WorldWideScience

Sample records for anomalous conductance oscillations

  1. Anomalous conductance oscillations and half-metallicity in atomic Ag-O chains

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Sethna, James P

    2008-01-01

    . The conductances of the chains exhibit weak even-odd oscillations around an anomalously low value of 0.1G(0) (G(0) = 2e(2)/h) which coincide with the averaged experimental conductance in the long chain limit. The unusual conductance properties are explained in terms of a resonating-chain model, which takes...... the reflection probability and phase shift of a single bulk-chain interface as the only input. The model also explains the conductance oscillations for other metallic chains.......Using spin density functional theory, we study the electronic and magnetic properties of atomically thin, suspended chains containing silver and oxygen atoms in an alternating sequence. Chains longer than 4 atoms develop a half-metallic ground state implying fully spin-polarized charge carriers...

  2. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  3. Quantum anomalous Bloch-Siegert shift in Weyl semimetal

    Science.gov (United States)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-05-01

    A periodic exchange of energy between the light field and two level system is known as Rabi oscillations. The Bloch-Siegert shift (BSS) is a shift in Rabi oscillation resonance condition, when the driving field is sufficiently strong. There are new type of oscillations exhibit in Weyl semimetal at far from resonance, known as anomalous Rabi oscillation. In this work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal at far from resonance called anomalous Bloch-Siegert shift (ABSS) by purely quantum mechanical treatment and describe it's anisotropic nature. A fully numerical solution of the Floquet-Bloch equations unequivocally establishes the presence of not only anomalous Rabi oscillations in these systems but also their massless character.

  4. Conductance oscillation in graphene-nanoribbon-based electronic Fabry-Perot resonators

    International Nuclear Information System (INIS)

    Zhang Yong; Han Mei; Shen Linjiang

    2010-01-01

    By using the tight-binding approximation and the Green's function method, the quantum conductance of the Fabry-Perot-like electronic resonators composed of zigzag and metallic armchair edge graphene nanoribbons (GNRs) was studied numerically. Obtained results show that due to Fabry-Perot-like electronic interference, the conductance of the GNR resonators oscillates periodically with the Fermi energy. The effects of disorders and coupling between the electrodes and the GNR on conductance oscillations were explored. It is found that the conductance oscillations appear at the strong coupling and become resonant peaks as the coupling is very weak. It is also found that the strong disorders in the GNR can smear the conductance oscillation periods. In other words, the weak coupling and the strong disorders all can blur the conductance oscillations, making them unclearly distinguished.

  5. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  6. Chiral anomaly and anomalous finite-size conductivity in graphene

    Science.gov (United States)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  7. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  8. Anomalous size effect in conductivity of Bi films of small thickness

    International Nuclear Information System (INIS)

    Anopchenko, A.S.; Kashirin, V.Yu.; Komnik, Yu.F.

    1995-01-01

    Experimental data are obtained at helium temperature, which describe the kinetic properties (conductivity, magnetoresistance and Hall coefficient) of Bi films whose thicknesses are within 100-500 A. The small-thickness Bi films display an anomalous size effect- the growing conductivity at decreasing thickness, and pronounced quantum interference effects - weak electron localization and enhancing electron-electron interaction in a disordered system. The information derived on the kinetic properties of the films is used to identify the character of the changes in the electron and hole concentrations and mobilities with a decreasing thickness. The isotropy of the properties in the films plane due to the axial texture has permitted us to use the equations for a conductor with two types of charge carriers. The used kinetic characteristics correctly take into account the contribution of the quantum corrections related to quantum interference. It is found that the concentration of the charge carries increases appreciably (by about two orders of magnitude) as the film thickness decreases to 100 A, which determines the anomalous size effect in the conductivity of the films

  9. Anomalous high-frequency resistivity of a plasma

    International Nuclear Information System (INIS)

    Kruer, W.L.; Dawson, J.M.

    1971-06-01

    In one- and two-dimensional computer simulations we investigate anomalous high-frequency resistivity in a plasma driven by a large electric field oscillating near the electron plasma frequency. The large field excites the oscillating two-stream and the ion-acoustic decay instabilities in agreement with the linear theory. When the ion and electron fluctuations saturate, a strong anomalous heating of the plasma sets in. This strong heating is due to an efficient coupling of the externally imposed large electric field to the plasma by ion fluctuations. We determine the anomalous collision frequency and the saturation fluctuation amplitudes as a function of the external field amplitude and frequency, and the electron-ion mass ratio. A simple nonlinear theory gives results in reasonable agreement with simulations. 24 refs., 10 figs

  10. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  11. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  12. Oscillations of a spring-magnet system damped by a conductive plate

    Science.gov (United States)

    Ladera, C. L.; Donoso, G.

    2013-09-01

    We study the motion of a spring-magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level.

  13. Oscillations of a spring–magnet system damped by a conductive plate

    International Nuclear Information System (INIS)

    Ladera, C L; Donoso, G

    2013-01-01

    We study the motion of a spring–magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level. (paper)

  14. Anomalous conductivity of calcium- and cadmium molybdates with colour centers

    International Nuclear Information System (INIS)

    Reut, E.G.

    1983-01-01

    Electrical properties of cadmium- and calcium molybdates with colour centers are considered. Electric conductivity and capacitance in the 50 to 100 kHz frequency range at temperature change from 4 to 300 K, are investigated. Temperature- and frequency dependences are described by Debye formulas. The potential distribution over the sample is investigated and a conclusion is drawn that electric characteristics are dependent on the barrier impedance which arises at the crystal-electrode metal interface. Bulk conductivity is determined using a probe technique. The CdMoO 4 electric conductivity is anomalously high and cannot be explained by ion transport CdMoO 4 with colour centers is concluded to be an impurity semiconductor. It has been foUnd that in both crystals bulk conductivity and charge layer relaxation on the contacts depend on the same centers. Center parameters are determined

  15. Anomalous transmission through heavily doped conducting polymer films with periodic subwavelength hole array

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-08-01

    We observed resonantly enhanced (or anomalous transmission) terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF 6 molecules [PPy(PF6)]. The anomalous transmission spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the resonantly enhanced transmission peaks are broader in the exotic metallic PPy(PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, indicating that the surface plasmon polaritons on the PPy(PF6) film surfaces have higher attenuation.

  16. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  17. Anomalous resistivity in the plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Dolgachev, G I; Zakatov, L P; Kalinin, Yu G; Kingsep, A S; Nitishinskij, M S; Ushakov, A G [Kurchatov Institute, Moscow (Russian Federation). Applied Physics Division

    1997-12-31

    Experimental studies and modelling together with analytical considerations of anomalous resistivity in the plasma opening switch (POS) are being pursued to improve the understanding of the physical mechanism of the POS conduction phase. Experiments have been undertaken for a `microsecond` POS of coaxial geometry. Measurements of Stark broadening of the H{sub {alpha}} line allowed turbulent oscillations in plasma to be found at the conductivity stage. A comparison with the modelling including low-frequency (ion-acoustic) turbulence and Doppler broadening (neutral gas temperature 1-3 eV) the electric field value to be estimated to 10-30 kV/cm. The turbulent field increased toward the cathode up to 50 kV/cm in the near-cathode layer. (author). 3 figs., 14 refs.

  18. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    Science.gov (United States)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  19. Profile consistency, anomalous electron thermal conduction, and confinement analysis of tokamak devices

    International Nuclear Information System (INIS)

    Qu Wenxiao

    1992-01-01

    Assuming that there exists a position in the tokamak plasma where the energy transport is dominated by local anomalous electron thermal conduction and taking advantage of the basic experimental result usually referred to as profile consistency, the authors obtain a more convincing approach to the description of the confinement property of tokamak devices without touching upon the physical mechanism of global plasma energy transport. 8 refs

  20. Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons

    OpenAIRE

    Pedroarena, Christine; Llinás, Rodolfo

    1997-01-01

    Cortical-projecting thalamic neurons, in guinea pig brain slices, display high-frequency membrane potential oscillations (20–80 Hz), when their somata are depolarized beyond −45 mV. These oscillations, preferentially located at dendritic sites, are supported by the activation of P/Q type calcium channels, as opposed to the expected persistent sodium conductance responsible for such rhythmic behavior in other central neurons. Short hyperpolarizing pulses reset the phase and transiently increas...

  1. Pumping conductance, the intrinsic anomalous Hall effect, and statistics of topological invariants

    Science.gov (United States)

    Dahlhaus, Jan; Ilan, Roni; Freed, Daniel; Freedman, Michael; Moore, Joel E.

    2015-06-01

    The pumping conductance of a disordered two-dimensional Chern insulator scales with increasing size and fixed disorder strength to sharp plateau transitions at well-defined energies between ordinary and quantum Hall insulators. When the disorder strength is scaled to zero as system size increases, the "metallic" regime of fluctuating Chern numbers can extend over the whole band. A simple argument leads to a sort of weighted equipartition of Chern number over minibands in a finite system with periodic boundary conditions: even though there must be strong fluctuations between disorder realizations, the mean Chern number at a given energy is determined by the clean Berry curvature distribution, as in the intrinsic anomalous Hall effect formula for metals. This estimate is compared to numerical results using recently developed operator algebra methods, and indeed the dominant variation of average Chern number is explained by the intrinsic anomalous Hall formula. A mathematical appendix provides more precise definitions and a model for the full distribution of Chern numbers.

  2. Conductance oscillations of core-shell nanowires in transversal magnetic fields

    Science.gov (United States)

    Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar

    2016-05-01

    We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

  3. Interacting quantum wires: A possible explanation for the 0.7 anomalous conductance

    International Nuclear Information System (INIS)

    Malard, M.; Schmeltzer, D.; Kuklov, A.

    2009-01-01

    We investigate an effective one-dimensional conducting channel considering both the contact umklapp and the Coulomb electron-electron interaction. We show that, at low electronic density, the proximity to the Wigner crystal reproduces the anomaly in conductance at 0.7G 0 . The crucial ingredient of our theory is the fact that the gate voltage acts as a bias controlling the intensity of the umklapp term. At large gate voltages, the umklapp vanishes and we obtain a conducting quantum wire with a perfect conductance. At low gate voltages, the Wigner crystal is pinned by the umklapp term, giving rise to an insulating behavior with vanishing conductance. This crossover pattern has a transition point which can be identified with the anomalous conductance around 0.7G 0 . This picture is obtained within the framework of a renormalization group calculation. The conductance static regime is achieved by taking first the limit of finite length and then the limit of zero frequency.

  4. Conventional and anomalous quantum Rabi oscillations in graphene

    International Nuclear Information System (INIS)

    Khan, Enamullah; Kumar, Vipin; Kumar, Upendra; Setlur, Girish S.

    2014-01-01

    We study the non linear response of graphene in presence of quantum field in two different regimes. Far from resonance, using our new technique asymptotic rotating wave approximation (ARWA), we obtained that the matter field interaction leads to the slow oscillations like conventional Rabi oscillations observed in conventional semiconductors using well known rotating wave approximation (RWA). The Rabi frequency obtained in both the regimes

  5. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    Science.gov (United States)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  6. Anomalous periodic disruptions in tokamak plasma

    International Nuclear Information System (INIS)

    Montvai, A.; Tegze, M.; Valyi, I.

    1982-09-01

    Anomalously strong, periodic instabilities were observed in the MT-1 tokamak. Characteristics of these instabilities were partly similar to those of internal disruptions, but there were features making them different from the normal relaxational oscillations. Basic characteristics of the phenomenon were studied with the aid of generally used diagnostics. (author)

  7. Exchange interpretation of anomalous back angle heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1977-10-01

    Anomalous back angle oscillations in the angular distributions obtained in the elastic scattering of 16 O + 28 Si and 12 C + 28 Si have been interpreted in terms of an elastic cluster transfer comparable to that observed in other heavy ion reactions. The calculations appear to at least qualitatively explain the data with respect to the existence and phase of the back angle oscillations. The results indicate that an exchange mechanism may play an important role in the oscillations

  8. Tunneling conductance oscillations in spin-orbit coupled metal-insulator-superconductor junctions

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2018-01-01

    The tunneling conductance for a device consisting of a metal-insulator-superconductor (MIS) junction is studied in presence of Rashba spin-orbit coupling (RSOC) via an extended Blonder-Tinkham-Klapwijk formalism. We find that the tunneling conductance as a function of an effective barrier potential that defines the insulating layer and lies intermediate to the metallic and superconducting electrodes, displays an oscillatory behavior. The tunneling conductance shows high sensitivity to the RSOC for certain ranges of this potential, while it is insensitive to the RSOC for others. Additionally, when the period of oscillations is an odd multiple of a certain value of the effective potential, the conductance spectrum as a function of the biasing energy demonstrates a contrasting trend with RSOC, compared to when it is not an odd multiple. The explanations for the observation can be found in terms of a competition between the normal and Andreev reflections. Similar oscillatory behavior of the conductance spectrum is also seen for other superconducting pairing symmetries, thereby emphasizing that the insulating layer plays a decisive role in the conductance oscillations of a MIS junction. For a tunable Rashba coupling, the current flowing through the junction can be controlled with precision.

  9. Tuning anomalous Hall conductivity in L1[sub 0] FePt films by long range chemical ordering

    KAUST Repository

    Chen, M.; Shi, Z.; Xu, W. J.; Zhang, Xixiang; Du, J.; Zhou, S. M.

    2011-01-01

    For L10 FePt films, the anomalous Hall conductivity σ xy=-a σxx-b, where a=a0f(T), b=b 0f(T), and f (T) is the temperature dependence factor of the spontaneous magnetization. With increasing chemical long range ordering S, a0 changes its sign accompanied by a reduction of its magnitude and b0 increases monotonically. The spin-orbit coupling strength is suggested to increase with increasing S. As an approach, the long range chemical ordering can be used to control the anomalous Hall effect in ferromagnetic alloy films. © 2011 American Institute of Physics.

  10. Tuning anomalous Hall conductivity in L1[sub 0] FePt films by long range chemical ordering

    KAUST Repository

    Chen, M.

    2011-02-24

    For L10 FePt films, the anomalous Hall conductivity σ xy=-a σxx-b, where a=a0f(T), b=b 0f(T), and f (T) is the temperature dependence factor of the spontaneous magnetization. With increasing chemical long range ordering S, a0 changes its sign accompanied by a reduction of its magnitude and b0 increases monotonically. The spin-orbit coupling strength is suggested to increase with increasing S. As an approach, the long range chemical ordering can be used to control the anomalous Hall effect in ferromagnetic alloy films. © 2011 American Institute of Physics.

  11. Fundamental characteristics of heat conduction enhancement in oscillating viscous flow-dream pipe

    International Nuclear Information System (INIS)

    Katsuta, M.; Nagata, K.; Maruyama, Y.; Tsujimori, A.

    1991-01-01

    This paper reports that to confirm the heat conduction augmentation technique via sinusoidal oscillation experimentally and to establish a fundamental data base of this device, systematic measurements using almost identically scaled with Kurzweg's apparatus for demonstration were conducted. In this heat exchanger, the fluid occupied a capillary tube or its bundle that connected two reservoirs at different temperature; a special constructed oscillation driving unit generated a pulsed motion of working fluid. Operation took place at various tube diameters, oscillated frequency and stroke using pure water and ethanol as working liquid. As a result, a new factor so-called heat transport coefficient which indicates the heat transfer rate multiplying temperature gradient between hot and cold reservoir was introduced. This factor increased with increasing oscillated frequency and stroke, however, beyond a critical frequency, this trend disappeared. Using modified Reynolds number and stroke ratio, a new empirical formula which correlated the data regardless of the difference of working liquid was proposed. A discussion of tube bundle was also made using this correlation. Finally, an attempt was performed to correlate the data using effective thermal diffusivity predicted by simple lumped capacitance analysis and characteristic period

  12. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  13. Defect-induced conductance oscillations in short atomic chains

    International Nuclear Information System (INIS)

    Wawrzyniak-Adamczewska, M; Kostyrko, T

    2012-01-01

    Electronic transport through a junction made of two gold electrodes connected with a gold chain containing a silver impurity is analyzed with a tight binding model and the density-functional theory. It is shown that the conductance depends in a simple way on the position of the impurity in the chain and the parity of the total number of atoms of the chain. For an odd chain the conductance takes on a higher value when the Ag impurity substitutes an even Au atom in the chain, and a lower one for an odd position of the Ag atom. In the case of an even chain the conductance hardly depends on the position of the Ag atom. This new kind of a defect-induced parity oscillation of the conductance is significantly more prominent than the well-known even-odd effect related to the dependence of the conductance on the parity of number of atoms in perfect chains. (paper)

  14. Anomalously temperature-dependent thermal conductivity of monolayer GaN with large deviations from the traditional 1 /T law

    Science.gov (United States)

    Qin, Guangzhao; Qin, Zhenzhen; Wang, Huimin; Hu, Ming

    2017-05-01

    Efficient heat dissipation, which is featured by high thermal conductivity, is one of the crucial issues for the reliability and stability of nanodevices. However, due to the generally fast 1 /T decrease of thermal conductivity with temperature increase, the efficiency of heat dissipation quickly drops down at an elevated temperature caused by the increase of work load in electronic devices. To this end, pursuing semiconductor materials that possess large thermal conductivity at high temperature, i.e., slower decrease of thermal conductivity with temperature increase than the traditional κ ˜1 /T relation, is extremely important to the development of disruptive nanoelectronics. Recently, monolayer gallium nitride (GaN) with a planar honeycomb structure emerges as a promising new two-dimensional material with great potential for applications in nano- and optoelectronics. Here, we report that, despite the commonly established 1 /T relation of thermal conductivity in plenty of materials, monolayer GaN exhibits anomalous behavior that the thermal conductivity almost decreases linearly over a wide temperature range above 300 K, deviating largely from the traditional κ ˜1 /T law. The thermal conductivity at high temperature is much larger than the expected thermal conductivity that follows the general κ ˜1 /T trend, which would be beneficial for applications of monolayer GaN in nano- and optoelectronics in terms of efficient heat dissipation. We perform detailed analysis on the mechanisms underlying the anomalously temperature-dependent thermal conductivity of monolayer GaN in the framework of Boltzmann transport theory and further get insight from the view of electronic structure. Beyond that, we also propose two required conditions for materials that would exhibit similar anomalous temperature dependence of thermal conductivity: large difference in atom mass (huge phonon band gap) and electronegativity (LO-TO splitting due to strong polarization of bond). Our

  15. Excitation of RF oscillations in a discharge with negative differential conductivity

    International Nuclear Information System (INIS)

    Antonov, A.N.; Kovpik, O.F.; Kornilov, E.A.

    2001-01-01

    The excitation of oscillations in a discharge with negative differential conductivity is studied experimentally. The possibility is demonstrated of amplifying oscillations in the cathode dark space at frequencies close to the electron plasma frequency of the positive-column plasma. The phase velocities of waves at these frequencies are determined. When the waves pass from the cathode dark space to the discharge positive column, their phase velocities decrease; the closer the frequency is to the electron plasma frequency, the more pronounced the decrease in the phase velocity. As the intensity of oscillations increases, the discharge becomes non-steady-state. This is confirmed by the time evolution of the current-voltage characteristic. The shape of the current-voltage characteristic, its splitting, and the rate at which it varies depend on the input RF power. The decrease in the cathode dark space indicates that the ionization processes in the discharge are strongly influenced by electron plasma oscillations excited due to the collective interaction of the electron beam formed at the cathode with the discharge plasma. It is these processes that determine the maximum values of both the frequency of the excited oscillations and the power that can be withdrawn from the discharge

  16. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots

    International Nuclear Information System (INIS)

    Huang Liang; Yang Rui; Lai Yingcheng; Ferry, David K

    2013-01-01

    Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed ‘coexistence’ of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. (paper)

  17. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  18. Anomalous electrical conduction in disordered and non-crystalline metallic conductors

    International Nuclear Information System (INIS)

    Tsuei, C.C.

    1978-01-01

    Many disordered and non-crystalline metallic conductors are characterized by both a negative temperature coefficient (α = rho -1 drho/dT) of resistivity rho over a wide range of temperatures T and a gradual leveling-off of rho at low temperatures. Experimental results will be presented to show that rho varies as -ln T (for T >approximately the Debye temperature) in contrast to the predication of existing theories. This anomalous electron transport can be understood in terms of an attractive interaction between conduction electrons and localized excitations arising from a structural indeterminacy in the atomic arrangement. The possibility of using this scattering mechanism to explain the unusual deviation from linear T dependence of resistivity (the bulge effect) in many structurally unstable superconductors such as A-15 Nb 3 Ge, V 3 Si, bcc Nb and alloys containing the ω-phase is also discussed. (author)

  19. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  20. Anomalous electrical properties of Pbsub(1-x)Snsub(x)Te layers with indium impurity

    International Nuclear Information System (INIS)

    Gejman, K.I.; Drabkin, I.A.; Matveenko, A.V.; Mozhaev, E.A.; Parfen'ev, R.V.

    1977-01-01

    Galvanomagnetic properties of indium doped (5x10 -3 -2x10 -1 at.% In) Pbsub(1-x)Snsub(x)Te monocrystal layers of n-type (x=0.1 - 0.22) sprayed on the (3) spalls of BaF 2 have been investigated. The layers with In display high homogeneity and lower electron density at 77 K, than the layers without In. With decreasing temperature below 20 K in the indium doped Pbsub(1-x)Snsub(x)Te layers an anomalous sharp increase of the electron density calculated from the Hall coefficient and reduction in electron mobility have been observed. The phenomenon under observation is related to the behaviour of indium under conditions of a possible structural phase transition initiated by introducing tin into PbTe. Investigation of the Shubnikov-de Gaas (SG) oscillations confirms the anomalous temperature dependence of the electron density. Distinctive features have been revealed in the SG oscillations of magnetoresistance in the Pbsub(1-x)Snsub(x)Te layers with In and without it, caused by deformations occurring in the films due to different coefficients of linear expansion of the material and a substrate. The splitting energy in the conduction band of the Pbsub(1-x)Snsub(x)Te layers has been determined, and the shift constant of the deformation potential has been estimated

  1. Characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    LI Gen; REN BaoHua; ZHENG JianOiu; WANG Jun

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables dataeets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-eea humidity gradient (△q') as well as mean air-eea humidity gradient (△q), while the distribution of low-frequency oscillation Intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (△T'). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of △q', low-frequency oscillation intensity of anomalous wind speed (U'), △q and mean wind speed (U), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation Intensity of △T' and U. 3) Over the tropical west Pacific and sea areas north of 20ON, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa' (Ta') and U', indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs' (Ts') also greatly influences the low-frequency oscillation of LHF (SHF).

  2. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  3. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  4. Anomalous conductivity and electron heating in a plasma unstable to the two-stream instability

    International Nuclear Information System (INIS)

    Clark, W.H.M.; Hamberger, S.M.

    1979-01-01

    An experiment to excite the electron-ion two-stream instability in a cylindrical Q-machine plasma column is described. The mechanism for establishing a large pulsed electron drift velocity in the plasma by applying a potential difference between the end electrodes is discussed. The pulsed current-voltage characteristic of the plasma column and the temporal evolution of the electron density, drift velocity and thermal velocity are measured. In contrast with the behaviour of some computer simulations of the two-stream instability, the plasma exhibits a constant conductivity and the electron thermal velocity increases to values far in excess of the drift velocity. The electrical dissipation is consistent with the increase of the electron thermal energy, both indicating an anomalous conductivity of the same order as an empirical scaling found in earlier experiments on a toroidal discharge. (author)

  5. Surgical anatomy of the atrioventricular conduction bundle in anomalous muscle bundle of the right ventricle with subarterial ventricular septal defect

    NARCIS (Netherlands)

    Kurosawa, H.; Becker, A. E.

    1985-01-01

    A stillborn baby girl was found to have an anomalous muscle bundle of the right ventricle, associated with a doubly committed subarterial ventricular septal defect. The latter was separated from the area of the atrioventricular conduction bundle by muscle. Serial histologic sectioning of the

  6. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Science.gov (United States)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-07-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %-50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  7. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  8. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    Science.gov (United States)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  9. Generation of equivalent forms of operational trans-conductance amplifier-RC sinusoidal oscillators: the nullor approach

    Directory of Open Access Journals (Sweden)

    Raj Senani

    2014-06-01

    Full Text Available It has been shown in two earlier papers published from this study that corresponding to a given single-operational trans-conductance amplifier (single-OTA-RC and dual-OTA-RC sinusoidal oscillators, there are three other structurally distinct equivalent forms having the same characteristic equation, one of which employs both grounded capacitors (GC. In this study, an earlier nullor-based theory of generating equivalent op-amp oscillator circuits, proposed by the first author, is extended to derive equivalent OTA-RC circuits which discloses the existence of an additional number of equivalent forms for the same given OTA-RC oscillators than those predicted by the quoted earlier works, and thereby considerably enlarging the set of equivalents of a given OTA-RC oscillator. Furthermore, the presented nullor-based theory of generating equivalent OTA-RC oscillators results in three additional interesting outcomes: (i the revelation that corresponding to any given OTA-RC oscillator there are two ‘both-GC’ oscillators (and not merely one, as derived in the quoted earlier works; (ii the availability of explicit current outputs in several of the derived equivalents and (iii the realisability explicit-current-output ‘quadrature oscillators’ in some of the generated equivalent oscillators. The workability of the generated equivalent OTA-RC oscillators has been verified by SPICE simulations, based on CMOS OTAs using 0.18 µm CMOS technology process parameters, and some sample results are given.

  10. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges

    KAUST Repository

    Bilić, Ante

    2013-01-01

    Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.

  11. Unconventional strain-dependent conductance oscillations in pristine phosphorene.

    Science.gov (United States)

    Ray, S J; Kamalakar, M Venkata

    2018-05-16

    Phosphorene is a single elemental, two-dimensional semiconductor that has quickly emerged as a high mobility material for transistors and optoelectronic devices. In addition, being a 2D material it can sustain high levels of strain, enabling sensitive modification of its electronic properties. In this paper, we investigate the strain dependent electronic properties of phosphorene nanocrystals. By performing extensive calculations we determine the electrical conductance as a function of uniaxial, as well as biaxial strain stimuli and uncover a unique zone phase diagram. This enables us to uncover conductance oscillations in pristine phosphorene for the first time, by the simple application of strain. We show that such unconventional current-voltage behaviour is tuneable by the nature of strain, and that an additional gate voltage can modulate the amplitude (peak to valley ratio) of the observed phenomena and its switching efficiency. Furthermore, we show that the switching is highly robust against doping and defects. Our detailed results present new leads for innovation in strain based gauging and high-frequency nanoelectronic switches of phosphorene.

  12. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    International Nuclear Information System (INIS)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong

    2015-01-01

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis

  13. Anomalous temperature dependent magneto-conductance in organic light-emitting diodes with multiple emissive states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-xiao; Jia, Wei-yao; Huang, Ke-Xun; Zhang, Qiao-ming; Yang, Xiao-hui; Xiong, Zu-hong, E-mail: zhxiong@swu.edu.cn [School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715 (China)

    2015-07-13

    The temperature dependence of the magneto-conductance (MC) in organic electron donor-acceptor hybrid and layer heterojunction diodes was studied. The MC value increased with temperature in layer heterojunction and in 10 wt. % hybrid devices. An anomalous decrease of the MC with temperature was observed in 25 wt. %–50 wt. % hybrid devices. Further increasing donor concentration to 75 wt. %, the MC again increased with temperature. The endothermic exciplex-exciton energy transfer and the change in electroplex/exciton ratio caused by change in charge transport with temperature may account for these phenomena. Comparative studies of the temperature evolutions of the IV curves and the electroluminescence and photoluminescence spectra back our hypothesis.

  14. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    Science.gov (United States)

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  15. ε-iron nitrides: Intrinsic anomalous Hall ferromagnets

    Directory of Open Access Journals (Sweden)

    Guo-Ke Li

    2015-02-01

    Full Text Available The anomalous Hall effect in ε-iron nitrides (ε-Fe3-xN, 0 ≤ x ≤ 1 has been systematically investigated taking advantage of the fact that the exchange splitting of ε-Fe3-xN can be continuously tuned through the nitrogen concentration. It has been found that the anomalous Hall conductivity, σ x y A H , is proportional to the saturation magnetization MS, i.e., σ x y A H = S H M S , across significant variations in the saturation magnetization (96–1146 emu/cc. This relationship is in excellent agreement with the intrinsic mechanism as well as with the unified theory of AHE. Our results also demonstrate that the anomalous Hall conductivity is sensitive to the exchange splitting of the band structure.

  16. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  17. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe

    Czech Academy of Sciences Publication Activity Database

    Yao, Y.; Kleinman, L.; MacDonald, A. H.; Sinova, J.; Jungwirth, Tomáš; Wang, D. S.; Wang, E.; Niu, Q.

    2004-01-01

    Roč. 92, č. 3 (2004), 037204/1-037204/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : transition metal ferromagnet * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  18. Experimental study of parametric instabilities and anomalous heating in plasma

    International Nuclear Information System (INIS)

    Batanov, G.M.; Rabinovich, M.S.

    1975-01-01

    Over the last few years the study of the dissipation of electromagnetic wave energy in a hot plasma has become perhaps one of the main problems of high-temperature plasma physics and controlled thermonuclear fusion. The focus of attention is on the processes by which electromagnetic energy is transformed into potential plasma waves and the processes involving relaxation of the latter. In this paper the authors summarize the experimental research into these processes conducted at the Lebedev Physics Institute over the 10 cm wave band. In the case of an isotropic plasma the authors recorded non-linear generation of Langmuir noise, the energy density of which was found to be comparable, in order of magnitude, with that of a pump wave. They detected the generation of fast-electron streams, the non-stationary character of the latter with respect to time, and non-linear transmissivity of the plasma layer. In the case of a magnetoactive plasma they studied the parametric excitation of oscillations at the upper hybrid frequency during its resonance with the first overtone of the pump wave. Excitation of plasma noise was found to be accompanied by a flux of fast-electrons, in the energy spectrum of which separate groups were detected. It was also found that the effective collision frequency increased by 1-3 orders, compared to the pari-collision frequency. In the region of magnetic waves close to the electron cyclotron resonance the authors observed forced Mandel'shtam-Brillouin scattering and kinetic instability of the plasma. It was found that the excitation of ionic Langmuir noise preceded ''anomalous absorption'' of waves and ''anomalous heating'' of electrons. The authors further consider the possibility of an experimental study of anomalous heating in plasma in the region of the lower hybrid frequencies, using the Institute's L-2 stellarator. (author)

  19. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe2 (bda = 1,4-butanediamine)

    International Nuclear Information System (INIS)

    Du, Ke-Zhao; Hu, Wan-Biao; Hu, Bing; Guan, Xiang-Feng; Huang, Xiao-Ying

    2011-01-01

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe 2 , which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: → The title compound is the first example of organic-containing one-dimensional indium selenide. → The anomalous dielectric peak is attributed to water molecules in crystal boundary. → The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe 2 (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe 2 ] n n- with monoprotonated [bdaH] + as charge compensating cation. The organic [bdaH] + cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 o C, which could be attributed to water molecules in the crystal boundary.

  20. Nonlinear trapped electron mode and anomalous heat transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.

    1982-01-01

    We take the phenomenological point of view that the anomalous electron thermal conductivity produced by the non-linear trapped electron mode should also influence the stability properties of the mode itself. Using a model equation, we show that this effect makes the mode self-stabilizing. A simple expression for the anomalous thermal conductivity is derived, and its scaling properties are discussed. (orig.)

  1. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  2. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  3. The confinement of phonon propagation in TiAlN/Ag multilayer coatings with anomalously low heat conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, A. I.; Wainstein, D. L., E-mail: d-wainstein@sprg.ru [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); Rashkovskiy, A. Yu. [Surface Phenomena Researches Group, Radio Str., 23/9, Bld. 2, Off. 475, CNIICHERMET, 105005 Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskiy pr-t, 4, 119049 Moscow (Russian Federation); Gago, R. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, 66123 Saarbruecken (Germany); Endrino, J. L. [School of Aerospace, Transport and Manufacturing (SATM), Surface Engineering and Nanotechnology Institute, Cranfield University, College Road, Cranfield, MK43 0AL Bedfordshire (United Kingdom)

    2016-05-30

    TiAlN/Ag multilayer coatings with a different number of bilayers and thicknesses of individual layers were fabricated by DC magnetron co-sputtering. Thermal conductivity was measured in dependence of Ag layer thickness. It was found anomalous low thermal conductivity of silver comparing to TiAlN and Ag bulk standards and TiAlN/TiN multilayers. The physical nature of such thermal barrier properties of the multilayer coatings was explained on the basis of reflection electron energy loss spectroscopy. The analysis shows that nanostructuring of the coating decreases the density of states and velocity of acoustic phonons propagation. At the same time, multiphonon channels of heat propagation degenerate. These results demonstrate that metal-dielectric interfaces in TiAlN/Ag coatings are insurmountable obstacles for acoustic phonons propagation.

  4. Magnus approximation in neutrino oscillations

    International Nuclear Information System (INIS)

    Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C

    2011-01-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  5. Measurements of temperature characteristics and estimation of terahertz negative differential conductance in resonant-tunneling-diode oscillators

    Directory of Open Access Journals (Sweden)

    M. Asada

    2017-11-01

    Full Text Available The temperature dependences of output power, oscillation frequency, and current-voltage curve are measured for resonant-tunneling-diode terahertz (THz oscillators. The output power largely changes with temperature owing to the change in Ohmic loss. In contrast to the output power, the oscillation frequency and current-voltage curve are almost insensitive to temperature. The measured temperature dependence of output power is compared with the theoretical calculation including the negative differential conductance (NDC as a fitting parameter assumed to be independent of temperature. Very good agreement was obtained between the measurement and calculation, and the NDC in the THz frequency region is estimated. The results show that the absolute values of NDC in the THz region significantly decrease relative to that at DC, and increases with increasing frequency in the measured frequency range.

  6. Anomalous Quantum Correlations of Squeezed Light

    Science.gov (United States)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  7. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  8. Experiment on a large-diameter plasma-filled backward-wave oscillator

    International Nuclear Information System (INIS)

    Ogura, K.; Minami, K.; Kurashina, K.I.; Kim, W.; Watanabe, T.; Ishii, K.; Sugito, S.

    1995-01-01

    A large-diameter plasma-filled backward-wave oscillator (BWO) is investigated experimentally. The parameters of slow wave structure are chosen so that the oscillation frequency is about 20GHz at 60keV beam energy. Plasma is produced by the beam and has favorable effects for beam propagation and Cerenkov oscillations. The output power of the BWO with plasma is observed to be three to six times that of vacuum BWO. The power level is several kilowatts and the efficiency is about 0.01%. For Cerenkov oscillations of a large-diameter BWO, the beam energy mainly determines the starting conditions for oscillation. The output power is strongly enhanced when the guiding magnetic field approaches the fundamental electron cyclotron resonance. This mechanism is closely related to the anomalous Doppler cyclotron resonance. The maximum power of 480kW with an efficiency of 5% is achieved even for a relatively low beam energy of 60keV. ((orig.))

  9. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe{sub 2} (bda = 1,4-butanediamine)

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-Zhao; Hu, Wan-Biao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Hu, Bing; Guan, Xiang-Feng [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Xiao-Ying, E-mail: xyhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2011-11-15

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe{sub 2}, which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: {yields} The title compound is the first example of organic-containing one-dimensional indium selenide. {yields} The anomalous dielectric peak is attributed to water molecules in crystal boundary. {yields} The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe{sub 2} (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe{sub 2}]{sub n}{sup n-} with monoprotonated [bdaH]{sup +} as charge compensating cation. The organic [bdaH]{sup +} cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 {sup o}C, which could be attributed to water molecules in the crystal boundary.

  10. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, César D. [Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, R8402AGP, Bariloche (Argentina); Lombardo, Fernando C., E-mail: lombardo@df.uba.ar [Departamento de Física Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)

    2015-12-17

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation.

  11. RECOMMENDATIONS OF PILOTING A HELICOPTER AND FIGHTING AGAINST EXTERNAL GOODS OSCILLATIONS DURING THE CONDUCT OF URGENT AERIAL WORKS WITH EXTERNAL SUSPENSION

    Directory of Open Access Journals (Sweden)

    A. A. Lebedev

    2014-01-01

    Full Text Available Сonsidered question of reducing oscillations of cargo on helicopter external sling to improve the safety and efficiency of flight operations during the conduct of urgent aerial works. Offered practical recommendations of piloting a helicopter and effective maneuvers to eliminate oscillations of cargo on external sling.

  12. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  13. Link between the Barents Oscillation and recent boreal winter cooling over the Asian midlatitudes

    Science.gov (United States)

    Shu, Qi; Qiao, Fangli; Song, Zhenya; Song, Yajuan

    2018-01-01

    The link between boreal winter cooling over the midlatitudes of Asia and the Barents Oscillation (BO) since the late 1980s is discussed in this study, based on five datasets. Results indicate that there is a large-scale boreal winter cooling during 1990-2015 over the Asian midlatitudes, and that it is a part of the decadal oscillations of long-term surface air temperature (SAT) anomalies. The SAT anomalies over the Asian midlatitudes are significantly correlated with the BO in boreal winter. When the BO is in its positive phase, anomalously high sea level pressure over the Barents region, with a clockwise wind anomaly, causes cold air from the high latitudes to move over the midlatitudes of Asia, resulting in anomalous cold conditions in that region. Therefore, the recent increasing trend of the BO has contributed to recent winter cooling over the Asian midlatitudes.

  14. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Fosco, Cesar D. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche, Instituto Balseiro, Bariloche (Argentina); Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA y IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-12-15

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  15. Oscillating dipole layer facing a conducting plane: a classical analogue of the dynamical Casimir effect

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.

    2015-01-01

    We study the properties of the classical electromagnetic radiation produced by two physically different yet closely related systems, which may be regarded as classical analogues of the dynamical Casimir effect. They correspond to two flat, infinite, parallel planes, one of them static and imposing perfect-conductor boundary conditions, while the other performs a rigid oscillatory motion. The systems differ just in the electrical properties of the oscillating plane: one of them is just a planar dipole layer (representing, for instance, a small-width electret). The other, instead, has a dipole layer on the side which faces the static plane, but behaves as a conductor on the other side: this can be used as a representation of a conductor endowed with patch potentials (on the side which faces the conducting plane). We evaluate, in both cases, the dissipative flux of energy between the system and its environment, showing that, at least for small mechanical oscillation amplitudes, it can be written in terms of the dipole layer autocorrelation function. We show that there are resonances as a function of the frequency of the mechanical oscillation. (orig.)

  16. Local orbitals approach to the anomalous Hall and Nernst effects in itinerant ferromagnets

    Directory of Open Access Journals (Sweden)

    Středa Pavel

    2014-07-01

    Full Text Available Linear response of the orbital momentum to the gradient of the chemical potential is used to obtain anomalous Hall conductivity. Transition from the ideal Bloch system for which the conductivity is determined by the Berry phase curvatures to the case of strong disorder for which the conductivity becomes dependent on the relaxation time is analysed. Presented tight-binding model reproduces experimentally observed qualitative features of the anomalous Hall conductivity and the transverse Peltier coefficient in the so called bad-metal and scattering-independent regimes.

  17. Synchronization of oscillators with long range interaction: Phase transition and anomalous finite size effects

    DEFF Research Database (Denmark)

    Marodi, M.; D'ovidio, Francesco; Vicsek, T.

    2002-01-01

    of elements. For large number of oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase transition separating synchronization from incoherence appears at a decay exponent value equal to the number of dimensions of the lattice. In contrast with earlier......Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full locking takes place if the population contains a sufficiently large number...

  18. Collective oscillations of electrons when simulating first principles and nature of anomalous drift along the power axis

    International Nuclear Information System (INIS)

    Majorov, S.A.; Tkachev, A.N.; Yakovlenko, S.I.

    1996-01-01

    A hypothesis is proposed that a metastable supercooled state of a classic Coulomb particle system can be conditioned by a quasiresonance interaction of bound electrons with the collective oscillations of plasma electrons. This interaction is especially important when the Kepler frequency is of the order of Langmuir oscillation frequency (which takes place when the electron orbit radius is of the order of average distance between the charges). Based on the simulation it is shown that the typical time of the Coulomb particle system dipole moment oscillations appears to be of the order of the Langmuir oscillation frequency. 10 refs.; 3 figs

  19. Thermal conduction in classical low-dimensional lattices

    International Nuclear Information System (INIS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-01-01

    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable non-linear systems is briefly discussed. Finally, possible future research themes are outlined

  20. Fractal diffusion equations: Microscopic models with anomalous diffusion and its generalizations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2001-04-01

    To describe the ''anomalous'' diffusion the generalized diffusion equations of fractal order are deduced from microscopic models with anomalous diffusion as Comb model and Levy flights. It is shown that two types of equations are possible: with fractional temporal and fractional spatial derivatives. The solutions of these equations are obtained and the physical sense of these fractional equations is discussed. The relation between diffusion and conductivity is studied and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical simulations, which confirmed this conclusion, are also presented. (author)

  1. The Occurrence of Anomalous Conductance Plateaus and Spin Textures in Quantum Point Contacts

    Science.gov (United States)

    Wan, J.; Cahay, M.; Debray, P.; Newrock, R.

    2010-03-01

    Recently, we used a NEGF formalism [1] to provide a theoretical explanation for the experimentally observed 0.5G0 (G0=2e^2/h) plateau in the conductance of side-gated quantum point contacts (QPCs) in the presence of lateral spin-orbit coupling (LSOC) [2]. We showed that the 0.5G0 plateau appears in the QPCs without any external magnetic field as a result of three ingredients: an asymmetric lateral confinement, a LSOC, and a strong electron-electron (e-e) interaction. In this report, we present the results of simulations for a wide range of QPC dimensions and biasing parameters showing that the same physics predicts the appearance of other anomalous plateaus at non-integer values of G0, including the well-known 0.7G0 anomaly. These features are related to a plethora of spin textures in the QPC that depend sensitively on material, device, biasing parameters, temperature, and the strength of the e-e interaction. [1] J. Wan, M. Cahay, P. Debray, and R.S. Newrock, Phys. Rev. B 80, 155440 (2009). [2] P. Debray, S.M. Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad, and M. Johnson, Nature Nanotech. 4, 759 (2009).

  2. Scaling of the anomalous Hall current in Fe100−x(SiO2)x films

    KAUST Repository

    Xu, W. J.

    2011-05-20

    To study the origin of the anomalous Hall effect, Fe100−x(SiO2)x granular films with a volume fraction of SiO2 (0 ⩽ x ⩽ 40.51) were fabricated using cosputtering. Hall and longitudinal resistivities were measured in the temperature range of 5–350 K with magnetic fields up to 5 T. As x increased from 0 to 40.51, the anomalous Hall resistivity and longitudinal resistivity increased by about four and three orders in magnitude, respectively. Analysis of the results revealed that the normalized anomalous Hall conductivity is a constant for all of the samples, which may suggest a scattering-independent anomalous Hall conductivity in Fe.

  3. Anomalous gauge theories revisited

    International Nuclear Information System (INIS)

    Matsui, Kosuke; Suzuki, Hiroshi

    2005-01-01

    A possible formulation of chiral gauge theories with an anomalous fermion content is re-examined in light of the lattice framework based on the Ginsparg-Wilson relation. It is shown that the fermion sector of a wide class of anomalous non-abelian theories cannot consistently be formulated within this lattice framework. In particular, in 4 dimension, all anomalous non-abelian theories are included in this class. Anomalous abelian chiral gauge theories cannot be formulated with compact U(1) link variables, while a non-compact formulation is possible at least for the vacuum sector in the space of lattice gauge fields. Our conclusion is not applied to effective low-energy theories with an anomalous fermion content which are obtained from an underlying anomaly-free theory by sending the mass of some of fermions to infinity. For theories with an anomalous fermion content in which the anomaly is cancelled by the Green-Schwarz mechanism, a possibility of a consistent lattice formulation is not clear. (author)

  4. Stabilization of sausage and kink instability modes of a plasma pinch by radial oscillations

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Kravchenko, Y.P.; Liberman, M.A.

    1995-01-01

    The growth of the global sausage (m=0) and kink (m=1) perturbations of a Z-pinch subject to radial oscillations is considered. It is demonstrated that the oscillations result in significant reduction of the growth rate of both kink and sausage instability modes with wavelengths long compared to the pinch radius. The analysis of stability is carried out in two ways. The first method is based on the averaging magnetohydrodynamic equations over the period of radial oscillations. The second one consists in the analysis of the growth of Fourier-components of perturbations. Numerical simulation demonstrates that even moderate radial oscillations cause reduction of the growth rate of long-wavelength sausage instabilities and complete stabilization of long kinks. This can be understood as a result of the effective gravitational field produced in the pinch by the oscillations. The effect in question can explain the anomalous stability of pinches with respect to the kink perturbations observed in experiments. copyright 1995 American Institute of Physics

  5. Scaling relation of the anomalous Hall effect in (Ga,Mn)As

    Science.gov (United States)

    Glunk, M.; Daeubler, J.; Schoch, W.; Sauer, R.; Limmer, W.

    2009-09-01

    We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities σxx ranging from the low-conductivity to the high-conductivity regime. The anomalous Hall conductivity σxy(AH) is extracted from the measured longitudinal and Hall resistivities. A transition from σxy(AH)=20Ω-1cm-1 due to the Berry phase effect in the high-conductivity regime to a scaling relation σxy(AH)∝σxx1.6 for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.

  6. Unstable relationship between the Arctic Oscillation and East Asian jet stream in winter and possible mechanisms

    Science.gov (United States)

    Liu, Yang; He, Shengping; Li, Fei; Wang, Huijun; Zhu, Yali

    2017-12-01

    Based on long-term reanalysis datasets, this study revealed that the relationship between the Arctic Oscillation (AO) and the East Asian jet stream (EAJS) is significant negative during 1925-1945 and 1985-2005 (significant periods; hereafter SPs) whereas insignificant during 1900-1920 and 1955-1975 (insignificant periods; ISPs). The unstable AO-EAJS relationship might be related to the interdecadal change of AO's spatial structure. During SPs winters, anomalous positive AO events are characterized by atmospheric negative anomalies in the Arctic with two anomalous positive centers located in the extratropical Atlantic and Pacific, exhibiting a quasi-barotropic structure. By contrast, the anomalous center in the North Pacific is barely observed during ISPs winters. Further analysis indicated that such interdecadal change might be attributed to change of troposphere-stratosphere coupling and the North Pacific air-sea interaction. On the one hand, anomalous AO at surface is closely related to obvious planetary waves downward from the stratosphere during SPs, which favors the subtropics-Arctic teleconnection. On the other hand, the Interdecadal Pacific Oscillation (IPO) shows warm phase during SPs, which induces larger variance of the Aleutian Low and more intensive divergence anomalies at upper level troposphere. Due to the advection of vorticity induced by stronger divergence is favorable for stronger Rossby wave source, the Rossby wave activity is much stronger and could further propagate eastward to the North Atlantic during SPs, resulting in the Pacific-Atlantic teleconnection. Such a mechanism is supported by the numerical simulations from two individual models that are perturbed by warm/cold IPO sea surface temperature anomalies.

  7. (g-2)μ anomaly and neutrino oscillations within the left-right model

    International Nuclear Information System (INIS)

    Boyarkin, O.M.; Bakanova, T.I.

    2003-12-01

    The Higgs sector structure of the left right model is investigated. The coupling constants of the physical Higgs bosons are expressed in terms of the oscillation parameters of the heavy neutrinos. The electroweak corrections to the value of the anomalous magnetic moment of the muon coming from the Higgs bosons axe found. It is shown that in the LRM the motion of the light neutrino flux in matter is described within the hybrid three-neutrino scheme, namely, the neutrino oscillations and the non standard neutrino interactions, caused by the Higgs sector. These non standard contributions may considerably change the matter potential compared with the SM prediction. Therefore, the analysis of the (g-2)μ, anomaly and the oscillations of the light neutrinos in matter could be used to constrain the parameters of the heavy neutrinos. (author)

  8. Spin disorder effect in anomalous Hall effect in MnGa

    Science.gov (United States)

    Mendonça, A. P. A.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2017-12-01

    We report on resistivity and Hall effect in MnGa thin films grown by molecular beam epitaxy on GaAs substrates. Highly (1 1 1)-textured MnGa film with L10 structure exhibits hard magnetic properties with coercivities as high as 20 kOe and spin disorder mechanisms contributing to the Hall conductivity at room temperature. Density functional theory calculations were performed to determine the intrinsic Berry curvature in the momentum space with chiral spin structure that results in an anomalous Hall conductivity of 127 (Ωcm)-1 comparable to that measured at low temperature. In addition to residual and side-jump contributions, which are enhanced by thermal activation, both anomalous Hall conductivity and Hall angle increase between 100 K and room temperature. The present results reinforce the potential of Mn-Ga system for developing Hall effect-based spintronic devices.

  9. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  10. Voltage-driven quantum oscillations in graphene

    International Nuclear Information System (INIS)

    Yampol'skii, V A; Savel'ev, S; Nori, Franco

    2008-01-01

    We predict unusual (for non-relativistic quantum mechanics) electron states in graphene, which are localized within a finite-width potential barrier. The density of localized states in the sufficiently high and/or wide graphene barrier exhibits a number of singularities at certain values of the energy. Such singularities provide quantum oscillations of both the transport (e.g. conductivity) and thermodynamic properties of graphene-when increasing the barrier height and/or width, similarly to the well-known Shubnikov-de-Haas (SdH) oscillations of conductivity in pure metals. However, here the SdH-like oscillations are driven by an electric field instead of the usual magnetically driven SdH-oscillations

  11. Interfacial Nb-substitution induced anomalous enhancement of polarization and conductivity in BaTiO3 ferroelectric tunnel junctions

    Directory of Open Access Journals (Sweden)

    H. F. Li

    2014-12-01

    Full Text Available Using density functional theory (DFT method combined with non-equilibrium Green’s function approach, we systematically investigated the structural, ferroelectric and electronic transport properties of Pt/BaTiO3/Pt ferroelectric tunnel junctions (FTJ with the interface atomic layers doped by charge neutral NbTi substitution. It is found that interfacial NbTi substitution will produce several anomalous effects such as the vanishing of ferroelectric critical thickness and the decrease of junction resistance against tunneling current. Consequently, the thickness of the ferroelectric thin film (FTF in the FTJ can be reduced, and both the electroresistance effect and sensitivity to external bias of the FTJ are enhanced. Our calculations indicate that the enhancements of conductivity and ferroelectric distortion can coexist in FTJs, which should be important for applications of functional electronic devices based on FTJs.

  12. Field enhancement due to anomalous skin effect inside a target

    International Nuclear Information System (INIS)

    Ma, G.; Tan, W.

    1996-01-01

    A new method based on Fourier transformation to study the skin effects is presented. Using this method, the field amplitude in plasma is represented in terms of electric conductivity, and the normal and anomalous skin effects are described through one formula by omitting the plasma dispersion or not. The results are in agreement with other publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558 (1992)] for equivalent parameters. But for deeper positions inside a target, which have not been studied by others, it is found that the field amplitude is considerably enhanced due to an anomalous skin effect, even for constant collision frequency. In addition, the skin absorptions and some calculations on an anomalous skin effect for different collision frequencies are also presented. copyright 1996 American Institute of Physics

  13. Linear drag law for high-Reynolds-number flow past an oscillating body

    Science.gov (United States)

    Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif

    2016-07-01

    An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.

  14. Renewal-anomalous-heterogeneous files

    International Nuclear Information System (INIS)

    Flomenbom, Ophir

    2010-01-01

    Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres' diffusion coefficients are distributed and the initial spheres' density is non-uniform. In renewal-anomalous files, the distribution of waiting times for individual jumps is not exponential as in Brownian files, yet obeys: ψ α (t)∼t -1-α , 0 2 >, obeys, 2 >∼ 2 > nrml α , where 2 > nrml is the MSD in the corresponding Brownian file. This scaling is an outcome of an exact relation (derived here) connecting probability density functions of Brownian files and renewal-anomalous files. It is also shown that non-renewal-anomalous files are slower than the corresponding renewal ones.

  15. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  16. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    Science.gov (United States)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly

  17. Mittag-Leffler functions as solutions of relaxation-oscillation and diffusion-wave fractional order equation

    International Nuclear Information System (INIS)

    Sandev, D. Trivche

    2010-01-01

    The fractional calculus basis, Mittag-Leffler functions, various relaxation-oscillation and diffusion-wave fractional order equation and systems of fractional order equations are considered in this thesis. To solve these fractional order equations analytical methods, such as the Laplace transform method and method of separation of variables are employed. Some applications of the fractional calculus are considered, particularly physical system with anomalous diffusive behavior. (Author)

  18. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  19. Electronically tunable RC sinusoidal oscillators

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)

  20. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    Science.gov (United States)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  1. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    Science.gov (United States)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  2. Quantum conductance of carbon nanotubes in a wide energy range

    International Nuclear Information System (INIS)

    Zhang, Yong

    2015-01-01

    The differential conductance of armchair and zigzag carbon nanotubes (CNTs) in a wide energy range has been numerically calculated by using the tight-binding model and the Green’s function method. The effects of the contact coupling between CNTs and electrodes on conductance have been explored. The ballistic conductance is proportional to the band numbers and has a ladder-like feature. As the increase of the contact coupling, the conductance oscillations appear and they are robust against the coupling. More importantly, on the first step of the conductance ladder, the armchair CNTs have two quasi-periodic conductance oscillations, i.e. a rapid conductance oscillation superimposed on a slow fluctuation background; while the zigzag CNTs have only one conductance oscillation. But on the second conductance step, all CNTs have two quasi-periodic conductance oscillations. The physical origin of the conductance oscillations has been revealed

  3. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2017-09-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  4. The Eurasia-North Pacific Oscillation in atmospheric mass variations independent of both IHO and AO and its possible impacts on winter climate

    Science.gov (United States)

    Zhang, Qian; Guan, Zhaoyong; Li, Minggang

    2018-06-01

    Using NCEP/NCAR reanalysis, we have investigated the features of migrations of atmospheric mass (AM) between land and ocean in Eurasia-North Pacific domain in boreal winter after having both signals of Inter-hemispheric Oscillation and Arctic Oscillation removed from the physical quantities. It is found that there is a Eurasia-North Pacific Oscillation (ENPO) in surface air pressure anomalies. This ENPO pattern characterizes with two oppositely signed anomalous surface pressure centers over Eurasia and North Pacific respectively, indicating strong connections between Siberian high and Aleutian low during period 1979-2012. The maintenance of this ENPO teleconnection is significantly associated with three factors including the anomalous AM flows and zonal circulation cell over Eurasia-North Pacific domain, the Rossby wave energy propagations, and the thermal forcing contrasts near the surface between Eurasia and North Pacific during boreal winter. The variations of both wintertime rainfall and temperature over Eurasia may be strongly affected by ENPO. When the ENPO index is positive (negative), there occurs the AM accumulation (depletion) over Eurasia with simultaneous depletion (accumulation) over mid-latitude North-Pacific. Correspondingly, this anomalous surface pressure pattern along with the related circulation anomalies at different isobaric levels possibly results in winter precipitation decreases (increases) over Siberian Plain and East China, whereas increases (decreases) over southeastern Europe, Xinjiang of China, and the west coast of Sea of Okhotsk. On the other hand, surface air temperature decreases (increases) over large areas of Eurasia. These results are helpful for our better understanding the mechanisms behind circulation and winter climate variations over Eurasia-North Pacific region.

  5. Thermal conductivity of layered organic superconductor β-(BDA-TTP)2SbF6 in a parallel magnetic field: Anomalous effect of coreless vortices

    Science.gov (United States)

    Tanatar, M. A.; Ishiguro, T.; Toita, T.; Yamada, J.

    2005-01-01

    Thermal conductivity κ of the organic superconductor β-(BDA-TTP)2SbF6 was studied down to 0.3 K in magnetic fields H of varying orientation with respect to the superconducting plane. Anomalous plateau shape of the field dependence, κ vs H , is found for orientation of magnetic fields precisely parallel to the plane, in contrast to usual behavior observed in the perpendicular fields. We show that the lack of magnetic-field effect on the heat conduction results from coreless structure of vortices, causing both negligible scattering of phonons and constant in field electronic conduction up to the fields close to the upper critical field Hc2 . Usual behavior is recovered on approaching Hc2 and on slight field inclination from parallel direction, when normal cores are restored. This behavior points to the lack of bulk quasiparticle excitations induced by magnetic field, consistent with the conventional superconducting state.

  6. Anomalous Stretchable Conductivity Using an Engineered Tricot Weave.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Yoonseob; Lee, Tae-Ik; Lee, Inhwa; Shin, Jaeho; Lee, Hyun Soo; Kim, Taek-Soo; Choi, Jang Wook

    2015-12-22

    Robust electric conduction under stretching motions is a key element in upcoming wearable electronic devices but is fundamentally very difficult to achieve because percolation pathways in conductive media are subject to collapse upon stretching. Here, we report that this fundamental challenge can be overcome by using a parameter uniquely available in textiles, namely a weaving structure. A textile structure alternately interwoven with inelastic and elastic yarns, achieved via a tricot weave, possesses excellent elasticity (strain up to 200%) in diagonal directions. When this textile is coated with conductive nanomaterials, proper textile engineering allows the textile to obtain an unprecedented 7-fold conductivity increase, with conductivity reaching 33,000 S cm(-1), even at 130% strain, due to enhanced interyarn contacts. The observed stretching conductivity can be described well using a modified 3D percolation theory that reflects the weaving effect and is also utilized for stretchable electronic interconnects and supercapacitors with high performance.

  7. Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials

    Directory of Open Access Journals (Sweden)

    Hao Shen

    2015-05-01

    Full Text Available In contrast to strong plasmonic scattering from metal particles or structures in metal films, we show that patterns of arbitrary shape fabricated out of multilayer hyperbolic metamaterials become invisible within a chosen band of optical frequencies. This is due to anomalously weak scattering when the in-plane permittivity of the multilayer hyperbolic metamaterials is tuned to match with the surrounding medium. This new phenomenon is described theoretically and demonstrated experimentally by optical characterization of various patterns in Au-Si multilayer hyperbolic metamaterials. This anomalously weak scattering is insensitive to pattern sizes, shapes, and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes, and optoelectric devices.

  8. Scaling of anomalous hall effect in amorphous CoFeB Films with accompanying quantum correction

    KAUST Repository

    Zhang, Yan

    2015-05-08

    Scaling of anomalous Hall effect in amorphous CoFeB films with thickness ranging from 2 to 160 nm have been investigated. We have found that the scaling relationship between longitudinal (ρxx) and anomalous Hall (ρAH) resistivity is distinctly different in the Bloch and localization regions. For ultrathin CoFeB films, the sheet resistance (Rxx) and anomalous Hall conductance (GAH) received quantum correction from electron localization showing two different scaling relationships at different temperature regions. In contrast, the thicker films show a metallic conductance, which have only one scaling relationship in the entire temperature range. Furthermore, in the dirty regime of localization regions, an unconventional scaling relationship View the MathML sourceσAH∝σxxα with α=1.99 is found, rather than α=1.60 predicted by the unified theory.

  9. Uniaxial Pressure Effect on the SdH Oscillations in Heavy-Fermion Semimetal CeRu4Sb12

    International Nuclear Information System (INIS)

    Saha, S. R.; Kobayashi, M.; Sugawara, H.; Namiki, T.; Abe, K.; Aoki, Y.; Sato, H.

    2003-01-01

    We report the first successful Shubnikov-de Haas (SdH) experiment under uniaxial pressure in the anomalous heavy-fermion semimetal CeRu 4 Sb 12 . The nature of the quantum oscillations in the magnetoresistance is found to be significantly sensitive to uniaxial pressure. The results reveal that the nearly spherical Fermi surface elongates along the direction of the uniaxial pressure. (author)

  10. Chimera states in two-dimensional networks of locally coupled oscillators

    Science.gov (United States)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  11. Optical conductivity of metal nanoshells

    International Nuclear Information System (INIS)

    Tomchuk, P.M.; Kulish, V.V.

    2004-01-01

    The expression for optical conductivity of spherical metal nanoshell as a function of internal and external radii of nanoshell and photon energy - Fermi energy ratio is obtained. Quantization of electron energy in nanoshells is shown to lead to the appearance of an oscillating dependence of optical conductivity on the light frequency. An explicit expression of oscillating addends for optical conductivity is obtained

  12. Fitness voter model: Damped oscillations and anomalous consensus.

    Science.gov (United States)

    Woolcock, Anthony; Connaughton, Colm; Merali, Yasmin; Vazquez, Federico

    2017-09-01

    We study the dynamics of opinion formation in a heterogeneous voter model on a complete graph, in which each agent is endowed with an integer fitness parameter k≥0, in addition to its + or - opinion state. The evolution of the distribution of k-values and the opinion dynamics are coupled together, so as to allow the system to dynamically develop heterogeneity and memory in a simple way. When two agents with different opinions interact, their k-values are compared, and with probability p the agent with the lower value adopts the opinion of the one with the higher value, while with probability 1-p the opposite happens. The agent that keeps its opinion (winning agent) increments its k-value by one. We study the dynamics of the system in the entire 0≤p≤1 range and compare with the case p=1/2, in which opinions are decoupled from the k-values and the dynamics is equivalent to that of the standard voter model. When 0≤psystem approaches exponentially fast to the consensus state of the initial majority opinion. The mean consensus time τ appears to grow logarithmically with the number of agents N, and it is greatly decreased relative to the linear behavior τ∼N found in the standard voter model. When 1/2system initially relaxes to a state with an even coexistence of opinions, but eventually reaches consensus by finite-size fluctuations. The approach to the coexistence state is monotonic for 1/2oscillations around the coexistence value. The final approach to coexistence is approximately a power law t^{-b(p)} in both regimes, where the exponent b increases with p. Also, τ increases respect to the standard voter model, although it still scales linearly with N. The p=1 case is special, with a relaxation to coexistence that scales as t^{-2.73} and a consensus time that scales as τ∼N^{β}, with β≃1.45.

  13. Theory of anomalous transport in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.

    1992-03-01

    Theoretical model of the anomalous transport in Torsatron/Heliotron plasmas is developed, based on the current-diffusive interchange instability which is destabilized due to the averaged magnetic hill near edge. Analytic formula of transport coefficient is derived. This model explains the high edge transport, the power degradation and energy confinement scaling law and the enhanced heat-pulse thermal conduction. (author)

  14. Anomalous top magnetic couplings

    Indian Academy of Sciences (India)

    2012-11-09

    Nov 9, 2012 ... Corresponding author. E-mail: remartinezm@unal.edu.co. Abstract. The real and imaginary parts of the one-loop electroweak contributions to the left and right tensorial anomalous couplings of the tbW vertex in the Standard Model (SM) are computed. Keywords. Top; anomalous. PACS Nos 14.65.Ha; 12.15 ...

  15. Quantization and anomalous structures in the conductance of Si/SiGe quantum point contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pock, J. F. von; Salloch, D.; Qiao, G.; Wieser, U.; Kunze, U. [Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Hackbarth, T. [Daimler AG, D-89081 Ulm (Germany)

    2016-04-07

    Quantum point contacts (QPCs) are fabricated on modulation-doped Si/SiGe heterostructures and ballistic transport is studied at low temperatures. We observe quantized conductance with subband separations up to 4 meV and anomalies in the first conductance plateau at 4e{sup 2}/h. At a temperature of T = 22 mK in the linear transport regime, a weak anomalous kink structure arises close to 0.5(4e{sup 2}/h), which develops into a distinct plateau-like structure as temperature is raised up to T = 4 K. Under magnetic field parallel to the wire up to B = 14 T, the anomaly evolves into the Zeeman spin-split level at 0.5(4e{sup 2}/h), resembling the '0.7 anomaly' in GaAs/AlGaAs QPCs. Additionally, a zero-bias anomaly (ZBA) is observed in nonlinear transport spectroscopy. At T = 22 mK, a parallel magnetic field splits the ZBA peak up into two peaks. At B = 0, elevated temperatures lead to similar splitting, which differs from the behavior of ZBAs in GaAs/AlGaAs QPCs. Under finite dc bias, the differential resistance exhibits additional plateaus approximately at 0.8(4e{sup 2}/h) and 0.2(4e{sup 2}/h) known as '0.85 anomaly' and '0.25 anomaly' in GaAs/AlGaAs QPCs. Unlike the first regular plateau at 4e{sup 2}/h, the 0.2(4e{sup 2}/h) plateau is insensitive to dc bias voltage up to at least V{sub DS} = 80 mV, in-plane magnetic fields up to B = 15 T, and to elevated temperatures up to T = 25 K. We interpret this effect as due to pinching off one of the reservoirs close to the QPC. We do not see any indication of lifting of the valley degeneracy in our samples.

  16. Anomalous vacuum expectation values

    International Nuclear Information System (INIS)

    Suzuki, H.

    1986-01-01

    The anomalous vacuum expectation value is defined as the expectation value of a quantity that vanishes by means of the field equations. Although this value is expected to vanish in quantum systems, regularization in general produces a finite value of this quantity. Calculation of this anomalous vacuum expectation value can be carried out in the general framework of field theory. The result is derived by subtraction of divergences and by zeta-function regularization. Various anomalies are included in these anomalous vacuum expectation values. This method is useful for deriving not only the conformal, chiral, and gravitational anomalies but also the supercurrent anomaly. The supercurrent anomaly is obtained in the case of N = 1 supersymmetric Yang-Mills theory in four, six, and ten dimensions. The original form of the energy-momentum tensor and the supercurrent have anomalies in their conservation laws. But the modification of these quantities to be equivalent to the original one on-shell causes no anomaly in their conservation laws and gives rise to anomalous traces

  17. Numerical Study on Interdecadal Modulations of ENSO-related Spring Rainfall over South China by the Pacific Decadal Oscillation

    Science.gov (United States)

    MAO, J.; WU, X.

    2017-12-01

    The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958-2013 (1920-2013). The interannual variations of the first two leading EOF modes are linked with the El Niño-Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO-ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northwards to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO-ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest-northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.

  18. Anomalous Hall effect

    Science.gov (United States)

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  19. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  20. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  1. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  2. Madden-Julian Oscillation (MJO) Signal over Kototabang, West Sumatera Based on the Mini Automatic Weather Station (MAWS) Data Analysis Using the Wavelet Technique

    Science.gov (United States)

    Hermawan, E.

    2018-04-01

    This study is mainly concerned an application of Mini Automatic Weather Station (MAWS) at Kototabang, West Sumatera nearby the location of an Equatorial Atmosphere Radar (EAR) side. We are interest to use this data to investigate the propagation of the Madden-Julian Oscillation (MJO). We examined of daily MAWS data for 3 years observations started from January 2001 to Mei 2004. By applying wavelet analysis, we found the MJO at Kototabang have 32 days oscillations as shown in Fig.1 below. In this study, we concentrate just for local mechanis only. We will show in this paper that at the phase of the MJO with a dipole structure to the convection anomalies, there is enhanced tropical convection over the eastern Indian Ocean and reduced convection over the western Pacific. Over the equatorial western Indian Ocean, the equatorial Rossby wave response to the west of the enhanced convection includes a region of anomalous surface divergence associated with the anomalous surface westerlies and pressure ridge. This tends to suppress ascent in the boundary layer and shuts off the deep convection, eventually leading to a convective anomaly of the opposite sign. Over the Indonesian sector, the equatorial Kelvin wave response to the east of the enhanced convection includes a region of anomalous surface convergence into the anomalous equatorial surface easterlies and pressure trough, which will tend to favour convection in this region. The Indonesian sector is also influenced by an equatorial Rossby wave response (of opposite sign) to the west of the reduced convection over the western Pacific, which also has a region of anomalous surface convergence associated with its anomalous equatorial surface easterlies and pressure trough. Hence, convective anomalies of either sign tend to erode themselves from the west and initiate a convective anomaly of opposite sign via their equatorial Rossby wave response, and expand to the east via their equatorial Kelvin wave response.

  3. Quantum phase transitions and anomalous Hall effect in frustrated Kondo lattices

    Science.gov (United States)

    Paschen, Silke; Grefe, Sarah Elaine; Ding, Wenxin; Si, Qimiao

    Among the pyrochlore iridates, the metallic compound Pr2 Ir2O7 (Pr-227) has shown characteristics of a possible chiral spin liquid state and quantum criticality. An important question surrounding the significant anomalous Hall response observed in Pr-227 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on frustrated lattices. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr-227 and related frustrated Kondo-lattice systems.

  4. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  5. Classical anomalous absorption in strongly magnetized plasmas and effective shielding length

    International Nuclear Information System (INIS)

    Matsuda, K.

    1981-01-01

    The high-frequency conductivity tensor of a plasma in a magnetic field has been evaluated. An anomalous perpendicular conductivity is obtained for a strongly magnetized plasma. Contrarily to the previous prediction, the effective shielding length is found to be the Debye length even when the Debye length is larger than the electron gyroradius. The effective shielding length is further discussed by presenting the generalized Balescu-Lenard equation

  6. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  7. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal.

    Science.gov (United States)

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.

  8. Anomalous conductivity noise in gapped bilayer graphene heterostructure

    Science.gov (United States)

    Aamir, Mohammed Ali; Karnatak, Paritosh; Sai, T. Phanindra; Ghosh, Arindam

    Bilayer graphene has unique electronic properties - it has a tunable band gap and also, valley symmetry and pseudospin degree of freedom like its single layer counterpart. In this work, we present a study of conductance fluctuations in dual gated bilayer graphene heterostructures by varying the Fermi energy and the band gap independently. At a fixed band gap, we find that the conductance fluctuations obtained by Fermi energy ensemble sampling increase rapidly as the Fermi energy is tuned to charge neutrality point (CNP) whereas the time-dependent conductance fluctuations diminish rapidly. This discrepancy is completely absent at higher number densities, where the transport is expected to be through the 2D bulk of the bilayer system. This observation indicates that near the CNP, electrical transport is highly sensitive to Fermi energy, but becomes progressively immune to time-varying disorder. A possible explanation may involve transport via edge states which becomes the dominant conduction mechanism when the bilayer graphene is gapped and Fermi energy is situated close to the CNP, thereby causing a dimensional crossover from 2D to 1D transport. Our experiment outlines a possible experimental protocol to probe intrinsic topological states in gapped bilayer graphene.

  9. The Study of Sawtooth Oscillation during ECRH of HL-2A-like Plasma using 1.5D BALDUR Code

    International Nuclear Information System (INIS)

    Promping, J.; Onjun, T.; Poolyarat, N.; Picha, R.

    2009-07-01

    Full text: One of the current issues in tokamak plasma is sawtooth oscillation, because each sawtooth crash results in a significant reduction of central temperature and density. Consequently, the nuclear fusion power will drop. This has a significant impact on the performance of future nuclear fusion power plants. In this work, behaviors of sawtooth oscillations during an electron-cyclotron resonant heating (ECRH) in HL-2A tokamak experiment are studied. The simulation of plasma in HL-2A tokamak is carried out using the 1.5 D BALDUR integrated predictive modeling code, where the plasma core can be described by the combination of anomalous and neoclassical transport. This simulation used the Mixed Bohm/Gyro-Bohm (Mixed B/gB) model for the anomalous transport and the the NCLASS module for the neoclassical transport. For the anomamouse transport, we use Multimode (MMM95) model, while for the neoclassical transport, we use the NCLASS module for the neoclassical transport. In each simulation, a sawtooth crash is predicted by either Rogers-Zakharov sawtooth triggering model, Park-Monticello sawtooth triggering model, or Porcelli sawtooth triggering model. The effect of sawtooth crash is described by a modified Kadomtsev magnetic reconnection model

  10. Numerical simulation of the anomalous transport at the plasma-edge

    International Nuclear Information System (INIS)

    Pohn, E.

    2001-03-01

    In addition to the classical transport which is caused by Coloumb-collisions two further transport mechanisms take place in an inhomogeneous magnetically confined thermonuclear fusion-plasma, the neoclassical and the anomalous transport. The anomalous transport is caused by collective motion of the plasma-particles respectively turbulence and essentially affects the energy-confinement-time of the plasma. The energy-confinement-time in turn constitutes an important criterion with respect to the feasibility of using nuclear fusion for energy production. The anomalous transport is theoretically not yet well understood. By means of numerical simulations of the anomalous transport in the plasma edge, it is the intention of this work to contribute to the understanding of this transport mechanism. The Vlasov-Poisson-system constitutes the starting point for all performed simulations. This system consists of kinetic equations, which model for each particle-species the motion of the particles composing the plasma in six-dimensional phase-space. A coupling of these kinetic equations occurs due to the Poisson-equation, resulting in a nonlinear system of differential equations. The time evolution of this system was calculated numerically. On the one hand, simulations were performed where the whole velocity-space was retained. This fully-kinetic model was applied for the spatially one- as well as two-dimensional case. In the one-dimensional case only the radial direction of the plasma-edge was modeled, i.e. the direction along which the plasma joins to the vacuum. When performing the spatially two-dimensional simulations, in addition the poloidal direction has been regarded. A second set of simulations was performed using a gyro-kinetic model. In this model only the velocity-component parallel to the magnetic field vector is retained. The components perpendicular to the magnetic field vector, which are responsible for the gyration of particles, are omitted from phase-space but

  11. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  12. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  13. Quantum oscillations without a Fermi surface. The anomalous de Haas-van Alphen effect and relation to SmB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Knolle, Johannes; Cooper, Nigel [T.C.M. Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-07-01

    The de Haas-van Alphen effect (dHvAE), describing oscillations of the magnetization as a function of magnetic field, is commonly assumed to be a definite sign for the presence of a Fermi surface (FS). Indeed, the effect forms the basis of a well-established experimental procedure for accurately measuring FS topology and geometry of metallic systems, with parameters commonly extracted by fitting to the Lifshitz-Kosevich (LK) theory based on Fermi liquid theory. Here we show that, in contrast to this canonical situation, there can be quantum oscillations even for band insulators of certain types. We provide simple analytic formulas describing the temperature dependence of the quantum oscillations in this setting, showing strong deviations from LK theory. We draw connections to recent experiments on the tentative topological Kondo insulator SmB{sub 6}.

  14. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    Science.gov (United States)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  15. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.; Cai, J. W.; Guo, Zaibing; Zhang, Xixiang

    2013-01-01

    Pt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron

  16. Flashing oscillation in pool water

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kondo, Koichi; Hazuku, Tatsuya

    1996-01-01

    This paper presents an experimental study of high-pressure saturated water discharging into the pool water. The purpose of the experiment is to clarify the phenomena that occur in blow-down of high-pressure saturated water from the pressure vessel into the water-filled containment in the case of a wall-crack accident or a LOCA in an advanced reactor. The results revealed that a flashing oscillation (FO) occurs when high-pressure saturated water discharges into the pool water, under specified experimental settings. The range of the flashing oscillates between a point very close to and some distance from the vent hole. The pressures in the vent tube and pool water vary according to the flashing oscillation. The pressure oscillation and frequency of flashing position might be caused by the balancing action between the supply of saturated water, flashing at the control volume and its condensation on the steam-water interface. A linear analysis was conducted using a spherical flashing bubble model. The period of the flashing oscillation in the experiments can be explained by theoretical analysis

  17. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  18. Anomalous dispersion enhanced Cerenkov phase-matching

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Cahill, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The authors report on a scheme for phase-matching second harmonic generation in polymer waveguides based on the use of anomalous dispersion to optimize Cerenkov phase matching. They have used the theoretical results of Hashizume et al. and Onda and Ito to design an optimum structure for phase-matched conversion. They have found that the use of anomalous dispersion in the design results in a 100-fold enhancement in the calculated conversion efficiency. This technique also overcomes the limitation of anomalous dispersion phase-matching which results from absorption at the second harmonic. Experiments are in progress to demonstrate these results.

  19. Anomalous diffusion in chaotic scattering

    International Nuclear Information System (INIS)

    Srokowski, T.; Ploszajczak, M.

    1994-01-01

    The anomalous diffusion is found for peripheral collision of atomic nuclei described in the framework of the molecular dynamics. Similarly as for chaotic billiards, the long free paths are the source of the long-time correlations and the anomalous diffusion. Consequences of this finding for the energy dissipation in deep-inelastic collisions and the dynamics of fission in hot nuclei are discussed (authors). 30 refs., 2 figs

  20. Anomalous x-ray radiation of beam plasma

    International Nuclear Information System (INIS)

    Dimitrov, S.K.; Zavyalov, M.A.; Mikhin, S.G.; Tarasenkov, V.A.; Telkovskij, V.G.; Khrabrov, V.A.

    1985-01-01

    The properties of non-equilibrium stationary plasma under the conditions of the planned plasma-chemical reactors based on beam-plasma discharge were investigated. The x-ray spectrum of the beam-plasma was measured and anomalous spectral properties were analyzed. Starting with some critical pressure the anomalous radiation was added to the classical bremsstrahlung spectrum. The occurrence of anomalous radiation can be used to diagnose the condition of beam transportation in such systems. (D.Gy.)

  1. Anomalous Hall effect in ZnxFe3-xO4: Universal scaling law and electron localization below the Verwey transition

    Directory of Open Access Journals (Sweden)

    N. Jedrecy

    2016-08-01

    Full Text Available We show that the well-established universal scaling σxyAHE ∼ σxx1.6 between anomalous Hall and longitudinal conductivities in the low conductivity regime (σxx < 104 Ω−1 cm−1 transforms into the scaling σxyAHE ∼ σxx2 at the onset of strong electron localization. The crossover between the two relations is observed in magnetite-derived ZnxFe3-xO4 thin films where an insulating/hopping regime follows a bad metal/hopping regime below the Verwey transition temperature Tv. Our results demonstrate that electron localization effects come into play in the anomalous Hall effect (AHE modifying significantly the scaling exponent. In addition, the thermal evolution of the anomalous Hall resistivity suggests the existence of spin polarons whose size would decrease below Tv.

  2. Anomalous osmosis resulting from preferential absorption

    NARCIS (Netherlands)

    Staverman, A.J.; Kruissink, C.A.; Pals, D.T.F.

    1965-01-01

    An explanation of the anomalous osmosis described in the preceding paper is given in terms of friction coefficients in the glass membrane. It is shown that anomalous osmosis may be expected when the friction coefficients are constant and positive provided that the membrane absorbs solute strongly

  3. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A. J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber......We present an Yb-fiber oscillator with an all-polarizationmaintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling...

  4. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A.J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber......We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling...

  5. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  6. Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Dao-Yi; Yang, Jing; Hu, Miao [Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing (China); Kim, Seong-Joong [Korea Polar Research Institute, Incheon (Korea, Republic of); Gao, Yongqi [Nansen-Zhu International Research Center, IAP/CAS, Beijing (China); Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate Research, Bergen (Norway); Guo, Dong [Beijing Normal University, State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing (China); Nansen-Zhu International Research Center, IAP/CAS, Beijing (China); Zhou, Tianjun [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), IAP/CAS, Beijing (China)

    2011-12-15

    In the present study the links between spring Arctic Oscillation (AO) and East Asian summer monsoon (EASM) was investigated with focus on the importance of the North Pacific atmospheric circulation and sea surface temperature (SST). To reduce the statistical uncertainty, we analyzed high-pass filtered data with the inter-annual time scales, and excluded the El Nino/Southern Oscillation signals in the climate fields using a linear fitting method. The significant relationship between spring AO and EASM are supported by the changes of multi-monsoon components, including monsoon indices, precipitation, and three-dimensional atmospheric circulations. Following a stronger positive spring AO, an anomalous cyclonic circulation at 850 hPa appears in southeastern Asia and the western North Pacific in summer, with the easterly anomalies spanning from the Pacific to Asian continent along 25 N-30 N and the westerly anomalies south of 15 N. At the same time, the summer western North Pacific subtropical high becomes weaker. Consistently, the positive precipitation anomalies are developed over a broad region south of 30 N stretching from southern China to the western Pacific and the negative precipitation anomalies appear in the lower valley of the Yangtze River and southern Japan. The anomalous cyclone in the western North Pacific persisting from spring to summer plays a key role in modulating EASM and monsoon precipitation by a positive air-sea feedback mechanism. During spring the AO-associated atmospheric circulation change produces warmer SSTs between 150 E-180 near the equator. The anomalous sensible and latent heating, in turn, intensifies the cyclone through a Gill-type response of the atmosphere. Through this positive feedback, the tropical atmosphere and SST patterns sustain their strength from spring to summer, that consequently modifies the monsoon trough and the western North Pacific subtropical high and eventually the EASM precipitation. Moreover, the SST response to

  7. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    International Nuclear Information System (INIS)

    Tanaka, Masahiko; Katsuya, Yoshio; Sakata, Osami

    2016-01-01

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe_2O_4 (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe_2O_4 crystal structure.

  8. Short term load forecasting of anomalous load using hybrid soft computing methods

    Science.gov (United States)

    Rasyid, S. A.; Abdullah, A. G.; Mulyadi, Y.

    2016-04-01

    Load forecast accuracy will have an impact on the generation cost is more economical. The use of electrical energy by consumers on holiday, show the tendency of the load patterns are not identical, it is different from the pattern of the load on a normal day. It is then defined as a anomalous load. In this paper, the method of hybrid ANN-Particle Swarm proposed to improve the accuracy of anomalous load forecasting that often occur on holidays. The proposed methodology has been used to forecast the half-hourly electricity demand for power systems in the Indonesia National Electricity Market in West Java region. Experiments were conducted by testing various of learning rate and learning data input. Performance of this methodology will be validated with real data from the national of electricity company. The result of observations show that the proposed formula is very effective to short-term load forecasting in the case of anomalous load. Hybrid ANN-Swarm Particle relatively simple and easy as a analysis tool by engineers.

  9. Anomalous behaviour of thermophysical properties of stoichiometric uranium dioxide by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Lunev, A.V.; Tarasov, B.A.; Nazarov, A.V.

    2011-01-01

    We present a classical molecular dynamics simulation of uranium dioxide in the temperature range of 300-3000 K. Temperature dependences of thermal conductivity, heat capacity and ionic conductivity are investigated. Our study shows the rise of thermal conductivity of uranium dioxide at very high temperatures (above 2500 K), which is not predicted by the former anharmonic theories. Several pair potentials are used in the simulation, and they depict similar effects. Long range forces are accounted by Ewald sums. Static thermal properties are evaluated in NPT ensemble. It is shown that a high-temperature peak on heat capacity is present and is more legible in large systems. To ensure the best reliability, transport properties are evaluated using the theory of autocorrelation functions in NVE ensemble. In order to properly define thermal conductivity in ionic systems with charge fluxes, an expression which accounts the thermoelectric effect is derived from Onsager reciprocal relations. The rise on temperature dependence of thermal conductivity is accompanied by the peak on heat capacity and an anomalous rise of ionic conductivity. However, it is shown that there is no partial melting of the oxygen sublattice, which suggests that the system does not necessarily exhibit a superionic transition. Instead, kick-out diffusion in oxygen sublattice is proposed to be the origin of such anomalous behavior of thermophysical properties. (author)

  10. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation

    Science.gov (United States)

    Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.

    2017-12-01

    Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.

  11. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  12. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  13. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  14. Rietveld analysis using powder diffraction data with anomalous scattering effect obtained by focused beam flat sample method

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2016-07-27

    Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorption edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.

  15. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. copyright 1995 American Institute of Physics

  16. Neoclassical and anomalous transport in axisymmetric toroidal plasmas with electrostatic turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1995-05-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear term. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the bootstrap current are also affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The quasilinear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated from the fluctuating part of the drift kinetic equation. The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime to derive the parallel viscosities modified by the fluctuations. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. (author)

  17. The natural oscillation of two types of ENSO events based on analyses of CMIP5 model control runs

    Science.gov (United States)

    Xu, Kang; Su, Jingzhi; Zhu, Congwen

    2014-07-01

    The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.

  18. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics

    Science.gov (United States)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.

    2014-01-01

    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  19. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu Q.; Hendrickson, W.

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  20. Symmetrized local co-registration optimization for anomalous change detection

    Energy Technology Data Exchange (ETDEWEB)

    Wohlberg, Brendt E [Los Alamos National Laboratory; Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, based on two images of the scene taken at different times and under different conditions. The actual anomalous changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of the most common and confounding of these incidental differences is due to the misregistration of the images, due to limitations of the registration pre-processing applied to the image pair. We propose a general method to compensate for residual misregistration in any ACD algorithm which constructs an estimate of the degree of 'anomalousness' for every pixel in the image pair. The method computes a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find significant performance improvements in the anomalous change detection ROC curves for a number of real and synthetic data sets.

  1. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    Science.gov (United States)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  2. Electrotonic vascular signal conduction and nephron synchronization

    DEFF Research Database (Denmark)

    Marsh, D.J.; Toma, I.; Sosnovtseva, Olga

    2009-01-01

    Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF) and the ......Marsh DJ, Toma I, Sosnovtseva OV, Peti-Peterdi J, Holstein-Rathlou NH. Electrotonic vascular signal conduction and nephron synchronization. Am J Physiol Renal Physiol 296: F751-F761, 2009. First published December 30, 2008; doi:10.1152/ajprenal.90669.2008.-Tubuloglomerular feedback (TGF......) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5: 1 frequency ratio...... is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce...

  3. Anomalous misfit strain relaxation in ultrathin YBa2Cu3O7-δ epitaxial films

    International Nuclear Information System (INIS)

    Kamigaki, K.; Terauchi, H.; Terashima, T.; Bando, Y.; Iijima, K.; Yamamoto, K.; Hirata, K.; Hayashi, K.; Nakagawa, I.; Tomii, Y.

    1991-01-01

    Ultrathin YBa 2 Cu 3 O 7-δ epitaxial films were successfully grown in situ on (001) SrTiO 3 and MgO substrates by means of ozone-incorporating activated reactive evaporation. The x-ray-diffraction study was carefully examined to determine the structural properties of the grown films. Excellent crystallinity with no interfacial disorders was revealed by the appearance of the Laue oscillations. It was found that in a well lattice-matched YBa 2 Cu 3 O 7-δ /SrTiO 3 system, the crystallinity was deteriorated due to defect introduction at the critical layer thickness h c ( ∼ 130 A). Interestingly, also in a poorly lattice-matched YBa 2 Cu 3 O 7-δ /MgO system, excellent crystallinity was revealed even at above h c ( 2 Cu 3 O 7-δ /MgO system. In such a system, no crystal imperfection of the MgO substrate caused by defect introduction was elucidated by the grazing incidence x-ray scattering, which indicated that the MgO substrate did not contribute to the anomalous misfit relaxation. The anomalous growth manner was also found in YBa 2 Cu 3 O 7-δ /MgO according to surface morphology investigations. Below 40 A( > h c ), island nucleation growth was found. Above 40 A, it was observed that an atomically smooth surface was obtained and the crystallinity was simultaneously improved. It is suggested that YBa 2 Cu 3 O 7-δ possesses an anomalous misfit relaxation mechanism, and that especially in the growth on MgO, it couples with the characteristic growth behavior at the initial stage

  4. Anomalous magnon Nernst effect of topological magnonic materials

    Science.gov (United States)

    Wang, X. S.; Wang, X. R.

    2018-05-01

    The magnon transport driven by a thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii–Moriya interaction has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effect for an electronic system. The anomalous magnon Nernst coefficient and its sign are determined by the magnon Berry curvature distributions in the momentum space and magnon populations in the magnon bands. We predict a temperature-induced sign reversal in anomalous magnon Nernst effect under certain conditions.

  5. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  6. Self-similar oscillations of a Z pinch

    International Nuclear Information System (INIS)

    Felber, F.S.

    1982-01-01

    A new analytic, self-similar solution of the equations of ideal magnetohydrodynamics describes cylindrically symmetric plasmas conducting constant current. The solution indicates that an adiabatic Z pinch oscillates radially with a period typically of the order of a few acoustic transit times. A stability analysis, which shows the growth rate of the sausage instability to be a saturating function of wavenumber, suggests that the oscillations are observable

  7. The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models

    Science.gov (United States)

    Chen, Shangfeng; Chen, Wen; Yu, Bin

    2017-05-01

    This study examines the influence of boreal spring Arctic Oscillation (AO) on the subsequent winter El Niño-Southern Oscillation (ENSO) using 15 climate model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that, out of the 15 CMIP5 models, CCSM4 and CNRM-CM5 can well reproduce the significant AO-ENSO connection. These two models capture the observed spring AO related anomalous cyclone (anticyclone) over the subtropical western-central North Pacific, and westerly (easterly) winds over the tropical western-central Pacific. In contrast, the spring AO-related anomalous circulation over the subtropical North Pacific is insignificant in the other 13 models, and the simulations in these models cannot capture the significant influence of the spring AO on ENSO. Further analyses indicate that the performance of the CMIP5 simulations in reproducing the AO-ENSO connection is related to the ability in simulating the spring North Pacific synoptic eddy intensity and the spring AO's Pacific component. Strong synoptic-scale eddy intensity results in a strong synoptic eddy feedback on the mean flow, leading to strong cyclonic circulation anomalies over the subtropical North Pacific, which contributes to a significant AO-ENSO connection. In addition, a strong spring AO's Pacific component and associated easterly wind anomalies to its south may provide more favorable conditions for the development of spring AO-related cyclonic circulation anomalies over the subtropical North Pacific.

  8. A Self-Oscillating System to Measure the Conductivity and the Permittivity of Liquids within a Single Triangular Signal

    Directory of Open Access Journals (Sweden)

    Sylvain Druart

    2014-01-01

    Full Text Available We present a methodology and a circuit to extract liquid resistance and capacitance simultaneously from the same output signal using interdigitated sensing electrodes. The principle consists in the generation of a current square wave and its application to the sensor to create a triangular output voltage which contains both the conductivity and permittivity parameters in a single periodic segment. This concept extends the Triangular Waveform Voltage (TWV signal generation technique and is implemented by a system which consists in a closed-loop current-controlled oscillator and only requires DC power to operate. The system interface is portable and only a small number of electrical components are used to generate the expected signal. Conductivities of saline NaCl and KCl solutions, being first calibrated by commercial equipment, are characterized by a system prototype. The results show excellent linearity and prove the repeatability of the measurements. Experiments on water-glycerol mixtures validate the proposed sensing approach to measure the permittivity and the conductivity simultaneously. We discussed and identified the sources of measurement errors as circuit parasitic capacitances, switching clock feedthrough, charge injection, bandwidth, and control-current quality.

  9. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  10. Quantum phase transitions and anomalous Hall effect in a pyrochlore Kondo lattice

    Science.gov (United States)

    Grefe, Sarah; Ding, Wenxin; Si, Qimiao

    The metallic variant of the pyrochlore iridates Pr2Ir2O7 has shown characteristics of a possible chiral spin liquid state [PRL 96 087204 (2006), PRL 98, 057203 (2007), Nature 463, 210 (2010)] and quantum criticality [Nat. Mater. 13, 356 (2014)]. An important question surrounding the significant anomalous Hall response observed in Pr2Ir2O7 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on the pyrochlore lattice. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations and determine the zero-temperature phase diagram. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr2Ir2O7 and related frustrated Kondo-lattice systems.

  11. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  12. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  13. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  14. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Directory of Open Access Journals (Sweden)

    Sergis Antonis

    2011-01-01

    Full Text Available Abstract This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  15. Experimental study of a premixed oscillating flame stabilized inside the tube

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.I.; Shin, H.D. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    An experimental study of premixed oscillating flame stabilized inside the tube has been conducted in order to examine the kinematic behavior of premixed flame under the flow oscillation and flame/flow interaction. Flow oscillation is accomplished by an acoustic excitation. Oscillating nature of flow has been studied with and without the flame using velocity and pressure measurements by a LDV and microphone, respectively Kinematic behavior of the oscillating flame is examined using triggered ICCD camera system. Velocity oscillation and flame oscillation is the same frequency as that produced by the acoustic excitation and flame shape has a similarity at various phase of oscillation. Upstream velocity field near the flame zone is greatly influenced by the flame oscillation. This is the typical example of flame/flow interaction. (author). 9 refs., 7 figs.

  16. Radiation effect on conductivity of oxygen-containing crystals of lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Shchepina, L.I.; Alekseeva, L.I.; Lobanov, B.D.; Kostyukov, V.M. (Irkutskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Prikladnoj Fiziki)

    1984-07-01

    The data are presented on an anomalous behaviour of the conductivity, sigma of oxygen-enriched LiF crystals irradiated by approximately 10/sup 5/ J/kg doses. The ultraviolet absorption spectra were used to measure the oxygen content. The samples were exposed to ..gamma..-radiation of a /sup 60/Co source. The anomalous behaviour of tau is manifested by deviation of the sigma temperature dependence from the exponential law and occurrence of the minimum on the curve. The anomalous behaviour covers the range of 580-660 K and terminates by the tau recovery up to the values of an intact samples.

  17. Connection between recurrence time statistics and anomalous transport

    International Nuclear Information System (INIS)

    Zaslavsky, G.M.; Tippett, M.K.

    1991-01-01

    For a model stationary flow with hexagonal symmetry, the recurrence time statistics are studied. The model has been shown to have a sharp transition from normal to anomalous transport. Here it is shown that this transition is accompanied by a correspondent change of the recurrence time statistics from normal to anomalous. The latter one displays the existence of a power tail. Recurrence time statistics provide a local measurement of anomalous transport that is of practical interest

  18. Inclusive anomalous muon production in e+e- annihilation

    International Nuclear Information System (INIS)

    Feldman, G.J.; Bulos, F.; Lueke, D.; Abrams, G.S.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Dorfan, J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hanson, G.; Heile, F.B.; Jaros, J.A.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Lueth, V.; Madaras, R.J.; Morehouse, C.C.; Nguyen, H.K.; Paterson, J.M.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pierre, F.M.; Pun, T.P.; Rapidis, P.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Tanenbaum, W.; Trilling, G.H.; Vannucci, F.; Whitaker, J.S.; Wiss, J.E.

    1977-01-01

    We present measurements of inclusive anomalous muon production in e + e - annihilations in three energy ranges. In all three ranges we observe a large anomalous muon production rate in two-prong events which is compatible with the expected decays of pairs of heavy leptons. In the highest energy range there is also appreciable anomalous muon production in multiprong events which, due to its magnitude and momentum dependence, must come in part from a source other than a heavy lepton

  19. Systematic Serendipity: A Method to Discover the Anomalous

    Science.gov (United States)

    Giles, Daniel; Walkowicz, Lucianne

    2018-01-01

    One of the challenges in the era of big data astronomical surveys is identifying anomalous data, data that exhibits as-of-yet unobserved behavior. These data may result from systematic errors, extreme (or rare) forms of known phenomena, or, most interestingly, truly novel phenomena that has historically required a trained eye and often fortuitous circumstance to identify. We describe a method that uses machine clustering techniques to discover anomalous data in Kepler lightcurves, as a step towards systematizing the detection of novel phenomena in the era of LSST. As a proof of concept, we apply our anomaly detection method to Kepler data including Boyajian's Star (KIC 8462852). We examine quarters 4, 8, 11, and 16 of the Kepler data which contain Boyajian’s Star acting normally (quarters 4 and 11) and anomalously (quarters 8 and 16). We demonstrate that our method is capable of identifying Boyajian’s Star’s anomalous behavior in quarters of interest, and we further identify other anomalous light curves that exhibit a range of interesting variability.

  20. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  1. Computer simulations of anomalous transport

    International Nuclear Information System (INIS)

    Lee, W.W.; Okuda, H.

    1980-07-01

    Numerical plasma simulations have been carried out to study: (1) the turbulent spectrum and anomalous plasma transport associated with a steady state electrostatic drift turbulence; and (2) the anomalous energy transport of electrons due to shear-Alfven waves in a finite-β plasma. For the simulation of the steady state drift turbulence, it is observed that, in the absence of magnetic shear, the turbulence is quenched to a low level when the rotational transform is a rational number, while the turbulent level remains high for an irrational rotational transform

  2. Anomalous DC dark conductivity behaviour in a-Se films

    International Nuclear Information System (INIS)

    Qamhieh, N; Willekens, J; Brinza, M; Adriaenssens, G J

    2003-01-01

    Thin films of amorphous selenium have been prepared by thermal evaporation. DC conductivity measurements were carried out on these films in the temperature range between 208 and 322 deg. K. Above room temperature, the dark conductivity is thermally activated with activation energy E σ 1.05 ± 0.08 eV. For temperatures below 285 deg. K, an increase in the dark current is observed, which is interpreted in terms of a shift of the Fermi level that makes more states available for a hopping process. (letter to the editor)

  3. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    International Nuclear Information System (INIS)

    Fontheim, E.G.; Ong, R.S.B.; Roble, R.G.; Mayr, H.G.; Hoegy, W.H.; Baron, M.J.; Wickwar, V.B.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A=1)disagrees considerably with the measured profile over most of the altitude range up to 450km. It is shown that an anomaly coefficient with a sharp peak of the order of 10 4 centered aroung the F 2 peak is consistent with observations

  4. Anomalous N=2 superconformal Ward identities

    International Nuclear Information System (INIS)

    Ketov, Sergei V.

    2000-01-01

    The N=2 superconformal Ward identities and their anomalies are discussed in N=2 superspace (including N=2 harmonic superspace), at the level of the low-energy effective action (LEEA) in four-dimensional N=2 supersymmetric field theories. The (first) chiral N=2 supergravity compensator is related to the known N=2 anomalous Ward identity in the N=2 (abelian) vector mulitplet sector. As regards the hypermultiplet LEEA given by the N=2 non-linear sigma-model (NLSM), a new anomalous N=2 superconformal Ward identity is found, whose existence is related to the (second) analytic compensator in N=2 supergravity. The celebrated solution of Seiberg and Witten is known to obey the (first) anomalous Ward identity in the Coulomb branch. We find a few solutions to the new anomalous Ward identity, after making certain assumptions about unbroken internal symmetries. Amongst the N=2 NLSM target space metrics governing the hypermultiplet LEEA are the SU(2)-Yang-Mills-Higgs monopole moduli-space metrics that can be encoded in terms of the spectral curves (Riemann surfaces), similarly to the Seiberg-Witten-type solutions. After a dimensional reduction to three spacetime dimensions (3d), our results support the mirror symmetry between the Coulomb and Higgs branches in 3d, N=4 gauge theories

  5. Particle-in-cell simulations of anomalous transport in a Penning discharge

    Science.gov (United States)

    Carlsson, Johan; Kaganovich, Igor; Powis, Andrew; Raitses, Yevgeny; Romadanov, Ivan; Smolyakov, Andrei

    2018-06-01

    Electrostatic particle-in-cell simulations of a Penning discharge are performed in order to investigate azimuthally asymmetric, spoke-like structures previously observed in experiments. Two-dimensional simulations show that for Penning-discharge conditions, a persistent nonlinear spoke-like structure forms readily and rotates in the direction of E × B and electron diamagnetic drifts. The azimuthal velocity is within about a factor of 2 of the ion acoustic speed. The spoke frequency follows the experimentally observed scaling with ion mass, which indicates the importance of ion inertia in spoke formation. The spoke provides enhanced (anomalous) radial electron transport, and the effective cross-field conductivity is several times larger than the classical (collisional) value. The level of anomalous current obtained in the simulations is in good agreement with the experimental data. The rotating spoke channels most of the radial current, observable by an edge probe as short pulses.

  6. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  7. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    2014-05-01

    Full Text Available High-frequency oscillations (above 30 Hz have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF or Generalized Integrate-and-Fire (GIF neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i the firing rate response to the noisy background input, ii the membrane potential distribution, and iii the shape of Inhibitory Post-Synaptic Potentials (IPSPs. For hyperpolarizing inhibition, the GIF IPSP profile (factor iii exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i and ii, respectively, which tend to decrease synchrony. If inhibition is shunting instead

  8. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Science.gov (United States)

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  9. 20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiangyu; Wu, Guoxiong [Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), P.O. Box 9804, Beijing (China); Sun, Zhang [Institute of Atmospheric Physics, Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), P.O. Box 9804, Beijing (China); Zhejiang Meteorological Observatory, Hangzhou (China)

    2010-04-15

    The spatio-temporal variability in summer rainfall within eastern China is identified based on empirical orthogonal function (EOF) analysis of daily rain-gauge precipitation data for the period 1979-2003. Spatial coherence of rainfall is found in the Yangtze Basin, and a wavelet transform is applied to the corresponding principal component to capture the intraseasonal oscillation (ISO) of Yangtze rainfall. The ensemble mean wavelet spectrum, representing statistically significant intraseasonal variability, shows a predominant oscillation in summer Yangtze rainfall with a period of 20-50 days; a 10-20-day oscillation is pronounced during June and July. This finding suggests that the 20-50-day oscillation is a major agent in regulating summer Yangtze rainfall. Composite analyses reveal that the 20-50-day oscillation of summer Yangtze rainfall arises in response to intraseasonal variations in the western North Pacific subtropical high (WNPSH), which in turn is modulated by a Rossby wave-like coupled circulation-convection system that propagates northward and northwestward from the equatorial western Pacific. When an anomalous cyclone associated with this Rossby wave-like system reaches the South China Sea (SCS) and Philippine Sea, the WNPSH retreats northeastward due to a reduction in local pressure. Under these conditions, strong monsoonal southwesterlies blow mainly toward the SCS-Philippine Sea, while dry conditions form in the Yangtze Basin, with a pronounced divergent flow pattern. In contrast, the movement of an anomalous anticyclone over the SCS-Philippine Sea results in the southwestward extension of the WNPSH; consequently, the tropical monsoonal southwesterlies veer to the northeast over the SCS and then converge toward the Yangtze Basin, producing wet conditions. Therefore, the 20-50-day oscillation of Yangtze rainfall is also manifest as a seesaw pattern in convective anomalies between the Yangtze Basin and the SCS-Philippine Sea. A considerable zonal

  10. Anomalous nuclear fragments

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1983-01-01

    Experimental data are given, the status of anomalon problem is discussed, theoretical approaches to this problem are outlined. Anomalons are exotic objects formed following fragmentation of nuclei-targets under the effect of nuclei - a beam at the energy of several GeV/nucleon. These nuclear fragments have an anomalously large cross section of interaction and respectively, small free path, considerably shorter than primary nuclei have. The experimental daa are obtained in accelerators following irradiation of nuclear emulsions by 16 O, 56 Fe, 40 Ar beams, as well as propane by 12 C beams. The experimental data testify to dependence of fragment free path on the distance L from the point of the fragment formation. A decrease in the fragment free path is established more reliably than its dependence on L. The problem of the anomalon existence cannot be yet considered resolved. Theoretical models suggested for explanation of anomalously large cross sections of nuclear fragment interaction are variable and rather speculative

  11. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    Energy Technology Data Exchange (ETDEWEB)

    Berman, P. R.; Ford, G. W. [Physics Department, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040 (United States); Milonni, P. W. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States)

    2014-10-28

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.

  12. Coupled-oscillator theory of dispersion and Casimir-Polder interactions

    International Nuclear Information System (INIS)

    Berman, P. R.; Ford, G. W.; Milonni, P. W.

    2014-01-01

    We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r −4 , a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented

  13. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.

    Science.gov (United States)

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.

  14. Role of Longwave Cloud-Radiation Feedback in the Simulation of the Madden-Julian Oscillation

    Science.gov (United States)

    Kim, Daehyun; Ahn, Min-Seop; Kang, In-Sik; Del Genio, Anthony D.

    2015-01-01

    The role of the cloud-radiation interaction in the simulation of the Madden-Julian oscillation (MJO) is investigated. A special focus is on the enhancement of column-integrated diabatic heating due to the greenhouse effects of clouds and moisture in the region of anomalous convection. The degree of this enhancement, the greenhouse enhancement factor (GEF), is measured at different precipitation anomaly regimes as the negative ratio of anomalous outgoing longwave radiation to anomalous precipitation. Observations show that the GEF varies significantly with precipitation anomaly and with the MJO cycle. The greenhouse enhancement is greater in weak precipitation anomaly regimes and its effectiveness decreases monotonically with increasing precipitation anomaly. The GEF also amplifies locally when convection is strengthened in association with the MJO, especially in the weak precipitation anomaly regime (less than 5 mm day(exp -1)). A robust statistical relationship is found among CMIP5 climate model simulations between the GEF and the MJO simulation fidelity. Models that simulate a stronger MJO also simulate a greater GEF, especially in the weak precipitation anomaly regime (less than 5 mm day(exp -1)). Models with a greater GEF in the strong precipitation anomaly regime (greater than 30 mm day(-1)) represent a slightly slower MJO propagation speed. Many models that lack the MJO underestimate the GEF in general and in particular in the weak precipitation anomaly regime. The results herein highlight that the cloud-radiation interaction is a crucial process for climate models to correctly represent the MJO.

  15. Comparison of the anomalous and non-anomalous generalized Schwinger models via functional formalism

    International Nuclear Information System (INIS)

    Souza Dutra, A. de.

    1992-01-01

    The Green functions of the two versions of the two versions of the generalized Schwinger model, the anomalous and the non-anomalous one, in their higher order Lagrangian density form are calculated. Furthermore it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term is also considered. It is verified that the two models have the same correlation functions only of the gauge-invariant sector is taken into account. Finally it is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations. (author)

  16. Thermal conductivity calculation of nano-suspensions using Green–Kubo relations with reduced artificial correlations

    International Nuclear Information System (INIS)

    Muraleedharan, Murali Gopal; Yang, Vigor; Sundaram, Dilip Srinivas; Henry, Asegun

    2017-01-01

    The presence of artificial correlations associated with Green–Kubo (GK) thermal conductivity calculations is investigated. The thermal conductivity of nano-suspensions is calculated by equilibrium molecular dynamics (EMD) simulations using GK relations. Calculations are first performed for a single alumina (Al 2 O 3 ) nanoparticle dispersed in a water medium. For a particle size of 1 nm and volume fraction of 9%, results show enhancements as high as 235%, which is much higher than the Maxwell model predictions. When calculations are done with multiple suspended particles, no such anomalous enhancement is observed. This is because the vibrations in alumina crystal can act as low frequency perturbations, which can travel long distances through the surrounding water medium, characterized by higher vibration frequencies. As a result of the periodic boundaries, they re-enter the system resulting in a circular resonance of thermal fluctuations between the alumina particle and its own image, eventually leading to artificial correlations in the heat current autocorrelation function (HCACF), which when integrated yields abnormally high thermal conductivities. Adding more particles presents ‘obstacles’ with which the fluctuations interact and get dissipated, before they get fed back to the periodic image. A systematic study of the temporal evolution of HCACF indicates that the magnitude and oscillations of artificial correlations decrease substantially with increase in the number of suspended nanoparticles. (paper)

  17. Anomalous length of electron bunches as an instability threshold

    International Nuclear Information System (INIS)

    Messerschmid, E.; Month, M.

    1976-01-01

    A mechanism for the anomalous length of electron bunches, based on the existence of a ''fast'' longitudinal instability, is proposed. The equilibrium length is obtained by requiring that the growth rate be sufficiently larger than the rate of synchrotron oscillations. The theory is used to describe the bunch length data for SPEAR at 1.5 GeV. The low voltage and/or high current regime is dominated by a set of ''low'' frequency, low Q resonators [e.g., f = 320 MHz, Δf(fwhm) = 130 MHz]. To fit the observations in the high voltage and/or low current regime, a high frequency, low Q impedance is required (e.g., f = 3.8 GHz, Δf = 1.0 GHz). The mechanism is mediated by the resistive component of the impedance. Thus, there is qualitative agreement with the observed distortion of the bunch tail. This is in contrast to the predictions of the potential well models based on a reactive impedance source. These latter theories yield large distortions of the head of the bunch. The calculated power dissipated in the assumed sources by the given electron bunch is not inconsistent with estimates made for SPEAR

  18. Anomalous behaviors during infiltration into heterogeneous porous media

    Science.gov (United States)

    Aarão Reis, F. D. A.; Bolster, D.; Voller, V. R.

    2018-03-01

    Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F ∼t1/2 . In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.

  19. The anomalous self-diffusion in α-Zr

    International Nuclear Information System (INIS)

    Hood, G.M.

    1985-01-01

    In a very recent publication, Horvath, Dyment and Mehrer, henceforth HDM, presented measurements of the self-diffusion coefficient Dsub(m) 0 for α-Zr as a function of temperature. The results of that study, done on a single crystal sample, were anomalous in the sense that a plot of log Dsub(m) 0 vs. 1/T(K -1 ) was not only non-linear, but exhibited two regions of downward curvature with increasing 1/T. HDM indicated that they were unable to see any explanation of their anomalous self-diffusion results. It is the purpose of this letter to indicate a means whereby these anomalous results may be ''explained'' and to suggest some experiments which might be undertaken to test the proposal. (orig./RK)

  20. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R. [Institute of Physics, University of Brasília, 70919-970 Brasília-DF (Brazil); Qu, F. [Institute of Physics, University of Brasília, 70919-970 Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.

  1. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    International Nuclear Information System (INIS)

    Diniz, G. S.; Guassi, M. R.; Qu, F.

    2013-01-01

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency

  2. Recent intensified impact of December Arctic Oscillation on subsequent January temperature in Eurasia and North Africa

    Science.gov (United States)

    He, Shengping; Wang, Huijun; Gao, Yongqi; Li, Fei

    2018-03-01

    This study reveals an intensified influence of December Arctic Oscillation (AO) on the subsequent January surface air temperature (SAT) over Eurasia and North Africa in recent decades. The connection is statistically insignificant during 1957/58-1979/80 (P1), which becomes statistically significant during 1989/90-2011/12 (P2). The possible causes are further investigated. Associated with positive December AO during P2, significant anomalous anticyclone emerges over the central North Atlantic, which is accompanied with significant westerly and easterly anomalies along 45°-65°N and 20°-40°N, respectively. This favors the significant influence of December AO on the subsequent January SAT and atmospheric circulation over Eurasia and North Africa via triggering the North Atlantic tripole sea surface temperature (SST) anomaly that persists into the subsequent January. By contrast, the December AO-related anomalous anticyclone during P1 is weak and is characterized by two separate centers located in the eastern and western North Atlantic. Correspondingly, the westerly and easterly anomalies over the North Atlantic Ocean are weak and the-related tripole SST anomaly is not well formed, unfavorable for the persistent impact of the December AO into the subsequent January. Further analyses indicate that the different anomalous anticyclone associated with the December AO over the North Atlantic may be induced by the strengthened synoptic-scale eddy feedbacks over the North Atlantic, which may be related to the interdecadal intensification of the storm track activity. Additionally, the planetary stationary wave related to the December AO propagates from surface into upper stratosphere at mid-latitudes during P2, which further propagates downward to the troposphere and causes anomalous atmospheric circulation in the subsequent January.

  3. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  4. The effect of hydrostatic pressure on the anomalous sign reversal of the Hall coefficient in tellurium

    International Nuclear Information System (INIS)

    Balynas, V.; Dobrovolskis, Z.; Krotkus, A.; Hoerstel, W.

    1981-01-01

    In order to obtain information about the pressure behaviour of the higher lying second conduction band the dependences of the Hall coefficient of single crystalline tellurium on temperature (300 to 500 K) have been measured at atmospheric pressure and hydrostatic pressures of 500 and 800 MPa. The separation between the two conduction bands in Te decreases with increasing pressure. The anomalous sign reversal of the Hall coefficient can be well explained by a double-conduction band model

  5. The quantum anomalous Hall effect on a star lattice with spin-orbit coupling and an exchange field

    International Nuclear Information System (INIS)

    Chen Mengsu; Wan Shaolong

    2012-01-01

    We study a star lattice with Rashba spin-orbit coupling and an exchange field and find that there is a quantum anomalous Hall effect in this system, and that there are five energy gaps at Dirac points and quadratic band crossing points. We calculate the Berry curvature distribution and obtain the Hall conductivity (Chern number ν) quantized as integers, and find that ν =- 1,2,1,1,2 when the Fermi level lies in these five gaps. Our model can be viewed as a general quantum anomalous Hall system and, in limit cases, can give what the honeycomb lattice and kagome lattice give. We also find that there is a nearly flat band with ν = 1 which may provide an opportunity for realizing the fractional quantum anomalous Hall effect. Finally, the chiral edge states on a zigzag star lattice are given numerically, to confirm the topological property of this system. (paper)

  6. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  7. Presentation: 3D magnetic inversion by planting anomalous densities

    OpenAIRE

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2013-01-01

    Slides for the presentation "3D magnetic inversion by planting anomalous densities" given at the 2013 AGU Meeting of the Americas in Cancun, Mexico.   Note: There was an error in the title of the talk. The correct title should be "3D magnetic inversion by planting anomalous magnetization"   Abstract: We present a new 3D magnetic inversion algorithm based on the computationally efficient method of planting anomalous densities. The algorithm consists of an iterative growth of the an...

  8. Kubo conductivity of a strongly magnetized two-dimensional plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1971-01-01

    The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.

  9. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  10. Strong Quantum Size Effects in Pb(111) Thin Films Mediated by Anomalous Friedel Oscillations

    Science.gov (United States)

    Jia, Yu; Wu, Biao; Li, Chong; Einstein, T. L.; Weitering, H. H.; Zhang, Zhenyu

    2010-08-01

    Using first-principles calculations within density functional theory, we study Friedel oscillations (FOs) in the electron density at different metal surfaces and their influence on the lattice relaxation and stability of ultrathin metal films. We show that the FOs at the Pb(111) surface decay as 1/x with the distance x from the surface, different from the conventional 1/x2 power law at other metal surfaces. The underlying physical reason for this striking difference is tied to the strong nesting of the two different Fermi sheets along the Pb(111) direction. The interference of the strong FOs emanating from the two surfaces of a Pb(111) film, in turn, not only results in superoscillatory interlayer relaxations around the center of the film, but also determines its stability in the quantum regime. As a simple and generic picture, the present findings also explain why quantum size effects are exceptionally robust in Pb(111) films.

  11. Influence of extracellular oscillations on neural communication: a computational perspective

    Directory of Open Access Journals (Sweden)

    Zoran eTiganj

    2014-02-01

    Full Text Available Neural communication generates oscillations of electric potential in the extracellular medium. In feedback, these oscillations affect the electrochemical processes within the neurons, influencing the timing and the number of action potentials. It is unclear whether this influence should be considered only as noise or it has some functional role in neural communication. Through computer simulations we investigated the effect of various sinusoidal extracellular oscillations on the timing and number of action potentials. Each simulation is based on a multicompartment model of a single neuron, which is stimulated through spatially distributed synaptic activations. A thorough analysis is conducted on a large number of simulations with different models of CA3 and CA1 pyramidal neurons which are modeled using realistic morphologies and active ion conductances. We demonstrated that the influence of the weak extracellular oscillations, which are commonly present in the brain, is rather stochastic and modest. We found that the stronger fields, which are spontaneously present in the brain only in some particular cases (e.g. during seizures or that can be induced externally, could significantly modulate spike timings.

  12. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  13. Total least squares for anomalous change detection

    Science.gov (United States)

    Theiler, James; Matsekh, Anna M.

    2010-04-01

    A family of subtraction-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQbased anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and special cases of it are equivalent to canonical correlation analysis and optimized covariance equalization. What whitened TLSQ offers is a generalization of these algorithms with the potential for better performance.

  14. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2017-10-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  15. chi2 analyses of data on relativistic anomalous projectile fragments

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1983-01-01

    Nuclear emulsion data from four experimental groups are now available on the interactions of p relativistic anomalous projectile fragments. In the present paper we systematically combine these data together to form several different data sets, which are used to carry out a series of chi 2 parameter studies. The anomalous particle fragment component in the relativistic nuclear beam has been characterized previously in terms of the parameters f and lambda, where f is the anomalous particle fragment fraction in the secondary beam and lambda is the average anomalous particle fragment mean free path in the emulsion. We extend this result here by setting lambda = lambda 0 (2Z)/sup -beta/, where Z is the nuclear charge of the anomalous particle fragment, so that we can investigate the Z dependence of lambda. We also investigate isotopic effects in the equations used to describe ''normal'' secondary beam nuclei, and we examine the problem of optimizing the bin sizes used to represent the data. A series of (f,lambda 0 ,#betta#) parameter studies leads to the conclusion that the ''anomalous particle fragment effect'' exists for all Z values in the range Z = 3--26 included in the chi 2 analyses. These chi 2 analyses also indicate that #betta#>0, so that the anomalous particle fragment lambda's are Z dependent, but the data are not sufficient to pin down a definite value of #betta#. In order to assess the physical content of these results, we define a domain within which nuclear mean free paths can be accounted for by conventional nuclear forces (but not necessarily by conventional nuclear structure). The Z-dependent anomalous particle fragment mean free paths lie approximately on the boundary of this domain

  16. Fully interferometric controllable anomalous refraction efficiency using cross modulation with plasmonic metasurfaces.

    Science.gov (United States)

    Liu, Zhaocheng; Chen, Shuqi; Li, Jianxiong; Cheng, Hua; Li, Zhancheng; Liu, Wenwei; Yu, Ping; Xia, Ji; Tian, Jianguo

    2014-12-01

    We present a method of fully interferometric, controllable anomalous refraction efficiency by introducing cross-modulated incident light based on plasmonic metasurfaces. Theoretical analyses and numerical simulations indicate that the anomalous and ordinary refracted beams generated from two opposite-helicity incident beams and following the generalized Snell's law will have a superposition for certain incident angles, and the anomalous refraction efficiency can be dynamically controlled by changing the relative phase of the incident sources. As the incident wavelength nears the resonant wavelength of the plasmonic metasurfaces, two equal-amplitude incident beams with opposite helicity can be used to control the anomalous refraction efficiency. Otherwise, two unequal-amplitude incident beams with opposite helicity can be used to fully control the anomalous refraction efficiency. This Letter may offer a further step in the development of controllable anomalous refraction.

  17. Four-fermi anomalous dimension with adjoint fermions

    CERN Document Server

    Del Debbio, Luigi; Ruano, Carlos Pena

    2014-01-01

    The four-fermi interaction can play an important role in models of strong dynamical EW sym- metry breaking if the anomalous dimensions of the four-fermi operators become large in the IR. We discuss a number of issues that are relevant for the nonperturbative computation of the four- fermi anomalous dimensions for the SU(2) gauge theory with two flavors of Dirac fermions in the adjoint representation, using a Schrödinger functional formalism.

  18. Partial anomalous pulmonary venous return in patients with pulmonary hypertension

    International Nuclear Information System (INIS)

    Sung, Won-kyung; Au, Virginia; Rose, Anand

    2012-01-01

    Anomalous pulmonary venous return is an uncommon congenital malformation, and may be partial or total. Partial anomalous pulmonary venous return (PAPVR) is more common than total anomalous pulmonary venous return, and is often associated with other congenital cardiac anomalies. Whilst many patients with PAPVR remain asymptomatic, some may present in later age with symptoms related to left-to-right shunt, right heart failure and pulmonary hypertension. We report two cases of PAPVR detected on Computed Tomography Pulmonary Angiogram (CTPA) for the work up of pulmonary hypertension. The cases demonstrate that, although uncommon, partial anomalous pulmonary venous return can be a contributing factor to pulmonary hypertension and pulmonary veins should be carefully examined when reading a CTPA study.

  19. Unparticles and anomalous dimensions in the cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Karch, Andreas [Department of Physics, University of Washington,3910 15th Ave. NE, Seattle, WA 98195-1560 (United States); Limtragool, Kridsanaphong; Phillips, Philip W. [Department of Physics and Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States)

    2016-03-25

    Motivated by the overwhelming evidence some type of quantum criticality underlies the power-law for the optical conductivity and T−linear resistivity in the cuprates, we demonstrate here how a scale-invariant or unparticle sector can lead to a unifying description of the observed scaling forms. We adopt the continuous mass formalism or multi band (flavor) formalism of the unparticle sector by letting various microscopic parameters be mass-dependent. In particular, we show that an effective mass that varies with the flavor index as well as a running band edge and lifetime capture the AC and DC transport phenomenology of the cuprates. A key consequence of the running mass is that the effective dynamical exponent can differ from the underlying bare critical exponent, thereby providing a mechanism for realizing the fractional values of the dynamical exponent required in a previous analysis http://dx.doi.org/10.1103/PhysRevB.91.155126. We also predict that regardless of the bare dynamical exponent, z, a non-zero anomalous dimension for the current is required. Physically, the anomalous dimension arises because the charge depends on the flavor, mass or energy. The equivalent phenomenon in a d+1 gravitational construction is the running of the charge along the radial direction. The nature of the superconducting instability in the presence of scale invariant stuff shows that the transition temperature is not necessarily a monotonic function of the pairing interaction.

  20. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.

  1. Numerical calculation of the conductivity of percolation clusters and the use of special purpose computers

    International Nuclear Information System (INIS)

    Herrmann, H.J.

    1989-01-01

    Electrical conductivity diffusion or phonons, have an anomalous behaviour on percolation clusters at the percolation threshold due to the fractality of these clusters. The results that have been found numerically for this anomalous behaviour are reviewed. A special purpose computer built for this purpose is described and the evaluation of the data from this machine is discussed

  2. Rationality of the anomalous dimensions in N=4 SYM theory

    International Nuclear Information System (INIS)

    Genovese, Luigi; Stanev, Yassen S.

    2005-01-01

    We reconsider the general constraints on the perturbative anomalous dimensions in conformal invariant QFT and in particular in N=4 SYM with gauge group SU(N). We show that all the perturbative corrections to the anomalous dimension of a renormalized gauge invariant local operator can be written as polynomials in its one loop anomalous dimension. In the N=4 SYM theory the coefficients of these polynomials are rational functions of the number of colours N

  3. Orbital Dynamics of an Oscillating Sail in the Earth-Moon System

    NARCIS (Netherlands)

    Heiligers, M.J.; Ceriotti, M.

    2017-01-01

    The oscillating sail is a novel solar sail configuration where a triangular sail is released at a deflected angle with respect to the Sun-direction. As a result, the sail will conduct an undamped oscillating motion around the Sun-line due to the offset between the centre-of-pressure and

  4. The vector meson with anomalous magnetic moment

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1976-01-01

    The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies

  5. Ion anomalous transport and feedback control. Final technical report, September 1, 1987 - August 31, 1997

    International Nuclear Information System (INIS)

    Sen, A.K.

    1998-01-01

    This final report is comprised of the following six progress reports: Ion Temperature Gradient Instability and Anomalous Transport, July 1989; Ion Temperature Gradient Instability and Anomalous Transport, August 1991; Ion Temperature Gradient Instability and Anomalous Transport, July 1993; Ion Anomalous Transport and Feedback Control, May 1994; Ion Anomalous Transport and Feedback Control, April 1995; and Ion Anomalous Transport and Feedback Control, December 1997

  6. Anomalous spreading behaviour of polyethyleneglycoldistearate ...

    Indian Academy of Sciences (India)

    Unknown

    Anomalous behaviour; polythyleneglycoldistearate; air/water interface; ... distinguished these monolayer states in terms of molecular ordering, including the .... It has been found that the compressibilities of the materials in the condensed phase.

  7. An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling

    Directory of Open Access Journals (Sweden)

    A. Iqbal

    2014-12-01

    Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.

  8. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  9. Neoclassical and anomalous transport in toroidal plasmas with drift-ordered turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1996-01-01

    Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal plasmas with weak electromagnetic drift wave fluctuations. The neoclassical and anomalous fluxes are defined based on the ensemble-averaged kinetic equation with the statistically averaged nonlinear wave-particle interactions. The anomalous forces derived from that quasilinear term induce the anomalous particle and heat fluxes. For the microscale fluctuations k perpendicular ρ i ∼ 1 the parallel neoclassical fluxes remain invariant. For mesoscale fluctuations the mixing length fluctuation level with broken symmetry from (weak) shear flows the neoclassical banana-plateau fluxes are affected by the fluctuations through the parallel anomalous forces and the modified parallel viscosities. The entropy production rate due to the anomalous transport processes is formulated and used to identify conjugate pairs of the anomalous fluxes and forces, which are connected by the matrix with the Onsager symmetry. The proof of the Onsager symmetry is carried out by splitting the response function up into the even and odd parts under the (t, B) → (-t,-B) transformation and using the self-adjointness of the linearized Landau collision operator and the quasilinear formalism. An explicit calculation of the symmetric transport coefficients is possible when the Krook collision model replaces the Landau collision operator. The importance of low aspect ratio tokamaks and helical systems for experimental investigations of the Onsager symmetries is emphasized

  10. Anomalous transport in tokamaks

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1989-01-01

    A review is presented of what is known about anomalous transport in tokamaks. It is generally thought that this anomalous transport is the result of fluctuations in various plasma parameters. In the plasma edge detailed measurements of the quantities required to directly determine the fluctuation driven fluxes are available. The total flux of particles is well explained by the measured electrostatic fluctuation driven flux. However, a satisfactory model to explain the origin of the fluctuations has not been identified. The processes responsible for determining the edge energy flux are less clear, but electrostatic convection plays an important part. In the confinement region experimental observations are presently restricted to measurements of density and potential fluctuations and their correlations. The characteristics of the measured fluctuations are discussed and compared with the predictions of various models. Comparisons between measured particle, electron heat and ion heat fluxes, and those fluxes predicted to result from the measured fluctuations, are made. Magnetic fluctuations is discussed

  11. Temperature oscillation suppression of GM cryocooler

    Science.gov (United States)

    Okidono, K.; Oota, T.; Kurihara, H.; Sumida, T.; Nishioka, T.; Kato, H.; Matsumura, M.; Sasaki, O.

    2012-12-01

    GM cryocooler is a convenient refrigerator to achieve low temperatures about 4 K, while it is not suitable for precise measurements because of the large temperature oscillation of typically about 0.3 K. To resolve this problem, we have developed an adapter (He-pot) with a simple structure as possible. From the thermodynamic consideration, both heat capacity and thermal conductance should be large in order to reduce the temperature oscillation without compromising cooling power. Optimal structure of the He-pot is a copper cylinder filled with high pressure He-gas at room temperature. This can reduce the temperature oscillation to less than 10 mK below a certain temperature TH without compromising cooling power. TH are 3.8 and 4.5 for filled He-gas pressures of 90 and 60 atm, respectively. By using this He-pot, GM cryocooler can be applied to such as precise physical property measurements and THz detection.

  12. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  13. Anomalous Magnetic and Electric Dipole Moments of the $\\tau$

    CERN Document Server

    Taylor, L

    1998-01-01

    This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the e/sup +/e/sup -/ to tau /sup +/ tau /sup -/ gamma process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: a/sub tau /=0.004+or-0.027+or-0.023 and d /sub tau /=(0.0+or-1.5+or-1.3)*10/sup -16/ e.cm. (22 refs). This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 10^{-16}{e{\\cdot}\\mathrm{cm}}$.

  14. Suppressing nonlinear resonances in an impact oscillator using SMAs

    International Nuclear Information System (INIS)

    Sitnikova, Elena; Pavlovskaia, Ekaterina; Ing, James; Wiercigroch, Marian

    2012-01-01

    In this paper, we study the resonant responses of an impact oscillator with a one sided SMA motion constraint operating in the pseudoelastic regime. The effectiveness of the SMA restraint in suppressing nonlinear resonances of the impact oscillator is assessed by comparing the dynamic responses of the impact oscillator with SMA and elastic restraints. It is shown that the hysteretic behaviour of the SMA restraint provides an overall vibration reduction in the resonant frequency ranges. Due to the softening behaviour of the SMA element, the resonant frequencies for the SMA oscillator were found to be lower than for the oscillator with an elastic restraint. At each resonance, a single periodic response for the oscillator with the elastic restraint corresponds to two co-existing periodic responses of the SMA oscillator. While at the first resonance peak the emergence of one of the co-existing responses is associated with the hardening effect of the SMA restraint when the pseudoelastic force varies over a complete transformation cycle, at higher frequency resonances incomplete phase transformations in the SMA were detected for both responses. The experimental study undertaken verified the response-modification effects predicted by the numerical analysis conducted under the isothermal approximation. The experimental results showed a good quantitative correspondence with the mathematical modelling. (paper)

  15. No need to replace an "anomalous" primate (Primates) with an "anomalous" bear (Carnivora, Ursidae).

    Science.gov (United States)

    Gutiérrez, Eliécer E; Pine, Ronald H

    2015-01-01

    By means of mitochondrial 12S rRNA sequencing of putative "yeti", "bigfoot", and other "anomalous primate" hair samples, a recent study concluded that two samples, presented as from the Himalayas, do not belong to an "anomalous primate", but to an unknown, anomalous type of ursid. That is, that they match 12S rRNA sequences of a fossil Polar Bear (Ursusmaritimus), but neither of modern Polar Bears, nor of Brown Bears (Ursusarctos), the closest relative of Polar Bears, and one that occurs today in the Himalayas. We have undertaken direct comparison of sequences; replication of the original comparative study; inference of phylogenetic relationships of the two samples with respect to those from all extant species of Ursidae (except for the Giant Panda, Ailuropodamelanoleuca) and two extinct Pleistocene species; and application of a non-tree-based population aggregation approach for species diagnosis and identification. Our results demonstrate that the very short fragment of the 12S rRNA gene sequenced by Sykes et al. is not sufficiently informative to support the hypotheses provided by these authors with respect to the taxonomic identity of the individuals from which these sequences were obtained. We have concluded that there is no reason to believe that the two samples came from anything other than Brown Bears. These analyses afforded an opportunity to test the monophyly of morphologically defined species and to comment on both their phylogenetic relationships and future efforts necessary to advance our understanding of ursid systematics.

  16. Navigation by anomalous random walks on complex networks.

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-23

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  17. Navigation by anomalous random walks on complex networks

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  18. Partial anomalous pulmonary venous return in Turner syndrome.

    Science.gov (United States)

    van den Hoven, Allard T; Chelu, Raluca G; Duijnhouwer, Anthonie L; Demulier, Laurent; Devos, Daniel; Nieman, Koen; Witsenburg, Maarten; van den Bosch, Annemien E; Loeys, Bart L; van Hagen, Iris M; Roos-Hesselink, Jolien W

    2017-10-01

    The aim of this study is to describe the prevalence, anatomy, associations and clinical impact of partial anomalous pulmonary venous return in patients with Turner syndrome. All Turner patients who presented at our Turner clinic, between January 2007 and October 2015 were included in this study and underwent ECG, echocardiography and advanced imaging such as cardiac magnetic resonance or computed tomography as part of their regular clinical workup. All imaging was re-evaluated and detailed anatomy was described. Partial anomalous pulmonary venous return was diagnosed in 24 (25%) out of 96 Turner patients included and 14 (58%) of these 24 partial anomalous pulmonary venous return had not been reported previously. Right atrial or ventricular dilatation was present in 11 (46%) of 24 partial anomalous pulmonary venous return patients. When studied with advanced imaging modalities and looked for with specific attention, PAPVR is found in 1 out of 4 Turner patients. Half of these patients had right atrial and/or ventricular dilatation. Evaluation of pulmonary venous return should be included in the standard protocol in all Turner patients. Copyright © 2017. Published by Elsevier B.V.

  19. Anomalous Hall effect in Zn{sub x}Fe{sub 3-x}O{sub 4}: Universal scaling law and electron localization below the Verwey transition

    Energy Technology Data Exchange (ETDEWEB)

    Jedrecy, N., E-mail: jedrecy@insp.jussieu.fr; Hamieh, M.; Hebert, C.; Escudier, M.; Becerra, L.; Perriere, J. [Institut des Nano Sciences de Paris, UPMC-Sorbonne Universités, CNRS-UMR7588, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2016-08-15

    We show that the well-established universal scaling σ{sub xy}{sup AHE} ∼ σ{sub xx}{sup 1.6} between anomalous Hall and longitudinal conductivities in the low conductivity regime (σ{sub xx} < 10{sup 4} Ω{sup −1} cm{sup −1}) transforms into the scaling σ{sub xy}{sup AHE} ∼ σ{sub xx}{sup 2} at the onset of strong electron localization. The crossover between the two relations is observed in magnetite-derived Zn{sub x}Fe{sub 3-x}O{sub 4} thin films where an insulating/hopping regime follows a bad metal/hopping regime below the Verwey transition temperature T{sub v}. Our results demonstrate that electron localization effects come into play in the anomalous Hall effect (AHE) modifying significantly the scaling exponent. In addition, the thermal evolution of the anomalous Hall resistivity suggests the existence of spin polarons whose size would decrease below T{sub v}.

  20. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  1. Temperature dependent anomalous statistics

    International Nuclear Information System (INIS)

    Das, A.; Panda, S.

    1991-07-01

    We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs

  2. The anomalous magnetic moment of the muon

    CERN Document Server

    Jegerlehner, Friedrich

    2017-01-01

    This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...

  3. The Anomalous Magnetic Moment of the Muon

    CERN Document Server

    Jegerlehner, Friedrich

    2008-01-01

    This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...

  4. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating

  5. Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co{sub 2}MnAl film

    Energy Technology Data Exchange (ETDEWEB)

    Meng, K.K., E-mail: kkmeng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, J.; Xu, X.G. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, J.H. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Jiang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-04-04

    We have investigated the thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect (AHE) in single-crystalline full-Heusler alloy Co{sub 2}MnAl (CMA) grown by molecular-beam epitaxy on GaAs(001). The magnetic anisotropy is the interplay of uniaxial and the fourfold anisotropy, and the corresponding anisotropy constants have been deduced. Considering the thickness of CMA is small, we ascribe it to the influence from interface stress. The AHE in CMA is found to be well described by a proper scaling. The intrinsic anomalous conductivity is found to be smaller than the calculated one and is thickness dependent, which is ascribed to the influence of chemical ordering by affecting the band structure and Fermi surface. - Highlights: • Single-crystalline full-Heusler alloy Co{sub 2}MnAl grown by molecular-beam epitaxy. • Uniaxial and the fourfold magnetic anisotropies in Heusler alloys. • Anomalous Hall effect in Heusler alloys. • The intrinsic contributions modified by chemical ordering.

  6. All-loop anomalous dimensions in integrable λ-deformed σ-models

    Directory of Open Access Journals (Sweden)

    George Georgiou

    2015-12-01

    Full Text Available We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G. Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2 and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.

  7. Statistical analysis of anomalous transport in resistive interchange turbulence

    International Nuclear Information System (INIS)

    Sugama, Hideo; Wakatani, Masahiro.

    1992-01-01

    A new anomalous transport model for resistive interchange turbulence is derived from statistical analysis applying two-scale direct-interaction approximation to resistive magnetohydrodynamic equations with a gravity term. Our model is similar to the K-ε model for eddy viscosity of turbulent shear flows in that anomalous transport coefficients are expressed in terms of by the turbulent kinetic energy K and its dissipation rate ε while K and ε are determined by transport equations. This anomalous transport model can describe some nonlocal effects such as those from boundary conditions which cannot be treated by conventional models based on the transport coefficients represented by locally determined plasma parameters. (author)

  8. Anomalous behaviour of the in-plane electrical conductivity of the layered superconductor kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2

    CERN Document Server

    Singleton, J; Hayes, W; Schlüter, J A

    2003-01-01

    The apparent quasiparticle scattering rates in high-quality crystals of the quasi-two-dimensional superconductor kappa-(BEDT-TTF) sub 2 Cu(NCS) sub 2 are studied using the Shubnikov-de Haas effect and megahertz penetration-depth experiments. The width of the superconducting transition observed in the megahertz experiments, taken in conjunction with the field dependence of the Shubnikov-de Haas oscillations, gives evidence that the broadening of the Landau levels is primarily caused by spatial inhomogeneities. This indicates a quasiparticle lifetime for the Landau states >> 3 ps. The megahertz data can also be used to derive an apparent scattering time (0.14- 0.56 ps) from the skin depth. This is much shorter than the Landau-state lifetime, in strong contrast to the expectations of Landau Fermi-liquid theory. The simplest explanation for the data is that only a fraction of the crystal contributes to the metallic conductivity, an observation which may be related to the recently observed 'glassy' transition in k...

  9. Development of anomalous detection using movie prediction

    International Nuclear Information System (INIS)

    Sakakibara, Yoji; Demachi, Kazuyuki; Kawai, Masaki; Chhatluli, Ritu; Kamiaka, Kazuma

    2012-01-01

    In this research, the new method to predict the near-future of the movie images captured by video camera based on the combination of the Principle Component Analysis (PCA) and the Singular Spectral Analysis (SSA). In the normal condition of machines, the real-time captured movie is supposed to correspond to the predicted one. If the error between the both becomes significantly large, it may suggest some anomalous motion of the machines. So the movie prediction method has a possibility of the sensitive anomalous detection system. (author)

  10. Scattering of surface plasmons on graphene by a discontinuity in surface conductivity

    International Nuclear Information System (INIS)

    Rejaei, Behzad; Khavasi, Amin

    2015-01-01

    The scattering of graphene surface plasmons from an arbitrary, one-dimensional discontinuity in graphene surface conductivity is treated analytically by an exact solution of the quasi-static integral equation for surface current density in the spectral domain. It is found that the reflection and transmission coefficients are not governed by the Fresnel formulas obtained by means of the effective medium approach. Furthermore, the reflection coefficient generally exhibits an anomalous reflection phase, which has so far only been reported for the particular case of reflection from abrupt edges. This anomalous phase becomes frequency-independent in the regime where the effect of inter-band transitions on graphene conductivity is negligible. The results are in excellent agreement with full-wave electromagnetic simulations, and can serve as a basis for the analysis of inhomogeneous graphene layers with a piecewise-constant conductivity profile. (paper)

  11. Anomalous Nernst Effects of [CoSiB/Pt] Multilayer Films

    OpenAIRE

    Kelekci, O.; Lee, H. N.; Kim, T. W.; Noh, H.

    2013-01-01

    We report a measurement for the anomalous Nernst effects induced by a temperature gradient in [CoSiB/Pt] multilayer films with perpendicular magnetic anisotropy. The Nernst voltage shows a characteristic hysteresis which reflects the magnetization of the film as in the case of the anomalous Hall effects. With a local heating geometry, we also measure the dependence of the anomalous Nernst voltage on the distance d from the heating element. It is roughly proportional to 1/d^1.3, which can be c...

  12. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  13. Radiation-induced conductivity of polynaphthoyl benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Tiutnev, A P; Berlin, A M; Saenko, V S; Rusanov, A L; Korshak, V V

    1985-01-01

    The nonstationary radiation-induced conductivity of polynaphthoyl benzimidazole, synthesized by single-stage high-temperature catalytic polycondensation, is investigated experimentally. It is shown that the radiation-induced conductivity of this material is characterized by an anomalous (non-Gaussian) transfer of excess charge carriers. The activation energy of the delayed component (0.1 ms after pulse termination) is determined to be 0.12 eV; the volt-ampere characteristic of this component is nonlinear, with the coefficient of nonlinearity increasing with the intensity of the external electric field. Experimental results are interpreted on the basis of the phenomenological theory of jump conductivity proposed by Zviagin. 15 references.

  14. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  15. Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.

  16. Modification of anomalous deposition of Zn-Ni alloy by using tin additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zeyang; O`Keefe, T.J. [Missouri Univ., Rolla, MO (United States). Dept. of Metallurgical Engineering

    1997-11-25

    One of the common examples of anomalous deposition in electrolytic processing is the Zn-Ni alloy coating system. These alloys, in the range 10-15% Ni, are also of commercial interest in electrogalvanizing for protecting steel from corrosion while retaining good formability, weldability and paintability. The primary objective of this research was to obtain a better fundamental understanding of anomalous deposition and to identify ways to modify its influence. Specifically, the effects of tin additions on the composition, structure and surface morphology of Zn-Ni alloy deposits from electrolyte containing 80 g l{sup -1} Zn and 10 g l{sup -1} Ni were studied. Previous work had shown that low concentrations (parts per million) of cations such as antimony and arsenic were very effective in countering the anomalous deposition and increasing the relative nickel content of the deposits. Unfortunately, the morphology and current efficiency were adversely affected by use of these additives. It was found that the addition of tin also appreciably increased the nickel content of the alloy deposit, as well as giving smooth, dense deposits with a current efficiency of about 90%. The surface morphology of the deposits was correlated with the amount of tin added. The limited electrochemical impedance spectroscopy tests conducted showed that the low concentrations of tin did lower the charge transfer resistance of the reaction. Overall, the results were promising but considerably more research is needed to elucidate the basic factors that influence zinc alloy electrocrystallization mechanisms. (orig.) 27 refs.

  17. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    Science.gov (United States)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture

  18. Excitation of high numbers harmonics by flows of oscillators in a periodic potential

    International Nuclear Information System (INIS)

    Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.

    2005-01-01

    It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL

  19. AC conductivity for a holographic Weyl semimetal

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, Gianluca; Marini, Andrea; Peña-Benitez, Francisco; Speziali, Stefano [Dipartimento di Fisica e Geologia, Università di Perugia,I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy)

    2017-03-23

    We study the AC electrical conductivity at zero temperature in a holographic model for a Weyl semimetal. At small frequencies we observe a linear dependence in the frequency. The model shows a quantum phase transition between a topological semimetal (Weyl semimetal phase) with a non vanishing anomalous Hall conductivity and a trivial semimetal. The AC conductivity has an intermediate scaling due to the presence of a quantum critical region in the phase diagram of the system. The phase diagram is reconstructed using the scaling properties of the conductivity. We compare with the experimental data of https://www.doi.org/10.1103/PhysRevB.93.121110 obtaining qualitative agreement.

  20. Anomalous magnon Nernst effect of topological magnonic materials

    OpenAIRE

    Wang, X. S.; Wang, X. R.

    2017-01-01

    The magnon transport driven by thermal gradient in a perpendicularly magnetized honeycomb lattice is studied. The system with the nearest-neighbor pseudodipolar interaction and the next-nearest-neighbor Dzyaloshinskii-Moriya interaction (DMI) has various topologically nontrivial phases. When an in-plane thermal gradient is applied, a transverse in-plane magnon current is generated. This phenomenon is termed as the anomalous magnon Nernst effect that closely resembles the anomalous Nernst effe...

  1. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  2. Anomalous magnetic torque in the heavy-fermion superconductor UBe13

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Fisk, Z.; Smith, J.L.

    1994-01-01

    Measurements of the magnetic torque acting upon a single crystal of the heavy-fermion superconductor UBe 13 have been made at temperatures from 0.5 K to 30.0 K and in magnetic fields to 23 T using a capacitive magnetometer. We find that a large, anomalous contribution to the magnetic torque appears in at low temperatures and in high fields. The anomalous torque coexists with the superconducting state at low temperature. We propose that the anomalous torque reflects the existence of a field-induced magnetic phase transition. (orig.)

  3. Search for Anomalous Couplings in the Higgs Sector at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV ffbar, H -> gamma gamma, H -> Z\\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates.

  4. A neutral network based technique for short-term forecasting of anomalous load periods

    Energy Technology Data Exchange (ETDEWEB)

    Sforna, M [ENEL, s.p.a, Italian Power Company (Italy); Lamedica, R; Prudenzi, A [Rome Univ. ` La Sapienza` , Rome (Italy); Caciotta, M; Orsolini Cencelli, V [Rome Univ. III, Rome (Italy)

    1995-01-01

    The paper illustrates a part of the research activity conducted by authors in the field of electric Short Term Load Forecasting (STLF) based on Artificial Neural Network (ANN) architectures. Previous experiences with basic ANN architectures have shown that, even though these architecture provide results comparable with those obtained by human operators for most normal days, they evidence some accuracy deficiencies when applied to `anomalous` load conditions occurring during holidays and long weekends. For these periods a specific procedure based upon a combined (unsupervised/supervised) approach has been proposed. The unsupervised stage provides a preventive classification of the historical load data by means of a Kohonen`s Self Organizing Map (SOM). The supervised stage, performing the proper forecasting activity, is obtained by using a multi-layer percept ron with a back propagation learning algorithm similar to the ones above mentioned. The unconventional use of information deriving from the classification stage permits the proposed procedure to obtain a relevant enhancement of the forecast accuracy for anomalous load situations.

  5. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  6. Faraday anomalous dispersion optical tuners

    Science.gov (United States)

    Wanninger, P.; Valdez, E. C.; Shay, T. M.

    1992-01-01

    Common methods for frequency stabilizing diode lasers systems employ gratings, etalons, optical electric double feedback, atomic resonance, and a Faraday cell with low magnetic field. Our method, the Faraday Anomalous Dispersion Optical Transmitter (FADOT) laser locking, is much simpler than other schemes. The FADOT uses commercial laser diodes with no antireflection coatings, an atomic Faraday cell with a single polarizer, and an output coupler to form a compound cavity. This method is vibration insensitive, thermal expansion effects are minimal, and the system has a frequency pull in range of 443.2 GHz (9A). Our technique is based on the Faraday anomalous dispersion optical filter. This method has potential applications in optical communication, remote sensing, and pumping laser excited optical filters. We present the first theoretical model for the FADOT and compare the calculations to our experimental results.

  7. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Science.gov (United States)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed.

  8. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  9. Fractional charge and anomalous commutators

    International Nuclear Information System (INIS)

    Frishman, Y.; Gepner, D.

    1983-06-01

    Non-integer charges on topological objects in the presence of fermions are further investigated. The connection with anomalous commutators is discussed. The reason for the identical results in two-dimensional solutions and four-dimensional monopoles is pointed out. (author)

  10. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  11. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Pasanai, K., E-mail: krisakronmsu@gmail.com

    2017-01-15

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  12. Conductance spectra of asymmetric ferromagnet/ferromagnet/ferromagnet junctions

    International Nuclear Information System (INIS)

    Pasanai, K.

    2017-01-01

    A theory of tunneling spectroscopy of ferromagnet/ferromagnet/ferromagnet junctions was studied. We applied a delta-functional approximation for the interface scattering properties under a one-dimensional system of a free electron approach. The reflection and transmission probabilities were calculated in the ballistic regime, and the conductance spectra were then calculated using the Landauer formulation. The magnetization directions were set to be either parallel (P) or anti-parallel (AP) alignments, for comparison. We found that the conductance spectra was suppressed when increasing the interfacial scattering at the interfaces. Moreover, the electron could exhibit direct transmission when the thickness was rather thin. Thus, there was no oscillation in this case. However, in the case of a thick layer the conductance spectra oscillated, and this oscillation was most prominent when the middle layer thickness increased. In the case of direct transmission, the conductance spectra of P and AP systems were definitely suppressed with increased exchange energy of the middle ferromagnet. This also refers to an increase in the magnetoresistance of the junction. In the case of oscillatory behavior, the positions of the resonance peaks were changed as the exchange energy was changed. - Highlights: • The conductance spectra of a FM/FM/FM junction were calculated. • The conductance spectra were suppressed by the exchange energy. • The exchange energy and the potential strength play similar roles in the junctions.

  13. Anomalous photoconductivity of ferrocene

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, A K [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Spectroscopy; Mallik, B [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Spectroscopy

    1995-08-15

    Photoconductivity behaviour of ferrocene, a very useful metallo-organic sandwich compound, has been investigated at different constant temperatures using powdery material in a sandwich type of cell configuration and with the exposure of a polychromatic light source (mercury lamp of 125 W). Measurements with a constant d.c. bias voltage (27 V) across the sample cell and a fixed intensity of the exciting light source have shown a drastic change in the photocurrent versus time profile with the increase in temperature. Anomalous changes have been observed in the plot of the photocurrent versus reciprocal of temperature. Such changes are completely absent in the corresponding dark current behaviour. The photoinduced changes have been observed to be almost reversible in the entire temperature range. In a particular temperature range the reversibility of photocurrent is accompanied by fluctuations in equilibrium current obtained after switching off the light source. The observed anomalous changes in photocurrent have been explained by photoinduced phase transition in ferrocene. The possible origin and implications of this photoinduced phase transition are discussed. (orig.)

  14. Four-atom period in the conductance of monatomic al wires

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2003-01-01

    We present first-principles calculations based on density functional theory for the conductance of monatomic Al wires between Al(111) electrodes. In contrast to the even-odd oscillations observed in other metallic wires, the conductance of the Al wires is found to oscillate with a period of four ...... atoms as the length of the wire is varied. Although local charge neutrality can account for the observed period, it leads to an incorrect phase. We explain the conductance behavior using a resonant transport model based on the electronic structure of the infinite wire....

  15. Rare associations of tetralogy of Fallot with anomalous left coronary artery from pulmonary artery and totally anomalous pulmonary venous connection.

    Science.gov (United States)

    Sen, Supratim; Rao, Suresh G; Kulkarni, Snehal

    2016-06-01

    We describe the cases of two patients with tetralogy of Fallot, aged 4 years and 8 months, who were incidentally detected to have concomitant anomalous left coronary artery from pulmonary artery and total anomalous pulmonary venous connection, respectively, on preoperative imaging. They underwent surgical correction with good mid-term outcomes. In this study, we discuss the embryological basis, physiological effects, and review the literature of these two unusual associations. Awareness of these rare associations will avoid missed diagnoses and consequent surgical surprises.

  16. Examination of anomalous self-experience

    DEFF Research Database (Denmark)

    Raballo, Andrea; Parnas, Josef

    2012-01-01

    . Here, we present the initial normative data and psychometric properties of a newly developed instrument (Examination of Anomalous Self-experience [EASE]), specifically designed to support the psychopathological exploration of SDs in both research and "real world" clinical settings. Our results support...

  17. Degree-strength correlation reveals anomalous trading behavior.

    Science.gov (United States)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang

    2012-01-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.

  18. Degree-strength correlation reveals anomalous trading behavior.

    Directory of Open Access Journals (Sweden)

    Xiao-Qian Sun

    Full Text Available Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.

  19. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  20. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    Science.gov (United States)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  1. Anomalous transport from holography. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269-3046 (United States); Sharon, Amir [Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva 84105 (Israel)

    2016-11-17

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1){sub V}×U(1){sub A} Maxwell theory in Schwarzschild-AdS{sub 5}. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  2. Anomalous transport from holography. Part I

    International Nuclear Information System (INIS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2016-01-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1)_V×U(1)_A Maxwell theory in Schwarzschild-AdS_5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport coefficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  3. Microinstability-based model for anomalous thermal confinement in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.

    1986-03-01

    This paper deals with the formulation of microinstability-based thermal transport coefficients (chi/sub j/) for the purpose of modelling anomalous energy confinement properties in tokamak plasmas. Attention is primarily focused on ohmically heated discharges and the associated anomalous electron thermal transport. An appropriate expression for chi/sub e/ is developed which is consistent with reasonable global constraints on the current and electron temperature profiles as well as with the key properties of the kinetic instabilities most likely to be present. Comparisons of confinement scaling trends predicted by this model with the empirical ohmic data base indicate quite favorable agreement. The subject of anomalous ion thermal transport and its implications for high density ohmic discharges and for auxiliary-heated plasmas is also addressed

  4. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    Science.gov (United States)

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  5. Spacetime dependence of the anomalous exponent of electric transport in the disorder model

    International Nuclear Information System (INIS)

    Egami, Takeshi; Suzuki, Koshiro; Watanabe, Katsuhiro

    2012-01-01

    Spacetime dependence of the anomalous exponent of electric transport in the disorder model is investigated. We show that the anomalous exponent evolves with time, according to the time evolution of the number of the effective neighbouring sites. Transition from subdiffusive to normal transport is recovered at macroscopic timescales. Plateaus appear in the history of the anomalous exponent due to the discreteness of the hopping sites, which is compatible with the conventional treatment to regard the anomalous exponent as a constant. We also show that, among various microscopic spatial structures, the number of the effective neighbouring sites is the only element which determines the anomalous exponent. This is compatible with the mesoscopic model of Scher–Montroll. These findings are verified by means of Monte Carlo simulation. The well-known expression of the anomalous exponent in the conventional multiple trapping model is derived by deducing it as a special case of the disorder model. (paper)

  6. Evaluation of right coronary anomalous origin with mulpi-slice spiral CT

    International Nuclear Information System (INIS)

    Shi Heshui; Han Ping; Kong Xiangquan; Feng Hansheng; Brambs, H.-J.; Hoffmann, M.H.K.

    2006-01-01

    Objective: To evaluate the role of 16-slice spiral computed tomography angiography (MSCTA) to identify the anomalous origin and anatomic course of the right coronary artery (RCA) with conventional X-ray coronary angiography (CAG) serving as standard of reference. Methods: MSCTA data in 8 patients with anomalous RCA were retrospectively analyzed for the study, 7 of them had also undergone CAG examinations. MSCTA and CAG images were analyzed in blinded fashion for accuracy of anomalous artery origin and path detection. Results were compared in a secondary consensus evaluation. Virtual endoscopy (VE) was used to evaluate the orifice of the anomalous arteries and its relationship with the adjacent ostia of normal arteries. Multi-planar reconstruction (MPR), curved MPR, thin-slab maximum intensity projection (MIP), volume rendering (VR) or slab VR (cut-plane VR) were used to assess the aberrant path of the RCA and its relationship with the adjacent large vessels. At least two views of the RCA were analyzed on CAG. Results: The anomalous RCA for all 8 patients were correctly displayed on MSCTA. RCA originated from the left sinus of Valsalva in 6 patients, one RCA from the end of left main coronary artery, another RCA arose from the posterior sinus of Valsalva. The anomalous ostia showed no stenosis. All of them passed between the aortic root and the pulmonary artery. For 7 patients with CAG alone correct identification of the abnormality was achieved in only 71%. Conclusion: MSCTA was superior to show the anomalous orifice and path of the RCA, it should be considered as a prime non-invasive imaging tool for suspected coronary anomalies. (authors)

  7. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  8. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  9. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    International Nuclear Information System (INIS)

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-01-01

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed (ℎ/2π)ω/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  10. New operational modes for the Ta2O5-based electrolyte conductance cell

    NARCIS (Netherlands)

    Olthuis, Wouter; Smith, A.; van der Zalm, R.A.J.; Bergveld, Piet

    1994-01-01

    Based on the recently presented conductance cell, two specific operational modes are proposed. In the oscillator mode, the conductivity of the electrolyte determines the frequency of an oscillator, experimentally obtaining a shift from 10 to 27 kHz for a KCl concentration range from 0.5 to 100 mM.

  11. Electrical conductivity in tokamaks and extended neoclassical theory

    International Nuclear Information System (INIS)

    Segre, S.E.; Zanza, V.

    1992-01-01

    The electrical conductivity measurements reported from various tokamaks (D-III, PLT, TEXT, ASDEX, JT-60, TEXTOR, JET, TFTR) and compared with the usual neoclassical theory are here also compared with the extended neoclassical theory where the electron-electron collision rate is anomalous while the electron-ion collision rate remains Coulombian. It is found that, out of the 14 experiments considered, three are consistent with both the neoclassical and the extended neoclassical theories, four are consistent only with the extended neoclassical theory, and four are consistent with the neoclassical theory and also, within the experimental errors, not inconsistent with the extended neoclassical theory; the remaining three experiments appear to be incompatible with both theories. It is concluded that the extended neoclassical theory is in better agreement with conductivity experiments than the conventional neoclassical theory and, indeed, the extended theory is a serious candidate for explaining tokamak behaviour, since it accommodates naturally an anomalous electron thermal transport, which the conventional neoclassical theory is unable to do. (author). 31 refs, 1 fig

  12. Contribution of MRI in supracardiac total anomalous pulmonary venous drainage

    International Nuclear Information System (INIS)

    Kastler, B.; Germain, P.; Gangi, A.; Klinkert, A.; Dietemann, J.L.; Wackenheim, A.; Livolsi, A.; Willard, D.

    1992-01-01

    A case of supracardiac total anomalous pulmonary venous drainage (TAPVD) in an infant aged 2 1/2 months is presented. Diagnosis was established non invasively by magnetic resonance image (MRI). Not only did MRI precisely depict the anomalous venous pathway but it moreover securely excluded pulmonary venous obstruction. (orig.)

  13. Anomalous CO2 Emissions in Different Ecosystems Around the World

    Science.gov (United States)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  14. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  15. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  16. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  17. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  18. Anomalous neutron scattering and feroelectric modes

    International Nuclear Information System (INIS)

    Viswanathan, K.S.

    1977-01-01

    It is suggested that anomalous neutron scattering could prove a powerful experimental tool in studying ferroelectric phase transition, the sublattice displacements of the soft modes as well as their symmetry characteristics. (author)

  19. Observations of Anomalous Refraction with Co-housed Telescopes

    Science.gov (United States)

    Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.

    2013-01-01

    Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.

  20. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  1. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  2. Anomalous momentum transport from drift waves

    International Nuclear Information System (INIS)

    Dominguez, R.R.; Staebler, G.M.

    1993-01-01

    A sheared slab magnetic field model B = B 0 [z + (x/L s )y], with inhomogeneous flows in the y and z directions, is used to perform a fully-kinetic stability analysis of the ion temperature gradient (ITG) and dissipative trapped electron (DTE) modes. The concomitant quasilinear stress components that couple to the local perpendicular (y-component) and parallel (z-component) momentum transport are also calculated and the anomalous perpendicular and parallel viscous stresses obtained. A breakdown of the ITG-induced perpendicular viscous stress is generally observed at moderate values of the sheared perpendicular flow. The ITG-induced parallel viscous stress is generally larger and strongly dependent on the sheared flows. The DTE-induced perpendicular viscous stress may sometimes be negative, tending to cancel the ITG contributions while the DTE-induced parallel viscous stress is generally small. The effect of the perpendicular stress component in the momentum balance equations is generally small while the parallel stress component can dominate the usual neoclassical viscous stress terms. The dominant contribution to parallel viscous stress by the ITG mode suggests that bulk plasma toroidal momentum confinement, like energy confinement, is governed by an anomalous ion loss mechanism. Furthermore, the large anomalous effect suggests that the neoclassical explanation of poloidal flows in tokamaks may be incorrect. The present results are in general agreement with existing experimental observations on momentum transport in tokamaks

  3. Gauge invariance and anomalous theories at finite fermionic density

    International Nuclear Information System (INIS)

    Roberge, A.

    1990-01-01

    We investigate the issue of stability of anomalous matter at finite fermionic density using a two-dimensional toy model. In particular, we pay careful attention to the issue of gauge invariance. We find that, contrary to some recent claims, the effective free energy (obtained by integrating out the fermions) cannot be obtained by the simple inclusion of a Chern-Simons term multiplying the fermionic chemical potential. We obtain some conditions for stability of anomalous charges when some finite density of conserved charge is present as well as for the neutral case. We also show that, under reasonable conditions, no sphaleron-type solution can exist in the toy model unless the anomalous charge density vanishes. We argue that this could be the case for more realistic models as well

  4. Short distance neutrino oscillations with Borexino

    Directory of Open Access Journals (Sweden)

    Caminata A.

    2016-01-01

    Full Text Available The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr and anti-neutrinos (Ce. Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  5. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  6. Magnetic effects in anomalous dispersion

    International Nuclear Information System (INIS)

    Blume, M.

    1992-01-01

    Spectacular enhancements of magnetic x-ray scattering have been predicted and observed experimentally. These effects are the result of resonant phenomena closely related to anomalous dispersion, and they are strongest at near-edge resonances. The theory of these resonances will be developed with particular attention to the symmetry properties of the scatterer. While the phenomena to be discussed concern magnetic properties the transitions are electric dipole or electric quadrupole in character and represent a subset of the usual anomalous dispersion phenomena. The polarization dependence of the scattering is also considered, and the polarization dependence for magnetic effects is related to that for charge scattering and to Templeton type anisotropic polarization phenomena. It has been found that the strongest effects occur in rare-earths and in actinides for M shell edges. In addition to the scattering properties the theory is applicable to ''forward scattering'' properties such as the Faraday effect and circular dichroism

  7. Disorder-induced enhancement of conductance in doped nanowires

    Institute of Scientific and Technical Information of China (English)

    Xu Ning; Wang Bao-Lin; Sun Hou-Qian; Kong Fan-Jie

    2010-01-01

    A new mechanism is proposed to explain the enhancement of conductance in doped nanowires. It is shown that the anomalous enhancement of conductance is due to surface doping. The conductance in doped nanowires increases with dopant concentration, which is qualitatively consistent with the existing experimental results. In addition, the I-V curves are linear and thus suggest that the metal electrodes make ohmic contacts to the shell-doped nanowires.The electric current increases with wire diameter (D) and decreases exponentially with wire length (L). Therefore, the doped nanowires have potential application in nanoscale electronic and optoelectronic devices.

  8. Anomalous diffusion in a dynamical optical lattice

    Science.gov (United States)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  9. Noncausal two-stage image filtration at presence of observations with anomalous errors

    OpenAIRE

    S. V. Vishnevyy; S. Ya. Zhuk; A. N. Pavliuchenkova

    2013-01-01

    Introduction. It is necessary to develop adaptive algorithms, which allow to detect such regions and to apply filter with respective parameters for suppression of anomalous noises for the purposes of image filtration, which consist of regions with anomalous errors. Development of adaptive algorithm for non-causal two-stage images filtration at pres-ence of observations with anomalous errors. The adaptive algorithm for noncausal two-stage filtration is developed. On the first stage the adaptiv...

  10. Resurgence of the Cusp Anomalous Dimension

    International Nuclear Information System (INIS)

    Dorigoni, Daniele; Hatsuda, Yasuyuki

    2015-06-01

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  11. Resurgence of the cusp anomalous dimension

    Energy Technology Data Exchange (ETDEWEB)

    Dorigoni, Daniele; Hatsuda, Yasuyuki [DESY Theory Group, DESY Hamburg,Notkestrasse 85, D-22603 Hamburg (Germany)

    2015-09-21

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  12. Resurgence of the Cusp Anomalous Dimension

    Energy Technology Data Exchange (ETDEWEB)

    Dorigoni, Daniele; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2015-06-15

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  13. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3 -xGeTe2

    Science.gov (United States)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; Petrovic, C.

    2018-04-01

    We report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe3 -xGeTe2 (x ≈0.36 ) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρx y/μ0Heff and longitudinal resistivity ρxx 2M /μ0Heff implies that the AHE in Fe3 -xGeTe2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear-M Hall conductivity σxy A below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.

  14. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  15. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  16. Revisiting the Anomalous rf Field Penetration into a Warm Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2005-01-01

    Radio-frequency [rf] waves do not penetrate into a plasma and are damped within it. The electric field of the wave and plasma current are concentrated near the plasma boundary in a skin layer. Electrons can transport the plasma current away from the skin layer due to their thermal motion. As a result, the width of the skin layer increases when electron temperature effects are taken into account. This phenomenon is called anomalous skin effect. The anomalous penetration of the rf electric field occurs not only for transversely propagating to the plasma boundary wave (inductively coupled plasmas) but also for the wave propagating along the plasma boundary (capacitively coupled plasmas). Such anomalous penetration of the rf field modifies the structure of the capacitive sheath. Recent advances in the nonlinear, non-local theory of the capacitive sheath are reported. It is shown that separating the electric field profile into exponential and non-exponential parts yields an efficient qualitative and quantitative description of the anomalous skin effect in both inductively and capacitively coupled plasma

  17. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    International Nuclear Information System (INIS)

    Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.

    2016-01-01

    Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  18. Absence of U(1) anomalous superamplitudes in N≥5 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Daniel Z. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Kallosh, Renata; Murli, Divyanshu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Proeyen, Antoine Van [KU Leuven, Institute for Theoretical Physics,Celestijnenlaan 200D, B-3001, Leuven (Belgium); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2017-05-12

    We list all potential candidates for U(1) anomalous non-local 1-loop 4-point amplitudes and higher loop UV divergences in N≥5 supergravities. The relevant chiral superinvariants are constructed from linearized chiral superfields and define the corresponding superamplitudes. The anomalous amplitudes, of the kind present in N=4, are shown to be absent in N≥5. In N=6 supergravity the result is deduced from the double-copy (N=4){sub YM}×(N=2){sub YM} model, whereas in N=5,8 the result on absence of anomalous amplitudes is derived in supergravities as well as in the (N=4){sub YM}×(N−4){sub YM} double-copy models.

  19. Theory of terahertz electric oscillations by supercooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mishonov, Todor M; Mishonov, Mihail T [Department of Theoretical Physics, Faculty of Physics, University of Sofia St Kliment Ohridski, 5 J Bourchier Boulevard, 1164 Sofia (Bulgaria); Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D B-3001 Leuven (Belgium)

    2005-11-15

    We predict that below T{sub c} a regime of negative differential conductivity (NDC) can be reached. The superconductor should be supercooled to Tconductivity of the fluctuation Cooper pairs. We propose NDC of supercooled superconductors to be used as an active medium for generation of electric oscillations. Such generators can be used in the superconducting electronics as a new type THz source of radiation. Oscillations can be modulated by the change of the bias voltage, electrostatic doping by a gate electrode when the superconductor is the channel of a field effect transistor, or by light. When small amplitude oscillations are stabilized near the critical temperature T{sub c} the generator can be used as a bolometer. NDC, which is essential for the applications, is predicted on the basis of analysis of known results for fluctuation conductivity, obtained in previous papers by solving the Boltzmann kinetic equation for the Cooper pairs metastable in the normal phase. The Boltzmann equation for fluctuation Cooper pairs is a result of state-of-the-art application of the microscopic theory of superconductivity. Our theoretical conclusions are based on some approximations like time dependent Ginzburg-Landau theory initially derived for gapless superconductors, but nevertheless can reliably predict the appearance of NDC. NDC is the main ingredient of the proposed technical applications. The maximal frequency at which superconductors can operate as generators is determined by the critical temperature {Dirac_h}/2{pi}{omega}{sub max} {approx} k{sub B}T{sub c}. For high-T{sub c} superconductors this maximal frequency falls well inside the terahertz range. Technical conditions to avoid nucleation of the superconducting phase are briefly discussed. We suggest that nanostructured high-T{sub c} superconductors patterned in a single chip can

  20. A micro-convection model for thermal conductivity of nanofluids

    Indian Academy of Sciences (India)

    Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...

  1. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  2. Analysis on anomalous degradation in silicon solar cell designed for space use

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Takeshi; Morita, Yousuke; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawasaki, Osamu; Hisamatsu, Tadashi; Yamamoto, Yasunari; Matsuda, Sumio; Nakao, Tetsuya; Wakow, Yoshihito

    1997-03-01

    Recently, we have found the anomalous degradation of electrical performance in silicon solar cells irradiated with charged particles in a high-fluence region. This anomalous phenomenon has two typical features, which are sudden-drop-down of electrical performances in a high-fluence region and slight recovery of the short circuit current I{sub SC} just before the sudden-drop-down. These features cannot be understood by a conventional model coming from the decrease of minority-carriers life-time. We introduce this anomalous degradation of the electrical performance in Si solar cells irradiated with electrons or protons. We also report the result of simulation for the fluence dependence of the I{sub SC}, and discuss the mechanism of this anomalous phenomenon. (author)

  3. ERATO-code analysis of vacuum magnetic field oscillations in JT-60 divertor configuration

    International Nuclear Information System (INIS)

    Ozeki, Takahisa; Tokuda, Shinji; Tsunematsu, Toshihide; Ishida, Shinichi; Neyatani, Yuzuru; Itami, Kiyoshi; Azumi, Masafumi

    1989-07-01

    Magnetic field oscillations caused by external kink instabilities are numerically studied by using the ideal MHD stability code ERATO-J. Dependence of a spatial distribution of their amplitude and phase on aspect-ratio, beta-poloidal, shaping of conducting shell and divertor/limiter configurations is examined in detail. In the low aspect ratio plasma, the amplitude of magnetic oscillations in the inner side of the torus is larger than that in the outer. On the contrary, as the poloidal beta increases, the amplitude in the outer side of the torus becomes larger than that in the inner. In the divertor configuration, the amplitude of oscillations reduces near the X-point and the phase is locally modulated. The coherent magnetic oscillations observed in JT-60 agree well with the theoretical results, where the vacuum vessel is assumed to be an ideal conducting shell. The non-uniformity of the poloidal distribution observed in JT-60 can be explained by the combined effects of the finite beta, the X-point and the shape of shell. (author)

  4. A variable-order fractal derivative model for anomalous diffusion

    Directory of Open Access Journals (Sweden)

    Liu Xiaoting

    2017-01-01

    Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.

  5. The effect of compressive viscosity and thermal conduction on the longitudinal MHD waves

    Science.gov (United States)

    Bahari, K.; Shahhosaini, N.

    2018-05-01

    longitudinal Magnetohydrodynamic (MHD) oscillations have been studied in a slowly cooling coronal loop, in the presence of thermal conduction and compressive viscosity, in the linear MHD approximation. WKB method has been used to solve the governing equations. In the leading order approximation the dispersion relation has been obtained, and using the first order approximation the time dependent amplitude has been determined. Cooling causes the oscillations to amplify and damping mechanisms are more efficient in hot loops. In cool loops the oscillation amplitude increases with time but in hot loops the oscillation amplitude decreases with time. Our conclusion is that in hot loops the efficiency of the compressive viscosity in damping longitudinal waves is comparable to that of the thermal conduction.

  6. The Anomalous Winter of 1783-1784: Was the Laki Eruption or an Analog of the 2009-2010 Winter to Blame?

    Science.gov (United States)

    D'Arrigo, Rosanne; Seager, Richard; Smerdon, Jason E.; LeGrande, Allegra N.; Cook, Edward R.

    2011-01-01

    The multi ]stage eruption of the Icelandic volcano Laki beginning in June, 1783 is speculated to have caused unusual dry fog and heat in western Europe and cold in North America during the 1783 summer, and record cold and snow the subsequent winter across the circum-North Atlantic. Despite the many indisputable impacts of the Laki eruption, however, its effect on climate, particularly during the 1783.1784 winter, may be the most poorly constrained. Here we test an alternative explanation for the unusual conditions during this time: that they were caused primarily by a combined negative phase of the North Atlantic Oscillation (NAO) and an El Nino ]Southern Oscillation (ENSO) warm event. A similar combination of NAO ]ENSO phases was identified as the cause of record cold and snowy conditions during the 2009.2010 winter in Europe and eastern North America. 600-year tree-ring reconstructions of NAO and ENSO indices reveal values in the 1783.1784 winter second only to their combined severity in 2009.2010. Data sources and model simulations support our hypothesis that a combined, negative NAO ]ENSO warm phase was the dominant cause of the anomalous winter of 1783.1784, and that these events likely resulted from natural variability unconnected to Laki.

  7. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  8. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  9. Anomalous Hall effect in a diluted p-InAs〈Mn〉 magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Arslanov, R. K., E-mail: arslanovr@gmail.com; Arslanov, T. R.; Daunov, M. I. [Russian Academy of Sciences, Institute of Physics, Dagestan Scientific Center (Russian Federation)

    2017-03-15

    The dependences of the electrical resistivity and the Hall coefficient of single-crystal p-InAs〈Mn〉 bulk samples with an acceptor concentration of about 10{sup 18} cm{sup –3} on uniform pressure P = 4–6 GPa at T = 300 K in the region of impurity conduction are quantitatively analyzed. The anomalous Hall effect is shown to occur in p-InAs〈Mn〉. Its contribution is negative and correlates with the deionization of acceptors and an increase in the magnetic susceptibility.

  10. Computational Study of Anomalous Transport in High Beta DIII-D Discharges with ITBs

    Science.gov (United States)

    Pankin, Alexei; Garofalo, Andrea; Grierson, Brian; Kritz, Arnold; Rafiq, Tariq

    2015-11-01

    The advanced tokamak scenarios require a large bootstrap current fraction and high β. These large values are often outside the range that occurs in ``conventional'' tokamak discharges. The GLF23, TGLF, and MMM transport models have been previously validated for discharges with parameters associated with ``conventional'' tokamak discharges. It has been demonstrated that the TGLF model under-predicts anomalous transport in high β DIII-D discharges [A.M. Garofalo et al. 2015 TTF Workshop]. In this research, the validity of MMM7.1 model [T. Rafiq et al. Phys. Plasmas 20 032506 (2013)] is tested for high β DIII-D discharges with low and high torque. In addition, the sensitivity of the anomalous transport to β is examined. It is shown that the MMM7.1 model over-predicts the anomalous transport in the DIII-D discharge 154406. In particular, a significant level of anomalous transport is found just outside the internal transport barrier. Differences in the anomalous transport predicted using TGLF and MMM7.1 are reviewed. Mechanisms for quenching of anomalous transport in the ITB regions of high-beta discharges are investigated. This research is supported by US Department of Energy.

  11. Anomalous phase shift in a twisted quantum loop

    International Nuclear Information System (INIS)

    Taira, Hisao; Shima, Hiroyuki

    2010-01-01

    The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.

  12. An Updated Model for the Anomalous Resistivity of LNAPL Plumes in Sandy Environments

    Science.gov (United States)

    Sauck, W. A.; Atekwana, E. A.; Werkema, D. D.

    2006-05-01

    Anomalously low resistivities have been observed at some sites contaminated by light non-aqueous phase liquid (LNAPL) since. The model that has been used to explain this phenomenon was published in 2000. This working hypothesis invokes both physical mixing and bacterial action to explain the low resistivities near the base of the vadose zone and the upper part of the aquifer. The hydrocarbon-degrading bacteria (of which there are numerous species found in soils) produce organic acids and carbonic acids. The acidic pore waters dissolve readily soluble ions from the native soil grains and grain coatings, to produce a leachate high in total dissolved solids. The free product LNAPL is initially a wetting phase, although not generally more than 50% extent, and seasonal water table fluctuations mix the hydrocarbons vertically through the upper water saturated zone and transition zone. This update introduces several new aspects of the conductive model. The first is that, in addition to the acids being produced by the oil-degrading bacteria, they also produce surfactants. Surfactants act similarly to detergents in detaching the oil phase from the solid substrate, and forming an emulsion of oil droplets within the water. This has helped to explain how continuous, high-TDS capillary paths can develop and pass vertically through what appears to be a substantial free product layer, thus providing easy passage for electrical current during electrical resistivity measurements. Further, it has also been shown that the addition of organic acids and biosurfactants to pore fluids can directly contribute to the conductivity of the pore fluids. A second development is that large-diameter column experiments were conducted for nearly two years (8 columns for 4 experiments). The columns had a vertical row of eletrodes for resistivity measurements, ports for extracting water samples with a syringe, and sample tubes for extracting soil samples. Water samples were used for chemical analysis

  13. Damping of electron center-of-mass oscillation in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-01-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  14. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  15. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  16. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  17. Constraints on Anomalous Quartic Gauge Boson Couplings from $\

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    Anomalous quartic couplings between the electroweak gauge bosons may contribute to the vv gamma gamma and qq gamma gamma final states produced in e+e- collisions. This analysis uses the LEP2 OPAL data sample at centre-of-mass energies up to 209 GeV. Event selections identify vv gamma gamma and qq gamma gamma events in which the two photons are reconstructed within the detector acceptance. The cross-section for the process e+e- -> qq gamma gamma is measured. Averaging over all energies, the ratio of the observed e+e- -> qq gamma gamma cross-section to the Standard Model expectation is R(data/SM) = 0.92 +- 0.07 +- 0.04 where the errors represent the statistical and systematic uncertainties respectively. The vv gamma gamma and qq gamma gamma data are used to constrain possible anomalous W+W- gamma gamma and ZZ gamma gamma couplings. Combining with previous OPAL results from the W+W- gamma final state, the 95% confidence level limits on the anomalous coupling parameters aoz, acz, aow and acw are found to be: -0.0...

  18. Anomalous structural changes and elastic properties of bismuth oxide superconductors

    International Nuclear Information System (INIS)

    He, Y.S.; Xiang, J.; Chang, F.G.; Zhang, J.C.; He, A.S.; Wang, H.; Gu, B.L.

    1989-01-01

    Ultrasonic measurement revealed that there are anomalous structural changes near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O. Detailed study showed such anomalous changes are isothermal-like processes and have a characteristics of second order phase transition, accompanying with increases in lattice constants. The elastic properties of these ceramics and related systems are discussed

  19. Subdiffusive master equation with space-dependent anomalous exponent and structural instability

    Science.gov (United States)

    Fedotov, Sergei; Falconer, Steven

    2012-03-01

    We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of parameter μ. In particular, the Gibbs-Boltzmann distribution is no longer the stationary solution of the fractional Fokker-Planck equation whatever the space variation of the exponent might be. We analyze the random distribution of μ in space and find that in the long-time limit, the probability distribution is highly intermediate in space and the behavior is completely dominated by very unlikely events. We show that subdiffusive fractional equations with the nonuniform random distribution of anomalous exponent is an illustration of a “Black Swan,” the low probability event of the small value of the anomalous exponent that completely dominates the long-time behavior of subdiffusive systems.

  20. tbW anomalous couplings in the Two Higgs Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Arhrib, Abdesslam; Jueid, Adil [Département de Mathématiques, Faculté des Sciences et Techniques,Université Abdelmalek Essaadi,B. 416, Tangier (Morocco)

    2016-08-11

    We make a complete one loop calculation of the tbW couplings in the Two Higgs Doublet Model. We evaluate both the anomalous couplings g{sub L} and g{sub R} as well as left handed and right handed component of tbW. The computation is done in the Feynman gauge using the on-shell scheme renormalization for the Standard Model wave functions and parameters. We first show that the relative corrections to these anomalous couplings are rather small in most regions of the parameter space. We then analyze the effects of these anomalous couplings on certain observables such as top quark polarization in single top production through t−channel as well as W{sup ±} boson helicity fractions in top decay.

  1. Multislice CT imaging of anomalous coronary arteries

    International Nuclear Information System (INIS)

    Shi Heshui; Aschoff, Andrik J.; Brambs, Hans-Juergen; Hoffmann, Martin H.K.

    2004-01-01

    The purpose of the present study was to evaluate the role of 16 multislice computed tomography (MSCT) to identify the origin of anomalous coronary arteries and to confirm their anatomic course in relation to the great vessels. Accuracy of coronary artery disease (CAD) detection was a secondary aim and was tested with conventional angiograms (CA) serving as standard of reference. Two hundred and forty-two consecutive patients referred for noninvasive coronary CT imaging were reviewed for the study. Sixteen patients (6.6%) with anomalous coronary arteries were detected and included as the study group. MSCT and CA images were analyzed in a blinded fashion for accuracy of anomalous artery origin and path detection. Results were compared in a secondary consensus evaluation. Accuracy ratios to detect CAD with MSCT in all vessels were calculated. Coronary anomalies for all 16 patients were correctly displayed on MSCT. CA alone achieved correct identification of the abnormality in only 53% (P=0.016). Sensitivity and specificity of MSCT to detect significantly stenosed vessels was 90 and 92%. 16-MSCT is accurate to delineate abnormally branching coronary arteries and allows sufficiently accurate detection of obstructive coronary artery disease in distal branches. It should therefore be considered as a prime non-invasive imaging tool for suspected coronary anomalies. (orig.)

  2. Are the North Atlantic oscillation and the southern oscillation related in any time-scale?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Ribera, P.; Hernandez, E. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas; Gimenoo, L. [Fac. Ciencias, Univ. Vigo, Ourense (Spain)

    2000-02-01

    The north Atlantic oscillation (NAO) and the southern oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years' oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years that represents about 20% of the SO variance and about 25% of the NAO variance. (orig.)

  3. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  4. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  5. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  6. UCN anomalous losses and the UCN capture cross section on material defects

    International Nuclear Information System (INIS)

    Serebrov, A.; Romanenko, N.; Zherebtsov, O.; Lasakov, M.; Vasiliev, A.; Fomin, A.; Geltenbort, P.; Krasnoshekova, I.; Kharitonov, A.; Varlamov, V.

    2005-01-01

    Experimental data shows anomalously large ultra cold neutrons (UCN) reflection losses and that the process of UCN reflection is not completely coherent. UCN anomalous losses under reflection cannot be explained in the context of neutron optics calculations. UCN losses by means of incoherent scattering on material defects are considered and cross-section values calculated. The UCN capture cross section on material defects is enhanced by a factor of 10 4 due to localization of UCN around defects. This phenomenon can explain anomalous losses of UCN

  7. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  8. Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2017-11-01

    Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.

  9. Algebraic isomorphism in two-dimensional anomalous gauge theories

    International Nuclear Information System (INIS)

    Carvalhaes, C.G.; Belvedere, L.V.; Filho, H.B.; Natividade, C.P.

    1997-01-01

    The operator solution of the anomalous chiral Schwinger model is discussed on the basis of the general principles of Wightman field theory. Some basic structural properties of the model are analyzed taking a careful control on the Hilbert space associated with the Wightman functions. The isomorphism between gauge noninvariant and gauge invariant descriptions of the anomalous theory is established in terms of the corresponding field algebras. We show that (i) the Θ-vacuum representation and (ii) the suggested equivalence of vector Schwinger model and chiral Schwinger model cannot be established in terms of the intrinsic field algebra. copyright 1997 Academic Press, Inc

  10. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  11. Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields

    International Nuclear Information System (INIS)

    Parker, E.N.

    1987-01-01

    This paper explores the general nature of magnetic-monopole plasma oscillations as a theoretical possibility for the observed Galactic magnetic field in the presence of a high abundance of magnetic monopoles. The modification of the hydromagnetic induction equation by the monopole oscillations produces the half-velocity effect, in which the magnetic field is transported bodily with a velocity midway between the motion of the conducting fluid and the monopole plasma. Observational studies of the magnetic field in the Galaxy, and in other galaxies, exclude the half-velocity effect, indicating that the magnetic fields is not associated with monopole oscillations. In any case the phase mixing would destroy the oscillations in less than 100 Myr. The conclusion is that magnetic monopole oscillations do not play a significant role in the galactic magnetic fields. Hence the existence of galactic magnetic fields places a low limit on the monopole flux, so that their detection - if they exist at all - requires a collecting area at least as large as a football field. 47 references

  12. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com [School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016 (India); Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Suresh, K. [Department of Physics, Anjalai Ammal-Engineering College, Kovilvenni 614 403, Tamilnadu (India); Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Zou, Wei [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China); Centre for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074 (China); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Kathamuthu, Thamilmaran [Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam D-14415 (Germany); Institute of Physics, Humboldt University Berlin, Berlin D-12489 (Germany); Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX (United Kingdom); Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod (Russian Federation)

    2016-04-15

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  13. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  14. Anomalous scaling of stochastic processes and the Moses effect

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  15. Comparative performance analysis of a dual-solenoid mechanical oscillator

    International Nuclear Information System (INIS)

    Lee, V C C; Lee, H V; Harno, H G; Woo, K C

    2015-01-01

    An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)

  16. Effect of anomalous resistivity on the dynamics of plasma switching

    Energy Technology Data Exchange (ETDEWEB)

    Kingsep, A [Kurchatov Institute, Moscow (Russian Federation); Munier, A [Centre d` Etudes Limeil-Vaneton, Villeneuve St. Georges (France)

    1997-12-31

    Some of the conditions for electron MHD are recollected, and it is shown how this leads to anomalous resistivity which may play an important role in the dynamics of POS. It has been shown that not only the order of value of the resistance of the plasma-filled diode but rather basic scalings have to be changed in the regime of essential anomalous resistivity. (author). 11 refs.

  17. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

    Science.gov (United States)

    Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin

    2015-01-01

    When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization. PMID:26151318

  18. Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.

    Science.gov (United States)

    Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M

    2008-01-25

    An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field.

  19. Computational study of NMDA conductance and cortical oscillations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kubra eKomek Kirli

    2014-10-01

    Full Text Available N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia. The illness is also characterized by gamma oscillatory disturbances, which can be evaluated with precise frequency specificity employing auditory cortical entrainment paradigms. This computational study investigates how synaptic NMDA hypofunction may give rise to network level oscillatory deficits as indexed by entrainment paradigms. We developed a computational model of a local cortical circuit with pyramidal cells and fast-spiking interneurons (FSI, incorporating NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA, and γ-aminobutyric acid (GABA synaptic kinetics. We evaluated the effects of varying NMDA conductance on FSIs and pyramidal cells, as well as AMPA to NMDA ratio. We also examined the differential effects across a broad range of entrainment frequencies as a function of NMDA conductance. Varying NMDA conductance onto FSIs revealed an inverted-U relation with network gamma whereas NMDA conductance onto the pyramidal cells had a more monotonic relationship. Varying NMDA vs. AMPA conductance onto FSIs demonstrated the necessity of AMPA in the generation of gamma while NMDA receptors had a modulatory role. Finally, reducing NMDA conductance onto FSI and varying the stimulus input frequency reproduced the specific reductions in gamma range (~40 Hz as observed in schizophrenia studies. Our computational study showed that reductions in NMDA conductance onto FSIs can reproduce similar disturbances in entrainment to periodic stimuli within the gamma range as reported in schizophrenia studies. These findings provide a mechanistic account of how specific cellular level disturbances can give rise to circuitry level pathophysiologic disturbance in schizophrenia.

  20. Microscopic Origins of the Anomalous Melting Behavior of Sodium under High Pressure

    Science.gov (United States)

    Eshet, Hagai; Khaliullin, Rustam Z.; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2012-03-01

    X-ray diffraction experiments have shown that sodium exhibits a dramatic pressure-induced drop in melting temperature, which extends from 1000 K at ˜30GPa to as low as room temperature at ˜120GPa. Despite significant theoretical effort to understand the anomalous melting, its origins are still debated. In this work, we reconstruct the sodium phase diagram by using an ab initio quality neural-network potential. Furthermore, we demonstrate that the reentrant behavior results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.

  1. Anomalous intraseasonal events in the thermocline ridge region of Southern Tropical Indian Ocean and their regional impacts

    Science.gov (United States)

    Jayakumar, A.; Gnanaseelan, C.

    2012-03-01

    The present study explores the mechanisms responsible for the strong intraseasonal cooling events in the Thermocline Ridge region of the southwestern Indian Ocean. Air sea interface and oceanic processes associated with Madden Julian Oscillation are studied using an Ocean General Circulation Model and satellite observations. Sensitivity experiments are designed to understand the ocean response to intraseasonal forcing with a special emphasis on 2002 cooling events, which recorded the strongest intraseasonal perturbations during the last well-observed decade. This event is characterized by anomalous Walker circulation over the tropical Indian Ocean and persistent intraseasonal heat flux anomaly for a longer duration than is typical for similar events (but without any favorable preconditioning of ocean basic state at the interannual timescale). The model heat budget analysis during 1996 to 2007 revealed an in-phase relationship between atmospheric fluxes associated with Madden Julian Oscillation and the subsurface oceanic processes during the intense cooling events of 2002. The strong convection, reduced shortwave radiation and increased evaporation have contributed to the upper ocean heat loss in addition to the slower propagation of active phase of convection, which supported the integration of longer duration of forcing. The sensitivity experiments revealed that dynamic response of ocean through entrainment at the intraseasonal timescale primarily controls the biological response during the event, with oceanic interannual variability playing a secondary role. This study further speculates the role of oceanic intraseasonal variability in the 2002 droughts over Indian subcontinent.

  2. Anomalous thermoelectric phenomena in lattice models of multi-Weyl semimetals

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-10-01

    The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals with a broken time-reversal symmetry by using the Kubo's linear response theory. The contributions connected with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical potential and temperature is also studied.

  3. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  4. Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure

    International Nuclear Information System (INIS)

    Chen, Shih-Hung; Chen, Liu

    2013-01-01

    The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning

  5. Density wave oscillations of a boiling natural circulation loop induced by flashing

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Masahiro; Inada, Fumio; Yasuo, Akira [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-09-01

    Experiments are conducted to investigate two-phase flow instabilities in a boiling natural circulation loop with a chimney due to flashing in the chimney at lower pressure. The test facility used in this experiment is designed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Stability maps in reference to the heat flux, the inlet subcooling, the system pressure are presented. This instability is suggested to be density wave oscillations due to flashing in the chimney, and the differences from other phenomena such as flow pattern oscillations and geysering phenomena are discussed by investigating the dynamic characteristics, the oscillation period, and the transient flow pattern.

  6. Numerical simulation on quantum turbulence created by an oscillating object

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp

    2009-02-01

    We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.

  7. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  8. AC conductivity of a quantum Hall line junction

    International Nuclear Information System (INIS)

    Agarwal, Amit; Sen, Diptiman

    2009-01-01

    We present a microscopic model for calculating the AC conductivity of a finite length line junction made up of two counter- or co-propagating single mode quantum Hall edges with possibly different filling fractions. The effect of density-density interactions and a local tunneling conductance (σ) between the two edges is considered. Assuming that σ is independent of the frequency ω, we derive expressions for the AC conductivity as a function of ω, the length of the line junction and other parameters of the system. We reproduce the results of Sen and Agarwal (2008 Phys. Rev. B 78 085430) in the DC limit (ω→0), and generalize those results for an interacting system. As a function of ω, the AC conductivity shows significant oscillations if σ is small; the oscillations become less prominent as σ increases. A renormalization group analysis shows that the system may be in a metallic or an insulating phase depending on the strength of the interactions. We discuss the experimental implications of this for the behavior of the AC conductivity at low temperatures.

  9. A classical picture of anomalous effects in a tokamak

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    It is demonstrated that the atomic collisions between plasma ions and a very small amount of neutral particles remaining in a hot plasma plays a very important role for plasma transports and may be an origin of anomalous effects observed in a tokamak such as the diffusion coefficient independent of the field strength, a rapid plasma density increase during gas puffing and current penetration with anomalously high speed in the start-up phase. The Ohm's law derived by Cowling is used for the analysis. (author)

  10. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    Science.gov (United States)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  11. Sampling and Characterization of 618-2 Anomalous Material

    International Nuclear Information System (INIS)

    Zacharias, A.E.

    2006-01-01

    This as low as reasonably achievable (ALARA) Level II review documents radiological engineering and administrative controls necessary for the sampling and characterization of anomalous materials discovered during the remediation of the 618-2 solid waste burial ground. The goals of these engineering and administrative controls are to keep personnel exposure ALARA, control contamination levels, and minimize potential for airborne contamination. Excavation of the 618-2 Burial Ground has produced many items of anomalous waste. Prior to temporary packaging and/or storage, these items have been characterized in the field to identify radiological and industrial safety conditions. Further sampling and characterization of these items, as well as those remaining from an excavated combination safe, is the subject of this ALARA Level II review. An ALARA in-progress review will also be performed prior to sampling and characterization of 618-2 anomalous materials offering risks of differing natures. General categories of anomalies requiring further characterization include the following: (1) Containers of unknown liquids and/or solids and powders (excluding transuranics); (2) Drums containing unknown liquids and/or solids; (3) Metal containers with unknown contents; and (4) Known or suspected transuranic material.

  12. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  13. A molecular dynamics study of liquid layering and thermal conductivity enhancement in nanoparticle suspensions

    Science.gov (United States)

    Paul, J.; Madhu, A. K.; Jayadeep, U. B.; Sobhan, C. B.; Peterson, G. P.

    2018-03-01

    Liquid layering is considered to be one of the factors contributing to the often anomalous enhancement in thermal conductivity of nanoparticle suspensions. The extent of this layering was found to be significant at lower particle sizes, as reported in an earlier work by the authors. In continuation to that work, an investigation was conducted to better understand the fundamental parameters impacting the reported anomalous enhancement in thermal conductivity of nanoparticle suspensions (nanofluids), utilizing equilibrium molecular dynamics simulations in a copper-argon system. Nanofluids containing nanoparticles of size less than 6 nm were investigated and studied analytically. The heat current auto-correlation function in the Green-Kubo formulation for thermal conductivity was decomposed into self-correlations and cross-correlations of different species and the kinetic, potential, collision and enthalpy terms of the dominant portion of the heat current vector. The presence of liquid layering around the nanoparticle was firmly established through simulations that show the dominant contribution of Ar-Ar self-correlation and the trend displayed by the kinetic-potential cross-correlation within the argon species.

  14. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    Science.gov (United States)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  15. Anomalous decay and scattering processes of the meson

    Science.gov (United States)

    Kubis, Bastian; Plenter, Judith

    2015-06-01

    We amend a recent dispersive analysis of the anomalous decay process by the effects of the tensor meson, the lowest-lying resonance that can contribute in the system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous decay. There are nonnegligible consequences for the transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward-backward asymmetry, for the crossed process , which could be measured in Primakoff reactions in the future.

  16. Top quark amplitudes with an anomalous magnetic moment

    International Nuclear Information System (INIS)

    Larkoski, Andrew J.; Peskin, Michael E.

    2011-01-01

    The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with tt and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.

  17. Five-loop anomalous dimension of twist-two operators

    Energy Technology Data Exchange (ETDEWEB)

    Lukowski, T. [Institute of Physics, Jagellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Rej, A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Velizhanin, V.N., E-mail: velizh@mail.desy.d [Theoretical Physics Department, Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina, 188300 St. Petersburg (Russian Federation)

    2010-05-21

    In this article we calculate the five-loop anomalous dimension of twist-two operators in the planar N=4 SYM theory. Firstly, using reciprocity, we derive the contribution of the asymptotic Bethe ansatz. Subsequently, we employ the first finite-size correction for the AdS{sub 5}xS{sup 5} sigma model to determine the wrapping correction. The anomalous dimension found in this way passes all known tests provided by the NLO BFKL equation and double-logarithmic constraints. This result thus furnishes an infinite number of experimental data for testing the veracity of the recently proposed spectral equations for planar AdS/CFT correspondence.

  18. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  19. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  20. Anomalous Threshold Voltage Variability of Nitride Based Charge Storage Nonvolatile Memory Devices

    Directory of Open Access Journals (Sweden)

    Meng Chuan Lee

    2013-01-01

    Full Text Available Conventional technology scaling is implemented to meet the insatiable demand of high memory density and low cost per bit of charge storage nonvolatile memory (NVM devices. In this study, effect of technology scaling to anomalous threshold voltage ( variability is investigated thoroughly on postcycled and baked nitride based charge storage NVM devices. After long annealing bake of high temperature, cell’s variability of each subsequent bake increases within stable distribution and found exacerbate by technology scaling. Apparent activation energy of this anomalous variability was derived through Arrhenius plots. Apparent activation energy (Eaa of this anomalous variability is 0.67 eV at sub-40 nm devices which is a reduction of approximately 2 times from 110 nm devices. Technology scaling clearly aggravates this anomalous variability, and this poses reliability challenges to applications that demand strict control, for example, reference cells that govern fundamental program, erase, and verify operations of NVM devices. Based on critical evidence, this anomalous variability is attributed to lateral displacement of trapped charges in nitride storage layer. Reliability implications of this study are elucidated. Moreover, potential mitigation methods are proposed to complement technology scaling to prolong the front-runner role of nitride based charge storage NVM in semiconductor flash memory market.

  1. Anomalous Micellization of Pluronic Block Copolymers

    Science.gov (United States)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  2. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  3. Quantum oscillation signatures of spin-orbit interactions controlling the residual nodal bilayer-splitting in underdoped high-Tc cuprates

    Science.gov (United States)

    Harrison, Neil; Shekhter, Arkady

    2015-03-01

    We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.

  4. Fickian dispersion is anomalous

    Science.gov (United States)

    Cushman, John H.; O'Malley, Dan

    2015-12-01

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  5. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  6. Anomalous variations of lithosphere magnetic field before several earthquakes

    Science.gov (United States)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  7. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  8. A Search for nu_mu to nu_e oscillations in the NOMAD experiment

    CERN Document Server

    Godley, Andrew R

    2000-01-01

    The NOMAD experiment is a neutrino oscillation experiment. capable of identifying Vμ, -Vμ, Ve, -Ve and Vt for use in oscillation analyses. A search for Vμ --> Ve oscillations is conducted, emphasising the development of two separate beam simulators, to provide the background, (no oscillation), lie signal. Both beam descriptions include fits to the results of the SPY experiment that measured hadron production from a 450 GeV proton beam on beryllium target. An independent analysis of the raw SPY data to produce the particle yield is reported. A series of criteria are described for the selection and classification of neutrino events. These produce the data samples necessary for both tuning the beam simulation and determining the oscillation signal. The development of a GEANT and FLUKA based Monte Carlo beam simulator is presented; providing good agreement to the measured neutrino beam. This simulation method has sizeable variations depending on the beamline geometry, which is not knonm precisely. This causes ...

  9. Kinetic studies of anomalous transport

    International Nuclear Information System (INIS)

    Tang, W.M.

    1990-11-01

    Progress in achieving a physics-based understanding of anomalous transport in toroidal systems has come in large part from investigations based on the proposition that low frequency electrostatic microinstabilities are dominant in the bulk (''confinement'') region of these plasmas. Although the presence here of drift-type modes dependent on trapped particle and ion temperature gradient driven effects appears to be consistent with a number of important observed confinement trends, conventional estimates for these instabilities cannot account for the strong current (I p ) and /or q-scaling frequently found in empirically deduced global energy confinement times for auxiliary-heated discharges. The present paper deals with both linear and nonlinear physics features, ignored in simpler estimates, which could introduce an appreciable local dependence on current. It is also pointed out that while the thermal flux characteristics of drift modes have justifiably been the focus of experimental studies assessing their relevance, other transport properties associated with these microinstabilities should additionally be examined. Accordingly, the present paper provides estimates and discusses the significance of anomalous energy exchange between ions and electrons when fluctuations are present. 19 refs., 3 figs

  10. Anomalous transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Punjabi, A.

    1991-01-01

    We have developed a Monte Carlo method to estimate the transport of different groups of particles for plasmas in toroidal geometries. This method can determine the important transport mechanisms driving the anomalous transport by comparing the numerical results with the experimental data. The important groups of particles whose transport can be estimated by this method include runaway electrons, thermal electrons, both passing and trapped diagnostic beam ions etc. The three basic mechanisms driving the anomalous transport are: spatial variation of magnetic field strength, spatial variation of electrostatic potential within the flux surfaces, and the loss of flux surfaces. The equation of motion are obtained from the drift hamiltonian. The equations of motion are developed in the canonical and in the non-canonical, practical co-ordinates as well. The effects of collisions are represented by appropriate stochastic changes in the constants of motion at each time-step. Here we present the results of application of this method to three cases: superathermal alphas in the rippled field of tokamaks, motion in the magnetic turbulence of takapole II, and transport in the stochastic fields of ZT40. This work is supported by DOE OFE and ORAU HBCU program

  11. Echocardiographic diagnosis of transposition of the great arteries associated with anomalous pulmonary venous connection

    Directory of Open Access Journals (Sweden)

    Lilian Maria Lopes

    2001-07-01

    Full Text Available We report 2 cases of transposition of the great arteries associated with anomalous pulmonary venous connection emphasizing the clinical findings, the diagnosis, and the evolution of the association. One of the patients had the anomalous pulmonary venous connection in its total infradiaphragmatic form, in the portal system, and the other patient had a partial form, in which an anomalous connection of the left superior lobar vein with the innominate vein existed. At the time of hospital admission, the patients had cyanosis and respiratory distress with clinical findings suggesting transposition of the great arteries. The diagnosis in 1 of the cases, in which the anomalous connection was partial, was established only with echocardiography, without invasive procedures that would represent risk for the patient; in the other case, in which the anomalous connection was total, the malformation was only evidenced with catheterization. The patients underwent surgery for anatomical correction of the heart disease. Only 1 patient had a good outcome.

  12. Anomalous evolution of Ar metastable density with electron density in high density Ar discharge

    International Nuclear Information System (INIS)

    Park, Min; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung; Shin, Yong-Hyeon

    2011-01-01

    Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

  13. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  14. Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.

    Science.gov (United States)

    Hoseini, Mahmood S; Wessel, Ralf

    2016-01-01

    Local field potential (LFP) recordings from spatially distant cortical circuits reveal episodes of coherent gamma oscillations that are intermittent, and of variable peak frequency and duration. Concurrently, single neuron spiking remains largely irregular and of low rate. The underlying potential mechanisms of this emergent network activity have long been debated. Here we reproduce such intermittent ensemble oscillations in a model network, consisting of excitatory and inhibitory model neurons with the characteristics of regular-spiking (RS) pyramidal neurons, and fast-spiking (FS) and low-threshold spiking (LTS) interneurons. We find that fluctuations in the external inputs trigger reciprocally connected and irregularly spiking RS and FS neurons in episodes of ensemble oscillations, which are terminated by the recruitment of the LTS population with concurrent accumulation of inhibitory conductance in both RS and FS neurons. The model qualitatively reproduces experimentally observed phase drift, oscillation episode duration distributions, variation in the peak frequency, and the concurrent irregular single-neuron spiking at low rate. Furthermore, consistent with previous experimental studies using optogenetic manipulation, periodic activation of FS, but not RS, model neurons causes enhancement of gamma oscillations. In addition, increasing the coupling between two model networks from low to high reveals a transition from independent intermittent oscillations to coherent intermittent oscillations. In conclusion, the model network suggests biologically plausible mechanisms for the generation of episodes of coherent intermittent ensemble oscillations with irregular spiking neurons in cortical circuits. Copyright © 2016 the American Physiological Society.

  15. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  16. Anomalous relaxation in binary mixtures: a dynamic facilitation picture

    International Nuclear Information System (INIS)

    Moreno, A J; Colmenero, J

    2007-01-01

    Recent computational investigations of polymeric and non-polymeric binary mixtures have reported anomalous relaxation features when both components exhibit very different mobilities. Anomalous relaxation is characterized by sublinear power-law behaviour for mean-squared displacements, logarithmic decay in dynamic correlators, and a striking concave-to-convex crossover in the latter by tuning the relevant control parameter, in analogy with predictions of the mode-coupling theory for state points close to higher-order transitions. We present Monte Carlo simulations on a coarse-grained model for relaxation in binary mixtures. The liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, representing unexcited and excited local states of a mobility field. Changes in local mobility (spin flip) are permitted according to kinetic constraints determined by the mobilities of the neighbouring cells. We introduce two types of cell ('fast' and 'slow') with very different rates for spin flip. This coarse-grained model qualitatively reproduces the mentioned anomalous relaxation features observed for real binary mixtures

  17. Schwinger Model Mass Anomalous Dimension

    CERN Document Server

    Keegan, Liam

    2016-06-20

    The mass anomalous dimension for several gauge theories with an infrared fixed point has recently been determined using the mode number of the Dirac operator. In order to better understand the sources of systematic error in this method, we apply it to a simpler model, the massive Schwinger model with two flavours of fermions, where analytical results are available for comparison with the lattice data.

  18. Faraday anomalous dispersion optical filters

    Science.gov (United States)

    Shay, T. M.; Yin, B.; Alvarez, L. S.

    1993-01-01

    The effect of Faraday anomalous dispersion optical filters on infrared and blue transitions of some alkali atoms is calculated. A composite system is designed to further increase the background noise rejection. The measured results of the solar background rejection and image quality through the filter are presented. The results show that the filter may provide high transmission and high background noise rejection with excellent image quality.

  19. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  20. Influence of anomalous transport phenomena on onset of Neoclassical Tearing Modes in tokamaks

    International Nuclear Information System (INIS)

    Konovalov, S.V.; Mikhailovskii, A.B.; Shirokov, M.S.; Ozeki, T.; Takizuka, T.; Hayashi, N.

    2005-01-01

    Influence of anomalous perpendicular heat transport and anomalous ion perpendicular viscosity on conditions of Neoclassical Tearing Mode (NTM) onset is studied theoretically. Series of various parallel transport mechanisms competitive to anomalous cross-island heat transport in formation of the perturbed electron and ion temperature profiles within the island are considered. Analytical solutions to respective heat balance equations were found and perturbed temperature profiles were calculated rigorously. The partial contributions from the plasma electron and ion temperature perturbations in the bootstrap drive of the mode and magnetic curvature effect were then accounted in construction of a generalized transport threshold model of NTMs. Taking into account the curvature effect weakening in the generalized transport threshold model predicts notable improvement of NTM stability. The anomalous perpendicular ion viscosity was shown to modify collisionality dependence of polarization current effect reducing it to the low collisionality limit. The bootstrap drive of NTM in the presence of anomalous perpendicular ion viscosity was found to be dependent on the island rotation frequency and direction. For island rotating in direction of the electron diamagnetic drift viscosity effect was shown to be stabilizing. The role of viscosity effect grows rapidly with rise of the plasma ion temperature. (author)

  1. Raman Spectral Band Oscillations in Large Graphene Bubbles

    Science.gov (United States)

    Huang, Yuan; Wang, Xiao; Zhang, Xu; Chen, Xianjue; Li, Baowen; Wang, Bin; Huang, Ming; Zhu, Chongyang; Zhang, Xuewei; Bacsa, Wolfgang S.; Ding, Feng; Ruoff, Rodney S.

    2018-05-01

    Raman spectra of large graphene bubbles showed size-dependent oscillations in spectral intensity and frequency, which originate from optical standing waves formed in the vicinity of the graphene surface. At a high laser power, local heating can lead to oscillations in the Raman frequency and also create a temperature gradient in the bubble. Based on Raman data, the temperature distribution within the graphene bubble was calculated, and it is shown that the heating effect of the laser is reduced when moving from the center of a bubble to its edge. By studying graphene bubbles, both the thermal conductivity and chemical reactivity of graphene were assessed. When exposed to hydrogen plasma, areas with bubbles are found to be more reactive than flat graphene.

  2. Probing anomalous quartic gauge-boson couplings via e+e-→4 fermions +γ

    International Nuclear Information System (INIS)

    Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D.

    2001-01-01

    All lowest-order amplitudes for e + e - →4fγ are calculated including five anomalous quartic gauge-boson couplings that are allowed by electromagnetic gauge invariance and the custodial SU(2) c symmetry. Three of these anomalous couplings correspond to the operators L 0 ,L c , and L n that have been constrained by the LEP collaborations in WWγ production. The anomalous couplings are incorporated in the Monte Carlo generator RacoonWW(RacoonWW fellow of the Deutsche Forschungsgemeinschaft). Moreover, for the processes e + e - →4fγ RacoonWW is improved upon including leading universal electroweak corrections such as initial-state radiation. The discussion of numerical results illustrates the size of the leading corrections as well as the impact of the anomalous quartic couplings for LEP2 energies and at 500 GeV. (orig.)

  3. SAD phasing with in-house cu Ka radiation using barium as anomalous scatterer.

    Science.gov (United States)

    Dhanasekaran, V; Velmurugan, D

    2011-12-01

    Phasing of lysozyme crystals using co-crystallized barium ions was performed using single-wavelength anomalous diffraction (SAD) method using Cu Ka radiation with in-house source of data collection. As the ion binding sites vary with respect to the pH of the buffer during crystallization, the highly isomorphic forms of lysozyme crystals grown at acidic and alkaline pH were used for the study. Intrinsic sulphur anomalous signal was also utilized with anomalous signal from lower occupancy ions for phasing. The study showed that to solve the structure by SAD technique, 2.8-fold data redundancy was sufficient when barium was used as an anomalous marker in the in-house copper X-ray radiation source for data collection. Therefore, co-crystallization of proteins with barium containing salt can be a powerful tool for structure determination using lab source.

  4. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    Science.gov (United States)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  5. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.; Omran, Hesham; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  6. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  7. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    Science.gov (United States)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  8. A theory of generalized Bloch oscillations

    International Nuclear Information System (INIS)

    Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)

  9. Reactor oscillator - I - III, Part I

    International Nuclear Information System (INIS)

    Lolic, B.

    1961-12-01

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction

  10. Anomalous refraction of light colors by a metamaterial prism.

    Science.gov (United States)

    Silveirinha, Mário G

    2009-05-15

    A prism of glass separates white light into its spectral components in such a manner that colors associated with shorter wavelengths are more refracted than the colors associated with longer wavelengths. Here, we demonstrate that this property is not universal, and that a lossless metamaterial prism with a suitable microstructure may enable a broadband regime of anomalous dispersion, where the spectral components of light are separated in an unconventional way, so that "violet light" is less refracted than "red light." This phenomenon is fundamentally different from conventional anomalous dispersion effects, which are invariably accompanied by significant loss and are typically very narrow band.

  11. Action of acoustical oscillations and hydrodynamic factors on the chemical activity of iodne in solution

    International Nuclear Information System (INIS)

    Nikolaev, L.A.; Fadeev, G.N.

    1984-01-01

    Investigation results on the effect of acoustic oscillations within the frequency range of 1-500 Hz on aqueous iodine solutions and dark blue iodide-starch complex have been presented. Experiments were carried out within the range of action of acoustical and hydrodynamic oscillations without visual formation of bubbles. Form of kinetic dependences corresponds to the first order reaction in respect to iodine. Sharp increase of solution electric conductivity and noticeable increase of medium acidity were observed after the action of oscillations. It has been shown that low-frequency oscillations strengthen iodine hydrolysis and lead to iodate atom formation. Effect of oscillations with 25-30 Hz upon the iodide-starch complex results in the complex destruction, i. e. iodide atom chains removal out of clathrate starch cavities. Formation of iodide-starch complexes is promoted under the action of 250 Hz frequency, as such oscillations lead to the change of starch structure, but do not effect upon iodide

  12. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  13. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  14. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  15. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  16. First Successful Hindcasts of the 2016 Disruption of the Stratospheric Quasi-biennial Oscillation

    Science.gov (United States)

    Watanabe, S.; Hamilton, K.; Osprey, S.; Kawatani, Y.; Nishimoto, E.

    2018-02-01

    In early 2016 the quasi-biennial oscillation in tropical stratospheric winds was disrupted by an anomalous easterly jet centered at 40 hPa, a development that was completely missed by all operational extended range weather forecast systems. This event and its predictability are investigated through 40 day ensemble hindcasts using a global model notable for its sophisticated representation of the upper atmosphere. Integrations starting at different times throughout January 2016—just before and during the initial development of the easterly jet—were performed. All integrations simulated the unusual developments in the stratospheric mean wind, despite considerable differences in other aspects of the flow evolution among the ensemble members, notably in the evolution of the winter polar vortex and the day-to-day variations in extratropical Rossby waves. Key to prediction of this event is simulating the slowly evolving mean winds in the winter subtropics that provide a waveguide for Rossby waves propagating from the winter hemisphere.

  17. Bunburra Rockhole: A New Anomalous Achondrite

    Czech Academy of Sciences Publication Activity Database

    Bland, P.A.; Spurný, Pavel; Greenwood, R.C.; Towner, M.C.; Bevan, A.W.R.; Bottke jr., W.F.; Shrbený, Lukáš; McClafferty, T.; Vaughan, D.; Benedix, G.K.; Franchi, I.A.; Hough, R.M.

    2009-01-01

    Roč. 72, Supplement (2009), A34-A34 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /72./. Nancy, 13.06.2009-18.06.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : Bunburra Rockhole * anomalous achondrite Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.253, year: 2009

  18. Characterization and investigation of the anomalous behavior of the immersed-Bz diode during operation at 4 to 5 MV

    International Nuclear Information System (INIS)

    Rovang, D. C.; Bruner, N.; Johnston, M. D.; Madrid, E. A.; Maenchen, J. E.; Oliver, B. V.; Portillo, S.; Welch, D. R.

    2008-01-01

    The immersed-B z diode is being developed as a high-brightness, flash x-ray radiography source at Sandia National Laboratories. This diode is a foil-less electron-beam diode with a long, thin, needlelike cathode which is inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces forward-directed bremsstrahlung. In addition, electron beam heating of the anode produces surface plasmas allowing ion emission. Two different operating regimes for this diode have been identified: A nominal operating regime where the total diode current is characterized as classically bipolar with stable impedance [see D. C. Rovang et al., Phys. Plasmas 14, 113107 (2007)] and an anomalous operating regime characterized by a rapid impedance collapse where the total diode current greatly exceeds the bipolar limit. The operating regimes are approximately separated by cathode diameters greater than 3 mm for the nominal regime and less than 3 mm for the anomalous impedance collapse regime. Results from a comprehensive series of experiments conducted at 4-5 MV characterizing the transition from this nominal operating regime to the anomalous operating regime as the cathode diameter is reduced are presented. Results from experiments investigating the effects of anode-cathode gap, anode material, and cryogenic modification of the anode surface are also presented. Although these investigations were unsuccessful in completely mitigating the anomalous behavior, insight gained from these experiments has elucidated several key physics issues that are discussed.

  19. Evidence for the impact of stellar activity on the detectability of solar-like oscillations observed by Kepler

    NARCIS (Netherlands)

    Chaplin, W.J.; Bedding, T.R.; Bonanno, A.; Broomhall, A.M.; Garcia, R.A.; Hekker, S.; Huber, D.; Verner, G.A.; Basu, S.; Elsworth, Y.; Houdek, G.; Mathur, S.; Mosser, B.; New, R.; Stevens, I.R.; Appourchaux, T.; Karoff, C.; Metcalfe, T.S.; Molenda-Zakowicz, J.; Monteiro, M.J.P.F.G.; Thompson, M.J.; Christensen-Dalsgaard, J.; Gilliland, R.L.; Kawaler, S.D.; Kjeldsen, H.; Ballot, J.; Benomar, O.; Corsaro, E.; Campante, T.L.; Gaulme, P.; Hale, S.J.; Handberg, R.; Jarvis, E.; Regulo, C.; Roxburgh, I.W.; Salabert, D.; Stello, D.; Mullally, F.; Li, J.; Wohler, W.

    2011-01-01

    We use photometric observations of solar-type stars, made by the NASA Kepler Mission, to conduct a statistical study of the impact of stellar surface activity on the detectability of solar-like oscillations. We find that the number of stars with detected oscillations falls significantly with

  20. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    KAUST Repository

    Bilić, Ante

    2012-09-06

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green\\'s function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction. © 2012 American Physical Society.

  1. The hidden treasure in your data: phasing with unexpected weak anomalous scatterers from routine data sets

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Raghurama P.; Fedorov, Alexander A.; Sauder, J. Michael; Burley, Stephen K.; Almo, Steven C.; Ramagopal, Udupi A.

    2017-03-22

    Single-wavelength anomalous dispersion (SAD) utilizing anomalous signal from native S atoms, or other atoms withZ≤ 20, generally requires highly redundant data collected using relatively long-wavelength X-rays. Here, the results from two proteins are presented where the anomalous signal from serendipitously acquired surface-bound Ca atoms with an anomalous data multiplicity of around 10 was utilized to drivede novostructure determination. In both cases, the Ca atoms were acquired from the crystallization solution, and the data-collection strategy was not optimized to exploit the anomalous signal from these scatterers. The X-ray data were collected at 0.98 Å wavelength in one case and at 1.74 Å in the other (the wavelength was optimized for sulfur, but the anomalous signal from calcium was exploited for structure solution). Similarly, using a test case, it is shown that data collected at ~1.0 Å wavelength, where thef'' value for sulfur is 0.28 e, are sufficient for structure determination using intrinsic S atoms from a strongly diffracting crystal. Interestingly, it was also observed thatSHELXDwas capable of generating a substructure solution from high-exposure data with a completeness of 70% for low-resolution reflections extending to 3.5 Å resolution with relatively low anomalous multiplicity. Considering the fact that many crystallization conditions contain anomalous scatterers such as Cl, Ca, Mnetc., checking for the presence of fortuitous anomalous signal in data from well diffracting crystals could prove useful in either determining the structurede novoor in accurately assigning surface-bound atoms.

  2. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  3. Application of new synchrotron powder diffraction techniques to anomalous scattering from glasses

    International Nuclear Information System (INIS)

    Beno, M.A.; Knapp, G.S.; Armand, P.; Price, D.L.; Saboungi, M.

    1995-01-01

    We have applied two synchrotron powder diffraction techniques to the measurement of high quality anomalous scattering diffraction data for amorphous materials. One of these methods, which uses a curved perfect crystal analyzer to simultaneously diffract multiple powder lines into a position sensitive detector has been shown to possess high resolution, low background, and very high counting rates. This data measurement technique provides excellent energy resolution while minimizing systematic errors resulting from detector nonlinearity. Anomalous scattering data for a Cesium Germanate glass collected using this technique will be presented. The second powder diffraction technique uses a flat analyzer crystal to deflect multiple diffraction lines out of the equatorial plane. Calculations show that this method possesses sufficient energy resolution for anomalous scattering experiments when a perfect crystal analyzer is used and is experimentally much simpler. Future studies will make use of a rapid sample changer allowing the scattering from the sample and a standard material (a material not containing the anomalous scatterer) to be measured alternately at each angle, reducing systematic errors due to beam instability or sample misalignment

  4. Frequency-dependent transient response of an oscillating electrically actuated droplet

    International Nuclear Information System (INIS)

    Dash, S; Kumari, N; Garimella, S V

    2012-01-01

    The transient response of a millimeter-sized sessile droplet under electrical actuation is experimentally investigated. Under dc actuation, the droplet spreading rate increases as the applied voltage is increased due to the higher electrical forces induced. At sufficiently high dc voltages, competition between the electrical actuation force, droplet inertia, the retarding surface tension force and contact line friction leads to droplet oscillation. The timescale for the droplet to attain its maximum wetted diameter during step actuation is analyzed. Systematic experiments are conducted over a frequency range of 5–200 Hz and actuation voltages of 40–80 V rms to determine the dependence of droplet oscillation on these parameters. The response of the droplet to different actuation frequencies and voltages is determined in terms of its contact angle and contact radius variation. The frequency of the driving force (equal to twice the frequency of the applied electrical signal) determines the mode of oscillation of the droplet which, together with its resonance characteristics, governs whether the droplet contact angle and contact radius vary in phase or out of phase with each other. In addition to the primary frequency response at the electrical forcing frequency, the droplet oscillation exhibits sub-harmonic oscillation at half of the forcing frequency that is attributed to the parametric nature of the electrical force acting on the triple contact line of the droplet. (paper)

  5. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  6. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  7. Anomalous experiences, trauma and symbolization processes at the frontier between psychoanalysis and cognitive neurosciences

    Directory of Open Access Journals (Sweden)

    Thomas eRabeyron

    2015-12-01

    Full Text Available Anomalous or exceptional experiences are uncommon experiences which are usually interpreted as being paranormal by those who report them. These experiences have long remained difficult to explain, but current progress in cognitive neuroscience and psychoanalysis sheds light on the contexts in which they emerge, as well as on their underlying processes. Following a brief description of the different types of anomalous experiences, we underline how they can be better understood at the frontiers between psychoanalysis and cognitive neurosciences. In this regard, three main lines of research are discussed and illustrated, alongside clinical cases which come from a clinical service specializing in anomalous experiences. First, we study the links between anomalous experiences and hallucinatory processes, by showing that anomalous experiences frequently occur as a specific reaction to negative life events, in which case they mainly take the form of non-pathological hallucinations. Next, we propose to analyze these experiences from the perspective of their traumatic aspects and the altered states of consciousness they often imply. Finally, these experiences are considered to be the consequence of a hypersensitivity that can be linked to an increase in psychic permeability. In conclusion, these different processes lead us to consider anomalous experiences as primary forms of symbolization and transformation of the subjective experience, especially during or after traumatic situations.

  8. Anomalous Experiences, Trauma, and Symbolization Processes at the Frontiers between Psychoanalysis and Cognitive Neurosciences

    Science.gov (United States)

    Rabeyron, Thomas; Loose, Tianna

    2015-01-01

    Anomalous or exceptional experiences are uncommon experiences which are usually interpreted as being paranormal by those who report them. These experiences have long remained difficult to explain, but current progress in cognitive neuroscience and psychoanalysis sheds light on the contexts in which they emerge, as well as on their underlying processes. Following a brief description of the different types of anomalous experiences, we underline how they can be better understood at the frontiers between psychoanalysis and cognitive neurosciences. In this regard, three main lines of research are discussed and illustrated, alongside clinical cases which come from a clinical service specializing in anomalous experiences. First, we study the links between anomalous experiences and hallucinatory processes, by showing that anomalous experiences frequently occur as a specific reaction to negative life events, in which case they mainly take the form of non-pathological hallucinations. Next, we propose to analyze these experiences from the perspective of their traumatic aspects and the altered states of consciousness they often imply. Finally, these experiences are considered to be the consequence of a hypersensitivity that can be linked to an increase in psychic permeability. In conclusion, these different processes lead us to consider anomalous experiences as primary forms of symbolization and transformation of the subjective experience, especially during, or after traumatic situations. PMID:26732646

  9. Magnetic resonance imaging of anomalous pulmonary venous connections

    International Nuclear Information System (INIS)

    Choe, Yeon Hyeon; Lee, Heung Jae; Kim, Hak Soo; Ko, Jae Kon; Kim, Ji Eun; Han, Jae Jin

    1994-01-01

    We evaluated the capability of MR in the diagnosis of anomalous pulmonary venous connection (APVC). The patient group consisted of 11 total APVC and 8 partial APVC diagnosed with MR. Echocardiography was performed in all cases, cardiac angiography in 12 cases and operation in 12 cases. We compared MR findings with those of operation, echocardiography and cardiac angiography. In surgically proven 12 cases, diagnostic accuracy of preoperative MR, echocardiography and cardiac angiography was 100%, 67%, and 63%, respectively. In the remaining cases, MR findings well correlated with those of echocardiography or cardiac angiography. Stenosis of common pulmonary vein or superior vena cava was identified in 4 cases. In one patient, MR duplicated associated cortriatriatum clearly. MR is an effective modally in depicting anomalous pulmonary venous connections

  10. Driven, autoresonant three-oscillator interactions

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.; Henis, Z.

    2007-01-01

    An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate

  11. Is anomalous origin of the left vertebral artery indeed a rare finding ...

    African Journals Online (AJOL)

    We present a pictorial review of anomalous origin of the left vertebral artery observed in 5 patients imaged in our after-hours trauma radiology unit within a period of 7 days. We raise the question of whether the incidence of anomalous origin of the left vertebral artery quoted in the radiology literature as 5% is really that low, ...

  12. Progress in analytical calculations for the anomalous magnetic moment of the muon

    International Nuclear Information System (INIS)

    Baikov, P.A.

    2013-11-01

    We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.

  13. Progress in analytical calculations for the anomalous magnetic moment of the muon

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P.A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen (Germany). Physik Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.

  14. MR appearance of anomalous insertion of the medial meniscus. A case report

    International Nuclear Information System (INIS)

    Arjun, S.; Takahashi, S.; Nakane, N.; Yonemitsu, H.; Tang, Y.

    1998-01-01

    We report on the MR imaging of an anomalous medial meniscus with a tear in a 41-year-old man. Anomaly of the medial meniscus is rare and difficult to diagnose clinically. The MR images contributed to the pre-arthroscopic diagnosis and arthroscopy confirmed the lesion. The anomalous meniscus was not related to the symptoms. (orig.)

  15. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    Science.gov (United States)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  16. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    Science.gov (United States)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  17. Anomalous U(1) models in four and five dimensions and their anomaly poles

    International Nuclear Information System (INIS)

    Armillis, Roberta; Coriano, Claudio; Delle Rose, Luigi; Guzzi, Marco

    2009-01-01

    We analyze the role played by anomaly poles in an anomalous gauge theory by discussing their signature in the corresponding off-shell effective action. The origin of these contributions, in the most general kinematical case, is elucidated by performing a complete analysis of the anomaly vertex at perturbative level. We use two independent (but equivalent) representations: the Rosenberg representation and the longitudinal/transverse (L/T) parameterization, used in recent studies of g-2 of the muon and in the proof of non-renormalization theorems of the anomaly vertex. The poles extracted from the L/T parameterization do not couple in the infrared for generic anomalous vertices, as in Rosenberg, but we show that they are responsible for the violations of unitarity in the UV region, using a class of pole-dominated amplitudes. We conclude that consistent formulations of anomalous models require necessarily the cancellation of these polar contributions. Establishing the UV significance of these terms provides a natural bridge between the anomalous effective action and its completion by a nonlocal theory. Some additional difficulties with unitarity of the mechanism of inflow in extra dimensional models with an anomalous theory on the brane, due to the presence of anomaly poles, are also pointed out.

  18. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    Science.gov (United States)

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  19. Anomalous Hall effect in ZrTe5

    Science.gov (United States)

    Liang, Tian; Lin, Jingjing; Gibson, Quinn; Kushwaha, Satya; Liu, Minhao; Wang, Wudi; Xiong, Hongyu; Sobota, Jonathan A.; Hashimoto, Makoto; Kirchmann, Patrick S.; Shen, Zhi-Xun; Cava, R. J.; Ong, N. P.

    2018-05-01

    Research in topological matter has expanded to include the Dirac and Weyl semimetals1-10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.

  20. Identifying Anomalous Citations for Objective Evaluation of Scholarly Article Impact.

    Directory of Open Access Journals (Sweden)

    Xiaomei Bai

    Full Text Available Evaluating the impact of a scholarly article is of great significance and has attracted great attentions. Although citation-based evaluation approaches have been widely used, these approaches face limitations e.g. in identifying anomalous citations patterns. This negligence would inevitably cause unfairness and inaccuracy to the article impact evaluation. In this study, in order to discover the anomalous citations and ensure the fairness and accuracy of research outcome evaluation, we investigate the citation relationships between articles using the following factors: collaboration times, the time span of collaboration, citing times and the time span of citing to weaken the relationship of Conflict of Interest (COI in the citation network. Meanwhile, we study a special kind of COI, namely suspected COI relationship. Based on the COI relationship, we further bring forward the COIRank algorithm, an innovative scheme for accurately assessing the impact of an article. Our method distinguishes the citation strength, and utilizes PageRank and HITS algorithms to rank scholarly articles comprehensively. The experiments are conducted on the American Physical Society (APS dataset. We find that about 80.88% articles contain contributed citations by co-authors in 26,366 articles and 75.55% articles among these articles are cited by the authors belonging to the same affiliation, indicating COI and suspected COI should not be ignored for evaluating impact of scientific papers objectively. Moreover, our experimental results demonstrate COIRank algorithm significantly outperforms the state-of-art solutions. The validity of our approach is verified by using the probability of Recommendation Intensity.

  1. Identifying Anomalous Citations for Objective Evaluation of Scholarly Article Impact.

    Science.gov (United States)

    Bai, Xiaomei; Xia, Feng; Lee, Ivan; Zhang, Jun; Ning, Zhaolong

    2016-01-01

    Evaluating the impact of a scholarly article is of great significance and has attracted great attentions. Although citation-based evaluation approaches have been widely used, these approaches face limitations e.g. in identifying anomalous citations patterns. This negligence would inevitably cause unfairness and inaccuracy to the article impact evaluation. In this study, in order to discover the anomalous citations and ensure the fairness and accuracy of research outcome evaluation, we investigate the citation relationships between articles using the following factors: collaboration times, the time span of collaboration, citing times and the time span of citing to weaken the relationship of Conflict of Interest (COI) in the citation network. Meanwhile, we study a special kind of COI, namely suspected COI relationship. Based on the COI relationship, we further bring forward the COIRank algorithm, an innovative scheme for accurately assessing the impact of an article. Our method distinguishes the citation strength, and utilizes PageRank and HITS algorithms to rank scholarly articles comprehensively. The experiments are conducted on the American Physical Society (APS) dataset. We find that about 80.88% articles contain contributed citations by co-authors in 26,366 articles and 75.55% articles among these articles are cited by the authors belonging to the same affiliation, indicating COI and suspected COI should not be ignored for evaluating impact of scientific papers objectively. Moreover, our experimental results demonstrate COIRank algorithm significantly outperforms the state-of-art solutions. The validity of our approach is verified by using the probability of Recommendation Intensity.

  2. Anomalous hall effect in ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  3. Multiwavelength anomalous diffraction and diffraction anomalous fine structure to study composition and strain of semiconductor nano structures

    International Nuclear Information System (INIS)

    Favre-Nicolin, V.; Proietti, M.G.; Leclere, C.; Renevier, H.; Katcho, N.A.; Richard, M.I.

    2012-01-01

    The aim of this paper is to illustrate the use of Multi-Wavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) spectroscopy for the study of structural properties of semiconductor nano-structures. We give a brief introduction on the basic principles of these techniques providing a detailed bibliography. Then we focus on the data reduction and analysis and we give specific examples of their application on three different kinds of semiconductor nano-structures: Ge/Si nano-islands, AlN capped GaN/AlN Quantum Dots and AlGaN/AlN Nano-wires. We show that the combination of MAD and DAFS is a very powerful tool to solve the structural problem of these materials of high technological impact. In particular, the effects of composition and strain on diffraction are disentangled and composition can be determined in a reliable way, even at the interface between nano-structure and substrate. We show the great possibilities of this method and give the reader the basic tools to undertake its use. (authors)

  4. Thermal conductivity and magnon-phonon resonant interaction in antiferromagnetic ferrous chloride

    International Nuclear Information System (INIS)

    Laurence, Guy

    1973-01-01

    An apparatus has been studied and built to measure thermal conductivity between 0,3 K and 80 K. The thermal conductivity in the c plane and along the c axis have been measured in FeCl 2 . These results show an anomalous behaviour of the thermal conductivity below the Neel temperature. A calculation of the thermal conductivity of magneto-elastic modes arising from a magnon-phonon resonant interaction renders an account of this behaviour. From the present results, the magneto-elastic coupling constant G 44 is found to be 3,5 meV. Finally, an experimental study of the thermal conductivity magnetic field dependence of FeCl 2 was performed.(author) [fr

  5. Anomalous superconductivity in black phosphorus under high pressures

    International Nuclear Information System (INIS)

    Kawamura, H.; Tachikawa, K.

    1984-01-01

    Pressure induced superconductivity in single crystals of black phosphorus has been studied. Maximum onset Tsub(c) was near 13 K. The anomalous superconductivity may be explained in terms of excitonic mechanism. (author)

  6. Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations

    International Nuclear Information System (INIS)

    Khalili, Farit Ya

    2003-01-01

    Several physical effects and methodological issues relating to the ground state of an oscillator are considered. Even in the simplest case of an ideal lossless harmonic oscillator, its ground state exhibits properties that are unusual from the classical point of view. In particular, the mean value of the product of two non-negative observables, kinetic and potential energies, is negative in the ground state. It is shown that semiclassical and rigorous quantum approaches yield substantially different results for the ground state energy fluctuations of an oscillator with finite losses. The dependence of zero-point fluctuations on the boundary conditions is considered. Using this dependence, it is possible to transmit information without emitting electromagnetic quanta. Fluctuations of electromagnetic pressure of zero-point oscillations are analyzed, and the corresponding mechanical friction is considered. This friction can be viewed as the most fundamental mechanism limiting the quality factor of mechanical oscillators. Observation of these effects exceeds the possibilities of contemporary experimental physics but almost undoubtedly will be possible in the near future. (methodological notes)

  7. Charge-dependent correlations from event-by-event anomalous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Yuji [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Hirano, Tetsufumi [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Kharzeev, Dmitri E. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Department of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-12-15

    We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.

  8. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  9. Anomalous inferior vena cava in association with omphalocele: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Antoniou, E E.H. [Dept. of Pediatrics, School of Medicine, Univ. of Tokushima (Japan); Matsuoka, S [Dept. of Pediatrics, School of Medicine, Univ. of Tokushima (Japan); Mori, K [Dept. of Pediatrics, School of Medicine, Univ. of Tokushima (Japan); Hayabuchi, Y [Dept. of Pediatrics, School of Medicine, Univ. of Tokushima (Japan); Kuroda, Y [Dept. of Pediatrics, School of Medicine, Univ. of Tokushima (Japan)

    1995-06-01

    We present the case of a 6-year-old boy who had an omphalocele repaired at day 1 of life. He had a secundum atrial septal defect and an anomalous inferior vena cava of a type which has not been previously reported. Cine-MRI was a useful noninvasive tool for diagnosing the anomalous subaortic innominate vein and four immature vessels which make up the venous drainage systems of the lumbar region. (orig.)

  10. Anomalous inferior vena cava in association with omphalocele: a case report

    International Nuclear Information System (INIS)

    Antoniou, E.E.H.; Matsuoka, S.; Mori, K.; Hayabuchi, Y.; Kuroda, Y.

    1995-01-01

    We present the case of a 6-year-old boy who had an omphalocele repaired at day 1 of life. He had a secundum atrial septal defect and an anomalous inferior vena cava of a type which has not been previously reported. Cine-MRI was a useful noninvasive tool for diagnosing the anomalous subaortic innominate vein and four immature vessels which make up the venous drainage systems of the lumbar region. (orig.)

  11. Prediction of a quantum anomalous Hall state in Co-decorated silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-01-09

    Based on first-principles calculations, we demonstrate that Co-decorated silicene can host a quantum anomalous Hall state. The exchange field induced by the Co atoms combined with the strong spin-orbit coupling of the silicene opens a nontrivial band gap at the K point. As compared to other transition metals, Co-decorated silicene is unique in this respect, since usually hybridization and spin-polarization induced in the silicene suppress a quantum anomalous Hall state.

  12. Prediction of a quantum anomalous Hall state in Co-decorated silicene

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Singh, Nirpendra

    2014-01-01

    Based on first-principles calculations, we demonstrate that Co-decorated silicene can host a quantum anomalous Hall state. The exchange field induced by the Co atoms combined with the strong spin-orbit coupling of the silicene opens a nontrivial band gap at the K point. As compared to other transition metals, Co-decorated silicene is unique in this respect, since usually hybridization and spin-polarization induced in the silicene suppress a quantum anomalous Hall state.

  13. Strain, size and composition of InAs quantum sticks, embedded in InP, determined via X-ray anomalous diffraction and diffraction anomalous fine structure in grazing incidence

    International Nuclear Information System (INIS)

    Letoublon, A.; Favre-Nicolin, V.; Renevier, H.; Proietti, M.G.; Monat, C.; Gendry, M.; Marty, O.; Priester, C.

    2005-01-01

    We report on the study of strain, size and composition of small-size encapsulated semiconductor nanostructures. We show that the partial structure factor of As atoms in InAs stick-like nanostructures (quantum sticks), embedded in InP, can be directly extracted from grazing incidence anomalous X-ray diffraction maps at the As K-edge. We have recovered the average height and strain of the islands and determined their composition. The average height of the quantum sticks (QSs), as deduced from the width of the structure factor profile is 2.54 nm. The InAs out of plane deformation, relative to InP, is equal to 6.1%. Fixed-Q anomalous diffraction spectra, measured at the As K-edge, in grazing incidence provide clear evidence of pure InAs QSs. This is confirmed by the analysis of the diffraction anomalous fine structure (DAFS) that also gives a direct way to recover the strain accomodation inside the quantum sticks. Finite difference method calculations reproduce well the diffraction data. Chemical mixing at interfaces is at most 1 ML. This paper shows that ultimate application of anomalous diffraction and DAFS together with reciprocal space maps is a powerful method to sudy the structural properties of nanostructures

  14. Anomalous human behavior detection: An Adaptive approach

    NARCIS (Netherlands)

    Leeuwen, C. van; Halma, A.; Schutte, K.

    2013-01-01

    Detection of anomalies (outliers or abnormal instances) is an important element in a range of applications such as fault, fraud, suspicious behavior detection and knowledge discovery. In this article we propose a new method for anomaly detection and performed tested its ability to detect anomalous

  15. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  16. Anomalous deceleration of light ion beam in plasm of inertial confinement fusion

    International Nuclear Information System (INIS)

    Abe, Takashi; Niu, Keishiro

    1981-01-01

    The ion beam propagation in inertial confinement fusion by light ion beam is analysed. The anomalous deceleration of the beam ion occurs, when the beam including the electron interacts with the background plasma with a comparable number density. This deceleration is caused by the two stream instability between the beam and the background plasma electrons and then becomes maximum when each density is equivalent. The anomalous deceleration rate of the beam ion is computed by using the quasilinear theory. It is shown that the anomalous deceleration which the beam ion (10 17 cm - 3 ) accepts from the background plasma (10 18 cm - 3 ) is equivalent to the classical one from the background plasma with solid density (10 21 cm - 3 ). (author)

  17. The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Bui, Ngoc Hung; Jung, Hyun Seok; Lee, Wook Hyun

    2003-01-01

    In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40 vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90 .deg., the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest

  18. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  19. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  20. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  1. Ghost anomalous dimension in asymptotically safe quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2010-01-01

    We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension η c is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of η c ≅-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.

  2. Anharmonic oscillator and Bogoliubov transformation

    International Nuclear Information System (INIS)

    Pattnayak, G.C.; Torasia, S.; Rath, B.

    1990-01-01

    The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)

  3. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  4. Anomalous scaling due to correlations: limit theorems and self-similar processes

    International Nuclear Information System (INIS)

    Stella, Attilio L; Baldovin, Fulvio

    2010-01-01

    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, explain their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance

  5. Anomalous Hall effect in Fe/Au multilayers

    KAUST Repository

    Zhang, Q.; Li, P.; Wen, Yan; Zhao, C.; Zhang, Junwei; Manchon, Aurelien; Mi, W. B.; Peng, Y.; Zhang, Xixiang

    2016-01-01

    To understand the interfacial scattering effect on the anomalous Hall effect (AHE), we prepared multilayers of (Fe(36/n)nm/Au(12/n)nm)n using an e-beam evaporator. This structure design allowed us to investigate the effect of interfacial scattering on the AHE, while keeping the samples' thickness and composition unchanged. We measured the (magneto)transport properties of the samples in a wide temperature range (10–310 K) with magnetic fields up to 50 kOe. We found that the scaling between the anomalous Hall resistivity (ρAHE) and longitudinal resistivity (ρxx) can be roughly described by ρAHE∼ργxx with γ=2.65±0.10 and 1.90 ± 0.04 for samples from n=1 to n=4 and samples from n=4 to n=12, respectively. Our quantitative analysis results showed that the interfacial scattering suppresses the contribution of the intrinsic mechanism and gives rise to a side-jump contribution.

  6. Anomalous Hall effect in Fe/Au multilayers

    KAUST Repository

    Zhang, Q.

    2016-07-22

    To understand the interfacial scattering effect on the anomalous Hall effect (AHE), we prepared multilayers of (Fe(36/n)nm/Au(12/n)nm)n using an e-beam evaporator. This structure design allowed us to investigate the effect of interfacial scattering on the AHE, while keeping the samples\\' thickness and composition unchanged. We measured the (magneto)transport properties of the samples in a wide temperature range (10–310 K) with magnetic fields up to 50 kOe. We found that the scaling between the anomalous Hall resistivity (ρAHE) and longitudinal resistivity (ρxx) can be roughly described by ρAHE∼ργxx with γ=2.65±0.10 and 1.90 ± 0.04 for samples from n=1 to n=4 and samples from n=4 to n=12, respectively. Our quantitative analysis results showed that the interfacial scattering suppresses the contribution of the intrinsic mechanism and gives rise to a side-jump contribution.

  7. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  8. Resonator controller for the super-conducting LINAC

    International Nuclear Information System (INIS)

    Joshi, Gopal; Sujo, C.I.; Karande, Jitendra

    2001-01-01

    A resonator controller has been developed at Electronics Division, BARC, to stabilize the amplitude and phase of RF fields in the super-conducting resonators of BARC-TIFR linac. Due to reduced losses these resonators have intrinsic bandwidth of the order of one hertz at 150MHz whereas the vibration induced center frequency changes are of the order of a few hertz. In the control strategy followed the resonator is made the frequency selective part of an oscillator. The phase lock is achieved by dynamically adding a phase shift in the oscillator. In this paper we present the control strategy, implementation details and performance obtained with this controller. (author)

  9. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  10. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.

  11. Anomalous thermodynamic behaviour of novel compounds: inelastic neutron scattering and lattice dynamics studies

    International Nuclear Information System (INIS)

    Mittal, R.

    2014-01-01

    The understanding of the thermodynamic properties of solids has important applications in diverse areas like condensed matter physics, materials science, mineralogy, geophysics, etc. We have been extensively investigating anomalous thermodynamic properties of compounds using the techniques of inelastic neutron scattering and lattice dynamics. We would present some of the results from our recent studies. Studies of materials exhibiting anomalous thermal expansion are of interest due to their fundamental scientific importance and potential applications in ceramic, optical and electronic industry etc. We have studied the thermodynamic properties of negative thermal expansion (NTE) compounds ZrW 2 O 8 , HfW 2 O 8 , ZrMo 2 O 8 , ZrV 2 O 7 , HfV 2 O 7 , Zn(CN) 2 , Cu 2 O, Ag 2 O, Ag 3 Co(CN) 6 and Ag 3 Fe(CN) 6 . Our calculations predicted that large softening of the phonon spectrum involving librational and translational modes below 10 MeV would be responsible for anomalous thermal expansion behaviour. High pressure inelastic neutron scattering experiments carried by us on cubic ZrW 2 O 8 , ZrMo 2 O 8 and Zn(CN) 2 confirmed the phonon softening. Our studies indicate that unusual phonon softening of low energy modes is able to account for the thermal expansion behaviour in these compounds. Superionic conduction in fluorite-structured (anti-fluorite, Li 2 O) oxides (MO 2 , M= U, Th) have applications in energy storage, conversion and nuclear industry. The possible role of phonon in initiation of diffusion has been studied in Li 2 O. We found that in the superionic regime lithium atoms may exhibit macroscopic movement along (100) direction. The microscopic modeling or simulation is found to play a pivotal role in understanding the conduction processes at high temperatures in Li 2 O. We have also studied zircon structured compounds MSiO 4 (M=Zr, Hf, Th, U), RPO 4 , (R=rare earth atom). The compounds are known to transform to the scheelite (body centered tetragonal, I4 1 /a

  12. Importance of collisional rates for anomalous absorption in H2CO molecule

    International Nuclear Information System (INIS)

    Sharma, Monika; Sharma, M.K.; Chandra, Suresh

    2012-01-01

    Formaldehyde (H 2 CO) is the first organic molecule identified in a number of galactic and extragalactic radio sources through its transition 1 10 –1 11 at 4.830 GHz in absorption. Later on, this transition was found in anomalous absorption. In some cosmic objects, this transition however was found in emission and even as a maser radiation. Since the transition 1 10 –1 11 of ortho-H 2 CO is considered as a unique probe of high density gas at low temperature, the study of H 2 CO has always been of great importance for astrophysicists as well as for spectroscopists. In view of the availability of better input data required for such investigation, it is worth while to investigate again about the radiations from ortho-H 2 CO. In the present study, we have investigated anomalous absorption of 1 10 –1 11 , 2 11 –2 12 and 3 12 –3 13 transitions of ortho-H 2 CO. The present results are more reliable as compared to those obtained earlier. -- Highlights: ► Accurate rotational levels and A-coefficients for H 2 CO are calculated. ► Transitions 1 10 –1 11 , 2 11 –2 12 and 3 12 –3 13 show anomalous absorption. ► Anomalous absorption is found to increase with kinetic temperature. ► Anomalous absorption may be found for n H 2 ≈10 4 cm −3 . ► Colliding partner para-H 2 may be approximated as He atom.

  13. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    Science.gov (United States)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in

  14. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  15. Conductivity of strongly pumped superconductors. An electron-phonon system far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Krull, Holger

    2015-01-29

    The study of nonequilibrium physics is of great interest, because one can capture novel phenomena and properties which are hidden at equilibrium, e.g., one can study relaxation processes. A common way to study the nonequilibrium dynamics of a sample is a pump-probe experiment. In a pump probe experiment an intense laser pulse, the so called pump pulse, excites the sample and takes it out of equilibrium. After a certain delay time a second pulse, the probe pulse, measures the actual state of the sample. In this thesis, we theoretically study the pump-probe response of superconductors. On the one hand we are interest in the effect of a pump pulse and on the other hand we want to provide the pump-probe response, such that experimental measurement can be easily interpreted. In order to do this, we use the density matrix formalism to compute the pump-probe response of the system. In the density matrix formalism equations of motion are set up for expectation values of interest. In order to study the dynamics induced by a pump pulse, we compute the temporal evolution of the quasiparticle densities and the mean phonon amplitude. We find that the induced dynamics of the system depends on characteristics of the pump pulse. For short pulses, the system is pushed into the nonadiabatic regime. In this regime, the order parameter is lowered during the pump pulse and shows a 1/(√(t))-decaying oscillation afterwards. In addition, coherent phonons are generated, which is resonantly enhanced if the frequency of the order parameter oscillation is equal to the phonon frequency. For long pulses, the system is pushed into the adiabatic regime. In this regime, the order parameter is lowered during the pulse and remains almost constant afterwards. Further, there is almost no generation of coherent phonons. For the pump-probe response we compute the conductivity induced by the probe pulse. The conductivity is a typical observable in real pump-probe experiments. Hence, it is possible to

  16. Conductivity of strongly pumped superconductors. An electron-phonon system far from equilibrium

    International Nuclear Information System (INIS)

    Krull, Holger

    2015-01-01

    The study of nonequilibrium physics is of great interest, because one can capture novel phenomena and properties which are hidden at equilibrium, e.g., one can study relaxation processes. A common way to study the nonequilibrium dynamics of a sample is a pump-probe experiment. In a pump probe experiment an intense laser pulse, the so called pump pulse, excites the sample and takes it out of equilibrium. After a certain delay time a second pulse, the probe pulse, measures the actual state of the sample. In this thesis, we theoretically study the pump-probe response of superconductors. On the one hand we are interest in the effect of a pump pulse and on the other hand we want to provide the pump-probe response, such that experimental measurement can be easily interpreted. In order to do this, we use the density matrix formalism to compute the pump-probe response of the system. In the density matrix formalism equations of motion are set up for expectation values of interest. In order to study the dynamics induced by a pump pulse, we compute the temporal evolution of the quasiparticle densities and the mean phonon amplitude. We find that the induced dynamics of the system depends on characteristics of the pump pulse. For short pulses, the system is pushed into the nonadiabatic regime. In this regime, the order parameter is lowered during the pump pulse and shows a 1/(√(t))-decaying oscillation afterwards. In addition, coherent phonons are generated, which is resonantly enhanced if the frequency of the order parameter oscillation is equal to the phonon frequency. For long pulses, the system is pushed into the adiabatic regime. In this regime, the order parameter is lowered during the pulse and remains almost constant afterwards. Further, there is almost no generation of coherent phonons. For the pump-probe response we compute the conductivity induced by the probe pulse. The conductivity is a typical observable in real pump-probe experiments. Hence, it is possible to

  17. Thermal conductivity of high purity vanadium

    International Nuclear Information System (INIS)

    Jung, W.D.

    1975-01-01

    The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity

  18. Anomalous dimension in a two-species reaction-diffusion system

    Science.gov (United States)

    Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.

    2018-01-01

    We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \

  19. Conductance maps of quantum rings due to a local potential perturbation.

    Science.gov (United States)

    Petrović, M D; Peeters, F M; Chaves, A; Farias, G A

    2013-12-11

    We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the ϕ0 periodic Aharonov-Bohm oscillation pattern into a ϕ0/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total conductance map.

  20. Physical activity and anomalous bodily experiences in patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Nyboe, Lene; Moeller, Marianne K; Vestergaard, Claus H

    2016-01-01

    BACKGROUND: Low physical activity is strongly correlated with metabolic syndrome (MetS) and poor physical health. Although the prevalence of MetS is high in patients with first-episode schizophrenia (FES), little is still known about the level of and possible barriers for physical activity in FES....... AIM: The purpose of the study was to compare physical activity in patients with FES with healthy controls; to investigate changes in physical activity over 1 year of follow-up; and to explore the correlations of physical activity and anomalous bodily experiences reported by patients with FES. METHODS......: Both physical activity and aerobic fitness were measured. Anomalous bodily experiences were measured by selected items from the Examination of Anomalous Self-Experience and The Body Awareness Scale. Psychopathological data comprising negative and positive symptoms and data on psychotropic medication...

  1. Analytic cognitive style predicts paranormal explanations of anomalous experiences but not the experiences themselves: Implications for cognitive theories of delusions.

    Science.gov (United States)

    Ross, Robert M; Hartig, Bjoern; McKay, Ryan

    2017-09-01

    It has been proposed that delusional beliefs are attempts to explain anomalous experiences. Why, then, do anomalous experiences induce delusions in some people but not in others? One possibility is that people with delusions have reasoning biases that result in them failing to reject implausible candidate explanations for anomalous experiences. We examine this hypothesis by studying paranormal interpretations of anomalous experiences. We examined whether analytic cognitive style (i.e. the willingness or disposition to critically evaluate outputs from intuitive processing and engage in effortful analytic processing) predicted anomalous experiences and paranormal explanations for these experiences after controlling for demographic variables and cognitive ability. Analytic cognitive style predicted paranormal explanations for anomalous experiences, but not the anomalous experiences themselves. We did not study clinical delusions. Our attempts to control for cognitive ability may have been inadequate. Our sample was predominantly students. Limited analytic cognitive style might contribute to the interpretation of anomalous experiences in terms of delusional beliefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anomalous properties of technetium clusters

    International Nuclear Information System (INIS)

    Kryuchkov, S.V.

    1985-01-01

    On the basis of critical evaluation of literature data in the field of chemistry of technetium cluster compounds with ligands of a weak field a conclusion is made on specific, ''anomalous'' properties of technetium cluster complexes which consist in an increased ability of the given element to the formation of a series of binuclear and multinuclear clusters, similar in composition and structure and easily transforming in each other. The majority of technetium clusters unlike similar compounds of other elements are paramagnetic with one unpaired electron on ''metallic'' MO of loosening type. All theoretical conceptions known today on the electronic structure of technetium clusters are considered. It is pointed out, that the best results in the explanation of ''anomalous'' properties of technetium clusters can be obtained in the framework of nonempirical methods of self-consistent field taking into account configuration interactions. It is also shown, that certain properties of technetium clusters can be explained on the basis of qualitative model of Coulomb repulsion of metal atoms in clusters. The conclusion is made, that technetium position in the Periodic table, as well as recently detected technetium property to the decrease of effective charge on its atoms during M-M bond formation promote a high ability of the element to cluster formation both with weak field ligands and with strong field one

  3. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  4. Anomalous magnetotransport of a surface electron layer above liquid helium

    International Nuclear Information System (INIS)

    Grigor'ev, V.N.; Kovdrya, Yu.Z.; Nikolaenko, V.A.; Kirichek, O.I.; Shcherbachenko, R.I.

    1991-01-01

    The magnetoconductivity σ xx of a surface electron layer above liquid helium has been measured at temperatures between 0.5-1.6 K, for concentrations up to about 4x10 8 cm -2 , in magnetic fields up to 25 kOe. As was observed, σ xx first decreases with lowering temperature, then has a minimum and at T xy , the earlier ascertained anomalous behaviour of the magnetoresistance ρ xx taken into consideration. The calculated dependence of ρ xx on T is in satisfactory agreement with the anomalous dependence ρ xx (T) found earlier by experiment

  5. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    Science.gov (United States)

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  6. Leading logarithms in the anomalous sector of two-flavour QCD

    International Nuclear Information System (INIS)

    Bijnens, Johan; Kampf, Karol; Lanz, Stefan

    2012-01-01

    We add the Wess-Zumino-Witten term to the N=3 massive nonlinear sigma model and study the leading logarithms in the anomalous sector. We obtain the leading logarithms to six loops for π 0 →γ ⁎ γ ⁎ and to five loops for γ ⁎ πππ. In addition we extend the earlier work on the mass and decay constant to six loops and the vector form factor to five loops. We present numerical results for the anomalous processes and the vector form factor. In all cases the series are found to converge rapidly.

  7. Search for anomalous multiphoton production at 100-300 GeV

    International Nuclear Information System (INIS)

    Burke, D.L.; Gustafson, H.R.; Jones, L.W.; Longo, M.J.

    1975-01-01

    A search for anomalous multiphoton production in neutron-CH 2 collisions has been carried out at Fermilab. Both anomalous γ events as might be produced in the annihilation of a magnetic monopole pair, as well as events with smaller opening angles, such as those observed in cosmic ray emulsions by Schein et al. and others were sought. No evidence for either type of event was found. An upper limit approximately 2.7 μb is placed on the production cross section for 'Schein' events or approximately10 -2 that deduced from the cosmic ray data. (Auth.)

  8. Primordial oscillations in life: Direct observation of glycolytic oscillations in individual HeLa cervical cancer cells

    Science.gov (United States)

    Amemiya, Takashi; Shibata, Kenichi; Itoh, Yoshihiro; Itoh, Kiminori; Watanabe, Masatoshi; Yamaguchi, Tomohiko

    2017-10-01

    We report the first direct observation of glycolytic oscillations in HeLa cervical cancer cells, which we regard as primordial oscillations preserved in living cells. HeLa cells starved of glucose or both glucose and serum exhibited glycolytic oscillations in nicotinamide adenine dinucleotide (NADH), exhibiting asynchronous intercellular behaviors. Also found were spatially homogeneous and inhomogeneous intracellular NADH oscillations in the individual cells. Our results demonstrate that starved HeLa cells may be induced to exhibit glycolytic oscillations by either high-uptake of glucose or the enhancement of a glycolytic pathway (Crabtree effect or the Warburg effect), or both. Their asynchronous collective behaviors in the oscillations were probably due to a weak intercellular coupling. Elucidation of the relationship between the mechanism of glycolytic dynamics in cancer cells and their pathophysiological characteristics remains a challenge in future.

  9. High-resolution coronary MR angiography for evaluation of patients with anomalous coronary arteries: visualization of the intramural segment

    Energy Technology Data Exchange (ETDEWEB)

    Biko, David M. [UCSF Benioff Children' s Hospital Oakland, Department of Diagnostic Imaging, Oakland, CA (United States); The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Chung, Claudia; Chung, Taylor [UCSF Benioff Children' s Hospital Oakland, Department of Diagnostic Imaging, Oakland, CA (United States); Hitt, David M. [Philips Healthcare, Cleveland, OH (United States); Kurio, Gregory [UCSF Benioff Children' s Hospital Oakland, Department of Cardiology, Oakland, CA (United States); Reinhartz, Olaf [UCSF Benioff Children' s Hospital Oakland, Department of Cardiac Surgery, Oakland, CA (United States)

    2015-08-15

    Anomalous origin of the coronary artery from the contralateral coronary sinus is a rare coronary anomaly associated with sudden death. The inter-arterial course is most closely associated with sudden death, but it has been suggested that the presence of an intramural segment of a right anomalous coronary is associated with more symptoms and therefore may be an important criterion for intervention in these patients. To demonstrate that MR angiography can accurately determine the presence or absence of an intramural segment in an anomalous coronary artery. All studies of children who underwent MR angiography for the evaluation of an anomalous coronary artery were retrospectively reviewed by two pediatric radiologists in consensus. Criteria for an intramural anomalous coronary artery were the presence of a small or slit-like ostium and the relative smaller size of the proximal intramural portion of the coronary artery in relation to the more distal epicardial coronary artery. The anomalous coronary artery was classified as not intramural if these two findings were absent. These findings were correlated with operative reports confirming the presence or absence of an intramural segment. Twelve patients (86%) met MR angiography criteria for the presence of an intramural course. Only 2 patients (14%) met MR angiography criteria for a non-intramural course. When correlating with intraoperative findings, MR angiography was successful in distinguishing between intramural and non-intramural anomalous coronary arteries in all cases (P = 0.01). MR angiography may be able to reliably identify the intramural segment of an anomalous coronary artery in older children using the imaging criteria of a small or slit-like ostium and relative decrease in size of the proximal portion of the anomalous coronary artery compared to the distal portion of the anomalous coronary artery. Determining the presence of the intramural segment may help with surgical planning and may be an important

  10. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic of the ampli......A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  11. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  12. Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation

    Science.gov (United States)

    Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien

    2011-03-01

    We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.

  13. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  14. Anomalous Nernst effect in type-II Weyl semimetals

    Science.gov (United States)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  15. Large spin behavior of anomalous dimensions and short-long strings duality

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, George; Savvidy, George, E-mail: georgiou@inp.demokritos.gr, E-mail: savvidy@inp.demokritos.gr [Demokritos National Research Center, Institute of Nuclear Physics, Ag. Paraskevi, GR-15310 Athens (Greece)

    2011-07-29

    We consider the semi-classical string soliton solution of Gubser, Klebanov and Polyakov which represents highly excited states on the leading Regge trajectory, with large spin in AdS{sub 5}. A prescription relates this soliton solution with the corresponding field theory operators with many covariant derivatives, whose anomalous scaling dimension grows logarithmically with the spacetime spin. We explicitly derive the coefficients in the large spin expansion of the anomalous dimension in the leading ln{sup n}S/S{sup n} and next-to-leading ln{sup n}S/S{sup n+1} orders. We develop an iteration procedure which, in principle, allows us to derive all terms in the large spin expansion of the anomalous scaling dimension of twist two operators. Our string theory results are consistent with the conjectured 'reciprocity' relation, which has been verified to hold in perturbation theory up to five loops in N = 4 SYM. We also derive a duality relation between long and short strings.

  16. Neuromorphic computing with nanoscale spintronic oscillators.

    Science.gov (United States)

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  17. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  18. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    Science.gov (United States)

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS ...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  19. Micro-instabilities and anomalous transport

    International Nuclear Information System (INIS)

    Connor, J.W.

    1992-01-01

    In order to optimise the design of a tokamak fusion reactor it is necessary to understand how the energy confinement time depends on the plasma and machine parameters. In principle the neo-classical theory provides this information but empirical evidence yields confinement times up to two orders of magnitude less than the predictions of this model. Experimental evidence of microscopic fluctuations in plasma density and other quantities suggests turbulent electro-magnetic fluctuations may be responsible for this anomalous transport. (Author)

  20. Anomalous vector-boson self-interactions

    International Nuclear Information System (INIS)

    Nir, Y.

    1988-03-01

    We study the possibility that vector-boson self-couplings may differ from their standard model values. We find that known constraints from loop-effects and from unitarity already imply that such deviations are of order 10 -2 or less. Consequently, even if the correct model differs from the standard model and even if the energy scale of new physics is as low as 1 TeV, a direct observation of anomalous couplings is very improbable in the LEP-200 and Tevatron experiments. (author)