WorldWideScience

Sample records for anodized nanotubular titanium

  1. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  2. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications

    Science.gov (United States)

    Sirivisoot, Sirinrath; Yao, Chang; Xiao, Xingcheng; Sheldon, Brian W.; Webster, Thomas J.

    2007-09-01

    Titanium (Ti) is the most widely implanted orthopedic material. However, current formulations of Ti have an average orthopedic implant functional lifetime of only 10-15 years. While there are many reasons why orthopedic implants fail, one is a lack of initial and sustained integration into juxtaposed bone. To improve the cytocompatibility properties of Ti for orthopedic applications, parallel multiwalled carbon nanotubes (CNTs) were grown from the pores of anodized nanotubular Ti by a chemical vapor deposition process in the present study. The results of this study provided evidence, for the first time, that osteoblast (bone forming cell) functions (specifically, alkaline phosphatase activity and calcium deposition) were significantly greater on CNTs grown from anodized Ti than on anodized Ti without CNTs and currently-used Ti in orthopedics for up to 21 days. In summary, this study showed that bone growth could possibly be enhanced on currently-used Ti implants with protruding CNTs and, thus, they should be further studied for orthopedic applications.

  3. HA coating on titanium with nanotubular anodized TiO2 intermediate layer via electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-qin; TAO Jie; WANG Ling; HE Ping-ting; WANG Tao

    2008-01-01

    Hydroxyapatite (HA) coating has been prepared on titanium substrate through an electrochemical deposition approach.In order to improve the bonding strength between HA coating and Ti substrate,a well oriented and uniform titanium oxide nanotube array on the surface of titanium substrate was applied by means of anodic oxidation pre-treatment.Then the calcium hydrogen phosphate (CaHPO4-2H2O,DCPD) coating,as the precursor of hydroxyapatite coating,was electrodeposited on the anodized Ti.At the initial stage of electro-deposition,the DCPD crystals,in nanometer precipitates,are anchored in and between the tubes.With increasing the deposition time,the nanometer DCPD crystals are connected together to form a continuous coating on titanium oxide nanotube array.Finally,the DCPD coating is converted into hydroxyapatite one simply by being immersed in alkaline solution.

  4. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    OpenAIRE

    Webster, Thomas

    2008-01-01

    George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone). To improve properties of titanium ...

  5. Anodic TiO2 nanotubular arrays with pre-synthesized hydroxyapatite--an effective approach to enhance the biocompatibility of titanium.

    Science.gov (United States)

    Wang, Lu-Ning; Lin, Long-Xiang; Lin, Chang-Jian; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-08-01

    Electrochemically anodized TiO2 nanotubular arrays can provide large surface areas for biological species attachment. In order to further enhance the biocompatibility of Ti medical implants, we deposited a pre-synthesized hydroxyapatite inside and on the nanotubular arrays, and examined the biocompatibility of the anodized TiO2 nanotubular arrays with pre-synthesized hydroxyapatite by in vitro assessment in simulated body fluid, and in vitro cell culture. The results showed that the hydroxyapatite coating was able to be induced on TiO2 nanotubular arrays with pre-synthesized hydroxyapatite within 5 days while only a thin film composed of calcium phosphorous chemicals formed on as-formed TiO2 nanotubular arrays. The cell culture evaluation further proved the enhancement of cell attachment and proliferation on TiO2 nanotubular arrays with pre-synthesized hydroxyapatite as opposed to those without pre-synthesized hydroxyapatite. The present study proves that formation of TiO2 nanotubular arrays with pre-synthesized hydroxyapatite a promising method to enhance the biocompatibility of Ti implants. PMID:23882759

  6. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,3 1Chameleon Scientific, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA and coat it on titanium (Ti using molecular plasma deposition (MPD. NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. Keywords: hydroxyapatite, anodization, nanotechnology

  7. Effect of nanotubular-micro-roughened titanium surface on cell response in vitro and osseointegration in vivo

    International Nuclear Information System (INIS)

    This study was to evaluate wettability, cell response, and osseointegration of nanotubular titanium (Ti) surface by anodic oxidation. Commercially pure Ti discs were treated by polishing, sandblasting, and anodizing. These surfaces were characterized by scanning electron microscopy and contact angle measurement. MC3T3-E1 osteoblast cell was used to evaluate cell response in vitro. The cell morphology, cell viability, and alkaline phosphatase (ALP) specific activity were assessed. The Ti implants of 2.0 mm diameter and 5.0 mm long treated by anodizing and sandblasting/anodizing were inserted into the tibia of rats. After 3 weeks, the histology of the Ti-bone interface was examined. SEM observations showed that the anodizing and sandblasting/anodizing created the nanotubular surface and graded nanotubular-micro-roughened surfaces, respectively. The anodizing and sandblasting/anodizing significantly improved the hydrophilicity of Ti. The significant greatest cell spreading and ALP specific activity were observed on the graded nanotubular-micro-roughened surfaces treated by sandblasting/anodizing. The in vivo study shows that newly formed bone was intimately in contact with the nanotubular surfaces without adverse immune response. This study has suggested that the graded nanotubular-micro-roughened surface of Ti treated with sandblasting/anodizing is very promising in implantology due to improved hydrophilicity, favorable cell response, and excellent osseointegration.

  8. Effect of nanotubular-micro-roughened titanium surface on cell response in vitro and osseointegration in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kwi-Dug [Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of); Yang, Yunzhi, E-mail: Yunzhi.yang@uth.tmc.edu [Department of Restorative Dentistry and Biomaterials, University of Texas Health Science Center at Houston,6516 M.D. Anderson Blvd., Ste. 4.133, Houston, TX 77030 (United States); Lim, Hyun-Pil [Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of); Oh, Gye-Jeong; Koh, Jeong-Tae; Bae, In-Ho; Kim, Jaehyung [Dental Science Research Institute and BK21 Project, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of); Lee, Kwang-Min [Division of Materials Science and Engineering, Research Institute for Functional Surface Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Park, Sang-Won, E-mail: psw320@chonnam.ac.kr [Dental Science Research Institute and BK21 Project, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of)

    2010-01-01

    This study was to evaluate wettability, cell response, and osseointegration of nanotubular titanium (Ti) surface by anodic oxidation. Commercially pure Ti discs were treated by polishing, sandblasting, and anodizing. These surfaces were characterized by scanning electron microscopy and contact angle measurement. MC3T3-E1 osteoblast cell was used to evaluate cell response in vitro. The cell morphology, cell viability, and alkaline phosphatase (ALP) specific activity were assessed. The Ti implants of 2.0 mm diameter and 5.0 mm long treated by anodizing and sandblasting/anodizing were inserted into the tibia of rats. After 3 weeks, the histology of the Ti-bone interface was examined. SEM observations showed that the anodizing and sandblasting/anodizing created the nanotubular surface and graded nanotubular-micro-roughened surfaces, respectively. The anodizing and sandblasting/anodizing significantly improved the hydrophilicity of Ti. The significant greatest cell spreading and ALP specific activity were observed on the graded nanotubular-micro-roughened surfaces treated by sandblasting/anodizing. The in vivo study shows that newly formed bone was intimately in contact with the nanotubular surfaces without adverse immune response. This study has suggested that the graded nanotubular-micro-roughened surface of Ti treated with sandblasting/anodizing is very promising in implantology due to improved hydrophilicity, favorable cell response, and excellent osseointegration.

  9. Photocatalytic Deposition of Hydroxyapatite onto a Titanium Dioxide Nanotubular Layer with Fine Tuning of Layer Nanoarchitecture.

    Science.gov (United States)

    Ulasevich, Sviatlana A; Poznyak, Sergey K; Kulak, Anatoly I; Lisenkov, Aleksey D; Starykevich, Maksim; Skorb, Ekaterina V

    2016-04-26

    A new effective method of photocatalytic deposition of hydroxyapatite (HA) onto semiconductor substrates is proposed. A highly ordered nanotubular TiO2 (TNT) layer formed on titanium via its anodization is chosen as the photoactive substrate. The method is based on photodecomposition of the phosphate anion precursor, triethylphosphate (TEP), on the semiconductor surface with the following reaction of formed phosphate anions with calcium cations presented in the solution. HA can be deposited only on irradiated areas, providing the possibility of photoresist-free HA patterning. It is shown that HA deposition can be controlled via pH, light intensity, and duration of the process. Energy-dispersive X-ray spectroscopy profile analysis and glow discharge optical emission spectroscopy of HA-modified TNT prove that HA deposits over the entire TNT depth. High biocompatibility of the surfaces is proven by protein adsorption and pre-osteoblast cell growth. PMID:26991479

  10. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

    Directory of Open Access Journals (Sweden)

    Sepideh Minagar

    2015-03-01

    Full Text Available Valve metals such as titanium (Ti, zirconium (Zr, niobium (Nb and tantalum (Ta that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5, niobia (Nb2O5, zirconia (ZrO2 and titania (TiO2 in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants.

  11. Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application

    Science.gov (United States)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K.; Howard, Cameron; Mohapatra, Srikanta K.; Kamilla, Sushanta K.

    2010-04-01

    Titania (TiO2) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO2 nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO2 nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na2[H2EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO2 films, 20-41 µm thick containing ordered hexagonal TiO2 nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm2 with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  12. Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Lee, C.-Y.; Kirchgeorg, R.; Liu, N.; Lee, K.; Kment, Š.; Hubička, Zdeněk; Krýsa, J.; Olejníček, J.; Čada, M.; Zbořil, R.; Schmuki, P.

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9333-9341. ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Třešť, 16.09.2014-20.09.2014] Institutional support: RVO:68378271 Keywords : hematite * nanotubular * anodization * magnetron * sputtering * water splitting Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.221, year: 2014

  13. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    OpenAIRE

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, Lukas; MacManus-Driscoll, Judith L

    2010-01-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na(2)SO(4) plus 5 wt% NH(4)F with pH 7. At this pH, after 30 min of anodization, 3 microm length nanotubular titania arrays with top diameters of approximately 50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titan...

  14. Osteoblast response on co-modified titanium surfaces via anodization and electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Cem [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Chemistry Department, Aksaray University, Aksaray, 68100 (Turkey); Demirbilek, Murat; Yalçın, Eda [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Bozkurt, Murat; Doğan, Metin [Orthopaedics and Traumatology Division, Yıldırım Beyazıt University, School of Medicine, Cankaya, 06550 (Turkey); Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Chemistry Department, Hacettepe University, Ankara, Beytepe, 06800 (Turkey)

    2014-01-01

    Topography plays a key role in osseointegration and surface modifications at the subcellular level, increasing initial cell attachment in the early period. In the past decade, nanosized texture on metal like a nanotube layer and also more recently extracellular matrix like surface modifications – such as polymeric nanofibrils – have been proposed for a better osseointegration in the literature. Here, we investigate two types of nanoscaled modifications alone and together for the first time. We characterized different types of surface modifications morphologically and investigated how they affected osteoblast cells in vitro, in terms of cell adhesion, proliferation, alkaline phosphatase activity and calcium content. We anodized titanium samples with a thickness of 0.127 mm to obtain a nanotubular titania layer and the silk fibroin (SF), as a biocompatible polymeric material, was electrospun onto both anodized and unanodized samples to acquire 4 sample groups. We analyzed the resulting samples morphologically by scanning electron microscopy (SEM). Cell adhesion, proliferation, alkaline phosphatase (ALP) activity and calcium content were evaluated at 3, 7 and 14 days. We found that cell proliferation increased by 70% on the groups having two modifications respect to unmodified titanium and after 7 days, ALP activity and calcium content were 110% and 150%, respectively, higher on surfaces having both surface treatments than that of unmodified group. In conclusion, a nanotube layer and SF nanofibers on a titanium surface enhanced cell attachment and proliferation most. Comodification of titanium surfaces by anodization and SF electrospinning may be useful to enhance osseointegration but it requires in vivo confirmation.

  15. Osteoblast response on co-modified titanium surfaces via anodization and electrospinning

    International Nuclear Information System (INIS)

    Topography plays a key role in osseointegration and surface modifications at the subcellular level, increasing initial cell attachment in the early period. In the past decade, nanosized texture on metal like a nanotube layer and also more recently extracellular matrix like surface modifications – such as polymeric nanofibrils – have been proposed for a better osseointegration in the literature. Here, we investigate two types of nanoscaled modifications alone and together for the first time. We characterized different types of surface modifications morphologically and investigated how they affected osteoblast cells in vitro, in terms of cell adhesion, proliferation, alkaline phosphatase activity and calcium content. We anodized titanium samples with a thickness of 0.127 mm to obtain a nanotubular titania layer and the silk fibroin (SF), as a biocompatible polymeric material, was electrospun onto both anodized and unanodized samples to acquire 4 sample groups. We analyzed the resulting samples morphologically by scanning electron microscopy (SEM). Cell adhesion, proliferation, alkaline phosphatase (ALP) activity and calcium content were evaluated at 3, 7 and 14 days. We found that cell proliferation increased by 70% on the groups having two modifications respect to unmodified titanium and after 7 days, ALP activity and calcium content were 110% and 150%, respectively, higher on surfaces having both surface treatments than that of unmodified group. In conclusion, a nanotube layer and SF nanofibers on a titanium surface enhanced cell attachment and proliferation most. Comodification of titanium surfaces by anodization and SF electrospinning may be useful to enhance osseointegration but it requires in vivo confirmation.

  16. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions.

    Science.gov (United States)

    Amin Yavari, S; Loozen, L; Paganelli, F L; Bakhshandeh, S; Lietaert, K; Groot, J A; Fluit, A C; Boel, C H E; Alblas, J; Vogely, H C; Weinans, H; Zadpoor, A A

    2016-07-13

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i.e., antimicrobial behavior. An optimized anodizing protocol was used to create nanotubes on the entire surface area of direct metal printed porous titanium scaffolds. The nanotubes were then loaded by soaking them in three different concentrations (i.e., 0.02, 0.1, and 0.5 M) of AgNO3 solution. The antimicrobial behavior and cell viability of the developed biomaterials were assessed. As far as the early time points (i.e., up to 1 day) are concerned, the biomaterials were found to be extremely effective in preventing biofilm formation and decreasing the number of planktonic bacteria particularly for the middle and high concentrations of silver ions. Interestingly, nanotubes not loaded with antimicrobial agents also showed significantly smaller numbers of adherent bacteria at day 1, which may be attributed to the bactericidal effect of high aspect ratio nanotopographies. The specimens with the highest concentrations of antimicrobial agents adversely affected cell viability at day 1, but this effect is expected to decrease or disappear in the following days as the rate of release of silver ions was observed to markedly decrease within the next few days. The antimicrobial effects of the biomaterials, particularly the ones with the middle and high concentrations of antimicrobial agents, continued until 2 weeks. The potency of the developed biomaterials in decreasing the number of planktonic bacteria and hindering the formation of biofilms make

  17. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  18. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    Science.gov (United States)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L.; MacManus-Driscoll, J. L.

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 µm length nanotubular titania arrays with top diameters of ~50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 °C for 1 h in air. Annealing at temperatures above 500 °C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  19. The rapid growth of 3 μm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    International Nuclear Information System (INIS)

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 μm length nanotubular titania arrays with top diameters of ∼50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 deg. C for 1 h in air. Annealing at temperatures above 500 deg. C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  20. The rapid growth of 3 {mu}m long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Schmidt-Mende, L [Munich Department of Physics and Centre for NanoScience (CeNS), Ludwig-Maximilians University, Amalienstrasse, 54, 80799 Munich (Germany); MacManus-Driscoll, J L, E-mail: zainovia@eng.usm.my [Department of Materials and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2010-02-05

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na{sub 2}SO{sub 4} plus 5 wt% NH{sub 4}F with pH 7. At this pH, after 30 min of anodization, 3 {mu}m length nanotubular titania arrays with top diameters of {approx}50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH{sub 4}F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 deg. C for 1 h in air. Annealing at temperatures above 500 deg. C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti{sup 4+} leading to excessive growth and the nanotubular structure diminishes.

  1. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath.

    Science.gov (United States)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L; Macmanus-Driscoll, J L

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na(2)SO(4) plus 5 wt% NH(4)F with pH 7. At this pH, after 30 min of anodization, 3 microm length nanotubular titania arrays with top diameters of approximately 50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH(4)F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 degrees C for 1 h in air. Annealing at temperatures above 500 degrees C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti(4+) leading to excessive growth and the nanotubular structure diminishes. PMID:20023309

  2. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  3. Decreased cervical cancer cell adhesion on nanotubular titanium for the treatment of cervical cancer

    OpenAIRE

    Crear J; Kummer KM; Webster TJ

    2013-01-01

    Jara Crear, Kim M Kummer, Thomas J Webster School of Engineering, Brown University, Providence, RI, USA Abstract: Cervical cancer can be treated by surgical resection, chemotherapy, and/or radiation. Titanium biomaterials have been suggested as a tool to help in the local delivery of chemotherapeutic agents and/or radiation to cervical cancer sites. However, current titanium medical devices used for treating cervical cancer do not by themselves possess any anticancer properties; such devices...

  4. Corrosion Behaviour of Titanium Anodized Film in Different Corrosive Environments

    Directory of Open Access Journals (Sweden)

    Mr. Sunil D. Kahar

    2014-07-01

    Full Text Available Anodizing is an electrochemical process in which thickness of the natural oxide layer is increased and converted it into a decorative, durable, corrosion-resistant film. Titanium is used as a biocompatible material in human implants due to its excellent corrosion and wears resistance. Stable, continuous, highly adherent, and protective oxide films can be developed on titanium using various acid or alkaline baths. Anodizing of titanium generates a spectrum of different color without use of dyes. This spectrum of color dependent on the thickness of the oxide, voltage ranges, interference of light reflecting off the oxide surface and reflecting off the underlying metal surface. The anodized film of Titanium is mainly consists of TiO2 or mixtures of TiO2 & Ti2O3 etc. In the present work, Pure Titanium plate has been anodized using bath of Chromic Acid at different voltage range. The anodized film is characterized by visual observation, SEM & EDAX analysis & A.C Impedance Spectroscopy, while the corrosion studies were performed using Potentiodynamic studies were performed in 3.5% NaCl & 0.1N H2SO4. The Results show that the anodized film of Titanium show different spectrum of colors from Brown-Violet-Tea or Peacock. SEM & EDAX analyses show that the anodized film of Titanium is mainly made up of TiO2 and Ti2O3. Potentiodynamic study implies that the film developed on Titanium using the bath of Chromic Acid exhibits good corrosion resistance. The A.C. Impedance study shows that the film is more compact, adherent and more uniform in chromic acid bath.

  5. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys.

    Science.gov (United States)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K M

    2016-01-01

    TiO2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell-material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p<0.05, concluded one way ANOVA to investigate the significance difference. PMID:26478299

  6. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    International Nuclear Information System (INIS)

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface

  7. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  8. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  9. Influence of silanes on the wettability of anodized titanium

    Energy Technology Data Exchange (ETDEWEB)

    Vanithakumari, S.C.; George, R.P.; Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in

    2014-02-15

    A facile method was adapted to make superhydrophobic (SHP) titanium in which a synergistic combination of surface roughness and surface chemistry was utilized. In the first step, titanium was mechanically polished and pickled followed by anodization. The next step was to dip coat the samples with silane solution and then were cured at 110 °C. Influence of different synthesis parameters such as silane concentration, number of dip coating and curing temperature on water contact angle (WCA) was studied and conditions were optimized to achieve a WCA of 150°. The wetting properties of the samples were elucidated using contact angle meter and the water just rolled off the modified titanium surface with a slight tilting. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the morphology and surface roughness of the silane coated titanium samples. Grazing incidence X-ray diffraction (GIXRD), energy dispersive spectroscopy (EDS), attenuated total reflection-infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze the chemical composition of the coatings which confirmed the presence of silicon along with titanium and oxygen. Immersion studies in sea water and nitric acid medium for 15 days indicated the stability of the coatings with minimal variations in contact angle.

  10. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  11. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    International Nuclear Information System (INIS)

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H3PO4 + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition. • The HA

  12. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    Science.gov (United States)

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces. PMID:26970768

  13. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  14. Bioactive titanium metal surfaces with antimicrobial properties prepared by anodic oxidation treatment

    Institute of Scientific and Technical Information of China (English)

    YUE ChongXia; YANG BangCheng; ZHANG XingDong

    2009-01-01

    In order to endow titanium metals with bioactivity and antimicrobial properties,titanium plates were subjected to anodic oxidation treatment in NaCI solutions in this study.The treated titanium metals could induce apatite formation in the fast calcification solution,and osteoblasts on the treated titanium surfaces proliferated well as those on the untreated titanium metal surfaces.The treated metals could inhibit S.aureus growth in the microbial culture experiments.It was assumed that Ti-OH groups and Ti-CI groups formed on the treated titanium surface were responsible for the bioactivity and antimicrobial properties of the metals.The anodic oxidation treatment was an effective way to prepare bioactive titanium surfaces with antimicrobial properties.

  15. Bioactive titanium metal surfaces with antimicrobial properties prepared by anodic oxidation treatment

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In order to endow titanium metals with bioactivity and antimicrobial properties, titanium plates were subjected to anodic oxidation treatment in NaCl solutions in this study. The treated titanium metals could induce apatite formation in the fast calcification solution, and osteoblasts on the treated titanium surfaces proliferated well as those on the untreated titanium metal surfaces. The treated metals could inhibit S. aureus growth in the microbial culture experiments. It was assumed that Ti-OH groups and Ti-Cl groups formed on the treated titanium surface were responsible for the bioactivity and antimicrobial properties of the metals. The anodic oxidation treatment was an effective way to prepare bioactive titanium surfaces with antimicrobial properties.

  16. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  17. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    Science.gov (United States)

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. PMID

  18. The Microstructure and Capacitance Characterizations of Anodic Titanium Based Alloy Oxide Nanotube

    OpenAIRE

    Po Chun Chen; Sheng Jen Hsieh; Chien Chon Chen; Jun Zou

    2013-01-01

    This paper presents a simple anodization process to fabricate ordered nanotubes (NTs) of titanium and its alloys (Ti-Mo and Ti-Ta). TiO2, MoO3, and Ta2O5 are high dielectric constant materials for ultracapacitor application. The anodic titanium oxide contains a compact layer on the NT film and a barrier layer under the NT film. However, the microstructure of oxide films formed by anodic Ti-Mo and Ti-Ta alloys contains six layers, including a continuous compact layer, a continuous partial poro...

  19. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.

    Science.gov (United States)

    Snook, Graeme A; McGregor, Katherine; Urban, Andrew J; Lanyon, Marshall R; Donelson, R; Pownceby, Mark I

    2016-08-15

    The direct electrochemical reduction of solid titanium dioxide in a chloride melt is an attractive method for the production of titanium metal. It has been estimated that this type of electrolytic approach may reduce the costs of producing titanium sponge by more than half, with the additional benefit of a smaller environmental footprint. The process utilises a consumable carbon anode which releases a mixture of CO2 and CO gas during electrolysis, but suffers from low current efficiency due to the occurrence of parasitic side reactions involving carbon. The replacement of the carbon anode with a cheap, robust inert anode offers numerous benefits that include: elimination of carbon dioxide emissions, more efficient cell operation, opportunity for three-dimensional electrode configurations and reduced electrode costs. This paper reports a study of Nb-doped titania anode materials for inert anodes in a titanium electrolytic reduction cell. The study examines the effect of niobium content and sintering conditions on the performance of Nb-doped TiO2 anodes in laboratory-scale electrolysis tests. Experimental findings, including performance in a 100 h laboratory electrolysis test, are described. PMID:27265026

  20. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    International Nuclear Information System (INIS)

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  1. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems — LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 — PB2450, B-3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  2. Composite anodes based on nanotube titanium oxide from electro-oxidation of Ti metal substrate

    Science.gov (United States)

    Pozio, A.; Carewska, M.; Mura, F.; D'Amato, R.; Falconieri, M.; De Francesco, M.; Appetecchi, G. B.

    2014-02-01

    In this manuscript is reported an investigation on lithium-ion battery composite anodes based on nanotube titanium oxide active material obtained from electrochemical oxidation of titanium metal substrates. Nanotube TiO2 showed a good nominal capacity, particularly taking into account that no electronic conductive additive as well as no binder was incorporated into the TiO2 material. The performance of nanotube titanium oxide anode tapes was compared with that of electrodes based on TiO2 both commercially available and obtained from laser pyrolysis. Cycling tests have indicated that the anodes based on electrosynthesized nanotube TiO2 exhibit the best performance in terms of capacity values and rate capability in combination with very good capacity retention and coulombic efficiency leveling 100% even at high rates.

  3. Ultra-structural evaluation of an anodic oxidated titanium dental implant.

    Science.gov (United States)

    Yamagami, Akiyoshi; Nagaoka, Noriyuki; Yoshihara, Kumiko; Nakamura, Mariko; Shirai, Hajime; Matsumoto, Takuya; Suzuki, Kazuomi; Yoshida, Yasuhiro

    2014-01-01

    Anodic oxidation is used for the surface treatment of commercial implants to improve their functional properties for clinical success. Here we conducted ultrastructural and chemical investigations into the micro- and nanostructure of the anodic oxide film of a titanium implant. The anodic oxidized layer of a Ti6Al4V alloy implant was examined ultrastructurally by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). They were also analyzed using energy dispersive X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The TEM revealed that the oxide layer of the Ti6Al4V implant prepared through anodic oxidation was separated into two layers. Al and V were not present on the top surface of the anodic oxide. This can be attributed to the biocompatibility of the anodic oxidized Ti6Al4V alloy implant, because the release of harmful metal ions such as Al and V can be suppressed by the biocompatibility. PMID:25483382

  4. Corrosion behavior of titanium in contact with lead in sulphuric acid anodizing bath

    International Nuclear Information System (INIS)

    Titanium, due to its improved corrosion resistance, is frequently used for making Heat Exchangers, Jigs and Fixtures required by Electroplating Industry for anodizing of different components. However, some serious problem may be encountered in practice if titanium comes in contact with others metals. The galvanic corrosion behavior of titanium alloy in contact with pure lead directly or indirectly (i.e., two samples placed apart in the test solution and connected with titanium wire) in standard 15 % sulphuric acid anodizing bath (test solution) has been studied by weight loss method. The Electrochemical Method (ASTM G5 ) was used to supplement weight loss results. The effect of concentration of test solution on corrosion rate was also studied and the behavior of protective oxide film formed on Ti surface discussed. The present study also touched another aspect, which plays an important part in galvanic corrosion i.e., the effect of cathode/anode area ratio. An unfavorable area ratio leading to localize attack is due to formation of a large cathode/small anodic corrosion cell. The cathodic behavior of Pb was also studied to justify corrosion of titanium although it is noble in the Galvanic Series as compared to Pb. Titanium in contact with lead exhibits anodic control and its dissolution as titanium sulphate in turns increases its corrosion rate. The study also revealed that the electrolyte attacks highly at regions very close to contact and also on the welding spots, where welding is done for fabrication of heat exchanger. This is because at this point protective films is less continuous as compared to the polished surface where the films is more continuous and thus more protective. (author)

  5. [Effects on microstructure and mechanical property of pure titanium (TA1) treated by anodic oxidation].

    Science.gov (United States)

    Pan, Liuguo; Sun, Liqun

    2008-12-01

    Effects on surface microstructure and mechanical property of pure titanium (TA1) for implant treated by anodic oxidation were investigated. We found that the oxide film with a certain uniform and compact color could be achieved by anodic oxidation method. However, with the increasing of oxidizing voltage and time, the oxide film will be dissolved at local area. The oxygen content of oxide film and the hydrogen content of matrix titanium will be raised, and will also be increased. In fact, hydrogen could be diffused into matrix titanium. With the increase of hydrogen content of matrix titanium and sigmas/sigmab, there appear the possible results of plastic deformation and the fracture of implant. PMID:19166203

  6. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    International Nuclear Information System (INIS)

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO2 layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH4)2O·5B2O3, (NH4)2SO4, or (NH4)3PO4, after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO2), while incorporation from electrolyte was only observed for (NH4)3PO4. Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO2 formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials

  7. Mechanically stable insoluble titanium-lead anodes for sulfate electrolytes

    Directory of Open Access Journals (Sweden)

    Chmiola J.

    2003-01-01

    Full Text Available Different formulations of a new material to be used as an insoluble anode for copper electrowinning, a Ti-Pb composite, were investigated for both mechanical and electrochemical properties. Mechanical and metallographic characteristic tests, as well as short-term deposition tests were used to study the effect of the Ti/Pb ratio on anode performance. Yield strength and elastic modulus, obtained through tensile testing, significantly exceed that of lead. Metallographic procedures were used to assess the uniformity of lead distribution in the material, as well as porosity, which would be decreased below 1 % for most of the compositions under study. Short-term deposition tests were used to determine power consumption, deposit quality current efficiency and weight loss characteristics of the new anode material. The material with only 30 vol.% lead shows approximately the same electrochemical performance as a pure lead anode, but has much higher mechanical properties which prevent warping and extend the lifetime of the anode.

  8. The Effects of Different Anodizing Voltages on the Nanoporous Titanium Oxide

    OpenAIRE

    DİKİİCİ, Tuncay; Toparli, Mustafa

    2014-01-01

    The purpose of this study was to invesitigate and analyze the nanoporous titanium oxide layers produced on titanium (Cp-Ti) by electrochemical anodization with different voltages (5, 10, 20, 40, 80 V). Titanium oxide (TiO2) layers were formed in a %1.5 HF solution using a dc power supply for 30 min. The effect of applied potential on the physical properties of nanoporous strucutre including pore diameter, wall thickness, interpore distance and film thickness was studied. The surface roughness...

  9. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell

    NARCIS (Netherlands)

    Michaelidou, Urania; Heijne, Annemiek ter; Euverink, Gerrit Jan W.; Hamelers, Hubertus V.M.; Stams, Alfons J.M.; Geelhoed, Jeanine S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and

  10. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  11. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiCXN1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiCXN1 − X) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  12. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance

  13. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H3PO4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO2. The results obtained in this study showed no

  14. Effect of anodization on corrosion behaviour and biocompatibility of Cp-titanium in simulated body fluid

    Indian Academy of Sciences (India)

    Archana Singh; B P Singh; Mohan R Wani; Dinesh Kumar; J K Singh; Vakil Singh

    2013-10-01

    The objective of this investigation is to study the effectiveness of anodized surface of commercial purity titanium (Cp-Ti) on its corrosion behaviour in simulated body fluid (SBF) and proliferation of osteoblast cells on it, to assess its potentiality as a process of surface modification in enhancing corrosion resistance and osseointegration of dental implants. Highly ordered nano-porous oxide layer, with nano-sized pores, is developed on the surface of Cp-Ti through electrochemical anodization in the electrolyte of aqueous solution of 0.5% HF at 15 V for 30 min at 24 °C. The nano-porous feature of the anodized surface is characterized by field-emission scanning electron microscope (FESEM). Pores of some anodized samples are sealed by exposing the anodized surface in boiling water. Corrosion behaviour of the anodized specimen is studied in Ringer’s solution at 30 ± 2 °C, using electrochemical impedance and cyclic polarization technique. Biocompatibility of the anodized surface is accessed using MG63 osteoblast cells. Both corrosion as well as pitting resistance of Cp-Ti in simulated body fluid are found to be highest in the anodized and sealed condition and followed in decreasing order by those of anodized and unanodized ones. Significantly higher MG63 osteoblast cell proliferations are found on the anodized surface than that on the unanodized one. Anodized Cp-Ti develops nano-size surface pores, like that of natural bone. It enhances corrosion and pitting resistance and also the process of osteoblast cell proliferation on Cp-Ti.

  15. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsu, Naofumi, E-mail: nohtsu@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Kozuka, Taro; Hirano, Mitsuhiro [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Arai, Hirofumi [Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507 (Japan)

    2015-09-15

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO{sub 2} layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH{sub 4}){sub 2}O·5B{sub 2}O{sub 3}, (NH{sub 4}){sub 2}SO{sub 4}, or (NH{sub 4}){sub 3}PO{sub 4}, after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO{sub 2}), while incorporation from electrolyte was only observed for (NH{sub 4}){sub 3}PO{sub 4}. Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO{sub 2} formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials.

  16. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium – the contribution of the oxidation effect

    Directory of Open Access Journals (Sweden)

    Wurihan

    2015-05-01

    Full Text Available Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  17. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang [Research Institute, Kuwotech, 970–88, Wolchul-dong, Buk-ku, Gwangju (Korea, Republic of); Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon; Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2013-11-01

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces.

  18. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    International Nuclear Information System (INIS)

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces

  19. Tracing locations of new coating material during spark anodizing of titanium

    OpenAIRE

    Matykina, Endzhe; Monfort, Frederic Louis; Berkani, Ahmed; Skeldon, Peter; Thompson, George; Chapon, Patrick

    2005-01-01

    Abstract The growth of anodic coatings on titanium, under sparking conditions, is investigated in tracer experiments, using alkaline silicate and phosphate electrolytes. Coatings are formed sequentially in each electrolyte, with phosphorus and silicon located by energy-dispersive X-ray analysis and glow discharge optical emission spectroscopy. The coatings, containing anatase, rutile and amorphous oxide, with incorporated phosphorus and silicon species, are shown to grow by discret...

  20. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell

    OpenAIRE

    Michaelidou, U.; Heijne, ter, A.; Euverink, G.J.W.; Hamelers, H. V. M.; Stams, A.J.M.; Geelhoed, J.S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surface texture (smooth or rough). The MFC was inoculated with electrochemically active, neutrophilic mic...

  1. Activity and stability of RuO2-coated titanium anodes prepared via the alkoxide route

    Directory of Open Access Journals (Sweden)

    VLADIMIR PANIC

    2006-11-01

    Full Text Available Titanium anodes with an active RuO2 coating of two different thicknesses were prepared from the oxide suspended in ethanol ("ink" method, while the oxide itself was synthesized by the hydrolysis of ruthenium ethoxide in an ethanolic solution (alkoxide route. The morphology of prepared oxide was examined by scanning electron microscopy. The electrochemical properties of the prepared Ti/RuO2 anodes, involving their cyclic voltammetric behavior in H2SO4 and NaCl solutions, activity in the chlorine and oxygen evolution reaction, impedance behavior in H2SO4, and stability during electrolysis in dilute chloride solutions, were investigated. The performances of the anodes are compared to those of a Ti/RuO2 anode prepared by the sol–gel procedure from an oxide sol obtained by the forced hydrolysis of ruthenium chloride in acid solution. The anodes prepared via the alkoxide route showed a higher capacitance and activity for the chlorine evolution reaction than the anode prepared by the inorganic sol–gel procedure. The results of the stability test showed that the utilization of the coating active material is better when the anodes were prepared via the alkoxide route than via the inorganic sol–gel procedure, particularly for anodes with a smallermass of coating. The different rates of loss of activity indicate a degradation mechanism for the anodes prepared via the alkoxide route in which electrochemical dissolution of RuO2 from the coating surface prevails over the growth of an insulating TiO2 layer in the coating/Ti substrate interphase. The effect of RuO2 dissolution from the coating surface increases with increasing coating mass.

  2. Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments

    International Nuclear Information System (INIS)

    Metal injection molding (MIM) is a near net shape manufacturing method that allows for the production of components of small to moderate size and complex shape. MIM is a cost-effective and flexible manufacturing technique that provides a large innovative potential over existing methods for the industry of implantable devices. Commercially pure titanium (CP-Ti) samples were machined to the same shape as a composite feedstock with titanium and polyoxymethylene, and these metals were injected, debinded and sintered to assess comparative biological properties. Moreover, we treated MIM-Ti parts with BIOCOAT®, BIODIZE® and BIOCER®, three different anodic oxidation techniques that treat titanium using acid, alkaline and anion enriched electrolytes, respectively. Cytocompatibility as well as morphological and chemical features of surfaces was comparatively assessed on each sample, and the results revealed that MIM-Ti compared to CP-Ti demonstrated a specific surface topography with a higher roughness. MIM-Ti and BIOCER® samples significantly enhanced cell proliferation, cell adhesion and cell differentiation compared to CP-Ti. Interestingly, in the anodization post-treatment established in this study, we demonstrated the ability to improve osseointegration through anionic modification treatment. The excellent biological response we observed with MIM parts using the injection molding process represents a promising manufacturing method for the future implantable devices in direct contact with bones. - Highlights: ► Metal injection molding technique gives titanium a specific surface roughness. It enhances the biological response. ► Anodic oxidation method adds Ca, P, and Mg ions on the surface, promoting the cell adhesion. ► Cytocompatibility analyses show an increased cell adhesion and proliferation on MIM-Ti compared to pure titanium.

  3. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    International Nuclear Information System (INIS)

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al2O3) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this work

  4. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Department of Mechanical and Mechatronic Engineering, Keelung (China); Hsu, Todd [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Tsai, Huei-Ting [National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Chen, Chien-Chon [National United University, Department of Energy and Resources, Miaoli (China); Liu, Shiu-Mei [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Marine Biology, Keelung (China); Lin, Tai-Yuan [National Taiwan Ocean University, Institute of Optoelectronic Sciences, Keelung (China); Chen, Chin-Hsing [National Chiao Tong University, Department of Applied Chemistry, Hsinchu (China)

    2011-02-15

    The use of titanium dioxide (TiO{sub 2}) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH{sub 4}F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously. (orig.)

  5. In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating

    Science.gov (United States)

    Dang, Yonggang; Zhang, Li; Song, Wen; Chang, Bei; Han, Tianxiao; Zhang, Yumei; Zhao, Lingzhou

    2016-01-01

    Novel biomedical titanium (Ti) implants with high osteogenic ability for fast and good osseointegration under normal as well as osteoporotic conditions are urgently needed. Expanding on our previous in vitro results, we hypothesized that nanotubular, strontium-loaded (NT-Sr) structures on Ti implants would have favorable osteogenic effects and evaluated the in vivo osseointegration of these implants in rats. The structures with nanotubes of different diameters were fabricated by electrochemical anodization at 10 and 40 V, and the amounts of Sr loaded were adjusted by using two hydrothermal treatment times of 1 and 3 hours. Qualitative microcomputed tomography in two and three dimensions showed that the NT-Sr formed with an anodization voltage of 10 V and hydrothermal treatment time of 3 hours best supported bone growth in vivo. Histomorphometric examination of osseointegration also showed that more newly formed bone was found at its surface. The bone–implant contact percentage was highest (92.48%±0.76%) at 12 weeks. In conclusion, the NT-Sr formed with an anodization voltage of 10 V and hydrothermal treatment time of 3 hours showed excellent osteogenic properties, making it an attractive option for Ti surface modification with considerable clinical potential. PMID:27042055

  6. Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery

    International Nuclear Information System (INIS)

    Highlights: • Li-rich orthorhombic lithium titanium phosphate (OLTP) has been synthesized via a sol-gel route. • OLTP adopts a different space group from the previously reported rhombohedral lithium titanium phosphate (RLTP) and shows solid-solution charge/discharge curves. • OLTP shows higher Li+ diffusivity and electrical conductivity, which makes it an attractive alternative for RLTP. - Abstract: Rhombohedral lithium titanium phosphate, LiTi2(PO4)3, has been considered a suitable anode material for aqueous lithium-ion batteries. However, the electrochemical behaviors of pure lithium-rich polymorphs have not been described yet even Li-rich phase may show better electrochemical properties than conventional LiTi2(PO4)3 at the expense of somewhat lowered capacity. We have synthesized orthorhombic Li1.5Ti2(PO4)3 (OLTP) and rhombohedral LiTi2(PO4)3 (RLTP) via sol-gel reactions and studied their fundamental electrochemical properties using galvanostatic charge/discharge and cyclic voltammetry (CV). Their feasibility as anode materials in LiFePO4//LixTi2(PO4)3 configurations using aqueous electrolytes were also considered. The faster kinetics of the orthorhombic lithium titanium phosphate in this study were attributed to higher Li+ diffusivity and electrical conductivity, making this material an attractive alternative for conventional rhombohedral LiTi2(PO4)3

  7. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    International Nuclear Information System (INIS)

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  8. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    Science.gov (United States)

    Aloia Games, L.; Pastore, J.; Bouchet, A.; Ballarre, J.

    2011-12-01

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  9. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    International Nuclear Information System (INIS)

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  10. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  11. Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants

    International Nuclear Information System (INIS)

    Tribocorrosion plays an important role in the lifetime of metallic implants. Once implanted, biomaterials are subjected to micro-movements in aggressive biological fluids. Titanium is widely used as an implant material because it spontaneously forms a compact and protective nanometric thick oxide layer, mainly TiO2, in ambient air. That layer provides good corrosion resistance, and very low toxicity, but its low wear resistance is a concern. In this work, an anodizing treatment was performed on commercial pure titanium to form a homogeneous thick oxide surface layer in order to provide bioactivity and improve the biological, chemical and mechanical properties. Anodizing was performed in an electrolyte containing β-glycerophosphate and calcium acetate. The influence of the calcium acetate content on the tribocorrosion behaviour of the anodized material was studied. The concentration of calcium acetate in the electrolyte was found to largely affect the crystallographic structure of the resulting oxide layer. Better tribocorrosion behaviour was noticed on increasing the calcium acetate concentration. (paper)

  12. Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants

    Science.gov (United States)

    Alves, A. C.; Oliveira, F.; Wenger, F.; Ponthiaux, P.; Celis, J.-P.; Rocha, L. A.

    2013-10-01

    Tribocorrosion plays an important role in the lifetime of metallic implants. Once implanted, biomaterials are subjected to micro-movements in aggressive biological fluids. Titanium is widely used as an implant material because it spontaneously forms a compact and protective nanometric thick oxide layer, mainly TiO2, in ambient air. That layer provides good corrosion resistance, and very low toxicity, but its low wear resistance is a concern. In this work, an anodizing treatment was performed on commercial pure titanium to form a homogeneous thick oxide surface layer in order to provide bioactivity and improve the biological, chemical and mechanical properties. Anodizing was performed in an electrolyte containing β-glycerophosphate and calcium acetate. The influence of the calcium acetate content on the tribocorrosion behaviour of the anodized material was studied. The concentration of calcium acetate in the electrolyte was found to largely affect the crystallographic structure of the resulting oxide layer. Better tribocorrosion behaviour was noticed on increasing the calcium acetate concentration.

  13. Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium.

    Science.gov (United States)

    Nithila, S D Ruth; Anandkumar, B; Vanithakumari, S C; George, R P; Mudali, U Kamachi; Dayal, R K

    2014-01-01

    The main objective of this study was to investigate the combined effect of ultrasonication of natural waters and anodization of titanium on microbial density and biofilm formation tendency on titanium surfaces. Application of 24 kHz, 400 W high power ultrasound through a 14 mm horn type SS (stainless steel) Sonicator with medium amplitude of 60% for 30 min brought about three order decrease in total bacterial density of laboratory tap water, cooling tower water and reservoir water and two order decrease in seawater. Studies on the effect of ultrasonication on dilute pure cultures of Gram-negative and Gram-positive bacteria showed five order and three order decrease for Pseudomonas sp. and Flavobacterium sp. respectively and two order and less than one order decrease for Bacillus sp. and Micrococcus sp. respectively. Ultrasonication increased lag phase and reduced logarithmic population increase and specific growth rate of Gram-negative bacteria whereas for Gram-positive bacteria specific growth rate increased. Studies on the biofilm formation tendency of these ultrasonicated mediums on titanium surface showed one order reduction under all conditions. Detailed biofilm imaging by advanced microscopic techniques like AFM, SEM and epifluorescence microscopy clearly visualized the lysed/damaged cells and membrane perforations due to ultrasonication. Combination of ultrasonication and anodization brought about maximum decrease in bacterial density and biofilm formation with greater than two order decrease in seawater, two order decrease in Bacillus sp. culture and more than four order decrease in Flavobacterium sp. culture establishing the synergistic effect of anodization and ultrasonication in this study. PMID:23871547

  14. Titanium oxide layers on aluminium substrates produced by the anodic spark deposition process

    International Nuclear Information System (INIS)

    Titanium oxide layers were prepared on pure aluminium substrates by the anodic spark deposition method. The formed crystalline titania (TiO2) phases rutile and anatase and the sodium titanium oxide (Na0.23TiO2) were identified. The corresponding crystallite size values were obtained from X-ray diffraction data by means of the Rietveld method. The crystallite size of each of these phases continuously increases with rising current density. Furthermore, the two-dimensional distribution of the titania phases on the sample surface was determined by Raman spectroscopy. It was found that the rutile/anatase ratio is inhomogeneous distributed on an observed area of 400 x 400 μm2.

  15. Nanotubular Toughening Inclusions

    Science.gov (United States)

    Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2015-01-01

    Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.

  16. SURFACE CHARACTERIZATION OF ANODICALLY TREATED β TITANIUM ALLOY FOR BIOMEDICAL APPLICATIONS

    OpenAIRE

    Bhola, R.; Bhola, S.; Mishra, B.; Ayers, R.; Olson, D; Ohno, T

    2011-01-01

    The cellular response of anodically treated titanium alloys was investigated using cell attachment, morphological and surface analytical techniques. The behavior of a β Ti15Mo alloy has been compared with the conventional mixed alloy, Ti6Al4V and the a alloy, Ti2. Ti15Mo β alloy demonstrated a higher cell count and a thicker oxide on its surface. The presence of Ca and P was detected in all the alloys after the invitro cell culture test. TiO 2 was present as the dominant oxide in all three al...

  17. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    International Nuclear Information System (INIS)

    Graphical abstract: Highlights: · A photoactive anode containing highly ordered TiO2 nanotube array was made and the formation mechanism of self-organized TiO2 nanotube array on Ti was revealed. · Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. · Self-organized TiO2 nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. · The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO2 NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO2 NTs were 88 ± 16 nm, 10 ± 2 nm and 491 ± 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO2 NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO2 nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  18. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  19. Titanium dental implant surfaces obtained by anodic spark deposition - From the past to the future.

    Science.gov (United States)

    Kaluđerović, Milena R; Schreckenbach, Joachim P; Graf, Hans-Ludwig

    2016-12-01

    Commercial titanium-based dental implants are obtained applying various methods such as machining, acid etching, anodization, plasma spraying, grit blasting or combination techniques yielding materials with smooth or micro-roughened surfaces. Those techniques are used to optimize the surface properties and to maximize biocompatibility and bioactivity with bone tissue. Present review is focused on the material surfaces obtained by anodic spark deposition (ASD). From the early 1980s till present, the results of numerous studies have shown that anodically oxidized surfaces with different dopants express a positive effect on osteoblasts behavior in vitro and osseointegration in vivo. Those surfaces demonstrated a high biocompatibility and rapid osseointegration in clinical application. This paper provides an overview of the preparation of implant surfaces by employing ASD process. Moreover, reviewed are clinically used ASD implant surfaces (Ticer, TiUnite, Osstem, etc.). The electrolyte variations in ASD process and their influence on surface properties are given herein. Using different electrolytes, anode voltages and temperatures, the above fabrication process can yield various surface morphologies from smooth to rough, porous surfaces. Furthermore, ASD enables thickening of oxide layers and enrichment with different dopands from used electrolyte, which hinder release of potentially toxic titanium ions in surrounding tissue. Particularly exciting results were achieved by calcium and phosphorus doping of the oxide layer (Ticer, ZL Microdent; TiUnite, Nobel Biocare Holding AB) which significantly increased the osteocompatibility. Ticer, a dental implant with anodically oxidized surface and the first among similar materials employed in clinical practice, was found to promote fast osteoblast cell differentiation and mineralization processes. Moreover, Ticer accelerate the integration with the bone, increase the bone/implant contact and improve primary and secondary

  20. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  1. Effect of anodization and alkali-heat treatment on the bioactivity of titanium implant material (an in vitro study)

    Science.gov (United States)

    Abdelrahim, Ramy A.; Badr, Nadia A.; Baroudi, Kusai

    2016-01-01

    Objective: This study was aimed to assess the effect of anodized and alkali-heat surface treatment on the bioactivity of titanium alloy (Ti-6Al-4V) after immersion in Hank's solution for 7 days. Materials and Methods: Fifteen titanium alloy samples were used in this study. The samples were divided into three groups (five for each), five samples were anodized in 1M H3PO4 at constant voltage value of 20 v and another five samples were alkali-treated in 5 M NaOH solution for 25 min at temperature 60°C followed by heat treatment at 600°C for 1 h. All samples were then immersed in Hank's solution for 7 days to assess the effect of surface modifications on the bioactivity of titanium alloy. The different treated surfaces and control one were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transformation infra-red spectroscopy. Statistical analysis was performed with PASW Statistics 18.0® (Predictive Analytics Software). Results: Anodization of Ti-alloy samples (Group B) led to the formation of bioactive titanium oxide anatase phase and PO43− group on the surface. The alkali-heat treatment of titanium alloy samples (Group C) leads to the formation of bioactive titania hydrogel and supplied sodium ions. The reaction between the Ti sample and NaOH alkaline solution resulted in the formation of a layer of amorphous sodium titania on the Ti surface, and this layer can induce apatite deposition. Conclusions: The surface roughness and surface chemistry had an excellent ability to induce bioactivity of titanium alloy. The anodization in H3PO4 produced anatase titanium oxide on the surface with phosphate originated from electrolytes changed the surface topography and allowed formation of calcium-phosphate. PMID:27382532

  2. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    Science.gov (United States)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-08-01

    The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca3(PO4)2, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  3. Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

    OpenAIRE

    M. G. Hosseini; M. M. Momeni

    2012-01-01

    We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-containing electrolyte. The morphology and surface characteristics of Pd-TiO2/Ti and Pt-TiO2/Ti elect...

  4. Anodic-spark layers on aluminium and titanium alloys in electrolytes with sodium tungstophosphate

    International Nuclear Information System (INIS)

    Influence of pH value of Na2H[PW12O40] aqueous 0.0083 M solution on the composition and morphology of anodic coatings on aluminium and titanium alloys formed galvanostatically under sparkling and breakdown voltage was studied using data of electron microscopy, elementary and X-ray phase analyses. It was ascertained that in low-acid, neutral and low-alkaline electrolytes multilayer coatings are formed, which contain in their outer layer oxides of elements making up the ligand sphere of heteropolyanions. In solutions featuring higher acidity and alkalinity the content of heteropolyanion components in the coatings decreases. By and large, the coating composition reflects the dependence of heteropolyanions composition in aqueous solution on pH value

  5. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J [School of Engineering, Brown University, Providence, RI 02917 (United States); Alpaslan, Ece, E-mail: thomas_webster@brown.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey)

    2011-07-22

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  6. Diameter of titanium nanotubes influences anti-bacterial efficacy

    International Nuclear Information System (INIS)

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  7. Anodically synthesized titania films for lithium batteries: Effect of titanium substrate and surface treatment

    International Nuclear Information System (INIS)

    A number of titania films have been produced through anodising high purity titanium from different suppliers in either the as-received state or following polishing and etching. Anodising was carried out galvanostatically for a period of 10 min in 0.2 M H2SO4. The performance of the films was then evaluated as potential anode materials for lithium batteries. Raman spectroscopy showed these films had spectra characteristic of anatase with the presence of some rutile whilst the spectra of the lithiated state was characteristic of the orthorhombic phase of LixTiO2. The surface condition in particular was found to have an effect on the electrochemical performance and properties of the films most notably on capacity fade. Whilst the electrodes produced from as-received titanium demonstrated stable cycle capacities after the initial few cycles, those on polished and etched substrates faded over 50 cycles. The best performing films offered a capacity of at least ∼48 μAh cm-2 over the 50 cycles. All the electrodes examined however did show signs of the film having being damaged as a result of electrochemical cycling. With the wide range of anodising parameters that can be altered there is considerable scope for optimising the electrochemical performance of films produced through such a technique.

  8. Electrochemical micromachining of titanium using laser oxide film lithography: excimer laser irradiation of anodic oxide

    Energy Technology Data Exchange (ETDEWEB)

    Chauvy, P.-F.; Hoffmann, P.; Landolt, D

    2003-04-30

    In electrochemical micromachining using oxide film laser lithography (OFLL), the pattern is formed by laser irradiation of an anodic oxide film. On the irradiated areas of the film the underlying metal is then selectively dissolved in an appropriate electrolyte, the non-irradiated oxide acting as a mask. The physical interactions of 308 nm XeCl excimer laser radiation with anodically formed oxide films on titanium were studied using single pulse irradiation at varying fluence and two different pulse durations. The irradiated surfaces were characterized by secondary electron microscopy (SEM), Auger electron spectroscopy (AES) profiling and X-ray-induced photoelectron spectroscopy (XPS), additionally, their electrochemical dissolution behaviour in an electropolishing electrolyte was evaluated. Numerical simulation was applied to the estimation of the temperature profiles at the surface of the irradiated samples. Results suggest that depending on irradiation conditions different mechanisms may be responsible for the loss of the protective properties of the oxide film. The creation of a Ti(O) solid solution resulting from diffusion of oxygen from the film into the underlying molten metal was shown to be effective at high fluences. The loss of protective properties observed at lower fluences was tentatively attributed to the creation of ionic defects in the oxide by a photolytic process.

  9. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    Science.gov (United States)

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated. PMID:27037782

  10. Anodic-hydrothermal preparation of prism-shaped CaTiO3 structure on titanium surface

    International Nuclear Information System (INIS)

    The prism-shaped perovskite structure of CaTiO3 on titanium surface was fabricated by an anodic-hydrothermal method. Firstly, the TiO2 film was formed on Ti substrate by electrochemical anodization. Secondly, the anodized TiO2/Ti substrate was used as a template for the hydrothermal synthesis of CaTiO3 coating. The samples were characterized with X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrum. The experimental results show that anodic TiO2 substrate and alkali environment are key factors for the formation of prism-shaped CaTiO3, and the NaOH concentrations plays an important role in determining the size and shape of CaTiO3 structures. Meanwhile, the CaTiO3 surfaces possess the better deposition ability of Ca and P in vitro.

  11. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    International Nuclear Information System (INIS)

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H3PO4 + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO3)2 ∙ 4 H2O + 0.018 M NH4H2PO4 at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca10(PO4)6(OH)2. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the size of precipitates increased with the number of deposition cycles.

  12. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chae-Ik; Jeong, Yong-Hoon [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States)

    2013-12-31

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO{sub 3}){sub 2} ∙ 4 H{sub 2}O + 0.018 M NH{sub 4}H{sub 2}PO{sub 4} at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the

  13. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    Science.gov (United States)

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. PMID:21626659

  14. Heterogeneous growth of anodic oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Koji; Okawa, Tsuyoshi; Azumi, Kazuhisa; Seo, Masahiro

    2000-02-01

    A scanning electrochemical microscope (SECM) was applied to study anodic oxide film grown on a polycrystalline titanium electrode in deaerated pH 8.4 borate solution. The probe current images of SECM could detect the heterogeneous growth of anodic oxide film, depending on the substrate crystal grains. This heterogeneity increased with increasing the film formation potential at the potential higher than 3 V (SHE). The study of the dependence of film thickness on the substrate grain has been also supported with Raman microprobe spectroscopy.

  15. Characterization of native and anodic oxide films formed on commercial pure titanium using electrochemical properties and morphology techniques

    International Nuclear Information System (INIS)

    Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 deg. C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.

  16. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative and Prosthetic Dentistry, College of Dentistry, Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative and Prosthetic Dentistry, College of Dentistry, Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H{sub 3}PO{sub 4} electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely {beta} phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  17. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H3PO4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  18. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  19. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H3PO4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO2 without an evidence of the crystalline anatase or rutile forms of TiO2. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  20. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment.

    Science.gov (United States)

    Ishizawa, H; Ogino, M

    1995-09-01

    An anodic titanium oxide film containing Ca and P (AOFCP) was formed on commercially pure titanium which was anodized in an electrolytic solution of dissolved beta-glycerophosphate (beta-GP) and calcium acetate (CA). Hydroxyapatite (HA) crystals were precipitated by hydrothermally heating the AOFCP at 300 degrees C. After hydrothermal treatment, the film was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), and tensile tests. The morphology, composition, and amount of HA crystals precipitated were significantly affected by the composition of the electrolytes. Near-stoichiometric HA crystals with high crystallinity were precipitated completely covering the AOFCP surface at specific electrolyte concentrations. The HA layers were thin at 1-2 microns in thickness. The adhesive strength of the film increased with decreasing electrolyte concentration and the maximum value was about 40 MPa. In vitro tests for 300 days suggested that the stability of the film was high. The high adhesive strength may result from the AOFCP existing as an intermediate layer between the HA layer and a titanium substrate. The intervention of the AOFCP may have prevented abrupt changes in Ca and P content at an HA coating-titanium interface as seen in a plasma-sprayed one. The porous TiO2 matrix of the AOFCP may be suitable for nucleation sites of HA crystals, as well as SiO2 matrix of silicate bioactive glasses or glass ceramics. PMID:8567705

  1. Nanotubular array solid oxide fuel cell.

    Science.gov (United States)

    Motoyama, Munekazu; Chao, Cheng-Chieh; An, Jihwan; Jung, Hee Joon; Gür, Turgut M; Prinz, Friedrich B

    2014-01-28

    This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 μm long and have building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold. PMID:24266776

  2. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  3. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  4. Sodium Titanium Phosphate as Anode Materials for Aqueous Sodium-ion Batteries

    Science.gov (United States)

    Wu, Wei

    Renewable energy technology has become one of the promising energy solutions in the future. However, limited by their cyclic behavior, large scale energy storage devices are needed to boost their adoptions in the market. The existing energy storage technologies have limitations that inhibit their adoptions for large scale applications. Our group suggests that one reasonable technology that might overcome these issues is the neutral pH aqueous electrolyte sodium-ion battery. One potential anode material is NaTi2(PO4)3, which has a relatively flexible NASICON skeleton structure and is known in general to have stable performance characteristics in extreme environments. In this work, there are four objectives to study this potential anode material: 1) Develop a rapid method to synthesize electrochemically functional NaTi2(PO4)3. In this case "Electrochemically functional" means the material can store usable capacity for practical application in a composite electrode. 2) Quantify the effect of intimate carbon on NaTi2(PO4)3 electrochemical functionality. (Electrochemical functionality regards the capacity and rate capability of electrode materials) 3) Investigate the stability of NaTi2(PO 4)3 in pH and thermal extremes and the mechanism of capacity fading under different cycling conditions. 4) Examine the performance of NaTi 2(PO4)3 in high salt concentration electrolyte and Li+ electrolyte. NaTi2(PO4)3 has been successfully synthesized via a rapid microwave method. The highest specific capacity is around 85mAh/g has been demonstrated. The effect of different carbon materials (namely graphite and carbon nanotubes) and different processes of adding them (pre and post- synthesis) on the electrochemical performance for sodium titanium phosphate has been extensively studied. Graphite coated NaTi2(PO4) 3 with carbon nanotubes composite electrode has demonstrated a specific capacity of 130mAh/g around theoretical value at 0.1C rate. The effect of the electrolyte (with

  5. Fabrication and characterization of anodic oxide films on a Ti-10V-2Fe-3Al titanium alloy

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Liu; Jun-lan Yi; Song-mei Li; Mei Yu; Yong-zhen Xu

    2009-01-01

    Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated.The morphology,components,and microstructure of the films were characterized by scanning electron mi-croscopy (SEM),X-ray photoelectron spectroscopy (XPS),X-ray diffraction (XRD),and Raman spectroscopy.The results showed that the films were thick,uniform,and nontransparent.Such films exhibited sedimentary morphology,with a thickness of about 3 μm,and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm.The films were mainly titanium dioxide.Some coke-like deposits,which may contain or be changed by OH,NH,C-C,C-O,and C=O groups,were doped in the firms.The films were mainly amorphous with a small amount of anatase and rutile phase.

  6. Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte

    Science.gov (United States)

    Liu, Z.; Thompson, G. E.

    2015-01-01

    A sequential breakdown anodizing conditions on cp-Ti in phosphoric acid has been investigated in the present study. Anodic oxide films were formed at 100, 150, and 200 V, examined by scanning electron microscopy, Raman spectroscopy, glow discharge optical emission spectrometry, and electrochemical impedance spectroscopy. A porous oxide texture was formed at each voltage. The thickness of anodic porous oxide increased with the increase of anodic voltage. Nano-particulates were formed around and within the pores, and the size of pores increased with increased voltage due to the expansion of particulates. The amorphous-to-crystalline transition was initiated during the film growth. The degree of crystallinity in the anodic oxide film fabricated at 200 V is more abundant than 150 and 100 V. Increased content of the phosphorus species was incorporated into the porous film with the increase of anodic voltage, stabilizing for the nanocrystals developed within the oxide.

  7. The effect of solvent on the kinetics of anodic film formation on zirconium, zircaloy-2 and titanium in 0.05M Li2SO4

    International Nuclear Information System (INIS)

    Zirconium, zircaloy-2 and titanium were anodized in 0.05M Li2SO4 at a constant current density of 8 mA.cm-2 in aqueous medium. The kinetics of anodic film formation were found to vary with the metal. With zirconium, the rate of formation changed abruptly at 150V, the rate falling from 2.27V.sec-1 to 1.43V.sec-1. The breakdown voltage was found to be 240V, whil st with titanium it was limited to 65V. Zircaloy-2 too behaved like zirconium but t he rate fell from 2.083 V.sec-1 to 1.428 V.sec-1. The kinetics of anodic film formation were then studied in glycolic medium. The rates of formation of anodic films were found to be uniform and greater with zirconium and zircaloy-2 when anodized in glycolic medium, than in aqueous medium. When titanium was anodized, the rates were found to be increased with increase in glycolic content from 10% ethylene glycolic medium to 90% ethylene glycolic medium. This increase in the r ates of film formation is attributed to the difference in the dielectric constants of water and ethylene glycol. (author). 5 refs

  8. Performance evaluation of titanium dioxide based dye-sensitized solar cells under the influence of anodization steps, nanotube length and ionic liquid-free redox electrolyte solvents

    Science.gov (United States)

    Cheong, Y. L.; Beh, K. P.; Yam, F. K.; Hassan, Z.

    2016-06-01

    In this work, highly ordered titanium dioxide (TiO2) nanotube (NT) arrays were synthesized on titanium foil using electrochemical anodization method. The morphological aspects of the nanotubes based on different anodization duration and number of anodization steps (maximum two) have been investigated. The nanotube arrays subsequently used as photoanode in a dye-sensitized solar cell (DSSC) assembly. The studies on the effects of different solvents for triiodide/iodide redox electrolyte and NT length towards the performance of DSSC were conducted. It is known that electrolyte solvent can significantly affect the photovoltaic conversion efficiency. It is noteworthy that longer NT length tends to yield higher efficiency due to better dye adsorption. However, when the NTs exceeded certain length the efficiency decreases instead. Meanwhile, a comparison of DSSC performance based on number of anodization steps on titanium was performed. Highly ordered NT arrays could be obtained using two-steps anodization, which proved to have positive effects on the DSSC performance. The highest photovoltaic conversion efficiency in this work is 2.04%, achieved by two-step anodization. The corresponding average nanotubes length was ∼18 μm, with acetonitrile (ACN) as the redox electrolyte solvent.

  9. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing

    International Nuclear Information System (INIS)

    Graphical abstract: Current–potential curves with chopped light measured in 1 M NaOH with a scan rate of 5 mV s−1 for the different samples. - Highlights: • Cr-doped TiO2 nanotube layers (Cr–TiO2NTs) were synthesized by anodizing of titanium in a single-step process. • Photoelectrochemical water splitting of Cr–TiO2NTs is higher than that of pure TiO2 nanotubes (TiO2NTs). • Quantity effect of chromium in these composite for photoelectrochemical water splitting is investigated. • Maximum hydrogen production of 37 μL/cm2 after 240 min is obtained. - Abstract: Cr-doped TiO2 nanotubes (Cr–TiO2NTs) with different amounts of chromium were obtained directly by the electrochemical anodic oxidation of titanium foils in a single-step process using potassium chromate as the chromium source. The effects of chromium amount in anodizing solution on the morphologies, structure, photoabsorption and photoelectrochemical water splitting of the TiO2 nanotube array film were investigated. Diffuse reflectance spectra showed an increase in the visible absorption relative to undoped TiO2NTs. The photoelectrochemical performance was examined under visible irradiation in 1 M NaOH electrolyte. Photo-electrochemical characterization shows that chromium doping efficiently enhances the photo-catalytic water splitting performance of Cr-doped TiO2 nanotube samples. The sample (Cr–TiO2NTs-1) exhibited better photo-catalytic activity than the undoped TiO2NTs and Cr–TiO2NTs fabricated using other chromium concentrations. This can be attributed to the effective separation of photogenerated electron–hole upon the substitutional introduction of appropriate Cr amount in to the TiO2 nanotube structure

  10. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Mohamad Mohsen, E-mail: mm.momeni@cc.iut.ac.ir; Ghayeb, Yousef

    2015-07-15

    Graphical abstract: Current–potential curves with chopped light measured in 1 M NaOH with a scan rate of 5 mV s{sup −1} for the different samples. - Highlights: • Cr-doped TiO{sub 2} nanotube layers (Cr–TiO{sub 2}NTs) were synthesized by anodizing of titanium in a single-step process. • Photoelectrochemical water splitting of Cr–TiO{sub 2}NTs is higher than that of pure TiO{sub 2} nanotubes (TiO{sub 2}NTs). • Quantity effect of chromium in these composite for photoelectrochemical water splitting is investigated. • Maximum hydrogen production of 37 μL/cm{sup 2} after 240 min is obtained. - Abstract: Cr-doped TiO{sub 2} nanotubes (Cr–TiO{sub 2}NTs) with different amounts of chromium were obtained directly by the electrochemical anodic oxidation of titanium foils in a single-step process using potassium chromate as the chromium source. The effects of chromium amount in anodizing solution on the morphologies, structure, photoabsorption and photoelectrochemical water splitting of the TiO{sub 2} nanotube array film were investigated. Diffuse reflectance spectra showed an increase in the visible absorption relative to undoped TiO{sub 2}NTs. The photoelectrochemical performance was examined under visible irradiation in 1 M NaOH electrolyte. Photo-electrochemical characterization shows that chromium doping efficiently enhances the photo-catalytic water splitting performance of Cr-doped TiO{sub 2} nanotube samples. The sample (Cr–TiO{sub 2}NTs-1) exhibited better photo-catalytic activity than the undoped TiO{sub 2}NTs and Cr–TiO{sub 2}NTs fabricated using other chromium concentrations. This can be attributed to the effective separation of photogenerated electron–hole upon the substitutional introduction of appropriate Cr amount in to the TiO{sub 2} nanotube structure.

  11. Physical, chemical and topographic characterization of titanium surface oxide layers fabricated by anodic oxidation

    OpenAIRE

    Ribeiro, A. R.; Nascimento, R. M.; Celis, J.P.; Gomes, J. R.; A. E. Martinelli; L. A. Rocha

    2006-01-01

    Titanium and titanium alloys have been widely used in orthopeadics and dental implants because of their excellent properties such as low modulus, good fatigue strength, good corrosion resistance and biocompatibility. However, their poor wear resistance still limits their application. When inserted in the oral environment dental implants are under a complex degradation phenomenon as a result of the combined action of chemical and mechanical solicitations, which can result in its failure. The ...

  12. Micro- and nanomorphology coexisting in titanium dioxide coating for application as anode material in secondary lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wen-Chi, E-mail: wenchilo694@gmail.com; Chu, Hou-Jen; He, Ju-Liang

    2015-03-31

    Titanium dioxide has recently attracted attention as an anode material for use in lithium-ion batteries, owing to its high reversible capacity and durable charge/discharge characteristics. The aim of the study is to combine micro-arc oxidation (MAO) and post-alkali treatment to realize an anatase titanium dioxide (TiO{sub 2}) scaffold layer on titanium plates. Using this combination, coexisting micro- and nanomorphology can be realized in the TiO{sub 2} layer. This increases the specific surface area of the TiO{sub 2} layer and thereby improves the charge capacity and charge/discharge rate of the anode. The effectiveness of MAO to fabricate a micrometer-scale porous TiO{sub 2} structure on titanium plate, and the formation of nano-flakes by alkali treatment on porous anatase TiO{sub 2} layer was demonstrated. Further, numerous 40–80 nm alkali-treatment-induced nano-flakes grew all over the oxide surface, substantially increasing its specific surface area. The measured electrochemical properties demonstrate that at potentials of − 1.98 V and − 0.56 V vs. Ag/AgCl, lithium ions were respectively inserted into and extracted from the TiO{sub 2} layer with nano-flakes. The nano-flakes promote faster lithium-ion insertion and extraction and higher associated number of charge than the MAO TiO{sub 2}. The detailed charging/discharging kinetic processes of the MAO, annealed MAO, alkali-treated MAO, and annealed and alkali-treated MAO specimens were determined using electrochemical impedance spectroscopy, thus providing further insight into the performance of the TiO{sub 2} coating. - Highlights: • A micrometer-scale porous crystalline TiO{sub 2} layer was fabricated by MAO. • After alkali treatment, the oxide surface exhibits numerous pores. • The layer was composed of predominantly anatase and minor rutile. • Optimum solution temperature and NaOH concentration yielded nano-flaky morphology. • Such morphology leads to the increase performance of the treated

  13. Micro- and nanomorphology coexisting in titanium dioxide coating for application as anode material in secondary lithium-ion batteries

    International Nuclear Information System (INIS)

    Titanium dioxide has recently attracted attention as an anode material for use in lithium-ion batteries, owing to its high reversible capacity and durable charge/discharge characteristics. The aim of the study is to combine micro-arc oxidation (MAO) and post-alkali treatment to realize an anatase titanium dioxide (TiO2) scaffold layer on titanium plates. Using this combination, coexisting micro- and nanomorphology can be realized in the TiO2 layer. This increases the specific surface area of the TiO2 layer and thereby improves the charge capacity and charge/discharge rate of the anode. The effectiveness of MAO to fabricate a micrometer-scale porous TiO2 structure on titanium plate, and the formation of nano-flakes by alkali treatment on porous anatase TiO2 layer was demonstrated. Further, numerous 40–80 nm alkali-treatment-induced nano-flakes grew all over the oxide surface, substantially increasing its specific surface area. The measured electrochemical properties demonstrate that at potentials of − 1.98 V and − 0.56 V vs. Ag/AgCl, lithium ions were respectively inserted into and extracted from the TiO2 layer with nano-flakes. The nano-flakes promote faster lithium-ion insertion and extraction and higher associated number of charge than the MAO TiO2. The detailed charging/discharging kinetic processes of the MAO, annealed MAO, alkali-treated MAO, and annealed and alkali-treated MAO specimens were determined using electrochemical impedance spectroscopy, thus providing further insight into the performance of the TiO2 coating. - Highlights: • A micrometer-scale porous crystalline TiO2 layer was fabricated by MAO. • After alkali treatment, the oxide surface exhibits numerous pores. • The layer was composed of predominantly anatase and minor rutile. • Optimum solution temperature and NaOH concentration yielded nano-flaky morphology. • Such morphology leads to the increase performance of the treated Ti plate

  14. Oxidation of phenol and chlorophenols on platinized titanium anodes in an acidic medium

    Science.gov (United States)

    Mokbel, Saleh Mohammed; Kolosov, E. N.; Mikhalenko, I. I.

    2016-06-01

    A comparative study of oxidation of phenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol on Pt/Ti and Ce,Pt/Ti electrocatalysts is performed via cyclic voltammetry. It is shown that the surface morphology and roughness of the anode do not change after modification with cerium. The formal kinetic orders of electrooxidation of all compounds are found to be less than one. It is shown that the β temperature coefficients of the rate of oxidation of chlorophenols grow by 10 to 50% when the Ce,Pt/Ti anode is used at a substrate concentration of 1 mM. A tenfold increase in concentration reduces the effect of cerium additive, except for 3-chlorophenol: the latter exhibits a 250% increase in the β value, compared to the Pt/Ti anode.

  15. Study for preparation of nanoporous titania on titanium by anodic oxidation; Estudo da preparacao de titania nanoporosa sobre titanio por oxidacao anodica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Alessandra Pires

    2014-07-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H{sub 3}PO{sub 4} and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO{sub 2}. The results obtained in this study

  16. Wear Resistance of Anodic Titanium Dioxide Films Produced on Ti-6Al-4V Alloy

    OpenAIRE

    María Laura Vera; Mario Roberto Rosenberger; Carlos Enrique Schvezov; Alicia Esther Ares

    2015-01-01

    Ti-6Al-4V alloy with TiO2 coating is the most commonly selected material to construct an aortic heart valve. Wear resistance is the main mechanical property to be evaluated for this purpose. In this paper, the wear resistance of TiO2 thin films obtained by anodic oxidation of Ti-6Al-4V is evaluated. Anodic oxidation was performed at 20 V to 70 V with a H2SO4 1 M electrolyte. The samples were thermally treated at 500°C for 1 h, and crystalline phases of TiO2 were obtained. The wear was perform...

  17. Influence of silicon on the growth of barrier-type anodic films on titanium

    OpenAIRE

    Tanvir, M. Tauseef; Fushimi, K; Shimizu, K.; Nagata, S; Skeldon, P; Thompson, G.E.; Habazaki, H.

    2007-01-01

    Amorphous anodic titania, stabilised by incorporation of silicon species, is shown to grow to high voltages on sputter-deposited, single-phase Ti–Si alloys during anodizing at a constant current density in ammonium pentaborate electrolyte. The films comprise two main layers, with silicon species confined to the inner layers. An amorphous-to-crystalline transition occurs at 60 V on the Ti–6 at.% Si alloy, while the transition is suppressed to voltages above 140 V on alloys with 12 and 26 at.% ...

  18. An investigation on formation and electrochemical capacitance of anodized titania nanotubes

    International Nuclear Information System (INIS)

    The mechanism of titania nanotubes formation and growth during anodization of titanium in NH4F/ethylene glycol electrolyte at 45 V applied voltage was investigated using field emission scanning electron microscopy (FESEM). The initial stage of the anodization occurs with the formation of a compact oxide layer with nanoscale pits. With the increase of anodization time, the pits transform to larger and deeper pores due to the integration of the smaller and larger pores, finally creating self-ordered titania nanotubes. The porous structure increases electrochemical capacitance from 18.3 μF cm−2 for 10 s anodization time to 49.9 μF cm−2 for 1800 s anodization time. The cyclic voltammetry (CV) transforms from a near symmetry rectangular shape to x-axis symmetry with higher current density as the anodization time increases due to increased specific surface area of the nanotubular structure. The larger CV size at more cathodic regions is characteristics of the n-type behaviour of titania materials, as also shown in the Mott–Schottky analysis.

  19. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today\\'s commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH -neutral 2 M Li2 S O4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. © 2011 The Electrochemical Society.

  20. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    Directory of Open Access Journals (Sweden)

    Andrei Ionut Mardare

    2014-01-01

    Full Text Available A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

  1. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    International Nuclear Information System (INIS)

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. (paper)

  2. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Penglei; Li, Hongyi, E-mail: lhy06@bjut.edu.cn; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Wu, Junshu; Zhao, Bingxin; Wang, Fei

    2015-08-30

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles have been introduced into TiO{sub 2} nanotube using a facile liquid phase deposition method at low temperature in atmosphere. • Dye solar cells have been assembled on flexible titanium substrate. • The incident photo-electron conversion efficiency has been improved 76% compared with pure TiO{sub 2} nanotube arrays. - Abstract: To improve titanium dioxide (TiO{sub 2}) nanotube arrays’ performance on dye sensitized solar cells (DSSCs), TiO{sub 2} nano-capsule arrays (TNCP) have been designed and prepared by planting TiO{sub 2} nanoparticles into TiO{sub 2} nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO{sub 2} nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5–10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m{sup 2}/g and from 67.7 (for pure TNT) to 76.4 mJ/m{sup 2}, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale.

  3. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • TiO2 nanoparticles have been introduced into TiO2 nanotube using a facile liquid phase deposition method at low temperature in atmosphere. • Dye solar cells have been assembled on flexible titanium substrate. • The incident photo-electron conversion efficiency has been improved 76% compared with pure TiO2 nanotube arrays. - Abstract: To improve titanium dioxide (TiO2) nanotube arrays’ performance on dye sensitized solar cells (DSSCs), TiO2 nano-capsule arrays (TNCP) have been designed and prepared by planting TiO2 nanoparticles into TiO2 nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO2 nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5–10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m2/g and from 67.7 (for pure TNT) to 76.4 mJ/m2, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale

  4. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.

    Science.gov (United States)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity. PMID:18926633

  5. Molten salt synthesis of sodium lithium titanium oxide anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Na2Li2Ti6O12 has been successfully synthesized via a molten salt route. • Calcination temperature is an important effect on the component and microstructure of the product. • Pure phase Na2Li2Ti6O12 could be obtained at 700 °C for 2 h. - Abstract: The sodium lithium titanium oxide with composition Na2Li2Ti6O14 has been synthesized by a molten salt synthesis method using sodium chloride and potassium chloride mixture as a flux medium. Synthetic variables on the synthesis, such as sintering temperature, sintering time and the amount of lithium carbonate, were intensively investigated. Powder X-ray diffraction and scanning electron microscopy images of the reaction products indicates that pure phase sodium lithium titanium oxide has been obtained at 700 °C, and impure phase sodium hexatitanate with whiskers produced at higher temperature due to lithium evaporative losses. The results of cyclic voltammetry and discharge–charge tests demonstrate that the synthesized products prepared at various temperatures exhibited electrochemical diversities due to the difference of the components. And the sample obtained at 700 °C revealed highly reversible insertion and extraction of Li+ and displayed a single potential plateau at around 1.3 V. The product obtained at 700 °C for 2 h exhibits good cycling properties and retains the specific capacity of 62 mAh g−1 after 500 cycles

  6. Wear Resistance of Anodic Titanium Dioxide Films Produced on Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-03-01

    Full Text Available Ti-6Al-4V alloy with TiO2 coating is the most commonly selected material to construct an aortic heart valve. Wear resistance is the main mechanical property to be evaluated for this purpose. In this paper, the wear resistance of TiO2 thin films obtained by anodic oxidation of Ti-6Al-4V is evaluated. Anodic oxidation was performed at 20 V to 70 V with a H2SO4 1 M electrolyte. The samples were thermally treated at 500°C for 1 h, and crystalline phases of TiO2 were obtained. The wear was performed in a ball-on-flat recip‐ rocating machine with a range of loads from 1 gf to 4 gf and times between 60 s and 1200 s, using a diamond sphere as counterface. The counterface oscillates at 0.5 Hz and 4 mm in amplitude. The wear is measured using a profilometer and is calculated as the worn volume. The wear resistance of the coated samples is larger than the substrate, and increases with thickness and with crystalline coating.

  7. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Science.gov (United States)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  8. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    Science.gov (United States)

    Su, Penglei; Li, Hongyi; Wang, Jinshu; Wu, Junshu; Zhao, Bingxin; Wang, Fei

    2015-08-01

    To improve titanium dioxide (TiO2) nanotube arrays' performance on dye sensitized solar cells (DSSCs), TiO2 nano-capsule arrays (TNCP) have been designed and prepared by planting TiO2 nanoparticles into TiO2 nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO2 nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5-10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m2/g and from 67.7 (for pure TNT) to 76.4 mJ/m2, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale.

  9. Electrochemical investigation on silicon/titanium carbide nanocomposite film anode for Li-ion batteries

    International Nuclear Information System (INIS)

    A Si/TiC nanocomposite film was synthesized by a surface sol-gel method in combination with a following heat-treatment process. The electrochemical properties of the film anode for lithium ion batteries were investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). Because of the homogeneous distribution of Si active particles in TiC matrix, the Si/TiC composite showed reversible lithium storage capacities of about 1000 and 1300 mAh g-1 at 160 and 80 mA g-1 even after 80 cycles, respectively. Using two-parallel diffusion path model, the reactive mechanisms of Li with Si/TiC composite film were interpreted. The chemical diffusion coefficients of the Si/TiC nanocomposite film at different electrode potentials were also discussed.

  10. Molten salt synthesis of sodium lithium titanium oxide anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yin, S.Y., E-mail: yshy2004@hotmail.com [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Feng, C.Q. [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Wu, S.J.; Liu, H.L.; Ke, B.Q. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Zhang, K.L. [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Chen, D.H. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, Hubei (China)

    2015-09-05

    Highlights: • Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} has been successfully synthesized via a molten salt route. • Calcination temperature is an important effect on the component and microstructure of the product. • Pure phase Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} could be obtained at 700 °C for 2 h. - Abstract: The sodium lithium titanium oxide with composition Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 14} has been synthesized by a molten salt synthesis method using sodium chloride and potassium chloride mixture as a flux medium. Synthetic variables on the synthesis, such as sintering temperature, sintering time and the amount of lithium carbonate, were intensively investigated. Powder X-ray diffraction and scanning electron microscopy images of the reaction products indicates that pure phase sodium lithium titanium oxide has been obtained at 700 °C, and impure phase sodium hexatitanate with whiskers produced at higher temperature due to lithium evaporative losses. The results of cyclic voltammetry and discharge–charge tests demonstrate that the synthesized products prepared at various temperatures exhibited electrochemical diversities due to the difference of the components. And the sample obtained at 700 °C revealed highly reversible insertion and extraction of Li{sup +} and displayed a single potential plateau at around 1.3 V. The product obtained at 700 °C for 2 h exhibits good cycling properties and retains the specific capacity of 62 mAh g{sup −1} after 500 cycles.

  11. Efficient charge injection from the S2 photoexcited state of special-pair mimic porphyrin assemblies anchored on a titanium-modified ITO anode.

    Science.gov (United States)

    Morisue, Mitsuhiko; Haruta, Noriko; Kalita, Dipak; Kobuke, Yoshiaki

    2006-10-25

    A novel surface fabrication methodology has been accomplished, aimed at efficient anodic photocurrent generation by a photoexcited porphyrin on an ITO (indium-tin oxide) electrode. The ITO electrode was submitted to a surface sol-gel process with titanium n-butoxide in order to deposit a titanium monolayer. Subsequently, porphyrins were assembled as monolayers on the titanium-treated ITO surface via phosphonate, isophthalate, and thiolate groups. Slipped-cofacial porphyrin dimers, the so-called artificial special pair at the photoreaction center, were organized through imidazolyl-to-zinc complementary coordination of imidazolylporphyrinatozinc(II) units, which were covalently immobilized by ring-closing olefin metathesis of allyl side chains. The modified surfaces were analyzed by means of X-ray photoelectron spectroscopy. Photoirradiation of the porphyrin dimer generated a large anodic photocurrent in aqueous electrolyte solution containing hydroquinone as an electron sacrificer, due to the small reorganization energy of the dimer. The use of different linker groups led to significant differences in the efficiencies of anodic photocurrent generation. The apparent flat-band potentials evaluated from the photocurrent properties at various pH values and under biased conditions imply that the band structure of the ITO electrode is modified by the anchoring species. The quantum yield for the anodic photocurrent generation by photoexcitation at the Soret band is increased to 15 %, a surprisingly high value without a redox cascade structure on the ITO electrode surface, while excitation at the Q band is not so significant. Extensive exploration of the photocurrent properties has revealed that hot injection of the photoexcited electron from the S2 level into the conduction band of the ITO electrode takes place before internal conversion to the S1* state, through the strong electronic communication of the phosphonyl anchor with the sol-gel-modified ITO surface. PMID

  12. Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays

    Science.gov (United States)

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Vomiero, Alberto; Borgese, Laura; Bontempi, Elza; Sberveglieri, Giorgio

    2012-06-01

    Synthesis of Nb-containing titania nanotubular arrays at room temperature by electrochemical anodization is reported. Crystallization of pure and Nb-doped TiO2 nanotubes was carried out by post-growth annealing at 400 °C. The morphology of the tubes obtained was characterized by scanning electron microscopy (SEM). Crystal structure and composition of tubes were investigated by glancing incidence x-ray diffraction (GIXRD) and total reflection x-ray fluorescence (TXRF). For the first time gas sensing characteristics of Nb-doped TiO2 nanotubes were investigated and compared to those of undoped nanotubes. The functional properties of nanotubular arrays towards CO, H2, NO2, ethanol and acetone were tested in a wide range of operating temperature. The introduction of Nb largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes.

  13. Investigations on photoelectrocatalytic reduction of Cr(VI) over titanium dioxide anode and metal cathode

    International Nuclear Information System (INIS)

    Photocatalytic and photoelectrocatalytic (PEC) reductions of Cr(VI) based on TiO2 thin films were investigated under various conditions. Photogenerated electrons transferred from TiO2 thin film to cathode can contribute to PEC reduction of Cr(VI) only when the Fermi level of cathode lies above the chemical potential of Cr(VI), almost independent on the applied voltage of the direct current. In addition, the TiO2-coated anode is the major site that accommodates the PEC reduction of Cr(VI) with hole scavenger citric acid, regardless of the Fermi level of the cathode. Although electron transfer from TiO2 to Cr(VI) is an exothermic process, the photogenerated holes in TiO2 can markedly hamper Cr(VI) reduction over the TiO2 thin film by oxidizing the lower-valence Cr back to Cr(VI), which may be counteracted by the citric acid. This research provides some in-depth insights on developing photocatalysts which enable highly efficient PEC reduction of Cr(VI) in the future. - Highlights: • Cr(VI) reduction on TiO2 photoanode is dominant with the addition of citric acid. • Cr(VI) is reduced on photocathode with Fermi level above Cr(VI) chemical potential. • Photogenerated holes can hamper Cr(VI) photoreduction over TiO2

  14. High-capacity carbon-coated titanium dioxide core-shell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells

    Science.gov (United States)

    Tang, Jiahuan; Yuan, Yong; Liu, Ting; Zhou, Shungui

    2015-01-01

    Three-dimensional (3D) electrodes have been intensively investigated as alternatives to conventional plate electrodes in the development of high-performance microbial fuel cells (MFCs). However, the energy output of the MFCs with the 3D anodes is still limited for practical applications. In this study, a 3D anode modified with a nano-structured capacitive layer is prepared to improve the performance of an microbial fuel cell (MFC). The capacitive layer composes of titanium dioxide (TiO2) and egg white protein (EWP)-derived carbon assembled core-shell nanoparticles, which are integrated into loofah sponge carbon (LSC) to obtain a high-capacitive 3D electrode. The as-prepared 3D anode produces a power density of 2.59 ± 0.12 W m-2, which is 63% and 201% higher than that of the original LSC and graphite anodes, respectively. The increased energy output is contributed to the enhanced electrochemical capacitance of the 3D anodes as well as the synergetic effects between TiO2 and EWP-derived carbon due to their unique properties, such as relatively high surface area, good biocompatibility, and favorable surface functionalization for interfacial microbial electron transfer. The results obtained in this study will benefit the optimized design of new 3D materials to achieve enhanced performance in MFCs.

  15. Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    M. G. Hosseini

    2012-10-01

    Full Text Available We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG fluoride-containing electrolyte. The morphology and surface characteristics of Pd-TiO2/Ti and Pt-TiO2/Ti electrodes were investigated using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX, respectively. The results indicated that platinum and palladium nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of 70-90 nm diameters. This nanotubular TiO2 support provides a high surface area and it significantly enhances the electro-catalytic activity of Pd-TiO2/Ti and Pt-TiO2/Ti electrodes for alcohols oxidation. The electro-catalytic activity of Pd- TiO2/Ti and Pt-TiO2/Ti electrodes in the alcohols electro-oxidation was studied by electrochemical methods. The results indicate that Pd-TiO2/Ti and Pt-TiO2/Ti electrodes improve the electro-catalytic activity for alcohols oxidation greatly and confirmed the better electro-catalytic activity and stability of these new electrodes. So, the Pd-TiO2/Ti and Pt-TiO2/Ti electrodes have a good application potential to fuel cells.

  16. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  17. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    International Nuclear Information System (INIS)

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO2 nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  18. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants

    Directory of Open Access Journals (Sweden)

    Ma Q

    2012-04-01

    Full Text Available Qianli Ma1*, Wei Wang1*, Paul K Chu2, Shenglin Mei1,2, Kun Ji3, Lei Jin4, Yumei Zhang11Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China; 3Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 4Stomatology Department, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: Titanium (Ti implants are widely used clinically, but peri-implantitis remains one of the most common and serious complications. Healthy integration between gingival tissue and the implant surface is critical to long-term success in dental implant therapy. The objective of this study was to investigate how different concentrations of immobilized fibroblast growth factor 2 (FGF2 on the titania nanotubular surface influence the response of human gingival fibroblasts (HGFs.Methods: Pure Ti metal was anodized at 20 V to form a vertically organized titanium dioxide nanotube array on which three concentrations of FGF2 (250 ng/mL, 500 ng/mL, or 1000 ng/mL were immobilized by repeated lyophilization. Surface topography was observed and FGF2 elution was detected using enzyme-linked immunosorbent assay. The bioactivity changes of dissolvable immobilized FGF2 were measured by methyl-thiazolyl-tetrazolium assay. Behavior of HGFs was evaluated using adhesion and methyl-thiazolyl-tetrazolium bromide assays.Results: The FGF2 remained for several days on the modified surface on which HGFs were cultured. Over 90% of the dissolvable immobilized FGF2 had been eluted by Day 9, whereas the FGF2 activity was found to diminish gradually from Day 1 to Day 9. The titania nanotubular surface with an optimal preparing

  19. Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution.

    Science.gov (United States)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Watari, Fumio

    2009-01-01

    TiO(2) nanotube array (TN) on titanium plate was fabricated by using an electrochemical method. The crystal structure and surface morphology of TN array was examined by X-ray diffraction (XRD) and Field Emission Scanning Electronic Microscopy (FE-SEM), respectively. The stability of the nanotube structure and crystal phase transition was studied at different temperatures in dry oxygen ambient. The as-deposited films were found to be amorphous. The tubes crystallized in the anatase phase at a temperature of 450 degrees C. Anatase crystallites formed inside the tubes walls was transformed completely to rutile at 500 degrees C in dry environment. With the heating temperature increased the intensity of rutile peak increased with decrease in reflection from titanium. Intense rutile peak was observed at 600 degrees C. The average pore diameter as calculated from FE-SEM images was 50-100 nm. At higher temperature tubular structure completely collapsed leaving dense rutile crystallites. A model was proposed to explain the formation mechanism of TN fabricated on titanium plate in HF/H(2)SO(4) electrolyte. PMID:19458449

  20. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  1. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • CNTs/TiO2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO2) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g−1, as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g−1). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO2 composite films for large-scale production and application in energy devices were shown

  2. Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays

    International Nuclear Information System (INIS)

    Sensing and detection of volatile organic compounds (VOCs) from exhaled breath is a possible method for early diagnosis of several pulmonary diseases. The use of solid-state TiO2 nanotube array sensors for VOC sensing applications has been of great interest. In this study, titania nanotubular arrays (TNAs) were synthesized through electrochemical anodization and used for the electrochemical detection of methyl nicotinate biomarker vapor. Functionalization of the TNA with cobalt was found to be necessary for methyl nicotinate detection. Titanium dioxide films synthesized through high temperature oxidation and functionalized with cobalt were also compared with cobalt functionalized TNA. The ordered TNA demonstrated itself to be an effective substrate for cobalt deposition and subsequent biomarker detection over thin titanium dioxide films. Surface analysis of the cobalt functionalized TNA by x-ray photoelectron spectroscopy (XPS) studies observed cobalt deposits exist as cobalt hydroxide on the surface. Exposure of the sensor surface to methyl nicotinate vapor results in the reduction of cobalt hydroxide to cobalt metal on the surface. Two mechanisms have been proposed to describe the binding of the nicotinate biomarker to cobalt functionalized TNA consistent with the XPS studies and band theory. (paper)

  3. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Directory of Open Access Journals (Sweden)

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  4. Regularities of anodic oxidation and properties of oxidized surface of titanium ruthenium alloys in neutral sulfate solutions

    International Nuclear Information System (INIS)

    Anodic behaviour of the alloys Ti-Ru (0.1-20 weight % of Ru) in pure solUtion 1NNa2So4 (pH 5.6) and in solution containing the syste Fe(CN)64- Fe(CN)63- has been studied. The investigation is carried oUt using the potentiodynamic method on the oxidized under isopotential conditions (at -0.10-1.65 V) alloy surface. It is shown that during anodic oxidation of the Ti-Ru alloys both components of the alloy are subjected to oxidation. Composition of oxide film depends on the potential. Starting from 1.10 V as a resUlt of oxidation of Ru to higher valent states with Ru transition to solution, selective dissolution of ruthenium constituent takes place and surface layer of oxide film is enriched with TiO2. During prolong polarization at positive enough potentials formation of continuous layer of TiO2 on the surface of oxidated alloy is possible, as a result, reactions of the solution ion oxidation, proceeding in the given range of potentials, will be hampered

  5. Regularities of anodic oxidation and properties of oxidized surface of titanium ruthenium alloys in neutral sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Deryagina, O.G.; Tomashov, N.D.; Makarychev, Yu.B.; Goncharenko, B.A. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    1983-03-01

    Anodic behaviour of the alloys Ti-Ru (0.1-20 weight % of Ru) in pure solution 1NNa/sub 2/So/sub 4/ (pH 5.6) and in solution containing the system Fe(CN)/sub 6//sup 4 -/ Fe(CN)/sub 6//sup 3 -/ has been studied. The investigation is carried out using the potentiodynamic method on the oxidized material under isopotential conditions (at -0.10-1.65 V) alloy surface. It is shown that during anodic oxidation of the Ti-Ru alloys both components of the alloy are subjected to oxidation. Composition of oxide film depends on the potential. Starting from 1.10 V as a result of oxidation of Ru to higher valent states with Ru transition to solution, selective dissolution of ruthenium constituent takes place and surface layer of oxide film is enriched with TiO/sub 2/. During prolong polarization at positive enough potentials formation of continuous layer of TiO/sub 2/ on the surface of oxidated alloy is possible, as a result, reactions of the solution ion oxidation, proceeding in the given range of potentials, will be hampered.

  6. High rate capability and long cycle stability of TiO{sub 2−δ}–La composite nanotubes as anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiwei; Zhang, Jingwei, E-mail: jwzhang@henu.edu.cn; Ren, Huanhuan; Yu, Laigui; Wu, Zhishen; Zhang, Zhijun, E-mail: zhangzhijun@henu.edu.cn

    2014-10-01

    Highlights: • TiO{sub 2−δ}–La composite nanotubes were synthesized. • Nanotubular morphology destruction is alleviated during the heat-treatment process. • Mixed Ti{sup 4+}/Ti{sup 3+} valence is generated. • As a result, the composite shows excellent rate capability and cyclability. - Abstract: TiO{sub 2−δ}–La composite nanotubes are prepared by heating the ethanol solution of La(NO{sub 3}){sub 3}⋅6H{sub 2}O which is introduced into nanotube titanium acid at pre-set temperature. The effect of La dosage on the microstructure and electrochemical properties of as-fabricated TiO{sub 2−δ}–La composite nanotubes is investigated. Results indicate that La{sup 3+} can be trapped in the internal/external surfaces and the interlayer space of nanotubes. All of these help to retain the nanotubular morphology and layered structure during the dehydration process. Ti{sup 3+} defects generated by the dehydration of nanotube titanium acid can be stabilized by the formed Ti–O–La bond. So, as-fabricated TiO{sub 2−δ}–La composite nanotubes samples exhibit markedly improved electrochemical properties than pristine TiO{sub 2}. Particularly, the electrode made of TiO{sub 2−δ}–La composite nanotubes containing 5% La element (mass fraction) has a high capacity of 142 mA h g{sup −1} at a charge/discharge rate of 20 C rate and a capacity retention of 87% after 1000 cycles at 10 C, showing superior electrochemical performance and great potential as an anode material for high-rate lithium-ion batteries.

  7. High rate capability and long cycle stability of TiO2−δ–La composite nanotubes as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • TiO2−δ–La composite nanotubes were synthesized. • Nanotubular morphology destruction is alleviated during the heat-treatment process. • Mixed Ti4+/Ti3+ valence is generated. • As a result, the composite shows excellent rate capability and cyclability. - Abstract: TiO2−δ–La composite nanotubes are prepared by heating the ethanol solution of La(NO3)3⋅6H2O which is introduced into nanotube titanium acid at pre-set temperature. The effect of La dosage on the microstructure and electrochemical properties of as-fabricated TiO2−δ–La composite nanotubes is investigated. Results indicate that La3+ can be trapped in the internal/external surfaces and the interlayer space of nanotubes. All of these help to retain the nanotubular morphology and layered structure during the dehydration process. Ti3+ defects generated by the dehydration of nanotube titanium acid can be stabilized by the formed Ti–O–La bond. So, as-fabricated TiO2−δ–La composite nanotubes samples exhibit markedly improved electrochemical properties than pristine TiO2. Particularly, the electrode made of TiO2−δ–La composite nanotubes containing 5% La element (mass fraction) has a high capacity of 142 mA h g−1 at a charge/discharge rate of 20 C rate and a capacity retention of 87% after 1000 cycles at 10 C, showing superior electrochemical performance and great potential as an anode material for high-rate lithium-ion batteries

  8. Nanotubular J-aggregates covered by transparent silica nanoshells

    CERN Document Server

    Qiao, Yan; Kirmse, Holm; Kirstein, Stefan; Rabe, Jürgen P

    2015-01-01

    Nanotubular J-aggregates of amphiphilic cyanine dyes exhibit highly attractive opto-electronic properties, reminiscent to natural light harvesting complexes. However, their photo-chemical and mechanical stabilities are limited. A robust transparent shell covering the J aggregates may alleviate these issues. Here, organic-inorganic hybrid nanotubes have been synthesized based on in-situ coating the nanotubular J-aggregates with silica through the sol-gel method. The growth of the shell is controlled by electrostatic adsorption of the silica precursors. The resulting silica nanoshells exhibit a regular superstructure that consists of ribbons that helically wind around the tubular aggregates. The molecular structure of the aggregates and hence their spectral properties remain unaffected by the silication process. The overall shell thickness can be controlled by the ratio and the absolute concentration of the precursors. The usage of a precursor containing diamine groups leads to the formation of bundles of the t...

  9. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M., E-mail: josecalderonmoreno@yahoo.com [Institute of Physical Chemistry ' Ilie Murgulescu' of the Romanian Academy, Bucharest (Romania)

    2013-07-15

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  10. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    International Nuclear Information System (INIS)

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  11. Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    TiO2 nanotube (NT) arrays have been prepared by anodic oxidation of a Ti sheet,and carbon-deposited TiO2 NT arrays have been prepared by annealing TiO2 NT arrays in carbon atmosphere. The biocompatibility of the as-prepared NT arrays was investigated by observing the growth of osteosarcoma (MG-63) cells on the NT arrays. The application of the TiO2 NT arrays as a drug delivery vehicle was investigated. Both the TiO2 NTs and the carbon-modified TiO2 NTs have good biocompatibility supporting the normal growth and adhesion of MG-63 cells with no need of extracellular matrix protein coating. The one end-opened TiO2 NTs can be easily filled with drugs,working as an efficient drug delivery vehicle.

  12. Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Coaxial TiO2/carbon nanofibers (TCNFs) were fabricated by coaxial electrospinning. • After carbonization, TCNFs were formed with anatase TiO2 shell and carbon core. • The carbon core improved electron transport and minimized charge recombination. • The performance of TCNF-based DSSC device shows a high η value, 7.5%. - Abstract: TiO2/carbon coaxial-structured nanofibers (TCNFs), applied as photoanodes in dye-sensitized solar cells (DSSCs), were fabricated by coaxial electrospinning. The precursor of the TCNFs was electrospun using polyacrylonitrile in the core and a blend of titanium isopropoxide and polyvinylpyrrolidone in the shell. After calcination at 500 °C for 2 h in air and subsequent carbonization at 1000 °C for 2 h in nitrogen, the TCNFs were formed with nanocrystalline TiO2 in the shell layer and carbon in the core. The structure and morphology of the TCNFs were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The photovoltaic properties of the TCNF photoelectrode-based DSSCs were investigated by determining current density-voltage (J–V) curves, incident photon-to-current conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS). The power conversion efficiency (PCE) of the TCNF photoelectrode-based DSSC was 7.5%, higher than those of DSSCs with TiO2 nanofiber (TNF)- and TiO2 nanoparticle (TNP)-based photoelectrodes. An increase in the electron transport and suppression of charge recombination were found with the carbon core and nanocrystalline TiO2 shell configuration of the TCNFs

  13. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    International Nuclear Information System (INIS)

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s-1. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  14. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J, E-mail: Thomas_Webster@Brown.edu [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2011-02-25

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s{sup -1}. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  15. Titanium nanostructural surface processing for improved biocompatibility

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy, grazing incident x-ray diffraction, transmission electron microscopy, and scanning electron microscopy were conducted to evaluate the effect of titanium hydride on the formation of nanoporous TiO2 on Ti during anodization. Nano-titanium-hydride was formed cathodically before anodizing and served as a sacrificial nanoprecipitate during anodization. Surface oxidation occurred and a multinanoporous structure formed after cathodic pretreatments followed by anodization treatment. The sacrificial nanoprecipitate is directly dissolved and the Ti transformed to nanoporous TiO2 by anodization. The formation of sacrificial nanoprecipitates by cathodic pretreatment and of the multinanostructure by anodization is believed to improve biocompatibility, thereby promoting osseointegration

  16. The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures

    Directory of Open Access Journals (Sweden)

    Renchuan You

    2014-06-01

    Full Text Available Tunneling nanotubes are important membrane channels for cell-to-cell communication. In this study, we investigated the effect of the microenvironment on nanotubular structures by preparing a three-dimensional silk fibroin micropillar structure. In previous reports, tunneling nanotubes were described as stretched membrane channels between interconnected cells at their nearest distance. They hover freely in the cell culture medium and do not contact with the substratum. Interestingly, the micropillars could provide supporting points for nanotubular connection on silk fibroin films, where nanotubular structure formed a stable anchor at contact points. Consequently, the extension direction of nanotubular structure was affected by the micropillar topography. This result suggests that the hovering tunneling nanotubes in the culture medium will come into contact with the raised roadblock on the substrates during long-distance extension. These findings imply that the surface microtopography of biomaterials have an important influence on cell communication mediated by tunneling nanotubes.

  17. Application of immobilized nanotubular TiO2 electrode for photocatalytic hydrogen evolution: Reduction of hexavalent chromium (Cr(VI)) in water

    International Nuclear Information System (INIS)

    In this study, immobilized TiO2 electrode is applied to reduce toxic Cr(VI) to non-toxic Cr(III) in aqueous solution under UV irradiation. To overcome the limitation of powder TiO2, a novel technique of immobilization based on anodization was applied and investigated under various experimental conditions. The anodization was performed at 20 V-5 deg. C for 45 min with 0.5% hydrofluoric acid, and then the anodized samples were annealed under oxygen stream in the range 450-850 deg. C. Based on the results of the experiments, the photocatalytic Cr(VI) reduction was favorable in acidic conditions, with ∼98% of the Cr(VI) being reduced within 2 h at pH 3. Among the samples tested under same anodizing condition, the nanotubular TiO2 annealed at 450 and 550 deg. C showed highest reduction efficiencies of Cr(VI). In addition, the surface characterizations (zeta potential, XRD, and SEM) of these samples proved that the Cr(VI) reduction efficiency was higher under acidic conditions and at a lower annealing temperature. From this research, it was concluded that the anodized TiO2 has the potential to be a useful technology for environmental remediation as well as photocatalytic hydrogen production from water

  18. Fabrication of nanotube arrays on commercially pure titanium and their apatite-forming ability in a simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); Chang, Yu-Chen [Department of Mechanical and Automation Engineering, Da-Yeh University, Taiwan, ROC (China); Ho, Wen-Fu, E-mail: fujii@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, ROC (China)

    2015-02-15

    In this study, we investigated self-organized TiO{sub 2} nanotubes that were grown using anodization of commercially pure titanium at 5 V or 10 V in NH{sub 4}F/NaCl electrolyte. The nanotube arrays were annealed at 450 °C for 3 h to convert the amorphous nanotubes to anatase and then they were immersed in simulated body fluid at 37 °C for 0.5, 1, and 14 days. The purpose of this experiment was to evaluate the apatite-formation abilities of anodized Ti nanotubes with different tube diameters and lengths. The nanotubes that formed on the surfaces of Ti were examined using a field emission scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscope. When the anodizing potential was increased from 5 V to 10 V, the pore diameter of the nanotube increased from approximately 24–30 nm to 35–53 nm, and the tube length increased from approximately 590 nm to 730 nm. In vitro testing of the heat-treated nanotube arrays indicated that Ca-P formation occurred after only 1 day of immersion in simulated body fluid. This result was particularly apparent in the samples that were anodized at 10 V. It was also found that the thickness of the Ca-P layer increases as the applied potential for anodized c.p. Ti increases. The average thickness of the Ca-P layer on Ti that was anodized at 5 V and 10 V was approximately 170 nm and 190 nm, respectively, after immersion in simulated body fluid for 14 days. - Highlights: • TiO{sub 2} nanotube on Ti surface was formed by anodic oxidation in a NaCl/NH{sub 4}F solution. • TiO{sub 2} layers show a tube length of 590 nm and 730 nm at 5 V and 10 V, respectively. • After soaking in SBF, Ca-P layer completely covered the entire nanotubular surfaces. • The Ca-P layer was thicker on the Ti surface anodized at 10 V.

  19. Characterization of titanium thin films anodically grown in phosphoric acid; Caracterisation des films d'oxyde de titane obtenus anodiquement dans l'acide phosphorique

    Energy Technology Data Exchange (ETDEWEB)

    Khadiri, M.E.; Benyaich [Faculte des Sciences Semlalia, Lab. d' Electrochimie et Chimie Analytique, Marakech (Morocco); Oueriagli, A.; Outzourhit, A.; Ameziane, E.L. [Faculte des Sciences Semlalia, Lab. de Physique du Solide et des Couches Minces, Marakech (Morocco)

    2004-08-01

    Ti-Cu(2%) alloy was anodized in a 5 M phosphoric acid solution under various voltages ranging from 10 to 35 V. The composition, the structural and optical properties of the as-grown oxide films were studied. It was found that the color of the anodized substrates varied from yellow to blue depending on the anodizing voltage. The films formed on the alloy are amorphous and the oxidation state of Ti on their surface is mainly +4. On the other hand it was found that the thickness of the films increases linearly with anodization voltage at rate of 1.94 nm/V, while the refractive index at the wavelength corresponding to the reflectance minimum was practically constant. These films were also found to have excellent protective properties for the examined alloy. (authors)

  20. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance

    International Nuclear Information System (INIS)

    Highlights: • Amorphous TiO2 nanotube (NT) arrays are fabricated by fast and facile anodic oxidation. • Near-theoretical initial specific capacity and remarkable rate capability. • Very long-term cycling stability (>2000 cycles) at a very high C-rate. • High surface area and improved interfacial characteristics for fast diffusion kinetics. • NTs show promising prospects in storage devices conceived for high power applications. - Abstract: Vertically oriented arrays of high surface area TiO2 nanotubes (NTs) are fabricated by the fast and facile anodic oxidation of a titanium foil. The formation of well-defined one-dimensional nanotubular carpets is assessed by means of morphological Field Emission Scanning Electron Microscopy characterisation, while X-ray diffraction analysis and Transmission Electron Microscopy imaging confirm the amorphous nature of the samples. The electrochemical response evaluated in lab-scale lithium cells is highly satisfying with near-theoretical initial specific capacity and remarkable rate capability, noteworthy in the absence of binders and conductive agents, which would affect the overall energy density. A specific capacity exceeding 200 mAh g−1 is observed at very high 24 C and approx. 80 mAh g−1 are retained even at very high 96 C rate, thus accounting for the promising prospects in storage devices conceived for high power applications. Moreover, the NTs can perform with good cycling stability and capacity retention approaching 50% of the initial value after very long-term operation along with improved durability (> 2000 cycles)

  1. Influence of Anode Area and Electrode Gap on the Morphology of Nanotubes Arrays

    OpenAIRE

    Min Wang; Li Jia; Shuangmei Deng

    2013-01-01

    In order to fabricate the titanium dioxide (TiO2) nanotubes arrays which were used in the photocatalytic degradation of total volatile organic compounds (TVOC) by anodization, the influence of the electrode gap and anode area on the morphology of the titanium dioxide (TiO2) nanotubes was studied. Titanium dioxide (TiO2) nanotube arrays were prepared by anodization with various electrode gaps and anode areas. Field emission scanning electron microscopy was used to investigate the morphology of...

  2. Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H{sub 3}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Souza Sikora, Mariana de; Viana Rosario, Adriane [Laboratorio Interdisciplinar de Eletroquimica e Ceramica (LIEC), DQ, UFSCar, P.O. Box: 676, 13565-905, Sao Carlos (Brazil); Chaves Pereira, Ernesto, E-mail: decp@power.ufscar.b [Laboratorio Interdisciplinar de Eletroquimica e Ceramica (LIEC), DQ, UFSCar, P.O. Box: 676, 13565-905, Sao Carlos (Brazil); Paiva-Santos, Carlos O. [Laboratorio Computacional em Analises Cristalograficas e Cristalinas - LabCACC, Instituto de Quimica, UNESP, 14800-900, Araraquara, SP (Brazil)

    2011-03-30

    Research highlights: {yields} Variation of morphology and microstructure of TiO{sub 2} with applied charge. {yields} Influence of morphology on photoactivity of TiO{sub 2} films prepared by sparking anodization. {yields} Influence of crystallite size on photoactivity of TiO{sub 2} films prepared by sparking anodization. - Abstract: The aim of this paper is to investigate changes in morphology and microstructure of TiO{sub 2} films, prepared by sparking anodization of Ti in a H{sub 3}PO{sub 4} solution, by applying different formation charges. We show that although films obtained by this technique are rarely used in photocatalytic applications, the morphological and microstructural changes during sparking anodization produce TiO{sub 2} films that can be used as photocatalysts. In contrast to qualitative analysis commonly found in the literature, we used quantitative methods of analysis to quantify average pore diameter and pore density from the morphology and structural parameters from X-ray diffraction (XRD) patterns using the Rietveld refinement. The results indicated that changes in both the morphology and crystalline structure have a strong influence on the photoactivity of the films. From this investigation, we concluded that, for films prepared in early stages of anodization, the morphology had the biggest influence on photoactivity, and after applying 72C of charge, crystalline properties dominated the photocatalytic characteristics of the films.

  3. Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H3PO4

    International Nuclear Information System (INIS)

    Research highlights: → Variation of morphology and microstructure of TiO2 with applied charge. → Influence of morphology on photoactivity of TiO2 films prepared by sparking anodization. → Influence of crystallite size on photoactivity of TiO2 films prepared by sparking anodization. - Abstract: The aim of this paper is to investigate changes in morphology and microstructure of TiO2 films, prepared by sparking anodization of Ti in a H3PO4 solution, by applying different formation charges. We show that although films obtained by this technique are rarely used in photocatalytic applications, the morphological and microstructural changes during sparking anodization produce TiO2 films that can be used as photocatalysts. In contrast to qualitative analysis commonly found in the literature, we used quantitative methods of analysis to quantify average pore diameter and pore density from the morphology and structural parameters from X-ray diffraction (XRD) patterns using the Rietveld refinement. The results indicated that changes in both the morphology and crystalline structure have a strong influence on the photoactivity of the films. From this investigation, we concluded that, for films prepared in early stages of anodization, the morphology had the biggest influence on photoactivity, and after applying 72C of charge, crystalline properties dominated the photocatalytic characteristics of the films.

  4. Fabrication of Heterogeneous TiO2-CdS Nanotubular Arrays on Transparent Conductive Substrate and Their Photoelectrochemical Properties

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-11-01

    and the CdS nanoparticles under front-side illumination. Our strategy for nanotubular transfer on transparent substrate may extend the applications of TiO2 nanotubular arrays into other fields, such as dye-sensitized solar cells, photochromism and photocatalysis.

  5. Nano-tubular cellulose for bioprocess technology development.

    Directory of Open Access Journals (Sweden)

    Athanasios A Koutinas

    Full Text Available Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation. The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator. Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  6. Properties of boron-carbide based nanotubular structures

    International Nuclear Information System (INIS)

    Full text: One of the most important areas of search for a new generation of superconductors is amongst layered A1B2-type systems. One such structure, LiBC, which is isovalent with, and structurally similar to, the superconductor MgB2, has recently attracted attention due to the nature of its electronic structure. It was found by Rosner et al., that the character of the Fermi surface of hole-doped LiBC is very similar to the features which lead to superconductivity in MgB2 at TC ∼ 40 K. Exploration of the novel properties of tubular analogues of layered and crystalline structures is another promising trend in the search for novel superconductors. Carbon nanotubes, for example, have been found tp have a superconducting transition temperature, TC, of approximately 0.55 K. A number of interesting attempts to model the properties of hypothetical nanotubular modifications of layered A1B2 and A1B2 - type ternary suicides have also been performed recently. We have proposed a new class of charged Boron-Carbide nanotubes (BC(-)) which correspond to a charged backbone structure for the hypothetical LiBC nanotubes. In the present work we discuss the energetics and electronic structure of these charged Boron-Carbide nanotubes, and the effects of hole-doping of these structures. We also present some preliminary results of calculations of the vibrational properties of charged and hole-doped Boron-Carbide nanotubes

  7. Stable porous crystalline silicon with nanotubular structure: A predicted allotrope with direct band gap

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chi-Pui, E-mail: duncantcp@yahoo.com.hk [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Lunar and Planetary Science Laboratory, Macau University of Science and Technology, Macau (Macao); Cao, Jie [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Xiong, Shi-Jie, E-mail: sjxiong@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-06-15

    On basis of the first principle calculation we show that a crystalline structure of silicon, as a novel allotrope with nanotubular holes along two perpendicular directions, is stable. The calculations on geometrical and electronic properties reveal that this allotrope possesses a direct band gap wider by 0.5 eV than the indirect one of silicon with diamond structure. The crystal belongs to I41/AMD space group, showing anisotropic optical properties and Young modulus. The bulk modulus is 64.4 GPa and the density is 1.9 g/cm{sup 3}, lower than that of the diamond silicon due to the presence of nanotubular holes. It is hopeful that the allotrope may widely expand applications of silicon in many fields due to its direct band gap and specific nanotubular structure.

  8. Stable porous crystalline silicon with nanotubular structure: A predicted allotrope with direct band gap

    International Nuclear Information System (INIS)

    On basis of the first principle calculation we show that a crystalline structure of silicon, as a novel allotrope with nanotubular holes along two perpendicular directions, is stable. The calculations on geometrical and electronic properties reveal that this allotrope possesses a direct band gap wider by 0.5 eV than the indirect one of silicon with diamond structure. The crystal belongs to I41/AMD space group, showing anisotropic optical properties and Young modulus. The bulk modulus is 64.4 GPa and the density is 1.9 g/cm3, lower than that of the diamond silicon due to the presence of nanotubular holes. It is hopeful that the allotrope may widely expand applications of silicon in many fields due to its direct band gap and specific nanotubular structure

  9. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    OpenAIRE

    Vladimir V. Panić; ALEKSANDAR B. DEKANSKI; VESNA B. MIŠKOVIĆ—STANKOVIĆ; SLOBODAN K. MILONJIĆ; BRANISLAV Ž. NIKOLIĆ

    2010-01-01

    The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is o...

  10. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions

    International Nuclear Information System (INIS)

    Corrosion resistance and galvanic coupling of Grade 2 commercially pure titanium in its welded and non-welded condition were systematically analyzed in LiBr solutions. Galvanic corrosion was evaluated through two different methods: anodic polarization (according to the Mixed Potential Theory) and electrochemical noise (using a zero-resistance ammeter). Samples have been etched to study the microstructure. The action of lithium chromate as corrosion inhibitor has been evaluated. Titanium and welded titanium showed extremely low corrosion current densities and elevated pitting potential values (higher than 1 V). The results of both methods, anodic polarization and electrochemical noise, showed that the welded titanium was always the anodic element of the pair titanium-welded titanium, so that its corrosion resistance decreases due to the galvanic effect

  11. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIĆ

    2010-10-01

    Full Text Available The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is of poor conductivity and activity, while the voltammetric behavior of the Ti0.6Ru0.4O2/Ti electrode is governed by proton injection/ejection into the oxide structure. The Ti0.6Ir0.4O2/Ti electrode had a higher electrocatalytical activity for oxygen evolution, while the investigated anodes were of similar activity for chlorine evolution. The potential dependence of the impedance characteristics showed that the Ti0.6Ru0.4O2/Ti electrode behaved like a capacitor over a wider potential range than the Ti0.6Ir0.4O2/Ti electrode, with fully-developed pseudocapacitive properties at potentials positive to 0.60 VSCE. However, the impedance characteristics of the Ti0.6Ir0.4O2/Ti electrode changed with increasing potential from resistor-like to capacitor-like behavior.

  12. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  13. Optical waveguiding and temperature dependent photoluminescence of nanotubulars grown from molecular building blocks

    DEFF Research Database (Denmark)

    Maibohm, Christian; Rastedt, Maren; Kutscher, Frauke;

    2013-01-01

    -Tbf). The propagating blue light is strongly attenuated due to self-absorption. Vibronic spectra for both nanotubulars and macroscopic crystallites for temperatures between 5 and 300 K show a behavior of TMS-Tbf that resembles that of long chained molecules while 17H-TbF resembles that of small organic...... molecules. For both molecular species crystallites and nanostructures have large average Huang–Rhys factors indicating strong phononic coupling promoted by the polycrystallinity of the samples....

  14. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes.

    Science.gov (United States)

    Radjenovic, Jelena; Bagastyo, Arseto; Rozendal, René A; Mu, Yang; Keller, Jürg; Rabaey, Korneel

    2011-02-01

    During membrane treatment of secondary effluent from wastewater treatment plants, a reverse osmosis concentrate (ROC) containing trace organic contaminants is generated. As the latter are of concern, effective and economic treatment methods are required. Here, we investigated electrochemical oxidation of ROC using Ti/Ru(0.7)Ir(0.3)O(2) electrodes, focussing on the removal of dissolved organic carbon (DOC), specific ultra-violet absorbance at 254 nm (SUVA(254)), and 28 pharmaceuticals and pesticides frequently encountered in secondary treated effluents. The experiments were conducted in a continuously fed reactor at current densities (J) ranging from 1 to 250 A m(-2) anode, and a batch reactor at J = 250 A m(-2). Higher mineralization efficiency was observed during batch oxidation (e.g. 25.1 ± 2.7% DOC removal vs 0% removal in the continuous reactor after applying specific electrical charge, Q = 437.0 A h m(-3) ROC), indicating that DOC removal is depending on indirect oxidation by electrogenerated oxidants that accumulate in the bulk liquid. An initial increase and subsequent slow decrease in SUVA(254) during batch mode suggests the introduction of auxochrome substituents (e.g. -Cl, NH(2)Cl, -Br, and -OH) into the aromatic compounds. Contrarily, in the continuous reactor ring-cleaving oxidation products were generated, and SUVA(254) removal correlated with applied charge. Furthermore, 20 of the target pharmaceuticals and pesticides completely disappeared in both the continuous and batch experiments when applying J ≥ 150 A m(-2) (i.e. Q ≥ 461.5 A h m(-3)) and 437.0 A h m(-3) (J = 250 A m(-2)), respectively. Compounds that were more persistent during continuous oxidation were characterized by the presence of electrophilic groups on the aromatic ring (e.g. triclopyr) or by the absence of stronger nucleophilic substituents (e.g. ibuprofen). These pollutants were oxidized when applying higher specific electrical charge in batch mode (i.e. 1.45 kA h m(-3) ROC

  15. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  16. Titanium and titanium alloy forgings

    International Nuclear Information System (INIS)

    The specification covers nine grades of annealed titanium and titanium alloy forgings as follows: Grade F-1, F-2, F-3, and F-4 unalloyed titanium; Grade F-5 titanium alloy (6% aluminum, 4% vanadium); Grade F-6 titanium alloy (5% aluminum, 2.5% tin); Grade F-7 and F-11 unalloyed titanium plus palladium; Grade F-12 titanium alloy (0.3% molybdenum, 0.8% nickel). The specification includes ordering information, manufacture, chemical requirements, mechanical requirements, nondestructive tests, dimensions and permissible variations, finish, certification, packaging, and marking

  17. GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti-6Al-7Nb aimed at developing mixed oxide nanotubular arrays.

    Science.gov (United States)

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Fallahpour, A; Vadivelu, J; Musa, S N; Kaboli, S H A

    2016-08-01

    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications. PMID:26874249

  18. Investigation on the Adsorption and Photooxidation of Glycerol at TiO2 Nanotubular Arrays

    Directory of Open Access Journals (Sweden)

    Simonetta Palmas

    2012-01-01

    Full Text Available A study is presented on the adsorption of glycerol at TiO2 as well as on its oxidative process during the contemporary water Photoelectro-splitting for hydrogen production. A deepening in the understanding on the working mechanism of the TiO2 nanotubular photoanodes and on the interactions between glycerol and these structures has been gained through photocurrent tests, voltammetric scans, and EIS analysis. A range of wavelength of the incident radiation is investigated from 340 to 400 nm at which the effect of glycerol on the photocurrent is measured. Quantitative analysis of the EIS results is performed by the equivalent circuit approach.

  19. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    Science.gov (United States)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  20. Copper and nickel adherently electroplated on titanium alloy

    Science.gov (United States)

    Brown, E. E.

    1967-01-01

    Anodic treatment of titanium alloy enables electroplating of tightly adherent coatings of copper and nickel on the alloy. The alloy is treated in a solution of hydrofluoric and acetic acids, followed by the electroplating process.

  1. Titanium dioxide nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Ioan, E-mail: roman@metav-cd.ro [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Trusca, Roxana Doina; Soare, Maria-Laura [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Fratila, Corneliu [Research and Development National Institute for Nonferrous and Rare Metals, Pantelimon, 102 Biruintei, 077145 (Romania); Krasicka-Cydzik, Elzbieta [University of Zielona Gora, Department of Biomedical Engineering Division, 9 Licealna, 65-417 (Poland); Stan, Miruna-Silvia; Dinischiotu, Anca [University of Bucharest, Department of Biochemistry and Molecular Biology, 36-46 Mihail Kogalniceanu, 050107 (Romania)

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550 °C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50 nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005–0.1 mg/mL. - Highlights: • Titania nanotubes (TNTs) on Ti, Ti6Al4V and Ti6Al7Nb substrates were prepared. • Quantitative dependences of anodization conditions on TNT features were established. • Morphology and electrochemical tests revealed inhomogeneity of TNT/Ti6Al7Nb films. • Particular characteristics of TNT films induce electrochemical sensitivity to ALP. • Annealed TNT/Ti impedimetric sensitivity towards ALP was demonstrated and quantified.

  2. Directing the Crystallization of Dehydro[24]annulenes into Supramolecular Nanotubular Scaffolds.

    Science.gov (United States)

    Suzuki, Mitsuharu; Kotyk, Juliet F Khosrowabadi; Khan, Saeed I; Rubin, Yves

    2016-05-11

    The self-assembly of a series of dehydro[24]annulene derivatives into columnar stacks has been examined for its latent ability to form π-conjugated carbon-rich nanotubular structures through topochemical polymerizations. We have studied the parameters affecting self-assembly, including the nature of the substituent and crystallization conditions, using 10 different dehydro[24]annulene derivatives. In particular, hydrogen-bonding interactions through carbamate groups were found to be especially useful at directing the formation of nanotubular supramolecular assemblies. We have also evaluated the electronic coupling between neighboring dehydroannulene molecules within these supramolecular assemblies. Density functional calculations on the stacked supramolecular nanotube assemblies show that transfer integrals vary considerably between the three columnar assemblies, ranging from moderate to high (59-98 meV for the highest occupied molecular orbitals, 63-97 meV for the lowest unoccupied molecular orbitals), depending on the local molecular topology. In addition, the dehydro[24]annulene derivatives afforded distinct architectures in the crystal, including nanochannel arrays, sheets with solvent-filled pores, and lamellae. This work is an essential step toward a controlled formation of covalently linked carbon-rich nanostructures generated from molecular precursors with a latent diacetylene reactivity. PMID:27088651

  3. Mechanical Properties of Nanotextured Titanium Orthopedic Screws for Clinical Applications

    OpenAIRE

    Descamps, Stephane; Awitor, Komla O.; Raspal, Vincent; Johnson, Matthew B.; Bokalawela, Roshan S. P.; Larson, Preston R.; Doiron, Curtis F.

    2013-01-01

    In this work, we modified the topography of commercial titanium orthopedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterized using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdr...

  4. Passivation of alloys on titanium base

    International Nuclear Information System (INIS)

    Results of passivation studies on Ti-base alloys show that the inhibition of anodic processes on these alloys is determined not by the total thickness of passive film, but by its barrier layer. The protective properties of the barrier layer increase if the passive film is formed at anodic potentials more positive than +1.4V. They were determined not by chemical stability of barrier layer, but by an inhibition which is produced by this layer for ionic current along the anodic direction. The protective properties are related to character defectiveness and semiconductor properties of the barrier layer. Additions of Al, V, Mo, Zr, and Nb to titanium increase the anodic current in the passive state. Additions of Cr and Mn decrease this current, and Sn does not influence it. The direct electrochemical transition of titanium ions into solution (as TiO2+) is a main anodic process of titanium dissolution and its low alloyed alloys in the passive state. Double phase titanium alloys (after tempering) have a lower corrosion resistance than those in the homogeneous single phase state (after hardening). The less passive phase of double phase alloys dissolves perferentially. The less passive phases are: in the active state, α-phase; in transpassive state for Ti--Mo alloys, β-phase, containing in a high Mo percentage; and for Ti--Cr alloys, γ-phase, having more chromium. (U.S.)

  5. Laboratory technique for coloring titanium abutments to improve esthetics.

    Science.gov (United States)

    Wadhwani, Chandur P K; O'Brien, Richard; Kattadiyil, Mathew T; Chung, Kwok-Hung

    2016-04-01

    Titanium alloys are used for implant abutments onto which prostheses are attached. One major disadvantage of titanium abutments is their esthetics; the metallic gray color may show through the restorative material or through surrounding tissues. A laboratory technique using readily available household items is described that can alter the abutment color by anodization. PMID:26723096

  6. Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes.

    Science.gov (United States)

    Ding, Dongyan; Ning, Congqin; Huang, Lin; Jin, Fangchun; Hao, Yongqiang; Bai, Shuo; Li, Yan; Li, Ming; Mao, Dali

    2009-07-29

    We report anodic formation of Ti-Nb-O nanotubes on top of a Ti35Nb alloy, and in vitro bioactivity and stem cell response of the anodic nanotubes. It was found that the amorphous Ti-Nb-O nanotubes presented a significantly enhanced in vitro bioactivity (in simulated body fluids) compared to those of undoped TiO2 nanotubes and porous Ti-Nb-O without nanotubular structure. Similar to undoped TiO2 nanotubes, the Ti-Nb-O nanotubes also promote mesenchymal stem cell adhesion and fast formation of extracellular matrix (ECM) materials. The above findings make it possible to further explore the biological properties, such as cell proliferation and drug delivery, of a variety of Ti-alloy-based oxide nanotubes. PMID:19581696

  7. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Science.gov (United States)

    Hattori, Masashi; Noda, Kei

    2015-12-01

    We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO2) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H2 production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H2 gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H2 production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  8. Evidences for skeletal structures in tornado and the probable role of nanotubular dust in the origin of tornado

    CERN Document Server

    Kukushkin, A B

    2004-01-01

    The results are presented of an analysis, with the help of the method of multilevel dynamical contrasting of the images, of available databases of the images of tornado. This analysis extends some preliminary results on identification of skeletal structures in tornadoes (Phys. Lett. A 306 (2002) 175) and enables us to apply to the case of tornado our former hypothesis for the probable role of nanotubular dust in the origin and stability/longevity of filamentary structures of a skeletal form in electric discharges. A hypothesis for the contribution of nanotubular dust to initiation of tornadoes is suggested, in which a key role is delivered to ability of the hypothetical skeleton inside the thundercloud to provide fast long-range transport of electricity. Thus, initiation of tornado is suggested to be an electrostatic instability caused exclusively by the presence and special structuring of a nanodust.

  9. Evidences for skeletal structures in tornado and the probable role of nanotubular dust in the origin of tornado

    OpenAIRE

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2004-01-01

    The results are presented of an analysis, with the help of the method of multilevel dynamical contrasting of the images, of available databases of the images of tornado. This analysis extends some preliminary results on identification of skeletal structures in tornadoes (Phys. Lett. A 306 (2002) 175) and enables us to apply to the case of tornado our former hypothesis for the probable role of nanotubular dust in the origin and stability/longevity of filamentary structures of a skeletal form i...

  10. Biocompatibility of titanium based implants treated with plasma immersion ion implantation

    International Nuclear Information System (INIS)

    In this work, the biocompatibility of titanium before and after oxygen PIII is investigated using a rat animal model. Pure titanium (grade 2) and pre-anodized titanium were implanted with oxygen at elevated temperatures between 200 and 550 deg. C and subsequently analyzed for oxygen content and phase composition. No deterioration of the tensile strength and the yield strength was detected after the implantation. The mechanical stability of the osseointegration was determined with a pull-out test, where an increased shear strength was measured after PIII treatment. Only a slight improvement of the bone contact area, from an already excellent starting value, was observed for pure titanium. In contrast, a significant improvement was found for anodized titanium after PIII treatment. This astonishing difference can be explained with the surface topography and the phase composition of the anodized titanium samples

  11. Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: •Hollow NiO nanotubular materials are synthesized using bio-template method. •The prepared nanotube is composed of nanosized NiO with sizes smaller than 20 nm. •It exhibits a stable reversible capacity of 620 mA h g−1 and good rate performance. -- Abstract: Hollow NiO nanotubular material is prepared by a facile bio-template engaged route using filter paper as the template for Li-ion batteries and optimizing the reaction conditions. The as-obtained products keep the structure of filter paper, resulting in the formation of hollow NiO nanotube aggregates with strong framework and loose hollow mesoporous structure. As anode material for lithium ion batteries, it exhibits a stable reversible capacity of 620 mA h g−1 and keeps over 600 mA h g−1 after 100 cycles except for the first cycle at current density of 200 mA g−1. The NiO eletrode also exhibits good rate capability. The nanostructured characteristics of NiO particles embedded in the nanotube ensure the high capacity in the electrode. The unique hollow structures can shorten the length of Li-ion diffusion and offer a sufficient void space, which sufficiently alleviates the mechanical stress caused by volume change. Herein, the hollow NiO nanotubular electrode exhibits excellent electrochemical performance

  12. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  13. Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide

    Science.gov (United States)

    Shintani, Haruhiko; Kojima, Yuya; Kakinuma, Katsuyoshi; Watanabe, Masahiro; Uchida, Makoto

    2015-10-01

    We propose a new strategy for alleviating the reverse current phenomenon using a unique "atmospheric resistive switching mechanism" (ARSM) of a metal oxide semiconductor support, such that the electrical resistivity changes depending on the gas atmosphere. The membrane-electrode assembly (MEA) using Ta-doped TiO2-supported platinum (Pt/Ta-TiO2) as the anode catalyst showed approximately one order of magnitude greater resistance in air than in hydrogen. The overpotential of the hydrogen oxidation reaction was negligible up to at least 1.5 A cm-2. The losses of electrochemically active surface area and carbon corrosion of the cathode catalyst during air/air startup cycling were significantly suppressed by the use of the Pt/Ta-TiO2 anode. The decrease in the degradation is attributed to a reduction of the reverse current due to a low oxygen reduction reaction rate at the anode, which showed high resistivity in air. These results demonstrate the effectiveness of the ARSM in mitigating cathode catalyst degradation during air/air startup cycling.

  14. Anodic Titania Nanotube Arrays Sensitized with Mn- or Co-Doped CdS Nanocrystals

    International Nuclear Information System (INIS)

    Highlights: • Mn or Co doped CdS where synthesized and deposited onto TiO2 nanotubular arrays. • Synthesis and deposition were achieved simultaneously using SILAR method. • Various characterization techniques demonstrate lattice incorporation of dopant. • Photoelectrochemical performance was analyzed using AM 1.5 irradiation. • Dopants increases depletion width of CdS and increase photoelectrochemical responses. - Abstract: The use of doped luminescent nanocrystals or quantum dots have mainly been explored for imaging applications; however, recently they have gained interest in solar energy conversion applications due to long electron lifetimes, tunable band gaps and emission by compositional control. In this study, we have examined the application of Mn or Co doped CdS nanocrystals as a sensitizing layer over titania nanotubular arrays synthesized via electrochemical anodization in photoelectrochemical applications. The doped and undoped CdS nanocrystals were simultaneously synthesized and deposited onto the titania surface by adoption of a successive ion layer adsorption-reaction (SILAR) method. Various characterization methods indicate lattice incorporation of the dopant within CdS. The addition of dopants to CdS was found to improve the photoelectrochemical performance by increasing the depletion width of the CdS nanocrystals and reducing recombination losses of charge carriers

  15. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  16. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Luning; Luo Jingli, E-mail: jingli.luo@ualberta.ca

    2011-05-10

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO{sub 2} nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  17. Dimension and morphology controlled fabrication of TiO2 nanotubes by electrochemical anodization method

    International Nuclear Information System (INIS)

    We report the fabrication of titanium dioxide (TiO2) nanotubes by electrochemical anodization of titanium foils using fluoride-based electrolytes such as ethylene glycol, diethylene glycol and glycerol. The effects of anodization voltage, time and electrolytes on the morphology and dimensions (length and pore diameter) of the tubes were investigated by scanning electron microscope (SEM). On increasing anodization voltage and time, the tube length and pore diameter were varied. In addition to this, various tubes morphologies such as circular and hexagonal structures were obtained under different electrolytic conditions. The Raman spectroscopy studies revealed the anatase phase of TiO2 nanotubes

  18. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; WANG Tao; WANG Ling

    2007-01-01

    Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate.The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.

  19. Preparation procedure for spherical titanium powders by RF induction plasma

    International Nuclear Information System (INIS)

    The paper uses the single-factor method for the study of spherical titanium powder preparation process. Titanium powders with excellent sphericity can be prepared through controlling and regulating the radio frequency plasma anode working current and voltage, central gas flow rate, sheath gas flow rate, powder-carrying gas flow rate, negative ventilation pressure and powder feed rate, etc. Spheroidization of titanium powders with a size of (17.0±2.0) μm is performed by radio frequency plasma technology. With the increase of negative ventilation pressure, the spheroidization rate of titanium powders increases firstly and then decreases rapidly at the turning point around 1800 Pa. With the rate of powder feed increasing, the spheroidization rate of titanium powders increases firstly. When the powder feed rate is greater than 90.0 g/min, the spheroidization rate of titanium powders reduces rapidly as the powder feed rate increases. (authors)

  20. In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy

    Science.gov (United States)

    Zhu, Jing; Feng, Jinkui; Lu, Li; Zeng, Kaiyang

    2012-01-01

    In this study, local cyclic changes of surface topography, phase and volume of TiO2 anode within an all-solid-state thin film Li-ion battery (TiO2/LiPON/LiNi1/3Co1/3Mn1/3O2) at nanoscale are studied. These changes are caused by reversible bias-induced electric field through an in situ scanning probe microscopy (SPM) without external electrochemical attachment. Combining simultaneous measurements of phase and amplitude images, high spatially resolved mapping of “nano-spots” related to Li+ distribution can be obtained, providing new insight into the ionic transport mechanism and diffusion preferred paths in a real all-solid-state thin film lithium ion battery. In addition, the thin film anode shows reversible topographical changes as the volume expansion/contraction is related to the cyclic Li+ insertion/extraction, which are analogues to the charge/discharge behavior observed in electrochemical atomic force microscopy (EC-AFM) studies. The results suggest that the applications of local reversible biases are very useful for modeling the charge/discharge processes of lithium ion batteries.

  1. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  2. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Science.gov (United States)

    Shayganpour, Amirreza; Rebaudi, Alberto; Cortella, Pierpaolo; Diaspro, Alberto

    2015-01-01

    Summary Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities. PMID:26665091

  3. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  4. A Comparative Study of Anodized Titania Nanotube Architectures in Aqueous and Nonaqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R [ORNL; Lai, Peng [ORNL; Hu, Michael Z. [ORNL

    2011-01-01

    The unique and highly utilized properties of TiO2 nanotubes are a direct result of nanotube architecture. In order to create different engineered architectures, the effects of electrolyte solution, time, and temperature on the anodization of titanium foil were studied along with the resultant anodized titanium oxide (ATO) nanotube architectures encompassing nanotube length, pore diameter, wall thickness, smoothness, and ordered array structure. Titanium foil was anodized in three different electrolyte solutions: one aqueous (consisting of NH4F and (NH4)2SO4)) and two nonaqueous (glycerin or ethylene glycol, both containing NH4F) at varying temperatures and anodization times. Variation in anodization applied voltage, initial current, and effect of F- ion concentration on ATO nanotube architecture were also studied. Anodization in the aqueous electrolyte produced short, rough nanotube arrays, whereas anodization in organic electrolytes produced long, smooth nanotube arrays greater than 10 m in length. Anodization in glycerin at elevated temperatures for several hours presents the possibility of producing freely dispersed individual nanotubes.

  5. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    OpenAIRE

    Ali Ghafar; Chen Chong; Yoo Seung; Kum Jong; Cho Sung

    2011-01-01

    Abstract We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. H...

  6. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  7. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.;

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance. The...... UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance, with...... doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  8. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    Energy Technology Data Exchange (ETDEWEB)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y. [Clermont Universite, Universite d' Auvergne, C-BIOSENSS, BP 10448, F-63000 Clermont Ferrand (France); Awitor, O.K., E-mail: koawitor@iut.u-clermont1.f [Clermont Universite, Universite d' Auvergne, C-BIOSENSS, BP 10448, F-63000 Clermont Ferrand (France); Bonnemoy, F. [Clermont Universite, Universite Blaise Pascal, UMR CNRS 6023, LMGE, BP 10448, F-63000 Clermont Ferrand (France); Bonnet, J.L.; Bohatier, J. [Clermont Universite, Universite Blaise Pascal, UMR CNRS 6023, LMGE, BP 10448, F-63000 Clermont Ferrand (France); Clermont Universite, Universite d' Auvergne, Laboratoire de Biologie cellulaire, BP 10448, F-63000 Clermont Ferrand (France)

    2011-02-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  9. Composite anodes for lithium-ion batteries: status and trends

    Directory of Open Access Journals (Sweden)

    Alain Mauger

    2016-07-01

    Full Text Available Presently, the negative electrodes of lithium-ion batteries (LIBs is constituted by carbon-based materials that exhibit a limited specific capacity 372 mAh g−1 associated with the cycle between C and LiC6. Therefore, many efforts are currently made towards the technological development nanostructured materials in which the electrochemical processes occurs as intercalation, alloying or conversion reactions with a good accommodation of dilatation/contraction during cycling. In this review, attention is focused on advanced anode composite materials based on carbon, silicon, germanium, tin, titanium and conversion anode composite based on transition-metal oxides.

  10. Stoichiometry analysis of titanium oxide coating by LIBS

    Science.gov (United States)

    Estupiñán, H.; Peña, D. Y.; García, Y. O.; Cabanzo, R.; Mejía-Ospino, E.

    2009-05-01

    In this work, laser induced breakdown spectroscopy (LIBS) is used to determine the composition of titanium oxide film produced by anodized of Ti6Al4V alloy. We have used Ti lines in the spectral region between 470-520 nm to determine temperature of the plasma generated on anodized surface of Ti6Al4V alloy for temperature determination by Boltzmann plot method. In order to measure the content of oxygen and titanium ratio on the surface the alloy, we have used the oxygen lines 777.194, 777.417 and 777.539 nm, and titanium lines 780.597 and 782.491 nm observed in an ambient of argon. Finally, we report the possibilities for the determination of the coating chemical composition using LIBS.

  11. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  12. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  13. Synthesis of anodic titania nanotubes in Na{sub 2}SO{sub 4}/NaF electrolyte: A comparison between anodization time and specimens with biomaterial based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, M., E-mail: blkrish88@gmail.com [Department of Metallurgical Engineering, PSG College of Technology, Coimbatore 641 004 (India); Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Narayanan, R. [Department of Metallurgical Engineering, PSG College of Technology, Coimbatore 641 004 (India); Department of Mechanical Engineering, Saveetha School of Engineering, Chennai 602 105 (India)

    2013-07-01

    Surface modification of commercially pure titanium (cp-Ti) has been carried out by electrochemical anodic oxidation at constant voltage for different time periods (0.5, 1, 2 and 4.5 h). Currents developed during the anodization indicate that the nanotubes are formed due to the competition of titania formation and dissolution under the assistance of electric field. Topologies of the anodized titanium change remarkably with time of oxidation. The morphology of the as-prepared nanotubes was characterized by scanning electron microscopy and atomic force microscopy while the chemistry and crystallinity were characterized by energy-dispersive X-ray spectroscopy and X-ray diffraction respectively. The as-anodized oxide was of amorphous but transformed to anatase and/or rutile crystal structure upon annealing for 3 h at 600 °C. The anatase structure showed excellent apatite-forming ability and produced a compact apatite layer covering the surface completely upon treatment in simulated body fluid (SBF) solution for 30 h. Corrosion of anodized titanium samples was studied in a SBF solution using open circuit potential, polarization and electrochemical impedance measurements and compared with that of non-oxidized titanium. Among these samples, titanium anodized for 4.5 h exhibited superior corrosion properties. - Highlights: • We synthesized TiO{sub 2} nanotubes by anodization in Na{sub 2}SO{sub 4}/NaF electrolyte. • Topologies of the anodized titanium change remarkably with oxidation time. • We studied surface morphologies of TiO{sub 2} nanotubes. • TiO{sub 2} nanotubes show superior corrosion resistance.

  14. Anodic titania films as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Titania thin films were prepared through the anodisation of titanium metal in a 1.0 M sulphuric acid solution at 80 oC utilising a series of pulsed dc constant currents of increasing magnitude. Films were then tested as a potential anode material for lithium batteries using a variety of techniques. Electrochemical testing revealed that the films (3.8 cm2) offered good rate capabilities affording a constant capacity of 48 μAh for a constant current of 10 μA which decreased to 25 μAh on increasing the current to 1250 μA. Cyclic voltammetry was conducted over a range of scan rates from which capacitive currents were examined and rate constants, transfer coefficients and diffusion coefficients calculated. Electrochemical impedance spectroscopy was conducted over six potentials in the range 0.1-2.7 V with the experimental data successfully modelled using an equivalent circuit with the notation R(Q(RW))C. TEM observation of focussed ion beam milled cross-sections showed significant structural differences between the as-anodised film and those cycled in a lithium battery. Raman spectroscopy showed that the films had an anatase character that transformed into an unidentified lithium-containing, titanate phase on cycling. Based on a film thickness of 100 nm, and assuming density of 4 g cm-3 such films offered a stable capacity of 316 mAh g-1

  15. Self assembly of C-methyl resorcin[4]arene with coumarin and thiocoumarin: A nanotubular array with a near perfect lock and key fit

    Indian Academy of Sciences (India)

    Lepakshaiah Mahalakshmi; Partha P Das; Tayur N Guru Row

    2008-01-01

    The host-guest complex of -methyl resorcin[4]arene with coumarin and thiocoumarin has been characterized by single crystal X-ray diffraction technique. Structural analysis shows that the host forms an infinitie nanotubular array in which the guest coumarin shows a `head to tail’ arrangement of dimers held together by $\\ldots$ interaction in the host framework. Similar structural motif is observed when thiocoumarin used as a guest.

  16. Titanium and titanium alloys fundamentals and applications

    CERN Document Server

    Peters, Manfred

    2003-01-01

    This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.

  17. Effect of chloride ions on the corrosion and electrochemical behavior of titanium in neutral solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mandzhgaladze, S.N. (Inst. of Metallurgy, Tbilisi, USSR); Mikaberidze, M.P.; Pirtskhalava, D.N.; Vasil' ev, Yu.B.; Bagotskii, V.S.

    1976-01-01

    A solution of NaCl was buffered with a phosphate buffer, and the potential was measured relative to a saturated silver chloride electrode. Polarization curves for cathodically reduced and oxidized titanium are shown, as well as the effect of NaCl concentration on the corrosion current, the steady-state corrosion potential, the cathodic currents, and the anodic currents for cathodically reduced and anodically oxidized titanium. The corrosion potential for oxidized titanium is strongly shifted in the positive direction, and the corrosion current and the dissolution current in the passive state are almost 10 times higher than for prereduced titanium. The different effects of the chloride ions on the rates of the cathode and anode processes result in a practically constant corrosion current for cathodically reduced titanium when c/sub Cl/sup -// less than 5 N. In the case of the oxidized titanium surface, the simultaneous increase in the rate of both the cathode and the anode process with increasing chloride ion concentration results in the increase of the corrosion current proportional to a fractional power of the bulk chloride ion concentration. 2 figures. (RWR)

  18. Manufacturing of soda chlorate by electrolysis of sodium chloride with graphite anodes; Fabrication du chlorate de soude par electrolyse du chlorure de sodium avec anodes en graphite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    Liquors containing soda chlorate and sodium chloride are injected into electrolyzers which transform chloride into chlorate with titanium anodes. The resulting liquors are then sent to a crystallizing pond where part of the chlorate is recovered. The remaining part is returned to the electrolyzers after addition of sodium chloride.

  19. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  20. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  1. Self-organized anodic TiO.sub.2./sub. nanotube layers: influence of the Ti substrate on nanotube growth and dimensions

    Czech Academy of Sciences Publication Activity Database

    Sopha, H.; Jäger, Aleš; Knotek, P.; Tesař, Karel; Jarošová, Markéta; Macák, J. M.

    2016-01-01

    Roč. 190, Feb (2016), 744-752. ISSN 0013-4686 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : titanium * anodization * titanium dioxide * nanotubes * ordering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.504, year: 2014

  2. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature. PMID:24710725

  3. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    OpenAIRE

    Mu-Hyon Kim; Kyeongsoon Park; Kyung-Hee Choi; Soo-Hong Kim; Se Eun Kim; Chang-Mo Jeong; Jung-Bo Huh

    2015-01-01

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adh...

  4. Electrolytic hydrogen in beta titanium

    International Nuclear Information System (INIS)

    Permeation of electrolytic hydrogen through beta titanium foils with palladium coated surfaces was studied using Ti--11.5 Mo--6 Zr--4.5 Sn. Ion bombardment etching followed by thin film vapor deposition of palladium were used to produce oxide-free titanium specimens for electrochemical hydrogen permeation and embrittlement studies. A thin metallic foil is cathodically charged with hydrogen on one side while the other side is maintained at a sufficiently anodic potential so that all the diffusing hydrogen is oxidized and turned into an equivalent current. The current is analyzed to determine diffusivity and solubility of hydrogen. X-ray diffraction was also used to determine the effects of hydrogen on the lattice parameter. Permeation experiments conducted with basic cyanide solutions exhibited simple diffusion behavior. The diffusivity at 210C for hydrogen through the beta alloy was 5.60 (+-1.92) x 10-7 cm2/s. Anomalous permeation occurred with hydrogen chemical potentials in acidic and basic solutions without cyanide during the later stages of the approach to steady state in the charging. This behavior is consistent with the trapping model of hydrogen in metals of McNabb and Foster. Plastic deformation and spontaneous cracking at the wetted portion of the specimen were observed under extreme conditions during this anomalous behavior. Part of the deformation is found to be reversible. In the mandrel bend experiments on the embrittlement phenomenon, the transgranular cleavage mode of fracture occurred. Interstitially dissolved hydrogen expanded the bcc lattice of the beta titanium with accompanying diffraction line broadening. The lattice contracted upon removal of the hydrogen. The satisfactory performance of the beta alloy Ti--11.5 Mo--6 Zr--4.5 Sn, in moderate electrochemical environments results principally from the protective oxide film

  5. Titanium condenser tubes

    International Nuclear Information System (INIS)

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack an copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection were observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling. (Kako, I.)

  6. The effect of current reversal on coated titanium electrodes

    Science.gov (United States)

    Elnathan, Francis

    Coated titanium electrodes have applications in the electrochemical industry, including water treatment and swimming pool chlorination. Current/polarity reverse electrolysis is a technique used for "self-cleaning" of the coated titanium anodes employed in water disinfection and treatment. However, the literature holds very little information about the effects of polarity reversal on these anodes. The present work appears to be the first to investigate coated titanium anodes in polarity reversal in a systematic method. Two commercial titanium electrodes (RuTi and IrTa) were studied. Polarity reversal was the main electrochemical technique employing a current density of 1200 A/m 2, except when current density was studied. The effects of NO 3-, SO42-, ClO4 -, HPO42-, CO32-, Mg2+ and Ca2+ on electrode lifetime were examined. Analysis of the electrochemical results showed that plateau time (tau p), for gas evolution, is highly important to the lifetime of the coated titanium anodes. The effects of three electrolysis variables on the coated titanium anode life were examined. Current density was observed to have an inverse relationship with anode life while reversal cycle time had a direct relation with lifetime. NaCl concentration had no discernible effect. In general, the RuTi electrode exhibited longer lifetimes than IrTa except for a few specific conditions. The influence of the concentration of five anions (NO3-, SO42-, ClO 4-, HPO42-, and CO3 2-) was determined. Changing the composition and concentration of anions affected the lifetimes of the two electrodes, especially nitrate, hydrogen phosphate and carbonate. The lifetime of IrTa was highest in nitrate, and increased as a function of nitrate concentration. The service life of RuTi was highest in hydrogen phosphate, and increased with increasing hydrogen phosphate concentration. Lifetime of both anodes decreased with increasing carbonate ions. The effects of Mg2+ and Ca2+ on electrode lifetime were examined with

  7. Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior

    Science.gov (United States)

    Zou, Guoqiang; Chen, Jun; Zhang, Yan; Wang, Chao; Huang, Zhaodong; Li, Simin; Liao, Hanxiao; Wang, Jufeng; Ji, Xiaobo

    2016-09-01

    Carbon-coated rutile titanium dioxide (CRT) was fabricated through an in-situ pyrolysis of titanium-based metal organic framework (Ti8O8(OH)4[O2CC6H4CO2]6) crystals. Benefiting from the Tisbnd Osbnd C skeleton structure of titanium-based metal organic framework, the CRT possesses abundant channels and micro/mesopores with the diameters ranging from 1.06 to 4.14 nm, shows larger specific surface area (245 m2 g-1) and better electronic conductivity compared with pure titanium dioxide (12.8 m2 g-1). When applied as anode material for sodium-ion batteries, the CRT electrode exhibits a high cycling performance with a reversible capacity of ∼175 mAh g-1 at 0.5 C-rate after 200 cycles, and obtains an excellent rate capability of ∼70 mAh g-1 after 2000 cycles even at a specific current of 3360 mA g-1(20 C-rate). The outstanding rate capability can be attributed to the carbon-coated structure, which may effectively prevent aggregation of the titanium dioxide nanoparticles, accelerate the mass transfer of Na+ and speed up the charge transfer rate. Considering these advantages of this particular framework structure, the CRT can serve as an alternative anode material for the industrial application of SIBs.

  8. Nucleation, growth, and dissolution of silver nanostructures formed in nanotubular J-aggregates of amphiphilic cyanine dyes.

    Science.gov (United States)

    Steeg, Egon; Polzer, Frank; Kirmse, Holm; Qiao, Yan; Rabe, Jürgen P; Kirstein, Stefan

    2016-06-15

    Solution fabricated high aspect ratio silver nanowires are of interest because of their usability in plasmonic devices or transparent electrodes. Recently, silver nanowires with diameters of 6.5nm and lengths exceeding tens or hundreds of microns were grown by reduction of silver ions within the inner volume of nanotubular J-aggregates of an amphiphilic cyanine dye. Unlike in other soft template systems, the anisotropic growth of the silver wires is not caused by different screening of the diverse facets of silver crystals. Instead, the shape of the wires replicates the inner space of the tubes without destroying the template. This effect is demonstrated by ex-situ observation of the growth of the silver wires via transmission electron microscopy. The wire growth is initiated by exposure to blue light and starts with small, isolated crystallites within the tubular aggregates. The crystallites grow into pieces of wires that finally coalesce into continuous wires. The growth is mediated by material transport through the membrane-like wall of the dye aggregates. This wall permeability is further demonstrated by dissolution of the silver wires via oxidative etching by addition of sodium chloride. It is concluded that the cyanine double layer wall is permeable for ions such as silver, sodium, chlorine, and water molecules. This permeability permits control of the wire length through the concentration of chlorine when oxygen is removed from the solvent. PMID:27038282

  9. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  10. Multipactor suppressing titanium nitride thin films analyzed through XPS and AES

    International Nuclear Information System (INIS)

    Cathodic-magnetron-deposited titanium nitride films were grown on anodized aluminum substrates and studied via AES and XPS spectroscopies to determine their depth-dependence composition. As it is well known, the native oxide grown on aluminum does not make the substrate impervious to radio frequency damage, and typically a thin film coating is needed to suppress substrate damage. In this article we present the profile composition of titanium nitride films, used as a protective coating for aluminum, that underwent prior conditioning through anodization, observed after successive sputtering stages. (Author)

  11. Preparation and crystalline phase of a TiO2 porous film by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; ZHANG Weiwei; TAO Haijun; WANG Ling

    2005-01-01

    Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and rutile. In addition, the forming mechanism of anatase and rutile TiO2 porous films was discussed.

  12. Construction of Nanophase Novel Coatings-Based Titanium for the Enhancement of Protein Adsorption

    Institute of Scientific and Technical Information of China (English)

    Sahar A.Fadlallah; Mohammed A.Amin; Ghaida S.Alosaimi

    2016-01-01

    In the recent years,biological nanostructures coatings have been incorporated into orthopedic and dental implants in order to accelerate osseointegration and reducing surgical restrictions.In the present work,chemical etching,anodization and metal doping surface modification methods were integrated in one strategy to fabricate innovative titanium surfaces denominated by titanium nanoporous,anodized titanium nanoporous,silver-anodized titanium nanoporous and gold-anodized titanium nanoporous.The stability properties of nanostructures-coated surfaces were elucidated using electrochemical impedance spectroscopy (EIS) after 7 days of immersion in simulated biological fluids.Morphology and chemical compositions of new surfaces were characterized by scanning electron microscope and energy-dispersive X-ray analysis.The EIS results and data fitting to the electrical equivalent circuit model demonstrated the influence of adsorption of bovine serum albumin on new surfaces as a function of protein concentration.Adsorption process was described by the very well-known model of the Langrnuir adsorption isotherm.The thermodynamic parameter △GADs (-50 to 59 kJ mol-1) is calculated,which supports the instantaneous adsorption of protein from biological fluids to new surfaces and refers to their good biocompatibility.Ultimately,this study explores new surface strategy to gain new implants as a means of improving clinical outcomes of patients undergoing orthopedic surgery.

  13. Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-jun; HE Li-ping; CHEN Zong-zhang

    2006-01-01

    A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre- and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment,the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.

  14. Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis

    International Nuclear Information System (INIS)

    Graphical abstract: The Gd-doped titania nanotubes showed an increase in photocatalytic activity together with Gd/Ti ratio increase up 0.5%, followed by a rapid fall above 1.0%. - Highlights: • Enhanced Gd-doped titania nanotube photocatalysts have been synthesized. • Uniform Gd-doped titania nanoparticles were employed as raw materials. • Actual gadolinium contents in titania were precisely characterized by ICP-AES. • The distribution of Gd dopant was marked using element mapping. - Abstract: Gadolinium-doped titanium dioxide nanotubes were fabricated with a facile two-step route. Precursors Gd-doped titania nanoparticles were synthesized by a traditional sol–gel method. Hydrothermal process and acid treatment were employed afterwards, and Gd-doped titania nanotubes were finally obtained after calcination. The nominal doping concentration was expressed by Gd/Ti atomic ratio, ranged from 0% to 5.0%. Both the precursors and nanotubes were characterized by X-ray photoelectron spectra, inductively coupled plasma-atomic emission spectrometry, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometer, UV–vis diffusion reflection spectra and N2 absorption–desorption experiment. The photocatalytic activities were investigated using methyl orange as the model pollutant. The results indicated that Gd-doped titania nanotubes with nominal Gd/Ti of 0.5% possessed the optimal photocatalytic activity in our study

  15. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    OpenAIRE

    Langhoff, J; Mayer, J.; Faber, L.; Kästner, S B; Guibert, G.; Zlinszky, K; Auer, J. A.; von Rechenberg, B

    2008-01-01

    Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods...

  16. Ceramic electrodes based on Magneli phases of titanium oxides

    Directory of Open Access Journals (Sweden)

    Gusev A.A.

    2007-01-01

    Full Text Available Monophase and polyphase ceramic materials based on Magneli phases of titanium oxides of composition Ti3O5, Ti4O7, Ti5O9, and Ti6O11 were synthesized. The materials were obtained by mechanical activation of rutile with titanium and additives of niobium, vanadium, and iron, with subsequent sintering both in reductive atmosphere (hydrogen and in neutral atmosphere (argon in the temperature interval of 1060-1080°C. The dependences of the potentials of the obtained ceramic samples on time and composition during anodic polarization at current density of 5A/dm2 in a 1M solution of sulfuric acid were investigated. We developed a technique for manufacturing anodes in the form of hollow cylinders 60 mm in diameter with a wall 5 mm thick, and flat discs more than 60 mm in diameter.

  17. Double anodization experiments in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Albella, J.M.; Fernandez, M.; Gomez-Aleixandre, C.; Martinez-Duart, J.M.; Montero, I.

    1985-10-01

    Based on our previous model of anodization, a new formula is given for the relation between the breakdown voltage V /SUB B/ during the anodic oxidation of tantalum and the anodization parameters. The formula predicts the well known diminution of V /SUB B/ with the logarithm of the electrolyte concentration. The model also explains the experimentally-observed fact that V /SUB B/ is solely determined by the latter electrolyte in double anodization experiments.

  18. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  19. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  20. Superplasticity in titanium alloys

    OpenAIRE

    J. Sieniawski; Motyka, M.

    2007-01-01

    Purpose: The paper reports characteristic of superplasticity phenomenon in titanium alloys and possibility of its applications.Design/methodology/approach: The main objective of the paper is to show features of superplastic forming of titanium alloys and current research trends aiming at widespread application of this technology.Findings: In the paper characteristic of selected superplastic titanium alloys was presented. The effect of microstructural parameters on superplasticity was consider...

  1. Preparation of biocompatible structural gradient coatings on pure titanium

    Institute of Scientific and Technical Information of China (English)

    TANG Guang-xin; ZHANG Ren-ji; YAN Yong-nian

    2004-01-01

    In order to overcome the poor osteo-inductive properties of titanium implant, some methods have been used. The efforts to improve implant biocompatibility and durability by applying a hybrid technique of composite oxidation (pre-anodic and micro-arc oxidation) and hydrothermal treatment were described. Pure titanium was used as the substrate material. An oxalic acid was used as the electrolyte for the pre-anodic oxidation. A calcium and phosphate salt solution was acted as the electrolyte of micro-arc oxidation and the common pure water was used for hydrothermal treatment. X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to investigate the microstructure and morphology of the coatings. The results show that a compact TiO2 film can be made by pre-anodic oxidation, which is effective as chemical barriers against the in-vivo release of metal ions from the implants. A porous TiO2 coating can be produced by micro-arc oxidation on titanium plate, which is beneficial to bone tissue growth and enhancing anchorage of implant to bone. De-calcium HA can be formed on the coating using hydrothermal treatment, which is similar with the primary component of bone and has a very good osteo-inductivity.The porous gradient titania coating made by the hybrid oxidation and hydrothermal treatment should show good biocompatibility in the environment of the human body.

  2. Anodic bonded graphene

    OpenAIRE

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Marangolo, Massimiliano; Lacaze, Emmanuelle; Escoffier, Walter; Poumirol, Jean-Marie; Shukla, Abhay

    2010-01-01

    Abstract We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 ?m lateral dimensions. This me...

  3. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO2. The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  4. Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The effect of the electrochemical anodization growth process on the development of self-organized TiO2 nanotube (NT) films and their efficiency as photoelectrodes in dye sensitized solar cells (DSCs) has been comparatively investigated, by keeping constant the total anodization charge. Slow and rapid potentiostatic anodization processes were accordingly compared to the galvanostatic one, while a two step potentiostatic–galvanostatic technique was applied for the first time for the growth of TiO2 NT arrays, as a step forward in relation to the existing potentiostatic–potentiostatic (P–P) technique. Scanning electron microscopy and Raman spectroscopy verified the wide diversity in the morphological and structural characteristics of the TiO2 NTs obtained by the different anodization modes. The novel approach of galvanostatic tube growth on a potentiostatically patterned Ti foil provided the most uniform TiO2 nanotubular films with clean top surface exempt of nanograss or cracks over extended areas. Evaluation of the TiO2 NTs performance as photoelectrodes in DSC devices showed distinct differences of their electrical parameters that reflected finely the underlying structure/morphology variations of the different anodic oxidation conditions. Galvanostatic TiO2 NT films presented the most favorable (open-ordered) structure for DSC photoelectrodes with superior electrical performance, essentially impaired by a relatively low fill factor that requires improvement by appropriate post-treatment. Furthermore, despite the marked differences in morphology, the TiO2 NT photoelectrodes exhibited comparable overall performance (of the order of 4%), with only exception the P–P samples which presented slightly lower (about 25%) photovoltaic efficiency. These results indicate that the anodization charge is a critical factor that effectively controls the nanotubes behavior when they are used as photoelectrodes in DSCs

  5. TiO2 anode materials for lithium-ion batteries with different morphology and additives

    Science.gov (United States)

    Liu, Xiang; Ng, Yip Hang; Leung, Yu Hang; Liu, Fangzhou; Djurišic, Aleksandra B.; Xie, Mao Hai; Chan, Wai Kin

    2014-03-01

    Electrochemical performances of different TiO2 nanostructures, TiO2/CNT composite and TiO2 with titanium isopropoxide (TTIP) treatment anode were investigated. For different TiO2 nanostructures, we investigated vertically aligned TiO2 nanotubes on Ti foil and TiO2 nanotube-powders fabricated by rapid breakdown anodization technique. The morphology of the prepared samples was characterized by scanning probe microscopy (SEM). The electrochemical lithium storage abilities were studied by galvanostatic method. In addition, carbon nanotubes (CNT) additives and solution treatment process of TiO2 anode were investigated, and the results show that the additives and treatment could enhance the cycling performance of the TiO2 anode on lithium ion batteries.

  6. Anode glow and double layer in DC magnetron anode plasma

    International Nuclear Information System (INIS)

    Sputtering magnetron is widely used device in research and industry alike. DC planar magnetron employs series of magnets to create magnetic field above the electrode surface which traps electrons in closed E-bar x B-bar drift. Similar device used in reversed polarity power was reported for use in various applications. In contrast to its normal counterpart there is no closed drift effect in there. This device has very limited understanding. We here investigate this device for its discharge properties. Our device is dominated by anode glow. The anode glow is expected to have the electron sheath which provides energy to electron to excite the neutrals. Where as many experimental studies have been reported for anode glow and anode double layer, many of them uses auxiliary anode in the discharge. Most of the cases anode double layer (fire ball/fire rod) is small structures very near to anode surface which in itself is required to be small. The DC planar magnetron biased in reverse polarity have glow only near anode. Measurements confirm it as anode glow and the presence of electrons sheath is proven. The double layer structure was observed and measured in two mutually perpendicular directions. The double layer shows sub MHz oscillation that is typical of the unstable anode double layer. The dimension of anode glow is relatively large and is primarily in magnetic field free region making it easy to probe. The potential structure still shows large cathode fall but surprisingly visible cathode glow is not present. The device operates very stable for pressure bellow 0.01 mbar. But it shows instabilities such as unstable anode double layer above said pressure. (author)

  7. Nanocomposite anode materials for sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  8. Titanium and titanium alloy strip, sheet, and plate

    International Nuclear Information System (INIS)

    The specification covers annealed titanium and titanium alloy strip, sheet, and plate as follows: Grade 1 to 4 unalloyed titanium Grade 5, 6, 10, and 12 titanium alloy; and Grade 7 and 11 unalloyed titanium plus palladium. The specification includes basis of purchase, chemical requirements, mechanical properties, permissible variations in dimensions, finish, sampling for chemical analysis, methods of chemical analysis, rejection, reports, marking, and packaging

  9. TITANIUM DAN PADUAN TITANIUM MATERIAL PILIHAN KEDOKTERAN GIGI MASA DEPAN

    OpenAIRE

    Bambang Irawan

    2015-01-01

    Nowadays, Titanium is used for dental implants, orthodontic wires an denture bases. In Indonesia they have been widely use especially for the orthodontic treatment. Survey conducted by students from University of Indonesia showed that users have little understanding in properties of Titanium. The article describes various matters on characteristic of Titanium. Titanium has low density, low elastic modulus, high tensile strength make attractive for use in dentistry. Titanium forms a very stabl...

  10. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 800 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  11. Photoelectrochemical cell with nondissolving anode

    Science.gov (United States)

    Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S.

    1980-01-01

    Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

  12. Anodic-Cathodic Electrocatalytic Degradation of Phenol with Oxygen Sparged in the Presence of Iron(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under oxygen sparged, the synergetic effects of both anodic-cathodic electrocatalysis(ACE) and ferrous ion catalyzed anodic-cathodic electrocatalysis(FeACE) on phenol degradation were observed in an undivided cell composed of a β-PbO2 anode modified with fluorine resin and a nickel-chromium-titanium alloy net cathode. Oxygen sparging rate, ferrous concentration, and current significantly affect phenol destruction. The phenol was removed by 10%-13% increasingly under FeACE vs. ACE, and by 12%-15% under ACE vs. anodic electrocatalysis(AE). The phenol destruction was due to the formation of hydroxyl oxidant on the surface of lead oxide at the anode and the reduction of oxygen at the cathode.

  13. Anodic bonded graphene

    Energy Technology Data Exchange (ETDEWEB)

    Balan, Adrian; Kumar, Rakesh; Boukhicha, Mohamed; Beyssac, Olivier; Bouillard, Jean-Claude; Taverna, Dario; Sacks, William; Shukla, Abhay [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7590, Institut de Mineralogie et de Physique des Milieux Condenses, 140 rue de Lourmel, Paris, F-75015 France (France); Marangolo, Massimiliano; Lacaze, Emanuelle; Gohler, Roger [Universite Pierre et Marie Curie-Paris 6, CNRS-UMR7588, Institut des Nanosciences de Paris, 140 rue de Lourmel, Paris, F-75015 France (France); Escoffier, Walter; Poumirol, Jean-Marie, E-mail: abhay.shukla@upmc.f [Laboratoire National des Champs Magnetiques Intenses, INSA UPS CNRS, UPR 3228, Universite de Toulouse, 143 avenue de Rangueil, 31400 Toulouse (France)

    2010-09-22

    We show how to prepare graphene samples on a glass substrate with the anodic bonding method. In this method, a graphite precursor in flake form is bonded to a glass substrate with the help of an electrostatic field and then cleaved off to leave few layer graphene on the substrate. Now that several methods are available for producing graphene, the relevance of our method is in its simplicity and practicality for producing graphene samples of about 100 {mu}m lateral dimensions. This method is also extensible to other layered materials. We discuss some detailed aspects of the fabrication and results from Raman spectroscopy, local probe microscopy and transport measurements on these samples.

  14. Natural Dye Extracts of Areca Catechu Nut as dye Sensitizer for Titanium dioxide Based Dye Sensitized Solar Cells

    OpenAIRE

    P. Murugakoothan; S. Ananth; P. Vivek; T. Arumanayagam

    2014-01-01

    A dye sensitized solar cell was fabricated using titanium dioxide nano particles sensitized by a new natural dye extracted from areca catechu nut. The natural dye extract contains tannin which is rich in gallotannic acid. The pure titanium dioxide nano particles in anatase phase were synthesized by sol-gel technique and were sensitized by the natural dye to yield photo anode material. The Powder X-Ray Diffraction, UV-vis spectra, Fourier Transform Infra Red spectroscopy, Energy Dispersive X- ...

  15. Supercapacitance of ruthenium oxide deposited on titania and titanium substrates

    International Nuclear Information System (INIS)

    Titanium planar sheet formed by a chemical polishing process and titania nanotube array formed by an electrochemical anodization process are used as electrode substrates, on which electroactive ruthenium oxides are deposited by an electroreduction and electrooxidation process for supercapacitor applications. Morphological characterization and electrochemical properties of the electrode substrates and ruthenium oxide electrodes have been investigated. Crystalline titania nanotube array shows a much higher electric double layer capacitance than titanium planar sheet due to its high surface area of nanotube walls. Additionally, the well-defined ruthenium oxide-titania/titanium nanotube array electrode exhibits a much higher redox supercapacitance and a lower capacitance decay than ruthenium oxide/titanium planar film electrode. Such a superior energy-storage performance of ruthenium oxide-titania/titanium is ascribed to highly accessible nanotube channels for the reversible redox reaction of ruthenium oxide. The modification strategy of ruthenium oxide electrode by introducing highly ordered nanotube array structure instead of planar film structure can significantly improve specific capacitance as well as cyclic charge-discharge stability.

  16. Performance and spark damage studies of microgap gas chambers fabricated with selected anode metals

    International Nuclear Information System (INIS)

    Microgap gas chambers (MGCs) fabricated with selected anode metals, including aluminum, gold, chromium, nickel and titanium/tungsten (10/90) have been used in order to study the effect of these different metals upon gas gain, aging, and spark damage. Gas mixtures used for systematic tests of performance are argon/ethane (50/50) and argon/dimethyl ether (50/50). The effects of spark damage by discharge are found to be very sensitive to the metal used for anode strips, and a systematic study of spark damage effects has been made to compare their relative sensitivity to failure, over a range of electrical discharge energies. (orig.)

  17. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors

    OpenAIRE

    Tai-Ping Sun; Jyh-Ling Lin; Li-Fan Zhang; Hsiang-Ching Lee; Yuan-Lung Chin

    2013-01-01

    The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs) made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA) concentrati...

  18. Effect of Surface Modification on Corrosion Resistance of Pure Titanium. An in Vivo Observation

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-mei; GUO Tian-wen; WANG Da-lin

    2006-01-01

    Objective: The aim of this experiment is to study the effect of three methods of surface modification on the corrosion resistance of commercial pure Titanium when used in oral environment for half a year. Method: 48 specimens of pure titanium were made and divided into four groups randomly, one group was selected randomly as Group Ⅰ(control group), the other three groups were treated by three methods of surface modification individually, Group Ⅱ: heating oxidation in air(400℃,30min.), Group Ⅲ : anodization(45 volts, 10 min.), Group Ⅳ: TiN coating(firing temperature 200℃ , total coating time 62min.). Six edentulous volunteers with healthy oral mucosa participated in the in vivo study. One testing piece from each group was selected and fixed in the polished surface of upper complete dentures. Dynamic polarization curves were traced with electrochemical method after the specimens were placed either in oral cavity or in air for 6 months. Results: After all specimens were used, Ecorr altered in every group , Ecorr from high to low were in turn: TiN coating group > heating oxidation group > anodization group >control group, no obvious passive potential Ep and Ip was found in control group.Heating oxidation in air exhibited similar Ep to anodization, but Ip was remarkably lower than that of anodization; TiN coating showed obviously different polarization curves compared with heating -oxidation group and anodization group, Ecorr was positive, and no Ep and Ip was found. Conclusion: Under present experimental condition, all the three treatment methods could enhance corrosion resistance of pure titanium in oral environment, heating oxidation in air exhibited better resistance to corrode than anodization, TiN coating possessed the most excellent corrosion resistance, even after exposed in oral condition for 6 months, there was little change of corrosion resistance. Therefore TiN coating could be adopted to improve corrosion resistance of pure titanium in

  19. Contribution to the study of the electrochemical behaviour of titanium and of its industrial shores in sulphuric environment. Characteristics of their resistance to pitting corrosion in neutral and acid halogenous environment

    International Nuclear Information System (INIS)

    After a presentation of the general metallurgical, physical, and corrosion resistance characteristics of titanium and of its alloys, this research thesis presents the experimental means, discusses the influence of experimental conditions on the assessment of the electrochemical behaviour of titanium and of its alloys. It reports an investigation of the cathodic behaviour of non-alloyed titanium and notably the hydrogen release kinetics in a concentrated acid environment. It discusses the influence of alloy composition on their cathodic behaviour, addresses the anodic behaviour of titanium and of its alloys in sulphuric environment, and the pitting corrosion of titanium and of its alloys in an acid and neutral halogenous environment

  20. The effect of anodization parameters on the formation of nanoporous TiO{sub 2} layers and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Erol, Mustafa, E-mail: m.erol@deu.edu.tr [Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35160, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35160, Izmir (Turkey); Hitit University, Department of Metallurgical and Materials Engineering, 19000 Çorum (Turkey); Dikici, Tuncay [Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35160, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35160, Izmir (Turkey); Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli 35620, Izmir (Turkey); Toparli, Mustafa; Celik, Erdal [Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35160, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca 35160, Izmir (Turkey); Dokuz Eylul University, Department of Nanoscience and Nanoengineering, Buca 35160, Izmir (Turkey)

    2014-08-01

    Highlights: • Nanoporous TiO{sub 2} layers were formed on titanium surfaces by anodization. • Effects of such parameters as voltage, temperature and time investigated in details. • 20 °C, 30–40 volts and 240 minutes were determined as the optimum parameters. - Abstract: In this work, nanoporous titanium dioxide (TiO{sub 2}) layers were successfully formed by electrochemical anodization method on titanium (Ti) surface in fluorine containing electrolytes with different processing parameters. The effects of anodization voltages, electrolyte temperature and anodization time on the microstructure and photocatalytic performance of nanoporous TiO{sub 2} layers were investigated and compared in details. Nanoporous structures were annealed at 480 °C for 2 h in air in order to obtain anatase transformation and increase crystallinity. The phase structure and surface morphology of the samples characterized by means of X-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue (MB) solutions under UV light illumination for different periods of time. The results showed that the processing parameters on production of nanoporous TiO{sub 2} layers played important roles in the degradation of aqueous MB solutions. To sum up, the highest photocatalytical activity was obtained at the sample anodized under 30 V for 30 min at 20 °C among the samples.

  1. Utilization of titanium chips

    International Nuclear Information System (INIS)

    Complex of equipment is created for realization of developed technology in experimental-inductrial production of secondary titanium alloys with annual efficiency of 50-100 t. The complex includes a section for chips preparation, facility for electride vacuum hot pressins, vacuum arc furnace for melting ingots of <200 kg. The ingots obtained will be reprocessed into bars, forgins, powers and also be used for production of shaped castings. Approbation of the developed technology was carried out by production of three types of secondary titanium lloys. The technical titanium chips were used as blend for production of TV1 alloy, chips of VT5 and PT3V alloys for TV2 and chips of VT6 and VT23 alloys for TV3 alloys. Study of chemical composition, mechanical properties and structure of secondary titanium alloys were performed on forged bars 20 mm in diameter

  2. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  3. Screened Anode N2 Laser

    OpenAIRE

    Sabry, M. Montaser Foad

    1985-01-01

    An experimental study of the effect of screening the discharge channel on the output energy is presented. It has been found that a screened anode nitrogen laser generates higher output energy than that of a screened cathode, and also higher than that when both cathode and anode are unshielded at higher pressures.

  4. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  5. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  6. Purifying behavior of photocatalytic TiO2 anodized in nitrate ion containing solution

    Institute of Scientific and Technical Information of China (English)

    Jin-Wook CHOI; Seong-Eun LEE; Byung-Gwan LEE; Yong-Soo JEONG; Han-Jun OH; Choong-Soo CHI

    2009-01-01

    Mesoporous titanium dioxide films were fabricated on titanium plates by micro-arc oxidation method. To increase the photocatalytic activity of the films, NH4NO3 was added to the H2SO4 solution, and anodizing was carried out at high voltages using a DC power supply. The crystal structure, chemical composition, surface morphology and the optical property of the films were investigated by XPS, XRD, UV-VIS spectroscopy and SEM. The photocatalytic activity of the films was evaluated by the decomposition of aniline blue, and the activity of the films for the degradation turned out to be improved by the additives to the electrolyte solution. The enhanced photocatalytic activity might result from the increased porosity and nitrate ion incorporation into the anodic films by micro arcing, and thereby the TiO2 layer might exhibit an improved absorption property for the visible light.

  7. Novel technology development through thermal drying of encapsulated Kluyveromyces marxianus in micro- and nano-tubular cellulose in lactose fermentation and its evaluation for food production.

    Science.gov (United States)

    Papapostolou, Harris; Servetas, Yiannis; Bosnea, Loulouda A; Kanellaki, Maria; Koutinas, Athanasios A

    2012-12-01

    A novel technology development based on the production of a low-cost starter culture for ripening of cheeses and baking is reported in the present study. The starter culture comprises thermally dried cells of Kluyveromyces marxianus encapsulated in micro- and nano-tubular cellulose. For production of a low-cost and effective biocatalyst, whey was used as raw material for biomass production and thermal drying methods (convective, conventional, and vacuum) were applied and evaluated at drying temperatures ranging from 35 to 60 °C. The effect of drying temperature of biocatalysts on fermentability of lactose and whey was evaluated. Storage stability and suitability of biocatalysts as a commercial starter cultures was also assessed and evaluated. All thermally dried biocatalysts were found to be active in lactose and whey fermentation. In all cases, there was sugar conversion ranging from 92 to 100 %, ethanol concentration of up to 1.47 % (v/v), and lactic acid concentrations ranged from 4.1 to 5.5 g/l. However, convective drying of the encapsulated cells of K. marxianus in micro- and nano-tubular cellulose was faster and a more effective drying method while drying at 42 °C appear to be the best drying temperature in terms of cell activity, ethanol, and lactic acid formation. Storage of the biocatalysts for 3 months at 4 °C proved maintenance of its activity even though fermentation times increased by 50-100 % compared with the fresh dried ones. PMID:23111921

  8. Plasma electrolytic oxidation of Titanium Aluminides

    Science.gov (United States)

    Morgenstern, R.; Sieber, M.; Grund, T.; Lampke, T.; Wielage, B.

    2016-03-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na2SiO3·5H2O and K4P2O7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum.

  9. LASER GAS NITRIDING OF TITANIUM AND TITANIUM ALLOYS

    OpenAIRE

    J. J. DAI; Hou, S. Q.

    2009-01-01

    Titanium and titanium alloys are widely used in many fields due to some of their characteristics such as light density, high strength, and excellent corrosion resistance. However, poor mechanical performances limit their practical applications. Laser gas nitriding is a promising method used to improve the surface properties of components. Recent developments on laser gas nitriding of titanium and titanium alloys are reviewed. The processing parameters have important effects on the resulting c...

  10. Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Kamaraj

    2014-12-01

    Full Text Available This research article deals with an electrosynthesis of hydrous titanium dioxide by anodic dissolution of titanium sacrificial anodes and their application for the adsorption of manganese from aqueous solution. Titanium sheet was used as the sacrificial anode and galvanized iron sheet was used as the cathode. The optimization of different experimental parameters like initial ion concentration, current density, pH, temperature, etc., on the removal efficiency of manganese was carried out. The maximum removal efficiency of 97.55 % was achieved at a current density of 0.08 A dm-2 and pH of 7.0. The Langmuir, Freundlich and Redlich Peterson isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The adsorption of manganese preferably followed the Langmuir adsorption isotherm. The adsorption kinetics was modelled by first- and second- order rate models and the adsorption kinetic studies showed that the adsorption of manganese was best described using the second-order kinetic model. Thermodynamic parameters indicate that the adsorption of manganese on hydrous titanium dioxide was feasible, spontaneous and exothermic.

  11. Productive Machining of Titanium Alloys

    OpenAIRE

    Čejka, Libor

    2013-01-01

    This diploma thesis is focused on a productive machining of titanium alloys. At the beginning it deals about titanium and its alloys. It describes chip generation mechanism, tool blunting and surface quality. Further it contains modern strategies of efficient titanium alloys machining. Then it analyzes contemporary manufacturing technology of hinge made of titanium alloy Ti-6Al-4V in Frentech Aerospace s.r.o. company, and at the end finds possibility of savings by inovation of roughing process.

  12. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  13. Industrial experience with titanium

    International Nuclear Information System (INIS)

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author)

  14. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  15. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  16. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode

    Science.gov (United States)

    Labou, D.; Slavcheva, E.; Schnakenberg, U.; Neophytides, S.

    The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm -2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm -2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg -1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.

  17. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Michael Hu

    2012-10-01

    Full Text Available Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs and bulk heterojuntion solar cells (BHJs]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  18. Machining of Titanium Alloys

    OpenAIRE

    Karásek, Jan

    2008-01-01

    The main goal of this work is the analysis of manufacturing costs for the component of wheel´s blower. Followed by setting up the size of specific cutting force for milling operation of the titanium alloy Ti-Al6-Mo2-Cr2-Fe-Si, the used tool was a milling cutter which is made out of sintered carbide with conical and spherical face. The final values which are at intervals of 1500 to 1800 MPa were compared with the values of the Sandvik Coromant firm kc = 1690 MPa, for titanium alloy with the st...

  19. Titanium alkoxide compound

    Science.gov (United States)

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  20. Ordered titanium dioxide nanotubes filled with photoluminescent surfactant-free silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Svrcek, V; Turkevych, I; Hara, K; Kondo, M, E-mail: vladimir.svrcek@aist.go.jp [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568 (Japan)

    2010-05-28

    The electrophoretic filling of titanium dioxide (TiO{sub 2}) nanotubes with surfactant-free silicon nanocrystals (Si-ncs) dispersed in ethanol and the water is shown. We illustrate a simple and scalable room temperature approach that allows natural selection and deposition of the smallest-supernatant Si-ncs on TiO{sub 2} nanotubular template. The anatase TiO{sub 2} nanotubes with diameters of 50 nm were used to template Si-ncs with a higher (>10 times) deposition rate of Si-ncs dispersed in ethanol. Lower agglomeration in ethanol and the deposition of Si-ncs with smaller diameter deeper inside the TiO{sub 2} nanotube resulted in a redshift of the photoluminescence maximum of about 60 nm. A potential application of the room temperature photoluminescent Si-ncs/TiO{sub 2} nanocomposite for hybrid solar cells is demonstrated. Enhanced Si-ncs electrophoretic deposition in ethanol improved both the open-circuit photovoltage and short-circuit photocurrent.

  1. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  2. Nano structural anodes for radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  3. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  4. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    OpenAIRE

    Ho, Shih-Yu; Su, Chaochin; Cheng, Chieh-Chung; Kathirvel, Sasipriya; Li, Chung-Yen; Li, Wen-Ren

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon tita...

  5. Sorting Titanium Welding Rods

    Science.gov (United States)

    Ross, W. D., Jr.; Brown, R. L.

    1985-01-01

    Three types of titanium welding wires identified by their resistance to current flow. Welding-wire tester quickly identifies unknown titaniumalloy wire by touching wire with test probe, and comparing meter response with standard response. Before touching wire, tip of test probe dipped into an electrolyte.

  6. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications

    Science.gov (United States)

    Fojt, Jaroslav; Filip, Vladimir; Joska, Ludek

    2015-11-01

    The nanostructuring of titanium and its alloys surfaces is used inter alia for increasing the medical implants osseointegration. Many papers about this topic were published. However, in most cases there were no informations about nanostructures adhesion to the surface, which is crucial from the application point of view. The aim of this study was to prepare nanostructures on titanium beta alloy and optimized its adhesion to the alloy surface. Nanotubes were formed by anodic polarization in electrolyte containing fluoride ions. The composition of the nanotubes was described by X-ray photoelectron spectroscopy. Nanostructures adhesion was tested by pull-of method. The nanotubes on the Ti-36Nb-6Ta beta alloy surface were prepared by anodization. The nanostructures properties were modified by electrochemical process parameters. The adhesion of the nanotubes prepared in this work was satisfactory for implantological applications.

  7. Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO2 films

    International Nuclear Information System (INIS)

    Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.

  8. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  9. Casting and Mechanized Titanium Restorations

    OpenAIRE

    Madrigal, A.; Lopez, I; Suarez, MJ; Salido, MP.

    2002-01-01

    INTRODUCTION: New materials and methods for clinical dentistry are continuously being introduced. There is a growing interest in the use of titanium as a restorative material for several reasons: its relatively low cost, favorable physical properties and biocompatibility. However, titanium is technically more difficult to handle than conventional metal alloys. There are two fabrication methods for titanium restorations: casting and mechanized (a combination of machine duplication and spark er...

  10. Titanium production for aerospace applications

    OpenAIRE

    Vinicius A. R. Henriques

    2009-01-01

    Titanium parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent general corrosion resistance. The objective of this work is to present a review of titanium metallurgy focused on aerospace applications, including developments in the Brazilian production of titanium aimed at aerospace applications. The article includes an account of the evolution ...

  11. Functional nanostructured titanium nitride films obtained by sputtering magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain)]. E-mail: olgas@icmm.csic.es; Hernandez-Velez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), or Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Dept. Fisica Aplicada C-XII, Universidad Autonoma, Cantoblanco 28049 Madrid (Spain); Navas, D. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Auger, M.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC), Avda. Gregorio, del Amo 8, 28040 Madrid (Spain); Baldonedo, J.L. [Centro de Microscopia Electronica y Citometria de la Universidad Complutense de, Madrid (Spain); Sanz, R. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Pirota, K.R. [Instituto de Ciencia de Materiales de Madrid (CSIC), or Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain); Vazquez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz no3, Cantoblanco, 28049 Madrid (Spain)

    2006-01-20

    Development of new methods in the formation of hollow structures, in particular, nanotubes and nanocages are currently generating a great interest as a consequence of the growing relevance of these nanostructures on many technological fields, ranging from optoelectronics to biotechnology. In this work, we report the formation of titanium nitride (TiN) nanotubes and nanohills via reactive sputtering magnetron processes. Anodic Alumina Membranes (AAM) were used as template substrates to grow the TiN nanostructures. The AAM were obtained through electrochemical anodization processes by using oxalic acid solutions as electrolytes. The nanotubes were produced at temperatures below 100 deg. C, and using a pure titanium (99.995%) sputtering target and nitrogen as reactive gas. The obtained TiN thin films showed surface morphologies adjusted to pore diameter and interpore distance of the substrates, as well as ordered arrays of nanotubes or nanohills depending on the sputtering and template conditions. High Resolution Scanning Electron Microscopy (HRSEM) was used to elucidate both the surface order and morphology of the different grown nanostructures. The crystalline structure of the samples was examined using X-ray Diffraction (XRD) patterns and their qualitative chemical composition by using X-ray Energy Dispersive Spectroscopy (XEDS) in a scanning electron microscopy.

  12. Surface study and sensing activity of nanotubular indium trioxide to NH3, H2S, NO2 and CO environmental pollutants

    Science.gov (United States)

    Zamani, Mehdi

    2016-02-01

    Molecular and electronic structures of nanotubular indium trioxide were studied using B3LYP and CAM-B3LYP density functional methods. Three nanotube models including nanotubes with closed ends (CENT), one opened end (OOENT) and two opened ends (TOENT) were considered. The highest occupied molecular orbital (HOMO) of CENT is distributed over the entire nanotube; while it is distributed on the end cap of OOENT. In both CENT and OOENT, the distribution of the lowest unoccupied molecular orbital (LUMO) is on the end caps. HOMO and LUMO of TOENT are distributed on the center of nanotube. The sensing activity of OOENT to environmental pollutants was evaluated regarding the interaction of nanotube with NH3, H2S, NO2 and CO molecules. Adsorptions over different positions of OOENT are exothermic and the NH3 adsorption is thermodynamically more favorable. The selectivity of OOENT toward gaseous pollutants is investigated as NH3 > H2S > CO > NO2. Interaction of NO2 and CO over the closed end (end cap) of nanotube is preferred; while adsorption of NH3 and H2S on the opened end is more favorable.

  13. Hydrothermal growth and characterization of titanium dioxide nanostructures for use in dye sensitized solar cells

    Science.gov (United States)

    Sorge, Judith D.

    As the world's energy needs continue to grow, next generation photovoltaic cells are in high demand because they offer the possibility of an inexpensive alternative to current energy production techniques. Dye sensitized solar cells (DSSC's), utilize common materials and low cost commercialization techniques, which make them a compelling choice for research in this area. This research focuses on the titanium dioxide coating, which transfers electrons from the photoactive dye to the electrode. 3-4% efficient DSSC's using doctor bladed titanium dioxide coatings with a specific surface area of 55-60m2/g have been demonstrated in our laboratory. To enhance the efficiency of these cells, both the surface area and the electron conduction of the titania layer must be optimized. This has been done by utilizing high aspect ratio nanoparticles of titania instead of mesoporous layers formed with spherical particles. Anodization of titanium metal or anodic alumina membrane templating are common ways to produce nanorods, but involve complex processes leading toward expensive commercialization. This research instead focuses on the hydrothermal growth of nanofibrous titania on a titanium metal substrate, removing the need for dispersion and deposition procedures as well as using a low temperature processing method. Depending upon the formulation utilized, a variety of structures can be produced, from thick carpets of nanofiber strands to large platelets. The composition and morphology of the products have been characterized with respect to the growth conditions using electron microscopy, energy dispersive spectroscopy and x-ray diffraction. The compositional analysis is used to investigate the complicated reaction mechanisms in the system. Coatings of titania nanotubes were then tested in the DSSC's, as were those with the titanium metal substrate acting as the photo anode. Modeling the geometric parameters of the different pore structures of the coatings helps us to understand

  14. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  15. Anodes for Rechargeable Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  16. Anodic oxidation of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A.; Borello, A.; Cabrini, A.

    1976-07-01

    The anodic polarization of zircaloy-2 in different electrolytic baths has been investigated in order to obtain thick oxide films with properties suitable for wear applications. The operative conditions to obtain hard, thick, compact oxide films resistant to thermal shocks have been determined. The influence of the bath composition and temperature on the oxide growth is reported.

  17. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  18. Chemical changes of titanium and titanium dioxide under electron bombardment

    OpenAIRE

    Romins Brasca; Luciana Ines Vergara; Mario César Guillermo Passeggi; Julio Ferrón

    2007-01-01

    The electron induced effect on the first stages of the titanium (Ti0) oxidation and titanium dioxide (Ti4+) chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+).

  19. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  20. Photoinduced Electron Accumulation of Titanium Dioxide Nanoparticles Modified Electrodes

    Science.gov (United States)

    Miyoshi, Hirokazu; Sakamoto, Kensho; Kurashina, Masaru; Kanezaki, Eiji

    Titanium dioxide (TiO2) nanoparticles (Nps) were prepared by the hydrolysis of titanium tetraisopropoxide (TTIP) in 2-propanol with different water contents (0.5 vol% to 7.2 vol%) at 45 °C. The diameter of the Nps was estimated to be 1.5±0.5 nm (L-TiO2) and 3.0±0.6 nm (S-TiO2) from the onset wavelength in the absorption spectra and by transmission electron microscopy (TEM). A modified Pt electrode with a three-layered sandwich structure was prepared; the outermost and innermost layers were composed of S-TiO2 and L-TiO2, respectively, and the middle layer contained 1, 1'-dimethyl-4,4'-bipyridyl (MV2+)/Nafion®. Irradiation by a 500 W superhigh-pressure mercury lamp produced electrons in the conduction band of TiO2. An anodic current was observed after turning off the light. The mechanism by which anodic current is generated after turning off the radiation involves the reduction of MV2+ to MV+. by photogenerated electrons on the Nps and the diffusion of MV+. in the middle layer. After turning off the irradiation, MV+. transferred an electron to the Pt electrode via holes in the innermost layer or the conduction band of S-TiO2 coincidentally localized on the Pt electrode, resulting in the generation of the anodic current. The generation of MV+. was confirmed by the absorption spectra of MV+.. As a sacrificial reagent, 2-propanol (0.1 M) was used.

  1. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  2. -Based Cermet Inert Anodes for Aluminum Electrolysis

    Science.gov (United States)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  3. Improvement in antibacterial properties of Ti by electrodeposition of biomimetic Ca-P apatite coat on anodized titania

    Energy Technology Data Exchange (ETDEWEB)

    Gad El-Rab, Sanaa M.F. [Biotechnology Department, Faculty of Science, Taif University, Taif (Saudi Arabia); Botany Department, Faculty of Science, Asuit University, Asuit (Egypt); Fadl-allah, Sahar A., E-mail: Sahar.fadlallah@yahoo.com [Materials and Corrosion Lab (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt); Montser, A.A. [Materials and Corrosion Lab (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, South-Valley University (Egypt)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Ca-P coating on titania titanium surface was directly fabricated successfully by electrochemical deposition. Black-Right-Pointing-Pointer Treatment the titanium surface by TiO{sub 2} could improve the adhesion strength between the Ca-P coating and the surface. Black-Right-Pointing-Pointer Anodization treatment in phosphoric acid is benefit to inhibit the oral bacteria. Black-Right-Pointing-Pointer According to the electrochemical corrosion test, corrosion resistance of Ti was improved by both anodization and electrodeposition of the Ca-P/titania coating. Black-Right-Pointing-Pointer Ca-P/titania sample is believed to be a functional biomaterial which combines antibacterial activity and good corrosion resistance in bioenvironment. - Abstract: Titanium metal (Ti) with antibacterial function was successfully developed in the present study by electrodeposition of biomimetic Ca-P coat in simple supersaturated calcium and phosphate solution (SCPS). The electrochemical behavior and corrosion resistance of Ca-P deposited on anodized titanium (AT) have been investigated in SCPS by using electrochemical impedance spectroscopy (EIS). The plate-counting method was used to evaluate the antibacterial performance against Staphylococcus aureus (ATCC6538). In vitro antibacterial activity study indicated a significantly reduced number of bacteria S. aureus on Ca-P/AT plate surface when compared with that on Ti or AT surfaces and the corresponding antibacterial mechanism is discussed. The morphology and chemical structure of different titanium samples were systematically investigated by scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDX). The study confirmed that the antibacterial properties of the samples were related to chemical composition of sample surface.

  4. Titanium minerals for new materials

    Science.gov (United States)

    Kotova, O.; Ozhogina, E.; Ponaryadov, A.; Golubeva, I.

    2016-04-01

    The mineral composition of titanium minerals of modern coastal-marine placer in Stradbroke Island (Australia) and Pizhma paleoplacer in Middle Timan (Russia) has been presented. The physical features of titanium minerals and their modification methods were shown. Photocatalysts on the basis of the Pizhma leucoxene were developed for water purification.

  5. [Vernier Anode Design and Image Simulation].

    Science.gov (United States)

    Zhao, Ai-rong; Ni, Qi-liang; Song, Ke-fei

    2015-12-01

    Based-MCP position-sensitive anode photon-counting imaging detector is good at detecting extremely faint light, which includes micro-channel plate (MCP), position-sensitive anode and readout, and the performances of these detectors are mainly decided by the position-sensitive anode. As a charge division anode, Vernier anode using cyclically varying electrode areas which replaces the linearly varying electrodes of wedge-strip anode can get better resolution and greater electrode dynamic range. Simulation and design of the Vernier anode based on Vernier's decode principle are given here. Firstly, we introduce the decode and design principle of Vernier anode with nine electrodes in vector way, and get the design parameters which are the pitch, amplitude and the coarse wavelength of electrode. Secondly, we analyze the effect of every design parameters to the imaging of the detector. We simulate the electron cloud, the Vernier anode and the detector imaging using Labview software and get the relationship between the pitch and the coarse wavelength of the anode. Simultaneously, we get the corresponding electron cloud for the designing parameters. Based on the result of the simulation and the practical machining demand, a nine electrodes Vernier anode was designed and fabricated which has a pitch of 891 µm, insulation width of 25 µm, amplitude of 50 µm, coarse pixel numbers of 5. PMID:26964205

  6. Layered titanium diphosphonates

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, Jan; Zima, Vítězslav; Vlček, Milan

    Strasbourg: European Materials Research Society, 2012. P1 6-P1 6. ISBN -. [E- MRS Spring Meeating 2012 – Symposium P Advanced Hybrid Materials II: design and applications. 14.05.2012-18.05.2012, Strasbourg] R&D Projects: GA ČR GA203/08/0208 Institutional support: RVO:61389013 Keywords : titanium diphosphonate * layered compounds * powder x-ray difraction Subject RIV: CA - Inorganic Chemistry http://www.emrs-strasbourg.com/index.php?option=com_content&task=view&Itemid=132&id=479

  7. Electrocatalysis of carbon anode in aluminium electrolysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The anodic overvoltage of the carbon anode in aluminum electrolysis isof the order of 0.6 V at normal current densities. However, it can be reduced somewhat by doping the anode carbon with various inorganic compounds. A new apparatus was designed to improve the precision of overvoltage measurements. Anodes were doped with MgAl2O4 and AlF3 both by impregnation of the coke and by adding powder, and the measured overvoltage was compared with that of undoped samples. For prebake type anodes baked at around 1150 oC, the anodic overvoltage was reduced by 40-60 mV, and for Soderberg type anodes, baked at 950 oC, by 60-80 mV.

  8. Titanium for salt water service

    International Nuclear Information System (INIS)

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  9. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application

    Directory of Open Access Journals (Sweden)

    Juliana P. L. Gonçalves

    2014-11-01

    Full Text Available Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an

  10. Effects of single and two stages anodizing on nonporous anodic alumina template at different potentials

    International Nuclear Information System (INIS)

    The porous anodic alumina has extensive applications as mold or template for filling the highly ordered patterned ID nanomaterials (semiconductors, magnetic nanowires etc.) and as a mask for nano dots of different materials. Pores in anodic alumina synthesized under appropriate conditions are self organized. Pore density, pore diameter, interpore distance may be changed through variation of different parameter such as anodic potential, choice of electrolyte, temperature and kind of pre-treatment. The porous anodic alumina has been synthesized by single and double stage anodizing at different potentials. The potentials used were 40V, 50V, 60V and 70V. By comparison of ordered pore formation under both the conditions, it has been found that pores formed in doubly anodized alumina are more ordered/organized than in singly anodized anodic alumina at same potential used for both type of synthesis. SEM images revealed that the pore density in the singly anodized alumina was greater than in doubly anodized alumina prepared under the same potential. Using the SEM image, the pore diameter in the case of doubly anodized alumina was found to be in the range of 50- 70 nm, whereas, for singly anodized alumina pore diameter was found to be in the range of 50-100 nm. Scanning electron Microscope images and electrochemical parameters showed that two stage anodizing is better than single stage anodizing to achieve highly ordered nanoporous alumina template. (author)

  11. Biocompatibility of Titanium

    Science.gov (United States)

    Namavar, Fereydoon; Sabirianov, Renat; Marton, Denes; Rubinstein, Alexander; Garvin, Kevin

    2012-02-01

    Titanium is the material of choice for orthopaedic applications because of its known biocompatibility. In order to enhance osteogenic properties of the Ti implants, it is necessary to understand the origin of its biocompatibility. We addresses the origin of Ti biocompatibility through (1) theoretical modeling, (2) the precise determination of Ti surface chemistry by X-ray photoelectron spectroscopy (XPS), (3) and the study of fibronectin adsorption as a function of Ti (near) surface chemistry by Enzyme-linked immunosorbent assay (ELISA). We compare the protein adsorption on Ti with the native oxide layer and the one coated by TiO2 in anatase phase using ion beam assisted deposition (IBAD). We show that the thin native sub-stoichiometric titanium oxide layer is crucial for biocompatibility of Ti surface. This is due to the enhancement of the non-specific adsorption of proteins which mediate cell adhesion. Improving the surface oxide quality, i.e. fabricating stoichiometric TiO2 (using IBAD) as well as nanoengineering the surface topology that matches its dimensions to that of adhesive proteins, is crucial for increased protein adsorption and, as a result, further increases biocompatibility of Ti implant materials.

  12. Formation of High Aspect Ratio TiO2 Nano tube Arrays by Anodization of Ti Foil in Organic Solution

    International Nuclear Information System (INIS)

    Titanium oxide (TiO2) nano tubes were successfully formed by anodization of pure titanium foil in a standard two-electrode bath consisting of ethylene glycol solution containing 5 wt % NH4F. The pH of the solution was ∼7 and the anodization voltage was 60 V. It was observed that such anodization condition results in ordered arrays of TiO2 nano tubes with smooth surface and a very high aspect ratio. It was observed that a minimum of 1 wt % water addition was required to form well ordered TiO2 nano tubes with length of approximately 18.5 μm. As-anodized sample, the self-organized TiO2 nano tubes have amorphous structure and annealing at 500 degree Celsius of the nano tubes promote formation of anatase and rutile phase. Photo catalytic activity of well ordered TiO2 nano tubes with two different lengths was evaluated by measuring the degradation of methyl orange (MO). The elaboration of this observation is described in detail in this paper. (author)

  13. Anodic Oxidation of Ultra-Thin Ti Layers on ITO Substrates and their Application in Organic Electronic Memory Elements

    International Nuclear Information System (INIS)

    In this work, controlled anodic oxidation is reported for ultra-thin (3 nm thick) titanium layers on indium tin oxide (ITO) coated glass substrates. A physical explanation is also provided for the origin of the delamination process of the Ti during the anodic oxidation. The properties of the fabricated layers are studied using electrochemical impedance spectroscopy (EIS) and X-ray Photoelectron Spectroscopy (XPS). In addition, one intriguing application is demonstrated for the anodized layers: their use as an interfacial barrier in organic diodes. Diodes containing an electrochemically fabricated TiO2 barrier layer exhibit clear room temperature negative differential resistance (NDR) and a peak-to-valley current ratio (PVCR) of 3.6. The reference diodes without the TiO2 layer show normal diode characteristics with no observable NDR. The NDR diodes have potential applications as memory elements for large-area electronics

  14. One-step Preparation of Nanoarchitectured TiO2 on Porous Al as Integrated Anode for High-performance Lithium-ion Batteries

    Science.gov (United States)

    Du, Xianfeng; Wang, Qianwen; Feng, Tianyu; Chen, Xizi; Li, Liang; Li, Long; Meng, Xiangfei; Xiong, Lilong; Sun, Xiaofei; Lu, Lu; Xu, Youlong

    2016-02-01

    Titanium dioxide (TiO2) is an attractive anode material for energy storage devices due to its low-volume-change and high safety. However, TiO2 anodes usually suffer from poor electrical and ionic conductivity, thus causing dramatic degradation of electrochemical performance at rapid charge/discharge rates, which has hindered its use in energy storage devices. Here, we present a novel strategy to address this main obstacle via using nanoarchitectured TiO2 anode consisting of mesoporous TiO2 wrapped in carbon on a tunnel-like etched aluminum substrate prepared by a simple one-step approach. As a result of this nanoarchitecture arrangement, the anode exhibits excellent rate performance and superior cyclability. A rate up to 100 C is achieved with a high specific capacity of about 95 mA h g-1, and without apparent decay after 8,000 cycles.

  15. Antimicrobial behavior of novel surfaces generated by electrophoretic deposition and breakdown anodization.

    Science.gov (United States)

    Flores, Jessamine Q; Joung, Young Soo; Kinsinger, Nichola M; Lu, Xinglin; Buie, Cullen R; Walker, Sharon L

    2015-10-01

    Biofilms have devastating impacts on many industries such as increased fuel consumption and damage to surfaces in maritime industries. Ideal biofouling management is inhibition of initial bacterial attachment. The attachment of a model marine bacterium (Halomonas pacfica g) was investigated to evaluate the potential of these new novel surfaces to resist initial bacterial adhesion. Novel engineered surfaces were generated via breakdown anodization or electrophoretic deposition, to modify three parameters: hydrophobicity, surface chemistry, and roughness. Mass transfer rates were determined using a parallel plate flow chamber under relevant solution chemistries. The greatest deposition was observed on the superhydrophilic surface, which had micro- and nano-scale hierarchical structures composed of titanium oxide deposited on a titanium plate. Conversely, one of the hydrophobic surfaces with micro-porous films overlaid with polydimethylsiloxane appeared to be most resistant to cell attachment. PMID:26196093

  16. Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization

    DEFF Research Database (Denmark)

    Kouril, M.; Christensen, Erik; Eriksen, S.;

    2011-01-01

    The paper is focused on selection of a proper material for construction elements of water electrolysers, which make use of a 85% phosphoric acid as an electrolyte at temperature of 150 8C and which might be loaded with anodic polarization up to 2.5 V versus a saturated Ag/AgCl electrode (SSCE......% phosphoric acid at 150 8C and at polarization of 2.5 V/SSCE is tantalum. In that case, even a gentle cathodic polarization is harmful in such an acidic environment. Hydrogen reduction leads to tantalum hydride formation, to loss of mechanical properties and to complete disintegration of the metal. Contrary...... to tantalum, titanium is free of any corrosion resistance in hot phosphoric acid. Its corrosion rate ranges from tens of millimetres to metres per year depending on temperature of the acid. Alloy bonded tantalum coating was recognized as an effective corrosion protection for both titanium and stainless steel...

  17. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  18. Optical Properties of Au Nanoparticles Coated on Surface of Glass or Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    FENG Jinyang; WU Can; MA Xiao; ZHANG Hongquan; ZHAO Xiujian

    2012-01-01

    Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process.FE-SEM,UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass,while deposition occurs on the surface of regular hollows for anodic aluminum oxide template.A sharp absorption peak appears at the wavelength of 536 nm for sample B,while there is a red shift,with a broader peak for sample A.A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A,but no noticeable fluorescence emission has been found for Sample B.The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

  19. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity

    International Nuclear Information System (INIS)

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180 °C for 3 h was applied to titanium (Ti) and its alloys (Ti–6Al–4V, Ti–6Al–7Nb, Ti–29Nb–13Ta–4.6Zr, Ti–13Cr–1Fe–3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1 M of H3PO4 with applied voltages from 0 V to 150 V at a scanning rate of 0.1 V s−1. The surface-treated samples were stored in a five time phosphate buffered saline (× 5 PBS(−)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity (RB–I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in × 5 of PBS(−). - Highlights: • Hydrothermal treatment in distilled water was applied to titanium alloys. • Surface characteristics and osteoconductivity by in vivo test were evaluated. • Water contact angles of titanium alloys were decreased by hydrothermal treatment. • Osteoconductivity of titanium alloys improved notably by hydrothermal treatment after stored in × 5 of PBS (−)

  20. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O2 plasma treatment and further immersed in titanium tetrachloride (TiCl4) solution. The process conditions for producing a very thin TiO2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm2 using backside illumination mode. Surface treatments of Ti substrate and TiO2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  1. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants.

    Science.gov (United States)

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-01-01

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20%±10.89%) was much greater than those of machined (33.58%±8.63%), SLA (58.47%±12.89), or ANO Ti (59.62%±18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant. PMID:25955650

  2. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  3. Beta titanium alloys and their role in the titanium industry

    Science.gov (United States)

    Bania, Paul J.

    1994-07-01

    The class of titanium alloys generically referred to as the beta alloys is arguably the most versatile in the titanium family. Since these alloys offer the highest strength-to-weight ratios and deepest hardenability of all titanium alloys, one might expect them to compete favorably for a variety of aerospace applications. To the contrary, however, except for one very successful application (Ti-13V-11Cr-3Al on the SR-71), the beta alloys have remained a very small segment of the industry. As a perspective on this situation, this article reviews some past and present applications of titanium alloys. It also descibes some unique new alloys and applications that promise to reverse historical trends.

  4. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    International Nuclear Information System (INIS)

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH4F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO2 anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO2 structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO2 nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO2 were investigated. • Al doping into nanoporous TiO2 retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation

  5. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  6. Hydrogen in titanium alloys

    International Nuclear Information System (INIS)

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 5000C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 1500C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement

  7. Anodic Materials for Electrocatalytic Ozone Generation

    OpenAIRE

    Yun-Hai Wang; Qing-Yun Chen

    2013-01-01

    Ozone has wide applications in various fields. Electrocatalytic ozone generation technology as an alternative method to produce ozone is attractive. Anodic materials have significant effect on the ozone generation efficiency. The research progress on anodic materials for electrocatalytic ozone generation including the cell configuration and mechanism is addressed in this review. The lead dioxide and nickel-antimony-doped tin dioxide anode materials are introduced in detail, including their st...

  8. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  9. Anodized titania: Processing and characterization to improve cell-materials interactions for load bearing implants

    Science.gov (United States)

    Das, Kakoli

    The objective of this study is to investigate in vitro cell-materials interactions using human osteoblast cells on anodized titanium. Titanium is a bioinert material and, therefore, gets encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. In this work, bioactive nonporous and nanoporous TiO2 layers were grown on commercially pure titanium substrate by anodization process using different electrolyte solutions namely (1) H3PO 4, (2) HF and (3) H2SO4, (4) aqueous solution of citric acid, sodium fluoride and sulfuric acid. The first three electrolytes produced bioactive TiO2 films with a nonporous structure showing three distinctive surface morphologies. Nanoporous morphology was obtained on Ti-surfaces from the fourth electrolyte at 20V for 4h. Cross-sectional view of the nanoporous surface reveals titania nanotubes of length 600 nm. It was found that increasing anodization time initially increased the height of the nanotubes while maintaining the tubular array structure, but beyond 4h, growth of nanotubes decreased with a collapsed array structure. Human osteoblast (HOB) cell attachment and growth behavior were studied using an osteoprecursor cell line (OPC 1) for 3, 7 and 11 days. Colonization of the cells was noticed with distinctive cell-to-cell attachment on HF anodized surfaces. TiO2 layer grown in H2SO4 electrolyte did not show significant cell growth on the surface, and some cell death was also noticed. Good cellular adherence with extracellular matrix extensions in between the cells was noticed for samples anodized with H3PO 4 electrolyte and nanotube surface. Cell proliferation was excellent on anodized nanotube surfaces. An abundant amount of extracellular matrix (ECM) between the neighboring cells was also noticed on nanotube surfaces with filopodia extensions coming out from cells to grasp the nanoporous surface for anchorage. To better understand and compare cell-materials interactions

  10. The effect of the presence of alcohol in the dispersing phase of oxide sols on the properties of RuO2-TiO2/Ti anodes obtained by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    R. ATANASOSKI

    2000-09-01

    Full Text Available The effect of the addition of ethanol and 2-propanol to the dispersing phase of TiO2 and RuO2 sols mixture on the morphology and, consequently, on the electrochemical properties of the sol-gel obtained activated titanium anodes was investigated. The properties of the obtained anodes were compared to those obtained by the thermal decomposition of appropriate chloride salts. The morphology of the anode coatings was examined by scanning tunneling microscopy. The electrochemical behaviour was investigated by cyclic voltammetry and by polarization measurements. An accelerated stability test was used for the examination of the stability of the anodes under simultaneous oxygen and chlorine evolution reaction. A dependence of the anode stability on the type of added alcohol is indicated.

  11. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  12. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  13. Discovery of the Titanium Isotopes

    OpenAIRE

    Meierfrankenfeld, D.; Thoennessen, M.

    2009-01-01

    Twentyfive titanium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  15. Electrochemical process of titanium extraction

    Institute of Scientific and Technical Information of China (English)

    CH. RVS. NAGESH; C. S. RAMACHANDRAN

    2007-01-01

    A wide variety of processes are being pursued by researchers for cost effective extraction of titanium metal. Electrochemical processes are promising due to simplicity and being less capital intensive. Some of the promising electrochemical processes of titanium extraction were reviewed and the results of laboratory scale experiments on electrochemical reduction of TiO2 granules were brought out. Some of the kinetic parameters of the reduction process were discussed while presenting the quality improvements achieved in the experimentation.

  16. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    OpenAIRE

    Zheng WenJun; Fei GuangTao; Wang Biao; Zhang Li

    2009-01-01

    Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR) using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  17. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Zheng WenJun

    2009-01-01

    Full Text Available Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  18. Low cost titanium--myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  19. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    International Nuclear Information System (INIS)

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources

  20. Effects of Oxide Film on the Corrosion Resistance of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    Energy Technology Data Exchange (ETDEWEB)

    Lian, T; Whalen, M T; Wong, L

    2004-11-30

    The effects of oxide film on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) in fluoride-containing NaCl brines have been investigated. With the presence of a 0.6 {micro}m thick oxide layer, the annealed Ti grade 7 exhibited a significant improvement on the anodic polarization behavior. However, the oxide film did not demonstrate sustainable corrosion resistance in fluoride-containing solutions.

  1. Electrochemical process for the manufacturing of titanium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    V. Soare

    2009-07-01

    Full Text Available The paper presents a new method for precursors’ synthesis of titanium alloys matrix composites through an electrochemical process in molten calcium chloride. The cathode of the cell was made from metallic oxides powders and reinforcement ceramic particles, which were pressed and sintered into disk form and the anode from graphite. The process occurred at 850 °C, in two stages, at 2,7 / 3,2 V: the ionization of the oxygen in oxides and the reduction with calcium formed by electrolysis of calcium oxide fed in the electrolyte. The obtained composite precursors, in a form of metallic sponge, were consolidated by pressing and sintering. Chemical and structural analyses on composites samples were performed.

  2. Novel Phenylethynyl Imide Silanes as Coupling Agents for Titanium Alloy

    Science.gov (United States)

    Park, C.; Lowther, S. E.; Smith, J. G., Jr.; Conell, J. W.; Hergenrother, P. M.; SaintClair, T. L.

    2004-01-01

    The durability of titanium (Ti) alloys bonded with high temperature adhesives such as polyimides has failed to attain the level of performance required for many applications. The problem to a large part is attributed to the instability of the surface treatment on the Ti substrate. Although Ti alloy adhesive specimens with surface treatments such as chromic acid anodization, Pasa-Jell, Turco, etc. have provided high initial mechanical properties, these properties have decreased as a function of aging at ambient temperature and faster, when aged at elevated temperatures or in a hot-wet environment. As part of the High Speed Civil Transport program where Ti honeycomb sandwich structure must perform for 60,000 hours at 177 C, work was directed to the development of environmentally safe, durable Ti alloy surface treatments.

  3. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  4. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  5. Mechanical properties of free standing porous anodic alumina films

    OpenAIRE

    Ignashev, E.; Shulgov, V.

    2012-01-01

    Free-standing films of anodic alumina obtained from the one-sided anodization of aluminum were studied. The flexural strength of free-standing porous anodic alumina films to the lateral bending, circular bending, and microhardness were studied.

  6. Protein Adsorption to Surface Chemistry and Crystal Structure Modification of Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Ryo Jimbo

    2010-07-01

    Full Text Available Objectives: To observe the early adsorption of extracellular matrix and blood plasma proteins to magnesium-incorporated titanium oxide surfaces, which has shown superior bone response in animal models.Material and Methods: Commercially pure titanium discs were blasted with titanium dioxide (TiO2 particles (control, and for the test group, TiO2 blasted discs were further processed with a micro-arc oxidation method (test. Surface morphology was investigated by scanning electron microscopy, surface topography by optic interferometry, characterization by X-ray photoelectron spectroscopy (XPS, and by X-ray diffraction (XRD analysis. The adsorption of 3 different proteins (fibronectin, albumin, and collagen type I was investigated by an immunoblotting technique.Results: The test surface showed a porous structure, whereas the control surface showed a typical TiO2 blasted structure. XPS data revealed magnesium-incorporation to the anodic oxide film of the surface. There was no difference in surface roughness between the control and test surfaces. For the protein adsorption test, the amount of albumin was significantly higher on the control surface whereas the amount of fibronectin was significantly higher on the test surface. Although there was no significant difference, the test surface had a tendency to adsorb more collagen type I.Conclusions: The magnesium-incorporated anodized surface showed significantly higher fibronectin adsorption and lower albumin adsorption than the blasted surface. These results may be one of the reasons for the excellent bone response previously observed in animal studies.

  7. Analysis of the Composition of Titanium Oxide Coating by Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Estupiñán, Hugo; Peña, Dario Y.; Cabanzo, Rafael; Mejía-Ospino, Enrique

    2008-04-01

    Laser Induced Plasma Spectroscopy (LIPS or LIBS) is an alternative elemental analysis technology based on the optical emission spectra of the plasma produced by the interaction of high-power laser with gas, solid and liquid. The increasing popularity of this technique is due to the ease of the experimental set-up and to the wide fiexibility in the investigated material that does not need any pre-treatment of the sample before the analysis. In this work, Laser Induced Breakdown Spectroscopy (LIBS) is used to determine the composition of titanium oxide film produced by anodized of Ti6Al4V alloy. We have used Ti lines in the spectral region between 470-520 nm to determine temperature of the plasma generated on anodized surface of Ti6Al4V alloy for temperature determination by Boltzmann plot method. In order to measure the content of oxygen and titanium ratio on the surface the alloy, we have used the oxygen lines 777.194, 777.417 and 777.539 nm, and titanium lines 780.597 and 782.491 nm observed in an ambient of argon. We have determined the best conditions of electro-deposition, observing the intensity of the oxygen lines. Finally, we report the possibilities for the determination of the coating chemical composition using LIBS.

  8. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    International Nuclear Information System (INIS)

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel–titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces. (paper)

  9. Characterization of the porous anodic alumina nanostructures with a metal interlayer on Si substrates

    International Nuclear Information System (INIS)

    Porous anodic alumina (PAA) films produced by the anodization technique have made possible the mass production of porous nano-scale structures where the pore height and diameter are controllable. A metal interlayer is observed to have a significant influence on the characteristics of these PAA nanostructures. In this study, we investigate in-depth the effect of the current density on the properties of porous anodic alumina nanostructures with a metal interlayer. A thin film layer of tungsten (W) and titanium (Ti) was sandwiched between a porous anodic alumina film and a silicon (Si) substrate to form PAA/W/Si and PAA/Ti/Si structures. The material and optical characteristics of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates were studied using the scanning electron microscopy, X-ray diffraction (XRD), and temperature-dependent photoluminescence (PL) measurements. The current densities of the porous anodic alumina nanostructures with the metal interlayer are higher than for the PAA/Si, resulting in an increase of the growth rate of the oxide layer. It can be observed from the X-ray diffraction curves that there is more aluminum oxide inside the structure with the metal interlayer. Furthermore, it has been found that there is a reduction in the photoluminescence intensity of the oxygen vacancy with only one electron due to the formation of oxygen vacancies inside the aluminum oxide during the re-crystallization process. This leads to competition between the two kinds of different oxygen-deficient defect centers (F+ and F centers) in the carrier recombination mechanism from the PL spectra of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates. -- Highlights: • Study of porous anodic alumina (PAA) films with metal interlayers on silicon. • The highly ordered PAA film with a fairly regular nano-porous structure. • The luminescence properties of PAA films were

  10. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  11. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  12. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  13. Production of titanium dioxide

    International Nuclear Information System (INIS)

    Titanium dioxide pigments provide whiteness and opacity to a vast range of everyday products from coatings and plastics to inks and even cosmetics and food. Manufacturing takes place using two different processes - the so called 'sulphate' and 'chloride' routes - to produce more than 4.5 million t per year worldwide. Both routes start from impure TiO2 based feedstocks containing moderately enhanced concentrations of radionuclides of natural origin. Experts from the TiO2 production industry and feedstock suppliers are assisting the IAEA in the development of a Safety Report concerning exposure to NORM within the TiO2 industry. The data assessment shows that, for both process routes, most of the radioactivity reports to the solid process wastes and there are no areas of concern related to products, co-products or liquid or gaseous effluents for production units operating to current environmental standards. Risk assessments for the landfill disposal of solid process waste similarly did not indicate any areas of concern where current waste management practices were followed. Process deposits, typically scale material, can exhibit enhanced activity concentrations of radium. Specific management practices such as controlled vessel entry to restrict worker exposure to these materials may be necessary. With such measures, it is considered unlikely that a worker would receive an annual effective dose exceeding 1 mSv. (author)

  14. High speed aluminum wire anodizing and process

    International Nuclear Information System (INIS)

    A high speed aluminum wire anodizing machine and process are provided which includes anodizing aluminum wire in an anodizer tank having wire ingress and egress openings. At least two adjacent rotatable wire accumulator drums are provided in the tank, preferably with means for producing a flow of anodizing electrolytes into each of the drums through an end hub thereof and out of the sidewalls of the drums passed circumferential wire separators. An anode is located proximal to the wire ingress opening, preferably in a contact cell which has an adjustable wire egress window. At least one cathode is provided in the tank. The cathode is preferably either between the drums or a pair of cathodes are provided above and below the drums adjacent to the sidewalls thereof, or both

  15. Ultrasound-assisted anodization of aluminum in oxalic acid

    International Nuclear Information System (INIS)

    Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 μm/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.

  16. Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process

    Science.gov (United States)

    Quiroz, Heiddy P.; Quintero, Francisco; Arias, Pedro J.; Dussan, A.; Zea, Hugo R.

    2015-07-01

    In this work, titanium foils were anodized in ethylene glycol solutions containing different amounts of water and fluoride to determine their effects on the top morphology and crystalline structure of the formed titania nanostructures. Anodizing was performed for 2 h by using titanium foils as both anode and cathode applying a squared-pulse voltage profile composed of one step at 80 V for 3 min followed by another at 20 V for 5 min; constant voltage conditions were also used to study the nanostructure formation on the surface. We found the formation of nanostructured titania on the surface of the anodized foil when small amounts of water and fluoride are present in the anodizing solution. The top of these nanostructures is irregular when no water is added, but is expected to change with different amounts of water and fluoride in the ranges of 1 - 9% and 0.05 - 0.5%, respectively. Synthesis parameters also change nanotube morphology. The morphology and structure properties of the samples were studied by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Formation of TiO2 nanotubes by anodization method are strongly correlated to conditions like fluoride concentration and applied voltages. Tube length varying between 2 and 7 μm, exhibiting different diameters and wall thicknesses were obtained. When an alternate voltage was applied, the wall of the nanotubes presented evenly spaced rings while nanotubes with smooth wall form were observed when constant voltage was applied. Reflection peaks corresponding to Brookite, Anatase, and Rutile of TiO2 phases were observed from XRD measurements. A correlation between the effects of synthesis parameters on nanotube formation and morphological properties is presented. TiO2 nanotubes prepared by electrochemical anodization have excellent performance in various applications such as photocatalysts, solar cells, gas sensors, and biomedical applications.

  17. Photo-induced properties of non-annealed anatase TiO2 mesoporous film prepared by anodizing in the hot phosphate/glycerol electrolyte

    International Nuclear Information System (INIS)

    Highlights: ► The TiO2 mesoporous film can be formed by anodizing of titanium specimens in the hot phosphate/glycerol electrolyte. ► The mesoporous film formed at 20 V without annealing was a mixture of amorphous phase and nanograined anatase, which clearly showed strong 〈0 0 1〉 preferred orientation. ► Even without annealing, the as-anodized anatase TiO2 mesoporous film showed high photocatalytic activities for decomposition of water and methylene blue. ► The as-anodized anatase TiO2 mesoporous film also showed superhydrophilicity with UV light irradiation. - Abstract: In this study, anatase crystalline TiO2 mesoporous film was formed by anodizing of titanium specimens without annealing procedures. The specimens were anodized at 3 and 20 V in 0.6 mol dm−3 K2HPO4 and 0.2 mol dm−3 K3PO4/glycerol electrolyte at 433 K. The obtained films had mesoporous structures with pore diameters as small as ∼10 nm. The mesoporous film formed at 20 V without annealing (MP-20V) was a mixture of amorphous phase and nanograined anatase, which clearly showed strong 〈0 0 1〉 preferred orientation, whereas that at 3 V was completely amorphous. Even without annealing, the MP-20V showed high photocatalytic activities for decomposition of water and methylene blue. In contrast, the anodic TiO2 nanotube film formed in NH4F/ethylene glycol electrolyte revealed photocatalytic activities only after annealing at 723 K, because of the amorphous nature of the as-anodized nanotube film. The MP-20V film also showed superhydrophilicity with UV light irradiation.

  18. Fiber reinforced titanium alloy composites

    International Nuclear Information System (INIS)

    The more important titanium matrix composites studied to date are composed of titanium alloy matrices, such as Ti 6Al--4V, reinforced with filaments of boron, silicon carbide, or sapphire, as well as with wires of beryllium or refractory metal alloys. The primary fabrication techniques for these materials involve vacuum hot pressing at 1300 to 16000F, alternate layers of titanium alloy matrix foils, and suitably aligned filament mats. The more ductile reinforcements such as beryllium, have been incorporated into titanium matrix composites by coextrusion. Fabrication of composite gas turbine engine fan blades from both boron (SiC coated) and beryllium reinforced Ti 6Al--4V alloy is described. Feasibility studies have been made in the fabrication of Boron/Ti 6Al--4V composite rings for possible gas turbine engine disc applications. Mechanical properties of various titanium matrix composite systems are presented and demonstrate the attractive elevated temperature properties of some systems to 10000F. (35 fig, 6 tables) (U.S.)

  19. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    Science.gov (United States)

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (pcleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants. PMID:19332400

  20. Lightweight Protective Coatings For Titanium Alloys

    Science.gov (United States)

    Wiedemann, Karl E.; Taylor, Patrick J.; Clark, Ronald K.

    1992-01-01

    Lightweight coating developed to protect titanium and titanium aluminide alloys and titanium-matrix composite materials from attack by environment when used at high temperatures. Applied by sol-gel methods, and thickness less than 5 micrometers. Reaction-barrier and self-healing diffusion-barrier layers combine to protect titanium alloy against chemical attack by oxygen and nitrogen at high temperatures with very promising results. Can be extended to protection of other environmentally sensitive materials.

  1. Titanium, Sinusitis, and the Yellow Nail Syndrome

    OpenAIRE

    Berglund, Fredrik; Carlmark, Björn

    2010-01-01

    Yellow nail syndrome is characterized by nail changes, respiratory disorders, and lymphedema. In a yellow nail patient with a skeletal titanium implant and with gold in her teeth, we found high levels of titanium in nail clippings. This study aims to examine the possible role of titanium in the genesis of the yellow nail syndrome. Nail clippings from patients with one or more features of the yellow nail syndrome were analyzed by energy dispersive X-ray fluorescence. Titanium was regularly fou...

  2. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  3. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr0,5Ni0,5O3, by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  4. Fabrication of TiO2 Cathodes by Anodic Oxidation for Hydrogen Generation from Electrolysis of Water

    Directory of Open Access Journals (Sweden)

    *İ. Koyuncu

    2014-09-01

    Full Text Available In this investigation, titanium oxide plates were used as cathode for hydrogen production in the aqueous solutions of sulfuric acid, potassium hydroxide, acetic acid and ammonia hydroxides electrolytes separately. Gaseous hydrogen was produced at the cathode and oxygen at the anode. For this purpose, titanium plates were fabricated in acid solution by anodic oxidation. Microstructure of TiO2 nanorod observation was conducted with scanning electron microscopy (SEM. The effects of operating conditions and the electrochemical test parameters, such as electrolytes concentration, temperature, and cell voltage were investigated. Also the performance of TiO2 cathode was compared to zirconium oxide and graphite electrodes. The results show that the highly rated, hydrogen production performance on TiO2 cathode has better than the other electrodes. The maximum rate of hydrogen production is by TiO2 cathode 8.18 ml/ (h. cm2. The cell efficiency for water electrolysis was reached 95% using titanium oxide electrode in 1.5 M H2SO4.

  5. A Novel Surface Treatment for Titanium Alloys

    Science.gov (United States)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  6. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  7. Photonuclear reactions on titanium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Belyshev, S. S. [Moscow State University (Russian Federation); Dzhilavyan, L. Z. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation); Ishkhanov, B. S.; Kapitonov, I. M. [Moscow State University (Russian Federation); Kuznetsov, A. A., E-mail: kuznets@depni.sinp.msu.ru; Orlin, V. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  8. Mechanical properties of titanium connectors.

    Science.gov (United States)

    Neo, T K; Chai, J; Gilbert, J L; Wozniak, W T; Engelman, M J

    1996-01-01

    The tensile mechanical properties of welded titanium joints were studied, and intact titanium was used as controls. Welded joints were fabricated with either a stereographic laser-welding technique or a gas tungsten arc welding technique. The effect of heat treatment following a simulated porcelain application was also investigated. Heat-treated laser welds had significantly lower ultimate tensile strengths. Heat treatment had no effect on the modulus of elasticity or elongation, but generally significantly decreased the yield strength of the titanium specimens. The gas tungsten are welding specimens had significantly higher yield strengths and elastic moduli than the other two groups. The elongation of the control specimens was significantly greater than the elongation of the gas tungsten arc welding specimens, which was in turn significantly higher than that of the laser-welded specimens. PMID:8957877

  9. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically...

  10. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the...

  11. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide...

  12. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium...

  13. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or...

  14. Anodizing of High Electrically Stressed Components

    Energy Technology Data Exchange (ETDEWEB)

    Flores, P. [NSTec; Henderson, D. J. [NSTec; Good, D. E. [NSTec; Hogge, K. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Naffziger, C. [NSTec; Codova, S. R. [SNL; Ormond, E. U. [SNL

    2013-06-01

    Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide the expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.

  15. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn–3.5Ag–xTi active solders

    International Nuclear Information System (INIS)

    Active solders Sn–3.5Ag–xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn–3.5Ag–xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on the titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 ± 0.64 MPa. The maximum bonding strength reached 22.24 ± 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al3Ti-rich and Al3Ti phases at the joint interfaces. - Highlights: ► Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn–3.5Ag. ► The maximum bonding strength occurs at 3 wt.% Ti addition. ► The Ti reacts with anodized Al oxide to form Al3Ti-rich and Al3Ti at joint interface.

  16. Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    Energy Technology Data Exchange (ETDEWEB)

    Lian, T; Whalen, M T; Wong, L

    2004-10-25

    The effects of fluoride on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) have been investigated. Up to 0.1 mol/L fluoride was added to the NaCl brines at 95 C, and three pH values of 4, 8, and 11 were selected for studying pH dependence of fluoride effects. It was observed that fluoride significantly altered the anodic polarization behavior, at all three pH values of 4, 8, and 11. Under acidic condition fluoride caused active corrosion. The corrosion of Titanium grade 7 was increased by three orders of magnitude when a 0.1 mol/L fluoride was added to the NaCl brines at pH 4, and the Pd ennoblement effect was not observed in acidic fluoride-containing environments. The effects of fluoride were reduced significantly when pH was increased to 8 and above.

  17. Facile fabrication of one-dimensional mesoporous titanium dioxide composed of nanocrystals for lithium storage

    International Nuclear Information System (INIS)

    Titanium dioxide (TiO2) has received increasing attention as promising anode for lithium ion batteries because it offers a distinct safety advantage in comparison to commercialized graphite anodes, whereas it also suffer from the drawbacks of low practical capacity and relatively low electronic conductivity. Herein, one-dimensional mesoporous anatase TiO2 composed of nanocrystals prepared by a facile procedure is reported for the first time. Such peculiar architecture and intrinsical mesoporous can effectively improve pseudocapacitance charge storage, increase contact interface between the active materials and electrolyte, and enhance the structure stability during cycling, therefore contributing to good lithium storage and excellent cycling stability. A reversible capacity of 202.9 mAhg−1is obtained at 30 mAg−1 after 70 cycles. More importantly, 151 mAhg−1 can be obtained at 200 mAg−1 even after 500 cycles

  18. Fabrication of Novel Titanium-supported Ni-Sn Catalysts for Methanol Electro-oxidation

    Institute of Scientific and Technical Information of China (English)

    YI Qing-Feng; HUANG Wu; YU Wen-Qiang; LI Lei; LIU Xiao-Ping

    2008-01-01

    Novel titanium-supported Ni-Sn/Ti electrodes (Ni8Sn/Ti, Ni7Sn3/Ti and Ni/Ti) have been prepared using a hydrothermal method by a one step process. The scanning electron microscopy (SEM) images show that the catalyst particles are present as nano-scale flakes. Their electrochemical activity for methanol oxidation in 1 mol·L-1 NaOH was evaluated using voltammetric techniques, chronoamperometric measurements and electrochemical impedance spectra (EIS). It was found that the Ni8Sn/Ti electrode presents higher anodic currents and lower onset potential for methanol oxidation than Ni7Sn3/Ti, Ni/Ti and polycrystalline Ni electrodes. The EIS data indicate that under condi- tions of various anodic potentials and methanol concentrations, the Ni8Sn/Ti electrode displays significantly lower charge transfer resistances and high electrocatalytic activity towards methanol oxidation.

  19. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    International Nuclear Information System (INIS)

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed

  20. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences Unviersiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar (Malaysia); Abbasi, S. H., E-mail: sarfrazabbasi@gmail.com [SABIC Plastic Application Development Center, Riyadh Technovalley, Riyadh (Saudi Arabia)

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  1. Effect of whitening toothpaste on titanium and titanium alloy surfaces

    Directory of Open Access Journals (Sweden)

    Adriana Cláudia Lapria Faria

    2012-12-01

    Full Text Available Dental implants have increased the use of titanium and titanium alloys in prosthetic applications. Whitening toothpastes with peroxides are available for patients with high aesthetic requirements, but the effect of whitening toothpastes on titanium surfaces is not yet known, although titanium is prone to fluoride ion attack. Thus, the aim of the present study was to compare Ti-5Ta alloy to cp Ti after toothbrushing with whitening and conventional toothpastes. Ti-5Ta (%wt alloy was melted in an arc melting furnace and compared with cp Ti. Disks and toothbrush heads were embedded in PVC rings to be mounted onto a toothbrushing test apparatus. A total of 260,000 cycles were carried out at 250 cycles/minute under a load of 5 N on samples immersed in toothpaste slurries. Surface roughness and Vickers microhardness were evaluated before and after toothbrushing. One sample of each material/toothpaste was analyzed by Scanning Electron Microscopy (SEM and compared with a sample that had not been submitted to toothbrushing. Surface roughness increased significantly after toothbrushing, but no differences were noted after toothbrushing with different toothpastes. Toothbrushing did not significantly affect sample microhardness. The results suggest that toothpastes that contain and those that do not contain peroxides in their composition have different effects on cp Ti and Ti-5Ta surfaces. Although no significant difference was noted in the microhardness and roughness of the surfaces brushed with different toothpastes, both toothpastes increased roughness after toothbrushing.

  2. Processing, microstructure, and mechanical behavior of titanium dioxide nanotubes

    Science.gov (United States)

    Crawford, Grant Alan

    Titanium dioxide nanotubes are of considerable interest for use in hydrogen generation, solar cells, chemical sensors, and bioactive coatings. In this study, nanotube coatings were fabricated on a Ti substrate via anodic oxidation. A novel hierarchical coating consisting of nanotubes (˜50 nm diameter) on the nano-scale and large pores/pits (˜1-20 mum) on the micro-scale was developed. This coating has potential for use as a bioactive coating on Ti bone implants. The mechanisms for nanotube formation and microscopic pitting were discussed. Microstructure characterization was conducted using scanning electron microscopy, focused ion beam, transmission electron microscopy, and image analysis. The effect of processing variables (i.e. time, temperature, pH) on nanotube characteristics (i.e. diameter, wall thickness, length) and hierarchical structure (i.e. pit/pore size and density) was studied. Anodization time was found to affect nanotube length and microscopic pit size and density. Lowering the electrolyte pH decreased the nanotube length and microscopic pit density. Increasing electrolyte temperature decreased nanotube length and increased pit/pore density. Anodization time, pH, and temperature, showed little effect on nanotube diameter or wall thickness. Microscopic pitting in the nanotube coating was found to occur above grain boundaries in the Ti substrate and above Ti grains with (0001) orientation. It was discovered that neighboring nanotubes are connected by ridges on the tube walls and an incoherent interface is formed between crystalline Ti and amorphous titanium dioxide. The influence of Ti substrate orientation on the growth kinetics and nanotube morphology was examined. Ti grains with surface orientations near (0001) experience retarded nanotube growth compared to (xxx0) orientations. This orientation dependence is likely related to differences in atomic density. Conventional nanoindentation and interfacial force microscopy (IFM), was employed to probe

  3. Effect of nanotube diameters on bioactivity of a multifunctional titanium alloy

    Science.gov (United States)

    Hao, Y. Q.; Li, S. J.; Hao, Y. L.; Zhao, Y. K.; Ai, H. J.

    2013-03-01

    Ti-24Nb-4Zr-8Sn (abbreviated as Ti2448) is a multifunctional β type titanium alloy consisting of nontoxic alloying elements and possessing better balanced biomechanical properties of high strength and low elastic modulus. To improve its bioactivity, the anodic oxidation of Ti2448 alloy in neutral electrolyte containing small amounts of NH4F was applied to produce the nanotubes consisting of the amorphous mixed oxides of TiO2, Nb2O5, SnO2 and ZrO2. The in vitro studies of the oestoblast-like MG-63 cells were performed to evaluate the biological behavior of the nanotubes with the outer diameters of 30, 50, 70 and 90 nm in comparison with the polished pure titanium and Ti2448 alloy. The results showed that the smaller diameter of 30 nm promoted the cell adhesion, proliferation and differentiation whereas the larger diameter of 90 nm had the worst cell viability with small spreading area of cytoskeletal actin. Although the nanotubes of Ti2448 alloy consist of the amorphous mixed oxides, it exhibits similar biological behavior with that of the amorphous TiO2 of pure titanium. This suggests that the topography of the amorphous nanotube plays important role on cell response. Additionally, the studies did not detect statistical difference of the bioactivity for the polished pure titanium and Ti2448 alloy.

  4. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes

    Institute of Scientific and Technical Information of China (English)

    MA Jingling; WEN Jiuba; LI Xudong; ZHAO Shengli; YAN Yanfu

    2009-01-01

    The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-ln sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chlo-fide solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy, resulting in the improved current capacity and efficiency of the alloy. The equivalent circuit based on the EIS experimental data revealed less corrosion and lower adsorbed corrosion pro-duction on the surface of the aluminum alloy with a combination of 1 wt.% Mg and 0.05 wt.% Ti, which suggested that the corrosion behav-ior seemed to be strongly related to the presence of precipitate particles in the aluminum alloy, and moderate amounts of precipitate particles could be beneficial to the electrochemical performance of the aluminum alloy sacrificial anode.

  5. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  6. Hierarchical decoration of anodic TiO2 nanorods for enhanced photocatalytic degradation properties

    International Nuclear Information System (INIS)

    Highlights: • We synthesize arrays of aligned TiO2 nanorods by anodization of Ti covered with an Al layer. • The incorporation of Al into the TiO2 nanorods inhibits crystallization at temperatures as high as 550 °C. • The photocatalytic degradation of Acid Orange 7 dye can be strongly enhanced after applying a TiO2 nanoparticle coating. • The anatase structure of the coating and the enhanced light absorption volume results in up to a 12x enhancement in performance. - Abstract: In the present work vertically aligned TiO2 nanorods were fabricated by anodization of Al/Ti dual layer structures. Anodization of Al leads to the formation of a porous alumina layer which is used as a template for the growth of TiO2 nanorods. We have studied the characteristics of these nanorods after annealing by high resolution TEM, showing a core–shell structure along the length of the nanorods formed from the expansion of the TiO2 nanorod into the alumina template during growth. Modification of the nanorods by spin coating of a solution of titanium isopropoxide (TIPO) in isopropanol yields enhanced photocatalytic activity up to 12 times due to the increase in surface area, light absorption volume, and the creation of a crystalline coating with an anatase-phase

  7. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics. [titanium alloys

    Science.gov (United States)

    Chen, W.; Dwight, D. W.; Wightman, J. P.

    1978-01-01

    Various surface preparations for titanium 6-4 alloy were studied. An anodizing method was investigated, and compared with the results of other chemical treatments, namely, phosphate/fluoride, Pasa-Jell and Turco. The relative durability of the different surface treatments was assessed by monitoring changes in surface chemistry and morphology occasioned by aging at 505 K (450 F). Basic electron spectroscopic data were collected for polyimide and polyphenylquinoxaline adhesives and synthetic precursors. Fractographic studies were completed for several combinations of adherend, adhesive, and testing conditions.

  8. High energy ion beam irradiation on titanium substrate in a pulsed plasma device operating with methane

    International Nuclear Information System (INIS)

    We report the investigation of high energy ion beam irradiation on titanium (Ti) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The surface modifications induced by the ion beam using two different anode materials, graphite and copper, are characterized using standard surface science diagnostic tools, such as x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray analysis, Raman spectroscopy and Auger electron spectroscopy. It has been found that the interaction of the pulsed PF ion beams, with characteristic energy in the 15-300 keV range, with the Ti surface, results in the formation of nanocomposite carbon structures. It is observed that the resulting ion irradiated surface morphologies are different, depending on the different anode materials, under otherwise identical operational conditions. In the case of the graphite anode the interaction of PF ion beams followed by the anode vapour with the Ti surface results in the formation of gradient layers of TiC with embedded carbon nanostructures.

  9. Method of making multilayered titanium ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  10. Design comparison of single-anode and double-anode 300-MW magnetron injection gun

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, W.; Specht, V. (Univ. of Maryland, College Park (United States))

    1993-07-01

    Analytic tradeoff equations based on adiabatic assumptions are used to explore feasible design regions for single-anode Magnetron Injection Guns (MIG's). Particle simulations are then used to optimize a single-anode and a double-anode design for a 1-[mu]s, 500-kV, 600-A MIG which is required for a second-harmonic gyroklystron. The advantages and disadvantages of each configuration are critically examined.

  11. Chemo-mechanical softening during in situ nanoindentation of anodic porous alumina with anodization processing

    OpenAIRE

    Cheng, C; Ngan, AHW

    2013-01-01

    Simultaneous application of mechanical stresses on a material as it undergoes an electrochemical reaction can result in interesting coupling effects between the chemical and mechanical responses of the material. In this work, anodic porous alumina supported on Al is found to exhibit significant softening during in situ nanoindentation with anodization processing. Compared with ex situ nanoindentation without anodization processing, the in situ hardness measured on the alumina is found to be m...

  12. Synthesis and properties of nanoscale titanium boride

    Science.gov (United States)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  13. Advances in cost effective processing of titanium

    International Nuclear Information System (INIS)

    Recently an industry expert pointed out that one of the greatest hindrances to the growth of titanium usage has been the low percentage of material usable in the final product. Due to the extensive processing, forming, and machining operations typically performed on titanium, yield losses are high. This is especially true in aerospace applications where most titanium is used. In engine components, the start to finish ratio, known as the buy to fly ratio, is often as high as 7 to 1. This can be illustrated by looking at the use of titanium in Pratt and Whitney engines. In the JT-8D-217 used on Boeing's 737-200, the titanium buyweight is 5,385 pounds, whereas the finished titanium, flyweight is just 758 pounds. This start to finish ratio is 7.1:1, giving titanium 17.0% of total engine weight. (orig.)

  14. Nanodispersed boriding of titanium alloy

    International Nuclear Information System (INIS)

    The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemical-thermal treatment. The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. It is established that boriding of paste compounds allows obtaining the surface hardness within 30 - 29 GPa and with declining to 27- 26 GPa in layer to the transition zone (with total thickness up to 110 μm) owing to changes of the layer phase composition where T2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30 - 110 μm) and transition zone (30 - 190 μm). Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2 - 3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening

  15. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  16. Reactivity of Anode Raw  Materials and Anodes for Production of Aluminium

    OpenAIRE

    Engvoll, Marianne Aanvik

    2002-01-01

    In the Hall-Héroult process for primary production of aluminium, a considerable amount of anode carbon is lost through unwanted gasification in air and CO2. The carbon gasification reactions are catalyzed by a number of inorganic impurities normally present in the anodes. Some of these impurities follow the anode raw materials while others are introduced during the anode manufacturing process.The aim of this work is to obtain a fundamental knowledge of how the bath compounds: AlF3, Al2O3, NaF...

  17. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  18. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism. PMID:27171214

  19. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  20. Graphite: An active or an inactive anode?

    Energy Technology Data Exchange (ETDEWEB)

    Rueffer, Matthew; Bejan, Dorin [Electrochemical Technology Centre, Chemistry Department, University of Guelph, 50 Stone Road East, Guelph Ontario, N1G 2W1 (Canada); Bunce, Nigel J., E-mail: nbunce@uoguelph.c [Electrochemical Technology Centre, Chemistry Department, University of Guelph, 50 Stone Road East, Guelph Ontario, N1G 2W1 (Canada)

    2011-02-01

    Positive polarization of a graphite anode in aqueous solution functionalizes the surface and releases soluble organic carbon to the solution concurrent with the electrolysis of water. Mineralization of the anode occurs at more positive potentials, and can be explained as a repetitive sequence involving functionalization, oxidation to carboxyl, and Kolbe decarboxylation, without recourse to hydroxyl radicals. Other lines of evidence against the intermediacy of hydroxyl radicals include the resistance of p-benzoquinone towards oxidation at graphite - i.e., graphite does not function as an inactive anode towards the oxidation of added substrates. A direct electron transfer mechanism operates for substrates that are oxidizable in the range of water stability, such as acetaminophen and sulfide ion. In the potential range of oxygen evolution we propose that graphite behaves as a modified active anode, at which the oxygen atom to be transferred to an oxidizable substrate first becomes bonded to the previously functionalized surface.

  1. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  2. Sorption of plutonium on anodized aluminum

    International Nuclear Information System (INIS)

    Adsorption of plutonium on anodic alumina films was investigated. The results obtained suggest that equilibrium in the aqueous solution-solid surface system is achieved after 3 hours. In case of aqueous solutions maximum sorption was observed at pH 3.5. The adsorption isotherms for both aqueous and ethanolic solutions are presented. Up to 15 μg of Pu can be adsorbed by 1 cm2 of anodic alumina surface. (author)

  3. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  4. The hydrogen anode in chromium electrowinning

    International Nuclear Information System (INIS)

    The use of a hydrogen anode for electrowinning of chromium from an ammonium chromium sulfate electrolyte (chrome alum process) was investigated in a laboratory-scale cell equipped with a diaphragm. The composition of the solution and the temperature followed industrial practice. Current density, pH, and anolyte flow rate through the diaphragm were varied and optimized for the cell. For a cathodic current density of 915 A/m2 at 50oC, the optimum initial pH was 2.37. The hydrogen anode was made of a platinized Toray carbon paper (0.35 mg Pt per cm2) supplied by E-TEK. The hydrogen pressure was maintained at 2 cm H20 above ambient atmosphere. The potential of the hydrogen anode was about 1 V lower than that of a Pb-Ag anode (1%Ag) in a similar cell. As expected, no Cr+6 was generated in the anolyte. The cathodic current efficiency was slightly lower with the hydrogen anode than with the Pb-Ag anode. (author)

  5. Hollow nanotubular toroidal polymer microrings

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  6. Ceramic materials based on modified pyrogenic titanium dioxide and titanium-silica

    International Nuclear Information System (INIS)

    Ceramic materials based on modified titanium dioxide and titanium-silica are obtained. Method for modification of titanium dioxide and titanium-silica by palladium additions in the process of flame, hydrolysis of titanium, tetrachloride or silicon tetrachloride mixture with titanium tetrachloride is developed. The above method makes it possible to modify already formed particles of the final products in the reactor cooling zone, which does not effect their size and where by the whole palladium is on the surface of the ceramic material. A series of textolite is prepared on the basis of the developed ceramic materials and their metallization is performed

  7. Effect of titanium content and aging temperature on the properties of uranium-titanium alloys

    International Nuclear Information System (INIS)

    The mechanical properties and microstructures of four uranium-titanium alloys were examined as functions of titanium content and aging temperature. Titanium alloy content was varied from 0.41 to 0.79 weight percent. Aging temperatures from 350 to 4500C (all for six hours) were evaluated for each alloy in addition to tests in the unaged conditions. Titanium and aging temperature were both shown to be strong effects in determining alloy properties. It was determined that the uranium-0.41 weight percent titanium alloy underwent extensive age-hardening even though the alloy did not exhibit a martensitic microstructure characteristic of the alloys richer in titanium

  8. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations.

    Science.gov (United States)

    Khudhair, D; Bhatti, A; Li, Y; Hamedani, H Amani; Garmestani, H; Hodgson, P; Nahavandi, S

    2016-02-01

    Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO2) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO2 nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO2 directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO2 nanotube wall thickness of 30-40nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro-nano-electrodes. PMID:26652471

  9. Corrosion behaviors of TiO{sub 2} nanotube layers on titanium in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weiqiang; Qiu Jing; Xu Ling; Zhang Fuqiang, E-mail: fredzc@online.sh.c [Department of Prosthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 (China)

    2009-12-15

    It is well known that the growth of osteoblast cultured on titanium with nanotube layers can be significantly increased compared to unanodized surfaces. In the current study, the corrosion behavior of titanium with nanotube layers was studied in naturally aerated Hank's solution using open circuit potentials (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The electrochemical results indicated that TiO{sub 2} nanotube layers on titanium showed a better corrosion resistance in simulated biofluid than that of smooth-Ti. The OCP, corrosion rate (I{sub corr}), passive current density (I{sub pass}) and the oxygen evolution potential (E{sub o}) were significantly influenced by titanium oxide nanotube layers acquired by anodization. The anatase nanotube layer showed higher OCP and smaller current density than the amorphous nanotube layer. EIS analysis showed that the annealing had a significant effect on the corrosion resistance of the outer tube layer (R{sub t}), but little effect on the corrosion resistance of the inter-barrier layer (R{sub b}) for nanotube layers. The results suggested that titanium with TiO{sub 2} nanotube layers has an adequate electrochemical behavior for use as a dental implant material.

  10. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  11. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. PMID:26970695

  12. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zuldesmi, Mansjur, E-mail: mzuldesmi@yahoo.com [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Department of Mechanical Engineering, Manad State University (UNIMA) (Indonesia); Waki, Atsushi [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Kuroda, Kensuke; Okido, Masazumi [EcoTopia Science Institute, Nagoya University, Nagoya (Japan)

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180 °C for 3 h was applied to titanium (Ti) and its alloys (Ti–6Al–4V, Ti–6Al–7Nb, Ti–29Nb–13Ta–4.6Zr, Ti–13Cr–1Fe–3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1 M of H{sub 3}PO{sub 4} with applied voltages from 0 V to 150 V at a scanning rate of 0.1 V s{sup −1}. The surface-treated samples were stored in a five time phosphate buffered saline (× 5 PBS(−)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity (R{sub B–I}) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in × 5 of PBS(−). - Highlights: • Hydrothermal treatment in distilled water was applied to titanium alloys. • Surface characteristics and osteoconductivity by in vivo test were evaluated. • Water contact angles of titanium alloys were decreased by hydrothermal treatment. • Osteoconductivity of titanium alloys improved notably by hydrothermal treatment after stored in × 5 of PBS (−)

  13. Facile fabrication of superhydrophobic surfaces with low roughness on Ti–6Al–4V substrates via anodization

    International Nuclear Information System (INIS)

    Highlights: • A facile and efficient method for fabricating low-roughness superhydrophobic titanium alloy surfaces is successfully developed. • Formation mechanism of micro-scale pore structures built by a novel anodic oxidation is carefully analyzed. • The prepared superhydrophobic surface possesses good durability and abrasion resistance. - Abstract: The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H2O2 mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 μm and good superhydrophobicity with a water contact angle of 158.5° ± 1.9° as well as a water tilting angle of 5.3° ± 1.1°, but also possess good long-term stability and abrasion resistance

  14. Facile fabrication of superhydrophobic surfaces with low roughness on Ti–6Al–4V substrates via anodization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuze; Sun, Yuwen, E-mail: ywsun@dlut.edu.cn; Guo, Dongming

    2014-09-30

    Highlights: • A facile and efficient method for fabricating low-roughness superhydrophobic titanium alloy surfaces is successfully developed. • Formation mechanism of micro-scale pore structures built by a novel anodic oxidation is carefully analyzed. • The prepared superhydrophobic surface possesses good durability and abrasion resistance. - Abstract: The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H{sub 2}O{sub 2} mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 μm and good superhydrophobicity with a water contact angle of 158.5° ± 1.9° as well as a water tilting angle of 5.3° ± 1.1°, but also possess good long-term stability and abrasion resistance.

  15. Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms.

    Science.gov (United States)

    Yang, Yang; Shin, Jieun; Jasper, Justin T; Hoffmann, Michael R

    2016-08-16

    Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. PMID:27402194

  16. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  17. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  18. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  19. Recycling potential of titanium alloys

    International Nuclear Information System (INIS)

    This study examines just how long one must contain radioactive titanium before it can be safely reprocessed. It was assumed that the spent first wall and blanket structural material would be completely reprocessed in a standard manufacturing facility capable of both primary and secondary fabrication. It was found that reprocessing could occur when the chemical hazard associated with inhalation was greater than the hazard associated with inhalating the same amount of radioactive species. This conclusion allowed the use of the threshold limiting value (TLV) to set a limit on the airborne concentration of the elements. Then by calculating the time required for that amount of material to decay to the same diluent factor indicated by the biological hazard potential (BHP) in air, the time for reprocessing was determined. Based on these assumptions, it was determined that it is feasible to think of titanium, and some of its alloying elements as being recyclable in a relatively short time period

  20. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  1. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  2. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Elzbieta Dlugon; Wojciech Simka; Aneta Fraczek-Szczypta; Wiktor Niemiec; Jaroslaw Markowski; Marzena Szymanska; Marta Blazewicz

    2015-09-01

    This paper reports results of the modification of titanium surface with multiwalled carbon nanotubes (CNTs). The Ti samples were covered with CNTs via electrophoretic deposition (EPD) process. Prior to EPD process, CNTs were functionalized by chemical treatment. Mechanical, electrochemical and biological properties of CNT-covered Ti samples were studied and compared to those obtained for unmodified titanium surface. Atomic force microscopy was used to investigate the surface topography. To determine micromechanical characteristics of CNT-covered metallic samples indentation tests were conducted. Throughout electrochemical studies were performed in order to characterize the impact of the coating on the corrosion of titanium substrate. In vitro experiments were conducted using the human osteoblast NHOst cell line. CNT layers shielded titanium from corrosion gave the surface-enhanced biointegrative properties. Cells proliferated better on the modified surface in comparison to unmodified titanium. The deposited layer enhanced cell adhesion and spreading as compared to titanium sample.

  3. ROUGH SURFACES OF TITANIUM AND TITANIUM ALLOYS FOR IMPLANTS AND PROSTHESES

    OpenAIRE

    Conforto, Egle; Aronsson, Bjorn-Owe; Salito, A.; Crestou, Catherine; Caillard, Daniel

    2004-01-01

    Titanium and titanium alloys for dental implants and hip prostheses were surface-treated and/or covered by metallic or ceramic rough layers after being submitted to sand blasting. The goal of these treatments is to improve the surface roughness and, consequently, the osteointegration, the fixation and the stability of the implant. The microstructure of titanium and titanium alloys submitted to these treatments has been studied and correlated to their mechanical behavior. As treated/ covered a...

  4. Titanium Dioxide as Photocatalytic Agent

    Czech Academy of Sciences Publication Activity Database

    Spáčilová, Lucie; Maléterová, Ywetta; Křesinová, Zdena; Cajthaml, Tomáš; Šolcová, Olga

    Prague : Orgit, 2014, s. 39. ISBN 978-80-02-02555-9. [International Congress of Chemical and Process Engineering /21./ - CHISA 2014 and Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction /17./ - PRES 2014. Prague (CZ), 23.08.2014-27.08.2014] Grant ostatní: NATO(US) SPS984398 Institutional support: RVO:67985858 ; RVO:61388971 Keywords : endocrine disruptors * titanium dioxide * experiments Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. PLASMA ELECTROLYTIC OXIDATION OF TITANIUM

    OpenAIRE

    Aliasghari, Sepideh *

    2014-01-01

    Plasma electrolytic oxidation is used to prepare corrosion- and wear-resistant coatings on light metals. The extensive literature reports on coatings formed under a wide range of different electrical regimes and in diverse electrolyte compositions. However, little work is available that investigates systematically PEO of titanium under a range of electrical variables in a particular electrolyte. In the present work, coatings are formed in a silicate electrolyte under a range of current densit...

  6. Formation and microstructural analysis of 3-dimensional titanium oxide structures via large surface electron beam irradiation

    International Nuclear Information System (INIS)

    Recently, in photo electronic devices industry, titanium oxide which was known to have good optical and electrical characteristic's been studied in the microstructural aspect to increase the conversion efficiency, such as making variable architecture, coating the titanium oxide nano-tube with the quantum dots which have higher band gap materials than this, etc. However, the process of making 3-dimensional titanium oxide structure with general deposition system such as hydrothermal growth, CVO, PVD and ALD had more variables and longer time consumption to make nano structures than electron beam irradiation case. Herein, we proceed with making new titanium oxide nano-screen-testing electron beam irradiation. The metal alkoxide composed of the 1 mol of titanium iso-propoxide and the 1 mol of acetylation reacted with water in propylene glycol methyl ether acetate and isopropyl alcohol solvent. After this process which made the bonding among Ti, O and other organics, the polymer solution was deposited on various types of substrate, such as anodized aluminum oxide mail. Kist. ac., Ag nano dots on SiO2 thin film, Au nano dots on SiO2 thin film, etc. The electron beam irradiation was progressed with the vertical accelerator facility of EB tech which was the company in Dijon, Korea The shape, microstructure and chemical composition of the irradiated polymers were characterized using TEM, XRD, Sem and EDS. The three types of Ti-Ox 3-dimensional structure were made; nano dot cluster, spike-like structure and dendrite structure. Each type of these structures was composed of different mircrostructures. Especially, the formation the 3-dimensional structures via electron beam irradiation was not only effected by the electron beam irradiation conditions but also effected by solution concentrate, conductivity and surface energy of substrate

  7. Electric current characteristic of anodic bonding

    International Nuclear Information System (INIS)

    In this paper, a novel current–time model of anodic bonding is proposed and verified experimentally in order to investigate underlying mechanisms of anodic bonding and to achieve real-time monitoring of bonding procedure. The proposed model provides a thorough explanation for the electric current characteristic of anodic bonding. More significantly, it explains two issues which other models cannot explain. One is the sharp rise in current when a voltage is initially applied during anodic bonding. The other is the unexpected large width of depletion layers. In addition, enlargement of the intimately contacted area during anodic bonding can be obtained from the proposed model, which can be utilized to monitor the bonding process. To verify the proposed model, Borofloat33 glass and silicon wafers were adopted in bonding experiments in SUSS SB6 with five different bonding conditions (350 °C 1200 V; 370 °C 1200 V; 380 °C 1200 V; 380 °C 1000 V; and 380 °C 1400 V). The results indicate that the observed current data highly coincide with the proposed current-time model. For widths of depletion layers, depth profiling using secondary ion mass spectrometry demonstrates that the calculated values by the model are basically consistent with the experimental values as well. (paper)

  8. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  9. INVESTIGATION OF COMBUSTION IN TITANIUM-FERROSILICON SYSTEM

    OpenAIRE

    Shatokhin, Igor; Bigeev, Vahit; Shaymardanov, Kamil; Manashev, Ildar

    2013-01-01

    Results of self-sustaining combustion process in the titanium-ferrosilicon system investigations are presented. These data were used for experimental-industrial technology developing of production ferro silico titanium with high titanium content for steel alloying.

  10. Electroless deposition of nickel and copper on titanium substrates: Characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, S.S. [Chemistry Department, University College for Women for Arts, Science and Education, Ain Shams University, Asmaa Fahmy, Heliopolis, Cairo (Egypt)], E-mail: drsohairr@hotmail.com

    2009-03-20

    In the present investigation nickel and copper were electroless deposited over the pre-anodized titanium substrates. The obtained deposits were characterized by X-ray diffraction (XRD) and SEM-EDX techniques. The obtained specimens were heat treated at 400 deg. C for 2 h. The heat-treated specimens were used as anodes in the process of the electrochemical degradation of Methylene Blue (MB) dye in simulated wastewater. It was shown that complete degradation of the dye is dependent primarily on the type and concentration of conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2 g/l) and could be attributed to indirect oxidation of the investigated dye by the electrogenerated hypochlorite ions formed from the chloride ions oxidation. In addition, contribution from direct oxidation could be possible as indicated from the good results obtained in the presence of NaOH as a conductive electrolyte. Optimizing the operating conditions that ensure effective electrochemical degradation of MB dye on the titanium-modified electrodes necessitates the control of all the operating factors.

  11. Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates.

    Science.gov (United States)

    Wang, Zhiliang; Zhang, Xueqin; Gu, Juming; Yang, Haitao; Nie, Jun; Ma, Guiping

    2014-03-15

    In this study, alginate/chitosan layer-by-layer composite coatings were prepared on titanium substrates via electrodeposition. The mechanism of anodic deposition of anionic alginate based on the pH decrease at the anode surface, while the pH increase at the cathode surface enabled the deposition of cationic chitosan coatings. The surface of coatings was characterized by using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The properties of coatings were characterized by X-ray diffraction (XRD) and differential thermal analysis (DTA). Indirect in vitro cytotoxicity test showed that the extracts of coating had no significant effects on cell viability. Moreover, in vitro cytocompatibility test exhibited cell population and spreading tendency, suggesting that the coatings were non-toxic to L929 cells. However, the results revealed that alginate coating was more benefit for cells growing than chitosan coating. The results indicated that the proposed method could be used to fabricate alginate/chitosan layer-by-layer composite coatings on the titanium surface at room temperature and such composite coatings might have potential applications in tissue engineering scaffolds field. PMID:24528698

  12. Anode current density distribution in a cusped field thruster

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huan, E-mail: wuhuan58@qq.com; Liu, Hui, E-mail: hlying@gmail.com; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren [Mail Box 458, Harbin Institute of Technology (HIT), Harbin 150001 (China)

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  13. Titanium MEMS Technology Development for Drug Delivery and Microfluidic Applications

    Science.gov (United States)

    Khandan, Omid

    The use of microelectromechanical systems (MEMS) technology in medical and biological applications has increased dramatically in the past decade due to the potential for enhanced sensitivity, functionality, and performance associated with the miniaturization of devices, as well as the market potential for low-cost, personalized medicine. However, the utility of such devices in clinical medicine is ultimately limited due to factors associated with prevailing micromachined materials such as silicon, as it poses concerns of safety and reliability due to its intrinsically brittle properties, making it prone to catastrophic failure. Recent advances in titanium (Ti) micromachining provides an opportunity to create devices with enhanced safety and performance due to its proven biocompatibility and high fracture toughness, which causes it to fail by means of graceful, plasticity-based deformation. Motivated by this opportunity, we discuss our efforts to advance Ti MEMS technology in two ways: 1) Through the development of titanium-based microneedles (MNs) that seek to provide a safer, simpler, and more efficacious means of ocular drug delivery, and 2) Through the advancement of Ti anodic bonding for future realization of robust microfluidic devices for photocatalysis applications. As for the first of these thrusts, we show that MN devices with in-plane geometry and through-thickness fenestrations that serve as drug reservoirs for passive delivery via diffusive transport from fast-dissolving coatings can be fabricated utilizing Ti deep reactive ion etching (Ti DRIE). Our mechanical testing and finite element analysis (FEA) results suggest that these devices possess sufficient stiffness for reliable corneal insertion. Our MN coating studies show that, relative to solid MNs of identical shank dimension, fenestrated devices can increase drug carrying capacity by 5-fold. Furthermore, we demonstrate that through-etched fenestrations provide a protective cavity for delivering

  14. The effects of hydrogen embrittlement of titanium

    Science.gov (United States)

    Taylor, Delbert J.

    1989-01-01

    Titanium alloys, by virtue of their attractive strength to density ratio, fatigue, fracture toughness and corrosion resistance are now commonly used in various aerospace and marine applications. The cost, once very expensive, has been reduced, making titanium even more of a competitive material today. Titanium and titanium alloys have a great affinity to several elements. Hydrogen, even in small amounts, can cause embrittlement, which in turn causes a reduction in strength and ductility. The reduction of strength and ductility is the subject of this investigation.

  15. Laser repair hardfacing of titanium alloy turbine

    OpenAIRE

    A. Klimpel; D. Janicki; A. Lisiecki; A. Rzeźnikiewicz

    2011-01-01

    Purpose: of this paper: work out repair technology of worn abutments of aircraft jet engine blades forged of titanium alloy WT3-1.Design/methodology/approach: The study were based on the analysis of laser HPDL powder surfacing of titanium alloy plates using wide range chemical composition consumables of titanium alloys and mixtures of pure titanium and spherical powder of WC indicated that very hard and highest quality deposits are provided by powder mixture of 40-50%Ti+60-50%WC.Findings: It ...

  16. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  17. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  18. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel; Naik, Gururaj V.; Boltasseva, Alexandra; Guan, Jianguo; Kildishev, Alexander V.; Shalaev, Vladimir M.

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material.Renewable E......We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  19. Appcelerator Titanium patterns and best practices

    CERN Document Server

    Pollentine, Boydlee

    2013-01-01

    The book takes a step-by-step approach to help you understand CommonJS and Titanium architecture patterns, with easy to follow samples and plenty of in-depth explanations If you're an existing Titanium developer or perhaps a new developer looking to start off your Titanium applications "the right way", then this book is for you. With easy to follow examples and a full step-by-step account of architecting a sample application using CommonJS and MVC, along with chapters on new features such as ACS, you'll be implementing enterprise grade Titanium solutions in no time. You should have some JavaSc

  20. A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O with excellent electrochemical properties

    Science.gov (United States)

    Sun, Xin; Ji, Xiao-Yang; Zhou, Yu-Ting; Shao, Yu; Zang, Yong; Wen, Zhao-Yin; Chen, Chun-Hua

    2016-05-01

    A novel air-stable titanium hexacyanoferrate (Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O) with a cubic structure is synthesized simply by a solution precipitation method, which is first demonstrated to be a scalable, low-cost anode material for lithium-ion batteries exhibiting high capacity, long cycle life and good rate capability. Nevertheless, it has a low capacity of about 100 mAh g-1 as an anode material for sodium-ion batteries.

  1. Microwave processing of tantalum capacitor anodes

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R J; Hamby, C; Holcombe, C E [Oak Ridge National Lab., TN (United States); Vierow, W F [AVX Tantalum Corp., Biddeford, ME (United States)

    1992-08-01

    Porous tantalum anodes were sintered at temperatures from 1600 to 1900{degrees}C using a conventional high-vacuum furnace as well as both 2.45 GHz fixed-frequency and 4--8 GHz variable-frequency microwave furnaces. Various insulation and casketing techniques were used to couple the microwave power to the tantalum compacts. Several types of tantalum powder were used to assess the effect of microwave processing on sintered surface area and impurity levels. Some microwave sintered anodes have an unusual surface rippling not seen on conventionally fired parts. The rippling suggests that a microscopic arcing or plasma might have been generated. Two important effects could be exploited if this phenomenon can be controlled. First, the effective tantalum surface area could be increased, yielding higher capacitance per volume. Second, surface impurities might be cleaned away, allowing the formation of a better dielectric film during the anodization process and, ultimately, higher working voltage.

  2. Separation of radioactive substances by anodic electrolysis

    International Nuclear Information System (INIS)

    In experiments on the electrodeposition of radioisotopes on a platinum anode it was observed that the isotopes could be classified into: (1) those whose cations are deposited as oxides; and (2) those whose cations are only adsorbed on the anode. Under given conditions this difference can be used to separate ions of the two groups. In the present paper, experimental details are given of the separation of 144Ce from 140La. The separation of 144Ce from uranium fission products in the presence of uranyl ion is also discussed. (U.K.)

  3. Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jianren

    1994-10-01

    The research illustrated in this thesis was performed under the guidance of Professor Dennis C. Johnson beginning in March 1987. Chapter 2 concentrates on the development and electrocatalytic properties of iron-doped {beta}-PbO{sub 2} films on noble-metal substrates. Chapter 3 focuses attention on the preparation and characterization of iron-doped {beta}-PbO{sub 2} films on titanium substrates (Fe-PbO{sub 2}/Ti). Chapter 4 discusses anodic evolution of ozone at Fe-PbO{sub 2}/Ti electrodes. Chapter 5 describes electrochemical incineration of p-benzoquinone (BQ) at Fe-PbO{sub 2}/Ti electrodes. In addition, the Appendix includes another published paper which is a detailed study of {alpha}-PbO{sub 2} films deposited on various types of stainless steel substrates.

  4. Electrodegradation of Ponceau 2R using dimensionally-stable anodes and Ti/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Francisco Wirley Paulino; Oliveira, Sameque do Nascimento; Lima-Neto, Pedro de; Correia, Adriana Nunes, E-mail: adriana@ufc.br [Universidade Federal do Ceara, Fortaleza (UFC), CE (Brazil). Centro de Ciencias. Dept. de Quimica Analitica e Fisico-Quimica; Mascaro, Lucia Helena; Matos, Roberto de; Souza, Ernesto Chaves Pereira de [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Dept. de Quimica; Lanza, Marcos Roberto de Vasconcelos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2013-08-01

    This paper reports the electrochemical degradation of the azo dye Ponceau 2R under galvanostatic electrolysis in the 1 to 200 mA cm{sup -2} range at room temperature using dimensionally-stable anodes of oxygen (DSA-O{sub 2}), chlorine (DSA-Cl{sub 2}) and a titanium electrode of platinum coated with platinum oxide (Ti/Pt). The methodology applied was efficient for removing the color of the Ponceau 2R and the highest percentage removal of total organic carbon was obtained at 200 mA cm{sup -2}. Despite not having been observed complete mineralization, approximately 80% removal of aromatic rings was estimated, resulting in drastic reduction of toxicity of the sample. (author)

  5. Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes.

    Science.gov (United States)

    Panizza, Marco; Cerisola, Giacomo

    2006-03-01

    Olive mill wastewater is characterized by very high chemical oxygen demand (COD) values and contains high concentrations of polyphenols that inhibit the activity of micro-organisms during biological oxidations. In this paper, the applicability of electrochemical oxidation of a real olive-mill wastewater was studied by performing galvanostatic electrolysis using parallel plate electrodes. A mixed titanium and ruthenium oxide (Ti/TiRuO2) was used as anode and stainless steel as cathode. The effect of chloride concentration and applied current on the removal of COD, aromatic content and colour was investigated. The experimental results showed that an effective electrochemical oxidation was achieved in which the wastewater was decolourised and the COD and aromatic content completely eliminated. In particular, the mineralisation took place by indirect oxidation, mediated by active chlorine, and the COD removal rate was enhanced by the addition of 5 g L(-1) of NaCl to the wastewater and by increasing the applied current. PMID:16510168

  6. The vapour phase deposition of boron on titanium by the reaction between gaseous boron trichloride and titanium metal. Final report

    International Nuclear Information System (INIS)

    The reaction, between boron trichloride vapour and titanium has been investigated in the temperature range 200 - 1350 deg. C. It has been found that an initial reaction leads to the formation of titanium tetrachloride and the deposition of boron on titanium, but that except for reactions between 900 and 1000 deg. C, the system is complicated by the formation of lower titanium chlorides due to secondary reactions between the titanium and titanium tetrachloride

  7. Seam-welded titanium tube as well as titanium tubesheet for all-titanium condenser of power plants

    International Nuclear Information System (INIS)

    Most of the thermal and nuclear power plants in Japan are located on the coast line, and steam turbine condenser and heat exchanger use a great quantity of sea water for cooling. This paper describes about thin wall welded tube for all-titanium condenser, development of technology for manufacturing titanium tubesheet, and the present situation of application

  8. Data in support of Gallium (Ga3+) antibacterial activities to counteract E. coli and S. epidermidis biofilm formation onto pro-osteointegrative titanium surfaces

    Science.gov (United States)

    Cochis, A.; Azzimonti, B.; Sorrentino, R.; Della Valle, C.; De Giglio, E.; Bloise, N.; Visai, L.; Bruni, G.; Cometa, S.; Pezzoli, D.; Candiani, G.; Rimondini, L.; Chiesa, R.

    2016-01-01

    This paper contains original data supporting the antibacterial activities of Gallium (Ga3+)-doped pro-osteointegrative titanium alloys, obtained via Anodic Spark Deposition (ASD), as described in “The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii” (Cochis et al. 2016) [1]. In this article we included an indirect cytocompatibility evaluation towards Saos2 human osteoblasts and extended the microbial evaluation of the Ga3+ enriched titanium surfaces against the biofilm former Escherichia coli and Staphylococcus epidermidis strains. Cell viability was assayed by the Alamar Blue test, while bacterial viability was evaluated by the metabolic colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Finally biofilm morphology was analyzed by Scanning Electron Microscopy (SEM). Data regarding Ga3+ activity were compared to Silver. PMID:26909385

  9. Data in support of Gallium (Ga(3+)) antibacterial activities to counteract E. coli and S. epidermidis biofilm formation onto pro-osteointegrative titanium surfaces.

    Science.gov (United States)

    Cochis, A; Azzimonti, B; Sorrentino, R; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Bruni, G; Cometa, S; Pezzoli, D; Candiani, G; Rimondini, L; Chiesa, R

    2016-03-01

    This paper contains original data supporting the antibacterial activities of Gallium (Ga(3+))-doped pro-osteointegrative titanium alloys, obtained via Anodic Spark Deposition (ASD), as described in "The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii" (Cochis et al. 2016) [1]. In this article we included an indirect cytocompatibility evaluation towards Saos2 human osteoblasts and extended the microbial evaluation of the Ga(3+) enriched titanium surfaces against the biofilm former Escherichia coli and Staphylococcus epidermidis strains. Cell viability was assayed by the Alamar Blue test, while bacterial viability was evaluated by the metabolic colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Finally biofilm morphology was analyzed by Scanning Electron Microscopy (SEM). Data regarding Ga(3+) activity were compared to Silver. PMID:26909385

  10. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  11. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  12. Silicon Whisker and Carbon Nanofiber Composite Anode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  13. Synthesis of nano structured particles for Li-ion cathodic and anodic materials obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    The development of the nano technology has contributed to improve the electrochemical properties in rechargeable batteries. The Spray Pyrolysis method allows to obtain nano structured materials with spherical morphology, narrow particle size distribution and compositional homogeneity. Nano structured particles have been prepared in this work to be used as anodic and cathodic materials in lithium-ion batteries. Among the cathodic materials, the Na-Si-Con (Li3Fe2(PO4)3) structure and the olivine (LiFePO4) phases have been synthesised. The Na-Si-Con iron phosphate favours the accommodation of the ion host, the diffusion and thermal stability. The olivine structure has an open three-dimensional network, favourable for hosting Lithium ions. The characterization by X ray diffraction, electron microscopy (scanning and transmission) and electron diffraction have allowed to identify a mix of crystalline phases of LiFePO4 (Olivine) and Li3Fe2(PO4)3 (Na-Si-Con). Thermal treatments produce porous particles. The tryphilite phase (olivine) appears after a thermal treatment at 800 degree centigrade/12h. Electrochemical results confirm the presence of the Na-Si-Con and olivine phases. Among the materials for being used as anode, the titanium oxides have been classified as good candidates as lithium ion host. The synthesis results in different experimental conditions for obtaining spherical and nano structured titanium oxide particles are presented. (Author)

  14. Fe1.5Ti0.5O3 nanoparticles as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Iron titanium oxide (Fe1.5Ti0.5O3) nanoparticles with the diameter of about 150 nm were prepared by hydrothermal process and further heat treatment at 300 °C for 2 h. The morphology, structure and electrochemical performance of Fe1.5Ti0.5O3 nanoparticles as anode material for lithium-ion batteries were investigated by scanning electron microscopy, X-ray diffraction and a variety of electrochemical testing techniques. It was found that, compared with TiO2 and Fe2O3, the iron titanium oxide electrode exhibited higher specific capacity of 734.9 mAh g−1 after 50 cycles at the current density of 50 mA g−1, good cycle stability and high-rate performance, suggesting that the Fe1.5Ti0.5O3 nanoparticle synthesized by this method is a promising anode material for lithium-ion batteries.

  15. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  16. The effect of silver or gallium doped titanium against the multidrug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Cochis, A; Azzimonti, B; Della Valle, C; De Giglio, E; Bloise, N; Visai, L; Cometa, S; Rimondini, L; Chiesa, R

    2016-02-01

    Implant-related infection of biomaterials is one of the main causes of arthroplasty and osteosynthesis failure. Bacteria, such as the rapidly-emerging Multi Drug Resistant (MDR) pathogen Acinetobacter Baumannii, initiate the infection by adhering to biomaterials and forming a biofilm. Since the implant surface plays a crucial role in early bacterial adhesion phases, titanium was electrochemically modified by an Anodic Spark Deposition (ASD) treatment, developed previously and thought to provide osseo-integrative properties. In this study, the treatment was modified to insert gallium or silver onto the titanium surface, to provide antibacterial properties. The material was characterized morphologically, chemically, and mechanically; biological properties were investigated by direct cytocompatibility assay, Alkaline Phosphatase (ALP) activity, Scanning Electron Microscopy (SEM), and Immunofluorescent (IF) analysis; antibacterial activity was determined by counting Colony Forming Units, and viability assay. The various ASD-treated surfaces showed similar morphology, micrometric pore size, and uniform pore distribution. Of the treatments studied, gallium-doped specimens showed the best ALP synthesis and antibacterial properties. This study demonstrates the possibility of successfully doping the surface of titanium with gallium or silver, using the ASD technique; this approach can provide antibacterial properties and maintain high osseo-integrative potential. PMID:26708086

  17. Titanium plasma produced by a nitrogen laser

    International Nuclear Information System (INIS)

    Titanium plasmas produced in vacuum and in air by radiation from a nitrogen laser focused onto a solid titanium target are studied spectroscopically. The energy deposition is more effective than in other cases since the wavelength of the laser is in the vicinity of Ti resonance lines. (orig.)

  18. Casting of Titanium and its Alloys

    OpenAIRE

    R. L. Saha; K. T. Jacob

    1986-01-01

    Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  19. Casting of Titanium and its Alloys

    Directory of Open Access Journals (Sweden)

    R. L. Saha

    1986-04-01

    Full Text Available Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.

  20. Amorphouslike diffraction pattern in solid metallic titanium

    DEFF Research Database (Denmark)

    Wang, Y.; Fang, Y.Z.; Kikegawa, T.; Lathe, C.; Saksl, K.; Franz, H.; Schneider, J.R.; Gerward, Leif; Wu, F.M.; Liu, J.F.; Jiang, J.Z.

    2005-01-01

    Amorphouslike diffraction patterns of solid elemental titanium have been detected under high pressure and high temperature using in situ energy-dispersive x-ray diffraction and a multianvil press. The onset pressure and the temperature of formation of amorphous titanium is found to be close to the...

  1. Appcelerator Titanium business application development cookbook

    CERN Document Server

    Bahrenberg, Benjamin

    2013-01-01

    Presented in easy to follow, step by step recipes, this guide is designed to lead you through the most important aspects of application design.Titanium developers who already have a basic knowledge of working with Appcelerator Titanium but want to further develop their knowledge for use with business applications

  2. Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes

    Science.gov (United States)

    Wang, Kun; Xiong, Dangsheng; Niu, Yuxiang

    2014-10-01

    On the purpose of improving the tribological properties of titanium alloy through mimicking natural articular cartilage, porous structure was prepared on the surface of Ti6Al4V alloy by anodic oxidation method, and then hydrophilic polymer brushes were grafted onto its surface. Surface morphology of porous oxidized film was investigated by metalloscope and scanning electron microscope (SEM). The composition and structure of modified surface were characterized by Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR/ATR), and the wettability was also evaluated. Friction and wear properties of modified alloys sliding against ultra-high molecular weight polyethylene (UHMWPE) were tested by a pin-on-disc tribometer in physiological saline. The results showed that, the optimum porous structure treated by anodic oxidation formed when the voltage reached as high as 100 V. Hydrophilic monomers [Acrylic acid (AA) and 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS)] were successfully grafted onto porous Ti6Al4V surface to form polymer brushes by UV radiation. The change of contact angle showed that wettability of modified Ti6Al4V was improved significantly. The friction coefficient of modified Ti6Al4V was much lower and more stable than untreated ones. The lowest friction coefficient was obtained when the sample was anodized at 100 V and grafted with DMMPPS, and the value was 0.132. The wear of modified samples was also obviously improved.

  3. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium

    International Nuclear Information System (INIS)

    Highlights: • Silver-substituted hydroxyapatite coating was successfully deposited on anodic TiO2 nanotubes by electrochemical deposition. • The bond strength between the AgHAp coatings and the substrate was improved by anodization pretreatment. • The antibacterial capability of the HAp coatings were enhanced with Ag+ incorporation against E. coli. • The AgHAp coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Hydroxyapatite doped with Ag+ ions (AgHAp) was synthesized via electrochemical deposition method on anodized titanium. The samples were characterized via X-ray diffraction, Fourier transform infrared spectrum analysis, X-Ray photoelectron spectroscopy and scanning electron microscopy to investigate the phase formation and microstructure of the samples. Highly ordered TiO2 nanotubes with a diameter of 100 nm were successfully synthesized, and the AgHAp coating was deposited on the TiO2 nanotubes, which has a thickness of about 17.7 ± 1.5 μm. Moreover, silver was uniformly-distributed on the nanotubes. Bioactivity and electrochemical studies were performed for the AgHAp-coated TiO2 in a simulated body fluid, where significant good bioactivity and corrosion resistance were exhibited. The antibacterial and osteoblast cell adhesion tests in vitro revealed that the AgHAp coating with 2.03 wt% silver had significant antibacterial and osteogenic properties. Thus, the AgHAp coating was regarded as a promising candidate for coating orthopedic implants

  4. Theoretical study of titanium phases

    International Nuclear Information System (INIS)

    The aim of this work is to obtain a good understanding of the phase diagram of titanium within density functional theory. This diagram is composed of the alpha phase, the high pressure omega phase and the high temperature beta phase. This requires the differences in total energy to be predicted with a great precision, because these differences are around 50 meV. I find the omega phase to be the most stable one by ab initio calculation at zero temperature and pressure, in contradiction to the experimental results. I find this inversion of the stability also appears in titanium dioxide and zirconium. I have analyzed all the approximations brought into play in the ab initio approach. I have estimated the zero point energy and studied the impact of including the semi-core states as well as the effect of the exchange-correlation functionals. The conclusion is that the usual approximations for the exchange-correlation generate the biggest part of the error. A possible correction is to take into account the electronic self-interaction. I have apply this correction to the semi-core states and find a systematic improvement of the cell parameters, but no improvement on the phase stability. So I can conclude that a better description of the exchange interaction on the localized 3d states is needed. Although the standard functionals of exchange-correlation are not accurate enough to predict the phase diagrams of titanium, they perform well in describing physical properties less demanding in terms of precision, like elastic constants. However, I find important that the predicted equilibrium volume must be precise, as these properties are found strongly dependent on the volume. (author)

  5. Multilayer tape cast SOFC – Effect of anode sintering temperature

    DEFF Research Database (Denmark)

    Hauch, Anne; Birkl, Christoph; Brodersen, Karen; Jørgensen, Peter Stanley

    2012-01-01

    Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...

  6. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  7. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    Science.gov (United States)

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  8. Basic Principles of Anodic Stripping Voltammetry (ASV)

    OpenAIRE

    2012-01-01

    In this interactive exercise, the basic principles of Anodic Stripping Voltammetry are shown. Each step of the voltammetric process is described using simulated animations. This activity illustrates what takes place in the voltammetric cell when this technique is applied to the determination of cadmium as well as to the simultaneous determination of copper and cadmium.

  9. Superconducting transition temperature in anodized aluminum

    International Nuclear Information System (INIS)

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains

  10. Silicon Whisker and Carbon Nanofiber Composite Anode

    Science.gov (United States)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  11. An inert metal anode for magnesium electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J. F.; Hryn, J. N.; Pellin, M. J.; Calaway, W. F.; Watson, K.

    1999-12-01

    Results from the development of a novel type of anode for electrowinning Mg are reported. A tailored alloy system based on the binary Cu-Al can be made to form a thin alumina layer on its surface that is relatively impervious to attack by the molten chloride melt at high temperature. This barrier is thin enough (5--50 nm) to conduct electrical current without significant IR loss. As the layer slowly dissolves, the chemical potential developed at the surface drives the diffusion of aluminum from the bulk alloy to reform (heal) the protective alumina layer. In this way, an anode that generates Cl{sub 2} (melt electrolysis) and O{sub 2} (wet feed hydrolysis) and no chlorocarbons can be realized. Further, the authors expect the rate of loss of the anode to be dramatically less than the coke-derived carbon anodes typically in use for this technology, leading to substantial cost savings and ancillary pollution control by eliminating coke plant emissions, as well as eliminating chlorinated hydrocarbon emissions from Mg electrowinning cells.

  12. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  13. Characterization of nanopores ordering in anodic alumina

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2008-01-01

    A simple characterization method of the ordering of the nanopores is described for nanoporous anodized aluminium oxides. The method starts with image analysis on scanning electron microscopy representations for the purpose to find repetitive shapes and their centres, i.e. nanopores. Then triangle...

  14. Study on selenium extraction from anode slime

    Institute of Scientific and Technical Information of China (English)

    GU; Heng

    2005-01-01

    Taking a copper anode slime as the raw material, a novel process for selenium extraction was studied. The primary selenium recovery can reach above 88.5 % and the quality index of selenium product can be up to 99.5 %. The economic benefit resulted is remarkable and environment has been protected.

  15. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  16. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  17. Influence of Anodization Time and Voltage on the Parameters of TiO2 Nanotubes

    Science.gov (United States)

    Chernozem, R. V.; Surmeneva, M. A.; Surmenev, R. A.

    2016-02-01

    A vertically aligned titania nanotube layer was obtained by electrochemical anodic oxidation in the electrolyte contained 0.4 wt% solution of NH4F in 54 ml of ethylene glycol and 5 ml of deionized water, after titanium was chemically cleaned/etched with a mixture of HCl, H2O and HNO3 solution for removing the natural oxide films. The morphology and composition of the titania nanotube layer were examined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The anodization of TiO2 nanotubes was done using 60 V for 240 min and 30 min, and 30 V for 30 min. The diameter of the titania nanotubes was about 52-156 nm, the wall thickness about 32-53 nm and the height about 0.9-6.3 μm. The pore size of TiO2 nanotubes influences the dissolution rate of CaP thin films and Young's modulus, which is significantly lower than that of the Ti substrate. Our future challenge will be investigation of the microstructure and mechanical behavior of titania nanotubes with CaP film.

  18. Effect of bending on anodized Ti6Al4V alloy: I. Surface layers characteristics

    Directory of Open Access Journals (Sweden)

    A. Kierzkowska

    2006-08-01

    Full Text Available Purpose: The plastic deformation behaviour of the anodized binary titanium alloy Ti6Al4V was characterizedin mechanical and electrochemical tests.Design/methodology/approach: The effect of tensile and compressive stresses on properties of differentclinically relevant surfaces of the deformed by bending implant rods was investigated. The deformationbehaviour was characterized by FEM analysis. Relevant surfaces in tensile and compressive zones werecharacteristics by microhardness and roughness measurements, and electrochemical testing (Ecor, anodicpolarization, EIS in oxygen-saturated Ringer’s solution.Findings: It was concluded that bending influenced mostly the properties of material in the tensile zone of thespecimen, whereas the properties of surface layer in the compressive zone and the properties of surface layer intensile zone after rebending are comparable and not so severe.Research limitations/implications: Studies were performed in static conditions, fatique studies are planned inthe future.Practical implications: Results are of great importance in for surgical practice in the in the evaluation of theinfluence of shaping process applied during pre-operative procedures on the performance of spinal implantsystems.Originality/value: In the paper a typical pre-operative procedure of shaping was applied to anodized titaniumimplants in order to evaluate its influence on the characteristics of the surface layer. Studies were focused onthe safety their application in vivo.

  19. Development of Anodic Titania Nanotubes for Application in High Sensitivity Amperometric Glucose and Uric Acid Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Ping Sun

    2013-10-01

    Full Text Available The purpose of this study was to develop novel nanoscale biosensors using titania nanotubes (TNTs made by anodization. Titania nanotubes were produced on pure titanium sheets by anodization at room temperature. In this research, the electrolyte composition ethylene glycol 250 mL/NH4F 1.5 g/DI water 20 mL was found to produce the best titania nanotubes array films for application in amperometric biosensors. The amperometric results exhibit an excellent linearity for uric acid (UA concentrations in the range between 2 and 14 mg/dL, with 23.3 (µA·cm−2·(mg/dL−1 UA sensitivity, and a correlation coefficient of 0.993. The glucose biosensor presented a good linear relationship in the lower glucose concentration range between 50 and 125 mg/dL, and the corresponding sensitivity was approximately 249.6 (µA·cm−2·(100 mg/dL−1 glucose, with a correlation coefficient of 0.973.

  20. Electronic properties of new superconductors based on Ca(Al sub x Si sub 1 sub - sub x) sub 2 and Sr(Ga sub x Si sub 1 sub - sub x) sub 2 in crystal and nanotubular states

    CERN Document Server

    Shein, I R; Medvedeva, N I; Ivanovskij, A L

    2002-01-01

    The zone structures of the new Ca(Al sub x Si sub 1 sub - sub x) sub 2 and Sr(Ga sub x Si sub 1 sub - sub x) sub 2 layered superconductors (AlB sub 2 -type) are studied through the LMTO first-principle full-potential method. It is shown that the superconducting properties of the ternary silicides is conditioned by high density of the (Ca, Sr)d-states near the Fermi level, whereas the T sub C growth by the Sr(Ga sub x Si sub 1 sub - sub x) sub 2 -> Ca(Al sub x Si sub 1 sub - sub x) sub 2 transition is related to the increase in the photon frequencies due to the atoms mass decrease. Modeling the electron properties of the hypothetical (11, 11) and (20, 0) CaAlSi and SrGaSi nanotubes is accomplished. The silicide systems by transition from the crystalline to nanotubular state retain the metal-like properties. The template and film convolution methods may become the methods for obtaining the silicide nanotubes

  1. Modification of the titanium oxide morphology and composition by a combined chemical-electrochemical treatment on cp Ti

    Directory of Open Access Journals (Sweden)

    Ernesto Peláez-Abellán

    2012-02-01

    Full Text Available A combined chemical-electrochemical oxidation method to obtain porous bioactive TiO2 films on titanium is reported. In this case, a titanium chemical pre-etching followed by the micro-arc oxidation (MAO treatment is proposed and optimized, to obtain a high-roughness and porous surface which benefits the titanium/bone integration. The MAO treatment at various rates (different current densities allowed to define the influence of the oxide growth rate on the surface morphology and to design the best features for each case. Titanium samples were pre-etched using a 2% HF solution as a function of the etching time, and then anodized by the MAO treatment in a 0.5 M H3PO4 solution at current densities in the 10 to 90 mA.cm-2 range. High porosity (0.5 to 1 µm-diameter pores and higher phosphorous content for TiO2 films were achieved by first etching the Ti sample for 180 seconds in the HF solution, and then applying current densities in the 80 to 90 mA.cm-2 range for the micro-arc oxidation process.

  2. Adsorption of hydrogen in titanium

    International Nuclear Information System (INIS)

    In this work the absorption of hydrogen in titanium plates using a constant volume system has been realized. The changes of temperature and pressure were used to monitor the progress of the absorption. A stainless steel vacuum chamber with volume of 4,333 cm3 was used. A titanium sample of 45 x 5.4 x 0.3 cm was located in the center of the chamber. The sample was heated by an electrical source connected to the system. The sample was preconditioned with a vacuum-thermal treatment at 10-6 mbar and 800 Centigrade degrees for several days. Absorption was observed at room temperature and also at higher temperatures. The room temperature absorption was in the pressure range of 1.0 x 103 to 2.5 x 103 mbar, and other absorptions were from 180 to 630 Centigrade degrees at 3.5 x 10-1 to 1.3 x 103 mbar. It was found that the gas absorbed was function of the vacuum-thermal pre-conditioned treatment, pressure and temperature. When the first absorption was developed, additional absorptions were realized in short time. We measured the electrical resistivity of the sample in the experiments but we could not see important changes due to the absorption. (Author)

  3. Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell

    OpenAIRE

    Liu, Xiaolin; Guo, Min; Cao, Jianjun; Lin, Jia; Tsang, Yuen Hong; Chen, Xianfeng; Huang, Haitao

    2014-01-01

    Large-sized titanium dioxide (TiO2) nanotube arrays with an outer diameter of approximately 500 nm have been successfully synthesized by potentiostatic anodization at 180 V in a used electrolyte with the addition of 1.5 M lactic acid. It is found that the synthesized large-diameter TiO2 nanotube array shows a superior light scattering ability, which can be used as a light scattering layer to significantly enhance the efficiency of TiO2 nanoparticle-based dye-sensitized solar cells from 5.18% ...

  4. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  5. Infiltration of Spiro-MeOTAD hole transporting material into nanotubular TiO{sub 2} electrode for solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmych, Oleksandr, E-mail: alexkuzmych@gmail.com [Faculty of Chemistry, Laboratory of Electrochemistry, University of Warsaw, 02-093 Warsaw (Poland); Johansson, Erik M.J.; Nonomura, Kazuteru [Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 751 05 Uppsala (Sweden); Nyberg, Tomas [The Angstrom Laboratory, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Skompska, Magdalena [Faculty of Chemistry, Laboratory of Electrochemistry, University of Warsaw, 02-093 Warsaw (Poland); Hagfeldt, Anders [Department of Physical and Analytical Chemistry, Uppsala University, Box 259, 751 05 Uppsala (Sweden)

    2014-09-15

    Highlights: • We report infiltration of Spiro-MeOTAD into pores of TiO{sub 2} nanotube (TNT) arrays. • Surface amount of D35 is diffusion limited for TiO{sub 2} mesoporous film but not for TNTs. • Performance of liquid and solid-state solar cells based on TNTs is compared. - Abstract: TiO{sub 2} nanotubes grown by anodic oxidation of Ti thin film deposited on conducting transparent fluoride-doped tin oxide (FTO) substrate were used as a unique geometrically organized template to study the infiltration of Spiro-MeOTAD hole transporting material (HTM) inside straight pores. The TiO{sub 2} nanotube (TNT) array electrode was compared with a mesoporous one in terms of loading with an organic dye of high extinction coefficient. It was shown that it is possible to build a working solid state dye sensitized solar cell device with such a combination of materials and its performance was compared with a device in which the solid state HTM was replaced by a liquid state electrolyte.

  6. Infiltration of Spiro-MeOTAD hole transporting material into nanotubular TiO2 electrode for solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • We report infiltration of Spiro-MeOTAD into pores of TiO2 nanotube (TNT) arrays. • Surface amount of D35 is diffusion limited for TiO2 mesoporous film but not for TNTs. • Performance of liquid and solid-state solar cells based on TNTs is compared. - Abstract: TiO2 nanotubes grown by anodic oxidation of Ti thin film deposited on conducting transparent fluoride-doped tin oxide (FTO) substrate were used as a unique geometrically organized template to study the infiltration of Spiro-MeOTAD hole transporting material (HTM) inside straight pores. The TiO2 nanotube (TNT) array electrode was compared with a mesoporous one in terms of loading with an organic dye of high extinction coefficient. It was shown that it is possible to build a working solid state dye sensitized solar cell device with such a combination of materials and its performance was compared with a device in which the solid state HTM was replaced by a liquid state electrolyte

  7. Electron beam melting of sponge titanium

    International Nuclear Information System (INIS)

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  8. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  9. Regulating the osteogenic function of rhBMP 2 by different titanium surface properties.

    Science.gov (United States)

    Xiao, Ming; Biao, Meina; Chen, Yangmei; Xie, Meiju; Yang, Bangcheng

    2016-08-01

    Bone morphogenetic protein 2 (BMP-2) is important for regulating the osteogenic differentiation of mesenchymal stem cells and the response of bone tissue. It adsorbs on the surface of biomedical implants immediately and plays a role of mediator between the materials surfaces and the host cells. Studies usually connect the material surface properties and the new bone formation directly. However, interaction between the adsorbed BMP-2 on the implant surface and the cells in the tissue is the key to explaining the osteogenic properties of the material. So, in this article, we investigated the conformational and functional changes induced by the surface modified titanium metals. We found that the α-helix and β-sheet structure of rhBMP-2 can be well maintained on the anodic oxidation treated titanium surface. The osteogenic function of rhBMP-2 can sustain for a relatively long time even though there is less amount adhere to the surface compared with that on the acid alkali treated titanium. Surface properties, especially the morphology enable a larger amount of rhBMP-2 to adsorb to the surface of the acid alkali treated titanium, but the conformation of the protein is severely influenced. The percentage of α-helix structure is also significantly decreased so that the efficacy of rhBMP-2 is only maintained in the early time. This study indicated that different surface modification of the surface could regulate the structure of rhBMP-2 and then further influence its osteogenic function. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1882-1893, 2016. PMID:26991341

  10. Titanium Coating of the Boston Keratoprosthesis

    Science.gov (United States)

    Salvador-Culla, Borja; Jeong, Kyung Jae; Kolovou, Paraskevi Evi; Chiang, Homer H.; Chodosh, James; Dohlman, Claes H.; Kohane, Daniel S.

    2016-01-01

    Purpose We tested the feasibility of using titanium to enhance adhesion of the Boston Keratoprosthesis (B-KPro), ultimately to decrease the risk of implant-associated complications. Methods Cylindrical rods were made of poly(methyl methacrylate) (PMMA), PMMA coated with titanium dioxide (TiO2) over a layer of polydopamine (PMMATiO2), smooth (Ti) and sandblasted (TiSB) titanium, and titanium treated with oxygen plasma (Tiox and TiSBox). Topography and surface chemistry were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Adhesion force between rods and porcine corneas was measured ex vivo. Titanium sleeves, smooth and sandblasted, were inserted around the stem of the B-KPro and implanted in rabbits. Tissue adhesion to the stem was assessed and compared to an unmodified B-Kpro after 1 month. Results X-ray photoelectron spectroscopy demonstrated successful deposition of TiO2 on polydopamine-coated PMMA. Oxygen plasma treatment did not change the XPS spectra of titanium rods (Ti and TiSB), although it increased their hydrophilicity. The materials did not show cell toxicity. After 14 days of incubation, PMMATiO2, smooth titanium treated with oxygen plasma (Tiox), and sandblasted titanium rods (TiSB, TiSBox) showed significantly higher adhesion forces than PMMA ex vivo. In vivo, the use of a TiSB sleeve around the stem of the B-KPro induced a significant increase in tissue adhesion compared to a Ti sleeve or bare PMMA. Conclusions Sandblasted titanium sleeves greatly enhanced adherence of the B-KPro to the rabbit cornea. This approach may improve adhesion with the donor cornea in humans as well. Translational Relevance This approach may improve adhesion with donor corneas in humans. PMID:27152247

  11. Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun; Xiong, Dangsheng, E-mail: xiongds@163.com; Niu, Yuxiang

    2014-10-30

    Graphical abstract: - Highlights: • Lubricated Ti6Al4V was fabricated by anodic oxidation and hydrophilic polymer grafting. • Surface composition and tribological properties were estimated. • Proper surface micropores formed at optimum voltage of 100 V. • Combined effect of porous structure and polymer brushes decreased friction coefficient and wear. • Hydrated lubricating layer and hydrodynamic lubrication contributed to lubricated surface. - Abstract: On the purpose of improving the tribological properties of titanium alloy through mimicking natural articular cartilage, porous structure was prepared on the surface of Ti6Al4V alloy by anodic oxidation method, and then hydrophilic polymer brushes were grafted onto its surface. Surface morphology of porous oxidized film was investigated by metalloscope and scanning electron microscope (SEM). The composition and structure of modified surface were characterized by Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR/ATR), and the wettability was also evaluated. Friction and wear properties of modified alloys sliding against ultra-high molecular weight polyethylene (UHMWPE) were tested by a pin-on-disc tribometer in physiological saline. The results showed that, the optimum porous structure treated by anodic oxidation formed when the voltage reached as high as 100 V. Hydrophilic monomers [Acrylic acid (AA) and 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS)] were successfully grafted onto porous Ti6Al4V surface to form polymer brushes by UV radiation. The change of contact angle showed that wettability of modified Ti6Al4V was improved significantly. The friction coefficient of modified Ti6Al4V was much lower and more stable than untreated ones. The lowest friction coefficient was obtained when the sample was anodized at 100 V and grafted with DMMPPS, and the value was 0.132. The wear of modified samples was also obviously improved.

  12. DEVELOPMENT OF OXIDATION RESISTANT TITANIUM ALLOYS BY NIOBIUM ADDITION

    OpenAIRE

    Ackland, Graeme; Siemers, Carsten; Tegner, Bengt E.; Saksl, K.; Brunke, F.; Kohnke, M,

    2014-01-01

    The application of titanium alloys is limited to 550°C due to their poor oxidation resistance. It is known that the addition of niobium improves the oxidation resistance of titanium whereas elements like vanadium do not support titanium’s oxidation behaviour. Hence, the underlying mechanisms are not understood. In the present study, different binary titanium-niobium and titanium-vanadium alloys as well as commercially pure titanium were investigated. Oxidation experiments were carried out at ...

  13. Titanium Oxide: A Bioactive Factor in Osteoblast Differentiation

    OpenAIRE

    Santiago-Medina, P.; Sundaram, P.A.; Diffoot-Carlo, N.

    2015-01-01

    Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompatibility of titanium surfaces in orthopedic biomaterial applications is still a moot point. To study ...

  14. Structure and properties of Titanium for dental implants

    OpenAIRE

    GREGER, Miroslav; Černý, Martin; Kander, Ladislav; Kliber, Jiří

    2009-01-01

    This paper describes manufacture of nano-structural titanium, its structure and properties. Nano-titanium has higher specific strength properties than ordinary (coarse-grained) titanium. Nano-titanium was produced by the equal-channel angular pressing (ETAP) process. The research it self was focused on physical base of strengthening and softening processes and developments occurring at the grain boundaries during the ECAP process at half-hot temperature. Strength of nano-titanium ...

  15. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S;

    2016-01-01

    for detection of type IV hypersensitivity is currently inadequate for Ti. Although several other methods for contact allergy detection have been suggested, including lymphocyte stimulation tests, none has yet been generally accepted, and the diagnosis of Ti allergy is therefore still based primarily on clinical...... evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved....

  16. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  17. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  18. Synthesis of Titanium Dioxide Nanocrystals with Controlled Crystal- and Micro-structures from Titanium Complexes

    OpenAIRE

    Makoto Kobayashi; Hideki Kato; Masato Kakihana

    2013-01-01

    Selective synthesis of titanium dioxide (TiO2) polymorphs including anatase, rutile, brookite and TiO2(B) by solvothermal treatment of water-soluble titanium complexes is described with a special focus on their morphological control. The utilization of water-soluble titanium complexes as a raw material allowed us to employ various additives in the synthesis of TiO2. As a result, the selective synthesis of the polymorphs, as well as diverse morphological control, was achieved.

  19. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    Science.gov (United States)

    Pushkarev, A.

    2015-10-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350-400 kV, 6-8 kA, 80 ns) with a focusing conical diode with Br external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1-2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10-15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3-6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20-30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°-6°.

  20. Grain-dependent anodic dissolution of iron

    International Nuclear Information System (INIS)

    The influence of different dissolution techniques (electropolishing or chemical polishing and electrochemical machining (ECM)) on the topography of grains and grain boundaries of polycrystalline iron was analyzed by a combination of electron backscatter diffraction (EBSD) and contact-mode AFM. For electrochemical dissolution at large current densities, small electrode areas were addressed by a capillary microcell to specify the influence of grain orientation on the anodic behaviour, especially the dissolution in sodium nitrate solutions