

    Pack cementation was used to produce Fe1−xAl and Fe2Al5 diffusion coatings on ferritic-martensitic steel P91 and a Ni2Al3 diffusion coating on pure nickel. The performance of diffusion coatings against high-temperature corrosion induced by potassium chloride (KCl) was evaluated by exposing...... the samples at 600 °C for 168 h in static lab air under KCl deposit. In addition, a salt-free experiment was performed for comparison. Microstructure, chemical and phase composition of the samples were analyzed with scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X......-ray diffractometry (XRD) before and after the exposures. It was found that all the diffusion coatings formed protective oxides under salt-free exposure in air. Under the salt deposit, Fe1−xAl showed local failure while on large parts of the sample a protective layer had formed. Fe2Al5 was attacked over the entire...

  13. Propilthiouracil-induced diffuse pulmonary hemorrhage: a case report with the clinical and radiologic findings

    International Nuclear Information System (INIS)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon

    2007-01-01

    Propylthiouracil (PTU) is a drug that's used to manage hyperthyroidism and it can, on rare occasions, induce antineutrophil cytoplasmic antibody-associated vasculitis that involved multiple organ systems and it can also cause extremely rare isolated or diffuse pulmonary hemorrhage. We report here on a case of a patient who develop diffuse pulmonary hemorrhage after she had been taking PTU for five years. The patient is a 33-year-old woman who presented with hemoptysis. Simple chest radiographs and the chest CT showed bilateral ground-glass opacity, consolidation and pulmonary arterial hypertension. The bronchoalveolar lavage fluid revealed alveolar hemorrhage. The laboratory values showed increased perinuclear-antineutrophil cytoplasmic antibody (ρ - ANCA) and anti-peroxidase antibody titers

  14. Propilthiouracil-induced diffuse pulmonary hemorrhage: a case report with the clinical and radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2007-05-15

    Propylthiouracil (PTU) is a drug that's used to manage hyperthyroidism and it can, on rare occasions, induce antineutrophil cytoplasmic antibody-associated vasculitis that involved multiple organ systems and it can also cause extremely rare isolated or diffuse pulmonary hemorrhage. We report here on a case of a patient who develop diffuse pulmonary hemorrhage after she had been taking PTU for five years. The patient is a 33-year-old woman who presented with hemoptysis. Simple chest radiographs and the chest CT showed bilateral ground-glass opacity, consolidation and pulmonary arterial hypertension. The bronchoalveolar lavage fluid revealed alveolar hemorrhage. The laboratory values showed increased perinuclear-antineutrophil cytoplasmic antibody ({rho} - ANCA) and anti-peroxidase antibody titers.

  15. Flow-induced symmetry reduction in two-dimensional reaction-diffusion system

    Science.gov (United States)

    Hu, Hai Xiang; Li, Xiao Chun; Li, Qian Shu

    2009-03-01

    The influence of uniform flow on the pattern formation is investigated in a two-dimensional reaction-diffusion system. It is found that the convective flow plays a key role on pattern modulation. Both traveling and stationary periodic patterns are obtained. At moderate flow rates, the perfect hexagon, phase-shifted hexagon and stable square, which are essentially unstable in unperturbed reaction-diffusion systems, are obtained. These patterns move downstream. If the flow rate is increased further, the stationary flow-oriented stripes develop and compete with the spots. If the flow rate exceeds some critical value, the system is convectively unstable and the stationary stripes prevail against the traveling spots. The above patterns all have the same critical wavenumber associated with Turing bifurcation, which indicates that Turing instability produces the patterns while the flow induces the symmetry reduction, i.e., from six-fold symmetry to four-fold one, and to two-fold one ultimately.

  16. Pressure-Induced Changes in Inter-Diffusivity and Compressive Stress in Chemically Strengthened Glass

    DEFF Research Database (Denmark)

    Svenson, Mouritz Nolsøe; Thirion, Lynn M.; Youngman, Randall E.

    Glass exhibits a significant change in microstructure and properties when subjected to high pressure, since the short- and intermediate-range structures of a glass are tunable through compression. Understanding the link between the microscopic structure and macroscopic properties of glasses under...... and more damage resistant glasses. However, the interplay among isostatic compression, pressure-induced changes in alkali diffusivity, compressive stress generated through ion exchange, and the resulting mechanical properties are poorly understood. In this work, we employ a specially designed gas pressure...... stress, and slightly increased hardness. Compression after the ion exchange treatment changes the shape of the potassium-sodium diffusion profiles and significantly increases glass hardness. We discuss these results in terms of the underlying structural changes in network-modifier environments...

  17. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  18. Anomalous transport in heterogeneous media

    Science.gov (United States)

    Horbach, Jürgen; Siboni, Nima H.; Schnyder, Simon K.

    2017-08-01

    The diffusion dynamics of particles in heterogeneous media is studied using particle-based simulation techniques. A special focus is placed on systems where the transport of particles at long times exhibits anomalies such as subdiffusive or superdiffusive behavior. First, a two-dimensional model system is considered containing gas particles (tracers) that diffuse through a random arrangement of pinned, disk-shaped particles. This system is similar to a classical Lorentz gas. However, different from the original Lorentz model, soft instead of hard interactions are considered and we also discuss the case where the tracer particles interact with each other. We show that the modification from hard to soft interactions strongly affects anomalous-diffusive transport at high obstacle densities. Second, non-linear active micro-rheology in a glass-forming binary Yukawa mixture is investigated, pulling single particles through a deeply supercooled state by applying a constant force. Here, we observe superdiffusion in force direction and analyze its origin. Finally, we consider the Brownian dynamics of a particle which is pulled through a two-dimensional random force field. We discuss the similarities of this model with the Lorentz gas as well as active micro-rheology in glass-forming systems.

  19. Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model

    Science.gov (United States)

    Cao, Xin; Song, Yongli; Zhang, Tonghua

    In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.

  20. [Diffuse large B-cell lymphoma complicated with drug-induced vasculitis during administration of pegfilgrastim].

    Science.gov (United States)

    Ito, Yuta; Noda, Kentaro; Aiba, Keisuke; Yano, Shingo; Fujii, Tsunehiro

    A 59-year-old female with diffuse large B-cell lymphoma was treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) regimen. In addition, we administered pegfilgrastim for treating chemotherapy-induced febrile neutropenia. She complained of fever and neck and chest pain a few days after pegfilgrastim administration during the third and fourth courses of R-CHOP. Radiological imaging revealed an inflammation of large vessels, which led to the diagnosis of drug-associated vasculitis. We confirmed that vasculitis observed in this case was caused by pegfilgrastim administration because similar symptoms appeared with both injections of pegfilgrastim.

  1. Role Played by Shear-Induced Hydrodynamic Diffusion on the Continuous Separation of Blood Cells

    Science.gov (United States)

    Hoyos, Mauricio; Kurowski, Pascal; Moore, Lee; Williams, Stephen; Zborowski, Maciej

    2001-11-01

    The continuous sorting of hematopoietic stem cells, lymphocytes or other blood cells can be performed using a membraneless hydrodynamic technique called split-flow thin channel fractionation, SPLITT. Two streams are introduced to the separator: carrier at one inlet and a suspension containing a mixture of immunomagnetically-labeled cells and unlabeled cells at the other inlet. The SPLITT channel, comprising a thin annulus between two concentric cylinders, is fitted into a permanent quadrupole magnet. The sample is transported along the axis of the separation column, and the labeled cells migrate perpendicular to the bulk flow under the influence of the magnetic field. The aim is to recover - at high purity - all of the magnetized cells in the enriched outlet. However, other cells contaminate the enriched fraction. This may be due to a transversal transport of non-immunomagnetically-labeled cells - termed crossover - by shear-induced hydrodynamic diffusion, SIHD, occurring along the separator. The unwanted cell crossover strongly influences the target cell purity in the enriched fraction. We investigate the possible presence of SIHD on the separation of progenitor cells and particles by studying the cross-stream concentration as a function of different parameters: namely, shear rate, inlet concentration and particle size. With our SIHD model we can solve the convection-diffusion equation by assuming an effective diffusion coefficient, which predicts the observed crossover.

  2. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu

    2015-03-12

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  3. Nanofiltration Membranes with Narrow Pore Size Distribution via Contra-Diffusion-Induced Mussel-Inspired Chemistry.

    Science.gov (United States)

    Du, Yong; Qiu, Wen-Ze; Lv, Yan; Wu, Jian; Xu, Zhi-Kang

    2016-11-02

    Nanofiltration membranes (NFMs) are widely used in saline water desalination, wastewater treatment, and chemical product purification. However, conventional NFMs suffer from broad pore size distribution, which limits their applications for fine separation, especially in complete separation of molecules with slight differences in molecular size. Herein, defect-free composite NFMs with narrow pore size distribution are fabricated using a contra-diffusion method, with dopamine/polyethylenimine solution on the skin side and ammonium persulfate solution on the other side of the ultrafiltration substrate. Persulfate ions can diffuse through the ultrafiltration substrate into the other side and in situ trigger dopamine to form a codeposited coating with polyethylenimine. The codeposition is hindered on those sites completely covered by the polydopamine/polyethylenimine coating, although it is promoted at the defects or highly permeable regions because it is induced by the diffused persulfate ions. Such a "self-completion" process results in NFMs with highly uniform structures and narrow pore size distribution, as determined by their rejection of neutral solutes. These near electrically neutral NFMs show a high rejection of divalent ions with a low rejection of monovalent ions (MgCl 2 rejection = 96%, NaCl rejection = 23%), majorly based on a steric hindrance effect. The as-prepared NFMs can be applied in molecular separation such as isolating cellulose hydrogenation products.

  4. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Li, Baoqiang; Fu, Buyin; Sakadzic, Sava; Carp, Stefan A; Lee, Jonghwan; Boas, David A

    2018-02-01

    Quantitative measurements of intravascular microscopic dynamics, such as absolute blood flow velocity, shear stress and the diffusion coefficient of red blood cells (RBCs), are fundamental in understanding the blood flow behavior within the microcirculation, and for understanding why diffuse correlation spectroscopy (DCS) measurements of blood flow are dominantly sensitive to the diffusive motion of RBCs. Dynamic light scattering-optical coherence tomography (DLS-OCT) takes the advantages of using DLS to measure particle flow and diffusion within an OCT resolution-constrained three-dimensional volume, enabling the simultaneous measurements of absolute RBC velocity and diffusion coefficient with high spatial resolution. In this work, we applied DLS-OCT to measure both RBC velocity and the shear-induced diffusion coefficient within penetrating venules of the somatosensory cortex of anesthetized mice. Blood flow laminar profile measurements indicate a blunted laminar flow profile and the degree of blunting decreases with increasing vessel diameter. The measured shear-induced diffusion coefficient was proportional to the flow shear rate with a magnitude of ~0.1 to 0.5 × 10 -6  mm 2 . These results provide important experimental support for the recent theoretical explanation for why DCS is dominantly sensitive to RBC diffusive motion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal field induced by intense pulsed ion beam and its possible application in thermal diffusivity measurement

    Science.gov (United States)

    Yu, Xiao; Huang, Wanying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Zhang, Xiaofu; Zhang, Gaolong; Yan, Sha; Remnev, Gennady Efimovich; Le, Xiaoyun

    2017-10-01

    As a type of flash heating source, intense pulsed ion beam (IPIB) can induce strong thermal effect in the near-surface region of the target. Compared with laser, the energy deposition efficiency of IPIB is significantly higher and is less dependent on the optical properties of the target. The range of ions in matter can be changed more flexibly by adjusting the accelerating voltage. This makes IPIB an ideal candidate for pulsed heating source of the flash method for the measurement of thermal diffusivity of materials. In present work, numerical verification of flash method with IPIB generated by magnetically insulated diode (MID) was carried out. By exploring the features of the induced thermal field, it is demonstrated that IPIB composed of protons and carbon ions with energy of several hundred keV and cross-sectional energy density of several J/cm2 can be used for the measurement of thermal diffusivity with flash method, and the principles of optimization in experimental parameters are discussed.

  6. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  7. Chiral anomalous dispersion

    Science.gov (United States)

    Sadofyev, Andrey; Sen, Srimoyee

    2018-02-01

    The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.

  8. Using the thermal diffusion cloud chamber to study the ion-induced nucleation by radon decay

    International Nuclear Information System (INIS)

    Wu, Yefei.

    1991-01-01

    Thermal diffusion cloud chamber is steady-state device and has been extensively used for nucleation research. In order to study the ion-induced nucleation by radon decay, a new chamber was designed with improved both upper and bottom plates, the system of circulating fluid, the gasketting, the temperature measurement and the insulation. An alternative method of using oxygen as carrier gas was examined. Therefore, the heavy carrier gas including nitrogen, oxygen, neon, argon and air can be used to study radon radiolysis-induced nucleation for the water or organic compounds in the TDCC. The effects of the pressure and temperature ranges on the density, supersaturation, temperature and partial pressure profile for the water-oxygen-helium in the TDCC have been examined. Based on the classical theory, the rate profile of ion-induced nucleation by radon decays was calculated and compared with the homogeneous nucleation. From measured indoor concentrations of Volatile Organic Compounds (VOC), thermodynamic theory models were used to assess the possibility that these compounds will form ultrafine particles in indoor air by ion-induced nucleation. The energy, number of molecules and equilibrium radius of clusters have been calculated based on Such and Thomson theories. These two sets of values have been compared. Ion cluster radii corresponding to 1--3 VOC molecules are in range of 3--5 x 10 -8 cm. 43 refs., 18 figs., 5 tabs

  9. Diffusion tensor imaging detects ventilation-induced brain injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Dhafer M Alahmari

    Full Text Available Injurious mechanical ventilation causes white matter (WM injury in preterm infants through inflammatory and haemodynamic pathways. The relative contribution of each of these pathways is not known. We hypothesised that in vivo magnetic resonance imaging (MRI can detect WM brain injury resulting from mechanical ventilation 24 h after preterm delivery. Further we hypothesised that the combination of inflammatory and haemodynamic pathways, induced by umbilical cord occlusion (UCO increases brain injury at 24 h.Fetuses at 124±2 days gestation were exposed, instrumented and either ventilated for 15 min using a high tidal-volume (VT injurious strategy with the umbilical cord intact (INJ; inflammatory pathway only, or occluded (INJ+UCO; inflammatory and haemodynamic pathway. The ventilation groups were compared to lambs that underwent surgery but were not ventilated (Sham, and lambs that did not undergo surgery (unoperated control; Cont. Fetuses were placed back in utero after the 15 min intervention and ewes recovered. Twenty-four hours later, lambs were delivered, placed on a protective ventilation strategy, and underwent MRI of the brain using structural, diffusion tensor imaging (DTI and magnetic resonance spectroscopy (MRS techniques.Absolute MRS concentrations of creatine and choline were significantly decreased in INJ+UCO compared to Cont lambs (P = 0.03, P = 0.009, respectively; no significant differences were detected between the INJ or Sham groups and the Cont group. Axial diffusivities in the internal capsule and frontal WM were lower in INJ and INJ+UCO compared to Cont lambs (P = 0.05, P = 0.04, respectively. Lambs in the INJ and INJ+UCO groups had lower mean diffusivities in the frontal WM compared to Cont group (P = 0.04. DTI colour mapping revealed lower diffusivity in specific WM regions in the Sham, INJ, and INJ+UCO groups compared to the Cont group, but the differences did not reach significance. INJ+UCO lambs more likely to exhibit

  10. Temperature monitoring with FBG sensor during diffuser-assisted laser-induced interstitial thermotherapy (Conference Presentation)

    Science.gov (United States)

    Pham, Ngot T.; Lee, Seul Lee; Lee, Yong Wook; Kang, Hyun Wook

    2017-02-01

    Temperature variations are often monitored by using sensors operating at the site of treatment during Laser-induced Interstitial Thermotherapy (LITT). Currently, temperature measurements during LITT have been performed with thermocouples (TCs). However, TCs could directly absorb laser light and lead to self-heating (resulting in an over-estimation). Fiber Bragg grating (FBG) sensors can instead overcome this limitation of the TCs due to its insensitivity to electromagnetic interference. The aim of the current study was to quantitatively evaluate the FBG temperature sensor with a K-type thermocouple to real-time monitor temperature increase in ex vivo tissue during diffuser-assisted LITT. A 4-W 980-nm laser was employed to deliver optical energy in continuous mode through a 600-µm core-diameter diffusing applicator. A goniometric measurement validated the uniform light distribution in polar and longitudinal directions. The FBG sensor showed a linear relationship (R2 = 0.995) between wavelength shift and temperature change in air and tissue along with a sensitivity of 0.0114 nm/˚C. Regardless of sensor type, the measured temperature increased with irradiation time and applied power but decreased with increasing distance from the diffuser surface. The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT (4.0±0.3-mm at 99˚C after 120-s). The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT s irradiation). The FBG-integrated diffuser was able to monitor the interstitial temperature in tubular tissue (porcine urethra) real-time during laser treatment. However, the thermal coagulation thickness of the porcine urethra was measured to be 1.5 mm that was slightly thicker ( 20%) than that of the bovine liver after 4-W 980-nm laser for 48 s. The FBG temperature sensor can be a feasible tool to real-time monitor the temporal development of the temperature during the diffuser-assisted LITT to

  11. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  12. XRD study of laser induced crystallisation of (Ag)-Sb-S amorphous thin films prepared by thermal evaporation combined with optically induced diffusion and dissolution of Ag

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Frumar, M.; Bezdička, Petr; Vlček, Milan

    2006-01-01

    Roč. 47, č. 2 (2006), s. 229-232 ISSN 0031-9090 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : laser induced crystallisation * optically induced diffusion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.577, year: 2006

  13. Studies of mass diffusion of camphorquinone in linear and crosslinked polystyrene by the laser induced holographic relaxation technique

    Science.gov (United States)

    Zhang, J.; Wang, C. H.; Chen, Z.-X.

    1986-11-01

    Laser induced holographic grating relaxation studies of camphorquinone (CQ) diffusing in liner polystyrene (PS) (with both narrow and wide molecular weight distribution) and crosslinked PS (with bis-phenol-A-dimethacrylate as the crosslinking agent) are carried out. Diffusion coefficients of CQ in the polymer hosts are obtained from the decay rate of the intensity diffracted from the laser induced holographic grating. The diffusion coefficients (D) of CQ in polydispersed PS samples are compared with that in nearly monodispersed sample. Diffusion coefficients are found to be equal in both types of polymer samples over the whole temperature range studied, thereby indicating that at high molecular weight the molecular weight distribution has little effect on the diffusion coefficient of CQ. The diffusion coefficient of CQ in crosslinked PS is found to decrease with increasing concentration of the crosslinking agent. It decreases approximately 30 times as the concentration of the crosslinking agent increases to 20%. The relationship between the concentration of the crosslinking agent and polymer free volume is discussed. The diffusion coefficients of CQ in linear and crosslinked PS are also measured as a function of temperature. It is found that the temperature dependence of both D and D/T can be described by a Williams-Landel-Ferry (WLF) equation. However, the WLF constants C1 and C2 differ in both fits. The C2 constant obtained from the D/T vs T fit for linear PS sample agrees with that extracted from the viscoelastic measurement.

  14. Anomalous superconductivity in black phosphorus under high pressures

    International Nuclear Information System (INIS)

    Kawamura, H.; Tachikawa, K.

    1984-01-01

    Pressure induced superconductivity in single crystals of black phosphorus has been studied. Maximum onset Tsub(c) was near 13 K. The anomalous superconductivity may be explained in terms of excitonic mechanism. (author)

  15. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous...

  16. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom); Hall, E. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom)], E-mail: curtis.offiah@bartsandthelondon.nhs.uk

    2008-02-15

    Aim: To describe the magnetic resonance imaging (MRI) characteristics of heroin-induced leukoencephalopathy or 'chasing the dragon syndrome' and, in particular, the diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) features. Material and methods: Six patients with a clinical or histopathological diagnosis of heroin-induced leukoencephalopathy were identified and MRI examinations, including DWI and single-voxel MRS, reviewed. Results: Cerebellar white matter was involved in all six cases demonstrating similar symmetrical distribution with sparing of the dentate nuclei. Brain stem signal change was evident in five of the six patients imaged. Supratentorial brain parenchymal involvement, as well as brain stem involvement, correlated anatomically with corticospinal tract distribution. None of the areas of signal abnormality were restricted on DWI. Of those patients subjected to MRS, the areas of parenchymal damage demonstrated reduced N-acetylaspartate, reduced choline, and elevated lactate. Conclusion: Heroin-induced leukoencephalopathy results in characteristic and highly specific signal abnormalities on MRI, which can greatly aid diagnosis. DWI and MRS findings can be explained by known reported neuropathological descriptions in this condition and can be used to support a proposed mechanism for the benefit of current recommended drug treatment regimes.

  17. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigments

    Science.gov (United States)

    Siozos, Panagiotis; Philippidis, Aggelos; Anglos, Demetrios

    2017-11-01

    A novel, portable spectrometer, combining two analytical techniques, laser-induced breakdown spectroscopy (LIBS) and diffuse reflectance spectroscopy, was developed with the aim to provide an enhanced instrumental and methodological approach with regard to the analysis of pigments in objects of cultural heritage. Technical details about the hybrid spectrometer and its operation are presented and examples are given relevant to the analysis of paint materials. Both LIBS and diffuse reflectance spectra in the visible and part of the near infrared, corresponding to several neat mineral pigment samples, were recorded and the complementary information was used to effectively distinguish different types of pigments even if they had similar colour or elemental composition. The spectrometer was also employed in the analysis of different paints on the surface of an ancient pottery sherd demonstrating the capabilities of the proposed hybrid diagnostic approach. Despite its instrumental simplicity and compact size, the spectrometer is capable of supporting analytical campaigns relevant to archaeological, historical or art historical investigations, particularly when quick data acquisition is required in the context of surveys of large numbers of objects and samples.

  18. INFLUENCE OF THERMOHALINE CONVECTION ON DIFFUSION-INDUCED IRON ACCUMULATION IN A STARS

    International Nuclear Information System (INIS)

    Theado, S.; Vauclair, S.; Alecian, G.; LeBlanc, F.

    2009-01-01

    Atomic diffusion may lead to heavy-element accumulation inside stars in certain specific layers. Iron accumulation in the Z-bump opacity region has been invoked by several authors to quantitatively account for abundance anomalies observed in some stars, or to account for stellar oscillations through the induced κ-mechanism. These authors, however, never took into account the fact that such an accumulation creates an inverse μ-gradient, unstable for thermohaline convection. Here, we present results for A-F stars, where abundance variations are computed with and without this process. We show that iron accumulation is still present when thermohaline convection is taken into account, but much reduced compared to when this physical process is neglected. The consequences of thermohaline convection for A-type stars as well as for other types of stars are presented.

  19. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    Science.gov (United States)

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  20. Radiation-Induced Changes in Normal-Appearing White Matter in Patients With Cerebral Tumors: A Diffusion Tensor Imaging Study

    International Nuclear Information System (INIS)

    Nagesh, Vijaya; Tsien, Christina I.; Chenevert, Thomas L.; Ross, Brian D.; Lawrence, Theodore S.; Junick, Larry; Cao Yue

    2008-01-01

    Purpose: To quantify the radiation-induced changes in normal-appearing white matter before, during, and after radiotherapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma, or benign tumor treated with RT were studied using diffusion tensor magnetic resonance imaging. The biologically corrected doses ranged from 50 to 81 Gy. The temporal changes were assessed before, during, and to 45 weeks after the start of RT. The mean diffusivity of water ( ), fractional anisotropy of diffusion, diffusivity perpendicular (λ perpendicular ) and parallel (λ parallel ) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, fractional anisotropy decreased and , λ parallel , λ -perpendicular increased linearly and significantly with time (p -perpendicular had increased ∼30% in the genu and splenium, and λ parallel had increased 5% in the genu and 9% in the splenium, suggesting that demyelination is predominant. The increases in λ perpendicular and λ parallel were dose dependent, starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in λ perpendicular and λ parallel was not sustained after 32 weeks, indicating the transition from focal to diffuse effects. Conclusion: The acute and subacute changes in normal-appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. Diffusion tensor magnetic resonance imaging is potentially a biomarker for the assessment of radiation-induced white matter injury

  1. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  2. Theory of anomalous transport in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.

    1992-03-01

    Theoretical model of the anomalous transport in Torsatron/Heliotron plasmas is developed, based on the current-diffusive interchange instability which is destabilized due to the averaged magnetic hill near edge. Analytic formula of transport coefficient is derived. This model explains the high edge transport, the power degradation and energy confinement scaling law and the enhanced heat-pulse thermal conduction. (author)

  3. Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Huanyu Wang

    2013-11-01

    Full Text Available Using molecular dynamics method, we investigate the diffusion property of lithium in different silicon structures and silicon structure's disorder extent during lithium's diffusion process. We find that the pathway and the incident angle between the direction of barrier and diffusion of lithium are also the essential factors to the lithium's diffusion property in silicon anode besides the barrier. Smaller incident angle could decrease the scattering of lithium in silicon structure effectively. Moreover, lithium diffuses easier in the Li-Si alloy structure of higher lithium concentration with deeper injection depth. The silicon's structure will be damaged gradually during the charge and discharge process. However, it will also recover to initial state to a great extent after relaxation. Therefore, the damage of lithium diffusion to silicon anode in the structure of low lithium concentration is reversible to a great degree. In addition, the silicon structure of crystal orientation perform better properties in both lithium's diffusivity and structural stability.

  4. Cross-Diffusion Induced Turing Instability and Amplitude Equation for a Toxic-Phytoplankton-Zooplankton Model with Nonmonotonic Functional Response

    Science.gov (United States)

    Han, Renji; Dai, Binxiang

    2017-06-01

    The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.

  5. Diffusion inside living human cells

    DEFF Research Database (Denmark)

    Leijnse, N.; Jeon, J. -H.; Loft, Steffen

    2012-01-01

    Naturally occurring lipid granules diffuse in the cytoplasm and can be used as tracers to map out the viscoelastic landscape inside living cells. Using optical trapping and single particle tracking we found that lipid granules exhibit anomalous diffusion inside human umbilical vein endothelial...

  6. First-alpha diffusion and thermalization in tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; Houlberg, W.A.

    1983-01-01

    Energy relaxation and spatial diffusion of fast alpha particles are incorporated into a multi-energy group model which is coupled to a fluid transport code for the thermal-plasma species. The multi-energy group equations evolve the temporal- and spatial-dependent alpha-particle distribution function and thus determine alpha-particle heating and loss rates for arbitrary thermalization and diffusion models. The effects of deviations from classical, local thermalization on plasma performance are discussed. It is shown that spatial diffusion can lead to inversion of the fast - ion distribution function even if thermalization remains classical. This inversion may drive instabilities and lead to anomalous thermalization. Ripple-induced spatial diffusion of fast alphas is used to illustrate the importance of extending the analysis to include pitch-angle dependence

  7. What is the Role of the Transition State in Soret and Chemical Diffusion Induced Isotopic Fractionation?

    Science.gov (United States)

    Dominguez, G.

    2013-12-01

    For over six decades, Urey's (1) statistical mechanical model of isotopic fractionation based on partition functions with quantized energy levels have enjoyed enormous success in quantitatively explaining equilibrium isotopic fractionation in a wide variety of geochemical systems For example, the interpretation of oxygen isotopic variations in carbonate systems (e.g. foraminiferas), in terms of partition functions with quantized energy levels, forms the basis for paleothermometry (2). Recent observations of isotopic fractionation from chemical and thermal (Soret) diffusion (3-7) appear to challenge our theoretical understanding of mass-transport and isotopic fractionation (8, 9). For example, a recently proposed quantum mechanical model of Soret diffusion, which correctly predicts the isotopic fractionation in thermal gradients for isotopes of Mg, Ca, Fe, Si, and possibly oxygen, was critiqued as being unphysical. First, it was argued that the zero point energies needed to explain the magnitude of isotopic fractionation in basalt melts were unrealistically high based on infrared spectra of these melts. Second, it was argued that the chemical diffusion isotopic fractionation (beta) factors expected from these zero-point energies were also unphysical (10). A recently proposed collision-momentum transfer model partially explains observed fractionation factors, although it fails miserably (by a factor of 3) to account for the isotopic fractionation of Mg isotopes (11). In this presentation, I will review recent observations and models of isotopic fractionation in geochemical melts with thermal gradients and expand upon previous work (8, 12) to show how transition state theory can simultaneously explain mass-transport induced isotopic fractionation, including kinetic, equilibrium, and Soret isotopic fractionation. I show this by providing a few example calculations of the kinetic fractionation factors (a.k.a. beta factors) expected in chemical diffusion as well as

  8. Establishment of diffuse type stomach carcinoma orthotopic-implanted model and study on apoptosis induced by X-ray

    International Nuclear Information System (INIS)

    Lu Yi; Qian Haixin

    2003-01-01

    To observe whether ionizing radiation could induce up - regulation of Fas receptor expression and apoptosis in diffuse type stomach carcinoma. To investigate the relationship among ionizing radiation, apoptosis and the expression of Fas in stomach carcinoma. Methods: Firstly, the experimental model of SGC - 7901 cell lines was set up and diffuse type stomach carcinoma orthotopically implanted in nude mice. Then 21 model mice were randomized into three groups equally i.e., the control group ( group A ) and two irradiation groups ( group B and group C, executed at 24 hours and 48 hours after irradiation respectively ). The mice in group B and group C were irradiated with 6 MV X-rays at a dose of 20 Gy. By using the methods of TUNEL and immunohistochemical staining, the changes of apoptosis index and Fas expression in tumor tissues were examined. Results: (1) The spontaneous apoptosis index (AI) of tumor tissues was significantly lower than that of mucosa tissues (P 0.05). (3) The Fas LI of tumor tissues increased after irradiation compared with the control group (P<0.05). (4) The changes of AI and Fas LI in all groups with similar tendency showed positive correlation (P<0.01). Conclusion: The apoptosis of diffuse type stomach carcinoma is seriously restrained. Ionizing radiation can induce apoptosis and up - regulate the expression of Fas in diffuse type stomach carcinoma. The apoptosis induced by irradiation maybe depend on the up - regulating of Fas after irradiation

  9. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    International Nuclear Information System (INIS)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program

  10. Time-resolved measurements of laser-induced diffusion of CO molecules on stepped Pt(111)-surfaces; Zeitaufgeloeste Untersuchung der laser-induzierten Diffusion von CO-Molekuelen auf gestuften Pt(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Lawrenz, M.

    2007-10-30

    In the present work the dynamics of CO-molecules on a stepped Pt(111)-surface induced by fs-laser pulses at low temperatures was studied by using laser spectroscopy. In the first part of the work, the laser-induced diffusion for the CO/Pt(111)-system could be demonstrated and modelled successfully for step diffusion. At first, the diffusion of CO-molecules from the step sites to the terrace sites on the surface was traced. The experimentally discovered energy transfer time of 500 fs for this process confirms the assumption of an electronically induced process. In the following it was explained how the experimental results were modelled. A friction coefficient which depends on the electron temperature yields a consistent model, whereas for the understanding of the fluence dependence and time-resolved measurements parallel the same set of parameters was used. Furthermore, the analysis was extended to the CO-terrace diffusion. Small coverages of CO were adsorbed to the terraces and the diffusion was detected as the temporal evolution of the occupation of the step sites acting as traps for the diffusing molecules. The additional performed two-pulse correlation measurements also indicate an electronically induced process. At the substrate temperature of 40 K the cross-correlation - where an energy transfer time of 1.8 ps was extracted - suggests also an electronically induced energy transfer mechanism. Diffusion experiments were performed for different substrate temperatures. (orig.)

  11. Does Acupuncture Needling Induce Analgesic Effects Comparable to Diffuse Noxious Inhibitory Controls?

    Directory of Open Access Journals (Sweden)

    Juerg Schliessbach

    2012-01-01

    Full Text Available Diffuse noxious inhibitory control (DNIC is described as one possible mechanism of acupuncture analgesia. This study investigated the analgesic effect of acupuncture without stimulation compared to nonpenetrating sham acupuncture (NPSA and cold-pressor-induced DNIC. Forty-five subjects received each of the three interventions in a randomized order. The analgesic effect was measured using pressure algometry at the second toe before and after each of the interventions. Pressure pain detection threshold (PPDT rose from 299 kPa (SD 112 kPa to 364 kPa (SD 144, 353 kPa (SD 135, and 467 kPa (SD 168 after acupuncture, NPSA, and DNIC test, respectively. There was no statistically significant difference between acupuncture and NPSA at any time, but a significantly higher increase of PPDT in the DNIC test compared to acupuncture and NPSA. PPDT decreased after the DNIC test, whereas it remained stable after acupuncture and NPSA. Acupuncture needling at low pain stimulus intensity showed a small analgesic effect which did not significantly differ from placebo response and was significantly less than a DNIC-like effect of a painful noninvasive stimulus.

  12. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  13. Pattern formation induced by cross-diffusion in a predator–prey system

    International Nuclear Information System (INIS)

    Sun Guiquan; Jin Zhen; Liu Quanxing; Li Li

    2008-01-01

    This paper considers the Holling–Tanner model for predator–prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator–prey system. (general)

  14. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  15. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Keywords. Anomalous hydrodynamics; gauge anomaly; gravitational anomaly. PACS No. 47.10.ab. The chiral anomaly has played a ubiquitous role in modern physics. It has found appli- cations in several diverse fields like quantum wires, quantum Hall effect, chiral magnetic effect and anomalous hydrodynamics, to name ...

  16. Anomalous Transport of High Energy Cosmic Rays in Galactic Superbubbles

    Science.gov (United States)

    Barghouty, Nasser F.

    2014-01-01

    High-energy cosmic rays may exhibit anomalous transport as they traverse and are accelerated by a collection of supernovae explosions in a galactic superbubble. Signatures of this anomalous transport can show up in the particles' evolution and their spectra. In a continuous-time-random- walk (CTRW) model assuming standard diffusive shock acceleration theory (DSA) for each shock encounter, and where the superbubble (an OB stars association) is idealized as a heterogeneous region of particle sources and sinks, acceleration and transport in the superbubble can be shown to be sub-diffusive. While the sub-diffusive transport can be attributed to the stochastic nature of the acceleration time according to DSA theory, the spectral break appears to be an artifact of transport in a finite medium. These CTRW simulations point to a new and intriguing phenomenon associated with the statistical nature of collective acceleration of high energy cosmic rays in galactic superbubbles.

  17. Cross-diffusion induced Turing patterns in a sex-structured predator-prey model

    DEFF Research Database (Denmark)

    Liu, J.; Zhou, H.; Zhang, Lai

    2012-01-01

    that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions...

  18. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  19. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  20. pH-jump induced leucine zipper folding beyond the diffusion limit.

    Science.gov (United States)

    Donten, Mateusz L; Hassan, Shabir; Popp, Alexander; Halter, Jonathan; Hauser, Karin; Hamm, Peter

    2015-01-29

    The folding of a pH-sensitive leucine zipper, that is, a GCN4 mutant containing eight glutamic acid residues, has been investigated. A pH-jump induced by a caged proton (o-nitrobenzaldehyde, oNBA) is employed to initiate the process, and time-resolved IR spectroscopy of the amide I band is used to probe it. The experiment has been carefully designed to minimize the buffer capacity of the sample solution so that a large pH jump can be achieved, leading to a transition from a completely unfolded to a completely folded state with a single laser shot. In order to eliminate the otherwise rate-limiting diffusion-controlled step of the association of two peptides, they have been covalently linked. The results for the folding kinetics of the cross-linked peptide are compared with those of an unlinked peptide, which reveals a detailed picture of the folding mechanism. That is, folding occurs in two steps, one on an ∼1-2 μs time scale leading to a partially folded α-helix even in the monomeric case and a second one leading to the final coiled-coil structure on distinctively different time scales of ∼30 μs for the cross-linked peptide and ∼200 μs for the unlinked peptide. By varying the initial pH, it is found that the folding mechanism is consistent with a thermodynamic two-state model, despite the fact that a transient intermediate is observed in the kinetic experiment.

  1. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  2. Modification of the glass surface induced by redox reactions and internal diffusion processes

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...... different gases. As a result, we have observed a striking phenomenon, i.e., the outward diffusion of divalent cations occurs not only under an oxidizing atmosphere of heat-treatment, but also under nitrogen, even under reducing atmospheres like H2/N2 (10/90). The extent of the cationic diffusion depends...... on temperature and duration of heat-treatments. The mechanism of the diffusion depends on the type of the gases used for the heat-treatments. In this paper we propose several possible models describing mechanisms of the cationic diffusion, and hence, of the formation of the nano-layer. We also report the effect...

  3. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  4. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  5. Anomalous transport in the crowded world of biological cells

    International Nuclear Information System (INIS)

    Höfling, Felix; Franosch, Thomas

    2013-01-01

    A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important

  6. Anomalous transport in the crowded world of biological cells.

    Science.gov (United States)

    Höfling, Felix; Franosch, Thomas

    2013-04-01

    A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important

  7. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  8. Anomalous and resonance small angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1987-11-01

    Significant changes in the small angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous dispersion terms for the scattering factor (x-rays) or scattering length (neutrons). The physics inherent in these anomalous dispersion terms is first discussed before considering how they enter the relevant scattering theory. Two major areas of anomalous scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with x-rays. However, it is pointed out that the formalism is the same or the analogue experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scatterings are discussed. 8 figs

  9. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    Science.gov (United States)

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  10. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Trong-Kha Truong

    2015-01-01

    Full Text Available In most diffusion tensor imaging (DTI studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR. However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact. Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2*-weighting (i.e., Type 3 artifact. These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  11. Lung injury induced by secondhand smoke exposure detected with hyperpolarized helium-3 diffusion MR.

    Science.gov (United States)

    Wang, Chengbo; Mugler, John P; de Lange, Eduard E; Patrie, James T; Mata, Jaime F; Altes, Talissa A

    2014-01-01

    To determine whether helium-3 diffusion MR can detect the changes in the lungs of healthy nonsmoking individuals who were regularly exposed to secondhand smoke. Three groups were studied (age: 59 ± 9 years): 23 smokers, 37 exposure-to-secondhand-smoke subjects, and 29 control subjects. We measured helium-3 diffusion values at diffusion times from 0.23 to 1.97 s. One-way analysis of variance revealed that the mean area under the helium-3 diffusion curves (ADC AUC) of the smokers was significantly elevated compared with the controls and to the exposure-to-secondhand-smoke subjects (P exposure-to-secondhand-smoke subjects and that of the controls was found (P = 0.115). However, application of a receiver operator characteristic-derived rule to classify subjects as either a "control" or a "smoker," based on ADC AUC, revealed that 30% (11/37) of the exposure-to-secondhand subjects were classified as "smokers" indicating an elevation of the ADC AUC. Using helium-3 diffusion MR, elevated ADC values were detected in 30% of nonsmoking healthy subjects who had been regularly exposed to secondhand smoke, supporting the concept that, in susceptible individuals, secondhand smoke causes mild lung damage. Copyright © 2013 Wiley Periodicals, Inc.

  12. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  13. Navigation by anomalous random walks on complex networks.

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-23

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  14. Navigation by anomalous random walks on complex networks

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  15. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel layer...... first and then the growth of silica crystals on the glass surface. The type of alkaline earth cations has a strong impact on both the glass transition and the surface crystallization. In the Mg-containing glass, a quartz layer forms on the glass surface. This could be attributed to the fact that Mg2......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  16. Hydrogen diffusion and induced-crystallization in intrinsic and doped hydrogenated amorphous silicon films

    International Nuclear Information System (INIS)

    Kail, F.; Hadjadj, A.; Roca i Cabarrocas, P.

    2005-01-01

    We have studied the evolution of the structure of intrinsic and doped hydrogenated amorphous silicon films exposed to a hydrogen plasma. For this purpose, we combine in situ spectroscopic ellipsometry and secondary ion mass spectrometry measurements. We show that hydrogen diffuses faster in boron-doped hydrogenated amorphous silicon than in intrinsic samples, leading to a thicker subsurface layer from the early stages of hydrogen plasma exposure. At longer times, hydrogen plasma leads to the formation of a microcrystalline layer via chemical transport, but there is no evidence for crystallization of the a-Si:H substrate. Moreover, we observe that once the microcrystalline layer is formed, hydrogen diffuses out of the sample

  17. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Molin, Sebastian; Zhang, L.

    2015-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell (SOFC) or electrolysis cell (SOEC) stacks. During stack production and operation, nickel from the Ni/YSZ fuel electrode or from the Ni contact component diffuses into the IC plate, causing transformation...... of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume and in mechanical and corrosion properties of the IC plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic stainless steel was conducted, using the CALPHAD...

  18. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Alimadadi, Hossein; Molin, Sebastian

    2017-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...

  19. Observations of anomalous fading in maiolica

    International Nuclear Information System (INIS)

    Bowman, S.G.E.

    1988-01-01

    In the course of an authenticity study on Italian maiolica (tin-glazed earthenware of the Renaissance period), storage at elevated temperature was used to accelerate anomalous fading. Substantial levels of fading were observed in about half of the samples, and in these cases the variation of fading with glow curve temperature accounted for the lack of an equivalent dose plateau. Some evidence was found for a difference in the fading between alpha and beta induced thermoluminescence (TL). More importantly, some samples with unstable natural TL were found: the implications of this for dating and the circumvention of fading are discussed. (author)

  20. Diffusion-time-resolved ion-beam-induced charge collection from stripe-like test junctions induced by heavy-ion microbeams

    International Nuclear Information System (INIS)

    Guo, B.N.; El Bouanani, M.; Renfrow, S.N.; Nigam, M.; Walsh, D.S.; Doyle, B.L.; Duggan, J.L.; McDaniel, F.D.

    2001-01-01

    To design more radiation-tolerant integrated circuits (ICs), it is necessary to design and test accurate models of ionizing-radiation-induced charge collection dynamics. A new technique, diffusion-time-resolved ion-beam-induced charge collection (DTRIBICC), is used to measure the average arrival time of the diffused charge, which is related to the average time of the arrival carrier density at the junction. Specially designed stripe-like test junctions are studied using a 12 MeV carbon microbeam with a spot size of ∼1 μm. The relative arrival time of ion-generated charge and the collected charge are measured using a multiple parameter data acquisition system. A 2-D device simulation code, MEDICI, is used to calculate the charge collection dynamics on the stripe-like test junctions. The simulations compare well with experimental microbeam measurements. The results show the importance of the diffused charge collection by junctions, which is especially significant for single-event upsets (SEUs) and multiple-event upsets (MEUs) in electronic devices. The charge sharing results also indicate that stripe-like junctions may be used as position-sensitive detectors with a resolution of ∼0.1 μm

  1. Wound-induced Ca2+wave propagates through a simple release and diffusion mechanism.

    Science.gov (United States)

    Handly, L Naomi; Wollman, Roy

    2017-06-01

    Damage-associated molecular patterns (DAMPs) are critical mediators of information concerning tissue damage from damaged cells to neighboring healthy cells. ATP acts as an effective DAMP when released into extracellular space from damaged cells. Extracellular ATP receptors monitor tissue damage and activate a Ca 2+ wave in the surrounding healthy cells. How the Ca 2+ wave propagates through cells after a wound is unclear. Ca 2+ wave activation can occur extracellularly via external receptors or intracellularly through GAP junctions. Three potential mechanisms to propagate the Ca 2+ wave are source and sink, amplifying wave, and release and diffusion. Both source and sink and amplifying wave regulate ATP levels using hydrolysis or secretion, respectively, whereas release and diffusion relies on dilution. Here we systematically test these hypotheses using a microfluidics assay to mechanically wound an epithelial monolayer in combination with direct manipulation of ATP hydrolysis and release. We show that a release and diffusion model sufficiently explains Ca 2+ -wave propagation after an epithelial wound. A release and diffusion model combines the benefits of fast activation at short length scales with a self-limiting response to prevent unnecessary inflammatory responses harmful to the organism. © 2017 Handly et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Circulation induced by diffused aeration in a shallow lake | Toné ...

    African Journals Online (AJOL)

    Field surveys were carried out to investigate the surface jet flows and the resulting circulation patterns generated by diffused aeration in a shallow lake. In conrast to previous studies, the experimental conditions included point-source bubble plumes with very high air flow rates (100–400 L/min) relative to the shallow water ...

  3. Anomalous Price Impact and the Critical Nature of Liquidity in Financial Markets

    Science.gov (United States)

    Tóth, B.; Lempérière, Y.; Deremble, C.; de Lataillade, J.; Kockelkoren, J.; Bouchaud, J.-P.

    2011-10-01

    We propose a dynamical theory of market liquidity that predicts that the average supply/demand profile is V shaped and vanishes around the current price. This result is generic, and only relies on mild assumptions about the order flow and on the fact that prices are, to a first approximation, diffusive. This naturally accounts for two striking stylized facts: First, large metaorders have to be fragmented in order to be digested by the liquidity funnel, which leads to a long memory in the sign of the order flow. Second, the anomalously small local liquidity induces a breakdown of the linear response and a diverging impact of small orders, explaining the “square-root” impact law, for which we provide additional empirical support. Finally, we test our arguments quantitatively using a numerical model of order flow based on the same minimal ingredients.

  4. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  5. Nonlinear saturation of dissipative trapped ion instability and anomalous transport

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Ogasawara, Masatada.

    1977-04-01

    An expression for the turbulent collision frequency is derived by summing up the most dominant terms from each order in the perturbation expansion in order to obtain the nonlinear saturation level of the dissipative trapped ion instability. Numerical calculation shows that the anomalous diffusion coefficient at the saturated state is in good agreement with the result of Kadomtsev and Pogutse when the effect of the magnetic shear is taken into account. (auth.)

  6. Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries

    Science.gov (United States)

    Peigney, Michaël

    2018-02-01

    Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.

  7. Effect of anomalous drift during ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, P.A.; Baranova, E.K.; Beloshitskii, V.V.; Demakov, K.D.; Starostin, V.A.

    1986-01-01

    Experimental and theoretical results are presented on Tl-ion implantation into hot silicon substrates (approx. 1200 0 C). a An anomalously large (by more than an order of magnitude) displacement of the peak position of the implanted impurity distribution into the bulk of the substrate is found. b) The conclusion is drawn that the basic process responsible for this displacement of the peak is radiation-enhanced diffusion (RED) due to nonequilibrium concentration of point defects produced in the heated target directly under implantation. c) The crystalline structure of the resulting ion-implanted layer indicates that in-situ annealing of the exposed layer occurs during high-temperature implantation. d) Experimental impurity distributions confirm the possibility of producing an implanted-impurity 'buried layer' below the layer of a single crystal silicon, the 'buried layer' depth depending on the implantation regime. (author)

  8. Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy

    Science.gov (United States)

    Pham, Ngot Thi; Lee, Seul Lee; Park, Suhyun; Lee, Yong Wook; Kang, Hyun Wook

    2017-04-01

    High-sensitivity temperature sensors have been used to validate real-time thermal responses in tissue during photothermal treatment. The objective of the current study was to evaluate the feasible application of a fiber Bragg grating (FBG) sensor for diffuser-assisted laser-induced interstitial thermotherapy (LITT) particularly to treat tubular tissue disease. A 600-μm core-diameter diffuser was employed to deliver 980-nm laser light for coagulation treatment. Both a thermocouple and a FBG were comparatively tested to evaluate temperature measurements in ex vivo liver tissue. The degree of tissue denaturation was estimated as a function of irradiation times and quantitatively compared with light distribution as well as temperature development. At the closer distance to a heat source, the thermocouple measured up to 41% higher maximum temperature than the FBG sensor did after 120-s irradiation (i.e., 98.7°C±6.1°C for FBG versus 131.0°C±5.1°C for thermocouple; p<0.001). Ex vivo porcine urethra tests confirmed the real-time temperature measurements of the FBG sensor as well as consistently circumferential tissue denaturation after 72-s irradiation (coagulation thickness=2.2±0.3 mm). The implementation of FBG can be a feasible sensing technique to instantaneously monitor the temperature developments during diffuser-assisted LITT for treatment of tubular tissue structure.

  9. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  10. Mechanism of light-induced translocation of arrestin and transducin in photoreceptors: interaction-restricted diffusion.

    Science.gov (United States)

    Slepak, Vladlen Z; Hurley, James B

    2008-01-01

    Many signaling proteins change their location within cells in response to external stimuli. In photoreceptors, this phenomenon is remarkably robust. The G protein of rod photoreceptors and rod transducin concentrates in the outer segments (OS) of these neurons in darkness. Within approximately 30 minutes after illumination, rod transducin redistributes throughout all of the outer and inner compartments of the cell. Visual arrestin concurrently relocalises from the inner compartments to become sequestered primarily within the OS. In the past several years, the question of whether these proteins are actively moved by molecular motors or whether they are redistributed by simple diffusion has been extensively debated. This review focuses on the most essential works in the area and concludes that the basic principle driving this protein movement is diffusion. The directionality and light dependence of this movement is achieved by the interactions of arrestin and transducin with their spatially restricted binding partners.

  11. Study of defects induced by phosphorus diffusion in silicon. Correlations with some electrical parameters of devices

    International Nuclear Information System (INIS)

    Mortini, Patrick

    1973-01-01

    Structural defects are created during the diffusion of phosphorus in silicon. These defects are correlated with the deteriorations of the generation - recombination and avalanche phenomena in the charge - space region of planar diodes. The main topics studied are: choice of electrical parameters and test devices; experimental means of characterisation of defects: X-ray topography, transmission electron microscopy and mainly chemical etching which has been particularly emphasized; generation of the defects as a function of technological conditions; electrical measurements and correlations. (author) [fr

  12. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus

    Czech Academy of Sciences Publication Activity Database

    Šlais, Karel; Voříšek, Ivan; Zoremba, N.; Homola, Aleš; Dmytrenko, Lesia; Syková, Eva

    2008-01-01

    Roč. 209, č. 1 (2008), s. 145-154 ISSN 0014-4886 R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) LC554 Grant - others:EU(DE) 512146 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Source of funding: R - rámcový projekt EK Keywords : Diffusion * Microdialysis * Pilocarpine Subject RIV: FH - Neurology Impact factor: 3.974, year: 2008

  13. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Swarupa Kancherla

    Full Text Available Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI. Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.

  14. Anomalous X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g., in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discussion of the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references.

  15. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  16. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  17. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  18. Enhancement in anomalous Hall resistivity of Co/Pd multilayer and CoPd alloy by Ga+ ion irradiation

    KAUST Repository

    Guo, Zaibing

    2014-02-01

    In this paper, we report the effect of Ga+ ion irradiation on anomalous Hall effect (AHE) and longitudinal resistivity (ρxx) in [Co(3 Å)/Pd(5 Å)]80 multilayer and Co 42Pd58 alloy. 4- and 2-fold increases in anomalous Hall resistivity (ρAH) in the Co/Pd multilayer and CoPd alloy have been observed after irradiations at doses of 2.4 × 1015 and 3.3×10 15 ions/cm2, respectively. Skew scattering and side jump contributions to AHE have been analyzed based on the scaling relationship ρAH = aρxx + bρ2xx. For the Co/Pd multilayer, AHE is mainly affected by ion irradiation-induced interface diffusion and defects. For the CoPd alloy, the increase in doses above 1.5 × 1015 ions/cm2 induces a sign change in skew scattering, followed by the skew scattering contribution to AHE overwhelming the side jump contribution, this phenomenon should be attributed to irradiation-induced defects and modifications in chemical ordering. © Copyright EPLA, 2014.

  19. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  20. Reactions and Diffusion During Annealing-Induced H(+) Generation in SOI Buried Oxides

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Fleetwood, D.M.; Vanheusden, K; Warren, W.L.

    1999-01-01

    We report experimental results suggesting that mobile protons are generated at strained Si-O-Si bonds near the Si/SiO 2 interface during annealing in forming gas. Our data further suggest that the presence of the top Si layer plays a crucial role in the mobile H + generation process. Finally, we show that the diffusion of the reactive species (presumably H 2 or H 0 ) towards the H + generation sites occurs laterally along the buried oxide layer, and can be impeded significantly due to the presence of trapping sites in the buried oxide

  1. Laser-induced generation of surface periodic structures in media with nonlinear diffusion

    Science.gov (United States)

    Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.

    2017-12-01

    A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.

  2. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  3. Anomalous rapid defect annihilation in self-assembled nanopatterns by defect melting.

    Science.gov (United States)

    Kim, Bong Hoon; Park, So Jung; Jin, Hyeong Min; Kim, Ju Young; Son, Seung-Woo; Kim, Myung-Hyun; Koo, Chong Min; Shin, Jonghwa; Kim, Jaeup U; Kim, Sang Ouk

    2015-02-11

    Molecular self-assembly commonly suffers from dense structural defect formation. Spontaneous defect annihilation in block copolymer (BCP) self-assembly is particularly retarded due to significant energy barrier for polymer chain diffusion and structural reorganization. Here we present localized defect melting induced by blending short neutral random copolymer chain as an unusual method to promote the defect annihilation in BCP self-assembled nanopatterns. Chemically neutral short random copolymer chains blended with BCPs are specifically localized and induce local disordered states at structural defect sites in the self-assembled nanopatterns. Such localized "defect melting" relieves the energy penalty for polymer diffusion and morphology reorganization such that spontaneous defect annihilation by mutual coupling is anomalously accelerated upon thermal annealing. Interestingly, neutral random copolymer chain blending also causes morphology-healing self-assembly behavior that can generate large-area highly ordered 10 nm scale nanopattern even upon poorly defined defective prepatterns. Underlying mechanisms of the unusual experimental findings are thoroughly investigated by three-dimensional self-consistent field theory calculation.

  4. The Successful Use of Extracorporeal Membrane Oxygenation in Systemic Lupus Erythematosus-Induced Diffuse Alveolar Haemorrhage

    Directory of Open Access Journals (Sweden)

    Faye Pais

    2017-01-01

    Full Text Available Diffuse alveolar haemorrhage (DAH is a catastrophic pulmonary complication of systemic lupus erythematosus. It can result in refractory hypoxaemia despite mechanical ventilation. Increasing lung compliance and worsening pulmonary hypertension can potentiate cardiogenic shock from acute right ventricular failure. In such patients with cardiopulmonary collapse, veno-arterial (V-A ECMO maybe a viable option that can provide the required haemodynamic support. However, the use of V-A ECMO in such patients is limited due to an associated increased risk of bleeding. Our case report describes the successful use of V-A ECMO without the use of systemic anticoagulation in a patient with DAH. Despite the absence of systemic anticoagulation, no thrombotic complications within the circuit were noted.

  5. A new model to produce sagittal plane rotational induced diffuse axonal injuries

    Directory of Open Access Journals (Sweden)

    Johan eDavidsson

    2011-06-01

    Full Text Available A new in vivo animal model that produces diffuse brain injuries (DBI in sagittal plane rearward rotational acceleration has been developed. In this model, the skull of an anesthetized adult rat is tightly secured to a rotating bar. During trauma, the bar is impacted by a striker that causes the bar and the animal head to rotate rearward; the acceleration phase last 0.4 ms and is followed by a rotation at constant speed and a gentle deceleration when the bar makes contact with a padded stop. The total head angle change is less than 30 degrees. By adjusting the air pressure in the rifle used to accelerate the striker, resulting rotational acceleration between 0.3 and 2.1 Mrad/s2 can be produced.Numerous combinations of trauma levels, post-trauma survival times, brain and serum retrieval and tissue preparation techniques were adopted to characterise this new model. The trauma caused subdural bleedings in animals exposed to severe trauma. Staining brain tissue with β-Amyloid Precursor Protein antibodies and FD Neurosilver that detect degenerating axons revealed wide spread axonal injuries (AI in the corpus callosum, the border between the corpus callosum and cortex and in tracts in the brain stem. The observed AI:s were apparent only when the rotational acceleration level was moderate and above. On the contrary, only limited signs of contusion injuries were observed following trauma. S100 serum analyses indicate that blood vessel and glia cell injuries occur following moderate levels of trauma despite the absence of obvious BBB injuries. We conclude that this rotational trauma model is capable of producing graded axonal injury, is repeatable and produces limited other types of traumatic brain injuries (TBI and as such is useful in the study of injury biomechanics, diagnostics and treatment strategies following diffuse axonal injury (DAI.

  6. A new model to produce sagittal plane rotational induced diffuse axonal injuries.

    Science.gov (United States)

    Davidsson, Johan; Risling, Marten

    2011-01-01

    A new in vivo animal model that produces diffuse brain injuries in sagittal plane rearward rotational acceleration has been developed. In this model, the skull of an anesthetized adult rat is tightly secured to a rotating bar. During trauma, the bar is impacted by a striker that causes the bar and the animal head to rotate rearward; the acceleration phase last 0.4 ms and is followed by a rotation at constant speed and a gentle deceleration when the bar makes contact with a padded stop. The total head angle change is less than 30°. By adjusting the air pressure in the rifle used to accelerate the striker, resulting rotational acceleration between 0.3 and 2.1 Mrad/s(2) can be produced. Numerous combinations of trauma levels, post-trauma survival times, brain and serum retrieval, and tissue preparation techniques were adopted to characterize this new model. The trauma caused subdural bleedings in animals exposed to severe trauma. Staining brain tissue with β-Amyloid Precursor Protein antibodies and FD Neurosilver that detect degenerating axons revealed wide spread axonal injuries (AI) in the corpus callosum, the border between the corpus callosum and cortex and in tracts in the brain stem. The observed AIs were apparent only when the rotational acceleration level was moderate and above. On the contrary, only limited signs of contusion injuries were observed following trauma. Macrophage invasions, glial fibrillary acidic protein redistribution or hypertrophy, and blood brain barrier (BBB) changes were unusual. S100 serum analyses indicate that blood vessel and glia cell injuries occur following moderate levels of trauma despite the absence of obvious BBB injuries. We conclude that this rotational trauma model is capable of producing graded axonal injury, is repeatable and produces limited other types of traumatic brain injuries and as such is useful in the study of injury biomechanics, diagnostics, and treatment strategies following diffuse axonal injury.

  7. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion.

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G L

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  8. Deafferentation-Induced Plasticity of Visual Callosal Connections: Predicting Critical Periods and Analyzing Cortical Abnormalities Using Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Jaime F. Olavarria

    2012-01-01

    Full Text Available Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  9. Quasi-two-layer morphodynamic model for bedload-dominated problems: bed slope-induced morphological diffusion

    Science.gov (United States)

    Maldonado, Sergio; Borthwick, Alistair G. L.

    2018-02-01

    We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119, 64-80 (doi:10.1061/(ASCE)0733-9429(1993)119:1(64))). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.

  10. Prediction of a quantum anomalous Hall state in Co-decorated silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-01-09

    Based on first-principles calculations, we demonstrate that Co-decorated silicene can host a quantum anomalous Hall state. The exchange field induced by the Co atoms combined with the strong spin-orbit coupling of the silicene opens a nontrivial band gap at the K point. As compared to other transition metals, Co-decorated silicene is unique in this respect, since usually hybridization and spin-polarization induced in the silicene suppress a quantum anomalous Hall state.

  11. Diffuse X-ray scattering as a probe of strain-induced nanoscale structure

    International Nuclear Information System (INIS)

    Welberry, T.R.

    2002-01-01

    Full text: We show in this paper that a feature that has been observed in the diffuse scattering patterns of a wide variety of different materials-a diffuse 'ring' or toroidal shaped region of scattering-can be understood in terms of a simple model that has been borrowed from the field of sol-gel science. In this it is supposed that there is a balance between the local attractive forces that are trying to make a particular structure and a rather longer-range repulsive force. In the present context we believe this latter force has its origin in the strain that builds as the preferred local structure tries to fit into the average crystal lattice. We describe here simple Monte Carlo (MC) models in which this principle has been demonstrated for three examples: cubic stabilized zirconia, the didecylbenzene/urea inclusion compound and the pure molecular compound 1,3-dibromo-2,5-diethyl-4,6-dimethyl-benzene (BEMB2). A similar feature is also observed in the alumino-silicate ceramic mullite. Although we are confident that this feature in mullite has similar origins to those of the other examples described, no attempt has been made to model it at this stage as this system shows additional incommensurate diffraction effects not easily described by the kind of simple model presented here. The result of the present work is particularly important in the context of the stabilised zirconia problem. The realisation that the very complex structural problem can be explained by such a simple physical idea should enable further progress to be made in understanding the properties of a wide range of these materials. A description in terms of the cation ordering is, from a chemical point of view, a much more natural approach than that used in previous studies where the oxygen vacancies were given prominence. To incorporate the anions into the derived cation distributions should be quite feasible using simple bond-valence criteria, so that a much more complete model should now be

  12. Background Si-doping effects on Zn diffusion-induced disordering in GaAs/AlGaAs multiple-quantum-well structures

    Science.gov (United States)

    Nguyen, Hong Ky; Ganière, J. D.; Reinhart, F. K.; Blanchard, B.

    1996-04-01

    Identical GaAs/Al0.2Ga0.8As multiple-quantum-well (MQW) structures uniformly doped with Si at various concentrations ranging from 1×1017 to 1×1019 cm-3 are grown by molecular-beam epitaxy to study the effects of the background Si-doping level on the Zn diffusion-induced disordering process. After Zn diffusions at 575 °C for 4 and 16 h, the structures are investigated by secondary-ion-mass spectrometry, and by transmission electron microscopy on cleaved wedges of the sample. The results show that the totally and partially disordered regions are always behind the Zn diffusion front. A dependence of the effective Zn diffusivity and of the disordering rate of the structures on the background Si-doping level is observed. The effective Zn diffusivity and the disordering rate are significantly reduced with increasing background Si concentration. Before Zn diffusion, photoluminescence spectra of the Si-doped MQW structures exhibit an increase in intensity of the Si donor-column-III vacancy complex emission band with increasing Si-doping level. This indicates that the concentration of column-III vacancies in the MQW structures increases as the background Si concentration increases. After Zn diffusion, an important decrease in intensity of the column-III vacancy related emission band is observed on the photoluminescence spectra taken in the Zn-diffused regions. The systematical analysis of the photoluminescence spectra of the Zn-diffused MQW structures as a function of diffusion time and as a function of etching depth below the sample surface makes it possible to describe the physical processes occurring during Zn diffusion. A model based on the ``kick-out'' mechanism of Zn diffusion is proposed to explain the effect of the background Si-doping level on the effective Zn diffusivity. The model shows that the effective Zn diffusivity is controlled by the concentration of column-III interstitials behind the Zn diffusion front and by the donor concentration in the sample

  13. Real-time correction of rigid body motion-induced phase errors for diffusion-weighted steady-state free precession imaging.

    Science.gov (United States)

    O'Halloran, Rafael; Aksoy, Murat; Aboussouan, Eric; Peterson, Eric; Van, Anh; Bammer, Roland

    2015-02-01

    Diffusion contrast in diffusion-weighted steady-state free precession magnetic resonance imaging (MRI) is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a three-dimensional (3D) navigator-based real-time correction of the rigid body motion-induced phase errors is developed for diffusion-weighted steady-state free precession MRI. The efficacy of the real-time prospective correction method in preserving phase coherence of the steady state is tested in 3D phantom experiments and 3D scans of healthy human subjects. In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects, the mean magnitude signal in the data was up to 30% higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady-state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. © 2014 Wiley Periodicals, Inc.

  14. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke.

    Science.gov (United States)

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanicheh, Azadeh; Singhal, Aneesh B; Moskowitz, Michael A; Rosen, Bruce; Tzika, Aria A

    2013-11-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post‑stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state‑of‑the‑art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand‑induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (probotics in the molecular medicine era.

  15. Magnetic effects in anomalous dispersion

    International Nuclear Information System (INIS)

    Blume, M.

    1992-01-01

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ''forward scattering'' properties such as the Faraday effect and circular dichroism

  16. Colligative properties of anomalous water.

    Science.gov (United States)

    Everett, D H; Haynes, J M; McElroy, P J

    1970-06-13

    Investigations of the phase behaviour on freezing and subsequent melting and of other properties indicate that anomalous water is a solution containing a fixed amount of relatively involatile material in normal water. There seems to be no need to postulate the existence of a new polymer of water in such solutions. If only water and silica are present, the properties are consistent with those of a silicic acid gel.

  17. Horizon universality and anomalous conductivities

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Umut [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Tarrío, Javier [Departament de Física Fonamental and Institut de Ciències del Cosmos,Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain)

    2015-10-08

    We show that the value of chiral conductivities associated with anomalous transport is universal in a general class of strongly coupled quantum field theories that admit a gravitational holographic dual in the large N limit. Our result only applies to theories in the presence of external gauge fields with no dynamical gluon fields. On the gravity side the result follows from near horizon universality of the fluctuation equations, similar to the holographic calculation of the shear viscosity.

  18. Anomalous pulse interaction in dissipative media

    Science.gov (United States)

    Bordyugov, Grigory; Engel, Harald

    2008-06-01

    We review a number of phenomena occurring in one-dimensional excitable media due to modified decay behind propagating pulses. Those phenomena can be grouped in two categories depending on whether the wake of a solitary pulse is oscillatory or not. Oscillatory decay leads to nonannihilative head-on collision of pulses and oscillatory dispersion relation of periodic pulse trains. Stronger wake oscillations can even result in a bistable dispersion relation. Those effects are illustrated with the help of the Oregonator and FitzHugh-Nagumo models for excitable media. For a monotonic wake, we show that it is possible to induce bound states of solitary pulses and anomalous dispersion of periodic pulse trains by introducing nonlocal spatial coupling to the excitable medium.

  19. High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange

    Science.gov (United States)

    Murata, H.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K.

    2017-12-01

    The Ni-induced layer-exchange growth of amorphous carbon is a unique method used to fabricate uniform multilayer graphene (MLG) directly on an insulator. To improve the crystal quality of MLG, we prepare AlOx or SiO2 interlayers between amorphous C and Ni layers, which control the extent of diffusion of C atoms into the Ni layer. The growth morphology and Raman spectra observed from MLG formed by layer exchange strongly depend on the material type and thickness of the interlayers; a 1-nm-thick AlOx interlayer is found to be ideal for use in experiments. Transmission electron microscopy and electron energy-loss spectra reveal that the crystal quality of the resulting MLG is much higher than that of a sample without an interlayer. The grain size reaches a few μm, leading to an electrical conductivity of 1290 S/cm. The grain size and the electrical conductivity are the highest among MLG synthesized using a solid-phase reaction including metal-induced crystallization. The direct synthesis of uniform, high-quality MLG on arbitrary substrates will pave the way for advanced electronic devices integrated with carbon materials.

  20. Universality of anomalous diffusion in extremely disordered systems

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Jacobsen, Jacob M.

    1996-01-01

    The universal time-dependence of the mean-square displacement for motion in a random energy landscape with equal minima is evaluated analytically and numerically in the percolation path approximation (PPA), which was recently shown by extensive computer simulations in two and three dimensions [Dy...

  1. Oscillatory variation of anomalous diffusion in pendulum systems

    Indian Academy of Sciences (India)

    driven and parametrically-driven pendulum systems are presented. When the frequency of the periodic driving force is varied, the exponent μ, which is the rate of divergence of the mean square displacement with time, is found to vary in an ...

  2. Oscillatory variation of anomalous diffusion in pendulum systems

    Indian Academy of Sciences (India)

    ... exponent , which is the rate of divergence of the mean square displacement with time, is found to vary in an oscillatory manner. We show the presence of such a variation in other statistical measures such as variance of position, kurtosis, and exponents in the power-exponential law of probability distribution of position.

  3. Segregation and diffusion of deffects induced by radiation in binary copper alloys

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1984-01-01

    Actually considerable theoretical and experimental progress has been made in establishing and in understanding the general feactures of the Radiation Induced Solute Difusion or Segregation such as its temperature, time and displacement rate dependence and the effects of some important materials factors such as the initial solute misfit. During irradiation, the local alloy compositions will change by defect flux driven, non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries and the compositional change are likely to influence a number of properties and phenomena important to Thermonuclear Reactors, as for example, Ductility, Corrosion, Stress, Corrosion Craking, Sputtering and Blistering. Our work is correlated with the 1 MeV electrons irradiations effects in Copper alloys where the alloying elements are Be, Pt, Sn. These three elements are undersized, similar and oversized relating the Copper atom radius, respectively. How starts and develops the Segregation Induced by Irradiation 'In Situ' with help of the High Voltage Electron Microscopy as technique. (Author) [pt

  4. Does the presence of tumor-induced cortical bone destruction at CT have any prognostic value in newly diagnosed diffuse large B-cell lymphoma?

    NARCIS (Netherlands)

    Adams, Hugo J A; de Klerk, John M H; Fijnheer, Rob; Heggelman, Ben G F; Dubois, Stefan V.; Nievelstein, Rutger A J; Kwee, Thomas C.

    2015-01-01

    Purpose: To determine the prognostic value of tumor-induced cortical bone destruction at computed tomography (CT) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Materials and methods: This retrospective study included 105 patients with newly diagnosed DLBCL who had undergone CT and bone

  5. Diffusion-weighted MR imaging of metastatic abdominal and pelvic tumours is sensitive to early changes induced by a VEGF inhibitor using alternative diffusion attenuation models

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Matthew R. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Institute of Cancer Research, Sutton, Surrey (United Kingdom); Messiou, Christina; DeSouza, Nandita [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Royal Marsden NHS Foundation Trust, Department of Radiology, Sutton, Surrey (United Kingdom); Collins, David; Leach, Martin O. [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK and EPSRC Cancer Imaging Centre, Sutton, Surrey (United Kingdom); Morgan, Veronica A. [Royal Marsden NHS Foundation Trust, Department of Radiology, Sutton, Surrey (United Kingdom); Tessier, Jean; Young, Helen [Early Clinical Development, AstraZeneca, Macclesfield (United Kingdom)

    2016-05-15

    To assess the utility of diffusion weighted imaging for monitoring early treatment effects associated with a VEGF inhibitor. Twenty-nine patients with metastatic abdominal and pelvic tumours were recruited and imaged with DW-MRI: twice at baseline, and after 7 and 28 days of treatment with cediranib. Tumour measures were derived using mono-exponential, bi-exponential and stretched-exponential models, and parameter repeatability and treatment effects seen after 7 and 28 days were assessed. Correlations with volume changes and DCE-MRI metrics were also assessed. Diffusion coefficient repeatabilities from all models were < 6 %; f and D* (bi-exponential) were 22 % and 44 %; α (stretched-exponential) was 4.2 %. Significant increases in the diffusion coefficients from all models were observed at day 28 but not day 7. Significant decreases in D* and f.D* were observed at day 7 and in f at day 28; significant increases in α were observed at both time-points. Weak correlations between DW-MRI changes and volume changes and DCE-MRI changes were observed. DW-MRI is sensitive to early and late treatment changes caused by a VEGF inhibitor using non-mono-exponential models. Evidence of over-fitting using the bi-exponential model suggests that the stretched-exponential model is best suited to monitor such changes. (orig.)

  6. Medical image of the week: chemotherapy-induced diffuse alveolar hemorrhage

    Directory of Open Access Journals (Sweden)

    Khan S

    2017-11-01

    Full Text Available No abstract available. Article truncated after 150 words. A 65-year-old man presented with relapse of his acute myeloid leukemia (AML. On admission he was seen to have a reduced ejection fraction at 40-50%. His chest X-ray showing pulmonary edema and bilateral pleural effusions (Figure 1A. He was diuresed to his dry weight to improve his clinical status. The decision was made to re-induce him for his AML with fludarabine and cytarabine without idarubicin (due to his reduced ejection fraction. After 2 doses of each the fludarabine and cytarabine the patient showed worsening respiratory distress, had increasing oxygen requirements and started having hemoptysis. Repeat imaging of his chest showed bilateral infiltrates in his lungs on both chest x-ray (Figure 1B and chest CT (Figure 2. Infectious causes for the changes were sought and ruled out. He was transferred to the ICU where he was put on high flow oxygen and received methylprednisolone 1000 mg IV daily for 3 days. …

  7. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  8. Lateral migration and diffusion of a mechanical engineer through emulsion of drops induced by Andy's influence

    Science.gov (United States)

    Sarkar, Kausik

    2014-11-01

    My initiation to analytical sides of Stokes flow was thorough cyclostyled notes of Andy's Stanford fluid mechanics notes distributed by Ashok Sangani when he taught a course at Hopkins. Since then, reversibility of Stokes flow and singularity solution remained with me during my research carrier. I will discuss how it and Frankel and Acrivos (1970) paper in JFM influenced my research in drop deformation and emulsion rheology at finite inertia, winning the 2009 Acrivos award by my first PhD student Xiaoyi Li. Finally, I will discuss migration of suspended particles, drops, polymers and biological cells caused by breaking of Stokes reversibility due to deformation and viscoelasticity. Here, we show that the migration is induced by the image stresslet field, as was also indicated by Dave Leighton's thesis and a paper with Smart [1991, Phys. Fluid A, 3, 21]. We relate the stresslet field to the Interface tensor, and investigate the effects of drop inclination. In contrast to a plausible notion asserted also in the literature, that reduced inclination (increased alignment with flow) decreases migration, it is shown here that reduced inclination increases the stresslet and thereby the migration velocity.

  9. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  10. Anomalous U(1) as a mediator of Supersymmetry Breaking

    CERN Document Server

    Dvali, Gia; Dvali, Gia; Pomarol, Alex

    1996-01-01

    We point out that an anomalous gauge U(1) symmetry is a natural candida= te for being the mediator and messenger of supersymmetry breaking. It facilitate= s dynamical supersymmetry breaking even in the flat limit. Soft masses are induced by both gravity and the U(1) gauge interactions giving an unusual= mass hierarchy in the sparticle spectrum which suppresses flavor violations. T= his scenario does not suffer from the Polonyi problem.

  11. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke

    Science.gov (United States)

    LAZARIDOU, ASIMINA; ASTRAKAS, LOUKAS; MINTZOPOULOS, DIONYSSIOS; KHANICHEH, AZADEH; SINGHAL, ANEESH B.; MOSKOWITZ, MICHAEL A.; ROSEN, BRUCE; TZIKA, ARIA A.

    2013-01-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post-stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state-of-the-art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand-induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (pneuroplasticity. Our study is an example of personalized medicine using advanced neuroimaging methods in conjunction with robotics in the molecular medicine era. PMID:23982596

  12. Si diffusion in compositional disordering of Si-implanted GaAs/AlGaAs superlattices induced by rapid thermal annealing

    International Nuclear Information System (INIS)

    Uematsu, Masashi; Yanagawa, Fumihiko

    1988-01-01

    The Si diffusion in Si-implanted GaAs/Al 0.5 Ga 0.5 As superlattices intermixed in the disrodering process induced by rapid thermal annealing (RTA), is investigated by means of secondary ion mass spectroscopy (SIMS). The SIMS profiles indicate that no fast Si diffusion occurs during the disordering, and the disordering occurs when the Si concentration exceeds 1 x 10 19 cm -3 , which is about three times larger than the threshold value for the disordering by furnace annealing (FA). The number of Si atoms which are allowed to pass through the heterointerface is considered to be essential for disordering. (author)

  13. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  14. Anomalous gauge theories as constrained Hamiltonian systems

    International Nuclear Information System (INIS)

    Fujiwara, T.

    1989-01-01

    Anomalous gauge theories considered as constrained systems are investigated. The effects of chiral anomaly on the canonical structure are examined first for nonlinear σ-model and later for fermionic theory. The breakdown of the Gauss law constraints and the anomalous commutators among them are studied in a systematic way. An intrinsic mass term for gauge fields makes it possible to solve the Gauss law relations as second class constraints. Dirac brackets between the time components of gauge fields are shown to involve anomalous terms. Based upon the Ward-Takahashi identities for gauge symmetry, we investigate anomalous fermionic theory within the framework of path integral approach. (orig.)

  15. The heat shock protein 90 inhibitor IPI-504 induces apoptosis of AKT-dependent diffuse large B-cell lymphomas.

    Science.gov (United States)

    Abramson, Jeremy S; Chen, Wen; Juszczynski, Przemyslaw; Takahashi, Hidenobu; Neuberg, Donna; Kutok, Jeffery L; Takeyama, Kunihiko; Shipp, Margaret A

    2009-02-01

    Heat shock protein 90 (HSP90) is a molecular chaperone that stabilizes critical client proteins in multiple cancers. Gene expression profiling was utilized to characterize HSP90 isoform expression in primary human diffuse large B-cell lymphomas (DLBCLs). HSP90 alpha and beta isoforms were differentially expressed in subsets of tumours defined by their transcriptional profiles. Thereafter, we assessed the activity of the HSP90 inhibitor, IPI-504, in an extensive panel of DLBCL cell lines. IPI-504, which interacts with the conserved ATP-binding site in both HSP90 isoforms, inhibited proliferation and induced apoptosis in the majority of DLBCL cell lines at low micromolar concentrations. IPI-504-sensitive cell lines expressed high levels of the HSP90 client protein, pAKT, and exhibited dose-dependent decreases in pAKT levels following IPI-504 treatment and significantly reduced proliferation following AKT RNAi. Furthermore, the combination of low-dose (IPI-504 and the AKT/Pi3K pathway inhibitor, LY24009, was synergistic in IPI-504-sensitive DLBCL cell lines. Low-dose IPI-504 was also synergistic with the chemotherapeutic agent, doxorubicin. The HSP90 inhibitor IPI-504 warrants further investigation in DLBCL alone and in combination with identified client protein inhibitors and active chemotherapeutic agents.

  16. Correlations for damage in diffused-junction InP solar cells induced by electron and proton irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Takamoto, T.; Taylor, S.J.; Walters, R.J.; Summers, G.P.; Flood, D.J.; Ohmori, M.

    1997-01-01

    The damage to diffused-junction n + -p InP solar cells induced by electron and proton irradiations over a wide range of energy from 0.5 to 3 MeV and 0.015 to 20 MeV, respectively, has been examined. The experimental electron and proton damage coefficients have been analyzed in terms of displacement damage dose, which is the product of the particle fluence and the calculated nonionizing energy loss [G. P. Summers, E. A. Burke, R. Shapiro, S. R. Messenger, and R. J. Walters, IEEE Trans. Nucl. Sci. 40, 1300 (1993).] Degradation of InP cells due to irradiation with electrons and protons with energies of more than 0.5 MeV show a single curve as a function of displacement damage dose. Based on the deep-level transient spectroscopy analysis, damage equivalence between electron and proton irradiation is discussed. InP solar cells are confirmed to be substantially more radiation resistant than Si and GaAs-on-Ge cells. copyright 1997 American Institute of Physics

  17. Monitoring closed head injury induced changes in brain physiology with orthogonal diffuse near-infrared reflectance spectroscopy

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2014-03-01

    We applied an orthogonal diffuse reflectance spectroscopy (o-DRS) to assess brain physiology following closed head injury (CHI). CHI was induced in anesthetized male mice by weight-drop device using ~50gram cylindrical metal falling from a height of 90 cm onto the intact scalp. A total of twenty-six mice were used in the experiments divided randomly into three groups as follows: Group 1 (n=11) consisted of injured mice monitored for 1 hour every 10 minutes. Group 2 (n=10) were the control mice not experience CHI. Group 3 (n=5) consisted of injured mice monitored every minute up to 20 minutes. Measurement of optical quantities of brain tissue (absorption and reduced scattering coefficients) in the near-infrared window from 650 to 1000 nm were carried out by employing different source-detector distances and locations to provide depth sensitivity. With respect to baseline, we found difference in brain hemodynamic properties following injury. In addition, o-DRS successfully evaluate the structural variations likely from evolving cerebral edema throughout exploring the scattering spectral shape.

  18. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  19. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1989-12-01

    When the magnetic moment of particle is conserved, there are three mechanisms which cause anomalous transport. These are: variation of magnetic field strength in flux surface, variation of electrostatic potential in flux surface, and destruction of flux surface. The anomalous transport of different groups of particles resulting from each of these mechanisms is different. This fact can be exploited to determine the cause of transport operative in an experimental situation. This approach can give far more information on the transport than the standard confinement time measurements. To implement this approach, we have developed Monte Carlo codes for toroidal geometries. The equations of motion are developed in a set of non-canonical, practical Boozer co-ordinates by means of Jacobian transformations of the particle drift Hamiltonian equations of motion. Effects of collisions are included by appropriate stochastic changes in the constants of motion. Effects of the loop voltage on particle motions are also included. We plan to apply our method to study two problems: the problem of the hot electron tail observed in edge region of ZT-40, and the energy confinement time in TOKAPOLE II. For the ZT-40 problem three situations will be considered: a single mode in the core, a stochastic region that covers half the minor radius, a stochastic region that covers the entire plasma. A turbulent spectrum of perturbations based on the experimental data of TOKAPOLE II will be developed. This will be used to simulate electron transport resulting from ideal instabilities and resistive instabilities in TOKAPOLE II

  20. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    Science.gov (United States)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  1. Transport phenomena in sharply contrasting media with a diffusion barrier

    International Nuclear Information System (INIS)

    Dvoretskaya, O A; Kondratenko, P S

    2011-01-01

    Using the advection–diffusion equation, we analytically study contaminant transport in a sharply contrasting medium with a diffusion barrier due to localization of a contaminant source in a low-permeability medium. Anomalous diffusion behavior and a crossover between different transport regimes are observed. The diffusion barrier results in exponential attenuation of the source power, retardation of the contaminant plume growth and modification of the concentration distribution at large distances. (paper)

  2. Anomalous behaviors during infiltration into heterogeneous porous media

    Science.gov (United States)

    Aarão Reis, F. D. A.; Bolster, D.; Voller, V. R.

    2018-03-01

    Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F ∼t1/2 . In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.

  3. Anomalous osmosis resulting from preferential absorption

    NARCIS (Netherlands)

    Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.

    1965-01-01

    An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly

  4. GRAVITATIONAL ENCOUNTERS AND THE EVOLUTION OF GALACTIC NUCLEI. III. ANOMALOUS RELAXATION

    International Nuclear Information System (INIS)

    Merritt, David

    2015-01-01

    This paper is the third in a series presenting the results of direct numerical integrations of the Fokker–Planck equation for stars orbiting a supermassive black hole (SBH) at the center of a galaxy. The algorithm of Paper II included diffusion coefficients that described the effects of random (“classical”) and correlated (“resonant”) relaxation. In this paper, the diffusion coefficients of Paper II have been generalized to account for the effects of “anomalous relaxation,” the qualitatively different way in which eccentric orbits evolve in the regime of rapid relativistic precession. Two functional forms for the anomalous diffusion coefficients are investigated, based on power-law or exponential modifications of the resonant diffusion coefficients. The parameters defining the modified coefficients are first constrained by comparing the results of Fokker–Planck integrations with previously published N-body integrations. Steady-state solutions are then obtained via the Fokker–Planck equation for models with properties similar to those of the Milky Way nucleus. Inclusion of anomalous relaxation leads to the formation of less prominent cores than in the case of resonant relaxation alone, due to the lengthening of diffusion timescales for eccentric orbits. Steady-state capture rates of stars by the SBH are found to always be less than capture rates in the presence of resonant relaxation alone

  5. Soft theorems from anomalous symmetries

    Science.gov (United States)

    Huang, Yu-tin; Wen, Congkao

    2015-12-01

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α' expansion of string theory amplitudes, we study the matrix elements of operator R 4 with half maximal supersymmetry. We construct the non-linear completion of R 4 that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R 4.

  6. Soft theorems from anomalous symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, ROC (China); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-12-22

    We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α{sup ′} expansion of string theory amplitudes, we study the matrix elements of operator R{sup 4} with half maximal supersymmetry. We construct the non-linear completion of R{sup 4} that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R{sup 4}.

  7. Dinotor model for anomalous nuclei

    International Nuclear Information System (INIS)

    Castillejo, L.; Goldhaber, A.S.; Jackson, A.D.; Johnson, M.B.

    1986-01-01

    The simplest version of the MIT bag model implies the existence of metastable toroidal bags, with large radius proportional to the enclosed baryon number, and small radius comparable to that of an ordinary nucleon (we refer to those toroidal bags as dinotors). Considerations of various possible instabilities, and of the effects of quark interactions through intermediate gluons, suggest that the metastability is still valid when the model is treated more realistically. These results might provide an explanation for reports of anomalously large interaction cross sections of secondary fragments (''anomalons'') observed in visual track detectors. However, it appears that the most likely characteristics of toroidal bags would not be compatible with those of anomalons, and would not be as easy to detect in emulsions. copyright 1986 Academic Press, Inc

  8. Anomalous transport in mirror systems

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  9. Anomalous Lorentz and CPT violation

    Science.gov (United States)

    Klinkhamer, F. R.

    2018-01-01

    If there exists Lorentz and CPT violation in nature, then it is crucial to discover and understand the underlying mechanism. In this contribution, we discuss one such mechanism which relies on four-dimensional chiral gauge theories defined over a spacetime manifold with topology ℛ3 × S 1 and periodic spin structure for the compact dimension. It can be shown that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. For arbitrary Abelian U(1) gauge fields with trivial holonomies in the compact direction, this anomalous Lorentz and CPT violation has recently been established perturbatively with a Pauli-Villars-type regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.

  10. Anomalous axion interactions and topological currents in dense matter

    International Nuclear Information System (INIS)

    Metlitski, Max A.; Zhitnitsky, Ariel R.

    2005-01-01

    Recently an effective Lagrangian for the interactions of photons, Nambu-Goldstone bosons and superfluid phonons in dense quark matter has been derived using anomaly matching arguments. In this paper we illuminate the nature of certain anomalous terms in this Lagrangian by an explicit microscopic calculation. We also generalize the corresponding construction to introduce the axion field. We derive an anomalous axion effective Lagrangian describing the interactions of axions with photons and superfluid phonons in the dense matter background. This effective Lagrangian, among other things, implies that an axion current will be induced in the presence of magnetic field. We speculate that this current may be responsible for the explanation of neutron star kicks

  11. Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes

    Science.gov (United States)

    Yin, Deshun; Qu, Pengfei

    2018-02-01

    Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.

  12. Evidence of a circularly polarized light mode along the optic axis in c-cut NH4H2PO4, induced by circular differential reflection and anomalous birefringence

    International Nuclear Information System (INIS)

    Kaminsky, Werner; Steininger, Steven; Herreros-Cedres, Javier; Glazer, Anthony Michael

    2010-01-01

    The anomalous birefringence and circular differential reflection of NH 4 H 2 PO 4 (4-bar2m), cut on the optic axis, have been found to cause an additional signal in measurements of the optical rotation employing polarized light technology, with the sample between crossed and slightly modulated linear polarizers (tilting high accuracy universal polarimetry). The azimuthal rotation of the linearly polarized light, up to 100 times larger than expected, is described in terms of a circularly polarized light mode along the optic axis of varying amplitude. Experimental evidence leading to our conclusion is given and a qualitative model for the effect is presented.

  13. Solutions for a diffusion equation with a backbone term

    International Nuclear Information System (INIS)

    Tateishi, A A; Lenzi, E K; Ribeiro, H V; Evangelista, L R; Mendes, R S; Da Silva, L R

    2011-01-01

    We investigate the diffusion equation ∂ t ρ=D y ∂ y 2 ρ+D x ∂ x 2 ρ+ D-bar x δ(y)∂ x μ ρ subjected to the boundary conditions ρ(±∞,y;t)=0 and ρ(x,±∞;t)=0, and the initial condition ρ(x,y;0)= ρ-hat (x,y). We obtain exact solutions in terms of the Green function approach and analyze the mean square displacement in the x and y directions. This analysis shows an anomalous spreading of the system which is characterized by different diffusive regimes connected to anomalous diffusion

  14. Direct Observation of Heavy-Tailed Storage Times of Bed Load Tracer Particles Causing Anomalous Superdiffusion

    Science.gov (United States)

    Bradley, D. Nathan

    2017-12-01

    A consensus has formed that the step length distribution of fluvial bed load is thin tailed and that the observed anomalous superdiffusion of bed load tracer particles must arise from heavy-tailed resting times. However, heavy-tailed resting times have never been directly observed in the field over multiple floods. Using 9 years of data from a large bed load tracer experiment, I show that the spatial variance of the tracer plume scales faster than linearly with integrated excess stream power, indicating anomalous superdiffusion. The superdiffusion is caused by a heavy-tailed distribution of observed storage times that is fit with a truncated Pareto distribution with a tail parameter that is predicted by anomalous diffusion theory. The heavy-tailed distribution of storage times causes the tracer virtual velocity to slow over time, indicated by a sublinear increase in the mean displacement that is predicted by the storage time distribution tail parameter.

  15. Anomalous dispersion enhanced Cerenkov phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  16. Anomalous Nernst effect in type-II Weyl semimetals

    Science.gov (United States)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  17. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  18. Anomalous transport and stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Balescu, R. [Universite Libre de Bruxelles (Belgium)

    1996-03-01

    The relation between kinetic transport theory and theory of stochastic processes is reviewed. The Langevin equation formalism provides important, but rather limited information about diffusive processes. A quite promising new approach to modeling complex situations, such as transport in incompletely destroyed magnetic surfaces, is provided by the theory of Continuous Time Random Walks (CTRW), which is presented in some detail. An academic test problem is discussed in great detail: transport of particles in a fluctuating magnetic field, in the limit of infinite perpendicular correlation length. The well-known subdiffusive behavior of the Mean Square Displacement (MSD), proportional to t{sup 1/2}, is recovered by a CTRW, but the complete density profile is not. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW. 16 refs., 3 figs.

  19. Resting State and Diffusion Neuroimaging Predictors of Clinical Improvements Following Constraint-Induced Movement Therapy in Children With Hemiplegic Cerebral Palsy.

    Science.gov (United States)

    Manning, Kathryn Y; Fehlings, Darcy; Mesterman, Ronit; Gorter, Jan Willem; Switzer, Lauren; Campbell, Craig; Menon, Ravi S

    2015-10-01

    The aim was to identify neuroimaging predictors of clinical improvements following constraint-induced movement therapy. Resting state functional magnetic resonance and diffusion tensor imaging data was acquired in 7 children with hemiplegic cerebral palsy. Clinical and magnetic resonance imaging (MRI) data were acquired at baseline and 1 month later following a 3-week constraint therapy regimen. A more negative baseline laterality index characterizing an atypical unilateral sensorimotor resting state network significantly correlated with an improvement in the Canadian Occupational Performance Measure score (r = -0.81, P = .03). A more unilateral network with decreased activity in the affected hemisphere was associated with greater improvements in clinical scores. Higher mean diffusivity in the posterior limb of the internal capsule of the affect tract correlated significantly with improvements in the Jebsen-Taylor score (r = -0.83, P = .02). Children with more compromised networks and tracts improved the most following constraint therapy. © The Author(s) 2015.

  20. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Christopher H., E-mail: chchap@umich.edu [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Nagesh, Vijaya [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Sundgren, Pia C. [Department of Radiology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiology, Skane University Hospital, Lund (Sweden); Buchtel, Henry [Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI (United States); Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI (United States); Chenevert, Thomas L. [Department of Radiology, University of Michigan Medical School, Ann Arbor, MI (United States); Junck, Larry [Department of Neurology, University of Michigan Medical School, Ann Arbor, MI (United States); Lawrence, Theodore S.; Tsien, Christina I. [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Cao, Yue [Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiology, University of Michigan Medical School, Ann Arbor, MI (United States)

    2012-04-01

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity ({lambda}{sub Double-Vertical-Line }) decreased and perpendicular diffusivity ({lambda}{sub Up-Tack }) increased after RT, with early changes correlating to later changes (p < .05). The radiation dose correlated with an increase in cingulum {lambda}{sub Up-Tack} at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in {lambda}{sub Up-Tack} at 3 and 6 weeks (p < .05). The post-RT changes in verbal recall scores correlated linearly with the late changes in cingulum {lambda}{sub Double-Vertical-Line} (30 weeks, p < .02). Using receiver operating characteristic curves, early cingulum {lambda}{sub Double-Vertical-Line} changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.

  1. Analytic cognitive style predicts paranormal explanations of anomalous experiences but not the experiences themselves: Implications for cognitive theories of delusions.

    Science.gov (United States)

    Ross, Robert M; Hartig, Bjoern; McKay, Ryan

    2017-09-01

    It has been proposed that delusional beliefs are attempts to explain anomalous experiences. Why, then, do anomalous experiences induce delusions in some people but not in others? One possibility is that people with delusions have reasoning biases that result in them failing to reject implausible candidate explanations for anomalous experiences. We examine this hypothesis by studying paranormal interpretations of anomalous experiences. We examined whether analytic cognitive style (i.e. the willingness or disposition to critically evaluate outputs from intuitive processing and engage in effortful analytic processing) predicted anomalous experiences and paranormal explanations for these experiences after controlling for demographic variables and cognitive ability. Analytic cognitive style predicted paranormal explanations for anomalous experiences, but not the anomalous experiences themselves. We did not study clinical delusions. Our attempts to control for cognitive ability may have been inadequate. Our sample was predominantly students. Limited analytic cognitive style might contribute to the interpretation of anomalous experiences in terms of delusional beliefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Azhar R Hussain

    Full Text Available BACKGROUND: We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL. In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4', 5-trihydroxystilbene, a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL cells in causing inhibition of cell viability and inducing apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS. Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect. CONCLUSION/SIGNIFICANCE: Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.

  3. Anomalous interactions in confined charge-stabilized colloid

    International Nuclear Information System (INIS)

    Grier, D G; Han, Y

    2004-01-01

    Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are supposed to repel each other. Consequently, experimental evidence for anomalous long-ranged like-charged attractions induced by geometric confinement inspired a burst of activity. This has largely subsided because of nagging doubts regarding the experiments' reliability and interpretation. We describe a new class of thermodynamically self-consistent colloidal interaction measurements that confirm the appearance of pairwise attractions among colloidal spheres confined by one or two bounding walls. In addition to supporting previous claims for this as-yet unexplained effect, these measurements also cast new light on its mechanism

  4. Phenomenology of anomalous chiral transports in heavy-ion collisions

    Science.gov (United States)

    Huang, Xu-Guang

    2018-01-01

    High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.

  5. Predicting molecular scale skin-effect in electrochemical impedance due to anomalous subdiffusion mediated adsorption phenomenon

    Science.gov (United States)

    Kushagra, Arindam

    2016-02-01

    Anomalous subdiffusion governs the processes which are not energetically driven, on a molecular scale. This paper proposes a model to predict the response of electrochemical impedance due to such diffusion process. Previous works considered the use of fractional calculus to predict the impedance behaviour in response to the anomalous diffusion. Here, we have developed an expression which predicts the skin-effect, marked by an increase in the impedance with increasing frequency, in this regime. Negative inductances have also been predicted as a consequence of the inertial response of adsorbed species upon application of frequency-mediated perturbations. It might help the researchers in the fields of impedimetric sensors to choose the working frequency and those working in the field of batteries to choose the parameters, likewise. This work would shed some light into the molecular mechanisms governing the impedance when exposed to frequency-based perturbations like electromagnetic waves (microwaves to ionizing radiations) and in charge storage devices like batteries etc.

  6. Variation in diffusion-induced solidification rate of liquated Ni-Cr-B insert during TLP bonding of Waspaloy superalloy

    International Nuclear Information System (INIS)

    Tokoro, K.; Wikstrom, N.P.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    A microstructural study was performed on transient liquid phase (TLP) bonded Waspaloy superalloy with a Ni-Cr-B filler. The applicability of a diffusion model based on Fick's second law of diffusion to determine the time required for complete isothermal solidification (t f ) was investigated. Over the temperature range of 1065-1110 deg. C, experimental observations of t f were in reasonable agreement with t f values predicted by the diffusion model. However, a notable deviation was observed in joints prepared between 1175 and 1225 deg. C in that the rate of isothermal solidification was reduced at these temperatures resulting in the formation of a centerline eutectic-type microconstituent, which in contrast, was prevented from forming after holding the brazing assembly for an equivalent bonding time at a lower temperature of 1145 deg. C. Boride particles were observed as part of the eutectic product, which suggested that diffusion of boron out of the liquated insert was also reduced at these higher temperatures. A decrease in solubility of the melting point depressing solute, boron, with increase in temperature is suggested to be an important factor contributing to the reduction in isothermal solidification rate observed at the higher bonding temperatures

  7. Highlighting a variety of unusual characteristics of adsorption and diffusion in microporous materials induced by clustering of guest molecules

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2010-01-01

    In this work, we highlight several unusual characteristics of adsorption and diffusion of a variety of guest molecules, such as linear and branched alkalies with a number of C atoms in the 1-6 range, CO2, and Ar in microporous structures such as zeolites (FAU, NaY) and metal organic frameworks

  8. Anomalous energy transport in hot plasmas: solar corona and Tokamak

    International Nuclear Information System (INIS)

    Beaufume, P.

    1992-04-01

    Anomalous energy transport is studied in two hot plasmas and appears to be associated with a heating of the solar corona and with a plasma deconfining process in tokamaks. The magnetic structure is shown to play a fundamental role in this phenomenon through small scale instabilities which are modelized by means of a nonlinear dynamical system: the Beasts' Model. Four behavior classes are found for this system, which are automatically classified in the parameter space thanks to a neural network. We use a compilation of experimental results relative to the solar corona to discuss current-based heating processes. We find that a simple Joule effect cannot provide the required heating rates, and therefore propose a dimensional model involving a resistive reconnective instability which leads to an efficient and discontinuous heating mechanism. Results are in good agreement with the observations. We give an analytical expression for a diffusion coefficient in tokamaks when magnetic turbulence is perturbing the topology, which we validate thanks to the standard mapping. A realistic version of the Beasts' Model allows to test a candidate to anomalous transport: the thermal filamentation instability

  9. Regulation of respiration and the oxygen diffusion barrier in soybean protect symbiotic nitrogen fixation from chilling-induced inhibition and shoots from premature senescence.

    Science.gov (United States)

    van Heerden, Philippus D R; Kiddle, Guy; Pellny, Till K; Mokwala, Phatlane W; Jordaan, Anine; Strauss, Abram J; de Beer, Misha; Schlüter, Urte; Kunert, Karl J; Foyer, Christine H

    2008-09-01

    Symbiotic nitrogen fixation is sensitive to dark chilling (7 degrees C-15 degrees C)-induced inhibition in soybean (Glycine max). To characterize the mechanisms that cause the stress-induced loss of nodule function, we examined nodule structure, carbon-nitrogen interactions, and respiration in two soybean genotypes that differ in chilling sensitivity: PAN809 (PAN), which is chilling sensitive, and Highveld Top (HT), which is more chilling resistant. Nodule numbers were unaffected by dark chilling, as was the abundance of the nitrogenase and leghemoglobin proteins. However, dark chilling decreased nodule respiration rates, nitrogenase activities, and NifH and NifK mRNAs and increased nodule starch, sucrose, and glucose in both genotypes. Ureide and fructose contents decreased only in PAN nodules. While the chilling-induced decreases in nodule respiration persisted in PAN even after return to optimal temperatures, respiration started to recover in HT by the end of the chilling period. The area of the intercellular spaces in the nodule cortex and infected zone was greatly decreased in HT after three nights of chilling, an acclimatory response that was absent from PAN. These data show that HT nodules are able to regulate both respiration and the area of the intercellular spaces during chilling and in this way control the oxygen diffusion barrier, which is a key component of the nodule stress response. We conclude that chilling-induced loss of symbiotic nitrogen fixation in PAN is caused by the inhibition of respiration coupled to the failure to regulate the oxygen diffusion barrier effectively. The resultant limitations on nitrogen availability contribute to the greater chilling-induced inhibition of photosynthesis in PAN than in HT.

  10. The effect of interfacial intermixing on magnetization and anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2015-05-01

    The effect of interfacial intermixing on magnetization and anomalous Hall effect (AHE) in Co/Pd multilayers is studied by using rapid thermal annealing to enhance the interfacial diffusion. The dependence of saturation magnetization and coercivity on the temperature of rapid thermal annealing at 5 K is discussed. It is found that AHE is closely related to the relative thickness of the Co and Pd layers. Localized paramagnetism has been observed which destroys AHE, while AHE can be enhanced by annealing.

  11. Anomalous radon emission as precursor of medium to strong earthquakes

    Science.gov (United States)

    Zoran, Maria

    2016-03-01

    Anomalous radon (Rn222) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth's crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.

  12. Anomalous growth of HfAl3 in thin films

    International Nuclear Information System (INIS)

    Lever, R.F.; Howard, J.K.; Chu, W.K.; Smith, P.J.

    1977-01-01

    Anomalous growth of HfAl 3 is observed on 400degreeC annealing of evaporated thin-film samples consisting of 900 A aluminum, on 1000 A hafnium, 6000 A aluminum and SiO 2 substrates. A continuous layer of HfAl 3 forms at the aluminum--hafnium interface nearer the surface, but not at the deeper interface. The surface HfAl 3 layer then continues to grow, fed by diffusion of underlying aluminum through the intervening hafnium layer. Needlelike precipitates of HfAl 3 are formed along the underlying aluminum grain boundaries. Observations are made by nuclear backscattering, Auger electron spectroscopy, and transmission electron microscopy. Similar behavior is observed in Al--Zr--Al layers

  13. Reduced Lorenz models for anomalous transport and profile resilience

    DEFF Research Database (Denmark)

    Rypdal, K.; Garcia, Odd Erik

    2007-01-01

    The physical basis for the Lorenz equations for convective cells in stratified fluids, and for magnetized plasmas imbedded in curved magnetic fields, are reexamined with emphasis on anomalous transport. It is shown that the Galerkin truncation leading to the Lorenz equations for the closed boundary...... problem is incompatible with finite fluxes through the system in the limit of vanishing diffusion. An alternative formulation leading to the Lorenz equations is proposed, invoking open boundaries and the notion of convective streamers and their back-reaction on the profile gradient, giving rise...... to resilience of the profile. Particular emphasis is put on the diffusionless limit, where these equations reduce to a simple dynamical system depending only on one single forcing parameter. This model is studied numerically, stressing experimentally observable signatures, and some of the perils of dimension...

  14. Temporal correlation functions of concentration fluctuations: an anomalous case.

    Science.gov (United States)

    Lubelski, Ariel; Klafter, Joseph

    2008-10-09

    We calculate, within the framework of the continuous time random walk (CTRW) model, multiparticle temporal correlation functions of concentration fluctuations (CCF) in systems that display anomalous subdiffusion. The subdiffusion stems from the nonstationary nature of the CTRW waiting times, which also lead to aging and ergodicity breaking. Due to aging, a system of diffusing particles tends to slow down as time progresses, and therefore, the temporal correlation functions strongly depend on the initial time of measurement. As a consequence, time averages of the CCF differ from ensemble averages, displaying therefore ergodicity breaking. We provide a simple example that demonstrates the difference between these two averages, a difference that might be amenable to experimental tests. We focus on the case of ensemble averaging and assume that the preparation time of the system coincides with the starting time of the measurement. Our analytical calculations are supported by computer simulations based on the CTRW model.

  15. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  16. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  17. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    International Nuclear Information System (INIS)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D.; Pavesi, M.

    2014-01-01

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  18. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Pavesi, M. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Istituto di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma (Italy)

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  19. Influence of sulfates on chloride diffusion and chloride-induced reinforcement corrosion in limestone cement materials at low temperature

    Czech Academy of Sciences Publication Activity Database

    Sotiriadis, Konstantinos; Rakanta, E.; Mitzithra, M. E.; Batis, G.; Tsivilis, S.

    2017-01-01

    Roč. 29, č. 8 (2017), č. článku 04017060. ISSN 0899-1561 R&D Projects: GA MŠk(CZ) LO1219 Keywords : limestone cement * chloride diffusion * reinforcement corrosion * sulfate attack * low temperature Subject RIV: JN - Civil Engineering OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.644, year: 2016 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0001895

  20. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance.

    Science.gov (United States)

    Mommer, Liesje; Pons, Thijs L; Wolters-Arts, Mieke; Venema, Jan Henk; Visser, Eric J W

    2005-09-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be continued photosynthesis under water, but this possibility has received only little attention. Here, we combine several techniques to investigate the consequences of anatomical and biochemical responses of the terrestrial species Rumex palustris to submergence for different aspects of photosynthesis under water. The orientation of the chloroplasts in submergence-acclimated leaves was toward the epidermis instead of the intercellular spaces, indicating that underwater CO(2) diffuses through the cuticle and epidermis. Interestingly, both the cuticle thickness and the epidermal cell wall thickness were significantly reduced upon submergence, suggesting a considerable decrease in diffusion resistance. This decrease in diffusion resistance greatly facilitated underwater photosynthesis, as indicated by higher underwater photosynthesis rates in submergence-acclimated leaves at all CO(2) concentrations investigated. The increased availability of internal CO(2) in these "aquatic" leaves reduced photorespiration, and furthermore reduced excitation pressure of the electron transport system and, thus, the risk of photodamage. Acclimation to submergence also altered photosynthesis biochemistry as reduced Rubisco contents were observed in aquatic leaves, indicating a lower carboxylation capacity. Electron transport capacity was also reduced in these leaves but not as strongly as the reduction in Rubisco, indicating a substantial increase of the ratio between electron transport and carboxylation capacity upon submergence. This novel finding suggests that this ratio may be less conservative than previously thought.

  1. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  2. Parametric probability distributions for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Foy, Bernard R [Los Alamos National Laboratory; Wohlberg, Brendt E [Los Alamos National Laboratory; Scovel, James C [Los Alamos National Laboratory

    2010-01-01

    The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.

  3. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Simultaneous measurement of speed of sound, thermal diffusivity, and bulk viscosity of 1-ethyl-3-methylimidazolium-based ionic liquids using laser-induced gratings.

    Science.gov (United States)

    Kozlov, Dimitrii N; Kiefer, Johannes; Seeger, Thomas; Fröba, Andreas P; Leipertz, Alfred

    2014-12-11

    The technique of laser-induced gratings (LIGs) has been applied to the simultaneous determination of speed of sound and thermal diffusivity of four 1-ethyl-3-methylimidazolium ([EMIm])-based room temperature ionic liquids (RTILs)-[EMIm][N(CN)2], [EMIm][MeSO3], [EMIm][C(CN)3], and [EMIm][NTf2]-at ambient pressure (1 bar (0.1 MPa)) and temperature (28 °C (301 K)). Transient laser-induced gratings were created as a result of thermalization of a quasi-resonant excitation of highly lying combinational vibrational states of the RTIL molecules and electrostrictive compression of the liquid by radiation of a pulse-repetitive Q-switched Nd:YAG pump laser (1064 nm). The LIGs temporal evolution was recorded using Bragg diffraction of the radiation from a continuous-wave probe laser (532 nm). By fitting the temporal profiles of the LIG signals, the speed of sound and thermal diffusivity were determined, and the isentropic compressibility and thermal conductivity were calculated. Independently, the special experimental arrangement allowed the measurement of the damping of the laser-excited acoustic waves and the derivation of the RTIL bulk viscosity for the first time.

  5. Anomalous biceps origin from the rotator cuff

    Directory of Open Access Journals (Sweden)

    Samik Banerjee

    2015-01-01

    Full Text Available Variations in the origin of the long head of biceps tendon (LHBT have been described in literature; however, its clinical significance remains uncertain. We describe in this report, the history, physical examination and the arthroscopic findings in a patient who had an anomalous origin of the LHBT from the rotator cuff, resulting in restriction of range of motion. This anomalous origin of the long head of biceps tendon causing capsular contracture and restriction of movements leading to secondary internal impingement, has not been extensively reported in the literature. Shoulder arthroscopists should be aware that, although, an uncommon clinical condition, the aberrant congenital origin of the LHBT from the rotator cuff can rarely become pathologic in middle age and lead to shoulder dysfunction. In such cases, release of the anomalous band may be required, along with the treatment of other concomitant intraarticular pathologies in the glenohumeral joint.

  6. Total least squares for anomalous change detection

    Science.gov (United States)

    Theiler, James; Matsekh, Anna M.

    2010-04-01

    A family of subtraction-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQbased anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of these algorithms with the potential for better performance.

  7. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  8. The role of dynamo fluctuations in anomalous ion heating, mode locking, and flow generation

    International Nuclear Information System (INIS)

    Terry, P.W.; Gatto, R.; Fiksel, G.; Fitzpatrick, R.; Hegna, C.C.

    2001-01-01

    Anomalous ion heating intrinsic to magnetic fluctuation-induced electron heat transport, the locking of global modes through wall conditions, and flow generation via the magnetic Reynolds stress all derive from the global, m=1 tearing modes familiar in the RFP as the dynamo modes. These important processes are investigated analytically and numerically, yielding new insights and predictions for comparison with experiment. (author)

  9. Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2016-06-01

    Full Text Available This article presents the effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow toward a stagnation point. It is assumed that there exists a kind of chemical reaction between chemical species A and B. The diffusion coefficients of the two chemical species in the viscoelastic fluid flow are unequal. Since chemical species B is a catalyst at the horizontal surface, hence homogeneous and heterogeneous schemes are of the isothermal cubic autocatalytic reaction and first order reaction respectively. The transformed governing equations are solved numerically using Runge–Kutta integration scheme along with Newton’s method. Good agreement is obtained between present and published numerical results for a limiting case. The influence of some pertinent parameters on skin friction coefficient, local heat transfer rate, together with velocity, induced magnetic field, temperature, and concentration profiles is illustrated graphically and discussed. Based on all of these assumptions, results indicate that the effects of induced magnetic and viscoelastic parameters on velocity, transverse velocity and velocity of induced magnetic field are almost the same but opposite in nature. The strength of heterogeneous reaction parameter is very helpful to reduce the concentration of bulk fluid and increase the concentration of catalyst at the surface.

  10. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

    Science.gov (United States)

    Nakatsuji, Satoru; Kiyohara, Naoki; Higo, Tomoya

    2015-11-01

    In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization. Although such a spontaneous Hall effect has now been observed in a spin liquid state, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics—for example, to develop a memory device that produces almost no perturbing stray fields.

  11. Characteristics of off-waist incident anomalous vortex beams in highly nonlocal media

    Directory of Open Access Journals (Sweden)

    Zhen-Feng Yang

    Full Text Available In this paper, we focus on the effect of the off-waist incident condition on the propagation characteristics of anomalous vortex beams (AVBs in nonlocal media. An expression is derived mathematically in order to describe the propagation dynamics of AVBs in nonlocal media under the off-waist incident condition. Typical propagation characteristics induced by the off-waist incident condition are illustrated numerically. It is found that the propagation characteristics under the off-waist incident condition are much different from those under the on-waist incident condition. Keywords: Off-waist incidence, Anomalous vortex beam, Nonlocal media

  12. Anomalous behavior of 1/f noise in graphene near the charge neutrality point

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Shunpei; Tanaka, Takahiro; Arakawa, Tomonori; Kobayashi, Kensuke [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Matsuo, Sadashige [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Nakaharai, Shu; Tsukagoshi, Kazuhito [WPI-MANA, NIMS, Tsukuba, Ibaraki 305-0044 (Japan); Moriyama, Takahiro; Ono, Teruo [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2016-03-07

    We investigate the noise in single layer graphene devices from equilibrium to far-from equilibrium and found that the 1/f noise shows an anomalous dependence on the source-drain bias voltage (V{sub SD}). While the Hooge's relation is not the case around the charge neutrality point, we found that it is recovered at very low V{sub SD} region. We propose that the depinning of the electron-hole puddles is induced at finite V{sub SD}, which may explain this anomalous noise behavior.

  13. Spectral finite element methods for solving fractional differential equations with applications in anomalous transport

    Energy Technology Data Exchange (ETDEWEB)

    Carella, Alfredo Raul

    2012-09-15

    Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)

  14. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kontani, Hiroshi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2008-02-15

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T{sub c} superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient

  15. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2008-01-01

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance

  16. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  17. Observation of Anomalous Resistance Behavior in Bilayer Graphene.

    Science.gov (United States)

    Liu, Yanping; Lew, Wen Siang; Liu, Zongwen

    2017-12-01

    Our measurement results have shown that bilayer graphene exhibits an unexpected sharp transition of the resistance value in the temperature region 200~250 K. We argue that this behavior originates from the interlayer ripple scattering effect between the top and bottom ripple graphene layer. The inter-scattering can mimic the Coulomb scattering but is strongly dependent on temperature. The observed behavior is consistent with the theoretical prediction that charged impurities are the dominant scatters in bilayer graphene. The resistance increase with increasing perpendicular magnetic field strongly supports the postulate that magnetic field induces an excitonic gap in bilayer graphene. Our results reveal that the relative change of resistance induced by magnetic field in the bilayer graphene shows an anomalous thermally activated property.

  18. Anomalous Hall effect scaling in ferromagnetic thin films

    KAUST Repository

    Grigoryan, Vahram L.

    2017-10-23

    We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.

  19. Effects of soft interactions and bound mobility on diffusion in crowded environments: a model of sticky and slippery obstacles.

    Science.gov (United States)

    Stefferson, Michael W; Norris, Samantha L; Vernerey, Franck J; Betterton, Meredith D; Hough, Loren E

    2017-06-29

    Crowded environments modify the diffusion of macromolecules, generally slowing their movement and inducing transient anomalous subdiffusion. The presence of obstacles also modifies the kinetics and equilibrium behavior of tracers. While previous theoretical studies of particle diffusion have typically assumed either impenetrable obstacles or binding interactions that immobilize the particle, in many cellular contexts bound particles remain mobile. Examples include membrane proteins or lipids with some entry and diffusion within lipid domains and proteins that can enter into membraneless organelles or compartments such as the nucleolus. Using a lattice model, we studied the diffusive movement of tracer particles which bind to soft obstacles, allowing tracers and obstacles to occupy the same lattice site. For sticky obstacles, bound tracer particles are immobile, while for slippery obstacles, bound tracers can hop without penalty to adjacent obstacles. In both models, binding significantly alters tracer motion. The type and degree of motion while bound is a key determinant of the tracer mobility: slippery obstacles can allow nearly unhindered diffusion, even at high obstacle filling fraction. To mimic compartmentalization in a cell, we examined how obstacle size and a range of bound diffusion coefficients affect tracer dynamics. The behavior of the model is similar in two and three spatial dimensions. Our work has implications for protein movement and interactions within cells.

  20. Analytical solutions for the fractional diffusion-advection equation describing super-diffusion

    Directory of Open Access Journals (Sweden)

    Gómez Francisco

    2016-01-01

    Full Text Available This paper presents the alternative construction of the diffusion-advection equation in the range (1; 2. The fractional derivative of the Liouville-Caputo type is applied. Analytical solutions are obtained in terms of Mittag-Leffler functions. In the range (1; 2 the concentration exhibits the superdiffusion phenomena and when the order of the derivative is equal to 2 ballistic diffusion can be observed, these behaviors occur in many physical systems such as semiconductors, quantum optics, or turbulent diffusion. This mathematical representation can be applied in the description of anomalous complex processes.

  1. Physics basis of Multi-Mode anomalous transport module

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Luo, L. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Weiland, J. [Departments of Applied Physics, Chalmers University of Technology and Euratom-VR Assoc., S41296 Gothenburg (Sweden); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado (United States)

    2013-03-15

    The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and collision dominated magnetohydrodynamics modes as well as model for electron temperature gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces, finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle, toroidal, and poloidal angular momentum transports. The fluid approach which underlies the derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of plasma conditions.

  2. Anomalous transport in turbulent plasmas and continuous time random walks

    Energy Technology Data Exchange (ETDEWEB)

    Balescu, R. [Association Euratom-Etat Belge pour la Fusion, Physique Statistique et Plasmas, Universite Libre de Bruxelles, Campus Plaine, Code Postal 231, Boulevard du Triomphe, 1050 Bruxelles (Belgium)

    1995-05-01

    The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW`s) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW`s is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to {ital t}{sup 1/2} is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW.

  3. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  4. Intrinsic anomalous Hall effect and local polarizabilities

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Jonckheere, T.

    2010-01-01

    Roč. 82, č. 11 (2010), 113303/1-113303/4 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0551 Institutional research plan: CEZ:AV0Z10100521 Keywords : orbital polarization momentum * Berry phase correction * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  5. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  6. On the photon anomalous magnetic moment

    International Nuclear Information System (INIS)

    Perez Rojas, Hugo

    2006-01-01

    It is shown that, due to radioactive corrections, the photon exhibits a nonzero anomalous magnetic moment whenever it has a nonzero perpendicular momentum component to an external constant magnetic field. Its behaviour is discussed near the first threshold of pair creation. The results might be interesting due to its astrophysical consequenc

  7. Total least squares for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory; Matsekh, Anna M [Los Alamos National Laboratory

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  8. Anomalous transport and neutral beam heating

    International Nuclear Information System (INIS)

    Mercier, C.; Capes, H.

    1982-01-01

    Principal results of the Tokamak experiment simulations with Makokot are presented. The study of the density evolution and the temperature-density sawtooth oscillations suggest the use of generalized anomalous fluxes. This new empirical model is applied for TFR and JIPP T-II and some projections are given for the JET. (author)

  9. Anomalous dark growth rings in black cherry

    Science.gov (United States)

    Robert P. Long; David W. Trimpey; Michael C. Wiemann; Susan L. Stout

    2012-01-01

    Anomalous dark growth rings have been observed in black cherry (Prunus serotina) sawlogs from northwestern Pennsylvania making the logs unsuitable for veneer products. Thirty-six cross sections with dark rings, each traceable to one of ten stands, were obtained from a local mill and sections were dated and annual ring widths were measured. One or...

  10. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  11. Anomalous VVH interactions at a linear collider

    Indian Academy of Sciences (India)

    We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light Higgs boson to a pair of gauge bosons, including the possibility of CP violation. We construct several observables that probe the various possible anomalous couplings. For an intermediate mass Higgs, a collider operating ...

  12. Bunburra Rockhole: A New Anomalous Achondrite

    Czech Academy of Sciences Publication Activity Database

    Bland, P.A.; Spurný, Pavel; Greenwood, R.C.; Towner, M.C.; Bevan, A.W.R.; Bottke jr., W.F.; Shrbený, Lukáš; McClafferty, T.; Vaughan, D.; Benedix, G.K.; Franchi, I.A.; Hough, R.M.

    2009-01-01

    Roč. 72, Supplement (2009), A34-A34 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /72./. Nancy, 13.06.2009-18.06.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : Bunburra Rockhole * anomalous achondrite Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.253, year: 2009

  13. Anomalous transport effects and possible environmental symmetry ...

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible ...

  14. Examination of anomalous self-experience

    DEFF Research Database (Denmark)

    Raballo, Andrea; Parnas, Josef

    2012-01-01

    A growing body of evidence points to the clinical and heuristic value of anomalous subjective experiences (ASEs) for the characterization of schizophrenia spectrum vulnerability and early detection purposes. In particular, a subgroup of ASEs, entailing basic disorders of self-awareness (self-diso...

  15. Anomalous Levinson theorem and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Boya, L.J.; Casahorran, J.; Esteve, J.G.

    1993-01-01

    We analyse the symmetry breaking associated to anomalous realization of supersymmetry in the context of SUSY QM. In this case one of the SUSY partners is singular; that leads to peculiar forms of the Levinson theorem relating phase shifts and bound states. Some examples are exhibited; peculiarities include negative energies, incomplete pairing of states and extra phases in scattering. (Author) 8 refs

  16. Anomalous transport phenomena in px+i py superconductors

    Science.gov (United States)

    Li, Songci; Andreev, A. V.; Spivak, B. Z.

    2015-09-01

    Spontaneous breaking of time-reversal symmetry in superconductors with the px+i py symmetry of the order parameter allows for a class of effects which are analogous to the anomalous Hall effect in ferromagnets. These effects exist below the critical temperature, T anomalous Hall thermal conductivity, the polar Kerr effect, the anomalous Hall effect, and the anomalous photo- and acousto-galvanic effects.

  17. Does the presence of tumor-induced cortical bone destruction at CT have any prognostic value in newly diagnosed diffuse large B-cell lymphoma?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Hugo J.A.; Nievelstein, Rutger A.J.; Kwee, Thomas C. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Klerk, John M.H. de [Meander Medical Center, Department of Nuclear Medicine, Amersfoort (Netherlands); Fijnheer, Rob [Meander Medical Center, Department of Hematology, Amersfoort (Netherlands); Heggelman, Ben G.F. [Meander Medical Center, Department of Radiology, Amersfoort (Netherlands); Dubois, Stefan V. [Meander Medical Center, Department of Pathology, Amersfoort (Netherlands)

    2015-05-01

    To determine the prognostic value of tumor-induced cortical bone destruction at computed tomography (CT) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). This retrospective study included 105 patients with newly diagnosed DLBCL who had undergone CT and bone marrow biopsy (BMB) before R-CHOP (rituximab, cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone) chemo-immunotherapy. Cox regression analyses were used to determine the associations of cortical bone status at CT (absence vs. presence of tumor-induced cortical bone destruction), BMB findings (negative vs. positive for lymphomatous involvement), and dichotomized National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) strata (low risk vs. high risk) with progression-free survival (PFS) and overall survival (OS). Univariate Cox regression analysis indicated that cortical bone status at CT was no significant predictor of either PFS or OS (p = 0.358 and p = 0.560, respectively), whereas BMB findings (p = 0.002 and p = 0.013, respectively) and dichotomized NCCN-IPI risk strata (p = 0.002 and p = 0.003, respectively) were significant predictors of both PFS and OS. In the multivariate Cox proportional hazards model, only the dichotomized NCCN-IPI score was an independent predictive factor of PFS and OS (p = 0.004 and p = 0.003, respectively). The presence of tumor-induced cortical bone destruction at CT was not found to have any prognostic implications in newly diagnosed DLBCL. (orig.)

  18. Improved formulas for trapped-ion anomalous transport in tokamaks without and with shear

    International Nuclear Information System (INIS)

    Sardei, F.; Wimmel, H.K.

    1980-12-01

    More refined numerical calculations of trapped-ion anomalous transport in a 2-D slab, trapped-fluid model suggest an anomalous diffusion coefficient D approx. 3.5 x 10 -2 delta 0 a 2 νsub(i)sup(e)sup(f)sup(f) for a tokamak plasma without shear. This supersedes earlier results. The new formula is independently confirmed by two different analytical calculations. One of them uses a similarity analysis of unabridged Kadomtsev-Pogutse-type trapped-fluid equations and the multiperiodic spatial structure of the saturated trapped-ion wave found in both the earlier and the recent numerical calculations. The other calculation yields a class of exact nonlinear solutions of the trapped-fluid equations. The new shearless result is used to derive the anomalous diffusion with shear effect by a method described in an earlier paper. The new transport formulas have been numerically evaluated for several tokamaks in an IPP report, where the results are shown in graph form. (orig.)

  19. Structure-Dependent Water-Induced Linear Reduction Model for Predicting Gas Diffusivity and Tortuosity in Repacked and Intact Soil

    DEFF Research Database (Denmark)

    Møldrup, Per; Chamindu, Deepagoda; Hamamoto, Shoichiro

    2013-01-01

    but also on the local-scale variability of these. Different predictive models have been developed to estimate Dp in intact and repacked soil, but clear guidelines for model choice at a given soil state are lacking. In this study, the water-induced linear reduction (WLR) model for repacked soil is made...

  20. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    Science.gov (United States)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  1. Anomalous quantum numbers and topological properties of field theories

    International Nuclear Information System (INIS)

    Polychronakos, A.P.

    1987-01-01

    We examine the connection between anomalous quantum numbers, symmetry breaking patterns and topological properties of some field theories. The main results are the following: In three dimensions the vacuum in the presence of abelian magnetic field configurations behaves like a superconductor. Its quantum numbers are exactly calculable and are connected with the Atiyah-Patodi-Singer index theorem. Boundary conditions, however, play a nontrivial role in this case. Local conditions were found to be physically preferable than the usual global ones. Due to topological reasons, only theories for which the gauge invariant photon mass in three dimensions obeys a quantization condition can support states of nonzero magnetic flux. For similar reasons, this mass induces anomalous angular momentum quantum numbers to the states of the theory. Parity invariance and global flavor symmetry were shown to be incompatible in such theories. In the presence of mass less flavored fermions, parity will always break for an odd number of fermion flavors, while for even fermion flavors it may not break but only at the expense of maximally breaking the flavor symmetry. Finally, a connection between these theories and the quantum Hall effect was indicated

  2. Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology

    International Nuclear Information System (INIS)

    Testylier, Guy; Lahrech, Hana; Montigon, Olivier; Foquin, Annie; Delacour, Claire; Bernabe, Denis; Segebarth, Christoph; Dorandeu, Frederic; Carpentier, Pierre

    2007-01-01

    Purpose: In the present study, diffusion-weighted magnetic resonance imaging (DW-MRI) and histology were used to assess cerebral edema and lesions in mice intoxicated by a convulsive dose of soman, an organophosphate compound acting as an irreversible cholinesterase inhibitor. Methods: Three hours and 24 h after the intoxication with soman (172 μg/kg), the mice were anesthetized with an isoflurane/N 2 O mixture and their brain examined with DW-MRI. After the imaging sessions, the mice were sacrificed for histological analysis of their brain. Results: A decrease in the apparent diffusion coefficient (ADC) was detected as soon as 3 h after the intoxication and was found strongly enhanced at 24 h. A correlation was obtained between the ADC change and the severity of the overall brain damage (edema and cellular degeneration): the more severe the damage, the stronger the ADC drop. Anesthesia was shown to interrupt soman-induced seizures and to attenuate edema and cell change in certain sensitive brain areas. Finally, brain water content was assessed using the traditional dry/wet weight method. A significant increase of brain water was observed following the intoxication. Conclusions: The ADC decrease observed in the present study suggests that brain edema in soman poisoning is mainly intracellular and cytotoxic. Since entry of water into Brain was also evidenced, this type of edema is certainly mixed with others (vasogenic, hydrostatic, osmotic). The present study confirms the potential of DW-MRI as a non-invasive tool for monitoring the acute neuropathological consequences (edema and neurodegeneration) of soman-induced seizures

  3. Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody.

    Science.gov (United States)

    Kim, Hyunki; Morgan, Desiree E; Zeng, Huadong; Grizzle, William E; Warram, Jason M; Stockard, Cecil R; Wang, Deli; Zinn, Kurt R

    2008-09-01

    To measure the early therapeutic response to a novel apoptosis-inducing antibody, TRA-8, by using diffusion-weighted magnetic resonance (MR) imaging in a mouse breast cancer model. Animal experiments had institutional animal care and use committee approval. Four groups of nude mice bearing luciferase-positive breast tumors (four to five mice with eight to 10 tumors per group) were injected intravenously with 0 mg (group 1), 0.025 mg (group 2), 0.100 mg (group 3), or 0.200 mg (group 4) of TRA-8 on days 0 and 3. Diffusion-weighted imaging, anatomic MR imaging, and bioluminescence imaging were performed on days 0, 3, and 6 before dosing. Averaged apparent diffusion coefficients (ADCs) for both whole tumor volume and a 1-mm peripheral tumor shell were calculated and were compared with tumor volume and living tumor cell changes. After imaging at day 6, proliferating and apoptotic cell densities were measured with Ki67 and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling, or TUNEL, staining, respectively, and were compared with cleaved caspase-3 density. The ADC increase at day 3 was dependent on TRA-8 dose level, averaging 6% +/- 3 (standard error of mean), 19% +/- 4, 14% +/- 4, and 34% +/- 7 in the whole tumor volume and 1% +/- 2, 9% +/- 5, 13% +/- 5, and 30% +/- 8 in the outer 1-mm tumor shell only for groups 1, 2, 3, and 4, respectively. The ADC increase in group 4 was significantly higher (P = .0008 and P = .0189 for whole tumor volume and peripheral region, respectively) than that in group 1 on day 3, whereas tumor size did not significantly differ. At day 3, the dose-dependent ADC increases were linearly proportional to apoptotic cell and cleaved caspase-3 densities and were inversely proportional to the density of cells showing Ki67 expression. Diffusion-weighted imaging enabled measurement of early breast tumor response to TRA-8 treatment, prior to detectable tumor shrinkage, providing an effective mechanism to noninvasively monitor TRA-8

  4. Early detection of ventilation-induced brain injury using magnetic resonance spectroscopy and diffusion tensor imaging: an in vivo study in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Béatrice Skiöld

    Full Text Available BACKGROUND AND AIM: High tidal volume (VT ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS and/or diffusion tensor imaging (DTI can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. METHODS: Newborn lambs (0.85 gestation were stabilized with a "protective ventilation" strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP 5 cmH2O or an initial 15 minutes of "injurious ventilation" (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla. For measures of mean/axial/radial diffusivity (MD, AD, RD and fractional anisotropy (FA, 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac relative to N-acetylaspartate (NAA, choline (Cho and creatine (Cr were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. RESULTS: No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. CONCLUSION: Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is

  5. R-CHOP with dose-attenuated radiation therapy could induce good prognosis in gastric diffuse large B cell lymphoma

    Directory of Open Access Journals (Sweden)

    Mishima Yuko

    2012-09-01

    Full Text Available Abstract Background The treatment strategy for gastric diffuse large cell lymphoma (DLBCL has not been standardized in such as to the cycles of chemotherapy, dose of radiation, or necessity for the surgery. Although the results of CHOP or R-CHOP treatments have demonstrated the good prognosis, the treatments have been controversial in many cases. Methods We retrospectively analyzed 40 gastric DLBCL patients receiving chemotherapy with or without radiation in our institute. Those in stages II-IV were treated with six cycles of R-CHOP without radiation; for those in stage I, we administered three cycles of R-CHOP with radiation. Results The three-year overall survival (OS and progression-free survival (PFS rates were 95.2 and 91.8%, respectively. Those in stage I obtained 100% of OS. The radiation dose prescribed was 30.6 Gy for CR cases and 39.6 to 40 Gy for PR after chemotherapy. Although survival rates tended to correlate with staging groups or age-adjusted IPI classifications, multivariate statistical analysis did not show clear differences. All 14 patients with initial bleeding were successfully managed without surgery during treatment. Conclusion R-CHOP therapy was very effective for gastric DLBCL. It may be not necessary to use more than 30.6 Gy of radiotherapy in the highly chemo-sensitive cases. Less toxic treatments should be made available to gastric DLBCL patients.

  6. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  7. Feynman-Kac equations for reaction and diffusion processes

    Science.gov (United States)

    Hou, Ru; Deng, Weihua

    2018-04-01

    This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.

  8. Spin Hall effect and spin swapping in diffusive superconductors

    Science.gov (United States)

    Espedal, Camilla; Lange, Peter; Sadjina, Severin; Mal'shukov, A. G.; Brataas, Arne

    2017-02-01

    We consider the spin-orbit-induced spin Hall effect and spin swapping in diffusive superconductors. By employing the nonequilibrium Keldysh Green's function technique in the quasiclassical approximation, we derive coupled transport equations for the spectral spin and particle distributions and for the energy density in the elastic scattering regime. We compute four contributions to the spin Hall conductivity, namely, skew scattering, side jump, anomalous velocity, and the Yafet contribution. The reduced density of states in the superconductor causes a renormalization of the spin Hall angle. We demonstrate that all four of these contributions to the spin Hall conductivity are renormalized in the same way in the superconducting state. In its simplest manifestation, spin swapping transforms a primary spin current into a secondary spin current with swapped current and polarization directions. We find that the spin-swapping coefficient is not explicitly but only implicitly affected by the superconducting gap through the renormalized diffusion coefficients. We discuss experimental consequences for measurements of the (inverse) spin Hall effect and spin swapping in four-terminal geometries. In our geometry, below the superconducting transition temperature, the spin-swapping signal is increased an order of magnitude while changes in the (inverse) spin Hall signal are moderate.

  9. Aphasia induced by gliomas growing in the ventrolateral frontal region: assessment with diffusion MR tractography, functional MR imaging and neuropsychology.

    Science.gov (United States)

    Bizzi, Alberto; Nava, Simone; Ferrè, Francesca; Castelli, Gianmarco; Aquino, Domenico; Ciaraffa, Francesca; Broggi, Giovanni; DiMeco, Francesco; Piacentini, Sylvie

    2012-02-01

    Lesions in the ventrolateral region of the dominant frontal lobe have been historically associated with aphasia. Recent imaging results suggest that frontal language regions extend beyond classically defined Broca's area to include the ventral precentral gyrus (VPCG) and the arcuate fasciculus (AF). Frontal gliomas offer a unique opportunity to identify structures that are essential for speech production. The aim of this prospective study was to investigate the correlation between language deficits and lesion location in patients with gliomas. Nineteen patients with glioma and 10 healthy subjects were evaluated with diffusion tensor imaging magnetic resonance (MR) tractography, functional MR (verb generation task) and the Aachener Aphasie Test. Patients were divided into two groups according to lesion location with respect to the ventral precentral sulcus: (i) anterior (n=8) with glioma growing in the inferior frontal gyrus (IFG) and underlying white matter; (ii) posterior (n=11) with glioma growing in the VPCG and underlying white matter. Virtual dissection of the AF, frontal intralobar tract, uncinate fasciculus (UF) and inferior frontal occipital fasciculus (IFOF) was performed with a deterministic approach. Seven posterior patients showed aphasia classified as conduction (4), Broca (1), transcortical motor (1) and an isolated deficit of semantic fluency; one anterior patient had transcortical mixed aphasia. All posterior patients had invasion of the VPCG, however only patients with aphasia had also lesion extension to the AF as demonstrated by tractography dissections. All patients with language deficits had high grade glioma. Groups did not differ regarding tumour volume. A functional pars opercularis was identified with functional MR imaging (fMRI) in 17 patients. Gliomas growing in the left VPCG are much more likely to cause speech deficits than gliomas infiltrating the IFG, including Broca's area. Lesion extension to the AF connecting frontal to parietal

  10. Anomalous Cherenkov spin-orbit sound

    Science.gov (United States)

    Smirnov, Sergey

    2011-02-01

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  11. Role of grain boundary diffusion on ion-induced composition change in alloys at elevated temperatures. [A/sup +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Hayashibara, M.; Ohno, H.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1984-05-01

    We prepared nickel specimens which contain gold impurity only near the grain boundaries and measured thermal segregation of gold onto the surface and the change in the composition induced by bombardment with Ar/sup +/ ions. It is found that irradiation causes composition change over a depth much larger than the thickness of the altered layer for Ni-Au alloys. It is also found that when a two-layered Ni-Au film is bombarded with gold atoms from the nickel side at elevated temperatures, the nickel is protected by a thin gold film segregated on the nickel surface.

  12. Micro-instabilities and anomalous transport

    International Nuclear Information System (INIS)

    Connor, J.W.

    1992-01-01

    In order to optimise the design of a tokamak fusion reactor it is necessary to understand how the energy confinement time depends on the plasma and machine parameters. In principle the neo-classical theory provides this information but empirical evidence yields confinement times up to two orders of magnitude less than the predictions of this model. Experimental evidence of microscopic fluctuations in plasma density and other quantities suggests turbulent electro-magnetic fluctuations may be responsible for this anomalous transport. (Author)

  13. Anomalous Charge Transport in Disordered Organic Semiconductors

    International Nuclear Information System (INIS)

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-01-01

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  14. Anomalous BRST Ward identity in string theory

    International Nuclear Information System (INIS)

    Demichev, A.P.; Iofa, M.Z.

    1990-01-01

    BRST transformations are studied in the path integral approach to string theory on Riemann surfaces of genus h≥2. The BRST Ward identity (WI) is shown to be anomalous, the anomaly being due to non-invariance of the functional integration domain under BRST transformations. The distinction between complete Lagrange BRST transformations including the metric and the auxiliary field and the commonly used 'truncated' BRST transformation is discussed in detail. The problem of decoupling of spurions from physical operators is investigated. (orig.)

  15. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  16. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  17. Diapycnal Transport and Pattern Formation in Double-Diffusive Convection

    Science.gov (United States)

    2015-12-01

    in profile temperature and salinity and variability in freshwater input. Gordon (1981) speculated that either anomalously low precipitation or...5 B. ANALYSIS OF A ONE-DIMENSIONAL VERTICAL ADVECTIVE-DIFFUSIVE BALANCE OF TEMPERATURE AND SALINITY ... salinity , so the parcel loses heat faster than it loses salt. Once the parcel’s temperature has equilibrated to its surroundings, it is denser due to

  18. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Alves, M. I R

    2016-01-01

    the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission...

  19. Fractional diffusion equation for heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Polo L, M. A.; Espinosa M, E. G.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Del Valle G, E., E-mail: plabarrios@hotmail.com [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2011-11-15

    The asymptotic diffusion approximation for the Boltzmann (transport) equation was developed in 1950 decade in order to describe the diffusion of a particle in an isotropic medium, considers that the particles have a diffusion infinite velocity. In this work is developed a new approximation where is considered that the particles have a finite velocity, with this model is possible to describe the behavior in an anomalous medium. According with these ideas the model was obtained from the Fick law, where is considered that the temporal term of the current vector is not negligible. As a result the diffusion equation of fractional order which describes the dispersion of particles in a highly heterogeneous or disturbed medium is obtained, i.e., in a general medium. (Author)

  20. Nanoscale topography influences polymer surface diffusion.

    Science.gov (United States)

    Wang, Dapeng; He, Chunlin; Stoykovich, Mark P; Schwartz, Daniel K

    2015-02-24

    Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces.

  1. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.

    Science.gov (United States)

    Tang, Lu; Ying, Rong-Rong; Jiang, Dan; Zeng, Xiao-Wen; Morel, Jean-Louis; Tang, Ye-Tao; Qiu, Rong-Liang

    2013-12-01

    Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P. divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75 μM Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5 μM Cd to 68.8% at 75 μM Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ΦPSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P. divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P. divaricata. Copyright © 2013. Published by Elsevier Masson SAS.

  2. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  3. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  4. Disruption of Aneuploidy and Senescence Induced by Aurora Inhibition Promotes Intrinsic Apoptosis in Double Hit or Double Expressor Diffuse Large B-cell Lymphomas.

    Science.gov (United States)

    Islam, Shariful; Qi, Wenqing; Morales, Carla; Cooke, Laurence; Spier, Catherine; Weterings, Eric; Mahadevan, Daruka

    2017-10-01

    Double hit (DH) or double expressor (DE) diffuse large B-cell lymphomas (DLBCL) are aggressive non-Hodgkin's lymphomas (NHL) with translocations and/or overexpressions of MYC and BCL-2 , which are difficult to treat. Aurora kinase (AK) inhibition with alisertib in DH/DE-DLBCL induces cell death in ∼30%, while ∼70% are aneuploid and senescent cells (AASC), a mitotic escape mechanism contributing to drug resistance. These AASCs elaborated a high metabolic rate by increased AKT/mTOR and ERK/MAPK activity via BTK signaling through the chronic active B-cell receptor (BCR) pathway. Combinations of alisertib + ibrutinib or alisertib + ibrutinib + rituximab significantly reduced AASCs with enhanced intrinsic cell death. Inhibition of AK + BTK reduced phosphorylation of AKT/mTOR and ERK-1/2, upregulated phospho-H2A-X and Chk-2 (DNA damage), reduced Bcl-6, and decreased Bcl-2 and Bcl-xL and induced apoptosis by PARP cleavage. In a DE-DLBCL SCID mouse xenograft model, ibrutinib alone was inactive, while alisertib + ibrutinib was additive with a tumor growth inhibition (TGI) rate of ∼25%. However, TGI for ibrutinib + rituximab was ∼50% to 60%. In contrast, triple therapy showed a TGI rate of >90%. Kaplan-Meier survival analysis showed that 67% of mice were alive at day 89 with triple therapy versus 20% with ibrutinib + rituximab. All treatments were well tolerated with no changes in body weights. A novel triple therapy consisting of alisertib + ibrutinib + rituximab inhibits AASCs induced by AK inhibition in DH/DE-DLBCL leading to a significant antiproliferative signal, enhanced intrinsic apoptosis and may be of therapeutic potential in these lymphomas. Mol Cancer Ther; 16(10); 2083-93. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: An experimental model in the ferret

    Directory of Open Access Journals (Sweden)

    Andrew S Bock

    2010-10-01

    Full Text Available Diffusion tensor imaging (DTI is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA, that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7 in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally-adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally-enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.

  6. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

    Science.gov (United States)

    Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin

    2015-01-01

    When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization. PMID:26151318

  7. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation

    KAUST Repository

    Lee, Seok Woo

    2011-07-13

    Silicon is one of the most attractive anode materials for use in Li-ion batteries due to its ∼10 times higher specific capacity than existing graphite anodes. However, up to 400% volume expansion during reaction with Li causes particle pulverization and fracture, which results in rapid capacity fading. Although Si nanomaterials have shown improvements in electrochemical performance, there is limited understanding of how volume expansion takes place. Here, we study the shape and volume changes of crystalline Si nanopillars with different orientations upon first lithiation and discover anomalous behavior. Upon lithiation, the initially circular cross sections of nanopillars with 〈100〉, 〈110〉, and 〈111〉 axial orientations expand into cross, ellipse, and hexagonal shapes, respectively. We explain this by identifying a high-speed lithium ion diffusion channel along the 〈110〉 direction, which causes preferential volume expansion along this direction. Surprisingly, the 〈111〉 and 〈100〉 nanopillars shrink in height after partial lithiation, while 〈110〉 nanopillars increase in height. The length contraction is suggested to be due to a collapse of the {111} planes early in the lithiation process. These results give new insight into the Si volume change process and could help in designing better battery anodes. © 2011 American Chemical Society.

  8. Enhancement of perpendicular magnetic anisotropy and anomalous hall effect in Co/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yiwei; Zhang, Jingyan, E-mail: jyzhang@ustb.edu.cn; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Yu, Guanghua, E-mail: ghyu@mater.ustb.edu.cn

    2016-12-15

    The perpendicular magnetic anisotropy (PMA) and the anomalous Hall effect (AHE) in Co/Ni multilayer were optimized by manipulating its interface structure (inducing HfO{sub 2} capping layer and Pt insertion) and post-annealing treatment. A strong PMA can be obtained in Co/Ni multilayers with HfO{sub 2} capping layer even after annealing at 400 °C. The heavy metal Hf may improve the interfacial spin-orbit coupling, which responsible for the enhanced PMA and high annealing stability. Moreover, the multilayer containing HfO{sub 2} capping layer also exhibited high saturation anomalous Hall resistivity through post-annealing, which is 0.85 μΩ cm after annealing at 375 °C, 211% larger than in the sample at deposited state which is only 0.27 μΩ cm. The enhancement of AHE is mainly attributed to the interface scattering through post-annealing treatment. - Highlights: • The perpendicular magnetic anisotropy and anomalous Hall effect of Co/Ni multilayer films were studied. • The PMA thermal stability of the Co/Ni ML can be enhanced by HfO{sub 2} capping layer and Pt insertion. • The anomalous Hall resistivity of Co/Ni ML covered by HfO{sub 2} was enhanced by post-annealing treatment.

  9. Origin of anomalous cryogenic magnetic behavior in a Ni-Mn-based magnetic shape memory alloy

    Science.gov (United States)

    Sun, X. M.; Cong, D. Y.; Liss, K.-D.; Qu, Y. H.; Ma, L.; Suo, H. L.; Wang, Y. D.

    2017-03-01

    The origin of the anomalous low-temperature staircase-like magnetization behavior in magnetic shape memory alloys, which has been commonly observed in a large variety of materials, has been remaining a mystery since it was discovered. Here, we elucidate the underlying mechanism for such anomalous magnetic behavior via tracing the structural evolution during applying magnetic fields at 4 K in an archetypal Ni-Mn-based magnetic shape memory alloy, by in-situ neutron diffraction technique. We found that it is the magnetic-field-induced structural transformation occurring at this extremely low temperature (far below martensitic transformation temperature) that is responsible for the anomalous low-temperature magnetic behavior. It is believed that this transformation proceeds by a succession of discrete steps, accounting for the abrupt jumps on the magnetization curve. The present study provides deep insights into the interplay between magnetism and structure in magnetic shape memory alloys, and it is also instructive for understanding the anomalous staircase-like magnetization behavior in other materials undergoing a magnetostructural transition.

  10. Measurement of temperature fluctuations and anomalous transport ...

    Indian Academy of Sciences (India)

    Coulomb collisions in a magnetised plasma give rise to electrical resistivity and particle diffusion across the magnetic field. This diffusion process is known as classical trans- port and can be calculated exactly. For the curved magnetic geometry of a tokamak, the collisional transport is termed as neoclassical transport.

  11. ttH anomalous coupling in double Higgs production

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Kenji; Niyogi, Saurabh; Shivaji, Ambresh [Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute,Chhatnag Road, Junsi, Allahabad-211019 (India)

    2014-04-02

    We study the effects of top-Higgs anomalous coupling in the production of a pair of Higgs boson via gluon fusion at the Large Hadron Collider (LHC). The introduction of anomalous ttH coupling can alter the hadronic double Higgs boson cross section and can lead to characteristic changes in certain kinematic distributions. We perform a global analysis based on available LHC data on the Higgs to constrain the parameters of ttH anomalous coupling. Possible overlap of the predictions due to anomalous ttH coupling with those due to anomalous trilinear Higgs coupling is also studied. We briefly discuss the effect of the anomalous ttH coupling on the HZ production via gluon fusion which is one of the main backgrounds in the HH→γγbb-macron channel.

  12. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Q.; Hendrickson, W.

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  13. Contribution to depth profiling by particle induced X-ray emission application to the study of zinc diffusion in AgZn alloy

    International Nuclear Information System (INIS)

    Frontier, J.P.

    1987-08-01

    A contribution of the study of the capacities of Particle Induced X-ray Emission (P.I.X.E.) for depth profiling, in the range of 1 to 10 micrometers and over, is presented here. It is shown that, in a non destructuve way, the concentration profile of a given element can be obtained, in principle, by deconvoluting the X-ray yields of this element, measured in a set of experiments in which the energy of the impinging protons, hence their range, is systematically varied. Direct deconvolution procedure, which leads to the inversion of an ill-conditionned matrix is unsuitable. So we generalized the iterative procedure previously used by Vegh to solve a similar problem. Alternatively we also used a fitting procedure of several parameters which gave us somewhat better than those of the iterative procedure. Both algorithms where applied to a set of X-ray yields induced by protons of energy between 0.45 to 2 MeV, corresponding to the first 6 micrometers of various depletion profiles of zinc in an initially homogeneous Ag-3 at % Zn annealed under vacuum. For investigation of deeper layers, a sectionning technique which consists in analysing thin film hydroxide targets by specific chemistry of tiny turning, was developped with success. Cross-reference of all the obtained profiles was made with electron microprobe determination on transverse section, and with the predictions of the theory of atomic diffusion. In addition, the possibilities of increasing the depth resolution by developping techniques either of controled sanding of the surface, or analysis of the sample is discussed [fr

  14. Compositeness Effects in the Anomalous Weak-Magnetic Moment of Leptons

    CERN Document Server

    González-Garciá, M Concepción

    1996-01-01

    We investigate the effects induced by excited leptons, at the one-loop level, in the anomalous magnetic and weak-magnetic form factors of the leptons. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to the weak-magnetic moment of the $\\tau$ lepton, which can be measured on the $Z$ peak, and we compare it with the contributions to $g_\\mu - 2$, measured at low energies.

  15. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  16. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    We have performed full charge-density calculations for the equilibrium atomic volumes of the alpha-phase light actinide metals using the local density approximation (LDA) and the generalized gradient approximation (GGA). The average deviation between the experimental and the GGA atomic radii is 1.......3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  17. Anomalous Cepheids and population II blue stragglers

    Science.gov (United States)

    Nemec, James M.

    Recent studies of anomalous Cepheids (ACs) and population II blue stragglers (BSs), including photometrically variable BSs (VBSs), are reviewed. The VBSs represent about 25 percent of the BSs, the majority of which are SX Phe short-period variables in the Cepheid instability strip. Mass estimates derived using various techniques suggest that both ACs and BSs are relatively massive (about 1.0-1.6 solar mass). The recent discovery that two BSs in the globular cluster NGC 5466 are contact binaries, and the earlier discovery that one of the BSs in Omega Cen is an eclipsing binary, provide direct evidence that at least some BSs are binary systems.

  18. The anomalous magnetic moment of the muon

    CERN Document Server

    Hughes, V W; Earle, W; Efstathiadis, E F; Hare, M; Hazen, E S; Krienen, F; Miller, J P; Rind, O; Roberts, B L; Sulak, Lawrence R; Trofimov, A V; Brown, H N; Bunce, G M; Danby, G T; Larsen, R; Lee, Y Y; Meng, W; Mi, J L; Morse, W M; Pai, C; Prigl, R; Sanders, R; Semertzidis, Y K; Tanaka, M; Warburton, D; Orlov, Yu F; Winn, D; Grossmann, A; Jungmann, Klaus; zu Putlitz, Gisbert; Debevec, P T; Deninger, W; Hertzog, D W; Polly, C; Sedykh, S; Urner, D; Haeberlen, U; Cushman, P B; Duong, L; Giron, S; Kindem, J; McNabb, R; Miller, D; Timmermans, C; Zimmerman, D; Druzhinin, V P; Fedotovich, G V; Khazin, B I; Logashenko, I B; Ryskulov, N M; Serednyakov, S I; Shatunov, Yu M; Solodov, E P; Yamamoto, A; Iwasaki, M; Kawamura, M; Deng, H; Dhawan, S K; Farley, Francis J M; Grosse-Perdekamp, M; Hughes, V W; Kawall, D; Redin, S I; Steinmetz, A

    1998-01-01

    A new experiment is underway at Brookhaven National Laboratory to measure the g-2 value of the muon to a precision of 0.35 ppm, which would improve our present knowledge by a factor of 20. In its initial run the muon anomalous g-value was found to be a/sub mu //sup + /=1165925(15)*10/sup -9/ [13 ppm], in good agreement with the previous CERN measurements and with approximately the same uncertainty. The current scientific motivations for this experiment are discussed, and the experiment is described. (30 refs).

  19. Global constraints on top quark anomalous couplings

    Science.gov (United States)

    Déliot, Frédéric; Faria, Ricardo; Fiolhais, Miguel C. N.; Lagarelhos, Pedro; Onofre, António; Pease, Christopher M.; Vasconcelos, Ana

    2018-01-01

    The latest results on top quark physics, namely single top quark production cross sections, W -boson helicity and asymmetry measurements are used to probe the Lorentz structure of the W t b vertex. The increase of sensitivity to new anomalous physics contributions to the top quark sector of the standard model is quantified by combining the relevant results from Tevatron and the Large Hadron Collider. The results show that combining an increasing set of available precision measurements in the search for new physics phenomena beyond the standard model leads to significant sensitivity improvements, especially when compared with the current expectation for the High Luminosity run at the LHC.

  20. The anomalous magnetic moment of the muon

    International Nuclear Information System (INIS)

    Farley, F.J.M.

    1975-01-01

    A historical survey of the measurements of the gyromagnetic ratio g of the muon. A brief introduction is given to the theory of the 'anomalous magnetic moment' a equivalent to 1/2(g-2) and its significance is explained. The main part of the review concerns the successive (g-2) experiments to measure a directly, with gradually increasing accuracy. At present experiment and theory agree to (13+-29) parts in 10 9 in g, and the muon still obeys the rules of quantum electrodynamics for a structureless point charge. (author)

  1. Measurement of electroweak-induced production of $\\mathrm{ W }\\gamma$ with two jets in pp collisions at $\\sqrt{s} = $ 8 TeV and constraints on anomalous quartic gauge couplings

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Yang, Daneng; Zhang, Zhaoru; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulte, Jan-Frederik; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Korenkov, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Tikhonenko, Elena; Voytishin, Nikolay; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chadeeva, Marina; Popova, Elena; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Bakirci, Mustafa Numan; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bruner, Christopher; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Hortiangtham, Apichart; Knapp, Benjamin; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-06-20

    A measurement of electroweak-induced production of $\\mathrm{ W }\\gamma$ and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS experiment in $ \\sqrt{s} = $ 8 TeV proton-proton collisions produced at the LHC\\@. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of $\\mathrm{ W }\\gamma$ with two jets is observed with a significance of 2.7 standard deviations, corresponding to an upper limit on the electroweak signal strength of 4.3 times the standard model expectation at 95% confidence level. The cross section measured in the fiducial region is 10.8 $\\pm$ 4.1 (stat) $\\pm$ 3.4 (syst) $\\pm$ 0.3 (lumi) fb, which is consistent with the standard model electroweak prediction. The total cross section for $\\mathrm{ W }\\gamm...

  2. Presentation: 3D magnetic inversion by planting anomalous densities

    OpenAIRE

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2013-01-01

    Slides for the presentation "3D magnetic inversion by planting anomalous densities" given at the 2013 AGU Meeting of the Americas in Cancun, Mexico.   Note: There was an error in the title of the talk. The correct title should be "3D magnetic inversion by planting anomalous magnetization"   Abstract: We present a new 3D magnetic inversion algorithm based on the computationally efficient method of planting anomalous densities. The algorithm consists of an iterative growth of the an...

  3. Inclusive anomalous muon production in e+e- annihilation

    International Nuclear Information System (INIS)

    Feldman, G.J.; Bulos, F.; Lueke, D.; Abrams, G.S.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Dorfan, J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hanson, G.; Heile, F.B.; Jaros, J.A.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Lueth, V.; Madaras, R.J.; Morehouse, C.C.; Nguyen, H.K.; Paterson, J.M.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pierre, F.M.; Pun, T.P.; Rapidis, P.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Tanenbaum, W.; Trilling, G.H.; Vannucci, F.; Whitaker, J.S.; Wiss, J.E.

    1977-01-01

    We present measurements of inclusive anomalous muon production in e + e - annihilations in three energy ranges. In all three ranges we observe a large anomalous muon production rate in two-prong events which is compatible with the expected decays of pairs of heavy leptons. In the highest energy range there is also appreciable anomalous muon production in multiprong events which, due to its magnitude and momentum dependence, must come in part from a source other than a heavy lepton

  4. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  5. Effect of radiation induced defects and incompatibility elastic stresses on the diffusion of ion implantated boron in silicon at the pulse annealing

    International Nuclear Information System (INIS)

    Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.

    1987-01-01

    For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion

  6. Continuous Time Random Walk and different diffusive regimes - doi: 10.4025/actascitechnol.v34i2.11521

    Directory of Open Access Journals (Sweden)

    Haroldo Valetin Ribeiro

    2012-03-01

    Full Text Available We investigate how it is possible to obtain different diffusive regimes from the Continuous Time Random Walk (CTRW approach performing suitable changes for the waiting time and jumping distributions in order to get two or more regimes for the same diffusive process. We also obtain diffusion-like equations related to these processes and investigate the connection of the results with anomalous diffusion

  7. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  8. Elucidation of the mechanism for anomalous blueshift

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Koga, J.K.; Nakajima, Kazuhisa

    2004-01-01

    The anomalous blue shift of high intensity laser which was discovered by the present authors occurs in the process of gas ionization accompanied with the self-focusing. This shift does not depend either on the laser power or on the gas density and all photons are shifted by a certain frequency, while the one which has been known in common depends on both the intensity and density and only some part of the laser photons is shifted. In order to elucidate this phenomenon, the occurrence conditions of the anomalous blue shift were investigated and the results are compared with theory. The shifts were measured by focusing the laser beam in the gas-filled chamber with an off-axis-parabolic mirror and with a convex lens. When the reflective lens was used the amount of the shift depended significantly on the ionization rate of the plasma, while it depended on the pulse width when the transmission lens was used indicating that the shift is determined by the valence due to the ionization at the focusing point. (S. Funahashi)

  9. Discovering anomalous events from urban informatics data

    Science.gov (United States)

    Jayarajah, Kasthuri; Subbaraju, Vigneshwaran; Weerakoon, Dulanga; Misra, Archan; Tam, La Thanh; Athaide, Noel

    2017-05-01

    Singapore's "smart city" agenda is driving the government to provide public access to a broader variety of urban informatics sources, such as images from traffic cameras and information about buses servicing different bus stops. Such informatics data serves as probes of evolving conditions at different spatiotemporal scales. This paper explores how such multi-modal informatics data can be used to establish the normal operating conditions at different city locations, and then apply appropriate outlier-based analysis techniques to identify anomalous events at these selected locations. We will introduce the overall architecture of sociophysical analytics, where such infrastructural data sources can be combined with social media analytics to not only detect such anomalous events, but also localize and explain them. Using the annual Formula-1 race as our candidate event, we demonstrate a key difference between the discriminative capabilities of different sensing modes: while social media streams provide discriminative signals during or prior to the occurrence of such an event, urban informatics data can often reveal patterns that have higher persistence, including before and after the event. In particular, we shall demonstrate how combining data from (i) publicly available Tweets, (ii) crowd levels aboard buses, and (iii) traffic cameras can help identify the Formula-1 driven anomalies, across different spatiotemporal boundaries.

  10. Ultrasonic Detection of Anomalous Machining Damage

    Science.gov (United States)

    Margetan, F. J.; Enyart, Darrel; Thompson, R. B.

    2009-03-01

    During manufacture, rotating jet-engine components are shaped into their final configurations by machining operations which may include turning, drilling and broaching. Anomalous machining conditions, such as a loss of lubricant or a damaged cutting tool, can result in an altered near-surface microstructure, shortening the useful life of the component. In this paper we report on preliminary attempts to detect anomalous machining damage using ultrasonic surface acoustic waves (SAWs). Two pulse/echo immersion setups are considered: normal-incidence acoustic microscopy (Method 1); and oblique-incidence SAW backscatter (Method 2). Each method is applied to pairs of Ti 6-4 turned coupons, one manufactured using accepted best practices; and one purposely damaged using abusive machining conditions. Representative results are presented for each method. Method 1 is very sensitive to changes in surface topology; thus near-surface damage that is accompanied by surface topology changes can be readily detected. For detecting microstructural damage in the absence of topology changes, Method 2 is preferable. In Method 2 the transducer tilt angle is found which results in the maximum backscattered SAW "noise." This angle is dependent on the effective surface wave speed, which in turn is influenced by the near-surface microstructure. For a set twenty Ti 6-4 turned coupons, Method 2 was generally able to distinguish damaged from undamaged surfaces.

  11. Anomalous Dispersion in a Sand Bed River

    Science.gov (United States)

    Bradley, D. N.; Tucker, G. E.; Benson, D. M.

    2009-04-01

    There has been a recent surge of interest in non-local, heavy-tailed models of sediment transport and dispersion that are governed by fractional order differential equations. These models have a firm mathematical foundation and have been successfully applied in a variety of transport systems, but their use in geomorphology has been minimal because the data required to validate the models is difficult to acquire. We use data from a nearly 50-year-old tracer experiment to test a fluvial bed load transport model with a two unique features. First, the model uses a heavy-tailed particle velocity distribution with a divergent second moment to reproduce the anomalously high fraction of tracer mass observed in the downstream tail of the spatial distribution. Second, the model partitions mass into a detectable mobile phase and an undetectable, immobile phase. This two-phase transport model predicts two other features observed in the data: a decrease in the amount of detected tracer mass over the course of the experiment and the high initial velocity of the tracer plume. Because our model uses a heavy-tailed velocity distribution with a divergent second moment it is non-local and non-Fickian and able to reproduce aspects of the data that a local, Fickian model cannot. The model's successful prediction of the observed concentration profiles provides some of the first evidence of anomalous dispersion of bed load in a natural river.

  12. Anomalous Micellization of Pluronic Block Copolymers

    Science.gov (United States)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  13. Powder diffraction studies using anomalous dispersion

    International Nuclear Information System (INIS)

    Cox, D.E.; Wilkinson, A.P.

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high T c superconductors, ternary alloys, FeCo 2 (PO 4 ) 3 , FeNi 2 BO 5 ), oxidation-state contrast (e.g. YBa 2 Cu 3 O 6+x , Eu 3 O 4 , GaCl 2 , Fe 2 PO 5 ), and the effect of coordination geometry (e.g. Y 3 Ga 5 O l2 )

  14. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  15. Anomalous Stars and Where to Find Them

    Science.gov (United States)

    Muna, Demitri; Huff, Eric

    2018-01-01

    The sky is now extensively mapped by imaging surveys in wavelengths that span the electromagnetic spectrum, ranging from Fermi and GALEX down to WISE, Planck, and radio surveys like FIRST and VLSS. Individual public catalogs now contain on order hundreds of millions of distinct sources. Recent progress in image analysis techniques makes possible great increases in the efficiency, sensitivity, and reliability of measurements that combine imaging data from multiple probes with heterogeneous properties. This is especially true for the identification of anomalous sources: traditional methods for finding ‘outliers’ typically rely on making hard cuts on noisy catalog properties, greatly restricting the potential discovery space. Cross-catalog matches confine investigation to objects that occur at signal-to-noise ratios sufficient to be independently detectable in a subset of all the available multi-wavelength coverage. The process of merging the latest analyses with existing data is severely hampered, however, by the fractured way in which these data are processed and stored, limitations of data access, the data volume involved, and the computation power required. This has left archive data far from fully exploited. Stellar anomalies present the best place to start: joint distributions of stellar colors and magnitudes have finer structures than extended sources, and modelling of point sources is computationally cheaper than for galaxies. We present a framework to solve the problem of applying new algorithms to old data while overcoming the limitations described above, in the search for the undiscovered anomalous.

  16. Disorder Induced Transport

    Science.gov (United States)

    Steimel, Joshua; Kachman, Tal; Aragones, Juan; Alexander-Katz, Alfredo

    Transport of active or driven particles plays a crucial role in a myriad of processes ranging from biological systems to quantum phenomena. Here we study the transport of active spinning particles in a confined substrate that contains fixed obstacles. Except for a handful of systems, a disordered environment in the form of impurities or obstacles in a material will inhibit transport, and under some circumstances lead to localization. Such phenomena has been directly seen in transport of light in disordered photonic crystals. This is an important question because many vital biological processes depend on the active transport of molecules inside cells and organisms, from molecular motors to cellular transport. In particular, it is vital to know whether disorder leads to the inhibition of transport and localization, or enhances transport. We demonstrate with experiments and simulations that, contrary to intuition, active spinning matter exhibits a disorder-induced delocalization transition dependent on the local order of the obstacles on the substrate. For the regimes studied, we always find anomalous super-diffusive transport that slowly approaches the diffusive regime in the limit of high activity. These results shed light on the effect of hydrodynamic boundary conditions and optimal transport processes in active matter in disordered environments.

  17. Shaken and Stirred: A Combined Reaction-Diffusion and Random Rate Model for the Temporal Evolution and Earthquake-induced Hydrodynamics of Silicate Mineral Weathering

    Science.gov (United States)

    Evaristo, J. A.; Willenbring, J.

    2013-12-01

    The time dependency of silicate mineral weathering has been explored in the literature in terms of processes and features that are intrinsic and extrinsic to the mineral [1]. However, although the advent of sophisticated reactive transport models has allowed for coupling increasingly complex reaction and transport processes [2,3], a simple and fundamental understanding of the temporal evolution of weathering is lacking. Here, we propose that a purely deterministic approach may not be sufficient given the inherent differences in reactivity over space and time. Therefore, we explore how a combined reaction-diffusion and random rate model - informed by a stochastic distribution of weathering rates K (T-1) - might be able to explain not only the temporal evolution but also the hydrodynamics of weathering during earthquakes; the latter being purportedly described by time-dependent property permeability (L2). Preliminary model results show that (1) an increase in dimensionless quantity βrp, where β is the diffusion length (L-1) and rp is the distance between pores (L), leads to a decrease in minimum reaction rate with time from the relation Kmin ∝ e-βrp/rp ; (2) at a given porosity, a time-dependent decrease in reactivity arises as permeability decreases due to decreasing pore size (and therefore increasing rp), which in turn may be related to the time-dependent feedback between dissolution and precipitation; (3) while permeability is lower in older soils, transient stresses as during earthquakes [4], may induce more efficient "declogging" of pores in these soils than in younger soils due to higher hydrodynamic viscous shear stress, thereby, resulting in a coseismic change in stream discharge Q; and (4) subsequent weathering beyond t~Kmin-1 exhibits a fall in rates, marking the cessation of logarithmic decay possibly due to dissolution-precipitation feedback. [1] White and Brantley (2003), Chem. Geol. 202, 479. [2] Lichtner P.C. (1996), Mineralogical Society of

  18. Anomalous hydrodynamical dispersion and the Coats-Smith equation: the finite size effects

    International Nuclear Information System (INIS)

    Caceres, Manuel O.

    2003-09-01

    We investigate a family of probability distributions that shows anomalous hydrodynamics dispersion, by solving a particular class of coupled generalized master equations. The Fourier-Laplace solution is obtained analytically in terms of the matrix Green function method; then the Coats-Smith concentration profile is revisited in a particular case. Two models of disorder are worked out explicitly, and the mean current is asymptotically calculated. We present an approximation method to calculate the first passage time distribution for this stochastic transport process, and as an example an exact Markovian result is worked out; scaling results are also shown. We discuss the comparison with other different methods to work out complex diffusion phenomena in the presence of disordered multiple transport paths. Extensions when the models are non diffusive can also be solved in the Fourier-Laplace representation. (author)

  19. An experimental investigation of the effect of shear-induced diffuse damage on transverse cracking in carbon-fiber reinforced laminates

    KAUST Repository

    Nouri, Hedi

    2013-12-01

    When subjected to in-plane loading, carbon-fiber laminates experience diffuse damage and transverse cracking, two major mechanisms of degradation. Here, we investigate the effect of pre-existing diffuse damage on the evolution of transverse cracking. We shear-loaded carbon fiber-epoxy pre-preg samples at various load levels to generate controlled configurations of diffuse damage. We then transversely loaded these samples while monitoring the multiplication of cracking by X-ray radiography. We found that diffuse damage has a great effect on the transverse cracking process. We derived a modified effective transverse cracking toughness measure, which enabled a better definition of coupled transverse cracking/diffuse damage in advanced computational models for damage prediction. © 2013 Elsevier Ltd.

  20. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  1. Ion acoustic instability of HPT particles, FAC density, anomalous ...

    Indian Academy of Sciences (India)

    The intense FAC destabilizes the ion acoustic wave and the resultant electrostatic turbulence creates an anomalous resistivity. The current driven resistivity produces parallel electric field and high power dissipation. The anomalous resistivity , potential differnece along the auroral field lines ∥, intensity of electric field ...

  2. Porous and Fluffy Grains in the Regions of Anomalous Extinction

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... It has long been established that the ratio of total to selective extinction is anomalously large (≥ 5) in certain regions of the interstellar medium. In these regions of anomalous extinction the dust grains are likely to be irregular in shape and fluffy in structure. Using discrete dipole approximation (DDA) we ...

  3. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  4. On the fundamentals of winning virtuous strategies creation toward leveraged buyout transactions implementation during private equity investment in conditions of resonant absorption of discrete information in diffusion - type financial system with induced nonlinearities

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2014-01-01

    The authors perform an original research on the fundamentals of winning virtuous strategies creation toward the leveraged buyout transactions implementation during the private equity investment in the conditions of the resonant absorption of discrete information in the diffusion - type financial system with the induced nonlinearities at the influences by the Schumpeterian creative disruption processes in the free market economy. We propose that the money is a financial computing process, whic...

  5. Anomalous Evidence, Confidence Change, and Theory Change.

    Science.gov (United States)

    Hemmerich, Joshua A; Van Voorhis, Kellie; Wiley, Jennifer

    2016-08-01

    A novel experimental paradigm that measured theory change and confidence in participants' theories was used in three experiments to test the effects of anomalous evidence. Experiment 1 varied the amount of anomalous evidence to see if "dose size" made incremental changes in confidence toward theory change. Experiment 2 varied whether anomalous evidence was convergent (of multiple types) or replicating (similar finding repeated). Experiment 3 varied whether participants were provided with an alternative theory that explained the anomalous evidence. All experiments showed that participants' confidence changes were commensurate with the amount of anomalous evidence presented, and that larger decreases in confidence predicted theory changes. Convergent evidence and the presentation of an alternative theory led to larger confidence change. Convergent evidence also caused more theory changes. Even when people do not change theories, factors pertinent to the evidence and alternative theories decrease their confidence in their current theory and move them incrementally closer to theory change. Copyright © 2015 Cognitive Science Society, Inc.

  6. Solutes and cells - aspects of advection-diffusion-reaction phenomena in biochips

    DEFF Research Database (Denmark)

    Vedel, Søren

    2012-01-01

    -dependent advection and diffusion. Combining Aris’s method of statistical moments with Fourierexpansion in time and expansion of all spatial dependencies in diffusion eigenmodes, we obtain closed-form expressions for the dispersion that apply to any constant channel crosssection of any initial distribution...... driving frequency, possible order-of-magnitude increases of the dispersion in certain regimes, and apparent transient anomalous diffusion, which are all shown to naturally arise from the competing physical processes of solute diffusion, momentum diffusion and local velocity variations. In the second...

  7. Rooted triple consensus and anomalous gene trees

    Directory of Open Access Journals (Sweden)

    Schmidt Heiko A

    2008-04-01

    Full Text Available Abstract Background Anomalous gene trees (AGTs are gene trees with a topology different from a species tree that are more probable to observe than congruent gene trees. In this paper we propose a rooted triple approach to finding the correct species tree in the presence of AGTs. Results Based on simulated data we show that our method outperforms the extended majority rule consensus strategy, while still resolving the species tree. Applying both methods to a metazoan data set of 216 genes, we tested whether AGTs substantially interfere with the reconstruction of the metazoan phylogeny. Conclusion Evidence of AGTs was not found in this data set, suggesting that erroneously reconstructed gene trees are the most significant challenge in the reconstruction of phylogenetic relationships among species with current data. The new method does however rule out the erroneous reconstruction of deep or poorly resolved splits in the presence of lineage sorting.

  8. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    Science.gov (United States)

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  9. 44th Annual Anomalous Absorption Conference

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2014-03-03

    Conference Grant Report July 14, 2015 Submitted to the U. S. Department of Energy Attn: Dr. Sean Finnegan By the University of California, San Diego 9500 Gilman Drive La Jolla, California 92093 On behalf of the 44th Annual Anomalous Absorption Conference 8-13 June 2014, in Estes Park, Colorado Support Requested: $10,100 Amount expended: $3,216.14 Performance Period: 1 March 20 14 to 28 February 20 15 Principal Investigator Dr. Farhat Beg Center for Energy Research University of California, San Diego 9500 Gilman Drive La Jolla, California 92093-0417 858-822-1266 (telephone) 858-534-4543 (fax) fbeg@ucsd.edu Administrative Point of Contact: Brandi Pate, 858-534-0851, blpate®ucsd.edu I. Background The forty-fourth Anomalous Absorption Conference was held in Estes Park, Colorado from June 5-8, 2014 (aac2014.ucsd.edu). The first Anomalous Absorption Conference was held in 1971 to assemble experts in the poorly understood area of laser-plasma absorption. The goal of that conference was to address the anomalously large laser absorption seen in plasma experiments with respect to the laser absorption predicted by linear plasma theory. Great progress in this research area has been made in the decades since that first meeting, due in part to the scientific interactions that have occurred annually at this conference. Specifically, this includes the development of nonlinear laser-plasma theory and the simulation of laser interactions with plasmas. Each summer since that first meeting, this week-long conference has been held at unique locations in North America as a scientific forum for intense scientific exchanges relevant to the interaction of laser radiation with plasmas. Responsibility for organizing the conference has traditional rotated each year between the major Inertial Confinement Fusion (ICF) laboratories and universities including LANL, LLNL, LLE, UCLA UC Davis and NRL. As the conference has matured over the past four decades, its technical footprint has expanded

  10. The Anomalous Acceleration of the Pioneer Spacecrafts

    Science.gov (United States)

    de Diego, J. A.

    2008-12-01

    Radiometric data from the Pioneer 10 and 11 spacecrafts have revealed an unexplained constant acceleration of a_A = (8.74+/-1.33)×10^{-10}m s^{-2} towards the Sun, also known as the Pioneer anomaly. Different groups have analyzed the Pioneer data and have got the same results, which rules out computer programming and data handling errors. Attempts to explain this phenomenon arguing intrinsic causes on-board the spacecrafts failed or have led to inconclusive results. Therefore, the Pioneer anomalous acceleration has motivated the interest of researchers to find explanations that could bring insight upon the forces acting in the outer Solar Systems or a hint to discover new natural laws.

  11. Anomalous Right Subclavian Artery-Esophageal Fistulae

    Directory of Open Access Journals (Sweden)

    Courtney Brooke Shires

    2018-01-01

    Full Text Available An aberrant right subclavian artery (ARSA is the most common aortic arch anomaly, but only 19 previous cases of ARSA-esophageal fistula have been reported. Six patients have survived their bleeding episode. We describe the case of a 44-year-old woman who developed massive hemoptysis. Laryngoscopy, bronchoscopy, head and neck angiogram, and median sternotomy did not reveal what was presumed initially to be a tracheoinnominate fistula. Contrasted CT showed an anomalous subclavian artery posterior to the esophagus. Given the technical challenge of approaches for this pathology, the patient was unfit for open surgical repair. Therefore, endovascular covered stent grafts were deployed spanning the segment of the subclavian artery in continuity with the esophagus, via a right brachial artery approach. Unfortunately, the patient died after successful placement of the grafts.

  12. Anomalous inelastic neutron scattering from calcite

    International Nuclear Information System (INIS)

    Dove, M.T.; Harris, M.J.; Winkler, B.; Hagen, M.E.; Keele Univ.; Powell, B.M.; Steigenberger, U.

    1992-01-01

    Inelastic neutron scattering measurements on calcite (CaCO 3 ) in its low temperature phase have revealed the existence of an unusual column of inelastic scattering at the wavevector corresponding to the F point of the high temperature Brillouin zone. At the same wavevector there is also a transverse acoustic soft mode and the column of scattering ranges in energy from zero up to the soft mode. The intensity of the anomalous scattering increases rapidly with temperature, and is consistent with an Arrhenius relation of the form exp(-T * /T), where T * = 1035 K. We speculate that this scattering arises from thermal fluctuations of the calcite structure into a different ordered structure, which is related to an ordering instability at the F point. Evidence for this possibility has also been obtained from lattice energy calculations. (author)

  13. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  14. Mapping Anomalous Currents in Supersymmetric Dualities

    CERN Document Server

    Abel, Steven; Komargodski, Zohar

    2011-01-01

    In many strongly-coupled systems, the infrared dynamics is described by different degrees of freedom from the ultraviolet. It is then natural to ask how operators written in terms of the microscopic variables are mapped to operators composed of the macroscopic ones. Certain types of operators, like conserved currents, are simple to map, and in supersymmetric theories one can also follow the chiral ring. In this note, we consider supersymmetric theories and extend the mapping to anomalous currents (and gaugino bilinears). Our technique is completely independent of subtleties associated with the renormalization group, thereby shedding new light on previous approaches to the problem. We demonstrate the UV/IR mapping in several examples with different types of dynamics, emphasizing the uniformity and simplicity of the approach. Natural applications of these ideas include the effects of soft breaking on the dynamics of various theories and new models of electroweak symmetry breaking.

  15. Microscopic Origins of the Anomalous Melting Behavior of Sodium under High Pressure

    Science.gov (United States)

    Eshet, Hagai; Khaliullin, Rustam Z.; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2012-03-01

    X-ray diffraction experiments have shown that sodium exhibits a dramatic pressure-induced drop in melting temperature, which extends from 1000 K at ˜30GPa to as low as room temperature at ˜120GPa. Despite significant theoretical effort to understand the anomalous melting, its origins are still debated. In this work, we reconstruct the sodium phase diagram by using an ab initio quality neural-network potential. Furthermore, we demonstrate that the reentrant behavior results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.

  16. Mobility and Conformational Dynamics of large DNA diffusing through Cytoskeletal Networks

    Science.gov (United States)

    Regan, Kathryn; Ricketts, Shea; Wulstein, Devynn; McGorty, Ryan; Robertson-Anderson, Rae M.

    The high concentrations of proteins crowding cells greatly influence intracellular DNA dynamics. These crowders, ranging from small mobile proteins to large cytoskeletal filaments such as semiflexible actin and rigid microtubules, can hinder diffusion and induce conformational changes in DNA. The rigidity, mobility, and concentration of crowders all play a role in DNA transport, yet previous studies have mainly focused on the effect of small mobile crowders on transport. At the same time the rigid cytoskeleton has been identified as a key factor suppressing viral transfection and gene delivery. Here, we use fluorescence microscopy and custom single-molecule conformational tracking algorithms to measure center-of-mass transport and time-varying conformational sizes and shapes of single 115 kbp DNA molecules diffusing in networks of actin filaments and microtubules. We determine the dependence of protein concentration (6 - 23 μM) and rigidity (actin vs microtubules) on DNA dynamics. Corresponding measurements with monomeric actin and tubulin identify the roles that network rigidity versus excluded volume play in transport. Initial results show that crowding by microtubules induces anomalous transport and larger, slower conformational fluctuations of DNA. Funding from AFOSR Young Investigator Program (FA95550-12-1-0315).

  17. No need to replace an "anomalous" primate (Primates) with an "anomalous" bear (Carnivora, Ursidae).

    Science.gov (United States)

    Gutiérrez, Eliécer E; Pine, Ronald H

    2015-01-01

    By means of mitochondrial 12S rRNA sequencing of putative "yeti", "bigfoot", and other "anomalous primate" hair samples, a recent study concluded that two samples, presented as from the Himalayas, do not belong to an "anomalous primate", but to an unknown, anomalous type of ursid. That is, that they match 12S rRNA sequences of a fossil Polar Bear (Ursusmaritimus), but neither of modern Polar Bears, nor of Brown Bears (Ursusarctos), the closest relative of Polar Bears, and one that occurs today in the Himalayas. We have undertaken direct comparison of sequences; replication of the original comparative study; inference of phylogenetic relationships of the two samples with respect to those from all extant species of Ursidae (except for the Giant Panda, Ailuropodamelanoleuca) and two extinct Pleistocene species; and application of a non-tree-based population aggregation approach for species diagnosis and identification. Our results demonstrate that the very short fragment of the 12S rRNA gene sequenced by Sykes et al. is not sufficiently informative to support the hypotheses provided by these authors with respect to the taxonomic identity of the individuals from which these sequences were obtained. We have concluded that there is no reason to believe that the two samples came from anything other than Brown Bears. These analyses afforded an opportunity to test the monophyly of morphologically defined species and to comment on both their phylogenetic relationships and future efforts necessary to advance our understanding of ursid systematics.

  18. A lattice model exhibiting radiation-induced anomalous conductivity

    OpenAIRE

    Kimball, J. C.; Lee, Keeyung

    2003-01-01

    A lattice-based model exhibits an unusual conductivity when it is subjected to both a static magnetic field and electromagnetic radiation. This conductivity anomaly may explain some aspects of the recently observed "zero-resistance states". PACS: 72.40+w, 73.40-c, 73.63 Keywords: Zero-resistance states, negative conductivity, lattice model

  19. Strain induced anomalous red shift in mesoscopic iron oxide ...

    Indian Academy of Sciences (India)

    ... of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance ...

  20. Anomalous temperature-induced volume contraction in GeTe

    OpenAIRE

    Chatterji, Tapan; Kumar, C. M. N.; Wdowik, Urszula D.

    2015-01-01

    The recent surge of interest in phase-change materials GeTe, Ge2Sb2Te5, and related compounds motivated us to revisit the structural phase transition in GeTe in more detail than was done before. The rhombohedral-to-cubic ferroelectric phase transition in GeTe has been studied using high-resolution neutron powder diffraction on a spallation neutron source. We determined the temperature dependence of the structural parameters in a wide temperature range extending from 309 to 973 K. The results ...

  1. Contribution to the study of diffusion in rare earth metals and actinides

    International Nuclear Information System (INIS)

    Marbach, Gabriel.

    1978-07-01

    This work describes several experiments carried out in order to understand the process of self diffusion in rare earth and actinides (self diffusion of body centered cubic γ neptunium, diffusion of gadolinium in body centered delta cerium, measurement of the activation volume of face centered cubic γ cerium). The unstable electronic structure of some elements cannot be correlate with anomalous diffusion properties. In fact the diffusion parameters of neptunium and plutonium are similar (high diffusivity and low activation energy) whereas the electronic structure of neptunium is stable and that of plutonium is temperature dependent. The negative activation volume of the body centered cubic phases of plutonium and cerium does not indicate a particular diffusion mechanism since self diffusion is faster under pressure in face centered cubic γ cerium where a vacancy mechanism is assumed according to earlier results. The vacancy mechanism is the most probable diffusion process in the body centered cubic and compact phases of rare earths and actinides [fr

  2. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Yunying Zheng

    2011-01-01

    Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.

  3. Mechanisms of the anomalous Pockels effect in bulk water

    Science.gov (United States)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  4. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  5. Color diffusion in QCD transport theory

    International Nuclear Information System (INIS)

    Selikhov, A.V.; Gyulassy, M.

    1993-01-01

    Color diffusion is shown to be an important dissipative property of quark-gluon plasmas with the characteristic color relaxation time scale, t c ∼ (3α s T log (m E /m M )) -1 , showing its sensitivity to the ratio of the static color electric and magnetic screening masses. Fokker-Planck equations are derived for QCD Wigner distributions taking into account quantum color dynamics. These equations show that the anomalously small color relaxation time leads to a small color conductivity and to strong damping of collective color modes

  6. Lévy flight with absorption: A model for diffusing diffusivity with long tails

    Science.gov (United States)

    Jain, Rohit; Sebastian, K. L.

    2017-03-01

    We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e., ∝T at all times, but the probability distribution of particle displacement is not Gaussian at all times. It is exponential at short times and crosses over to become Gaussian only in a large time limit in the case where the distribution of D in that model has a steady state limit which is exponential, i.e., πe(D ) ˜e-D /D0 . In the present study, we model the diffusivity of a particle as a Lévy flight process so that D has a power-law tailed distribution, viz., πe(D ) ˜D-1 -α with 0 <α <1 . We find that in the short time limit, the width of displacement distribution is proportional to √{T }, implying that the diffusion is Fickian. But for long times, the width is proportional to T1 /2 α which is a characteristic of anomalous diffusion. The distribution function for the displacement of the particle is found to be a symmetric stable distribution with a stability index 2 α which preserves its shape at all times.

  7. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ

    2000-01-01

    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  8. Search for Anomalous Couplings in the Higgs Sector at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV ffbar, H -> gamma gamma, H -> Z\\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates.

  9. Global and local diffusion in the standard map

    Science.gov (United States)

    Harsoula, Mirella; Contopoulos, George

    2018-02-01

    We study the global and the local transport and diffusion in the case of the standard map, by calculating the diffusion exponent μ . In the global case, we find that the mean diffusion exponent for the whole phase space is either μ =1 , denoting normal diffusion, or μ =2 denoting anomalous diffusion (and ballistic motion). The mean diffusion of the whole phase space is normal when no accelerator mode exists and it is anomalous (ballistic) when accelerator mode islands exist even if their area is tiny in the phase space. The local value of the diffusion exponent inside the normal islands of stability is μ =0 , while inside the accelerator mode islands it is μ =2 . The local value of the diffusion exponent in the chaotic region outside the islands of stability converges always to the value of 1. The time of convergence can be very long, depending on the distance from the accelerator mode islands and the value of the nonlinearity parameter K . For some values of K , the stickiness around the accelerator mode islands is maximum and initial conditions inside the sticky region can be dragged in a ballistic motion for extremely long times of the order of 107 or more but they will finally end up in normal mode diffusion with μ =1 . We study, in particular, cases with maximum stickiness and cases where normal and accelerator mode islands coexist. We find general analytical solutions of periodic orbits of accelerator type and we give evidence that they are much more numerous than the normal periodic orbits. Thus, we expect that in every small interval Δ K of the nonlinearity parameter K of the standard map there exist smaller intervals of accelerator mode islands. However, these smaller intervals are in general very small, so that in the majority of the values of K the global diffusion is normal.

  10. Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, R. [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences

    1999-11-01

    This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D{sub e}, with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D{sub a}/a{sup 2} may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion

  11. Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report

    International Nuclear Information System (INIS)

    Haggerty, R.

    1999-11-01

    This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D e , with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D a /a 2 may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion adequately for some

  12. Ion acoustic instability, turbulence, anomalous resistivity and enhanced laser light absorption in ICF plasmas

    Science.gov (United States)

    Rozmus, Wojciech

    2017-10-01

    Hot plasmas with strong temperature gradients in inertial confinement fusion (ICF) experiments are examined for ion acoustic instabilities and kinetic effects produced by electron heat flux. Return current instability (RCI) due to neutralizing current of cold electrons arising in response to large electron heat flux is investigated as a source of the stationary levels of ion acoustic turbulence (IAT). Two mechanisms of anomalous laser light absorption on IAT: due to enhanced anomalous collisionality and mode conversion into Langmuir waves at the critical density are described in terms of effective absorption rates and applied to hohlraum plasmas with ZTe/Ti >> 1. The RCI threshold and growth rates are derived in the nonlocal regime of the thermal transport. They are compared with results of Vlasov-Fokker-Planck (VFP) simulations. Quasi-stationary state of the IAT produced by the RCI is achieved in VFP simulations. Nonlinear saturation of the RCI involves the mechanisms of the quasi-linear evolution and induced scattering of ions on IAT. In this talk, these topics will be explored in light of Professor Kaw's enduring research results on anomalous resistivity, enhanced laser light absorption and parametric instabilities in laser produced plasmas.

  13. Anomalous Anticipatory Responses in Networked Random Data

    International Nuclear Information System (INIS)

    Nelson, Roger D.; Bancel, Peter A.

    2006-01-01

    We examine an 8-year archive of synchronized, parallel time series of random data from a world spanning network of physical random event generators (REGs). The archive is a publicly accessible matrix of normally distributed 200-bit sums recorded at 1 Hz which extends from August 1998 to the present. The primary question is whether these data show non-random structure associated with major events such as natural or man-made disasters, terrible accidents, or grand celebrations. Secondarily, we examine the time course of apparently correlated responses. Statistical analyses of the data reveal consistent evidence that events which strongly affect people engender small but significant effects. These include suggestions of anticipatory responses in some cases, leading to a series of specialized analyses to assess possible non-random structure preceding precisely timed events. A focused examination of data collected around the time of earthquakes with Richter magnitude 6 and greater reveals non-random structure with a number of intriguing, potentially important features. Anomalous effects in the REG data are seen only when the corresponding earthquakes occur in populated areas. No structure is found if they occur in the oceans. We infer that an important contributor to the effect is the relevance of the earthquake to humans. Epoch averaging reveals evidence for changes in the data some hours prior to the main temblor, suggestive of reverse causation

  14. Diagnosing Anomalous Network Performance with Confidence

    Energy Technology Data Exchange (ETDEWEB)

    Settlemyer, Bradley W [ORNL; Hodson, Stephen W [ORNL; Kuehn, Jeffery A [ORNL; Poole, Stephen W [ORNL

    2011-04-01

    Variability in network performance is a major obstacle in effectively analyzing the throughput of modern high performance computer systems. High performance interconnec- tion networks offer excellent best-case network latencies; how- ever, highly parallel applications running on parallel machines typically require consistently high levels of performance to adequately leverage the massive amounts of available computing power. Performance analysts have usually quantified network performance using traditional summary statistics that assume the observational data is sampled from a normal distribution. In our examinations of network performance, we have found this method of analysis often provides too little data to under- stand anomalous network performance. Our tool, Confidence, instead uses an empirically derived probability distribution to characterize network performance. In this paper we describe several instances where the Confidence toolkit allowed us to understand and diagnose network performance anomalies that we could not adequately explore with the simple summary statis- tics provided by traditional measurement tools. In particular, we examine a multi-modal performance scenario encountered with an Infiniband interconnection network and we explore the performance repeatability on the custom Cray SeaStar2 interconnection network after a set of software and driver updates.

  15. Anomalous Solubility Behavior of Several Acidic Drugs

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2014-04-01

    Full Text Available The “anomalous solubility behavior at higher pH values” of several acidic drugs originally studied by Higuchi et al. in 1953 [1], but hitherto not fully rationalized, has been re-analyzed using a novel solubility-pH analysis computer program, pDISOL-XTM. The program internally derives implicit solubility equations, given a set of proposed equilibria and constants (iteratively refined by weighted nonlinear regression, and does not require explicit Henderson-Hasselbalch equations. The re-analyzed original barbital, phenobarbital, oxytetracycline, and sulfathiazole solubility-pH data of Higuchi et al. is consistent with the presence of dimers in saturated solutions. In the case of barbital, phenobarbital and sulfathiazole, anionic dimers, reaching peak concentrations near pH 8. However, oxytetracycline indicated a pronounced tendency to form a cationic dimer, peaking near pH 2. Under the conditions of the original study, only barbital indicated a slight tendency to form a salt precipitate at pH > 6.8, with a highly unusual stoichiometry (consistent with a slope of 0.55 in the log S – pH plot: K+ + A2H- + 3HA D KA5H4(s. Thus the “anomaly” in the Higuchi data can be rationalized by invoking specific aggregated species.

  16. Are anomalously short tunnelling times measurable?

    International Nuclear Information System (INIS)

    Delgado, V.; Muga, J.G.

    1996-01-01

    Low and Mende have analyzed the conditions that would make possible an actual measurement of an anomalously short traversal time through a potential barrier concluding that such a measurement cannot be made because it is not possible to describe the tunnelling of a wave packet initially close to the barrier by the open-quote open-quote usual wave packet space time analysis close-quote close-quote. We complement this work in several ways: It is argued that the described failure of the usual formalism occurs under a set of too restrictive conditions, some of them not physically motivated, so it does not necessarily imply the impossibility of such a measurement. However, by retaining only conditions well motivated on physical grounds we have performed a systematic numerical check which shows that the conclusion by Low and Mende is indeed generally valid. It is shown that, as speculated by Low and Mende, the process is dominated by over the barrier transmission. Copyright copyright 1996 Academic Press, Inc

  17. Anomalous dispersion of microcavity trion-polaritons

    Science.gov (United States)

    Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O'Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, Subhro; Vamivakas, A. N.

    2018-02-01

    The strong coupling of excitons to optical cavities has provided new insights into cavity quantum electrodynamics as well as opportunities to engineer nanoscale light-matter interactions. Here we study the interaction between out-of-equilibrium cavity photons and both neutral and negatively charged excitons, by embedding a single layer of the atomically thin semiconductor molybdenum diselenide in a monolithic optical cavity based on distributed Bragg reflectors. The interactions lead to multiple cavity polariton resonances and anomalous band inversion for the lower, trion-derived, polariton branch--the central result of the present work. Our theoretical analysis reveals that many-body effects in an out-of-equilibrium setting result in an effective level attraction between the exciton-polariton and trion-polariton accounting for the experimentally observed inverted trion-polariton dispersion. Our results suggest a pathway for studying interesting regimes in quantum many-body physics yielding possible new phases of quantum matter as well as fresh possibilities for polaritonic device architectures.

  18. Underdamped diffusion in the egg-carton potential

    Science.gov (United States)

    Caratti, G.; Ferrando, R.; Spadacini, R.; Tommei, G. E.

    1997-04-01

    It is shown by numerical solution of the Fokker-Planck equation in a coupled two-dimensional potential of square symmetry (egg-carton potential) that an ``anomalous'' dependence of the diffusion coefficient on the friction (D~η-σ, with σ<1) holds in a rather wide friction range in the underdamped regime. The exponent σ is not universal, but depends on the parameters of the potential.

  19. Primary percutaneous coronary intervention in an anomalous single coronary trunk arising anomalously from ascending aorta.

    Science.gov (United States)

    Gupta, Mohit D; Girish, M P; Bansal, Ankit; Chaturvedi, Vivek; Trehan, Vijay; Tyagi, Sanjay

    2016-07-01

    A 45-year-old male patient presented with acute anterior wall myocardial infarction. Angiography revealed a single coronary trunk arising from the ascending aorta above the coronary sinuses and giving rise to right coronary artery, left circumflex artery and critical stenosis in the left anterior descending artery. This report also highlights the feasibility of performing percutaneous coronary intervention (PCI) in this rare anomaly and discusses the important technical considerations to be kept in mind while attempting such a case. This is the first report of such an anomalous origin of a single coronary trunk arising from ascending aorta.

  20. The relation between anomalous magnetic moment and axial anomaly

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    1990-12-01

    The conservation of total angular momentum of spinor particle leads to a simple relation between the famous Schwinger and Adler coefficients determining axial anomaly and anomalous magnetic moment, respectively. (author). 8 refs, 1 fig

  1. The Chelyabinsk Meteorite Hits an Anomalous Zone in the Urals

    Science.gov (United States)

    Kochemasov, G. G.

    2013-09-01

    The Chelyabinsk meteorite is "strange" because it hits an area in the Urals where anomalous events are observed: shining skies, light balls, UFOs, electrphonic bolids. The area tectonically occurs at the intersection of two fold belts: Urals and Timan.

  2. Partial anomalous pulmonary venous return in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Sung, Won-kyung; Au, Virginia; Rose, Anand

    2012-01-01

    Anomalous pulmonary venous return is an uncommon congenital malformation, and may be partial or total. Partial anomalous pulmonary venous return (PAPVR) is more common than total anomalous pulmonary venous return, and is often associated with other congenital cardiac anomalies. Whilst many patients with PAPVR remain asymptomatic, some may present in later age with symptoms related to left-to-right shunt, right heart failure and pulmonary hypertension. We report two cases of PAPVR detected on Computed Tomography Pulmonary Angiogram (CTPA) for the work up of pulmonary hypertension. The cases demonstrate that, although uncommon, partial anomalous pulmonary venous return can be a contributing factor to pulmonary hypertension and pulmonary veins should be carefully examined when reading a CTPA study.

  3. Reaction-diffusion with stochastic decay rates.

    Science.gov (United States)

    Lapeyre, G John; Dentz, Marco

    2017-07-26

    Understanding anomalous transport and reaction kinetics due to microscopic physical and chemical disorder is a long-standing goal in many fields including geophysics, biology, and engineering. We consider reaction-diffusion characterized by fluctuations in both transport times and decay rates. We introduce and analyze a model framework that explicitly connects microscopic fluctuations with the mescoscopic description. For broad distributions of transport and reaction time scales we compute the particle density and derive the equations governing its evolution, finding power-law decay of the survival probability, and spatially varying decay that leads to subdiffusion and an asymptotically stationary surviving-particle density. These anomalies are clearly attributable to non-Markovian effects that couple transport and chemical properties in both reaction and diffusion terms.

  4. Theories for anomalous responses in disordered electrodes ...

    Indian Academy of Sciences (India)

    DR. Rama Kant

    Adsorption. Diffusion/. Migration. Double Layer. Electrode Stability: Nanoactuation. Bulk. Reaction. Dt. kD/ mm. (WE/CE). L. (WE/RE). ~. ≈. ∝. Γ. Ω. Ω s w. R. DR i. 0. ~. ~ n. E. D. TF. F. M. F. M ε ε i f. H k. D. ≈ i. I. ~ ;. D. Tk r. B. H ε i. Kant, Kaur & Singh, Nanoelectrochemistry in India, SPR Electrochemistry, 2013, 12, 336–378.

  5. Characterization of Anomalous Contaminant Transport via Push-Pull Tracer Tests

    Science.gov (United States)

    Hansen, S. K.; Vesselinov, V. V.; Berkowitz, B.

    2015-12-01

    Push-pull (single-well-injection-withdrawal) tracer tests are widely used as an economical means of characterizing field-scale solute transport properties such as sorption and dispersion. Typically, these are analyzed by means of analytic solutions that assume transport obeys the radial advection-dispersion equation. We revisit this approach as: (1) Recognition of the ubiquity of anomalous transport and its impact on contaminant remediation necessitates the use of new methods to characterize it, and (2) Improved computational power and numerical methods have rendered reliance on analytical solutions obsolete. Here, we present a technique for characterizing diffusion-driven anomalous transport (i.e., anomalous transport driven by a "trapping" process whose trapping and release statistics are independent of the groundwater flow velocity). Examples include diffusion into low permeability zones, kinetic sorption, and matrix diffusion. Using field observations, we simultaneously calibrate an exponential probability distribution for time spent on a single sojourn in the mobile domain and a truncated power law probability distribution for time spent on a single sojourn in the immobile domain via a stochastic global optimization technique. The calibrated distributions, being independent of the flow regime, are applicable to the same domain under any flow conditions, including linear flow. In the context of the continuous time random walk (CTRW), one may simply define a transition to represent a single trap-and-release cycle, and directly compute the spatiotemporal transition distribution that defines the CTRW from the two calibrated distributions and the local seepage velocity (so that existing CTRW transport theory applies). A test of our methodology against a push-pull test from the MADE site demonstrated fitting performance comparable to that of a 3-D MODFLOW/MT3DMS model with a variety of hydraulic conductivity zones and explicit treatment of mobile-immobile mass

  6. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  7. Structural controls on anomalous transport in fractured porous rock

    Science.gov (United States)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  8. Anomalous thermodynamic behaviour of novel compounds: inelastic neutron scattering and lattice dynamics studies

    International Nuclear Information System (INIS)

    Mittal, R.

    2014-01-01

    The understanding of the thermodynamic properties of solids has important applications in diverse areas like condensed matter physics, materials science, mineralogy, geophysics, etc. We have been extensively investigating anomalous thermodynamic properties of compounds using the techniques of lattice dynamics, inelastic neutron scattering, inelastic x-ray scattering and synchrotron x-ray diffraction. Here we present some of the results from our recent studies. Studies of materials exhibiting anomalous thermal expansion are of interest due to their fundamental scientific importance and potential applications in ceramic, optical and electronic industry etc. We have studied the thermodynamic properties of negative thermal expansion (NTE) compounds ZrW O8 , HfW 2 O 8 , ZrMO 2 O 8 , Zn(CN) 2 , Cu 2 O, Ag 2 O; Ag 3 Co(CN) 6 and Ag 3 Fe(CN) 6 . Our calculations predicted that large softening of the phonon spectrum involving librational and translational modes below 10 MeV would be responsible for anomalous thermal expansion behaviour. High pressure inelastic neutron scattering experiments carried by us on cubic ZrW 2 O 8 , ZrMo 2 O 8 and Zn(CN) 2 confirmed the phonon softening. The thermal expansion as derived from the phonon measurements is in good agreement with that obtained from diffraction data. This indicates that unusual phonon softening of low energy modes is able to account for the thermal expansion behaviour in these compounds. Superionic conduction in fluorite-structured (anti-fluorite, Li 2 O) oxides and LiMPO 4 (M=Fe, Mn) have applications in energy storage, conversion and nuclear industry. Fast ion conductors exhibit high ionic conductivity, which allow macroscopic movement of ions through their structure. The possible role of phonon in initiation of diffusion has been studied in Li 2 O and LiMPO 4 (M=Fe, Mn). The simulations play a pivotal role in understanding the conduction processes at high temperatures in these compounds. (author)

  9. Non-Fickian diffusion with reaction in glassy polymers with swelling induced by the penetrant - Effects of consecutive and parallel reactions

    NARCIS (Netherlands)

    Kuipers, N.J M; Beenackers, A.A C M

    A mathematical model is presented for non-Fickian diffusion of a penetrant A into a granular glassy polymer containing a reactive group B, resulting in tile desired product P. Further, both a consecutive reaction between A and P (producing X) and a parallel reaction between A and C (producing Y) are

  10. Using light transmission to watch hydrogen diffuse.

    Science.gov (United States)

    Pálsson, Gunnar K; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-06-12

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.

  11. Lacute evy diffusion and classes of universal parametric correlations

    International Nuclear Information System (INIS)

    Kusnezov, D.; Lewenkopf, C.H.

    1996-01-01

    A general formulation of translationally invariant, parametrically correlated random matrix ensembles, is used to classify universality in correlation functions. Surprisingly, the range of possible physical systems is bounded, and can be labeled by a parameter α element-of(0,2), in a manner analogous to Lacute evy diffusion. Universality is obtained after scaling by the (anomalous) diffusion constant D α (the usual scaling is divergent for α<2). For each α, correlation functions are universal, and distinct. The previous results in the literature correspond to the limiting case of superdiffusion, α=2. copyright 1996 The American Physical Society

  12. Anomalous baryogenesis at the weak scale

    International Nuclear Information System (INIS)

    Singleton, R.L. Jr.

    1991-06-01

    One of the fundamental constants of nature is the baryon asymmetry of the universe -- the ratio of the number of baryons to the entropy. This constant is about 10 -11 . In baryon- number conserving theories, this was just an initial condition. With the advent of the grand unified theories (GUTs), baryon number is no longer conserved, and this asymmetry can be generated dynamically. Unfortunately, however, there are reasons for preferring another mechanism. For example, GUTs predict proton decay which, after extensive searches, has not been found. An alternative place to look for baryogenesis is the electroweak phase transition, described by the standard model, which posses all the necessary ingredients for baryogenesis. Anomalous baryon-number violation in weak interactions becomes large at high temperatures, which offers the prospect of creating the asymmetry with the standard model or minimal extensions. This can just barely be done if certain conditions are fulfilled. CP violation must be large, which rules out the minimal standard model as the source of the asymmetry, but which is easily arranged with an extended Higgs sector. The baryon-number violating rates themselves are not exactly known, and they must be pushed to their theoretical limits. A more exact determination of these rates is needed before a definitive answer can be given. Finally, the phase transition must be at least weakly first order. Such phase transitions are accompanied by the formation and expansion of bubbles of true vacuum within the false vacuum, much like the boiling of water. As the bubbles expand, they provide a departure from thermal equilibrium, otherwise the dynamics will adjust the net baryon number to zero. The bubble expansion also provides a biasing that creates an asymmetry on the bubbles surface. Under optimal conditions, the observed asymmetry can just be produced. 31 refs., 10 figs

  13. Anomalous baryogenesis at the weak scale

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, R.L. Jr.

    1991-06-01

    One of the fundamental constants of nature is the baryon asymmetry of the universe -- the ratio of the number of baryons to the entropy. This constant is about 10{sup {minus}11}. In baryon- number conserving theories, this was just an initial condition. With the advent of the grand unified theories (GUTs), baryon number is no longer conserved, and this asymmetry can be generated dynamically. Unfortunately, however, there are reasons for preferring another mechanism. For example, GUTs predict proton decay which, after extensive searches, has not been found. An alternative place to look for baryogenesis is the electroweak phase transition, described by the standard model, which posses all the necessary ingredients for baryogenesis. Anomalous baryon-number violation in weak interactions becomes large at high temperatures, which offers the prospect of creating the asymmetry with the standard model or minimal extensions. This can just barely be done if certain conditions are fulfilled. CP violation must be large, which rules out the minimal standard model as the source of the asymmetry, but which is easily arranged with an extended Higgs sector. The baryon-number violating rates themselves are not exactly known, and they must be pushed to their theoretical limits. A more exact determination of these rates is needed before a definitive answer can be given. Finally, the phase transition must be at least weakly first order. Such phase transitions are accompanied by the formation and expansion of bubbles of true vacuum within the false vacuum, much like the boiling of water. As the bubbles expand, they provide a departure from thermal equilibrium, otherwise the dynamics will adjust the net baryon number to zero. The bubble expansion also provides a biasing that creates an asymmetry on the bubbles surface. Under optimal conditions, the observed asymmetry can just be produced. 31 refs., 10 figs.

  14. Anomalous facial nerve canal with cochlear malformations.

    Science.gov (United States)

    Romo, L V; Curtin, H D

    2001-05-01

    Anteromedial "migration" of the first segment of the facial nerve canal has been previously identified in a patient with a non-Mondini-type cochlear malformation. In this study, several patients with the same facial nerve canal anomaly were reviewed to assess for the association and type of cochlear malformation. CT scans of the temporal bone of 15 patients with anteromedial migration of the first segment of the facial nerve canal were collected from routine departmental examinations. In seven patients, the anomalous course was bilateral, for a total of 22 cases. The migration was graded relative to normal as either mild/moderate or pronounced. The cochlea in each of these cases was examined for the presence and size of the basilar, second, and apical turns. The turns were either absent, small, normal, or enlarged. The CT scans of five patients with eight Mondini malformations were examined for comparison. The degree of the facial nerve migration was pronounced in nine cases and mild/moderate in 13. All 22 of these cases had associated cochlear abnormalities of the non-Mondini variety. These included common cavity anomalies with lack of definition between the cochlea and vestibule (five cases), cochleae with enlarged basilar turns and absent second or third turns (five cases), and cochleae with small or normal basilar turns with small or absent second or third turns (12 cases). None of the patients with Mondini-type cochlear malformations had anteromedial migration of the facial nerve canal. Anteromedial migration of the facial nerve canal occurs in association with some cochlear malformations. It did not occur in association with the Mondini malformations. A cochlea with a Mondini malformation, being similar in size to a normal cochlea, may physically prohibit such a deviation in course.

  15. Rare associations of tetralogy of Fallot with anomalous left coronary artery from pulmonary artery and totally anomalous pulmonary venous connection.

    Science.gov (United States)

    Sen, Supratim; Rao, Suresh G; Kulkarni, Snehal

    2016-06-01

    We describe the cases of two patients with tetralogy of Fallot, aged 4 years and 8 months, who were incidentally detected to have concomitant anomalous left coronary artery from pulmonary artery and total anomalous pulmonary venous connection, respectively, on preoperative imaging. They underwent surgical correction with good mid-term outcomes. In this study, we discuss the embryological basis, physiological effects, and review the literature of these two unusual associations. Awareness of these rare associations will avoid missed diagnoses and consequent surgical surprises.

  16. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  17. Coupled Continuous Time Random Walks for Anomalous Transport in Media Characterized by Heterogeneous Mass Transfer Properties

    Science.gov (United States)

    Comolli, A.; Dentz, M.

    2015-12-01

    Solute transport in geological media is in general non-Fickian as it cannot be explained in terms of equivalent homogeneous media. This anomalous character can be traced back to the existence of multiscale heterogeneity and strong correlations within the medium. Here we investigate the impact of fast heterogeneous mass transfer properties as represented by a spatially varying retardation coefficient (mass exchange between mobile and immobile regions, linear sorption-desorption reactions, variable porosity). In order to estimate the effects of spatial correlation, and disorder distribution on the average transport, we consider 2D media characterized by complex multiscale geometries and point distributions of retardation of increasing heterogeneity. Within a Lagrangian framework, we coarse-grain the Langevin equation for the transport of solute particles due to advection and diffusion in the heterogeneous medium. The large-scale transport properties are derived within a stochastic modeling approach by ensemble averaging of the coarse-grained Langevin equation . This approach shows that the effective particle motion can be described by a coupled CTRW that is fully parametrized by the distribution of the retardation coefficient and the spatial medium organization. This allows for the explicit relation of the heterogeneous medium properties to observed anomalous transport in terms of solute dispersion, breakthrough curves and spatial concentration profiles.

  18. Assessing the anomalous superdiffusive heat transport in a single one-dimensional PEDOT chain

    Science.gov (United States)

    Crnjar, Alessandro; Melis, Claudio; Colombo, Luciano

    2018-01-01

    We present a computational investigation on heat transport in a single polymer chain of poly-3,4-ethylenedioxythiophene (PEDOT). By applying equilibrium and nonequilibrium molecular dynamics simulations to evaluate the thermal conductivity, as well as by investigating how the polymer chain approaches equilibrium upon a local thermal excitation, we provide a robust picture assessing the anomalous superdiffusive (i.e., intermediate between ballistic and diffusive) character of its thermal transport. This assessment is provided by the present simulations showing that three scaling laws with unlike physical meaning and characterizing the thermal energy transport in one-dimensional systems indeed occur in the very same polymer chain with consistent critical exponents. In order to disentangle the effect of dimensionality, we perform a systematic comparison of transport features for a single one-dimensional (1D) PEDOT chain and a three-dimensional (3D) PEDOT crystal. Present simulations suggest that by increasing the dimensionality, the anomalous regime is completely removed as due to the occurrence of strong interchains anharmonic interactions. Finally, we prove that thermal transport in isolated single PEDOT chains belongs to a novel universality class of superdiffusion characterized by a critical exponent β =1 /2 .

  19. Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains

    Czech Academy of Sciences Publication Activity Database

    Šachl, Radek; Bergstrand, J.; Widengren, J.; Hof, Martin

    2016-01-01

    Roč. 49, č. 11 (2016), 114002 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GC14-03141J Institutional support: RVO:61388955 Keywords : FCS * lipid nanodomains * anomalous diffusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.588, year: 2016

  20. Effect of macromolecular crowding on the rate of diffusion-limited ...

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/pram/071/02/0359-0368. Keywords. Enzyme kinetics; Monte Carlo; percolation; random walk; obstacle. Abstract. The cytoplasm of a living cell is crowded with several macromolecules of different shapes and sizes. Molecular diffusion in such a medium becomes anomalous ...