WorldWideScience

Sample records for anodized nanotubular titanium

  1. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  2. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  3. Effect of nanotubular-micro-roughened titanium surface on cell response in vitro and osseointegration in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kwi-Dug [Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of); Yang, Yunzhi, E-mail: Yunzhi.yang@uth.tmc.edu [Department of Restorative Dentistry and Biomaterials, University of Texas Health Science Center at Houston,6516 M.D. Anderson Blvd., Ste. 4.133, Houston, TX 77030 (United States); Lim, Hyun-Pil [Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of); Oh, Gye-Jeong; Koh, Jeong-Tae; Bae, In-Ho; Kim, Jaehyung [Dental Science Research Institute and BK21 Project, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of); Lee, Kwang-Min [Division of Materials Science and Engineering, Research Institute for Functional Surface Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Park, Sang-Won, E-mail: psw320@chonnam.ac.kr [Dental Science Research Institute and BK21 Project, School of Dentistry, Chonnam National University, Gwangju 504-190 (Korea, Republic of)

    2010-01-01

    This study was to evaluate wettability, cell response, and osseointegration of nanotubular titanium (Ti) surface by anodic oxidation. Commercially pure Ti discs were treated by polishing, sandblasting, and anodizing. These surfaces were characterized by scanning electron microscopy and contact angle measurement. MC3T3-E1 osteoblast cell was used to evaluate cell response in vitro. The cell morphology, cell viability, and alkaline phosphatase (ALP) specific activity were assessed. The Ti implants of 2.0 mm diameter and 5.0 mm long treated by anodizing and sandblasting/anodizing were inserted into the tibia of rats. After 3 weeks, the histology of the Ti-bone interface was examined. SEM observations showed that the anodizing and sandblasting/anodizing created the nanotubular surface and graded nanotubular-micro-roughened surfaces, respectively. The anodizing and sandblasting/anodizing significantly improved the hydrophilicity of Ti. The significant greatest cell spreading and ALP specific activity were observed on the graded nanotubular-micro-roughened surfaces treated by sandblasting/anodizing. The in vivo study shows that newly formed bone was intimately in contact with the nanotubular surfaces without adverse immune response. This study has suggested that the graded nanotubular-micro-roughened surface of Ti treated with sandblasting/anodizing is very promising in implantology due to improved hydrophilicity, favorable cell response, and excellent osseointegration.

  4. Nanotubular topography enhances the bioactivity of titanium implants.

    Science.gov (United States)

    Huang, Jingyan; Zhang, Xinchun; Yan, Wangxiang; Chen, Zhipei; Shuai, Xintao; Wang, Anxun; Wang, Yan

    2017-08-01

    Surface modification on titanium implants plays an important role in promoting mesenchymal stem cell (MSC) response to enhance osseointegration persistently. In this study, nano-scale TiO 2 nanotube topography (TNT), micro-scale sand blasted-acid etched topography (SLA), and hybrid sand blasted-acid etched/nanotube topography (SLA/TNT) were fabricated on the surfaces of titanium implants. Although the initial cell adherence at 60 min among TNT, SLA and TNT/SLA was not different, SLA and SLA/TNT presented to be rougher and suppressed the proliferation of MSC. TNT showed hydrophilic surface and balanced promotion of cellular functions. After being implanted in rabbit femur models, TNT displayed the best osteogenesis inducing ability as well as strong bonding strength to the substrate. These results indicate that nano-scale TNT provides favorable surface topography for improving the clinical performance of endosseous implants compared with micro and hybrid micro/nano surfaces, suggesting a promising and reliable surface modification strategy of titanium implants for clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes

    Science.gov (United States)

    Kondrikov, N. B.; Titov, P. L.; Schegoleva, S. A.; Khorin, M. A.

    Nanotubular titanium oxide coatings with different morphology and dimensional parameters are formed by anodic oxidation under different voltage and time modes in fluorine aqueous-nonaqueous electrolytes containing glycerin as well as several surface-active agents (SAA). Their morphological peculiarities are examined and qualitative and quantitative analysis of obtained types of ordering is carried out, geometric configuration entropy are calculated on the base of analysis SEM images and theory of self-organization.

  6. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  7. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  8. Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Lee, C.-Y.; Kirchgeorg, R.; Liu, N.; Lee, K.; Kment, Š.; Hubička, Zdeněk; Krýsa, J.; Olejníček, J.; Čada, M.; Zbořil, R.; Schmuki, P.

    2015-01-01

    Roč. 41, č. 12 (2015), s. 9333-9341 ISSN 0922-6168. [Pannonian Symposium on Catalysis /12./. Třešť, 16.09.2014-20.09.2014] Institutional support: RVO:68378271 Keywords : hematite * nanotubular * anodization * magnetron * sputtering * water splitting Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.833, year: 2015

  9. Electrochemical & osteoblast adhesion study of engineered TiO{sub 2} nanotubular surfaces on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia Ur [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI (United States); Pompa, Luis [Department of Mechanical Engineering, University of Texas–Pan American, Edinburg, TX (United States); Deen, K.M. [Department of Metallurgy & Materials Engineering, CEET, University of the Punjab, 54590 Lahore (Pakistan); Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada)

    2016-01-01

    TiO{sub 2} nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO{sub 2} nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO{sub 2} nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO{sub 2} nanotubes have a positive impact on the osteoblast cell viability.

  10. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  11. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  12. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions

    NARCIS (Netherlands)

    Amin Yavari, S.; Loozen, L.; Paganelli, F. L.; Bakhshandeh, S.; Lietaert, K.; Groot, J. A.; Fluit, A. C.; Boel, C. H E; Alblas, J.; Vogely, H. C.; Weinans, H.; Zadpoor, A. A.

    2016-01-01

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with

  13. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  14. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  15. Electrochemical anodizing treatment to enhance localized corrosion resistance of pure titanium.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Bolzoni, Fabio M; Diamanti, Maria V; Pedeferri, Mariapia; Ormellese, Marco

    2017-01-26

    Titanium has outstanding corrosion resistance due to the thin protective oxide layer that is formed on its surface. Nevertheless, in harsh and severe environments, pure titanium may suffer localized corrosion. In those conditions, costly titanium alloys containing palladium, nickel and molybdenum are used. This purpose investigated how it is possible to control corrosion, at lower cost, by electrochemical surface treatment on pure titanium, increasing the thickness of the natural oxide layer. Anodic oxidation was performed on titanium by immersion in H2SO4 solution and applying voltages ranging from 10 to 80 V. Different anodic current densities were considered. Potentiodynamic tests in chloride- and fluoride-containing solutions were carried out on anodized titanium to determine the pitting potential. All tested anodizing treatments increased corrosion resistance of pure titanium, but never reached the performance of titanium alloys. The best corrosion behavior was obtained on titanium anodized at voltages lower than 40 V at 20 mA/cm2. Titanium samples anodized at low cell voltage were seen to give high corrosion resistance in chloride- and fluoride-containing solutions. Electrolyte bath and anodic current density have little effect on the corrosion behavior.

  16. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  17. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    OpenAIRE

    Zhaoxiang Chen; Xipeng Ren; Limei Ren; Tengchao Wang; Xiaowen Qi; Yulin Yang

    2018-01-01

    Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC) was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC ...

  18. Effects of laser irradiation on machined and anodized titanium disks.

    Science.gov (United States)

    Park, Ji-Hye; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Han, Chong-Hyun; Lee, Joo-Hee

    2012-01-01

    Although the laser has become one of the most commonly used tools for implant dentistry, research is lacking on whether or not the laser causes any changes on the surface of titanium (Ti) implants. The present study analyzed the morphology, composition, crystal structure, and surface roughness changes of machined and anodized Ti surfaces, irradiated with erbium chromium-doped yttrium-scandium-gallium-garnet (Er,Cr:YSGG), erbium-doped yttrium-aluminum-garnet (Er:YAG), and carbon dioxide (CO2) lasers. Seventy-two Ti disks were fabricated by machining commercially pure Ti (grade 3); 36 of them were anodized at 300 V. The disks were irradiated with Er,Cr:YSGG, Er:YAG, and CO2 lasers at five different powers (1, 2, 3, 4, and 5 W). The irradiated disks were examined with scanning electron microscopy, electron probe microanalysis, x-ray diffractometry, and optical interferometry. Surface changes were observed on both types of Ti surfaces irradiated with the Er,Cr:YSGG laser when more than 3 W of power were applied. Surface changes were observed on both types of Ti surfaces when irradiated with the Er:YAG laser with more than 2 W of power. No change was observed when the disks were irradiated with the CO2 laser. The proportion of oxide in the machined Ti disk increased after the application of the Er,Cr:YSGG or Er:YAG laser. In the anodized Ti disk, the anatase peak intensity decreased and the rutile peak intensity increased after laser irradiation. The irradiated Ti disks were significantly rougher than the nonirradiated Ti disks. The Er:YAG and Er,Cr:YSGG laser resulted in surface changes on the Ti disks according to the power output. The CO2 laser did not affect the surface of the Ti disks, irrespective of the power output.

  19. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    Directory of Open Access Journals (Sweden)

    Zhaoxiang Chen

    2018-02-01

    Full Text Available Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC composite coating were investigated and compared with the anodic TiO2 mono-film and DLC mono-film. Results show that the DLC deposition significantly decreased the surface roughness and porosity of spark-anodized titanium. The fabricated TiO2/DLC composite coating exhibited a more stable and much lower friction coefficient than anodic TiO2 mono-film. Although the friction coefficient of the composite coating and the DLC mono-film was similar under both light load and heavy load conditions, the wear life of the composite coating was about 43% longer than that of DLC mono-film under heavy load condition. The wear rate of titanium with protective composite coating was much lower than that of titanium with DLC mono-film. The superior low friction coefficient and wear rate of the TiO2/DLC composite coating make it a good candidate as protective coating on titanium alloys.

  20. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.

    Science.gov (United States)

    Snook, Graeme A; McGregor, Katherine; Urban, Andrew J; Lanyon, Marshall R; Donelson, R; Pownceby, Mark I

    2016-08-15

    The direct electrochemical reduction of solid titanium dioxide in a chloride melt is an attractive method for the production of titanium metal. It has been estimated that this type of electrolytic approach may reduce the costs of producing titanium sponge by more than half, with the additional benefit of a smaller environmental footprint. The process utilises a consumable carbon anode which releases a mixture of CO2 and CO gas during electrolysis, but suffers from low current efficiency due to the occurrence of parasitic side reactions involving carbon. The replacement of the carbon anode with a cheap, robust inert anode offers numerous benefits that include: elimination of carbon dioxide emissions, more efficient cell operation, opportunity for three-dimensional electrode configurations and reduced electrode costs. This paper reports a study of Nb-doped titania anode materials for inert anodes in a titanium electrolytic reduction cell. The study examines the effect of niobium content and sintering conditions on the performance of Nb-doped TiO2 anodes in laboratory-scale electrolysis tests. Experimental findings, including performance in a 100 h laboratory electrolysis test, are described.

  1. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems — LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 — PB2450, B-3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  2. Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension

    Directory of Open Access Journals (Sweden)

    Alicja Kazek-Kęsik

    2017-08-01

    Full Text Available The surface modification of titanium alloys is an effective method to improve their biocompatibility and tailor the material to the desired profile of implant functionality. In this work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition from the powder phase suspended in solution. The anodized samples were immersed in NaOH or KOH solution with various concentrations with a different set of temperatures and exposure times. Based on their morphologies (observed by scanning electron microscope, the selected samples were investigated by Raman and X-ray photoelectron spectroscopy (XPS. Titaniate compounds were formed on the previously anodized titanium surfaces. The surface wettability significantly decreased, mainly on the modified Ti-15Mo alloy surface. Titanium alloy compounds had an influence on the results of the titanium alloys’ surface modification, which caused the surfaces to exhibit differential physical properties. In this paper, we present the influence of the anodization procedure on alkali treatment effects and the properties of obtained hybrid coatings.

  3. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  4. Characterization of anodized titanium for hydrometallurgical applications—Evidence for the reduction of cupric on titanium dioxide

    Science.gov (United States)

    Liu, Jing; Alfantazi, Akram; Asselin, Edouard

    2013-10-01

    Anodic oxide films (AOFs) were potentiostatically formed on commercially pure titanium in 0.5 M sulfuric acid solutions at various anodizing voltages (up to 80 V) at room temperature. The subject of this study was the corrosion resistance of the AOFs in synthetic copper sulfide leaching solutions containing 30 g L-1 sulfuric acid as well as 12 g L-1 Cl-, 15 g L-1 Cu2+ and 1 g L-1 Fe3+. Open circuit potential (OCP) measurement, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) were used to study the corrosion response of the AOFs in copper sulfide leaching solutions up to 85 °C. Scanning electron microscopy (SEM) was used to investigate the morphology of the AOFs before and after 12 h of immersion at 85 °C. X-ray photoelectron spectroscopy (XPS) was used to examine the surface chemistry of the AOFs after immersion. OCP measurements showed that the final failure of the AOFs occurred in 2 h in de-aerated 30 g L-1 H2SO4 and 12 g L-1 Cl- solutions at 85 °C. Both LPR and EIS results showed a significant increase in the corrosion resistance of the anodized titanium versus that of freshly polished titanium. Electrochemical results were confirmed by SEM analysis, where the AOF formed at 80 V lead to the best improvement in corrosion resistance. XPS measurements revealed that Cu2+ was reduced to Cu or Cu+ within the titanium oxide film. It was further confirmed that the presence of leaching oxidants would inhibit the reduction of Cu2+ on titanium dioxide in chloride containing copper sulfide leaching solutions.

  5. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Evdokimov, S.V.

    1999-01-01

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance [ru

  6. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  7. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  8. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    Science.gov (United States)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed

  9. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang [Research Institute, Kuwotech, 970–88, Wolchul-dong, Buk-ku, Gwangju (Korea, Republic of); Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon; Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2013-11-01

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces.

  10. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine.

    Science.gov (United States)

    Perez-Jorge, Concepcion; Arenas, Maria-Angeles; Conde, Ana; Hernández-Lopez, Juan-Manuel; de Damborenea, Juan-Jose; Fisher, Steve; Hunt, Alessandra M Agostinho; Esteban, Jaime; James, Garth

    2017-01-01

    Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.

  11. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  12. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells

    Science.gov (United States)

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    2016-01-01

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue. PMID:27789947

  13. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Department of Mechanical and Mechatronic Engineering, Keelung (China); Hsu, Todd [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Tsai, Huei-Ting [National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Chen, Chien-Chon [National United University, Department of Energy and Resources, Miaoli (China); Liu, Shiu-Mei [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Marine Biology, Keelung (China); Lin, Tai-Yuan [National Taiwan Ocean University, Institute of Optoelectronic Sciences, Keelung (China); Chen, Chin-Hsing [National Chiao Tong University, Department of Applied Chemistry, Hsinchu (China)

    2011-02-15

    The use of titanium dioxide (TiO{sub 2}) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH{sub 4}F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously. (orig.)

  14. Orthorhombic Lithium Titanium Phosphate as an Anode Material for Li-ion Rechargeable Battery

    International Nuclear Information System (INIS)

    Kee, Yongho; Dimov, Nikolay; Minami, Keita; Okada, Shigeto

    2015-01-01

    Highlights: • Li-rich orthorhombic lithium titanium phosphate (OLTP) has been synthesized via a sol-gel route. • OLTP adopts a different space group from the previously reported rhombohedral lithium titanium phosphate (RLTP) and shows solid-solution charge/discharge curves. • OLTP shows higher Li + diffusivity and electrical conductivity, which makes it an attractive alternative for RLTP. - Abstract: Rhombohedral lithium titanium phosphate, LiTi 2 (PO 4 ) 3 , has been considered a suitable anode material for aqueous lithium-ion batteries. However, the electrochemical behaviors of pure lithium-rich polymorphs have not been described yet even Li-rich phase may show better electrochemical properties than conventional LiTi 2 (PO 4 ) 3 at the expense of somewhat lowered capacity. We have synthesized orthorhombic Li 1.5 Ti 2 (PO 4 ) 3 (OLTP) and rhombohedral LiTi 2 (PO 4 ) 3 (RLTP) via sol-gel reactions and studied their fundamental electrochemical properties using galvanostatic charge/discharge and cyclic voltammetry (CV). Their feasibility as anode materials in LiFePO 4 //Li x Ti 2 (PO 4 ) 3 configurations using aqueous electrolytes were also considered. The faster kinetics of the orthorhombic lithium titanium phosphate in this study were attributed to higher Li + diffusivity and electrical conductivity, making this material an attractive alternative for conventional rhombohedral LiTi 2 (PO 4 ) 3

  15. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    Science.gov (United States)

    Aloia Games, L.; Pastore, J.; Bouchet, A.; Ballarre, J.

    2011-12-01

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  16. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    International Nuclear Information System (INIS)

    Games, L Aloia; Ballarre, J; Pastore, J; Bouchet, A

    2011-01-01

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  17. Some features of the anodic dissolution of platinized titanium anodes and of oxygen evolution in the electrolysis of dilute sodium chloride solutions

    International Nuclear Information System (INIS)

    Mikhailova, L.A.; Khodkevich, S.D.; Yakimenko, L.M.; Ivanova, M.I.; Ogloblina, I.P.

    1988-01-01

    Radioactivity measurements and gas chromatography were used to study and compare features of anodic dissolution of platinum and platinum coatings from platinized titanium anodes, and oxygen evolution as functions of the electrolysis parameters of current density, temperature, and concentration in electrolytes with low sodium chloride content. Quantities representing the ratio of anodic platinum dissolution rates and oxygen evolution were calculated. The results showed that analogies exist between rates of platinum dissolution, and oxygen evolution but these ratios are not constant when the electrolysis parameters are varied within wide limits. A correlation was observed for dilute solutions and electrolysis temperatures enabling one to estimate the corrosion rates of platinized titanium anodes from the oxygen content of the electrolytic gas

  18. Invariance of the mobility edge in anodic titanium oxides

    International Nuclear Information System (INIS)

    Tit, N.; Halley, J.W.; Shore, H.B.

    1992-05-01

    We present a theoretical investigation to explain the electronic and optical properties of anodic rutile TiO 2 thin films of different thicknesses (ranging from 5nm to 20nm). There is experimental evidence that the observed gap state at 0.7eV below the edge of conduction-band is due to an oxygen vacancy. For this reason, oxygen vacancies are used as defects in our model. A comparison of the calculated bulk-photoconductivity to photospectroscopy experiment reveals that the films have bulk-like transport properties with a bandgap E g =3.0eV. On the other hand, a fit of the surface density of states to the scanning tunneling microscopy (STM) experiment on the (001) surfaces has suggested a surface defect density of 5% of oxygen vacancies. To resolve this discrepancy, we calculated the dc-conductivity where localization effects are included. Our results show an impurity band formation at about p c =9% of oxygen vacancies. We concluded that the studied films have defect densities below the threshold of impurity band formation. As a consequence the gap states seen in STM are localized (i.e. the oxygen vacancies are playing the role of trapping centers, deep levels) and the mobility edge is invariant. (author). 11 refs, 3 figs

  19. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  20. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO 2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti 2 O 3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  1. Electrocatalytic properties and stability of titanium anodes activated by the inorganic sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-10-01

    Full Text Available The properties of activated titanium anodes, RuO2–TiO2/Ti and RuO2–TiO2–IrO2/Ti, prepared from oxide sols by the sol–gel procedure, are reviewed. RuO2 and TiO2 sols were synthesized by forced hydrolysis of the corresponding chlorides in acid medium. The morphology of the prepared sols was investigated by transmission electron microscopy. The chemical composition of the RuO2 sol was determined by X-ray diffraction and thermogravimetric analysis. The loss of electrocatalytic activity of a RuO2–TiO2/Ti anode during an accelerated stability test was investigated by examination of the changes in the electrochemical characteristics in the potential region of the chlorine and oxygen evolution reaction, as well as on the open circuit potential. These electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and polarization measurements. The changes in electrochemical characteristics of the anode prepared by the sol–gel procedure were compared to the changes registered for an anode prepared by the traditional thermal decomposition of metal chlorides. The comparison indicated that the main cause for the activity loss of the sol–gel prepared anode was the electrochemical dissolution of RuO2, while in the case of thermally prepared anode the loss was mainly caused by the formation of an insulating TiO2 layer in the coating/Ti substrate interphase. The results of an accelerated stability test on RuO2–TiO2/Ti and RuO2–TiO2–IrO2/Ti anodes showed that the ternary coating is considerably more stable than the binary one, which is the consequence of the greater stability of IrO2 in comparison to RuO2.

  2. Anodic solubility and electrochemical machining of hard alloys on the base of chromium and titanium carbides

    International Nuclear Information System (INIS)

    Davydov, A.D.; Klepikov, A.N.; Malofeeva, A.N.; Moroz, I.I.

    1985-01-01

    The reqularities of anodic behaviour and electrochemical machining (ECM) of the samples of three materials with the folowing compositions: 25% of Cr 3 C 2 , 15% of Ni, 70% of TiC, 25% of Ni, 5% of Cr, 70% of TiC, 15% of Ni, 15% of Mo are investigated. It is shown that the electrochemical method is applicable hard alloys machining on the base of chromium and titanium carbides, the machining of which mechanically meets serious difficulties. The alloys machining rate by a mobile cathode constitutes about 0.5 mm/min

  3. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    Science.gov (United States)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  4. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  5. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  6. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Maleki, E. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Banihashemian, S.M. [Low Dimensional Materials Research Center, Department of Physics, Science Faculty, University Malaya, 50603 Kuala Lumpur (Malaysia); Park, J.W. [Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Y.B. [Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Sarraf, M.; Sarhan, A.A.D.M.; Ramesh, S. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolyte containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.

  7. Nanopore formation on the surface oxide of commercially pure titanium grade 4 using a pulsed anodization method in sulfuric acid.

    Science.gov (United States)

    Williamson, R S; Disegi, J; Griggs, J A; Roach, M D

    2013-10-01

    Titanium and its alloys form a thin amorphous protective surface oxide when exposed to an oxygen environment. The properties of this oxide layer are thought to be responsible for titanium and its alloys biocompatibility, chemical inertness, and corrosion resistance. Surface oxide crystallinity and pore size are regarded to be two of the more important properties in establishing successful osseointegration. Anodization is an electrochemical method of surface modification used for colorization marking and improved bioactivity on orthopedic and dental titanium implants. Research on titanium anodization using sulphuric acid has been reported in the literature as being primarily conducted in molarity levels 3 M and less using either galvanostatic or potentiostatic methods. A wide range of pore diameters ranging from a few nanometers up to 10 μm have been shown to form in sulfuric acid electrolytes using the potentiostatic and galvanostatic methods. Nano sized pores have been shown to be beneficial for bone cell attachment and proliferation. The purpose of the present research was to investigate oxide crystallinity and pore formation during titanium anodization using a pulsed DC waveform in a series of sulfuric acid electrolytes ranging from 0.5 to 12 M. Anodizing titanium in increasing sulfuric acid molarities showed a trend of increasing transformations of the amorphous natural forming oxide to the crystalline phases of anatase and rutile. The pulsed DC waveform was shown to produce pores with a size range from ≤0.01 to 1 μm(2). The pore size distributions produced may be beneficial for bone cell attachment and proliferation.

  8. Hydroxyapatite precipitation on nanotubular films formed on Ti-6Al-4V alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chae-Ik; Jeong, Yong-Hoon [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States)

    2013-12-31

    In this study, hydroxyapatite precipitation on nanotubular film-formed Ti-6Al-4V alloy for biomedical applications has been investigated using a variety of techniques. To prepare the substrate samples for hydroxyapatite (HA) deposition, the starting Ti-6Al-4V alloy was polished and heat-treated for 12 h at 1050 °C in an Ar atmosphere, followed by water-quenching at 0 °C. Nanotube formation on the titanium alloy was performed using anodization with a DC power supply at 30 V for 1 h in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 25 °C. Subsequent HA precipitation treatment was carried out by cyclic voltammetry over a potential range of −1.5 V to 0 V using a scanning rate of 100 mV/s in 0.03 M Ca(NO{sub 3}){sub 2} ∙ 4 H{sub 2}O + 0.018 M NH{sub 4}H{sub 2}PO{sub 4} at 80° ± 1 °C. Four different numbers of cycles were employed: 10, 20, 30, and 50. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The heat-treated Ti–6Al–4V alloy has a needle-like duplex microstructure containing the martensitic α′ phase and β phase. Plate-like precipitates were formed on bulk Ti–6Al–4V alloy, and the size of these precipitates increased with the number of deposition cycles. The HA precipitates on the nanotube surface showed a mixture of plate-like and flower-like particles with more deposition cycles. The deposited HA phase in the coated layer had an amorphous structure, with particle composition in good agreement with Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. - Highlights: • Hydroxyapatite (HA) precipitation on nanotubular films formed on Ti–6Al–4V alloy was investigated using a variety of experimental methods. • HA precipitation treatment was carried out using a cyclic voltammetry method after nanotube formation on Ti–6Al–4V alloy. • Plate-like precipitates were formed on the bulk (not anodized) alloy, and the

  9. Optimized anodization setup for the growth of TiO2 nanotubes on flat surfaces of titanium based materials

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available An extensive research work on development of nanostructured TiO2 layers on the surface of titanium based materials for biomedical implants led the authors to the optimization of process parameters of electrochemical anodization in phosphate/fluoride based electrolytes. Based on those parameters, a dedicated optimized electrochemical anodization setup was originally designed and realized. The anodization bath was designed in order to provide a proper circulation of electrolyte and the possibility of distance anode-cathode modification, the DC power supply was designed accordingly to the electrical parameters requested by the nanotubes development, and a dedicated software (Nanosource was developed for process control and ease and flexibility of process parameters acquisition, storage and processing.

  10. Increasing Wear Resistance of Titanium Alloys by Anode Plasma Electrolytic Saturation with Interstitial Elements

    Science.gov (United States)

    Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.

    2017-05-01

    In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.

  11. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    International Nuclear Information System (INIS)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-01-01

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca 3 (PO 4 ) 2 , studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  12. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation.

    Science.gov (United States)

    Yamada, Masahiro; Ueno, Takeshi; Minamikawa, Hajime; Ikeda, Takayuki; Nakagawa, Kaori; Ogawa, Takahiro

    2013-09-01

    The role of nanoscale/submicron morphological features in the process of osseointegration is largely unknown. This study reports the creation of a unique submicrofeatured titanium surface by a combination of anodic oxidation and sandblasting and determines how the addition of this submicrofeature to a microroughened surface affects the early-stage process of osseointegration. Nonmicroroughened implants were prepared by machining Ti-6Al-4V alloy in a cylindrical form (1 mm diameter and 2 mm long). Microroughened implants were prepared by sandblasting machined implants, while submicrofeatured implants were created by anodic oxidation of the sandblasted implants. Implants were placed into rat femurs and subjected to biomechanical, interfacial, and histological analyses at 1 and 2 weeks post-implantation (n = 6). The submicrotopography was characterized by 50-300 nm nodules and pits in addition to other submicron-level irregularities formed entirely within the sandblast-created microstructures. The biomechanical strength of osseointegration increased continuously from week 1 to 2 for the submicrofeatured implants but not for the microroughened implants. A significant increase in bone-implant contact and bone volume, as well as a reduction in soft tissue intervention, were commonly found for the microroughened surface and the submicrofeatured surface compared with the nonmicroroughened surface. However, there were no differences in these parameters between the microroughened surface and the submicrofeatured surface. An extensive area of bone tissue at the submicrofeatured implant interface was retained intact after biomechanical shear testing, while the microroughened implant-tissue interface showed a gap along the entire axis of the implant, leading to clear separation of the tissue during the shear procedure. This study demonstrates that a submicrofeatured titanium surface created by a combination of sandblasting and anodic oxidation enhances the strength of

  13. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J [School of Engineering, Brown University, Providence, RI 02917 (United States); Alpaslan, Ece, E-mail: thomas_webster@brown.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey)

    2011-07-22

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  14. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Science.gov (United States)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  15. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H 3 PO 4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  16. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  18. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    Lee, J.M.; Lee, J.I.; Lim, Y.J.

    2010-01-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  19. Effects of irradiation on osteoblasts. Primary calcification on the titanium surface of anodic oxidation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Itoh, Sozo; Shioyama, Tsukasa; Takebe, Jun; Kudo, Tutomu; Ishibashi, Kanji; Konishi, Fumihito

    2006-01-01

    We reported that the primary stage of calcification on the bone/titanium interface was affected by the amount of radiation exposure. In this study, we used pure Ti and treated Ti and observed the primary calcification on the surface of the materials when osteoblasts were irradiated in vitro. Pure titanium disks were employed. Some samples were anodized in an electrolytic solution and hydrothermal treatment was conducted at 300 deg C for 2 hours. Bone marrow cells were obtained from Wistar rats. For primary cultures, the femora was removed and washed with α-Minimal Essential Medium. Aliquots of the rat bone marrow cell suspension were cultured for 5 days and irradiated. The first subcultures were maintained up to 14 days. Cultures were fixed, dehydrated through a graded series of ethanol, and freeze dried with t-butyl alcohol. Specimens were observed either under scanning electron microscope (SEM) or an electron probe microanalyser. Furthermore, some specimens were used for quantitative analyses. Irradiation doses under 0.4 Gy induced no significant changes of the primary stage of calcification on the bone/titanium interface. Calcification rates for 4 Gy were significantly different from the control and under 0.4 mGy samples. Calcification rates for treated titanium were significantly different from pure titanium under 0.4 Gy. (author)

  20. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  1. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  3. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    Science.gov (United States)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  4. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  5. Simulation of nanotubular forms of matter

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    1999-01-01

    Data on the electronic and chemical structure of a new quasi-one-dimensional form of matter, viz., nanotubulenes, are generalised and systematised. Methods and approaches used in modern quantum chemistry for the simulation of the composition, structure, and properties of isolated tubulenes based on layered phases (graphite, boron nitride, boron carbide and boron carbonitride), nanotubular composites and nanotube crystals are described. The role of quantum theory in the development of the concepts of fundamental properties of substances in the nanotubular form and methods of their targeted modification is discussed. Prognostic potentials of theoretical models in solving material science problems are considered. The bibliography includes 197 references.

  6. Effects of airborne-particle abrasion, sodium hydroxide anodization, and electrical discharge machining on porcelain adherence to cast commercially pure titanium.

    Science.gov (United States)

    Acar, Asli; Inan, Ozgür; Halkaci, Selçuk

    2007-07-01

    The aim of this study was to determine the effect of airborne-particle abrasion (APA), sodium hydroxide anodization (SHA), and electrical discharge machining (EDM) on cast titanium surfaces and titanium-porcelain adhesion. Ninety titanium specimens were cast with pure titanium and the alpha-case layer was removed. Specimens were randomly divided into three groups. Ten specimens from each group were subjected to APA. SHA was applied to the second subgroups, and the remaining specimens were subjected to the EDM. For the control group, 10 specimens were cast using NiCr alloy and subjected to only APA. Surfaces were examined by using scanning electron microscope and a surface profilometer. Three titanium porcelains were fused on the titanium surfaces, whereas NiCr specimens were covered with conventional porcelain. Titanium-porcelain adhesion was characterized by a 3-point bending test. Statistical analysis showed that the porcelain-metal bond strength of the control group was higher than that of the titanium-porcelain system (p titanium groups (p 0.05), except the bond strengths of Noritake Super Porcelain TI-22 groups on which APA and SHA were applied (p titanium-porcelain adhesion when compared to APA. Copyright 2006 Wiley Periodicals, Inc.

  7. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan; Gao, Nong, E-mail: N.Gao@soton.ac.uk; Starink, Marco J.

    2016-11-30

    Highlights: • HPT has substantially improved the UTS and Hv of pure Ti. • TNT layers was fabricated on UFG Ti made by HPT. • Influence of sample preparation on TNT layers was systematically studied. • Oxide dissolution was accelerated when TNTs formed on the HPT sample. - Abstract: Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH{sub 4}F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  8. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  9. Study for preparation of nanoporous titania on titanium by anodic oxidation; Estudo da preparacao de titania nanoporosa sobre titanio por oxidacao anodica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Alessandra Pires

    2014-07-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H{sub 3}PO{sub 4} and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO{sub 2}. The results obtained in this study

  10. Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications

    Science.gov (United States)

    Smith, York R.; Ray, Rupashree S.; Carlson, Krista; Sarma, Biplab; Misra, Mano

    2013-01-01

    Metal oxide nanotubes have become a widely investigated material, more specifically, self-organized titania nanotube arrays synthesized by electrochemical anodization. As a highly investigated material with a wide gamut of applications, the majority of published literature focuses on the solar-based applications of this material. The scope of this review summarizes some of the recent advances made using metal oxide nanotube arrays formed via anodization in solar-based applications. A general methodology for theoretical modeling of titania surfaces in solar applications is also presented. PMID:28811415

  11. Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces

    NARCIS (Netherlands)

    Yue, Chongxia; Kuijer, Roelof; Kaper, H. J.; van der Mei, Henderina; Busscher, Hendrik; Kuijer, Roelof

    Photocatalytic-activation of anodized TiO2-surfaces has been demonstrated to yield antibacterial and tissue integrating effects, but effects on simultaneous growth of tissue cells and bacteria in co-culture have never been studied. Moreover, it is unknown how human-bone-marrow-mesenchymal-stem

  12. Preparation of mesoporous titanium dioxide anode by a film- and pore-forming agent for the dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjing; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Zhou, Haihan; Chang, Yunzhen; Zhang, Ying

    2016-04-15

    Highlights: • PVP is used as a film- and pore-forming agent to prepare the mesoporous TiO{sub 2} anode. • The TiO{sub 2} anode supplies high surface area for the dye adsorption. • The DSSC efficiency is strongly dependent on the pore properties of the TiO{sub 2} anode. • The DSSC efficiency with the TiO{sub 2} anode prepared by 20 wt% PVP reaches 8.39%. - Abstract: A novel mean of generating mesoporous titanium dioxide (TiO{sub 2}) anodes by employing polyvinylpyrrolidone (PVP) as the film- and pore-forming agent are proposed for dye-sensitized solar cells (DSSCs). The influences on the morphology and photovoltaic performances of the TiO{sub 2} anodes are investigated by adjusting the PVP content in synthesizing the mesoporous TiO{sub 2} anodes. The photovoltaic conversion efficiency of the DSSC is found to be strongly dependent on the pore properties of the TiO{sub 2} anode. After the sintering process, the removal of the PVP leaves porously interconnected channel structures inside the TiO{sub 2} anode, supplying enhanced specific surface area for the dye adsorption as well as the efficient electron transmission. As a result, the TiO{sub 2} anode prepared by 20 wt% PVP presents the highest performances, based on which the DSSC achieves the highest conversion efficiency of 8.39%, approximately increased by 56.53% than that of the DSSC fabricated without PVP (5.36%).

  13. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    Directory of Open Access Journals (Sweden)

    Andrei Ionut Mardare

    2014-01-01

    Full Text Available A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

  14. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today\\'s commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH -neutral 2 M Li2 S O4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. © 2011 The Electrochemical Society.

  15. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants.

    Science.gov (United States)

    Ma, Qianli; Wang, Wei; Chu, Paul K; Mei, Shenglin; Ji, Kun; Jin, Lei; Zhang, Yumei

    2012-01-01

    Titanium (Ti) implants are widely used clinically, but peri-implantitis remains one of the most common and serious complications. Healthy integration between gingival tissue and the implant surface is critical to long-term success in dental implant therapy. The objective of this study was to investigate how different concentrations of immobilized fibroblast growth factor 2 (FGF2) on the titania nanotubular surface influence the response of human gingival fibroblasts (HGFs). Pure Ti metal was anodized at 20 V to form a vertically organized titanium dioxide nanotube array on which three concentrations of FGF2 (250 ng/mL, 500 ng/mL, or 1000 ng/mL) were immobilized by repeated lyophilization. Surface topography was observed and FGF2 elution was detected using enzyme-linked immunosorbent assay. The bioactivity changes of dissolvable immobilized FGF2 were measured by methyl-thiazolyl-tetrazolium assay. Behavior of HGFs was evaluated using adhesion and methyl-thiazolyl-tetrazolium bromide assays. The FGF2 remained for several days on the modified surface on which HGFs were cultured. Over 90% of the dissolvable immobilized FGF2 had been eluted by Day 9, whereas the FGF2 activity was found to diminish gradually from Day 1 to Day 9. The titania nanotubular surface with an optimal preparing concentration (500 ng/mL) of FGF2 immobilization exhibited improved HGF functions such as cellular attachment, proliferation, and extracellular matrix-related gene expression. Moreover, significant bidirectional as well as concentration- and time-dependent bioactivity was observed. Synergism of the FGF2-impregnated titanium dioxide nanotubular surface revealed good gingival-implant integration, indicating that these materials might have promising applications in dentistry and other biomedical devices.

  16. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode

    International Nuclear Information System (INIS)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-Francois

    2009-01-01

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO 2 ) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO 2 ) and five cathodes (stainless steel, 316L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm -2 was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na 2 SO 4 ) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na 2 SO 4 L -1 was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAH L -1 . Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C 10 -C 50 ) was removed, whereas removal yields of 69% and 62% have been measured for O and G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO 2 could be efficiently used to reduce more than 90% of the COS toxicity.

  17. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.

    Science.gov (United States)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-François

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity.

  18. Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells.

    Science.gov (United States)

    Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun

    2017-09-01

    Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanotubular Highways for Intercellular Organelle Transport

    Science.gov (United States)

    Rustom, Amin; Saffrich, Rainer; Markovic, Ivanka; Walther, Paul; Gerdes, Hans-Hermann

    2004-02-01

    Cell-to-cell communication is a crucial prerequisite for the development and maintenance of multicellular organisms. To date, diverse mechanisms of intercellular exchange of information have been documented, including chemical synapses, gap junctions, and plasmodesmata. Here, we describe highly sensitive nanotubular structures formed de novo between cells that create complex networks. These structures facilitate the selective transfer of membrane vesicles and organelles but seem to impede the flow of small molecules. Accordingly, we propose a novel biological principle of cell-to-cell interaction based on membrane continuity and intercellular transfer of organelles.

  20. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Das, Suman; Swain, Diptikanta; Araujo, Rafael B; Shi, Songxin; Ahuja, Rajeev; Row, Tayur N Guru; Bhattacharyya, Aninda J

    2018-02-02

    We discuss here a unique flexible non-carbonaceous layered host, namely, metal titanium niobates (M-Ti-niobate, M: Al 3+ , Pb 2+ , Sb 3+ , Ba 2+ , Mg 2+ ), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion exchange of the K + ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO 6 and NbO 6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO 5 ). Drastic volume changes (approximately 300-400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75 % of total K + ) in the M-Ti-niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li + and Na + ion cyclability (>2 Li + /Na + per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes

  1. Fabrication and investigation of gas sensing properties of Nb-doped TiO2 nanotubular arrays

    Science.gov (United States)

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Vomiero, Alberto; Borgese, Laura; Bontempi, Elza; Sberveglieri, Giorgio

    2012-06-01

    Synthesis of Nb-containing titania nanotubular arrays at room temperature by electrochemical anodization is reported. Crystallization of pure and Nb-doped TiO2 nanotubes was carried out by post-growth annealing at 400 °C. The morphology of the tubes obtained was characterized by scanning electron microscopy (SEM). Crystal structure and composition of tubes were investigated by glancing incidence x-ray diffraction (GIXRD) and total reflection x-ray fluorescence (TXRF). For the first time gas sensing characteristics of Nb-doped TiO2 nanotubes were investigated and compared to those of undoped nanotubes. The functional properties of nanotubular arrays towards CO, H2, NO2, ethanol and acetone were tested in a wide range of operating temperature. The introduction of Nb largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes.

  2. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).

  3. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response

    Science.gov (United States)

    OLIVEIRA, Natássia Cristina Martins; MOURA, Camilla Christian Gomes; ZANETTA-BARBOSA, Darceny; MENDONÇA, Daniela Baccelli Silveira; MENDONÇA, Gustavo; DECHICHI, Paula

    2015-01-01

    In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7 days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p0.05). Although no significant correlation was found for growth factors secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response. PMID:23498218

  4. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy [Institut National de la Recherche Scientifique (Centre Eau Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, C.P. 7500, Quebec, Qc G1K 9A9 (Canada); Blais, Jean-Francois, E-mail: blaisjf@ete.inrs.ca [Institut National de la Recherche Scientifique (Centre Eau Terre et Environnement), Universite du Quebec, 490 rue de la Couronne, C.P. 7500, Quebec, Qc G1K 9A9 (Canada)

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO{sub 2}) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO{sub 2}) and five cathodes (stainless steel, 316L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm{sup -2} was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na{sub 2}SO{sub 4}) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na{sub 2}SO{sub 4} L{sup -1} was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAH L{sup -1}. Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C{sub 10}-C{sub 50}) was removed, whereas removal yields of 69% and 62% have been measured for O and G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO{sub 2} could be efficiently used to reduce more than 90% of the COS toxicity.

  5. Electrokinetic Properties of TiO2 Nanotubular Surfaces

    Science.gov (United States)

    Lorenzetti, Martina; Gongadze, Ekaterina; Kulkarni, Mukta; Junkar, Ita; Iglič, Aleš

    2016-08-01

    Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10-3 M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces.

  6. Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH

    Science.gov (United States)

    2013-01-01

    Background With the rising demand for osseointegrated titanium implants for replacing missing teeth, often in patients with a history of periodontitis, implant-related infections have become an issue of growing concern. Novel methods for treating and preventing implant-associated infections are urgently needed. The aim of this study was to investigate if different pH, atmosphere and surface properties could restrict bacterial adhesion to titanium surfaces used in dental implants. Methods Titanium discs with machined or anodized (TiUnite™) surface were incubated with a co-culture of Streptococcus mitis and Actinomyces oris (early colonizers of oral surfaces) at pH 5.0, 7.0 and 9.0 at aerobic or anaerobic atmosphere. The adhesion was analysed by counting colony forming (CFU) units on agar and by confocal laser scanning microscopy (CLSM). Results The CFU analysis showed that a pH of 5.0 was found to significantly decrease the adhesion of S. mitis, and an aerobic atmosphere, the adhesion of A. oris. S. mitis was found in significantly less amounts on the anodized surface than the machined surface, while A. oris was found in equal amounts on both surfaces. The CLSM analysis confirmed the results from the CFU count and provided additional information on how the two oral commensal species adhered to the surfaces: mainly in dispersed clusters oriented with the groves of the machined surface and the pores of the anodized surface. Conclusions Bacterial adhesion by S. mitis and A. oris can be restricted by acidic pH and aerobic atmosphere. The anodized surface reduced the adhesion of S. mitis compared to the machined surface; while A. oris adhered equally well to the pores of the anodized surface and to the grooves of the machined surface. It is difficult to transfer these results directly into a clinical situation. However, it is worth further investigating these findings from an in vitro perspective, as well as clinically, to gain more knowledge of the effects acid pH and

  7. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  8. Kinetic investigation of oxygen evolution at titanium-ruthenium oxide anodes. Oxygen evolution kinetics at RuO2 and titaniumruthenium oxide anodes in chloride solutions

    International Nuclear Information System (INIS)

    Kokoulina, D.V.

    1986-01-01

    Oxygen evolution kinetics was studied at 70 degrees C at RuO 2 and titaniumruthenium oxide anodes in chlorinated chloride solutions (1 M NaCl, pH 1.4 to 2.25) by recording polarization curves. The reaction orders were determined. The kinetics of anodic oxygen evolution is important for an understanding of electrode behavior and for an estimate of possible current yields of oxygen under the different conditions of electrolysis of NaCl solutions. The results obtained demonstrate that substantial oxygen evolution can occur in chlorinated chloride solutions at active electrodes because of the coupled reaction of chlorine reduction

  9. Effect of foreign anions on the kinetics of chlorine and oxygen evolution on ruthenium-titanium oxide anodes under the conditions of chlorine electrolysis

    International Nuclear Information System (INIS)

    Bune, N.Ya.; Filatov, V.P.; Losev, V.V.; Portnova, M. Yu.

    1985-01-01

    Polarization measurements and gas chromatographic analysis of the composition of gaseous electrolysis products were used to investigate the effect of phosphate, sulfate and perchlorate on the kinetics of the evolution of chlorine and oxygen at ruthenium-titanium oxide anodes (ORTA) under the conditions of chlorine electrolysis. It was found that at i = 0.2 A/cm 2 the addition of NaH 2 PO 4 and Na 2 SO 4 to the chloride solution inhibits the evolution of chlorine, indicating the predominant adsorption of phosphate and sulfate ions on the ORTA surface. At a constant potential, the evolution rate of oxygen from solutions of NaClO 4 , NaH 2 PO 4 , Na 2 SO 4 and NaCl of equal concentration with a pH approximately 1.6 decreases in the order perchlorate greater than chloride greater than sulfate greater than phosphate

  10. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  11. Effects of the nanotopographic surface structure of commercially pure titanium following anodization-hydrothermal treatment on gene expression and adhesion in gingival epithelial cells.

    Science.gov (United States)

    Takebe, J; Miyata, K; Miura, S; Ito, S

    2014-09-01

    The long-term stability and maintenance of endosseous implants with anodized-hydrothermally treated commercially pure titanium surfaces and a nanotopographic structure (SA-treated c.p.Ti) depend on the barrier function provided by the interface between the transmucosal portion of the implant surface and the peri-implant epithelium. This study investigated the effects of extracellular and intracellular gene expression in adherent gingival epithelial cells cultured for 1-7 days on SA-treated c.p.Ti implant surfaces compared to anodic oxide (AO) c.p.Ti and c.p.Ti disks. Scanning electron microscopy (SEM) showed filopodium-like extensions bound closely to the nanotopographic structure of SA-treated c.p.Ti at day 7 of culture. Gene expressions of focal adhesion kinase, integrin-α6β4, and laminin-5 (α3, β3, γ2) were significantly higher on SA-treated c.p.Ti than on c.p.Ti or AO c.p.Ti after 7 days (Pcells adhere to SA-treated c.p.Ti as the transmucosal portion of an implant, and that this interaction markedly improves expression of focal adhesion molecules and enhances the epithelial cell phenotype. The cellular gene expression responses driving extracellular and intracellular molecular interactions thus play an important role in maintenance at the interface between SA-treated c.p.Ti implant surfaces and the gingival epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gao, Hongxu; Hou, Feng; Wan, Zhipeng; Zhao, Sha; Yang, Deming; Liu, Jiachen; Guo, Anran; Gong, Yuxuan

    2015-01-01

    Highlights: • CNTs/TiO 2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO 2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO 2 ) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g −1 , as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g −1 ). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO 2 composite films for large-scale production and application in energy devices were shown

  13. Evaluation of Corrosion Resistance of Nanotubular Oxide Layers on the Ti13Zr13Nb Alloy in Physiological Saline Solution / Ocena Odporności Korozyjnej Nanotubularnych Struktur Tlenkowych Na Stopie Ti13Zr13Nb W Środowisku Płynów Ustrojowych”

    Directory of Open Access Journals (Sweden)

    Smołka A.

    2015-12-01

    Full Text Available Evaluation of corrosion resistance of the self-organized nanotubular oxide layers on the Ti13Zr13Nb alloy, has been carried out in 0.9% NaCl solution at the temperature of 37ºC. Anodization process of the tested alloy was conducted in a solution of 1M (NH42SO4 with the addition of 1 wt.% NH4F. The self-organized nanotubular oxide layers were obtained at the voltage of 20 V for the anodization time of 120 min. Investigations of surface morphology by scanning transmission electron microscopy (STEM revealed that as a result of the anodization under proposed conditions, the single-walled nanotubes (SWNTs can be formed of diameters that range from 10 to 32 nm. Corrosion resistance studies of the obtained nanotubular oxide layers and pure Ti13Zr13Nb alloy were carried out using open circuit potential, anodic polarization curves, and electrochemical impedance spectroscopy (EIS methods. It was found that surface modification by electrochemical formation of the selforganized nanotubular oxide layers increases the corrosion resistance of the Ti13Zr13Nb alloy in comparison with pure alloy.

  14. Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays

    Science.gov (United States)

    Bhattacharyya, Dhiman; Smith, York R.; Misra, Mano; Mohanty, Swomitra K.

    2015-02-01

    Sensing and detection of volatile organic compounds (VOCs) from exhaled breath is a possible method for early diagnosis of several pulmonary diseases. The use of solid-state TiO2 nanotube array sensors for VOC sensing applications has been of great interest. In this study, titania nanotubular arrays (TNAs) were synthesized through electrochemical anodization and used for the electrochemical detection of methyl nicotinate biomarker vapor. Functionalization of the TNA with cobalt was found to be necessary for methyl nicotinate detection. Titanium dioxide films synthesized through high temperature oxidation and functionalized with cobalt were also compared with cobalt functionalized TNA. The ordered TNA demonstrated itself to be an effective substrate for cobalt deposition and subsequent biomarker detection over thin titanium dioxide films. Surface analysis of the cobalt functionalized TNA by x-ray photoelectron spectroscopy (XPS) studies observed cobalt deposits exist as cobalt hydroxide on the surface. Exposure of the sensor surface to methyl nicotinate vapor results in the reduction of cobalt hydroxide to cobalt metal on the surface. Two mechanisms have been proposed to describe the binding of the nicotinate biomarker to cobalt functionalized TNA consistent with the XPS studies and band theory.

  15. A novel Nickel-Aluminum alloy with Titanium for improved anode performance and properties in Molten Carbonate Fuel Cells

    Science.gov (United States)

    Frattini, Domenico; Accardo, Grazia; Moreno, Angelo; Yoon, Sung Pil; Han, Jong Hee; Nam, Suk Woo

    2017-06-01

    The anode materials of MCFC require more investigations in order to boost performances at long term. In literature, many NiAl modified alloys have been proposed but not always enhanced cell performance and improved mechanical properties are achieved together. In this work, differently from previous literature, the use of Ti in a NiAl/Ti system is proposed as an effective strategy to enhance both mechanical and electrochemical properties. Results show that bending strength and stiffness increase whereas creep deformation under high pressure-temperature is lower, i.e. around 5-6%, compared to 7.5% of the standard benchmark. The preliminary cell tests carried out show also how the performance, in terms of current and voltage output, is better for anodes with Ti addition with a maximum power density of 165 mW cm-2 at 300 mA cm-2 for Ti 5% compared to 149 mW cm-2 of Ni5Al at the same current density. Finally, the best electrochemical behavior is found for the Ti 5% sample as it achieved the lowest internal and charge transfer resistance at the end of tests. These results suggest that NiAl/Ti systems can be eligible anode materials and are worthy to be investigated more in order to attract a renewed interest for development of MCFCs.

  16. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Directory of Open Access Journals (Sweden)

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  17. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    Science.gov (United States)

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+).

  18. Photocatalytic activity of ferric oxide/titanium dioxide nanocomposite films on stainless steel fabricated by anodization and ion implantation

    Science.gov (United States)

    Zhan, Wei-ting; Ni, Hong-wei; Chen, Rong-sheng; Yue, Gao; Tai, Jun-kai; Wang, Zi-yang

    2013-08-01

    A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm-2 and then annealed in air at 450°C for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.

  19. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M., E-mail: josecalderonmoreno@yahoo.com [Institute of Physical Chemistry ' Ilie Murgulescu' of the Romanian Academy, Bucharest (Romania)

    2013-07-15

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  20. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    International Nuclear Information System (INIS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre

    2017-01-01

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO 2 ) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO 2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO 2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO 2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO 3 , Ca 3 (PO 4 ) 2 , CaHPO 4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  1. Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method

    International Nuclear Information System (INIS)

    Gracien, Ekoko Bakambo; Shen Jianian; Sun Xianrong; Liu Dong; Li Moucheng; Yao Shudian; Sun Juan

    2007-01-01

    Transition metal-doped TiO 2 electrodes were prepared by re-anodization and characterized. The structure of these electrodes was investigated by X-ray diffraction and electron diffraction, which mainly showed typical characteristic anatase reflections without any dopant-related peaks. The amount of transition metal dopant in TiO 2 was kept at approximately 1.0 at.%, as measured by energy dispersive X-ray spectroscopy. The effects of different types of dopants on the photocatalytic activity were revealed by measuring the degradation of an organic aqueous solution containing a dye (acid red G) using a combination of ultraviolet (UV) light energy in the presence of these electrodes. The photocatalytic efficiency was remarkably enhanced by the incorporation of Mn 2+ and Cr 3+ . Mn 2+ showed the most significant enhancement. However, Co 2+ accelerated the rate of acid red G degradation only slightly. Langmuir-Hinshelwood rate expression was employed for the degradation of acid red G by UV/TiO 2 electrodes system. The adsorption equilibrium constant, the rate constant, and the initial degradation rate were determined for different electrodes. The effect of the concentration of Mn 2+ on the degradation of acid red G was also investigated and the results showed that there is an optimal value (about 1.0 at.%) of the concentration of Mn 2+ for inducing faster degradation of the dye. The enhanced photocatalytic degradation rate of acid red G in the presence of transition metals is attributed to the increase of the charge separation in these systems

  2. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance{sup †}

    Energy Technology Data Exchange (ETDEWEB)

    Govindaraj, Dharman [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Rajan, Mariappan, E-mail: rajanm153@gmail.com [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Munusamy, Murugan A.; Alarfaj, Abdullah A. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh (Saudi Arabia); Higuchi, Akon [Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001 Taiwan (China); Suresh Kumar, S. [Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang (Malaysia)

    2017-06-15

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO{sub 2}) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO{sub 2} implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO{sub 2} that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO{sub 2} by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO{sub 2} is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  3. Electrically controlled drug release from nanostructured polypyrrole coated on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Sirivisoot, Sirinrath; Pareta, Rajesh; Webster, Thomas J, E-mail: Thomas_Webster@Brown.edu [School of Engineering, Brown University, Providence, RI 02912 (United States)

    2011-02-25

    Previous studies have demonstrated that multi-walled carbon nanotubes grown out of anodized nanotubular titanium (MWNT-Ti) can be used as a sensing electrode for various biomedical applications; such sensors detected the redox reactions of certain molecules, specifically proteins deposited by osteoblasts during extracellular matrix bone formation. Since it is known that polypyrrole (PPy) can release drugs upon electrical stimulation, in this study antibiotics (penicillin/streptomycin, P/S) or an anti-inflammatory drug (dexamethasone, Dex), termed PPy[P/S] or PPy[Dex], respectively, were electrodeposited in PPy on titanium. The objective of the present study was to determine if such drugs can be released from PPy on demand and (by applying a voltage) control cellular behavior important for orthopedic applications. Results showed that PPy films possessed nanometer-scale roughness as analyzed by atomic force microscopy. X-ray photoelectron spectroscopy confirmed the presence of P/S and Dex encapsulated within the PPy films. Results from cyclic voltammetry showed that 80% of the drugs were released on demand when sweep voltages were applied for five cycles at a scan rate of 0.1 V s{sup -1}. Furthermore, osteoblast (bone-forming cells) and fibroblast (fibrous tissue-forming cells) adhesion were determined on the PPy films. Results showed that PPy[Dex] enhanced osteoblast adhesion after 4 h of culture compared to plain Ti. PPy-Ti (with or without anionic drug doping) inhibited fibroblast adhesion compared to plain Ti. These in vitro results confirmed that electrodeposited PPy[P/S] and PPy[Dex] can release drugs on demand to potentially fight bacterial infection, reduce inflammation, promote bone growth or reduce fibroblast functions, further implicating the use of such materials as implant sensors.

  4. The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures

    Directory of Open Access Journals (Sweden)

    Renchuan You

    2014-06-01

    Full Text Available Tunneling nanotubes are important membrane channels for cell-to-cell communication. In this study, we investigated the effect of the microenvironment on nanotubular structures by preparing a three-dimensional silk fibroin micropillar structure. In previous reports, tunneling nanotubes were described as stretched membrane channels between interconnected cells at their nearest distance. They hover freely in the cell culture medium and do not contact with the substratum. Interestingly, the micropillars could provide supporting points for nanotubular connection on silk fibroin films, where nanotubular structure formed a stable anchor at contact points. Consequently, the extension direction of nanotubular structure was affected by the micropillar topography. This result suggests that the hovering tunneling nanotubes in the culture medium will come into contact with the raised roadblock on the substrates during long-distance extension. These findings imply that the surface microtopography of biomaterials have an important influence on cell communication mediated by tunneling nanotubes.

  5. Nano-tubular cellulose for bioprocess technology development.

    Science.gov (United States)

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  6. Nano-tubular cellulose for bioprocess technology development.

    Directory of Open Access Journals (Sweden)

    Athanasios A Koutinas

    Full Text Available Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation. The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator. Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  7. Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H{sub 3}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Souza Sikora, Mariana de; Viana Rosario, Adriane [Laboratorio Interdisciplinar de Eletroquimica e Ceramica (LIEC), DQ, UFSCar, P.O. Box: 676, 13565-905, Sao Carlos (Brazil); Chaves Pereira, Ernesto, E-mail: decp@power.ufscar.b [Laboratorio Interdisciplinar de Eletroquimica e Ceramica (LIEC), DQ, UFSCar, P.O. Box: 676, 13565-905, Sao Carlos (Brazil); Paiva-Santos, Carlos O. [Laboratorio Computacional em Analises Cristalograficas e Cristalinas - LabCACC, Instituto de Quimica, UNESP, 14800-900, Araraquara, SP (Brazil)

    2011-03-30

    Research highlights: {yields} Variation of morphology and microstructure of TiO{sub 2} with applied charge. {yields} Influence of morphology on photoactivity of TiO{sub 2} films prepared by sparking anodization. {yields} Influence of crystallite size on photoactivity of TiO{sub 2} films prepared by sparking anodization. - Abstract: The aim of this paper is to investigate changes in morphology and microstructure of TiO{sub 2} films, prepared by sparking anodization of Ti in a H{sub 3}PO{sub 4} solution, by applying different formation charges. We show that although films obtained by this technique are rarely used in photocatalytic applications, the morphological and microstructural changes during sparking anodization produce TiO{sub 2} films that can be used as photocatalysts. In contrast to qualitative analysis commonly found in the literature, we used quantitative methods of analysis to quantify average pore diameter and pore density from the morphology and structural parameters from X-ray diffraction (XRD) patterns using the Rietveld refinement. The results indicated that changes in both the morphology and crystalline structure have a strong influence on the photoactivity of the films. From this investigation, we concluded that, for films prepared in early stages of anodization, the morphology had the biggest influence on photoactivity, and after applying 72C of charge, crystalline properties dominated the photocatalytic characteristics of the films.

  8. Influence of the morphology and microstructure on the photocatalytic properties of titanium oxide films obtained by sparking anodization in H3PO4

    International Nuclear Information System (INIS)

    Souza Sikora, Mariana de; Viana Rosario, Adriane; Chaves Pereira, Ernesto; Paiva-Santos, Carlos O.

    2011-01-01

    Research highlights: → Variation of morphology and microstructure of TiO 2 with applied charge. → Influence of morphology on photoactivity of TiO 2 films prepared by sparking anodization. → Influence of crystallite size on photoactivity of TiO 2 films prepared by sparking anodization. - Abstract: The aim of this paper is to investigate changes in morphology and microstructure of TiO 2 films, prepared by sparking anodization of Ti in a H 3 PO 4 solution, by applying different formation charges. We show that although films obtained by this technique are rarely used in photocatalytic applications, the morphological and microstructural changes during sparking anodization produce TiO 2 films that can be used as photocatalysts. In contrast to qualitative analysis commonly found in the literature, we used quantitative methods of analysis to quantify average pore diameter and pore density from the morphology and structural parameters from X-ray diffraction (XRD) patterns using the Rietveld refinement. The results indicated that changes in both the morphology and crystalline structure have a strong influence on the photoactivity of the films. From this investigation, we concluded that, for films prepared in early stages of anodization, the morphology had the biggest influence on photoactivity, and after applying 72C of charge, crystalline properties dominated the photocatalytic characteristics of the films.

  9. Optical waveguiding and temperature dependent photoluminescence of nanotubulars grown from molecular building blocks

    DEFF Research Database (Denmark)

    Maibohm, Christian; Rastedt, Maren; Kutscher, Frauke

    2013-01-01

    Optical waveguiding of blue light after UV-excitation is demonstrated in bundles of organic nanotubulars obtained via template assisted aggregation of the small p-conjugated non planar molecules 17H-Tetrabenzo[ a,c,g,i]fluorene (17H-Tbf) and 17-Trimethylsilyltetrabenzo[a,c,g,i]fluorene (TMS......-Tbf). The propagating blue light is strongly attenuated due to self-absorption. Vibronic spectra for both nanotubulars and macroscopic crystallites for temperatures between 5 and 300 K show a behavior of TMS-Tbf that resembles that of long chained molecules while 17H-TbF resembles that of small organic molecules...

  10. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  11. Characterization of Anodized Titanium Based Novel Paradigm Supercapacitors: Impact of Salt Identity and Frequency on Dielectric Values, Power, and Energy Densities

    Science.gov (United States)

    2017-03-01

    Ammonium Chloride. This is a significant improvement (>3x) relative to available commercial supercapacitors. 14. SUBJECT TERMS capacitor , super ...Supercapacitors employing Nanotube Super Dielectric Materials as dielectrics. The result of tests with nine capacitors , each with a unique aqueous salt...Dielectric Material PPC Polypropylene Carbonate RC Resistor- Capacitor ρ Density (Rho) SDM Super Dielectric Material t Time TiO Titanium (II

  12. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.

    Science.gov (United States)

    Oliveira, Weslley F; Arruda, Isabel R S; Silva, Germana M M; Machado, Giovanna; Coelho, Luana C B B; Correia, Maria T S

    2017-12-01

    Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong-Jae; Byeon, In-Seop [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, & Research Center for Oral Disease Regulation of the Aged, College of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative Sciences and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, & Research Center for Oral Disease Regulation of the Aged, College of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2015-12-01

    The purpose of this study was to investigate the highly ordered nanotubular film formation on Ti–25Nb–xZr and Ti–25Ta–xHf, examining the roles of niobium, zirconium, tantalum and hafnium alloying elements. The Ti–25Nb–xZr and Ti–25Ta–xHf ternary alloys contained 0, 7 and 15 wt.% of these alloying elements and were manufactured using a vacuum arc-melting furnace. Cast ingots of the alloys were homogenized in Ar atmosphere at 1050 °C for 2 h, followed by quenching into ice water. Formation of nanotubular films was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF at 30 V and 1 h for the Ti–25Nb–xZr alloys and 2 h for the Ti–25Ta–xHf alloys. Microstructures of the Ti–25Ta–xHf alloys transformed from α″ phase to β phase, changing from a needle-like structure to an equiaxed structure as the Hf content increased. In a similar manner, the needle-like structure of the Ti–25Nb–xZr alloys transformed to an equiaxed structure as the Zr content increased. Highly ordered nanotubes formed on the Ti–25Ta–15Hf and Ti–25Nb–15Zr alloys compared to the other alloys, and the nanotube layer thickness on Ti–25Ta–15Hf and Ti–25Nb–15Zr was greater than for the other alloys. Nanotubes formed on Ti–25Ta–15Hf and Ti–25Nb–15Zr showed two sizes of highly ordered structures. The diameters of the large nanotubes decreased and the diameters of the small nanotubes increased as Zr and Hf contents increased. It was found that the layer thickness, diameter, surface density and growth rate of nanotubes on the Ti–25Ta–xHf and Ti–25Nb–xZr alloys can be controlled by varying the Hf and Zr contents. X-ray diffraction analyses revealed only weak peaks for crystalline anatase or rutile TiO{sub 2} phases from the nanotubes on the Ti–25Nb–xZr and Ti–25Ta–xHf alloys, indicating a largely amorphous condition. - Highlights: • Nanotubular film formation on anodized Ti-25Nb-xZr and Ti-25Ta-xHf (x = 0, 7 and

  14. Optical waveguiding and temperature dependent photoluminescence of nanotubulars grown from molecular building blocks

    DEFF Research Database (Denmark)

    Maibohm, Christian; Rastedt, Maren; Kutscher, Frauke

    2013-01-01

    -Tbf). The propagating blue light is strongly attenuated due to self-absorption. Vibronic spectra for both nanotubulars and macroscopic crystallites for temperatures between 5 and 300 K show a behavior of TMS-Tbf that resembles that of long chained molecules while 17H-TbF resembles that of small organic molecules...

  15. In Situ Anodization of WO3-Decorated TiO2 Nanotube Arrays for Efficient Mercury Removal

    Directory of Open Access Journals (Sweden)

    Wai Hong Lee

    2015-08-01

    Full Text Available WO3-decorated TiO2 nanotube arrays were successfully synthesized using an in situ anodization method in ethylene glycol electrolyte with dissolved H2O2 and ammonium fluoride in amounts ranging from 0 to 0.5 wt %. Anodization was carried out at a voltage of 40 V for a duration of 60 min. By using the less stable tungsten as the cathode material instead of the conventionally used platinum electrode, tungsten will form dissolved ions (W6+ in the electrolyte which will then move toward the titanium foil and form a coherent deposit on the titanium foil. The fluoride ion content was controlled to determine the optimum chemical dissolution rate of TiO2 during anodization to produce a uniform nanotubular structure of TiO2 film. Nanotube arrays were then characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the FESEM images obtained, nanotube arrays with an average pore diameter of up to 65 nm and a length of 1.8 µm were produced. The tungsten element in the samples was confirmed by EDAX results which showed varying tungsten content from 0.22 to 2.30 at%. XRD and Raman results showed the anatase phase of TiO2 after calcination at 400 °C for 4 h in air atmosphere. The mercury removal efficiency of the nanotube arrays was investigated by photoirradiating samples dipped in mercury chloride solution with TUV (Tube ultraviolet 96W UV-B Germicidal light. The nanotubes with the highest aspect ratio (15.9 and geometric surface area factor (92.0 exhibited the best mercury removal performance due to a larger active surface area, which enables more Hg2+ to adsorb onto the catalyst surface to undergo reduction to Hg0. The incorporation of WO3 species onto TiO2 nanotubes also improved the mercury removal performance due to improved charge separation and decreased charge carrier recombination because of the charge transfer from the conduction band of TiO2 to the conduction band of WO3.

  16. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance.

    Science.gov (United States)

    Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D

    2017-05-01

    A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7  CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis of calcium-phosphorous doped TiO{sub 2} nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sofia A., E-mail: sofiafonso@msn.com [CMEMS – Center of MicroElectroMechanical Systems, Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães (Portugal); IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Patel, Sweetu B. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Mechanical Engineering, Michigan Technological University, 49931 Houghton, MI (United States); Sukotjo, Cortino [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Departmenmt of Restorative Dentistry, University of Illinois at Chicago, 60612 Chicago, IL (United States); Mathew, Mathew T. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Orthopedic Surgery, Rush University Medical Center, 60612 Chicago, IL (United States); Department of Biomedical Science, UIC School of Medicine at Rockford, 61107 Rockford, IL (United States); Filho, Paulo N. [IBTN/Br – Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP – Universidade Estadual Paulista, Faculdade de Ciências, 17033-360 Bauru, São Paulo (Brazil); Faculdade de Ciências, Departamento de Física, UNESP - Universidade Estadual Paulista, 17033-360 Bauru, São Paulo (Brazil); Celis, Jean-Pierre [Department of Materials Engineering, KU Leuven, 3001 Leuven (Belgium); and others

    2017-03-31

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO{sub 2}) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO{sub 2} nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO{sub 2} nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO{sub 2} nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, CaHPO{sub 4} and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated

  18. Kinetics of oxygen evolution on electrodes of the ruthenium-titanium oxide anode (ORTA) type. Techniques for determining the rate of oxygen evolution in chloride solutions

    International Nuclear Information System (INIS)

    Kokoutina, D.V.; Bunakova, L.V.

    1985-01-01

    Two techniques are described for determining the rate of oxygen evolution on active electrodes of the ORTA type in chloride solutions. One of them is based on the equivalent acidification of the solution as a result of oxygen evolution and the other on the compensation by an anodic current of the deviation of the potential of the investigated electrode from the equilibrium value when the electrode is in contact with a chloride solution. Examples are given of the determination of the oxygen evolution current on RuO 2 and ORTA in NaCl solutions in the region of the equilibrium potentials of the chlorine reaction

  19. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIĆ

    2010-10-01

    Full Text Available The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is of poor conductivity and activity, while the voltammetric behavior of the Ti0.6Ru0.4O2/Ti electrode is governed by proton injection/ejection into the oxide structure. The Ti0.6Ir0.4O2/Ti electrode had a higher electrocatalytical activity for oxygen evolution, while the investigated anodes were of similar activity for chlorine evolution. The potential dependence of the impedance characteristics showed that the Ti0.6Ru0.4O2/Ti electrode behaved like a capacitor over a wider potential range than the Ti0.6Ir0.4O2/Ti electrode, with fully-developed pseudocapacitive properties at potentials positive to 0.60 VSCE. However, the impedance characteristics of the Ti0.6Ir0.4O2/Ti electrode changed with increasing potential from resistor-like to capacitor-like behavior.

  20. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  1. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  2. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  3. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  4. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes.

    Science.gov (United States)

    Radjenovic, Jelena; Bagastyo, Arseto; Rozendal, René A; Mu, Yang; Keller, Jürg; Rabaey, Korneel

    2011-02-01

    During membrane treatment of secondary effluent from wastewater treatment plants, a reverse osmosis concentrate (ROC) containing trace organic contaminants is generated. As the latter are of concern, effective and economic treatment methods are required. Here, we investigated electrochemical oxidation of ROC using Ti/Ru(0.7)Ir(0.3)O(2) electrodes, focussing on the removal of dissolved organic carbon (DOC), specific ultra-violet absorbance at 254 nm (SUVA(254)), and 28 pharmaceuticals and pesticides frequently encountered in secondary treated effluents. The experiments were conducted in a continuously fed reactor at current densities (J) ranging from 1 to 250 A m(-2) anode, and a batch reactor at J = 250 A m(-2). Higher mineralization efficiency was observed during batch oxidation (e.g. 25.1 ± 2.7% DOC removal vs 0% removal in the continuous reactor after applying specific electrical charge, Q = 437.0 A h m(-3) ROC), indicating that DOC removal is depending on indirect oxidation by electrogenerated oxidants that accumulate in the bulk liquid. An initial increase and subsequent slow decrease in SUVA(254) during batch mode suggests the introduction of auxochrome substituents (e.g. -Cl, NH(2)Cl, -Br, and -OH) into the aromatic compounds. Contrarily, in the continuous reactor ring-cleaving oxidation products were generated, and SUVA(254) removal correlated with applied charge. Furthermore, 20 of the target pharmaceuticals and pesticides completely disappeared in both the continuous and batch experiments when applying J ≥ 150 A m(-2) (i.e. Q ≥ 461.5 A h m(-3)) and 437.0 A h m(-3) (J = 250 A m(-2)), respectively. Compounds that were more persistent during continuous oxidation were characterized by the presence of electrophilic groups on the aromatic ring (e.g. triclopyr) or by the absence of stronger nucleophilic substituents (e.g. ibuprofen). These pollutants were oxidized when applying higher specific electrical charge in batch mode (i.e. 1.45 kA h m(-3) ROC

  5. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    OpenAIRE

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured w...

  6. GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti-6Al-7Nb aimed at developing mixed oxide nanotubular arrays.

    Science.gov (United States)

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Fallahpour, A; Vadivelu, J; Musa, S N; Kaboli, S H A

    2016-08-01

    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Controllable atomic layer deposition of one-dimensional nanotubular TiO2

    Science.gov (United States)

    Meng, Xiangbo; Banis, Mohammad Norouzi; Geng, Dongsheng; Li, Xifei; Zhang, Yong; Li, Ruying; Abou-Rachid, Hakima; Sun, Xueliang

    2013-02-01

    This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)2)4) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 °C) produced amorphous TiO2 while a high temperature (250 °C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors.

  8. The fabrication of gold nanotubular membranes and their applications in separations

    Science.gov (United States)

    Jirage, Kshama B.

    Membrane based template synthesis and an electroless deposition method was used to fabricate Au nanotubular membranes. The inside diameter of the nanotubules was controlled by varying the time of deposition. The final diameters of the nanotubules were on the order of few angstroms, comparable to the size of molecules. It was demonstrated that these membranes show, "molecular sieving" and can completely separate molecules differing in size. Furthermore, the chemical environment of the nanotubules can be controlled by chemisorbing thiols with different terminal groups. Membranes modified with hydrophobic thiols, are selective to hydrophobic molecules and when modified with hydrophilic thiols, the membranes are selective to hydrophilic molecules. In addition, these membranes can separate molecules when present in a mixture. Au nanotubular membranes can be modified by thiols with charged terminal groups. For e.g., membranes modified with -COO-- terminated thiol, were cation-permselective. When modified with - NH3+ terminated thiol, the membranes were anion-permselective. Membranes were permselective in a larger range of electrolyte concentrations for large anions. Finally, Au-Polyacrylic acid (PAA) composite was synthesized in a polyester template membrane by the consecutive deposition of Au and PAA. Au was deposited by electroless deposition and PAA was deposited by vacuum assisted deposition method. This composite can function as a chemical valve, upon change with pH in the presence of buffer. Furthermore, the composite also functions as an electrochemically controlled valve by the generation of H+ and OH-- ions at the Au surface.

  9. Titanium ; dream new material

    International Nuclear Information System (INIS)

    Lee, Yong Tae; Kim Seung Eon; Heoon, Yong Taek; Jung, Hui Won

    2001-11-01

    The contents of this book are history of Titanium, present situation of Titanium industry, property of Titanium alloy, types of it, development of new alloy of Titanium smelting of Titanium, cast of Titanium and heat treatment of Titanium, Titanium alloy for plane, car parts, biological health care, and sport leisure and daily life, prospect, and Titanium industrial development of Titanium in China.

  10. Platinum-carbon black-titanium dioxide nanocomposite ...

    Indian Academy of Sciences (India)

    carbon black-titanium ... Importantly, galvanostatic data confirm the superior stability of these materials against corrosion under anodic polarization conditions relative to commercial benchmark fuel cell electrocatalysts. EIS spectra from ETEK 5, ...

  11. Hypothetical planar and nanotubular crystalline structures with five interatomic bonds of Kepler nets type

    Directory of Open Access Journals (Sweden)

    Aleksey I. Kochaev

    2017-02-01

    Full Text Available The possibility of metastable existence of planar and non-chiral nanotubular crystalline lattices in the form of Kepler nets of 34324, 3342, and 346 types (the notations are given in Schläfly symbols, using ab initio calculations, has researched. Atoms of P, As, Sb, Bi from 15th group and atoms of S, Se, Te from 16th group of the periodic table were taken into consideration. The lengths of interatomic bonds corresponding to the steadiest states for such were determined. We found that among these new composed structures crystals encountered strong elastic properties. Besides, some of them can possess pyroelectric and piezoelectric properties. Our results can be used for nanoelectronics and nanoelectromechanical devices designing.

  12. Detection of Four Distinct Volatile Indicators of Colorectal Cancer using Functionalized Titania Nanotubular Arrays

    Directory of Open Access Journals (Sweden)

    Dhiman Bhattacharyya

    2017-08-01

    Full Text Available Screening of colorectal cancer is crucial for early stage diagnosis and treatment. Detection of volatile organic compounds (VOCs of the metabolome present in exhaled breath is a promising approach to screen colorectal cancer (CRC. Various forms of volatile organic compounds (VOCs that show the definitive signature for the different diseases including cancers are present in exhale breathe. Among all the reported CRC VOCs, cyclohexane, methylcyclohexane, 1,3-dimethyl- benzene and decanal are identified as the prominent ones that can be used as the signature for CRC screening. In the present investigation, detection of the four prominent VOCs related to CRC is explored using functionalized titania nanotubular arrays (TNAs-based sensor. These signature biomarkers are shown to be detected using nickel-functionalized TNA as an electrochemical sensor. The sensing mechanism is based on the electrochemical interaction of nickel-functionalized nanotubes with signature biomarkers. A detailed mechanism of the sensor response is also presented.

  13. Evidences for skeletal structures in tornado and the probable role of nanotubular dust in the origin of tornado

    OpenAIRE

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    2004-01-01

    The results are presented of an analysis, with the help of the method of multilevel dynamical contrasting of the images, of available databases of the images of tornado. This analysis extends some preliminary results on identification of skeletal structures in tornadoes (Phys. Lett. A 306 (2002) 175) and enables us to apply to the case of tornado our former hypothesis for the probable role of nanotubular dust in the origin and stability/longevity of filamentary structures of a skeletal form i...

  14. Titanium 2013

    Science.gov (United States)

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  15. A new method for production of titanium vapor and synthesis of titanium nitride coatings

    Science.gov (United States)

    Grigoriev, Sergey N.; Melnik, Yury A.; Metel, Alexander S.; Volosova, Marina A.

    2018-03-01

    It is proposed to synthesize on machine parts and cutting tools wear-resistant titanium nitride coatings with the help of the hollow-cathode glow discharge, a molybdenum crucible for titanium evaporation being used as the anode of the discharge and a process vacuum chamber being used as the hollow cathode. The research revealed that at the anode surface area less than a critical value S* = (2m/M)1/2S, where S is the area of the chamber walls, m is the mass of electrons and M is the mass of ions, the anode fall of potential is positive and grows from ˜50 V at argon pressure p = 0.2 Pa to ˜2 kV at p = 0.02 Pa. At the discharge current I = 0.6 A electrons accelerated by the anode fall of 0.9 kV transport into the crucible with the inner diameter of 12 mm the power of ˜0.54 kW, which allows the titanium evaporation and the coating deposition rate of 5 µm·h-1 on a substrate distanced from the crucible at 100 mm. After the argon is replaced with the nitrogen, titanium nitride coating without titanium droplets is synthesized the deposition rate amounting to about the same value.

  16. Effect of anodization on corrosion behaviour and biocompatibility of ...

    Indian Academy of Sciences (India)

    The objective of this investigation is to study the effectiveness of anodized surface of commercial purity titanium (Cp-Ti) on ... aids. It has attractive bulk mechanical properties like low modulus of elasticity, high strength to weight ratio, excellent corrosion resistance, low rate of ion release combined with excellent biostability ...

  17. FLUORINE CELL ANODE ASSEMBLY

    Science.gov (United States)

    Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

    1962-06-26

    An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

  18. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  19. Structure and magnetic properties of Co/Pd multilayers prepared on porous nanotubular TiO{sub 2} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Maximenko, A. [Institute of Nuclear Physics Polish Academy of Sciences, PL 31-342 Krakow (Poland); Research Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220030 Minsk (Belarus); Marszałek, M., E-mail: marta.marszalek@ifj.edu.pl [Institute of Nuclear Physics Polish Academy of Sciences, PL 31-342 Krakow (Poland); Fedotova, J. [Research Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220030 Minsk (Belarus); Zarzycki, A.; Zabila, Y. [Institute of Nuclear Physics Polish Academy of Sciences, PL 31-342 Krakow (Poland); Kupreeva, O.; Lazarouk, S. [Belarusian State University of Informatics and Radioelectronics, P.Brovka str. 6, 220013 Minsk (Belarus); Kasiuk, J. [Research Institute for Nuclear Problems of Belarusian State University, Bobruiskaya str. 11, 220030 Minsk (Belarus); Zavadski, S. [Belarusian State University of Informatics and Radioelectronics, P.Brovka str. 6, 220013 Minsk (Belarus)

    2017-07-15

    Highlights: • nanotubular templates of TiO{sub 2} were applied for fabrication of Co/Pd antidot arrays. • morphology of porous multilayers followed the features of the initial template. • the formation of Co0.4Pd0.6 alloy at the Co/Pd interface. • the conservation of perpendicular magnetic anisotropy in the CoPd porous film. • change of the magnetization reversal from domain wall motion to coherent rotation. - Abstract: We used porous nanotubular templates of TiO{sub 2} for fabrication of Co/Pd antidot arrays with strong perpendicular magnetic anisotropy. The morphology of porous multilayers followed the features of the initial template demonstrating a pronounced relief consisting of the cells with periodic pores with small inclination. We confirmed the formation of Co{sub 0.4}Pd{sub 0.6} alloy at the Co/Pd interface. We observed the conservation of perpendicular magnetic anisotropy in the Co/Pd porous film with coercive field H{sub C} = 2.7 kOe, enhanced with respect to the continuous film due to the pinning of magnetic moments on the nanopore edges. From angular dependence of the coercive field H{sub C} we deduced the change of the magnetization reversal mechanism from domain wall motion in the continuous film to the predominantly coherent rotation mechanism in the porous film.

  20. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance....... The UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance......, with doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  1. Nanocomposite anode materials for sodium-ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  2. Electrowinning molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available The value chain of titanium products shows that the difference between the cost of titanium ingot and titanium dioxide is about $9/kg titanium. In contrast, the price of aluminium, which is produced in a similar way, is only about $1.7/kg...

  3. Use of Molten Salt Fluxes and Cathodic Protection for Preventing the Oxidation of Titanium at Elevated Temperatures

    Science.gov (United States)

    Schwandt, Carsten; Fray, Derek J.

    2014-12-01

    The current study demonstrates that it is possible to protect both solid and liquid titanium and titanium alloys from attack from air by cathodically polarizing the titanium component using an electro-active high-temperature molten salt flux and a moderate polarization potential. The electrolytic cell used comprises a cathode of either solid titanium or liquid titanium alloy, an electrolyte based on molten calcium chloride or fluoride salt, and an anode consisting of an inert oxygen-evolving material such as iridium metal. The new approach renders possible the processing of titanium at elevated temperatures in the presence of oxygen-containing atmospheres.

  4. Evaluation of the properties of TiO2 films on titanium

    International Nuclear Information System (INIS)

    Panizza, C.

    2009-01-01

    We report the results of laboratory tests concerning the characterization of photo catalytic properties of titanium dioxide films obtained on titanium substrates by using three different techniques for anodizing. Been investigated in scanning electron microscopy, X-ray analysis cyclic voltammetry. [it

  5. Composite anodes for lithium-ion batteries: status and trends

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2016-07-01

    Full Text Available Presently, the negative electrodes of lithium-ion batteries (LIBs is constituted by carbon-based materials that exhibit a limited specific capacity 372 mAh g−1 associated with the cycle between C and LiC6. Therefore, many efforts are currently made towards the technological development nanostructured materials in which the electrochemical processes occurs as intercalation, alloying or conversion reactions with a good accommodation of dilatation/contraction during cycling. In this review, attention is focused on advanced anode composite materials based on carbon, silicon, germanium, tin, titanium and conversion anode composite based on transition-metal oxides.

  6. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina

    Science.gov (United States)

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga

    2014-01-01

    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  7. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  8. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  9. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    International Nuclear Information System (INIS)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y.; Awitor, O.K.; Bonnemoy, F.; Bonnet, J.L.; Bohatier, J.

    2011-01-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  10. Anodic titania films as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Lindsay, M.J.; Blackford, M.G.; Attard, D.J.; Luca, V.; Skyllas-Kazacos, M.; Griffith, C.S.

    2007-01-01

    Titania thin films were prepared through the anodisation of titanium metal in a 1.0 M sulphuric acid solution at 80 o C utilising a series of pulsed dc constant currents of increasing magnitude. Films were then tested as a potential anode material for lithium batteries using a variety of techniques. Electrochemical testing revealed that the films (3.8 cm 2 ) offered good rate capabilities affording a constant capacity of 48 μAh for a constant current of 10 μA which decreased to 25 μAh on increasing the current to 1250 μA. Cyclic voltammetry was conducted over a range of scan rates from which capacitive currents were examined and rate constants, transfer coefficients and diffusion coefficients calculated. Electrochemical impedance spectroscopy was conducted over six potentials in the range 0.1-2.7 V with the experimental data successfully modelled using an equivalent circuit with the notation R(Q(RW))C. TEM observation of focussed ion beam milled cross-sections showed significant structural differences between the as-anodised film and those cycled in a lithium battery. Raman spectroscopy showed that the films had an anatase character that transformed into an unidentified lithium-containing, titanate phase on cycling. Based on a film thickness of 100 nm, and assuming density of 4 g cm -3 such films offered a stable capacity of 316 mAh g -1

  11. Anode Support Creep

    DEFF Research Database (Denmark)

    2015-01-01

    Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature.......Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature....

  12. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    collector 18 can be made from nickel; however, other high conductivity metals and alloys can be used for this such as gold, silver , platinum, alloys of...The conductive particles can be carbon such as carbon black or graphite. These particles can also be metals such as copper, nickel, silver , gold...anode cycling characteristics, higher battery capacity, and longer cycle life. [0005] Rechargeable batteries with lithium metal anodes have been

  13. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    Science.gov (United States)

    Langhoff, J D; Mayer, J; Faber, L; Kaestner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. The new surface anodized screws demonstrated similar or slightly higher bone-implant-contact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p = 0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p = 0.06). The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.

  14. Self-organized anodic TiO.sub.2./sub. nanotube layers: influence of the Ti substrate on nanotube growth and dimensions

    Czech Academy of Sciences Publication Activity Database

    Sopha, H.; Jäger, Aleš; Knotek, P.; Tesař, Karel; Jarošová, Markéta; Macák, J. M.

    2016-01-01

    Roč. 190, Feb (2016), s. 744-752 ISSN 0013-4686 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : titanium * anodization * titanium dioxide * nanotubes * ordering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.798, year: 2016

  15. Surface Morphology and Growth of Anodic Titania Nanotubes Films: Photoelectrochemical Water Splitting Studies

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    become the most studied material as they exhibit promising functional properties. In the present study, anodic TiO2 films with different surface morphologies can be synthesized in an organic electrolyte of ethylene glycol (EG by controlling an optimum content of ammonium fluoride (NH4F using electrochemical anodization technique. Based on the results obtained, well-aligned and bundle-free TiO2 nanotube arrays with diameter of 100 nm and length of 8 µm were successfully synthesized in EG electrolyte containing ≈5 wt% of NH4F for 1 h at 60 V. However, formation of nanoporous structure and compact oxide layer would be favored if the content of NH4F was less than 5 wt%. In the photoelectrochemical (PEC water splitting studies, well-aligned TiO2 nanotubular structure exhibited higher photocurrent density of ≈1 mA/cm2 with photoconversion efficiency of ≈2% as compared to the nanoporous and compact oxide layer due to the higher active surface area for the photon absorption to generate more photo-induced electrons during photoexcitation stage.

  16. Synthesis and characterization of gadolinium-doped nanotubular titania for enhanced photocatalysis

    International Nuclear Information System (INIS)

    Shi, Liang; Cao, Lixin; Gao, Rongjie; Zhao, Yanling; Zhang, Huibin; Xia, Chenghui

    2014-01-01

    Graphical abstract: The Gd-doped titania nanotubes showed an increase in photocatalytic activity together with Gd/Ti ratio increase up 0.5%, followed by a rapid fall above 1.0%. - Highlights: • Enhanced Gd-doped titania nanotube photocatalysts have been synthesized. • Uniform Gd-doped titania nanoparticles were employed as raw materials. • Actual gadolinium contents in titania were precisely characterized by ICP-AES. • The distribution of Gd dopant was marked using element mapping. - Abstract: Gadolinium-doped titanium dioxide nanotubes were fabricated with a facile two-step route. Precursors Gd-doped titania nanoparticles were synthesized by a traditional sol–gel method. Hydrothermal process and acid treatment were employed afterwards, and Gd-doped titania nanotubes were finally obtained after calcination. The nominal doping concentration was expressed by Gd/Ti atomic ratio, ranged from 0% to 5.0%. Both the precursors and nanotubes were characterized by X-ray photoelectron spectra, inductively coupled plasma-atomic emission spectrometry, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometer, UV–vis diffusion reflection spectra and N 2 absorption–desorption experiment. The photocatalytic activities were investigated using methyl orange as the model pollutant. The results indicated that Gd-doped titania nanotubes with nominal Gd/Ti of 0.5% possessed the optimal photocatalytic activity in our study

  17. Anti-inflammatory properties of bioactive titanium metals.

    Science.gov (United States)

    Yang, Bangcheng; Gan, Lu; Qu, Yang; Yue, Chongxia

    2010-09-01

    Anti-inflammatory properties of bioactive titanium metals prepared by anodic oxidation (AO-Ti) and alkali-heat (AH-Ti) treatments were studied by bacterial adhesion test and myeloperoxidase (MPO) activity assay methods. The bioactivities of the metals were also evaluated by apatite formation ability and osteoblasts culture experiments. Both metals could induce apatite formation and support osteoblasts proliferation. At the condition with normal incandescent light shine, both bioactive titanium metals had antibacterial adhesion properties compared with the titanium metal without treatment. The MPO activity assay proved that they both showed anti-inflammatory properties in vivo. The bioactive AO-Ti had better anti-inflammatory properties than the AH-Ti. It indicated that it is possible to optimize the anti-inflammatory properties of the bioactive titanium metals by different preparation methods. (c) 2010 Wiley Periodicals, Inc.

  18. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  19. Processing and characterization of titanium dioxide grown on titanium foam for potential use as Li-ion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyelim; Park, Hyeji [School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 20707 (Korea, Republic of); Um, Ji Hyun [Integrated Energy Center for Fostering Global Creative Researcher, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Won-Sub [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choe, Heeman, E-mail: heeman@kookmin.ac.kr [School of Materials Science and Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 20707 (Korea, Republic of)

    2017-07-31

    Highlights: • Successful formation of anatase TiO{sub 2} on the surface of Ti foam. • Successful application of TiO{sub 2}/Ti foam anode to lithium ion battery. • TiO{sub 2}/Ti foam anode shows remarkably stable capacity retention. - Abstract: This study investigates the processing and potential application of Ti foams to the anode of lithium-ion batteries (LIBs). Ti foam is successfully synthesized using a water-based freeze-casting process, and anatase titanium dioxide (TiO{sub 2}) is formed on the surface of the Ti foam for application to the anode of LIB. The metallic Ti foam acts as a current collector “platform” with increased surface area and the TiO{sub 2} surface coating acts as an active anode material. Coin-cell test results show that the unique combination of the Ti foam and the TiO{sub 2} coating anode has highly stable cycling properties and can thus be considered promising for use as an advanced anode for LIBs that require high safety and stability. It is anticipated that the use of the unique Ti-foam-based electrode design will not only be limited to LIBs but also will be applied to other energy and environmental areas as a catalyst or filter.

  20. Titanium hermetic seals

    Science.gov (United States)

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  1. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  2. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  3. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  4. Movable anode x-ray source with enhanced anode cooling

    Science.gov (United States)

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  5. Titanium and titanium alloys: fundamentals and applications

    National Research Council Canada - National Science Library

    Leyens, C; Peters, M

    2003-01-01

    ... number of titanium alloys have paved the way for light metals to vastly expand into many industrial applications. Titanium and its alloys stand out primarily due to their high specific strength and excellent corrosion resistance, at just half the weight of steels and Ni-based superalloys. This explains their early success in the aerospace and the...

  6. Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments.

    Science.gov (United States)

    Kassab, Elisa J; Gomes, José Ponciano

    2013-09-01

    To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.

  7. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    OpenAIRE

    Langhoff, J; Mayer, J; Faber, L; Kästner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods...

  8. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  9. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

    Science.gov (United States)

    Farrell, Brad J; Prilutsky, Boris I; Ritter, Jana M; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2014-05-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to seven groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all three types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4-6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p skin integration with the potential for a safe seal. Copyright © 2013 Wiley Periodicals, Inc.

  10. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  11. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed

    International Nuclear Information System (INIS)

    Lucas-Granados, Bianca; Sánchez-Tovar, Rita; Fernández-Domene, Ramón M.; García-Antón, Jose

    2017-01-01

    Highlights: • Novel iron anodization process under controlled dynamic conditions was evaluated. • Iron oxide nanostructures composed mainly by hematite were synthesized. • Different morphologies were obtained depending on the electrode rotation speed. • A suitable photocatalyst was obtained by stirring the electrode at 1000 rpm.. - Abstract: Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (α-Fe 2 O 3 ) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis, Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching ∼0.130 mA cm −2 at 0.54 V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.

  12. Effect of surface treatment on cell responses to grades 4 and 5 titanium for orthodontic mini-implants.

    Science.gov (United States)

    Galli, Carlo; Piemontese, Marilina; Ravanetti, Francesca; Lumetti, Simone; Passeri, Giovanni; Gandolfini, Mauro; Macaluso, Guido M

    2012-06-01

    Mini-implants are used to improve orthodontic anchorage, but optimal composition and surface characteristics have yet to be determined. We investigated the behavior of osteoblast-like cells on grade 4 commercially pure titanium and grade 5 titanium alloy with different surface treatments for mini-implants. MC3T3 cells were plated on machined, acid-etched, or acid-etched grade 4 titanium enriched with calcium phosphate, or machined, anodized, or anodized and calcium phosphate-enriched grade 5 titanium disks. Surface and cell morphologies were assessed by scanning electron microscopy. Cell viability was measured by chemiluminescence, cytoskeletal organization was investigated by immunofluorescence, and real-time polymerase chain reaction for osteoblast-specific genes was performed to measure cell differentiation. Flattened shapes and strong stress fibers were observed on the machined surfaces; cells on the rough surfaces had a spindle shape, with lower cytoskeletal polarization. Cell proliferation was highest on smooth grade 4 titanium surfaces, whereas cells quickly reached a plateau on rough grade 4 titanium; no difference was observed after 72 hours in the grade 5 titanium groups. Calcium phosphate enrichment on grade 4 titanium significantly increased the messenger RNA levels for alkaline phosphatase and osteocalcin. Osteoblastic markers were higher on the grade 5 titanium machined surfaces than on the rough surfaces, and comparable with acid-etched grade 4 titanium. Although the grade 4 titanium enriched with calcium phosphate had the highest level of differentiation in vitro, the grade 5 titanium machined surfaces supported cell proliferation and matrix synthesis, and induced high expression of early differentiation markers. Increased mechanical resistance of grade 5 titanium makes it a potential candidate for orthodontic mini-implants. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  13. Modification of titanium electrodes by a noble metal deposit

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Mahe, E. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C, UMR CNRS

    2008-07-01

    Titanium is commonly used as a substrate for dimensionally stable anodes (DSAs) because it is corrosion-resistant in acid media and because a passive titanium oxide (TiO2) film can be formed on the surface. This paper reported on a study in which titanium substrates were first covered by anodization with a TiO2 layer. The electrochemical properties of the Ti/TiO2 electrodes were investigated. The modification of the substrates by cathodic electrodeposition of a noble metal was described. The reactivity of the Ti/TiO2/Pt structures were illustrated by impedance spectroscopy experiments. The impedance studies performed with Ti/ TiO2 electrodes in the presence of a redox couple in solution (Fe3+/Fe2+ system in sulphuric acid) showed that the electronic transfer is very slow. It was concluded that the deposition of a noble metal coating on Ti/TiO2 substrates leads to modified titanium electrodes that exhibit electrocatalytic behaviour versus specific electrochemical reactions. 1 ref., 3 figs.

  14. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface.

    Science.gov (United States)

    Shi, Xiaowen; Wu, Huiping; Li, Yuanyuan; Wei, Xiaoquan; Du, Yumin

    2013-05-01

    Electrical signals are used to trigger the entrapment and release of antibiotics on the surface of titanium plate. The entrapment of antibiotics relies on the electrochemically induced pH gradient generated at the titanium surface that allows the gelation of an aminopolysaccharide chitosan and codeposition of vancomycin, a common antibiotic, within chitosan gel. The release of vancomycin is controlled by an anodic signal imposed to the titanium plate that causes a pH decrease and erosion of chitosan gel. We show that the on demand entrapment and release of vancomycin at the surface of titanium plate is fundamentally altered and controlled by voltage. We expect that this rapid, mild and facile electrochemical process for antibiotics loading and release will find applications in controlled drug release from titanium implants. Copyright © 2012 Wiley Periodicals, Inc.

  15. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode.

    Science.gov (United States)

    Mehraeen, Shayan; Taşdemir, Adnan; Gürsel, Selmiye Alkan; Yürüm, Alp

    2018-06-22

    The pursuit of a promising replacement candidate for graphite as a Li-ion battery anode, which can satisfy both engineering criteria and market needs has been the target of researchers for more than two decades. In this work, we have investigated the synergistic effect of nitrogen-doped reduced graphene oxide (NrGO) and nanotubular TiO 2 to achieve high rate capabilities with high discharge capacities through a simple, one-step and scalable method. First, nanotubes of hydrogen titanate were hydrothermally grown on the surface of NrGO sheets, and then converted to a mixed phase of TiO 2 -B and anatase (TB) by thermal annealing. Specific surface area, thermal gravimetric, structural and morphological characterizations were performed on the synthesized product. Electrochemical properties were investigated by cyclic voltammetry and cyclic charge/discharge tests. The prepared anode showed high discharge capacity of 150 mAh g -1 at 1 C current rate after 50 cycles. The promising capacity of synthesized NrGO-TB was attributed to the unique and novel microstructure of NrGO-TB in which long nanotubes of TiO 2 have been grown on the surface of NrGO sheets. Such architecture synergistically reduces the solid-state diffusion distance of Li + and increases the electronic conductivity of the anode.

  16. Mesoporous Silicon-Based Anodes

    Science.gov (United States)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  17. A new concept of bio-multifunctional nanotubular surfaces for dental implants: tribocorrosion resistant, antibacterial and osteogenic

    OpenAIRE

    Alves, Sofia Afonso

    2017-01-01

    PhD thesis in Biomedical Engineering Dental implant market is continuously growing due to the constant increase in life expectancy and higher concerns on oral hygiene and aesthetics. Titanium-based materials are the most widely used in dental implants due to their superior biocompatibility, mechanical properties, and excellent corrosion resistance. However, despite the high overall success rate of dental implants, a significant number of failures still occur. Implant failure...

  18. Anodic Concentration Polarization in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Williford, Rick E.; Chick, Lawrence A.; Maupin, Gary D.; Simner, Steve P.; Stevenson, Jeffry W.; Khaleel, Mohammad A.; Wachsman, ED, et al

    2003-08-01

    Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. High tortuosities (bulk diffusion resistances) are often assumed to explain this behavior. However, recent experiments show that anodic concentration polarization originates in the immediate vicinity of the reactive triple phase boundary (TPB) sites near the anode/electrolyte interface. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface.

  19. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  20. Opportunities in the electrowinning of molten titanium from titanium dioxide

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2005-10-01

    Full Text Available The value chain of titanium products shows that the difference between the cost of titanium ingot and titanium dioxide is about $9/kg titanium. In contrast, the price of aluminum, which is produced in a similar way, is only about $1.7/kg...

  1. Ellipso-Microscopic Observation of Titanium Surface under UV-Light Irradiation

    International Nuclear Information System (INIS)

    Fushimi, K.; Kurauchi, K.; Nakanishi, T.; Hasegawa, Y.; Ueda, M.; Ohtsuka, T.

    2016-01-01

    The ellipso-microscopic observation of a titanium surface undergoing anodization in 0.05 mol dm -3 of H 2 SO 4 was conducted. During irradiation by ultra-violet (UV) light with a wavelength of 325 nm, the titanium surface allowed for the flow of a photo-induced current and showed up as a bright, patch-like image on an ellipso-microscopic view. The brightness and patch-pattern in the image changed with flowing photo-induced current. The changes in the brightness and the image corresponded to the formation and/or degradation of titanium oxide due to the photo-electrochemical reaction of the oxide. An in situ monitoring using the ellipso-microscope revealed that the film change was dependent on the irradiation light power, by UV-light increases the anodic current and results in the initiation of pitting at lower potentials as compared with the non-irradiated condition.

  2. Novel technology development through thermal drying of encapsulated Kluyveromyces marxianus in micro- and nano-tubular cellulose in lactose fermentation and its evaluation for food production.

    Science.gov (United States)

    Papapostolou, Harris; Servetas, Yiannis; Bosnea, Loulouda A; Kanellaki, Maria; Koutinas, Athanasios A

    2012-12-01

    A novel technology development based on the production of a low-cost starter culture for ripening of cheeses and baking is reported in the present study. The starter culture comprises thermally dried cells of Kluyveromyces marxianus encapsulated in micro- and nano-tubular cellulose. For production of a low-cost and effective biocatalyst, whey was used as raw material for biomass production and thermal drying methods (convective, conventional, and vacuum) were applied and evaluated at drying temperatures ranging from 35 to 60 °C. The effect of drying temperature of biocatalysts on fermentability of lactose and whey was evaluated. Storage stability and suitability of biocatalysts as a commercial starter cultures was also assessed and evaluated. All thermally dried biocatalysts were found to be active in lactose and whey fermentation. In all cases, there was sugar conversion ranging from 92 to 100 %, ethanol concentration of up to 1.47 % (v/v), and lactic acid concentrations ranged from 4.1 to 5.5 g/l. However, convective drying of the encapsulated cells of K. marxianus in micro- and nano-tubular cellulose was faster and a more effective drying method while drying at 42 °C appear to be the best drying temperature in terms of cell activity, ethanol, and lactic acid formation. Storage of the biocatalysts for 3 months at 4 °C proved maintenance of its activity even though fermentation times increased by 50-100 % compared with the fresh dried ones.

  3. Electrical characterization of TiO{sub 2} nanotubes synthesized through electrochemical anodizing method

    Energy Technology Data Exchange (ETDEWEB)

    Manescu, Veronica; Paltanea, Gheorghe; Popovici, Dorina [POLITEHNICA University from Bucharest, Electrical Engineering Department, 313 Splaiul Independentei, Bucharest (Romania); Jiga, Gabriel [POLITEHNICA University from Bucharest, Strength of Materials Department, 313 Splaiul Independentei, Bucharest (Romania)

    2016-05-18

    In the present paper, the electrochemical anodizing method was used for the obtaining of TiO{sub 2} nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H{sub 2}O – 49.5 wt % glycerol – 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.

  4. Contribution to the study of the electrochemical behaviour of titanium and of its industrial shores in sulphuric environment. Characteristics of their resistance to pitting corrosion in neutral and acid halogenous environment

    International Nuclear Information System (INIS)

    Petit, Jacques-Alain

    1975-01-01

    After a presentation of the general metallurgical, physical, and corrosion resistance characteristics of titanium and of its alloys, this research thesis presents the experimental means, discusses the influence of experimental conditions on the assessment of the electrochemical behaviour of titanium and of its alloys. It reports an investigation of the cathodic behaviour of non-alloyed titanium and notably the hydrogen release kinetics in a concentrated acid environment. It discusses the influence of alloy composition on their cathodic behaviour, addresses the anodic behaviour of titanium and of its alloys in sulphuric environment, and the pitting corrosion of titanium and of its alloys in an acid and neutral halogenous environment [fr

  5. Machinability of Titanium Alloys

    Science.gov (United States)

    Rahman, Mustafizur; Wong, Yoke San; Zareena, A. Rahmath

    Titanium and its alloys find wide application in many industries because of their excellent and unique combination of high strength-to-weight ratio and high resistance to corrosion. The machinability of titanium and its alloys is impaired by its high chemical reactivity, low modulus of elasticity and low thermal conductivity. A number of literatures on machining of titanium alloys with conventional tools and advanced cutting tool materials is reviewed. The results obtained from the study on high speed machining of Ti-6Al-4V alloys with cubic boron nitride (CBN), binderless cubic boron nitride (BCBN) and polycrystalline diamond (PCD) are also summarized.

  6. Production of titanium tetrachloride

    International Nuclear Information System (INIS)

    Perillo, P.M.; Botbol, O.

    1990-01-01

    This report presents a summary of results from theoperation of a laboratory scale for the production in batches of approximately 100 gs of titanium tetrachloride by chlorination with chloroform and carbon tetrachloride between 340 deg C and 540 deg C. Chlorination agent vapors were passed through a quartz column reacting with titanium oxide powder agglomerated in little spheres. Obtained titanium tetrachloride was condensed in a condenser, taken in a ballon and then purified by fractional distillation. Optimun temperature for chloroform was 400 deg C with 74 % yield and for carbon tetrachloride was 500 deg C with 69 % yield. (Author) [es

  7. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  8. The corrosion rate and the hydrogen absorption behavior of titanium under anaerobic condition

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Taniguchi, Naoki

    2006-01-01

    Titanium is one of the candidate materials for overpacks as a high corrosion resistance metal. Hydrogen embrittlement is a main cause of the damage of long term integrity of titanium overpack. It is not well known about the corrosion resistance and hydrogen absorption behavior of titanium under anaerobic condition. In this study, the completely sealed ampoule test and the immersion test of titanium was carried out in aqueous solution and bentonite in order to obtain reliable data about the hydrogen generation rate and the ratio of hydrogen absorption in titanium. As the results of the tests with changing the environmental factors, obvious higher corrosion rates were observed at high carbonate (1 M) and high pH (pH 13) conditions due to the increase in the anodic reaction rate. In other condition, corrosion rate of titanium were estimated to be in the order of 10 -3 - 10 -2 μm/y. Almost all (<98%) of the hydrogen generated by corrosion was absorbed into titanium. Assuming that the time evolution of the hydrogen content in titanium follows linear law to make conservative assessment, the absorbed hydrogen content was estimated to be of 400-500 ppm in 1000 years. (author)

  9. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  10. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    Directory of Open Access Journals (Sweden)

    Michael Hu

    2012-10-01

    Full Text Available Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs and bulk heterojuntion solar cells (BHJs]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  11. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  12. Determination of ruthenium and tin on electrochemical anodes by energy-dispersive X-ray fluorescence.

    Science.gov (United States)

    Bramstedt, W R; Hardee, K L; Johnson, B R; Harrington, D E

    1981-10-01

    "Dimensionally Stable Anodes" (DSA)(R) have gained wide acceptance in electrochemical production of chlorine and caustic soda. The DSAs are usually composed of electrocatalytic layers of precious and non-precious metal oxides produced by thermal decomposition of salts on a valve-metal substrate (e.g., titanium). They have long lifetimes (some years) in commercial service, and accelerated aging is used in testing them. In these tests the cell potential is stable for most of the anode life. Failure of an anode is characterized by a rapid increase in potential to beyond the point of practical operation of the cell. Non-destructive X-ray techniques have been utilized to investigate the mechanism involved. It has been established that the precious metal content has been reduced by 50-60% when the anodes fail. Although present DSA coatings are more than adequate for commercial applications, there is continuing interest in improving them. The materials for DSA formulation include the precious metals iridium, ruthenium and rhodium, the non-precious metals tin, antimony and manganese, and the valve metals titanium and tantalum.

  13. Monitoring of epitaxial graphene anodization

    International Nuclear Information System (INIS)

    Vagin, Mikhail Yu.; Sekretaryova, Alina N.; Ivanov, Ivan G.; Håkansson, Anna; Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa; Lundström, Ingemar; Eriksson, Mats

    2017-01-01

    Anodization of a graphene monolayer on silicon carbide was monitored with electrochemical impedance spectroscopy. Structural and functional changes of the material were observed by Raman spectroscopy and voltammetry. A 21 fold increase of the specific capacitance of graphene was observed during the anodization. An electrochemical kinetic study of the Fe(CN) 6 3−/4− redox couple showed a slow irreversible redox process at the pristine graphene, but after anodization the reaction rate increased by several orders of magnitude. On the other hand, the Ru(NH 3 ) 6 3+/2+ redox couple proved to be insensitive to the activation process. The results of the electron transfer kinetics correlate well with capacitance measurements. The Raman mapping results suggest that the increased specific capacitance of the anodized sample is likely due to a substantial increase of electron doping, induced by defect formation, in the monolayer upon anodization. The doping concentration increased from less than 1 × 10 13 of the pristine graphene to 4–8 × 10 13 of the anodized graphene.

  14. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  15. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  16. Titanium allergy: A literature review

    Directory of Open Access Journals (Sweden)

    Manish Goutam

    2014-01-01

    Full Text Available Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium.

  17. Titanium allergy: a literature review.

    Science.gov (United States)

    Goutam, Manish; Giriyapura, Chandu; Mishra, Sunil Kumar; Gupta, Siddharth

    2014-11-01

    Titanium has gained immense popularity and has successfully established itself as the material of choice for dental implants. In both medical and dental fields, titanium and its alloys have demonstrated success as biomedical devices. Owing to its high resistance to corrosion in a physiological environment and the excellent biocompatibility that gives it a passive, stable oxide film, titanium is considered the material of choice for intraosseous use. There are certain studies which show titanium as an allergen but the resources to diagnose titanium sensivity are very limited. Attention is needed towards the development of new and precise method for early diagnosis of titanium allergy and also to find out the alternative biomaterial which can be used in place of titanium. A review of available articles from the Medline and PubMed database was done to find literature available regarding titanium allergy, its diagnosis and new alternative material for titanium.

  18. Titanium by design: TRIP titanium alloy

    Science.gov (United States)

    Tran, Jamie

    Motivated by the prospect of lower cost Ti production processes, new directions in Ti alloy design were explored for naval and automotive applications. Building on the experience of the Steel Research Group at Northwestern University, an analogous design process was taken with titanium. As a new project, essential kinetic databases and models were developed for the design process and used to create a prototype design. Diffusion kinetic models were developed to predict the change in phase compositions and microstructure during heat treatment. Combining a mobility database created in this research with a licensed thermodynamic database, ThermoCalc and DICTRA software was used to model kinetic compositional changes in titanium alloys. Experimental diffusion couples were created and compared to DICTRA simulations to refine mobility parameters in the titanium mobility database. The software and database were able to predict homogenization times and the beta→alpha plate thickening kinetics during cooling in the near-alpha Ti5111 alloy. The results of these models were compared to LEAP microanalysis and found to be in reasonable agreement. Powder metallurgy was explored using SPS at GM R&D to reduce the cost of titanium alloys. Fully dense Ti5111 alloys were produced and achieved similar microstructures to wrought Ti5111. High levels of oxygen in these alloys increased the strength while reducing the ductility. Preliminary Ti5111+Y alloys were created, where yttrium additions successfully gettered excess oxygen to create oxides. However, undesirable large oxides formed, indicating more research is needed into the homogeneous distribution of the yttrium powder to create finer oxides. Principles established in steels were used to optimize the beta phase transformation stability for martensite transformation toughening in titanium alloys. The Olson-Cohen kinetic model is calibrated to shear strains in titanium. A frictional work database is established for common alloying

  19. Corrosion of titanium: Part 1: aggressive environments and main forms of degradation.

    Science.gov (United States)

    Prando, Davide; Brenna, Andrea; Diamanti, Maria Vittoria; Beretta, Silvia; Bolzoni, Fabio; Ormellese, Marco; Pedeferri, MariaPia

    2017-11-11

    Titanium has outstanding corrosion resistance due to the external natural oxide protective layer formed when it is exposed to an aerated environment. Despite this, titanium may suffer different forms of corrosion in severe environments: uniform corrosion, pitting and crevice corrosion, hydrogen embrittlement, stress-corrosion cracking, fretting corrosion and erosion. In this first review, forms of corrosion affecting titanium are analyzed based on a wide literature review. For each form of corrosion, the mechanism and most severe environment are reported according to the current understanding.In the second part, this review will address the possible surface treatments that can increase corrosion resistance on commercially pure titanium: Electrochemical anodizing, thermal oxidation, chemical oxidation and bulk treatments such as alloying will be considered, highlighting the advantages of each technique.

  20. Use of hydrous titanium dioxide as potential sorbent for the removal of manganese from water

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Kamaraj

    2014-12-01

    Full Text Available This research article deals with an electrosynthesis of hydrous titanium dioxide by anodic dissolution of titanium sacrificial anodes and their application for the adsorption of manganese from aqueous solution. Titanium sheet was used as the sacrificial anode and galvanized iron sheet was used as the cathode. The optimization of different experimental parameters like initial ion concentration, current density, pH, temperature, etc., on the removal efficiency of manganese was carried out. The maximum removal efficiency of 97.55 % was achieved at a current density of 0.08 A dm-2 and pH of 7.0. The Langmuir, Freundlich and Redlich Peterson isotherm models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The adsorption of manganese preferably followed the Langmuir adsorption isotherm. The adsorption kinetics was modelled by first- and second- order rate models and the adsorption kinetic studies showed that the adsorption of manganese was best described using the second-order kinetic model. Thermodynamic parameters indicate that the adsorption of manganese on hydrous titanium dioxide was feasible, spontaneous and exothermic.

  1. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  2. Preparation of titanium diboride powders from titanium alkoxide and ...

    Indian Academy of Sciences (India)

    Titanium diboride powders were prepared through a sol–gel and boron carbide reduction route by using TTIP and B4C as titanium and boron sources. The influence of TTIP concentration, reaction temperature and molar ratio of precursors on the synthesis of titanium diboride was investigated. Three different concentrations ...

  3. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes

    Science.gov (United States)

    Sun, Yu; Sun, Shupei; Liao, Xiaoming; Wen, Jiang; Yin, Guangfu; Pu, Ximing; Yao, Yadong; Huang, Zhongbing

    2018-05-01

    The aim of this study is to investigate the effect of different annealing temperature and atmosphere on the surface wettability retaining properties of titania nanotubes (TNs) fabricated by anodization. The TNs morphology, crystal phase composition and surface elemental composition and water contact angle (WCA) were investigated by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and contact angle instrument, respectively. After the samples annealed at 200 °C, 450 °C, 850 °C have been stored in air for 28 days, the WCAs increase to 31.7°, 21.1° and 110.5°, respectively. The results indicate that crystal phase composition of TNs plays an important role in surface wettability. Compared with the WCA (21.1°) of the samples annealed in air after 28 days, the WCA of samples annealed in oxygen-deficient atmosphere is lower, suggesting the contribution of oxygen vacancy in the enhanced hydrophilicity-retaining ability. Our study demonstrates that the surface hydrophilicity-retaining ability of TNs is related to the ordered nanotubular structure, crystal structure, the amount of surface hydroxyl group and oxygen vacancy defects.

  4. Titanium metal: extraction to application

    Energy Technology Data Exchange (ETDEWEB)

    Gambogi, Joseph (USGS, Reston, VA); Gerdemann, Stephen J.

    2002-09-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium. In this paper, we discuss all aspects of the titanium industry from ore deposits through extraction to present and future applications. The methods of both primary (mining of ore, extraction, and purification) and secondary (forming and machining) operations will be analyzed. The chemical and physical properties of titanium metal will be briefly examined. Present and future applications for titanium will be discussed. Finally, the economics of titanium metal production also are analyzed as well as the advantages and disadvantages of various alternative extraction methods.

  5. Industrial experience with titanium

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Shoesmith, D.W.

    1997-09-01

    Titanium is a reference material for the construction of waste containers in the Canadian Nuclear Fuel Waste Management Program. It has been in industrial service for over 30 a, often in severe corrosion environments, but it is still considered a relatively exotic material with limited operating history. This has arisen because of the aerospace applications of this material and the misconception that the high strength-to-weight ratio dominates the choice of this material. In fact, the advantage of titanium lies in its high reliability and excellent corrosion resistance. It has a proven record in seawater heat exchanger service and a demonstrated excellent reliability even in polluted water. For many reasons it is the technically correct choice of material for marine applications. In this report we review the industrial service history of titanium, particularly in hot saline environments, and demonstrate that it is a viable waste container material, based upon this industrial service history and operating experience. (author)

  6. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  7. Anodic oxide films on tungsten

    International Nuclear Information System (INIS)

    Di Paola, A.; Di Quarto, F.; Sunseri, C.

    1980-01-01

    Scanning electron microscopy was used to investigate the morphology of anodic oxide films on tungsten, obtained in various conditions of anodization. Studies were made of the growth of porous films, whose thickness increases with time and depends upon the current density. Temperature and electrolyte composition influence the film morphology. Gravimetric measurements of film dissolution at 70 0 C show that after a transient time, the rate of metal dissolution and that of film formation coincide. The porous films thicken because tungsten dissolves as WO 2 2+ and precipitates as WO 3 .H 2 O. (author)

  8. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  9. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  10. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  11. Insight into the Role of Surface Wettability in Electrocatalytic Hydrogen Evolution Reactions Using Light-Sensitive Nanotubular TiO2 Supported Pt Electrodes

    Science.gov (United States)

    Meng, Chenhui; Wang, Bing; Gao, Ziyue; Liu, Zhaoyue; Zhang, Qianqian; Zhai, Jin

    2017-02-01

    Surface wettability is of importance for electrochemical reactions. Herein, its role in electrochemical hydrogen evolution reactions is investigated using light-sensitive nanotubular TiO2 supported Pt as hydrogen evolution electrodes (HEEs). The HEEs are fabricated by photocatalytic deposition of Pt particles on TiO2 nanotubes followed by hydrophobization with vaporized octadecyltrimethoxysilane (OTS) molecules. The surface wettability of HEEs is subsequently regulated in situ from hydrophobicity to hydrophilicity by photocatalytic decomposition of OTS molecules using ultraviolet light. It is found that hydrophilic HEEs demonstrate a larger electrochemical active area of Pt and a lower adhesion force to a gas bubble when compared with hydrophobic ones. The former allows more protons to react on the electrode surface at small overpotential so that a larger current is produced. The latter leads to a quick release of hydrogen gas bubbles from the electrode surface at large overpotential, which ensures the contact between catalysts and electrolyte. These two characteristics make hydrophilic HEEs generate a much high current density for HERs. Our results imply that the optimization of surface wettability is of significance for improving the electrocatalytic activity of HEEs.

  12. Titanium production for aerospace applications

    Directory of Open Access Journals (Sweden)

    Vinicius A. R. Henriques

    2009-01-01

    Full Text Available Titanium parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent general corrosion resistance. The objective of this work is to present a review of titanium metallurgy focused on aerospace applications, including developments in the Brazilian production of titanium aimed at aerospace applications. The article includes an account of the evolution of titanium research in the Brazilian Institute (IAE/CTA and the current state-of-art of titanium production in Brazil.

  13. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  14. Titanium and zirconium alloys

    International Nuclear Information System (INIS)

    Pinard Legry, G.

    1994-01-01

    Titanium and zirconium pure and base alloys are protected by an oxide film with anionic vacancies which gives a very good resistance to corrosion in oxidizing medium, in some ph ranges. Results of pitting and crevice corrosion are given for Cl - , Br - , I - ions concentration with temperature and ph dependence, also with oxygenated ions effect. (A.B.). 32 refs., 6 figs., 3 tabs

  15. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  16. Characteristics of Sr0.92Y0.08Ti1-yNiyO3-δ anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ anode using CH4 fuel in solid oxide fuel cells

    Science.gov (United States)

    Park, Eun Kyoung; Lee, Soonil; Yun, Jeong Woo

    2018-01-01

    Strontium titanium oxide co-doped with yttrium and nickel (SrxY1-xTiyNi1-yO3-δ; hereafter, SYTN), was investigated as an alternative anode material for solid oxide fuel cells. To improve the ionic conductivity of the Sr0.92Y0.08TiO3-δ (SYT) anode, Ni2+ was substituted into the B-site (initially occupied by Ti4+), thereby forming oxygen vacancies. To analyze the effects of Ni-doping in the SYT anode, the electrochemical properties of the SYTN anode were compared with those of the Ni-infiltrated SYT(Ni@SYT) using H2 and CH4 as fuels. The electrochemical reactions at the SYTN anode in the presence of both H2 and CH4 were limited by relatively slow reactions, such as non-charged processes including oxygen surface exchange and solid surface diffusion. The high electrical conductivity and excellent catalytic activity of the Ni nanoparticles in the Ni@SYT anode led to improved cell performance. CH4 decomposition at the Ni@SYT anode occurred via thermal pyrolysis of CH4 rather than by steam methane reforming, resulting in carbon deposition. In comparison, the poor inherent catalytic activity for CH4 oxidation exhibited by the SYTN anode minimized carbon deposition on the anode surface.

  17. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  18. Characterization of Micron-Scale Nanotublar Super Dielectric Materials

    Science.gov (United States)

    2015-09-01

    electrode surface area to overall energy density. 14. SUBJECT TERMS capacitor , supercapacitor, super dielectric material, titanium dioxide...by anodization and filled with a concentrated aqueous salt solution. Capacitors made up of this so-called nanotubular super dielectric material were...109  Table 11.  Super capacitor energy analysis based on numerical integration. ................109  Table 12.  Low and high salt NTSDM capacitances

  19. Fabrication of advanced design (grooved) cermet anodes

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr. [Pacific Northwest Lab., Richland, WA (United States); Huettig, F.R. [Ceramic Magnetics, Inc., Fairfield, NJ (United States)

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  20. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  1. Surface modification of titanium for load-bearing applications.

    Science.gov (United States)

    Bose, Susmita; Roy, Mangal; Das, Kakoli; Bandyopadhyay, Amit

    2009-12-01

    Titanium and its alloys are extensively used in load-bearing metallic devices. They are bioinert material and, therefore, get encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. Here we report modification of titanium surface using bioactive tricalcium phosphates (TCP) and nanoscale TiO2 to enhance cell-materials interaction. We have introduced bioactivity in Ti using laser-assisted coating of TCP and by anodization to grow surface TiO2 at room temperature using a mixed aqueous solution of sodium fluoride, citric acid and sulfuric acid as electrolyte. TCP coating showed a columnar Ti grains at the substrate side of the coating and transitioned to an equiaxed grains at the outside. Coating hardness increased from 882 +/- 67 to 1029 +/- 112 Hv as the volume fraction of TCP increased in the coating. For TiO2 nanotubes, microscopic analysis showed tubes of 50 nm in diameter with wall thickness of 15 nm and typical length between 200 nm and 1 micron based on anodization times. Effects of TCP and nanoscale TiO2 coating on bone cell-material interaction were examined by culturing osteoprecursor cells (OPC1) on coated surfaces. Antibacterial activity analysis using metallic Ag via electrodeposition showed over 99% antibacterial activity against the growth of colonies of Pseudomonas aeruginosa.

  2. Functional nanostructured titanium nitride films obtained by sputtering magnetron

    International Nuclear Information System (INIS)

    Sanchez, O.; Hernandez-Velez, M.; Navas, D.; Auger, M.A.; Baldonedo, J.L.; Sanz, R.; Pirota, K.R.; Vazquez, M.

    2006-01-01

    Development of new methods in the formation of hollow structures, in particular, nanotubes and nanocages are currently generating a great interest as a consequence of the growing relevance of these nanostructures on many technological fields, ranging from optoelectronics to biotechnology. In this work, we report the formation of titanium nitride (TiN) nanotubes and nanohills via reactive sputtering magnetron processes. Anodic Alumina Membranes (AAM) were used as template substrates to grow the TiN nanostructures. The AAM were obtained through electrochemical anodization processes by using oxalic acid solutions as electrolytes. The nanotubes were produced at temperatures below 100 deg. C, and using a pure titanium (99.995%) sputtering target and nitrogen as reactive gas. The obtained TiN thin films showed surface morphologies adjusted to pore diameter and interpore distance of the substrates, as well as ordered arrays of nanotubes or nanohills depending on the sputtering and template conditions. High Resolution Scanning Electron Microscopy (HRSEM) was used to elucidate both the surface order and morphology of the different grown nanostructures. The crystalline structure of the samples was examined using X-ray Diffraction (XRD) patterns and their qualitative chemical composition by using X-ray Energy Dispersive Spectroscopy (XEDS) in a scanning electron microscopy

  3. Titanium nitride deposition in titanium implant alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Cairo, C.A.A.; Faria, J.; Lemos, T.G.; Galvani, E.T.

    2009-01-01

    Titanium nitride (TiN) is an extremely hard material, often used as a coating on titanium alloy, steel, carbide, and aluminum components to improve wear resistance. Electron Beam Physical Vapor Deposition (EB-PVD) is a form of deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum, producing a thin film in a substrate. In this work are presented results of TiN deposition in targets and substrates of Ti (C.P.) and Ti- 13 Nb- 13 Zr obtained by powder metallurgy. Samples were produced by mixing of hydride metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900°C up to 1400 °C, in vacuum. The deposition was carried out under nitrogen atmosphere. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure, with ideal characteristics for an adequate deposition and adherence. The film layer presented a continuous structure with 15μm. (author)

  4. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xu N

    2017-01-01

    Full Text Available Na Xu,1,2,* Hao Cheng,3,4,* Jiangwen Xu,1 Feng Li,3 Biao Gao,1 Zi Li,3 Chenghao Gao,3 Kaifu Huo,5 Jijiang Fu,1,2 Wei Xiong3 1The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, 2Institute of Biology and Medicine, Wuhan University of Science and Technology, 3Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China; 4Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 5Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Antibiotic-resistant bacteria have become a major issue due to the long-term use and abuse of antibiotics in treatments in clinics. The combination therapy of antibiotics and silver (Ag nanoparticles is an effective way of both enhancing the antibacterial effect and decreasing the usage of antibiotics. Although the method has been proved to be effective in vitro, no in vivo tests have been carried out at present. Herein, we described a combination therapy of local delivery of Ag and systemic antibiotics treatment in vitro in an infection model of rat. Ag nanoparticle-loaded TiO2 nanotube (NT arrays (Ag-NTs were fabricated on titanium implants for a customized release of Ag ion. The antibacterial properties of silver combined with antibiotics vancomycin, rifampin, gentamicin, and levofloxacin, respectively, were tested in vitro by minimum inhibitory concentration (MIC assay, disk diffusion assay, and antibiofilm formation test. Enhanced antibacterial activity of combination therapy was observed for all the chosen bacterial strains, including gram-negative Escherichia coli (ATCC 25922, gram

  5. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  6. On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fojt, Jaroslav, E-mail: fojtj@vscht.cz; Filip, Vladimir; Joska, Ludek

    2015-11-15

    Graphical abstract: - Highlights: • The nanostructured surface on Ti–36Nb–6Ta alloy was prepared by anodic oxidation. • The nanotubes properties were modified by electrochemical process parameters. • The composition and mechanical properties of the anodized surface were investigated. • The adhesive strength of the nanostructures was over 30 MPa. - Abstract: The nanostructuring of titanium and its alloys surfaces is used inter alia for increasing the medical implants osseointegration. Many papers about this topic were published. However, in most cases there were no informations about nanostructures adhesion to the surface, which is crucial from the application point of view. The aim of this study was to prepare nanostructures on titanium beta alloy and optimized its adhesion to the alloy surface. Nanotubes were formed by anodic polarization in electrolyte containing fluoride ions. The composition of the nanotubes was described by X-ray photoelectron spectroscopy. Nanostructures adhesion was tested by pull-of method. The nanotubes on the Ti–36Nb–6Ta beta alloy surface were prepared by anodization. The nanostructures properties were modified by electrochemical process parameters. The adhesion of the nanotubes prepared in this work was satisfactory for implantological applications.

  7. Titanium Honeycomb Panel Testing

    Science.gov (United States)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  8. Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes

    Science.gov (United States)

    Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-03-01

    The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.

  9. Tube Inner Coating of Non-Conductive Films by Pulsed Reactive Coaxial Magnetron Plasma with Outer Anode

    Directory of Open Access Journals (Sweden)

    Musab Timan Idriss Gasab

    2018-03-01

    Full Text Available The double-ended coaxial magnetron pulsed plasma (DCMPP method with auxiliary outer anode was introduced in order to achieve the uniform coating of non-conductive thin films on the inner walls of insulator tubes. In this study, titanium (Ti was employed as a cathode (sputtering target, and a glass tube was used as a substrate. In an argon (Ar and oxygen (O2 gas mixture, magnetron plasma was generated. Oxygen gas was introduced to deposit a titanium oxide (TiO2 film. A comparison between films coated with and without an auxiliary outer anode was made. As a result, it was clearly shown that the DCMPP method using an auxiliary outer anode enhanced the uniformity of the deposited non-conductive film compared to the conventional DCMPP method. Moreover, the optimum conditions under which the thin TiO2 film was deposited on the inner wall of the glass tube were revealed. From the results, it was supposed that the auxiliary outer anode contributed to the uniformity of the distributions of deposited negative charge on the non-conductive film and consequently the electric field and the plasma density uniform.

  10. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  11. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  12. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  13. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants.

    Science.gov (United States)

    Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio

    2014-01-01

    Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.

  14. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  15. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  16. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  17. Towards a new titanium sector: Aerospace

    CSIR Research Space (South Africa)

    Du Preez, W

    2012-10-01

    Full Text Available Sector: Aerospace 4th Biennial Conference Presented by: Dr Willie du Preez Director: Titanium Centre of Competence Date: 9 October 2012 Outline ? Why Titanium? ? The Opportunity for South Africa ? The SA Titanium Industry Strategy ? Primary...747 B777 A380 A350 B787 Materials used in Modern Aircraft: Composites vs Titanium ? CSIR 2012 Slide 6 Source: Engineering News Online, American Institute of Aeronautics & Astronautics Aluminium Composite Steel Titanium Others Titanium...

  18. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants.

    Science.gov (United States)

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-05-06

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20%±10.89%) was much greater than those of machined (33.58%±8.63%), SLA (58.47%±12.89), or ANO Ti (59.62%±18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  19. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  20. Anodisation Increases Integration of Unloaded Titanium Implants in Sheep Mandible

    Science.gov (United States)

    Duncan, Warwick J.; Lee, Min-Ho; Bae, Tae-Sung; Lee, Sook-Jeong; Gay, Jennifer; Loch, Carolina

    2015-01-01

    Spark discharge anodic oxidation forms porous TiO2 films on titanium implant surfaces. This increases surface roughness and concentration of calcium and phosphate ions and may enhance early osseointegration. To test this, forty 3.75 mm × 13 mm titanium implants (Megagen, Korea) were placed into healed mandibular postextraction ridges of 10 sheep. There were 10 implants per group: RBM surface (control), RBM + anodised, RBM + anodised + fluoride, and titanium alloy + anodised surface. Resonant frequency analysis (RFA) was measured in implant stability quotient (ISQ) at surgery and at sacrifice after 1-month unloaded healing. Mean bone-implant contact (% BIC) was measured in undemineralised ground sections for the best three consecutive threads. One of 40 implants showed evidence of failure. RFA differed between groups at surgery but not after 1 month. RFA values increased nonsignificantly for all implants after 1 month, except for controls. There was a marked difference in BIC after 1-month healing, with higher values for alloy implants, followed by anodised + fluoride and anodised implants. Anodisation increased early osseointegration of rough-surfaced implants by 50–80%. RFA testing lacked sufficient resolution to detect this improvement. Whether this gain in early bone-implant contact is clinically significant is the subject of future experiments. PMID:26436099

  1. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    Science.gov (United States)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  2. Role of laser radiation in activating anodic dissolution under electrochemical machining of metals and alloys

    Directory of Open Access Journals (Sweden)

    Rakhimyanov Kharis

    2017-01-01

    Full Text Available The specific features of electrochemical dissolution of the 12X18H9T stainless steel, the OT-4 titanium alloy and the BK8 hard alloy in the sodium nitrate water solution exposed to 1.06 micrometer wavelength laser radiation were considered. It is found that depassivation of the anode surface is the main mechanism of laser activation in electrochemical dissolving of materials. It is established that the maximum efficiency of laser electrochemical machining is achieved at a pulse repetition frequency of 10 kHz laser radiation. It is connected with the photoactivation mechanism of electrolyte solution molecules, which increases their reaction capacity.

  3. Chemical changes of titanium and titanium dioxide under electron bombardment

    Directory of Open Access Journals (Sweden)

    Romins Brasca

    2007-09-01

    Full Text Available The electron induced effect on the first stages of the titanium (Ti0 oxidation and titanium dioxide (Ti4+ chemical reduction processes has been studied by means of Auger electron spectroscopy. Using factor analysis we found that both processes are characterized by the appearance of an intermediate Ti oxidation state, Ti2O3 (Ti3+.

  4. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  5. The effect of the presence of alcohol in the dispersing phase of oxide sols on the properties of RuO2-TiO2/Ti anodes obtained by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    R. ATANASOSKI

    2000-09-01

    Full Text Available The effect of the addition of ethanol and 2-propanol to the dispersing phase of TiO2 and RuO2 sols mixture on the morphology and, consequently, on the electrochemical properties of the sol-gel obtained activated titanium anodes was investigated. The properties of the obtained anodes were compared to those obtained by the thermal decomposition of appropriate chloride salts. The morphology of the anode coatings was examined by scanning tunneling microscopy. The electrochemical behaviour was investigated by cyclic voltammetry and by polarization measurements. An accelerated stability test was used for the examination of the stability of the anodes under simultaneous oxygen and chlorine evolution reaction. A dependence of the anode stability on the type of added alcohol is indicated.

  6. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application

    Directory of Open Access Journals (Sweden)

    Juliana P. L. Gonçalves

    2014-11-01

    Full Text Available Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an

  7. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  8. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  9. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    International Nuclear Information System (INIS)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-01-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel–titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO 2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces. (paper)

  10. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    Science.gov (United States)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  11. Ion Implantation Studies of Titanium Metal Surfaces.

    Science.gov (United States)

    1981-01-01

    this peak for both titanium and vanadium . It cannot be associated with an inter-band excitation of any of the oxygen states since it appears in the...Half inch diameter polycrystalline rods of titanium monoxide (TiO), titanium dioxide (TiO 2 and titanium sesquioxide (Ti2 03 ) were obtained from

  12. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  13. Screened anode N/sub 2/ laser

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, M.M.F.

    1985-01-01

    An experimental study of the effect of screening the discharge channel on the output energy is presented. It has been found that a screened anode nitrogen laser generates higher output energy than that of a screened cathode, and also higher than that when both cathode and anode are unshielded at higher pressures.

  14. Ultrasound-assisted anodization of aluminum in oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rong; Jiang Kaiming [Department of Physics, Shanghai Maritime University, 1550 Pudong Avenue, Shanghai 200135 (China); Zhu Yun [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Qi Haiyang [Department of Physics, Shanghai Maritime University, 1550 Pudong Avenue, Shanghai 200135 (China); Ding Guqiao, E-mail: gqding@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2011-10-15

    Porous anodic alumina is an important nanoscale template for fabrication of various nanostructures. We report a new ultrasound-assisted anodization process in oxalic acid. Under the continuous irradiation of ultrasound, the one-step-anodized sample has a smooth and clean surface, and two-step-anodization brings ordered porous anodic alumina with higher growth rate of 52 {mu}m/h. The ultrasound applied during the anodization can clean the surface and enhance the nanopore growth since it can accelerate the oxide dissolving on the electrolyte/oxide interface. The ultrasound-assisted anodization may be utilized for other anodizations.

  15. Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes

    Science.gov (United States)

    Zhong, Yan; Ma, Yifan; Guo, Qiubo; Liu, Jiaqi; Wang, Yadong; Yang, Mei; Xia, Hui

    2017-01-01

    Highlighted by the safe operation and stable performances, titanium oxides (TiO2) are deemed as promising candidates for next generation lithium-ion batteries (LIBs). However, the pervasively low capacity is casting shadow on desirable electrochemical behaviors and obscuring their practical applications. In this work, we reported a unique template-assisted and two-step atomic layer deposition (ALD) method to achieve TiO2@Fe2O3 core-shell nanotube arrays with hollow interior and double-wall coating. The as-prepared architecture combines both merits of the high specific capacity of Fe2O3 and structural stability of TiO2 backbone. Owing to the nanotubular structural advantages integrating facile strain relaxation as well as rapid ion and electron transport, the TiO2@Fe2O3 nanotube arrays with a high mass loading of Fe2O3 attained desirable capacity of ~520 mA h g-1, exhibiting both good rate capability under uprated current density of 10 A g-1 and especially enhanced cycle stability (~450 mA h g-1 after 600 cycles), outclassing most reported TiO2@metal oxide composites. The results not only provide a new avenue for hybrid core-shell nanotube formation, but also offer an insight for rational design of advanced electrode materials for LIBs.

  16. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  17. Photoactive layered nanocomposites obtained by direct transferring of anodic TiO{sub 2} nanotubes to commodity thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ruy, E-mail: ruy.sanzgonzalez@cnr.it [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy); Buccheri, Maria Antonietta; Zimbone, Massimo; Scuderi, Viviana; Amiard, Guillaume; Impellizzeri, Giuliana [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy); Romano, Lucia [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy); Department of Physics, University of Catania, Via Santa Sofia 64, I-95123 Catania (Italy); Privitera, Vittorio [CNR-IMM, Via Santa Sofia 64, I-95123 Catania (Italy)

    2017-03-31

    Highlights: • Rapid and scalable synthesis of flexible photoactive layered nanocomposites is presented. • The nanocomposites show similar photonic efficiencies to TiO{sub 2} nanotubes and commercial products. • The nanocomposites exhibit antibacterial properties under 1 mW cm{sup −2} UVA. • The synthesis process is solvent-free and reduces the amount of raw materials. - Abstract: TiO{sub 2} nanotubes demonstrated to be a versatile nanostructure for biomaterials, clean energy and water remediation applications. However, the cost of titanium and the poor mechanical properties of the nanotubes hinder their adoption at large scale. This work presents a straightforward and scalable method for transferring photoactive anodic TiO{sub 2} nanotubes from titanium foils to commodity thermoplastic polymers, polypropylene, polyethylene terephthalate, polycarbonate, and polymethylmetacrylate, allowing the reusing of the remaining titanium. The obtained flexible nanocomposites reach a maximum photonic efficiencies of 0.038% (ISO-10678:2010) representing the 93% of photonic efficiency of TiO{sub 2} nanotubes on titanium. In addition, the nanocomposites and TiO{sub 2} nanotubes on titanium present similar antibacterial properties under 1 mW cm{sup −2} UV-A, 60% of Escherichia coli survival after 1 h of exposition. The final objective of this work is to point out main concepts and key parameters for a low-cost fabrication of a photoactive nanocomposite material.

  18. Anodic and cathodic reactions in molten calcium chloride

    International Nuclear Information System (INIS)

    Fray, D.J.

    2002-01-01

    Calcium chloride is a very interesting electrolyte in that it is available, virtually free, in high purity form as a waste product from the chemical industry. It has a very large solubility for oxide ions, far greater than many alkali halides and other divalent halides and has the same toxicity as sodium chloride and also a very high solubility in water. Intuitively, on the passage of current, it is expected that calcium would be deposited at the cathode and chlorine would evolve at the anode. However, if calcium oxide is added to the melt, it is possible to deposit calcium and evolve oxygen containing gases at the anode, making the process far less polluting than when chlorine is evolved. This process is discussed in terms of the addition of calcium to molten lead. Furthermore, these reactions can be altered dramatically depending upon the electrode materials and the other ions dissolved in the calcium chloride. As calcium is only deposited at very negative cathodic potentials, there are several interesting cathodic reactions that can occur and these include the decomposition of the carbonate ion and the ionization of oxygen, sulphur, selenium and tellurium. For example, if an oxide is used as the cathode in molten calcium chloride, the favoured reaction is shown to be the ionization of oxygen O + 2e - → O 2- rather than Ca 2+ + 2 e- → Ca. The oxygen ions dissolve in the salt leaving the metal behind, and this leads to the interesting hypothesis that metal oxides can be reduced directly to the metal purely by the use of electrons. Examples are given for the reduction of titanium dioxide, zirconium dioxide, chromium oxide and niobium oxide and by mixing oxide powders together and reducing the mixed compact, alloys and intermetallic compounds are formed. Preliminary calculations indicate that this new process should be much cheaper than conventional metallothermic reduction for these elements. (author)

  19. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  20. Tracking areal lithium densities from neutron activation - quantitative Li determination in self-organized TiO2nanotube anode materials for Li-ion batteries.

    Science.gov (United States)

    Portenkirchner, E; Neri, G; Lichtinger, J; Brumbarov, J; Rüdiger, C; Gernhäuser, R; Kunze-Liebhäuser, J

    2017-03-28

    Nanostructuring of electrode materials is a promising approach to enhance the performance of next-generation, high-energy density lithium (Li)-ion batteries. Various experimental and theoretical approaches allow for a detailed understanding of solid-state or surface-controlled reactions that occur in nanoscaled electrode materials. While most techniques which are suitable for nanomaterial investigations are restricted to analysis widths of the order of Å to some nm, they do not allow for characterization over the length scales of interest for electrode design, which is typically in the order of mm. In this work, three different self-organized anodic titania nanotube arrays, comprising as-grown amorphous titania nanotubes, carburized anatase titania nanotubes, and silicon coated carburized anatase titania nanotubes, have been synthesized and studied as model composite anodes for use in Li-ion batteries. Their 2D areal Li densities have been successfully reconstructed with a sub-millimeter spatial resolution over lateral electrode dimensions of 20 mm exploiting the 6 Li(n,α) 3 H reaction, in spite of the extremely small areal Li densities (10-20 μg cm -2 Li) in the nanotubular active material. While the average areal Li densities recorded via triton analysis are found to be in good agreement with the electrochemically measured charges during lithiation, triton analysis revealed, for certain nanotube arrays, areas with a significantly higher Li content ('hot spots') compared to the average. In summary, the presented technique is shown to be extremely well suited for analysis of the lithiation behavior of nanostructured electrode materials with very low Li concentrations. Furthermore, identification of lithiation anomalies is easily possible, which allows for fundamental studies and thus for further advancement of nanostructured Li-ion battery electrodes.

  1. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  2. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase.

    Science.gov (United States)

    Roman, Ioan; Trusca, Roxana Doina; Soare, Maria-Laura; Fratila, Corneliu; Krasicka-Cydzik, Elzbieta; Stan, Miruna-Silvia; Dinischiotu, Anca

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550°C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005-0.1mg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Influence of the Ti microstructure on anodic self-organized TiO.sub.2./sub. nanotube layers produced in ethylene glycol electrolytes.

    Czech Academy of Sciences Publication Activity Database

    Macák, J. M.; Jarošová, Markéta; Jäger, Aleš; Sopha, H.; Klementová, Mariana

    2016-01-01

    Roč. 371, May (2016), s. 607-612 ISSN 0169-4332 R&D Projects: GA ČR GBP108/12/G043; GA ČR(CZ) GA14-20744S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : titanum * anodization * titanium dioxide * nanotubes * EBSD Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) Impact factor: 3.387, year: 2016

  4. Low cost titanium--myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Paul C.; Hartman, Alan D.; Hansen, Jeffrey S.; Gerdemann, Stephen J.

    2001-01-01

    In 1998, approximately 57,000 tons of titanium metal was consumed in the form of mill products (1). Only about 5% of the 4 million tons of titanium minerals consumed each year is used to produce titanium metal, with the remainder primarily used to produce titanium dioxide pigment. Titanium metal production is primarily based on the direct chlorination of rutile to produce titanium tetrachloride, which is then reduced to metal using the Kroll magnesium reduction process. The use of titanium is tied to its high strength-to-weight ratio and corrosion resistance. Aerospace is the largest application for titanium, and titanium cost has prevented its use in non-aerospace applications including the automotive and heavy vehicle industries.

  5. Effect of anodization on corrosion behaviour and biocompatibility of ...

    Indian Academy of Sciences (India)

    Pores of some anodized samples are sealed by exposing the anodized surface in boiling water. Corrosion behaviour of the anodized specimen is studied in Ringer's solution at 30 ± 2 °C, using electrochemical impedance and cyclic polarization technique. Biocompatibility of the anodized surface is accessed using MG63 ...

  6. Evaluation of shot peening on the fatigue strength of anodized Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Costa Midori Yoshikawa Pitanga

    2006-01-01

    Full Text Available The increasingly design requirements for modern engineering applications resulted in the development of new materials with improved mechanical properties. Low density, combined with excellent weight/strength ratio as well as corrosion resistance, make the titanium attractive for application in landing gears. Fatigue control is a fundamental parameter to be considered in the development of mechanical components. The aim of this research is to analyze the fatigue behavior of anodized Ti-6Al-4V alloy and the influence of shot peening pre treatment on the experimental data. Axial fatigue tests (R = 0.1 were performed, and a significant reduction in the fatigue strength of anodized Ti-6Al-4V was observed. The shot peening superficial treatment, which objective is to create a compressive residual stress field in the surface layers, showed efficiency to increase the fatigue life of anodized material. Experimental data were represented by S-N curves. Scanning electron microscopy technique (SEM was used to observe crack origin sites.

  7. The preparation, cytocompatibility and antimicrobial property of micro/nano structural titanium loading alginate and antimicrobial peptide

    Science.gov (United States)

    Liu, Zhiyuan; Zhong, Mou; Sun, Yuhua; Chen, Junhong; Feng, Bo

    2018-03-01

    Titanium with hybrid microporous/nanotubes (TMNT) structure on its surface was fabricated by acid etching and subsequently anodization at different voltages. Bovine lactoferricin, a kind of antimicrobial peptide, and sodium alginate (NaAlg) were loaded onto titanium surface through layer by layer assembly. The drug release, cytocompatibility and antimicrobial property against S.aureus and E.coil were studied by release experiment, osteoblast and bacterial cultures. Results indicated that samples with nanotubes of bigger diameter carried more drugs and had better biocompatibility, and drug-loaded samples acquired better biocompatibility compared with drug-free samples. Furthermore, the drug-loaded samples exhibited good initial antimicrobial property, but weak long-term antimicrobial property. Therefore, drug-loaded titanium with micro/nano structure, especially, of big diameter nanotubes, could be a promise material for medical implants, such as internal/external fixation devices.

  8. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  9. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  10. Electrochemical Tests to Evaluate the Stability of the Anodic Films on Dental Implants

    Directory of Open Access Journals (Sweden)

    C. E. B. Marino

    2011-01-01

    Full Text Available The stability of anodic films potentiodynamically grown on titanium, titanium-grade 2, and Ti6Al4V alloy was studied in a simulated physiological electrolyte, up to 8.0 V, and at room temperature to determine the corrosion resistance levels of dental implants. In PBS (phosphate buffer saline solution, thin titanium oxide films protect the surface of the Ti6%Al4%V alloy up to 6.0 V, pure Ti up to 8.0 V, and Ti-grade 2 up to 1.5 V. At more positive potentials, localized corrosion starts to occur possibly due to the alloy elements (Ti6Al4V-V and Al and variable levels of interstitials (Ti-grade 2: C, N, and Fe, mainly. When the biomaterials were submitted to open-circuit conditions, in artificial saliva, the worst corrosion resistance was observed in dental implant (Ti-grade 2, according to the open-circuit potential values and reconstruction rate analysis of these oxide films. The XPS spectra revealed TiO2 oxide as the main phase in the barrier oxide film coating the dental implant.

  11. Structure, Morphology and Optical Properties of TiO2 Films Formed by Anodizing in a Mixed Solution of Citric Acid and Sulfamic Acid

    Science.gov (United States)

    Choudhary, R. K.; Sarkar, P.; Biswas, A.; Mishra, P.; Abraham, G. J.; Sastry, P. U.; Kain, V.

    2017-08-01

    TiO2 films of 50-180 nm thickness were formed at room temperature by anodization of titanium metal in a mixture of citric acid and sulfamic acid in the potential range of 5-30 V. The films so obtained were characterized for their crystal structure, surface morphology, chemical composition and optical properties. Grazing incidence x-ray diffraction and micro-laser Raman spectroscopy measurements of the anodic films confirmed the formation of brookite phase of TiO2 at anodizing potentials of 15, 20, 25 and 30 V and amorphous structure at 5 and 10 V. Field emission scanning electron microscopy revealed non-porous microstructure of the films. Spectroscopic ellipsometry measurements evaluated the band gap of TiO2 at around 3.3 eV, whereas the refractive index of the films was found to be in the range of 2-2.35, in the visible range of spectrum.

  12. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  13. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  14. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  15. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.

    Science.gov (United States)

    Park, Jin-Woo; Jang, Je-Hee; Lee, Chong Soo; Hanawa, Takao

    2009-07-01

    This study investigated the surface characteristics and bone response of titanium implants produced by hydrothermal treatment using H(3)PO(4), and compared them with those of implants produced by commercial surface treatment methods - machining, acid etching, grit blasting, grit blasting/acid etching or spark anodization. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, contact angle measurement and stylus profilometry. The osteoconductivity of experimental implants was evaluated by removal torque testing and histomorphometric analysis after 6 weeks of implantation in rabbit tibiae. Hydrothermal treatment with H(3)PO(4) and subsequent heat treatment produced a crystalline phosphate ion-incorporated oxide (titanium oxide phosphate hydrate, Ti(2)O(PO(4))(2)(H(2)O)(2); TiP) surface approximately 5microm in thickness, which had needle-like surface microstructures and superior wettability compared with the control surfaces. Significant increases in removal torque forces and bone-to-implant contact values were observed for TiP implants compared with those of the control implants (p<0.001). After thorough cleaning of the implants removed during the removal torque testing, a considerable quantity of attached bone was observed on the surfaces of the TiP implants.

  16. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  17. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Science.gov (United States)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre; Rocha, Luís A.; Shokuhfar, Tolou

    2017-03-01

    The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO2) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO3, Ca3(PO4)2, CaHPO4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  18. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences Unviersiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar (Malaysia); Abbasi, S. H., E-mail: sarfrazabbasi@gmail.com [SABIC Plastic Application Development Center, Riyadh Technovalley, Riyadh (Saudi Arabia)

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  19. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  20. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  1. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode.

    Science.gov (United States)

    Evanoff, Kara; Benson, Jim; Schauer, Mark; Kovalenko, Igor; Lashmore, David; Ready, W Jud; Yushin, Gleb

    2012-11-27

    Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.

  2. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Printing of Titanium implant prototype

    International Nuclear Information System (INIS)

    Wiria, Florencia Edith; Shyan, John Yong Ming; Lim, Poon Nian; Wen, Francis Goh Chung; Yeo, Jin Fei; Cao, Tong

    2010-01-01

    Dental implant plays an important role as a conduit of force and stress to flow from the tooth to the related bone. In the load sharing between an implant and its related bone, the amount of stress carried by each of them directly related to their stiffness or modulus. Hence, it is a crucial issue for the implant to have matching mechanical properties, in particular modulus, between the implant and its related bone. Titanium is a metallic material that has good biocompatibility and corrosion resistance. Whilst the modulus of the bulk material is still higher than that of bone, it is the lowest among all other commonly used metallic implant materials, such as stainless steel or cobalt alloy. Hence it is potential to further reduce the modulus of pure Titanium by engineering its processing method to obtain porous structure. In this project, porous Titanium implant prototype is fabricated using 3-dimensional printing. This technique allows the flexibility of design customization, which is beneficial for implant fabrication as tailoring of implant size and shape helps to ensure the implant would fit nicely to the patient. The fabricated Titanium prototype had a modulus of 4.8-13.2 GPa, which is in the range of natural bone modulus. The compressive strength achieved was between 167 to 455 MPa. Subsequent cell culture study indicated that the porous Titanium prototype had good biocompatibility and is suitable for bone cell attachment and proliferation.

  4. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  5. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improvement of image contrast in x-ray transmission micrographs of organism with a titanium tube

    International Nuclear Information System (INIS)

    Hanazaki, Buniti; Shioda, Ichiro; Kitatsuji, Yasutsugu; Kuroda, Tsukasa.

    1982-01-01

    To improve the image contrast in X-ray transmission micrographs of organisms, a fine-focus sealed-off tube with a titanium target has been built, which can produce quasi monochromatic X-rays at the K sub(α) characteristic wavelength of 2.7 A. The intensity ratio of the characteristic ray to continuous ones reaches a maximum when a voltage of 8 kV is applied to the tube. Micrographs of organisms obtained with this tube show up a better image contrast than those taken with a copper-anode tube. (author)

  7. Electrocatalytic properties of Ti/Pt–IrO2 anode for oxygen evolution in PEM water electrolysis

    DEFF Research Database (Denmark)

    Ye, Feng; Li, Jianling; Wang, Xindong

    2010-01-01

    A novel Pt–IrO2 electrocatalyst was prepared using the dip-coating/calcinations method on titanium substrates. Titanium electrodes coated with oxides were investigated for oxygen evolution. Experimental results showed that Ti/Pt–IrO2 electrode containing 30mol% Pt in the coating exhibited...... significantly higher electrocatalytic activity for oxygen evolution compared to Ti/IrO2 prepared by the same method, which is also supported by the electrochemical impedance data. Stability tests demonstrated Pt–IrO2 electrocatalyst had a service cycle of 10,000 times in 0.1M H2SO4 solution. And the anode...... surface had hardly discovered cracks and had compact structures, which contributed to stable nature of the electrode together with good conductivity and specific interaction between Pt and IrO2 formed during the calcination. Furthermore, the enhanced catalytic activity for O2 evolution at Ti/Pt–IrO2...

  8. Binding of plasma proteins to titanium dioxide nanotubes with different diameters

    Science.gov (United States)

    Kulkarni, Mukta; Flašker, Ajda; Lokar, Maruša; Mrak-Poljšak, Katjuša; Mazare, Anca; Artenjak, Andrej; Čučnik, Saša; Kralj, Slavko; Velikonja, Aljaž; Schmuki, Patrik; Kralj-Iglič, Veronika; Sodin-Semrl, Snezna; Iglič, Aleš

    2015-01-01

    Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices. PMID:25733829

  9. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  10. Uranium fluorides analysis. Titanium spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Titanium determination in uranium hexafluoride in the range 0.7 to 100 microgrammes after transformation of uranium fluoride in sulfate. Titanium is separated by extraction with N-benzoylphenylhydroxylamine, reextracted by hydrochloric-hydrofluoric acid. The complex titanium-N-benzoylphenylhydroxylamine is extracted by chloroform. Spectrophotometric determination at 400 nm [fr

  11. 21 CFR 73.1575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.1575 Section 73.1575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1575 Titanium dioxide. (a) Identity and specifications. (1) The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  12. 40 CFR 180.1195 - Titanium dioxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Titanium dioxide. 180.1195 Section 180.1195 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS... Titanium dioxide. Titanium dioxide is exempted from the requirement of a tolerance for residues in or on...

  13. 21 CFR 73.2575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.2575 Section 73.2575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2575 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide shall conform in identity and specifications to the requirements...

  14. 21 CFR 73.575 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.575 Section 73.575 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.575 Titanium dioxide. (a) Identity. (1) The color additive titanium dioxide is synthetically prepared TiO2, free from admixture with other substances. (2) Color...

  15. 21 CFR 73.3126 - Titanium dioxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Titanium dioxide. 73.3126 Section 73.3126 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3126 Titanium dioxide. (a) Identity and specifications. The color additive titanium dioxide (CAS Reg. No. 13463-67-7), Color Index No. 77891, shall...

  16. Adaptive mesh refinement in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Colella, Phillip; Wen, Tong

    2005-01-21

    In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.

  17. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  18. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  19. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  20. Corrosion behaviors of TiO{sub 2} nanotube layers on titanium in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weiqiang; Qiu Jing; Xu Ling; Zhang Fuqiang, E-mail: fredzc@online.sh.c [Department of Prosthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 (China)

    2009-12-15

    It is well known that the growth of osteoblast cultured on titanium with nanotube layers can be significantly increased compared to unanodized surfaces. In the current study, the corrosion behavior of titanium with nanotube layers was studied in naturally aerated Hank's solution using open circuit potentials (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The electrochemical results indicated that TiO{sub 2} nanotube layers on titanium showed a better corrosion resistance in simulated biofluid than that of smooth-Ti. The OCP, corrosion rate (I{sub corr}), passive current density (I{sub pass}) and the oxygen evolution potential (E{sub o}) were significantly influenced by titanium oxide nanotube layers acquired by anodization. The anatase nanotube layer showed higher OCP and smaller current density than the amorphous nanotube layer. EIS analysis showed that the annealing had a significant effect on the corrosion resistance of the outer tube layer (R{sub t}), but little effect on the corrosion resistance of the inter-barrier layer (R{sub b}) for nanotube layers. The results suggested that titanium with TiO{sub 2} nanotube layers has an adequate electrochemical behavior for use as a dental implant material.

  1. Silicon Whisker and Carbon Nanofiber Composite Anode

    Science.gov (United States)

    Lang, Christopher M.

    2015-01-01

    Phase II Objectives: Demonstrate production levels of grams per batch; Achieve full cell anode capacity of greater than 1,000 mAh/g at a charge rate of 10 (C/10) and 0 degree C; Establish a full cell cycle life of over 300 cycles; Display an operating temperature of negative 30 degrees C to plus 30 degrees C; Demonstrate a rate capability of C/5 or higher; Deliver to NASA three 2.5 Ah cells (energy density greater than 220 Wh/kg); Exhibit the safety features of the anode and full cells; Design a 1 kWh prismatic battery pack.

  2. The effect of ethylene glycol on pore arrangement of anodic aluminium oxide prepared by hard anodization

    Science.gov (United States)

    Guo, Yang; Zhang, Li; Han, Mangui; Wang, Xin; Xie, Jianliang; Deng, Longjiang

    2018-03-01

    The influence of the addition of ethylene glycol (EG) on the pore self-ordering process in anodic aluminium oxide (AAO) membranes prepared by hard anodization (HA) was investigated. It was illustrated that EG has a substantial effect on the pore arrangement of AAO, and it was found that a smaller pore size can be obtained with an EG concentration reaching 20 wt% in aqueous electrolyte. The number of estimated defects of AAO increases significantly with an increase in EG concentration to 50 wt%. Excellent ordering of pores was realized when the samples were anodized in the 30 wt%-EG-containing aqueous electrolyte.

  3. Silicon Whisker and Carbon Nanofiber Composite Anode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. This anode...

  4. Silicon-Based Anode and Method for Manufacturing the Same

    Science.gov (United States)

    Yushin, Gleb Nikolayevich (Inventor); Luzinov, Igor (Inventor); Zdyrko, Bogdan (Inventor); Magasinski, Alexandre (Inventor)

    2017-01-01

    A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.

  5. Novel Anodic Catalyst Support for Direct Methanol Fuel Cell: Characterizations and Single-Cell Performances.

    Science.gov (United States)

    Abdullah, N; Kamarudin, S K; Shyuan, L K

    2018-04-03

    This study introduces a novel titanium dioxide carbon nanofiber (TiO 2 -CNF) support for anodic catalyst in direct methanol fuel cell. The catalytic synthesis process involves several methods, namely the sol-gel, electrospinning, and deposition methods. The synthesized electrocatalyst is compared with other three electrocatalysts with different types of support. All of these electrocatalysts differ based on a number of physical and electrochemical characteristics. Experimental results show that the TiO 2 -CNF support gave the highest current density at 345.64 mA mg catalyst -1 , which is equivalent to 5.54-fold that of carbon support while the power density is almost double that of the commercial electrocatalyst.

  6. Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jianren [Iowa State Univ., Ames, IA (United States)

    1994-01-01

    The research illustrated in this thesis was performed under the guidance of Professor Dennis C. Johnson beginning in March 1987. Chapter 2 concentrates on the development and electrocatalytic properties of iron-doped β-PbO2 films on noble-metal substrates. Chapter 3 focuses attention on the preparation and characterization of iron-doped β-PbO2 films on titanium substrates (Fe-PbO2/Ti). Chapter 4 discusses anodic evolution of ozone at Fe-PbO2/Ti electrodes. Chapter 5 describes electrochemical incineration of p-benzoquinone (BQ) at Fe-PbO2/Ti electrodes. In addition, the Appendix includes another published paper which is a detailed study of α-PbO2 films deposited on various types of stainless steel substrates.

  7. Electrodegradation of Ponceau 2R using dimensionally-stable anodes and Ti/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Francisco Wirley Paulino; Oliveira, Sameque do Nascimento; Lima-Neto, Pedro de; Correia, Adriana Nunes, E-mail: adriana@ufc.br [Universidade Federal do Ceara, Fortaleza (UFC), CE (Brazil). Centro de Ciencias. Dept. de Quimica Analitica e Fisico-Quimica; Mascaro, Lucia Helena; Matos, Roberto de; Souza, Ernesto Chaves Pereira de [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Dept. de Quimica; Lanza, Marcos Roberto de Vasconcelos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2013-08-01

    This paper reports the electrochemical degradation of the azo dye Ponceau 2R under galvanostatic electrolysis in the 1 to 200 mA cm{sup -2} range at room temperature using dimensionally-stable anodes of oxygen (DSA-O{sub 2}), chlorine (DSA-Cl{sub 2}) and a titanium electrode of platinum coated with platinum oxide (Ti/Pt). The methodology applied was efficient for removing the color of the Ponceau 2R and the highest percentage removal of total organic carbon was obtained at 200 mA cm{sup -2}. Despite not having been observed complete mineralization, approximately 80% removal of aromatic rings was estimated, resulting in drastic reduction of toxicity of the sample. (author)

  8. Hollow Anode Cascading Plasma Focus | Alabraba | Journal of the ...

    African Journals Online (AJOL)

    Using the 3-phase model for each focus event, the 9-phase, two solid disc auxiliary anode cascading plasma focus has been extended to include holes at the center of each cascade anode (hereafter referred to as hollow anode cascading focus) with a view of increasing the neutron yield with each focus event. Results ...

  9. Anode heat transfer in a constricted tube arc.

    Science.gov (United States)

    Lukens, L. A.; Incropera, F. P.

    1971-01-01

    The complex energy exchange mechanisms occurring on the most severely heated component of an arc constrictor, the anode, have been investigated. Measurements performed to determine the anode heat flux for a cascade, atmospheric argon arc of the Maecker type are described. The results are used to check the validity of an existing anode heat transfer model.

  10. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    the electrolyte for the first anodization to form pits on. Al substrate, while in second anodization these pits act as the pattern for nanopore formation.26 Nanoporous alumina is used in the development of thermoelectric devices using metamaterials and for energy harvest- ing. Anodized magnetic nanohole arrays are used in.

  11. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties.

    Science.gov (United States)

    Ravanetti, F; Chiesa, R; Ossiprandi, M C; Gazza, F; Farina, V; Martini, F M; Di Lecce, R; Gnudi, G; Della Valle, C; Gavini, J; Cacchioli, A

    2016-03-01

    In implantology, as an alternative approach to the use of antibiotics, direct surface modifications of the implant addressed to inhibit bacterial adhesion and to limit bacterial proliferation are a promising tactic. The present study evaluates in an in vivo normal model the osteogenic response and the osteointegration of an anodic spark deposition nanostructured titanium surface doped with gallium (ASD + Ga) in comparison with two other surface treatments of titanium: an anodic spark deposition treatment without gallium (ASD) and an acid etching treatment (CTR). Moreover the study assesses the osteoprotective potential and the antibacterial effect of the previously mentioned surface treatments in an experimentally-induced peri-implantitis model. The obtained data points out a more rapid primary fixation in ASD and ASD + Ga implants, compared with CTR surface. Regarding the antibacterial properties, the ASD + Ga surface shows osteoprotective action on bone peri-implant tissue in vivo as well as an antibacterial effect within the first considered time point.

  12. Electroless deposition of nickel and copper on titanium substrates: Characterization and application

    International Nuclear Information System (INIS)

    Mahmoud, S.S.

    2009-01-01

    In the present investigation nickel and copper were electroless deposited over the pre-anodized titanium substrates. The obtained deposits were characterized by X-ray diffraction (XRD) and SEM-EDX techniques. The obtained specimens were heat treated at 400 deg. C for 2 h. The heat-treated specimens were used as anodes in the process of the electrochemical degradation of Methylene Blue (MB) dye in simulated wastewater. It was shown that complete degradation of the dye is dependent primarily on the type and concentration of conductive electrolyte. The highest electrocatalytic activity was achieved in the presence of NaCl (2 g/l) and could be attributed to indirect oxidation of the investigated dye by the electrogenerated hypochlorite ions formed from the chloride ions oxidation. In addition, contribution from direct oxidation could be possible as indicated from the good results obtained in the presence of NaOH as a conductive electrolyte. Optimizing the operating conditions that ensure effective electrochemical degradation of MB dye on the titanium-modified electrodes necessitates the control of all the operating factors

  13. Silicon Whisker and Carbon Nanofiber Composite Anode

    Science.gov (United States)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  14. Growth of anodic films on niobium

    International Nuclear Information System (INIS)

    Gomes, M.A.B.; Bulhoes, L.O.S.

    1988-01-01

    The analysis of the response of the galvanostatic growth of anodic films on niobium metal in aqueous solutions is shown. The first spark voltage showed a dependence upon value of current density that could be explained as the incorporation of anions into the film. (M.J.C.) [pt

  15. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  16. Linear sweep anodic stripping voltammetry: Determination of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 6. Linear sweep anodic stripping voltammetry: Determination of Chromium (VI) using synthesized gold nanoparticles modified screen-printed electrode. Salamatu Aliyu Tukur Nor Azah Yusof Reza Hajian. Regular Articles Volume 127 Issue 6 June 2015 pp ...

  17. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  18. Characterization of nanopores ordering in anodic alumina

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.; Piraux, L.

    2008-01-01

    A simple characterization method of the ordering of the nanopores is described for nanoporous anodized aluminium oxides. The method starts with image analysis on scanning electron microscopy representations for the purpose to find repetitive shapes and their centres, i.e. nanopores. Then triangles...

  19. Corrosion resistance of titanium alloy on the overpack for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu

    2008-01-01

    Crevice corrosion of titanium and its alloys were investigated in 10% sodium chloride at 100 degC simulating the environment of the overpack near the seaside. The pH and Chloride ion concentration inside the crevice were monitored by using W/WO 3 and Ag/AgCl microelectrode, respectively. The pH and Cl - concentration within the crevice were calculated from the standard potential-pH and potential-log [Cl - ] calibration curves. The effect of Mo on the crevice corrosion of titanium was mainly studied. The passivation behavior of the titanium and Ti-15% Mo alloy were also studied using electrochemical impedance studies. A marginal decrease in pH and increase in Cl - ion concentration were observed for pure titanium at 100 degC, where there was large increase of the crevice current. On other hand, there was no apparent change in pH and Cl - ion activity inside the crevice for Ti-15% Mo alloy, where there was no increase of the crevice current. Based on the results, it has been documented that the Ti-15% Mo alloy was not susceptible to crevice corrosion in 10% NaCl solutions at 100 degC. The corrosion reaction resistance (R t ) was found to increase with addition of Mo as an alloying element and also increase with applied anodic potential. Hence, Mo is able to be an effective alloying element, which enhanced the crevice corrosion resistance of titanium under the environment simulating the overpack near the seaside. (author)

  20. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  1. Antimicrobial titanium/silver PVD coatings on titanium

    Directory of Open Access Journals (Sweden)

    Thull Roger

    2006-03-01

    Full Text Available Abstract Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces.

  2. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    Science.gov (United States)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  3. Titanium: the innovators metal. Historical case studies tracing titanium process and product innovation [Conference paper

    CSIR Research Space (South Africa)

    Oosthuizen, SJ

    2010-10-01

    Full Text Available at the development of a proprietary low cost titanium metal production process, and the continued development and commercialisation of technologies to compete cost effectively in international titanium markets4. Considering that the national strategy... of primary importance in the establishment of markets for titanium? c) Can it be reasoned that South African strategy for titanium beneficiation should include efforts to develop and support innovation and entrepreneurship in this field? Findings...

  4. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  5. Titanium - ceramic restoration: How to improve the binding between titanium and ceramic

    Directory of Open Access Journals (Sweden)

    Harry Laksono

    2011-03-01

    Full Text Available Background: Titanium alloys has been used as an alternative to nickel-chromium alloys for metal-ceramic restorations because of its good biocompatibility and mechanical properties. This indicated that it was possible to design coping according to standards established for metal-ceramics. However, titanium is chemically reacting strongly with gaseous elements which causes problems when ceramics are fused to titanium. Purpose: To provide information about improving the bonding between titanium and ceramic. Review: Titanium has two crystal modifications, the close-packed hexagonal (α structure, up to 880° C, and above this temperature the bodycentered cubic (β structure. The principal problems is the extensive dissolution of oxygen resulting in thick, oxygen-rich titanium layers called α-case that harms the bonding of ceramic to titanium and the great mismatch in the coefficient of thermal expansion of conventional ultra-low fusing ceramic. Methods have been developed for fusing ceramic to titanium like processing methods, the used of ultra-low fusing titanium ceramic, bonding agent, and protocol for ceramic bonding to titanium. Conclusion: Titanium and titanium alloys, based on their physical and chemical properties suitable for titanium-ceramic restorations, but careful selection of processing methods, ceramic materials, laboratory skill and strict protocol for ceramic bonding to titanium are necessary to improve the bonding between titanium and ceramic.Latar Belakang: Logam campur titanium telah dipakai sebagai salah satu bahan alternatif untuk logam nikel-krom pada pembuatan restorasi keramik taut logam karena mempunyai biokompatibilitas dan sifat mekanik yang baik. Hal ini menunjukkan bahwa logam titanium dapat dipakai untuk pembuatan koping logam berdasarkan standar yang dipakai untuk pembuatan restorasi keramik taut logam. Meskipun, secara kimiawi logam titanium bereaksi dengan elemen-elemen gas yang menyebabkan masalah pada perlekatan

  6. Selective recovery of titanium dioxide from low grade sources

    CSIR Research Space (South Africa)

    Van Vuuren, DS

    2006-09-01

    Full Text Available There are a number of readily available, large reserves of titanium dioxide bearing minerals from which the titanium dioxide cannot currently be economically recovered via current commercial recovery processes due to: The grade of titanium dioxide...

  7. Clinical bending of nickel titanium wires

    OpenAIRE

    Stephen Chain; Priyank Seth; Namrata Rastogi; Kenneth Tan; Mayank Gupta; Richa Singh

    2015-01-01

    Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our invento...

  8. Production of titanium from ilmenite: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, R.

    1981-12-01

    The general principles for beneficiation of titanium ores are reviewed and the specific processes used in individual units in various countries are discussed. This is followed by a critical evaluation of various current and potential reduction methods for the production of titanium metal from the processed concentrates. Finally, the report outlines a research program for the development of a commercially viable alternative method for the production of titanium metal.

  9. Titanium metal obtention by fused salts electrolysis

    International Nuclear Information System (INIS)

    Perillo, P.M.; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Potassium fluorotitanate dissolved in fused sodium chloride or potassium chloride may be electrolyzed under an inert gas atmosphere. Solid electrolysis products are formed on the cathode which contains titanium metal, sodium chloride, lower fluorotitanates and small quantities of alkali metal fluorotitanate. The extraction of titanium from the electrolysis products may be carried out by aqueous leaching (removal of chloride salts of alkali metals and a certain amount of fluorotitanates). Titanium metal obtained is relatively pure. (Author)

  10. Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques

    International Nuclear Information System (INIS)

    Diamanti, M.V.; Souier, T.; Stefancich, M.; Chiesa, M.; Pedeferri, M.P.

    2014-01-01

    Graphical abstract: - Highlights: • Nanoscale anodic titanium oxides were investigated with multidisciplinary approach. • Oxide thickness was estimated via spectrophotometry and coulometry. • C-AFM identified nanometric conductivity heterogeneities, ascribed to oxide structure. • High conductivity areas exhibited local memristive behavior. - Abstract: Anodic oxidation of titanium in acid electrolytes allows to obtain a thin, compact oxide layer with thickness, structure, color, and electrical properties that vary with process parameters imposed, among which cell voltage has a key effect. Although oxidation kinetics have been investigated in several research works, a broader vision of oxide properties–including thickness and structure–still has to be achieved, especially in the case of very thin oxide films, few tens of nanometers thick. This is vital for engineered applications of nanostructured TiO 2 films, as in the field of memristive devices, where a precise control of oxide thickness, composition and structure is required to tune its electrical response. In this work, oxide films were produced on titanium with thickness ranging from few nanometers to 200 nm. Oxide thickness was estimated by coulometry and spectrophotometry. These techniques were then combined with C-AFM, which provided a deeper understanding of oxide thickness and uniformity of the metal surface and probed the presence of crystalline nano-domains within the amorphous oxide phase affecting the overall film electrical and optical properties

  11. Machinability evaluation of titanium alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Okuno, Osamu

    2004-03-01

    In the present study, the machinability of titanium, Ti-6Al-4V, Ti-6A1-7Nb, and free-cutting brass was evaluated using a milling machine. The metals were slotted with square end mills under four cutting conditions. The cutting force and the rotational speed of the spindle were measured. The cutting forces for Ti-6Al-4V and Ti-6Al-7Nb were higher and that for brass was lower than that for titanium. The rotational speed of the spindle was barely affected by cutting. The cross sections of the Ti-6Al-4V and Ti-6Al-7Nb chips were more clearly serrated than those of titanium, which is an indication of difficult-to-cut metals. There was no marked difference in the surface roughness of the cut surfaces among the metals. Cutting force and the appearance of the metal chips were found to be useful as indices of machinability and will aid in the development of new alloys for dental CAD/CAM and the selection of suitable machining conditions.

  12. Cranioplasty with individual titanium implants

    Science.gov (United States)

    Mishinov, S.; Stupak, V.; Sadovoy, M.; Mamonova, E.; Koporushko, N.; Larkin, V.; Novokshonov, A.; Dolzhenko, D.; Panchenko, A.; Desyatykh, I.; Krasovsky, I.

    2017-09-01

    Cranioplasty is the second procedure in the history of neurosurgery after trepanation, and it is still relevant despite the development of civilization and progress in medicine. Each cranioplasty operation is unique because there are no two patients with identical defects of the skull bones. The development of Direct Metal Laser Sintering (DMLS) technique opened up the possibility of direct implant printing of titanium, a biocompatible metal used in medicine. This eliminates the need for producing any intermediate products to create the desired implant. We have produced 8 patient-specific titanium implants using this technique for patients who underwent different decompressive cranioectomies associated with bone tumors. Follow-up duration ranged from 6 to 12 months. We observed no implant-related reactions or complications. In all cases of reconstructive neurosurgery we achieved good clinical and aesthetic results. The analysis of the literature and our own experience in three-dimensional modeling, prototyping, and printing suggests that direct laser sintering of titanium is the optimal method to produce biocompatible surgical implants.

  13. Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Aguirre, Robinson; Robledo, Sara; Castaño, Juan Guillermo; Echeverría, Félix

    2017-09-27

    Surface characteristics can mediate biological interaction improving or affecting the tissue integration after implantation of a biomaterial. Features such as topography, wettability, surface energy and chemistry can be key determinants for interactions between cells and materials. Plasma electrolytic oxidation (PEO) is a technique used to control this kind of parameters by the addition of chemical species and the production of different morphologies on the surfaces of titanium and its alloys. With the purpose to improve the biological response, surfaces of c.p titanium and Ti6Al4V were modified by using PEO. Different electrolytes, voltages, current densities and anodizing times were tested in order to obtain surfaces with different characteristics. The obtained materials were characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectroscopy (GDOES). Wettability of the obtained surfaces were measured and the corresponding surface energies were calculated. Superhydrophilic surfaces with contact angles of about 0 degrees were obtained without any other treatment but PEO and this condition in some cases remains stable after several weeks of anodizing; crystal phase composition (anatase-rutile) of the anodic surface appears to be critical for obtaining this property. Finally, in order to verify the biological effect of these surfaces, osteoblast were seeded on the samples. It was found that cell behavior improves as SFE (surface free energy) and coating porosity increases whereas it is affected negatively by roughness. Techniques for surface modification allow changes in the coatings such as surface energy, roughness and porosity. As a consequence of this, biological response can be altered. In this paper, surfaces of c.p Ti and Ti6Al4V were modified by using plasma electrolytic oxidation (PEO) in order to accelerate the cell adhesion process.

  14. Method for producing titanium aluminide weld rod

    Science.gov (United States)

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  15. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  16. Appcelerator Titanium patterns and best practices

    CERN Document Server

    Pollentine, Boydlee

    2013-01-01

    The book takes a step-by-step approach to help you understand CommonJS and Titanium architecture patterns, with easy to follow samples and plenty of in-depth explanations If you're an existing Titanium developer or perhaps a new developer looking to start off your Titanium applications "the right way", then this book is for you. With easy to follow examples and a full step-by-step account of architecting a sample application using CommonJS and MVC, along with chapters on new features such as ACS, you'll be implementing enterprise grade Titanium solutions in no time. You should have some JavaSc

  17. Titanium Matrix Composite Pressure Vessel, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  18. Titanium Matrix Composite Pressure Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For over 15 years, FMW Composite Systems has developed Metal Matrix Composite manufacturing methodologies for fabricating silicon-carbide-fiber-reinforced titanium...

  19. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    Science.gov (United States)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  20. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  1. Transparent Aluminum Oxide Films by Edge Anodization

    Science.gov (United States)

    Stott, Jonathan; Greenwood, Thomas; Winn, David

    In this paper we present our recent work on manufacturing thin (3 - 5 μm) films of porous aluminum(III) oxide [PAO] using a novel edge-anodization technique. With this modified anodization process, we are able to create transparent PAO films on top of insulating substrates such as glass or plastic. By controlling the processing parameters, the index of refraction of PAO films can be engineered to match the substrate, which gives us a durable reflection-free and scratch-resistant coating over conventional optics or LCD displays. Eventually we hope to create ordered porous aluminum oxide cladding around an optical fiber core, which could have a number of interesting optical properties if the pore spacing can be matched to the wavelength of light in the fiber. This work was funded by Fairfield University startup funding.

  2. Fuel cell anode configuration for CO tolerance

    Science.gov (United States)

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  3. Theoretical Investigation of a Hot Refractory Anode Vacuum Arc

    International Nuclear Information System (INIS)

    Beilis, I.I.; Boxman, R.L.; Goldsmith, S.

    1999-01-01

    The two principal modes of the vacuum arc arc the multi-cathode spot and the anode spot vacuum arc discharges. In both cases the current is conducted in plasma that is generated on relatively small areas on the relevant electrode surface. The hot anode vacuum arc (HAVA) is another mode of the vacuum arc in which the plasma is produced by material evaporation over the whole surface of a high temperature anode heated by the arc itself. In the present work, a model of a new type of the HAVA, recently discovered in the Electrical Discharges and Plasma Laboratory of TAU, is considered. In this mode of the HAVA the anode is made of a thermally isolated refractory material (graphite), whereas the water cooled cathode is fabricated from a more volatile material (copper). The discharge starts in the multi-cathode spot mode and after a transition period, during which the anode is heated by the arc, re-evaporated cathode material is released from the hot anode surface and becomes the main source of the arc plasma. At steady state, anode temperature exceeds a certain critical value. No evaporation of anode refractory material occurs during arc operation. This arc mode is labeled Hot Refractory Anode Vacuum Arc (HRAVA). The theoretical description of the HRAVA is accomplished by a plasma model that includes equations of mass, momentum, energy, and electrical current conservation, and by an anode thermal model that describes the anode thermal balance. The plasma model also considers radial expansion of the plasma from the interelectrode region. A self-consistent solution of the plasma and anode models was obtained. Plasma electron temperature, plasma density, plasma energy flux to the anode, and anode temperature distribution were calculated for several arc currents in the range 175 - 500 A. In the steady-state arc operation, anode surface temperature was calculated to be in the range 1800 - 2600 degree K, electron temperature is about 1 eV, effective anode voltage is about 6 V

  4. Spinal Anodes for Lithium-Ion Batteries

    CSIR Research Space (South Africa)

    Ferg, E

    1994-11-01

    Full Text Available Anodes of Li4Mn5O12, Li4Ti5O12, and Li2Mn4O9 with a spinel-type structure have been evaluated in room-temperature lithium cells. The cathodes that were selected for this study were the stabilized spinels, Li1.03Mn1.97O4 and LiZn0.025Mn1.95O4...

  5. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  6. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    Science.gov (United States)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  7. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  8. Corrosion comparisons between zirconium and titanium

    International Nuclear Information System (INIS)

    Yau Telin

    1992-01-01

    Zirconium and titanium are regarded as sister metals with excellent resistance to many corrosives. While these metals exhibit some similar corrosion properties, this paper discusses several major differences. The differences are found in chloride-free acids, acidic chloride solutions, salt solutions, alkaline solutions and organics. They are caused by the differences between the protective oxide films of zirconium and titanium. (orig.) [de

  9. Mineral resource of the month: titanium

    Science.gov (United States)

    Gambogi, Joseph

    2011-01-01

    Titanium is hip - at least when it comes to airplanes and jewelry. Known for its high strength-to weight ratio and its resistance to corrosion, titanium and its alloys can also be found in everything from knee replacements to eyeglass frames to baseball bats to fighter planes.

  10. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  11. Appcelerator Titanium business application development cookbook

    CERN Document Server

    Bahrenberg, Benjamin

    2013-01-01

    Presented in easy to follow, step by step recipes, this guide is designed to lead you through the most important aspects of application design.Titanium developers who already have a basic knowledge of working with Appcelerator Titanium but want to further develop their knowledge for use with business applications

  12. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization.

    Science.gov (United States)

    Han, Guang; Müller, Werner E G; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100-200 nm thickness and with a pore diameter of 10nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The importance of anodic discharge of H2O in anodic oxygen-transfer reactions

    International Nuclear Information System (INIS)

    Vitt, J.E.; Johnson, D.C.

    1992-01-01

    This paper discusses difference voltammetry at rotated disk electrodes which are applied to a study of several anodic O-transfer reactions that appear to occur concurrently with O 2 evolution. This voltammetric technique was useful for extracting the rotation-dependent component of the total current from the large, virtually rotation-independent current for O 2 evolution. Data for oxidation of I - at Pt, Au, Pd, Ir, and glassy carbon electrodes show that the E 1/2 for IO - 3 production is correlated with the overpotential for O 2 evolution at these electrode materials. Data obtained at an Ir electrode for various reactions with widely varying E o values reveal uniform E 1/2 values closely correlated with the potential for onset of O 2 evolution in both alkaline and acidic solutions. The results support the conclusion that the anodic discharge of H 2 O is a prerequisite of these anodic O-transfer mechanisms

  14. Mechanical properties of biomedical titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Niinomi, M. [Toyohashi Univ. of Technol. (Japan). Sch. of Production Syst. Eng.

    1998-03-15

    Titanium alloys are expected to be much more widely used for implant materials in the medical and dental fields because of their superior biocompatibility, bioaffinity, corrosion resistance and specific strength compared with other metallic implant materials. Pure titanium and Ti-6Al-4V, in particular, Ti-6Al-4V ELI have been, however, mainly used for implant materials among various titanium alloys to date. V free alloys like Ti-6Al-7Nb and Ti-5Al-2.5Fe have been recently developed for biomedical use. More recently V and Al free alloys have been developed. Titanium alloys composed of non-toxic elements like Nb, Ta, Zr and so on with lower modulus have been started to be developed mainly in the USA. The {beta} type alloys are now the main target for medical materials. The mechanical properties of the titanium alloys developed for implant materials to date are described in this paper. (orig.) 17 refs.

  15. Welding and Joining of Titanium Aluminides

    Science.gov (United States)

    Cao, Jian; Qi, Junlei; Song, Xiaoguo; Feng, Jicai

    2014-01-01

    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials. PMID:28788113

  16. Stress-corrosion cracking of titanium alloys.

    Science.gov (United States)

    Blackburn, M. J.; Feeney, J. A.; Beck, T. R.

    1973-01-01

    In the light of research material published up to May 1970, the current understanding of the experimental variables involved in the stress-corrosion cracking (SCC) behavior of titanium and its alloys is reviewed. Following a brief summary of the metallurgy and electrochemistry of titanium alloys, the mechanical, electrochemical, and metallurgical parameters influencing SCC behavior are explored with emphasis on crack growth kinetics. Macro- and microfeatures of fractures are examined, and it is shown that many transgranular SCC failures exhibit morphological and crystallographic features similar to mechanical cleavage failures. Current SCC models are reviewed with respect to their ability to explain the observed SCC behavior of titanium and its alloys. Possible methods for eliminating or minimizing stress corrosion hazards in titanium or titanium alloy components are described.

  17. The present status of dental titanium casting

    Science.gov (United States)

    Okabe, Toru; Ohkubo, Chikahiro; Watanabe, Ikuya; Okuno, Osamu; Takada, Yukyo

    1998-09-01

    Experimentation in all aspects of titanium casting at universities and industries throughout the world for the last 20 years has made titanium and titanium-alloy casting nearly feasible for fabricating sound cast dental prostheses, including crowns, inlays, and partial and complete dentures. Titanium casting in dentistry has now almost reached the stage where it can seriously be considered as a new method to compete with dental casting using conventional noble and base-metal alloys. More than anything else, the strength of titanium’s appeal lies in its excellent biocompatibility, coupled with its comparatively low price and abundant supply. Research efforts to overcome some problems associated with this method, including studies on the development of new titanium alloys suitable for dental use, will continue at many research sites internationally.

  18. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  19. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    Science.gov (United States)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  20. Corrosion resistance of surface modified nickel titanium archwires.

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Kumar, A Vinod; Varthini, N Parvatha; Sukumaran, Kalathil; Pawar, Vasant R; Arora, Vimal

    2014-03-01

    To compare the corrosion behavior of commercially available surface modified nickel titanium (NiTi) arch wires with respect to a conventional NiTi and to evaluate its association with surface characteristics. Five types of surface modified arch wires and a conventional NiTi arch wire, all from different manufacturers, were evaluated for their corrosion resistance from breakdown potential in an anodic polarization scan in Ringer's solution. Surface characteristics were determined from scanning electron microscopy, atomic force microscopy, and energy dispersive analysis. One-way analysis of variance and post hoc Duncan's multiple range tests were used to evaluate statistical significance. Surface modified NiTi wires showed significant improvement in corrosion resistance and reduction in surface roughness values. Breakdown potentials increased in the order of group 6 (conventional; 204 mV) corrosion resistance and decreasing surface roughness. However, neither factor could maintain a direct, one-to-one relationship. It meant that the type and nature of coating material can effectively influence the anticorrosive features of NiTi wires, compared with its surface roughness values.

  1. Fundamental Investigation of Si Anode in Li-Ion Cells

    Science.gov (United States)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes.

  2. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  3. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    Science.gov (United States)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  4. Battery, especially for portable devices, has an anode containing silicon

    OpenAIRE

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic), etching the doped substrate layer in order to increase its porosity, and applying a cathode (3) in the form of a lithium oxide compound onto the resulting anode and applying an electrolyte (4) to the ...

  5. Arc attachment at HID anodes: measurements and interpretation

    International Nuclear Information System (INIS)

    Redwitz, M; Dabringhausen, L; Lichtenberg, S; Langenscheidt, O; Heberlein, J; Mentel, J

    2006-01-01

    Anodes for high intensity discharge lamps made of cylindrical tungsten rods and the plasma in front of them are investigated in a special lamp filled with argon and other noble gases at pressures of 0.1-1 MPa. The arc attachment on these anodes takes place in a constricted mode. The temperature is measured pyrometrically along the electrode axis and the anode fall electrically. The electron temperature, T e , and the electron density, n e , within the anodic boundary layer are determined spectroscopically with high spatial resolution. It is found that the power input into the anode increases nearly linearly with the arc current. The proportionality constant is mainly determined by the work function of the electrode material and T e but is independent of the electrically measured anode fall and scarcely dependent on the electrode dimensions. The constriction is more pronounced in cold anodes, with maxima of T e and n e in front of the electrode surface, than on hot anodes with thermionic electron emission and vaporization of the electrode material. The distances of the T e - and n e -maxima from the anode surface are increased and T e is reduced in front of the anode with increasing anode temperature. The experimental findings may be explained by a model of the anodic boundary layer consisting of a thin sheath in front of the surface and a more extended constriction zone. The current and voltage are anti-parallel within the sheath. The power which is needed to sustain the sheath is supplied by an enhanced electrical power input into the constriction zone

  6. The influence of coke source on anode performance

    Science.gov (United States)

    Jonville, C.; Thomas, J. C.; Dreyer, C.

    1995-08-01

    The role of anode raw material has long been debated in the aluminum smelting industry. By examining data accumulated from two similar smelting operations of Aluminium Pechiney, this article focuses on the differences in performance of anodes that can be attributed to the raw materials. The results suggest that good anode performance can be obtained for a range of cokes, provided that the operation is well designed and carefully operated.

  7. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  8. Adsorption of hydrogen in titanium

    International Nuclear Information System (INIS)

    Martinez R, T.

    1995-01-01

    In this work the absorption of hydrogen in titanium plates using a constant volume system has been realized. The changes of temperature and pressure were used to monitor the progress of the absorption. A stainless steel vacuum chamber with volume of 4,333 cm 3 was used. A titanium sample of 45 x 5.4 x 0.3 cm was located in the center of the chamber. The sample was heated by an electrical source connected to the system. The sample was preconditioned with a vacuum-thermal treatment at 10 -6 mbar and 800 Centigrade degrees for several days. Absorption was observed at room temperature and also at higher temperatures. The room temperature absorption was in the pressure range of 1.0 x 10 3 to 2.5 x 10 3 mbar, and other absorptions were from 180 to 630 Centigrade degrees at 3.5 x 10 -1 to 1.3 x 10 3 mbar. It was found that the gas absorbed was function of the vacuum-thermal pre-conditioned treatment, pressure and temperature. When the first absorption was developed, additional absorptions were realized in short time. We measured the electrical resistivity of the sample in the experiments but we could not see important changes due to the absorption. (Author)

  9. Cooling for a rotating anode X-ray tube

    Science.gov (United States)

    Smither, Robert K.

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  10. The corrosion protection of 2219-T87 aluminum by anodizing

    Science.gov (United States)

    Danford, M. D.

    1991-01-01

    Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).

  11. Influence of the anodizing process variables on the acidic properties of anodic alumina films

    Directory of Open Access Journals (Sweden)

    D.E. Boldrini

    Full Text Available Abstract In the present work, the effect of the different variables involved in the process of aluminum anodizing on the total surface acidity of the samples obtained was studied. Aluminum foils were treated by the electro-chemical process of anodic anodizing within the following variable ranges: concentration = 1.5-2.5 M; temperature = 303-323 K; voltage = 10-20 V; time = 30-90 min. The total acidity of the samples was characterized by two different methods: acid-base titration using Hammett indicators and potentiometric titration. The results showed that anodizing time, temperature and concentration were the main variables that determined the surface acid properties of the samples, and to a lesser extent voltage. Acidity increased with increasing concentration of the electrolytic bath, whereas the rest of the variables had the opposite effect. The results obtained provide a novel tool for variable selection in order to use synthetized materials as catalytic supports, adding to previous research based on the morphology of alumina layers.

  12. X-ray tube with rotating anode

    International Nuclear Information System (INIS)

    1977-01-01

    Radiation tube, with a rotating anode is located in a vacuum tight housing by means of at least one bearing, characterised in that the bearing is a sliding bearing wherein at least the mutually working load contact surfaces consist mainly of a metal or metallic alloy and are not chemically attacked, as a bearing lubricant material is used containing a Ga-alloy, with a low melting point and a low vapour pressure, which is in direct contact with the metal working surfaces. (G.C.)

  13. Composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.

    2018-03-06

    A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.

  14. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...... and thin-film glasses were used in the bonding experiments. Bond quality was evaluated using a tensile test on structured dies. The effect of oxygen-based pre-treatments of the nitride surface on the bond quality has been evaluated. Bond strengths up to 35 Nrmm2 and yields up to 100% were obtained....

  15. Anodization of Copper in Chloride Media

    Science.gov (United States)

    1994-01-31

    in various media. In chloride-containing solution, seawater for example, the cuprous species CuCI and CuCl2" are major products of copper anodization...assumption was used in these determinations, which rendered only the foot of the voltammetric wave useful for calculating 132, and the formation of CuCI was...time-independent, and refers to steady-state currents at given potentials. In the present case of the formation of CuCI and CuCl2 , we are interested in

  16. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  17. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  18. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  19. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  20. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  1. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    International Nuclear Information System (INIS)

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo

    2015-01-01

    Highlights: • We prepared three titania nanotubes (TNT-50, TNT-100, TNT-150) on titanium surfaces by anodization. • TNT-100 had the highest antibacterial efficiency under the visible light. • The immersion test in the culture medium suggested that TNT can adsorb more proteins than pTi. • TNT implants inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. - Abstract: The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 10 8 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The

  2. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo, E-mail: fengbo@swjtu.edu.cn

    2015-07-30

    Highlights: • We prepared three titania nanotubes (TNT-50, TNT-100, TNT-150) on titanium surfaces by anodization. • TNT-100 had the highest antibacterial efficiency under the visible light. • The immersion test in the culture medium suggested that TNT can adsorb more proteins than pTi. • TNT implants inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. - Abstract: The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 10{sup 8} CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The

  3. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...... evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved....

  4. Low-valent pentafulvene titanium dinitrogen complex as a precursor for cationic titanium complexes

    NARCIS (Netherlands)

    Scherer, Axel; Haase, Detlev; Saak, Wolfgang; Beckhaus, Ruediger; Meetsma, Auke; Bouwkamp, Marco W.; Beckhaus, Rüdiger

    2009-01-01

    Treatment of titanium dinitrogen complex [Cp*(eta(6)-C(5)H(4)=C(10)H(14))Ti](2)(mu-N(2)) (1) with ferrocenium borate, [Cp(2)Fe][BPh(4)], in THF results in oxidation of the titanium center, affording the titanium(IV) pentafulvene compound [Cp*(eta(6)-C(5)H(4)=C(10)H(14))Ti(THF)][BPh(4)] (2).

  5. Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas

    Science.gov (United States)

    Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih

    2018-02-01

    In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.

  6. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium.

    Science.gov (United States)

    Wang, Xianli; Bai, Shizhu; Li, Fang; Li, Dongmei; Zhang, Jing; Tian, Min; Zhang, Qian; Tong, Yu; Zhang, Zichuan; Wang, Guowei; Guo, Tianwen; Ma, Chufan

    2016-09-01

    The passive film on the surface of titanium can be destroyed by immersion in a fluoridated acidic medium. Coating with titanium nitride (TiN) may improve the corrosion resistance of titanium. The purpose of this in vitro study was to investigate the effect of duplex treatment with plasma nitriding and TiN coating on the corrosion resistance of cast titanium. Cast titanium was treated with plasma nitriding and TiN coating. The corrosion resistance of the duplex-treated titanium in fluoride-containing artificial saliva was then investigated through electrochemical and immersion tests. The corroded surface was characterized by scanning electron microscopy (SEM) with energy-dispersive spectroscopy surface scan analysis. The data were analyzed using ANOVA (α=.05) RESULTS: Duplex treatment generated a dense and uniform TiN film with a thickness of 4.5 μm. Compared with untreated titanium, the duplex-treated titanium displayed higher corrosion potential (Ecorr) values (Pcorrosion current density (Icorr) values (Pcorrosion resistance of cast titanium in a fluoride-containing environment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Titanium Aluminide Casting Technology Development

    Science.gov (United States)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  8. Neutron scattering and models: Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1997-07-01

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  9. Erbium diffusion in titanium dioxide

    Directory of Open Access Journals (Sweden)

    Louise Basse

    2017-04-01

    Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.

  10. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  11. Heterotrophic Anodic Denitrification in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jakub Drewnowski

    2016-06-01

    Full Text Available Nowadays, pollution caused by energy production systems is a major environmental concern. Therefore, the development of sustainable energy sources is required. Amongst others, the microbial fuel cell (MFC seems to be a possible solution because it can produce clean energy at the same time that waste is stabilized. Unfortunately, mainly due to industrial discharges, the wastes could contain nitrates, or nitrates precursors such ammonia, which could lead to lower performance in terms of electricity production. In this work, the feasibility of coupling anodic denitrification process with electricity production in MFC and the effect of the nitrates over the MFC performance were studied. During the experiments, it was observed that the culture developed in the anodic chamber of the MFC presented a significant amount of denitrificative microorganisms. The MFC developed was able to denitrify up to 4 ppm, without affecting the current density exerted, of about 1 mA/cm2. Regarding the denitrification process, it must be highlighted that the maximum denitrification rate achieved with the culture was about 60 mg·NO3−·L−1·h−1. Based on these results, it can be stated that it is possible to remove nitrates and to produce energy, without negatively affecting the electrical performance, when the nitrate concentration is low.

  12. Alternative Anode Reaction for Copper Electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    2005-07-01

    This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

  13. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    OpenAIRE

    Enrique Quiroga-González; Jürgen Carstensen; Helmut Föll

    2013-01-01

    Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001%) over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity...

  14. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1983-01-04

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  15. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1981-10-20

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  16. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Nambiar et al. 6929. Figure 1. The setup of the H-type microbial fuel cell system used. A: anode chamber; B: proton exchange membrane junction; C: cathode chamber; D: resistor on the external circuit; length of the anode-cathode chambers connector: 200 mm; inner diameter of the connector tube: 14 mm.

  17. Battery, especially for portable devices, has an anode containing silicon

    NARCIS (Netherlands)

    Kan, S.Y.

    2002-01-01

    The anode (2) contains silicon. A battery with a silicon-containing anode is claimed. An Independent claim is also included for a method used to make the battery, comprising the doping of a silicon substrate (1) with charge capacity-increasing material (preferably boron, phosphorous or arsenic),

  18. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte ...

  19. Anodic dissolution of alloys during electrochemical dimensional machining of parts

    International Nuclear Information System (INIS)

    Davydov, A.D.

    1980-01-01

    Analysis of the main regularities of anodic dissolution of alloys at current high densities, which is necessary for the explanation and prediction of the results of electrochemical dimensional machining of parts, is carried out. Examples when chemical composition produces the determining effect upon anodic behaviour and electrochemical treatment of the alloys are analyzed

  20. DMFC anode polarization: Experimental analysis and model validation

    Science.gov (United States)

    Casalegno, A.; Marchesi, R.

    Anode two-phase flow has an important influence on DMFC performance and methanol crossover. In order to elucidate two-phase flow influence on anode performance, in this work, anode polarization is investigated combining experimental and modelling approach. A systematic experimental analysis of operating conditions influence on anode polarization is presented. Hysteresis due to operating condition is observed; experimental results suggest that it arises from methanol accumulation and has to be considered in evaluating DMFC performances and measurements reproducibility. A model of DMFC anode polarization is presented and utilised as tool to investigate anode two-phase flow. The proposed analysis permits one to produce a confident interpretation of the main involved phenomena. In particular, it confirms that methanol electro-oxidation kinetics is weakly dependent on methanol concentration and that methanol transport in gas phase produces an important contribution in anode feeding. Moreover, it emphasises the possibility to optimise anode flow rate in order to improve DMFC performance and reduce methanol crossover.

  1. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    Abstract. Anodization of aluminium surfaces containing linearly oriented scratches leads to the formation of nanoporous anodic alumina (NAA) with the nanopores arranged preferentially along the scratch marks. NAA, when coated with a thin gold film, support plasmonic resonances. Dark-field spectroscopy revealed that ...

  2. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    Unknown

    follow the metal surface profile. The porous films are formed in electrolytes dissolving the ... investigated during anodization of different valve metals including Al (Andreeva and Ikonopisov 1970). The vali- .... age (Uf = 400 V) in order to finish the re-anodization just before reaching the breakdown voltage. From the kinetic ...

  3. Electrochemical oxidation of syngas on nickel and ceria anodes

    NARCIS (Netherlands)

    Tabish, A.N.; Patel, H.C.; Purushothaman Vellayani, A.

    2017-01-01

    Fuel flexibility of solid oxide fuel cells enables the use of low cost and practical fuels like syngas. Understanding of the oxidation kinetics with syngas is essential for proper selection of anode material and its design optimization. Using nickel and ceria pattern anodes, we study the

  4. Anodic oxide growth on Zr in neutral aqueous solution

    Indian Academy of Sciences (India)

    Abstract. Anodization and subsequent cathodic reactions on a thin-film sample of Zr were studied with in-situ neutron reflectometry (NR) and electrochemical impedance spec- troscopy (EIS). The NR results during anodization showed the originally 485 Å thick Zr film generally behaved similar to a bulk electrode in neutral ...

  5. Unique Reduced Graphene Oxide as Efficient Anode Material in Li ...

    Indian Academy of Sciences (India)

    19

    SRGO) was explicated as anode material in ... motivation behind testing SRGO as anode material in LIB is owing to its previously reported characteristics [1-3] like high ... Cycling performance of SRGO is shown in Fig. 2 which clearly indicates that ...

  6. Application of multi-walled carbon nanotubes to enhance anodic ...

    African Journals Online (AJOL)

    The effect of multi-walled carbon nanotube (MWCNT) modification of anodes and the optimisation of relevant parameters thereof for application in an Enterobacter cloacae microbial fuel cell were examined. The H – type microbial fuel cells were used for the fundamental studies, with a carbon sheet as a control anode and ...

  7. Cathode Dependence of Liquid-Alloy Na-K Anodes.

    Science.gov (United States)

    Xue, Leigang; Gao, Hongcai; Li, Yutao; Goodenough, John B

    2018-03-07

    Alkali ions can be plated dendrite-free into a liquid alkali-metal anode. Commercialized Na-S battery technology operates above 300 °C. A low-cost Na-K alloy is liquid at 25 °C from 9.2 to 58.2 wt% of sodium; sodium and/or potassium can be plated dendrite-free in the liquid range at room temperature. The co-existence of two alkali metals in an anode raises a question: whether the liquid Na-K alloy acts as a Na or a K anode. Here we show the alkali-metal that is stripped from the liquid Na-K anode is dependent on the preference of the cathode host. It acts as the anode of a sodium rechargeable cell if the cathode host structure selectively accepts only Na + ions; as the anode of a potassium rechargeable cell if the cathode accepts K + ions in preference to Na + ions. This dual-anode behavior means the liquid Na-K alkali-alloy can be applied as a dendrite-free anode in Na-metal batteries as well as K-metal batteries.

  8. Fundamental Investigation of Silicon Anode in Lithium-Ion Cells

    Science.gov (United States)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is 10 times of graphite and it is an abundant element on Earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. Understanding solid electrolyte interphase (SEI) formation along with the lithium ion insertion/de-insertion kinetics in silicon anodes will provide greater insight into overcoming these issues, thereby lead to better cycle performance. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of a Si anode during the first cycle; the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes, and the combination of cyclic voltammetry with impedance spectroscopy provides a useful tool to evaluate the effectiveness of the design modifications on the Si anode performance.

  9. Titanium Heat Pipe Thermal Plane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermacore Inc. proposes an innovative titanium heat pipe thermal plane for passive thermal control of individual cells within a fuel cell stack. The proposed...

  10. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Laskawiec, J.; Michalik, R.

    2001-01-01

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  11. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  12. Titanium Nanocomposite: Lightweight Multifunction Structural Material

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to research and develop lightweight metal matrix nanocomposites (MMnC) using a Titanium (Ti) metal matrix. Ti MMnC will crosscut the advancement of both...

  13. Titanium Heat Pipe Thermal Plane, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II program is to complete the development of the titanium heat pipe thermal plane and establish all necessary steps for production of this...

  14. Titanium Brazing for Structures and Survivability

    National Research Council Canada - National Science Library

    Doherty, Kevin J; Tice, Jason R; Szewczyk, Steven T; Glide, Gary A

    2007-01-01

    Titanium is a candidate as a structural material for all new tactical and armored ground vehicles, because of its high strength-to-weight ratio, excellent corrosion resistance, and inherent ballistic resistance...

  15. Atmospheric Plasma Deposition of SiO2 Films for Adhesion Promoting Layers on Titanium

    Directory of Open Access Journals (Sweden)

    Liliana Kotte

    2014-12-01

    Full Text Available This paper evaluates the deposition of silica layers at atmospheric pressure as a pretreatment for the structural bonding of titanium (Ti6Al4V, Ti15V3Cr3Sn3Al in comparison to an anodizing process (NaTESi process. The SiO2 film was deposited using the LARGE plasma source, a linearly extended DC arc plasma source and applying hexamethyldisiloxane (HMDSO as a precursor. The morphology of the surface was analyzed by means of SEM, while the characterization of the chemical composition of deposited plasma layers was done by XPS and FTIR. The long-term durability of bonded samples was evaluated by means of a wedge test in hot/wet condition. The almost stoichiometric SiO2 film features a good long-term stability and a high bonding strength compared to the films produced with the wet-chemical NaTESi process.

  16. Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangzhong; Cheng, Li [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research (China); Yang, Hui-lin [Department of Orthopaedics, Wuxi People' s Hospital, Nanjing Medical University, Jiangsu Province (China); Zhao, Quan-ming, E-mail: abc8385@163.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2016-07-15

    Although titanium (Ti) and its alloys have been widely used as implants in clinical settings, failures still occur mainly due to poor bioactivity and implant-associated infections. Here, we coated Ti implants with TiO{sub 2} nanotubes (TNTs) incorporated with the antibacterial agent Ag to produce Ag-TNTs, through anodization in AgNO{sub 3} and xenon light irradiation. We characterized surface morphology and composition of the coating with scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. We investigated surface topography of the coatings by atomic force microscopy (AFM) operated in the tapping mode. The results indicate that Ag was successfully doped onto the TNTs, and that the nanoparticles were mainly distributed on the surface of TNTs. Finally, our antibacterial experiments reveal that Ag-TNTs on Ti implants exhibit excellent antibacterial activities, which promises to have significant clinical applications as implants. (author)

  17. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  18. Analysis and design of double-anode magnetron injection gun

    International Nuclear Information System (INIS)

    Yang Tie; Niu Xinjian; Liu Yinghui

    2013-01-01

    Based on electro-optical theory and adiabatic compression theory, a double-anode magnetic injection gun for TE 34,19 , 170 GHz gyrotron was analyzed and designed with EGUN software. Concerning with the factors such as positions of anode and magnetic field distance between anodes, we obtained the result that the velocity ratio of electron beam approximated 1.3, and the velocity spread was under 3%. Furthermore, we found that electron beam was sensitive with these factors, such as that the velocity ratio decreased when the distance between anodes increased, while the velocity spread decreased first and then increased. The double-anode magnetic injection gun is employed in the experiments of gyrotron. (authors)

  19. Recovery of plutonium from electrorefining anode heels at Savannah River

    International Nuclear Information System (INIS)

    Gray, J.H.; Gray, L.W.; Karraker, D.G.

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control

  20. Natural gas anodes for aluminium electrolysis in molten fluorides.

    Science.gov (United States)

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process.

  1. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guang [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Müller, Werner E.G.; Wang, Xiaohong [ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz (Germany); Lilja, Louise [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist.

  2. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  3. Free Form Low Cost Fabrication Using Titanium

    Science.gov (United States)

    2007-06-29

    better than that of austenitic or ferritic stainless. Alloys can have ultimate strengths comparable to iron base superalloys , such as A286, or cobalt ...nickel-base superalloys . "* The tensile strength as an alloy of titanium can be comparable to that of lower-strength marterisitic stainless and is...approximately four times that of stainless steel, is comparable to that of superalloys . "* Titanium is exceptionally corrosion resistant. It often exceeds the

  4. Progress in Titanium Metal Powder Injection Molding

    OpenAIRE

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and im...

  5. PRODUCTION OF WELDMENTS FROM SINTERED TITANIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    A. YE. Kapustyan

    2014-04-01

    Full Text Available Purpose. Limited application of details from powder titanium alloys is connected with the difficulties in obtaining of long-length blanks, details of complex shape and large size. We can solve these problems by applying the welding production technology. For this it is necessary to conduct a research of the structure and mechanical properties of welded joints of sintered titanium alloys produced by flash welding. Methodology. Titanium industrial powders, type PT5-1 were used as original substance. Forming of blanks, whose chemical composition corresponded to BT1-0 alloy, was carried out using the powder metallurgy method. Compounds were obtained by flash welding without preheating. Microstructural investigations and mechanical tests were carried out. To compare the results investigations of BT1-0 cast alloy were conducted. Findings. Samples of welded joints of sintered titanium blanks from VT1-0 alloy using the flash butt welding method were obtained. During welding the microstructure of basic metal consisting of grains of an a-phase, with sizes 40...70 mkm, is transformed for the seam weld and HAZ into the lamellar structure of an a-phase. The remaining pores in seam weld were practically absent; in the HAZ their size was up to 2 mkm, with 30 mkm in the basic metal. Attainable level of mechanical properties of the welded joint in sintered titanium alloys is comparable to the basic metal. Originality. Structure qualitative changes and attainable property complex of compounds of sintered titanium alloys, formed as a result of flash butt welding were found out. Practical value. The principal possibility of high-quality compounds obtaining of sintered titanium alloys by flash welding is shown. This gives a basis for wider application of sintered titanium alloys due to long-length blanks production that are correspond to deformable strand semi finished product.

  6. Amorphouslike diffraction pattern in solid metallic titanium

    DEFF Research Database (Denmark)

    Wang, Y.; Fang, Y.Z.; Kikegawa, T.

    2005-01-01

    Amorphouslike diffraction patterns of solid elemental titanium have been detected under high pressure and high temperature using in situ energy-dispersive x-ray diffraction and a multianvil press. The onset pressure and the temperature of formation of amorphous titanium is found to be close...... for preparing single-element bulk amorphous metals. The results reported may open a new way to preparing single-element bulk amorphous metals with a high thermal stability....

  7. Backscatter radiation at tissue-titanium interfaces

    International Nuclear Information System (INIS)

    Rosengren, B.; Wulff, L.; Carlsson, E.; Carlsson, J.; Strid, K.G.; Montelius, A.

    1993-01-01

    The induced secondary electrons from a metal surface by diagnostic X-rays are thought to contribute to cell damage near the tissue-metal boundaries of metal implants. Titanium implants are becoming increasingly more popular for tissue reconstructions and it is rather often desirable to take radiographs of the operated area. In this study we compared the biological effects of radiation on cultured mammalian test cells grown on titanium plates with the radiation effects on cells that were grown on plastic control plates. In order to study the acute radiation effects on cell growth it was necessary to work with rather high radiation doses (0.7-5 Gy). Photon energies, suitable for diagnostic radiography in odontology, 65 kV, were applied. We found that the cells grown on titanium plates were, in terms of the applied dose in the surrounding culture medium, more sensitive to the irradiations than the cells growing on plastic plates. The survival curve for the cells on titanium had a steeper slope, showed no shoulder in the low-dose region and looked like curves normally obtained for high LET radiation. It was not possible to resolve to what degree the titanium-dependent changes were due to an increased dose near the titanium surface or to a change in the radiobiological effectiveness. Although there was a significant decrease in cellular survival near the metal, postoperative intraoral radiography after titanium implantations need not be excluded. The maximal doses given in odontological X-ray examinations are less than 1 mGy and, if the results in this study are applied, the biological effects near the titanium implant will correspond to biological effects in soft tissue of doses less than 20 mGy which is lower than the doses that give acute effects. The risk of acute healing disturbances are significant only at much higher radiation doses. (orig.)

  8. Electrochemical degradation of bisphenol A on different anodes.

    Science.gov (United States)

    Cui, Yu-hong; Li, Xiao-yan; Chen, Guohua

    2009-04-01

    Laboratory experiments were carried out on the kinetics, pathways and mechanisms of electrochemical (EC) degradation of bisphenol A (BPA) on four types of anodes, Ti/boron-doped diamond (BDD), Ti/Sb-SnO(2), Ti/RuO(2) and Pt. There were considerable differences among the anodes in their effectiveness and performance of BPA electrolysis. BPA was readily destructed at the Ti/Sb-SnO(2) and Ti/BDD anodes, the Pt anode had a moderate ability to remove BPA, and the Ti/RuO(2) anode was incapable of effectively oxidising BPA. The intermediate products of EC degradation of BPA were detected and quantified by high-performance liquid chromatography (HPLC), and a general BPA degradation pathway was proposed based on the analytical results. It was suggested that OH radicals produced by water electrolysis attacked BPA to form hydroxylated BPA derivatives that were then transformed into one-ring aromatic compounds. These compounds underwent ring breakage, which led to the formation of aliphatic acids that were eventually mineralised by electrolysis to CO(2). Compared to the Pt and Ti/RuO(2) anodes, the Ti/Sb-SnO(2) and Ti/BDD anodes were found to have higher oxygen evolution potentials and higher anodic potentials for BPA electrolysis under the same current condition. However, the stability and durability of the Ti/Sb-SnO(2) anode still needs to be greatly improved for actual application. In comparison, with its high durability and good reactivity for organic oxidation, the Ti/BDD anode appears to be the more promising one for the effective EC treatment of BPA and similar endocrine disrupting chemical (EDC) pollutants.

  9. Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium

    Science.gov (United States)

    Hayashi, R.; Ueno, T.; Migita, S.; Tsutsumi, Y.; Doi, H.; Ogawa, T.; Hanawa, T.; Wakabayashi, N.

    2014-01-01

    Although the reported percentage of bone-implant contact is far lower than 100%, the cause of such low levels of bone formation has rarely been investigated. This study tested the negative biological effect of hydrocarbon deposition onto titanium surfaces, which has been reported to be inevitable. Osteogenic MC3T3-E1 cells were cultured on titanium disks on which the carbon concentration was experimentally regulated to achieve carbon/titanium (C/Ti) ratios of 0.3, 0.7, and 1.0. Initial cellular activities such as cell attachment and cell spreading were concentration-dependently suppressed by the amount of carbon on the titanium surface. The osteoblastic functions of alkaline phosphatase activity and calcium mineralization were also reduced by more than 40% on the C/Ti (1.0) surface. These results indicate that osteoblast activity is influenced by the degree of hydrocarbon contamination on titanium implants and suggest that hydrocarbon decomposition before implant placement may increase the biocompatibility of titanium. PMID:24868012

  10. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  11. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  12. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  13. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  14. Will nonaerospace applications for titanium ever grow?

    Science.gov (United States)

    Katrak, Firoze E.; Servi, I. S.; Agarwal, J. C.

    1991-07-01

    Confronted with the currently attractive aerospace markets, titanium producers could choose to minimize their promotional effort in the nonaerospace sector. In such a case, primary producers would continue to give some support to a few nonaerospace market segments but would minimize product and market development in most other areas. Such a modus operandi is quite likely, in which case the 1990s may turn out to be as disappointing for the industrial application of titanium as were the 1980s. Such a trend is not desirable for titanium producers for two reasons: the military aerospace market is likely to shrink in the future,8 and the titanium content of commercial jet engines will decline.9 Thus, titanium producers need to adopt a strategy to increase nonaerospace applications. Such a strategy must accomplish at least the following: • Commit to reducing titanium mill product costs. • Convince potential users that titanium (sponge and) mill products will be available at a sustained cost much below the current cost. No radically new technologies are necessaryzzto meet the target sponge costs (i.e., the current processes can meet cost targets with plant and practice changes). • Begin developing new alloys specifically tailored to nonaerospace applications and lower-cost mill products. If and when new alloys become available, the potential growth in nonaerospace uses would be greater than the 1-10-100 rule, which applies to existing commercially pure titanium. • Work toward reducing value-added component costs by achieving cost reductions in secondary fabrication for selected niche applications. • Offer application engineering and technical support services, including the establishment of training centers (e.g., for field welding). • Develop estimates of cost effectiveness in target applications that will convince the users. If a strategy incorporating these elements is not adopted by titanium producers because of the short-term strength of aerospace demand

  15. Growth, Structure, and Photocatalytic Properties of Hierarchical V2O5–TiO2 Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti–V Alloys

    Directory of Open Access Journals (Sweden)

    María C. Nevárez-Martínez

    2017-04-01

    Full Text Available V2O5-TiO2 mixed oxide nanotube (NT layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM, UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX, X-ray diffraction (DRX, and micro-Raman spectroscopy. The effect of the applied voltage (30–50 V, vanadium content (5–15 wt % in the alloy, and water content (2–10 vol % in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt % exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm. Additionally, a probable growth mechanism of V2O5-TiO2 nanotubes (NTs over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm in the presence of the modified TiO2 nanostructures. The highest degradation value was 35% after 60 min of irradiation. V2O5 species were ascribed as the main structures responsible for the generation of photoactive e− and h+ under Vis light and a possible excitation mechanism was proposed.

  16. Anodic incineration of phthalic anhydride using RuO2–IrO2–SnO2–TiO2 coated on Ti anode

    Directory of Open Access Journals (Sweden)

    S. Chellammal

    2016-11-01

    Full Text Available Phthalic anhydride is a toxic and non-biodegradable organic compound and is widely used for the production of dyes. This paper has investigated the electrochemical oxidation of phthalic anhydride in an undivided cell at different experimental parameters such as pH, current density and supporting electrolytes on the anode of titanium substrate coated with mixed metal oxides of RuO2, IrO2, SnO2 and TiO2 prepared by thermal decomposition method. The surface morphology and the structure of the above anode were characterized by scanning electron microscopy, electron dispersion microscopy and X-ray diffraction. The study shows that the electrode exhibits good electro catalytic activity together with chemical stability during the treatment of the phthalic anhydride. At pH 3, the maximum removal of COD of 88% with energy consumption of 30.5 kW h kg−1 was achieved by the addition of 10 g l−1 NaCl in 0.2 mol dm−3 Na2SO4 at 5 Adm−2. This electrolytic investigation offers an attractive alternative method for the destruction of industrial effluents contaminated with phthalic anhydride.

  17. The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt

    Science.gov (United States)

    Wang, Qiuyu; Song, Jianxun; Hu, Guojing; Zhu, Xiaobo; Hou, Jungang; Jiao, Shuqiang; Zhu, Hongmin

    2013-08-01

    The equilibrium between metallic titanium and titanium ions, 3Ti2+ ⇌ 2Ti3+ + Ti, in NaCl-KCl equimolar molten salt was reevaluated. At a fixed temperature and an initial concentration of titanium chloride, the equilibrium was achieved by adding an excess amount of sponge titanium in assistant with bubbling of argon into the molten salt. The significance of this work is that the accurate concentrations of titanium ions have been obtained based on a reliable approach for taking samples. Furthermore, the equilibrium constant {{K}}_{{C}} = (x_{{{{Ti}}^{{ 3 { + }}} }}^{{eql}} )3 /(x_{{{{Ti}}^{{ 2 { + }}} }}^{{eql}} )2 was calculated through the best-fitting method under the consideration of the TiOCl dissolution. Indeed, the final results have disclosed that the stable value of KC could be achieved based on all modifications.

  18. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes.

    Science.gov (United States)

    Zhang, Huigang; Braun, Paul V

    2012-06-13

    Silicon-based lithium ion battery anodes are attracting significant attention because of silicon's exceptionally high lithium capacity. However, silicon's large volume change during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix in nanoparticulate form. Because pulverization results in a loss of electric connectivity, the reversible capacity of most silicon anodes dramatically decays within a few cycles. Here we report a three-dimensional (3D) bicontinuous silicon anode formed by depositing a layer of silicon on the surface of a colloidal crystal templated porous nickel metal scaffold, which maintains electrical connectivity during cycling due to the scaffold. The porous metal framework serves to both impart electrical conductivity to the anode and accommodate the large volume change of silicon upon lithiation and delithiation. The initial capacity of the bicontinuous silicon anode is 3568 (silicon basis) and 1450 mAh g(-1) (including the metal framework) at 0.05C. After 100 cycles at 0.3C, 85% of the capacity remains. Compared to a foil-supported silicon film, the 3D bicontinuous silicon anode exhibits significantly improved mechanical stability and cycleability.

  19. On self-sustainment of DC discharges with gridded anode

    Science.gov (United States)

    Yuan, Chengxun; Yao, Jingfeng; Eliseev, S. I.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2017-10-01

    The paper presents results of numerical investigation of a large-volume plasma source based on a DC discharge with gridded anode. Geometry and configuration of the electrodes were chosen so as to ensure the formation of a cathode sheath, which would accelerate electrons up to high energies and inject them into the post-anode space and create plasma. Simulations were carried out using a hybrid model, and distributions of the main discharge parameters were obtained in a wide range of currents. At low currents, cathode sheath occupies whole interelectrode gap while plasma is formed in the post-anode space. It is shown that ions moving through the anode grid into the interelectrode gap cause reduction of discharge voltage when compared to the case of classical obstructed discharge with virtually closed anode grid. At higher currents, however, plasma is formed within the interlectrode gap as well, and ions moving from plasma in the post-anode space become trapped by reversed electric field. This essentially nullifies influence of the post-anode plasma on discharge properties.

  20. Effects of Charcoal Addition on the Properties of Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Asem Hussein

    2017-03-01

    Full Text Available Wood charcoal is an attractive alternative to petroleum coke in production of carbon anodes for the aluminum smelting process. Calcined petroleum coke is the major component in the anode recipe and its consumption results in a direct greenhouse gas (GHG footprint for the industry. Charcoal, on the other hand, is considered as a green and abundant source of sulfur-free carbon. However, its amorphous carbon structure and high contents of alkali and alkaline earth metals (e.g., Na and Ca make charcoal highly reactive to air and CO2. Acid washing and heat treatment were employed in order to reduce the reactivity of charcoal. The pre-treated charcoal was used to substitute up to 10% of coke in the anode recipe in an attempt to investigate the effect of this substitution on final anode properties. The results showed deterioration in the anode properties by increasing the charcoal content. However, by adjusting the anode recipe, this negative effect can be considerably mitigated. Increasing the pitch content was found to be helpful to improve the physical properties of the anodes containing charcoal.

  1. The mineralogical characterization of tellurium in copper anodes

    Science.gov (United States)

    Chen, T. T.; Dutrizac, J. E.

    1993-12-01

    A mineralogical study of a «normal» commercial copper anode and six tellurium-rich copper anodes from the CCR Refinery of the Noranda Copper Smelting and Refining Company was carried out to identify the tellurium carriers and their relative abundances. In all the anodes, the major tellurium carrier is the Cu2Se-Cu2Te phase which occurs as a constituent of complex inclusions at the copper grain boundaries. In tellurium-rich anodes, the molar tellurium content of the Cu2Se-Cu2Te phase can exceed that of selenium. Although >85 pct of the tellurium occurs as the Cu2Se-Cu2Te phase, minor amounts are present in Cu-Pb-As-Bi-Sb oxide, Cu-Bi-As oxide, and Cu-Te-As oxide phases which form part of the grain-boundary inclusions. About 1 pct of the tellurium content of silver-rich anodes occurs in various silver alloys, but gold tellurides were never detected. Surprising is the fact that 2 to 8 pct of the total tellurium content of the anodes occurs in solid solution in the copper-metal matrix, and presumably, this form of tellurium dissolves at the anode interface during electrorefining.

  2. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  3. Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode: role of dye structure.

    Science.gov (United States)

    Araújo, Cynthia K C; Oliveira, Gustavo R; Fernandes, Nedja S; Zanta, Carmem L P S; Castro, Suely Souza Leal; da Silva, Djalma R; Martínez-Huitle, Carlos A

    2014-01-01

    In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm(-2)) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90% was removed. In the case of COD removal, the application of a current density greater than 40 mA cm(-2) favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified.

  4. Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

    International Nuclear Information System (INIS)

    Minella, M.; Versaci, D.; Casino, S.; Di Lupo, F.; Minero, C.; Battiato, A.; Penazzi, N.; Bodoardo, S.

    2017-01-01

    Titanium dioxide/reduced graphene oxide (TiO 2 -rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO 2 , GO was synthesized from graphite, adsorbed onto TiO 2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO 2 -rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

  5. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Cecilia Larsson Wexell

    2016-01-01

    Full Text Available This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.

  6. Preparation of Titanium nitride nanomaterials for electrode and application in energy storage

    Directory of Open Access Journals (Sweden)

    Shun Tang

    Full Text Available The Titanium nitride was made by the carbamide and titanic chloride precursors. XRD results indicate that the precursor ratio N:Ti 3:1 leads to higher crystallinity. SEM and EDX demonstrated that Ti and N elements were distributed uniformly with the ratio of 1:1. The TiN used as the electrode material for supercapacitor was also studied. The specific capacities were changed from 407 F.g−1 to 385 F.g−1, 364 F.g−1 and 312 F.g−1, when the current densities were changed from 1 A.g−1 to 2 A.g−1, 5 A.g−1 and 10 A.g−1, respectively. Chronopotentiometry tests showed high coulombic efficiency. Cycling performance of the TiN electrode was evaluated by CV at a scanning rate of 50 mV.s−1 for 20,000 cycles and there was about 9.8% loss. These results indicate that TiN is a promising electrode material for the supercapacitors. Keywords: Energy storage, Nanomaterials, Anode, Titanium nitride, Supercapacitors

  7. Bone response to immediate loading through titanium implants with different surface roughness in rats.

    Science.gov (United States)

    Sato, Naoko; Kuwana, Toshie; Yamamoto, Miou; Suenaga, Hanako; Anada, Takahisa; Koyama, Shigeto; Suzuki, Osamu; Sasaki, Keiichi

    2014-07-01

    Because of its high predictability of success, implant therapy is a reliable treatment for replacement of missing teeth. The concept of immediate implant loading has been widely accepted in terms of early esthetic and functional recovery. However, there is little biological evidence to support this concept. The objective of this study was to examine the interactive effects of mechanical loading and surface roughness of immediately loaded titanium implants on bone formation in rats. Screw-shaped anodized titanium implants were either untreated (smooth) or acid-etched. Two implants were inserted parallel to each other in the tibiae of rats, and a closed coil spring (2.0 N) was immediately applied. Trabecular and cortical bone around both implants was analyzed using microtomographic images, and a removal torque test was performed at weeks 1, 2, and 4. Immediate loading of acid-etched implants resulted in significant decreases in bone mineral density, contact surface area, and cortical bone thickness. These effects were not observed after immediate loading of smooth implants. Conversely, loading did not influence acid-etched implant fixation; however, smooth implant fixation at week 1 was significantly reduced. These results imply that surface roughness regulates bone response to mechanical stress and that immediate loading might not inhibit osseointegration for smooth and rough implants in the late healing stages.

  8. Properties of ordered titanium templates covered with Au thin films for SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Sokołowski, Michał; Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk (Poland); Szkoda, Mariusz [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland); Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk (Poland)

    2016-12-01

    Graphical abstract: - Highlights: • Dimpled Ti substrates prepared via anodization followed by etching. • Highly ordered nano-patterned titanium templates covered with thin Au films. • Enhanced Raman signal indicates on promising sensing material. - Abstract: Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5–20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO{sub 2} nanotubes on a flat Ti surface (2 × 2 cm{sup 2}) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (10{sup 7}–10{sup 8}) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  9. Inert Anode Life in Low Temperature Reduction Process

    Energy Technology Data Exchange (ETDEWEB)

    Bradford, Donald R.

    2005-06-30

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  10. [Corrosion of titanium in presence of dental amalgams and fluorides].

    Science.gov (United States)

    Di Carlo, F; Cassinelli, C; Morra, M; Ronconi, L F; Andreasi Bassi, M; De Muro, G; Quaranta, A

    2003-03-01

    The aim of this study was to evaluate the behaviour of titanium (Ti) in precipitant condition, and more precisely the resistance against corrosion of Ti in presence of fluorides and the electrochemical interaction between Ti- amalgam couples in fluorinated solution. The experimental test was made with the use of an electrochemical cell. The following materials were tested: commercially pure Ti and 2 types of amalgams, the Persistalloy (Prs) and the IQC. Palladium (IQC.P). The free corrosion potential of Ti and the amalgams, the polarization curves of both amalgams and the corrosion current of the Ti-amalgam couples in the measurements were performed in 3 different electrolytic solutions: Ringer solution, fluorinated neutral Ringer solution and acid fluorinated solution. The three corrosive media are described. The results showed that Ti could be damaged by the presence of fluorides with an acid pH: Ti potential becomes more negative in acid fluorinated solution. The corrosion currents between Ti and amalgam couples were considered: the amalgams underwent anodic oxidation in neutral Ringer, but a reversal phenomenon occurred in the fluorinated acid solution: Ti was damaged and the amalgams both Prs and IQC.P became the cathodic partner of the couple. In neutral fluorinated solution the IQC.P amalgam induced a significantly higher corrosion of Ti, when compared to the Prs one. Results clearly show the dependence of the Ti corrosion behaviour on the pH and composition of the solution and that the outcome of the damage is affected by the composition of other metals.

  11. Na-Ion Battery Anodes: Materials and Electrochemistry.

    Science.gov (United States)

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are

  12. Anti-infection activity of nanostructured titanium percutaneous implants with a postoperative infection model

    Science.gov (United States)

    Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo

    2015-07-01

    The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.

  13. Fatigue Behavior of a Functionally-Graded Titanium Matrix Composite

    National Research Council Canada - National Science Library

    Cunningham, Scott R

    2005-01-01

    Functionally-graded Titanium Matrix Composites are an attempt to utilize the high-strength properties of a titanium matrix composite with a monolithic alloy having the more practical machining qualities...

  14. Contact Stress Design Parameters for Titanium Bearings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA 2015 SBIR Topic H4.02, Air-Lock proposes to define the maximum allowable contact stress for Titanium bearings. The modulus of Titanium is lower...

  15. Handbook of International Alloy Compositions and Designations. Volume 1. Titanium

    Science.gov (United States)

    1976-11-01

    Institute Nacional de Tecnica Aeroespacial , Madrid, Spain, plus the proposed Spanish designations for titanium alloys. Swedish References 31. Titanium...JISC, JIS: Japanese Industria Standards Committee, Agency of Industiial Science and Technology, Ministry of international Trade and Industry, 3

  16. Enhanced Performance Near Net Shape Titanium Alloys by Thermohydrogen Processing

    National Research Council Canada - National Science Library

    Froes, F

    2001-01-01

    ...), powder metallurgy and cast titanium alloys. Fundamental results have been obtained which can now be used to develop optimum THP steps to refine the microstructure and improve the mechanical properties of titanium alloys...

  17. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  18. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  19. The Use of Titanium in the Friction of Artificial Joints

    Directory of Open Access Journals (Sweden)

    Sheykin, S.Ye.

    2015-05-01

    Full Text Available The possibility of using titanium in the friction of artificial joints is studying. Tribological characteristics of the friction pair titanium-hirulen is researching. The technology of diamond-abrasive machining, polishing and gas thermal nitridation spherical heads of pure titanium implants for hip person are developed. It is proved the increases of titanium head hardness achieved by pre-grinding the surface layer structure after cold plastic deformation.

  20. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  1. Virus-enabled silicon anode for lithium-ion batteries.

    Science.gov (United States)

    Chen, Xilin; Gerasopoulos, Konstantinos; Guo, Juchen; Brown, Adam; Wang, Chunsheng; Ghodssi, Reza; Culver, James N

    2010-09-28

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge-discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  2. Silicon Whisker and Carbon Nanofiber Composite Anode, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) has successfully developed a silicon whisker and carbon nanofiber composite anode for lithium ion batteries on a Phase I program. PSI...

  3. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    Magallanes, J.F.

    1984-01-01

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.) [es

  4. Scanning Anode Field Emission Characterisation of Carbon Nanotube emitter arrays

    NARCIS (Netherlands)

    Berhanu, S.; Gröning, O.; Chen, Z.; Merikhi, J.; Bachmann, P.K.

    2011-01-01

    Scanning anode field emission microscopy (SAFEM) was used to characterise carbon nanotube (CNT) emitter arrays produced within Philips CediX-Technotubes' activities. Four different samples were investigated and compared. The field enhancement distributions were determined and the local field

  5. Determining localized anode condition to maintain effective corrosion protection.

    Science.gov (United States)

    2010-01-01

    Thermal sprayed zinc anodes used for impressed current cathodic protection of reinforced concrete deteriorate over time. : Two different technologies, ultrasound and electrical circuit resistance combined with water permeability, were : investigated ...

  6. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    International Nuclear Information System (INIS)

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-01-01

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m 2 . This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  7. Trends in Catalytic Activity for SOFC Anode materials

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Bessler, W. G.

    2008-01-01

    Quantum mechanical calculations on the level of density-functional theory are used to calculate the stability of surface-adsorbed hydrogen atoms, oxygen atoms, and hydroxyl radicals for a variety of metals (Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Pt, Au) that may be used as electrode materials...... for solid oxide fuel cell (SOFC) anodes. The reaction energies along the hydrogen oxidation pathway were quantified for both, oxygen spillover and hydrogen spillover mechanisms at the three-phase boundary. The ab initio results are compared to previously-obtained experimental anode activities measured...... for nine different metal/stabilized zirconia anodes. The experimentally-observed variation of electrode activity with anode material is well-correlated with the calculated stability of surface-adsorbed atomic oxygen, but uncorrelated with the stability of surface-adsorbed hydrogen. This finding indicates...

  8. High-performance lithium battery anodes using silicon nanowires.

    Science.gov (United States)

    Chan, Candace K; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A; Cui, Yi

    2008-01-01

    There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g(-1); ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials, silicon anodes have limited applications because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

  9. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2010-01-01

    Full Text Available Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability.

  10. Synthesis and characterization of nano silicon and titanium nitride ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique ... nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor.

  11. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average...... degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications....

  12. Applications of Titanium Dioxide Photocatalysis to Construction Materials

    CERN Document Server

    Ohama, Yoshihiko

    2011-01-01

    Titanium dioxide photocatalysis is based on the semiconducting nature of its anatase crystal type. Construction materials with titanium photocatalyst show performances of air purification, self-cleaning, water purification, antibacterial action. This book describes principles of titanium dioxide photocatalysis, its applications to cementitious and noncementitious materials, as well as an overview of standardization of testing methods.

  13. Synthesis and characterization of nano silicon and titanium nitride ...

    Indian Academy of Sciences (India)

    ... nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor. The synthesized nano silicon and titanium nitride powders were characterized by XRD, XPS, TEM, SEM and BET. The characterization techniques indicated that the synthesized powders were indeed crystalline nanomaterials.

  14. Effects of thickness on electronic structure of titanium thin films

    Indian Academy of Sciences (India)

    Effects of thickness on the electronic structure of e-beam evaporated thin titanium films were studied using near-edge X-ray absorption fine structure (NEXAFS) technique at titanium 2,3 edge in total electron yield (TEY) mode and transmission yield mode. Thickness dependence of 2,3 branching ratio (BR) of titanium was ...

  15. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance and... titanium oxide (PMN P-01-764; CAS No. 39290-90-9) is subject to reporting under this section for the...

  16. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as lithium potassium titanium oxide (PMN P-02...

  17. Array of titanium dioxide nanostructures for solar energy utilization

    Science.gov (United States)

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  18. Development and application of titanium alloy casting technology in China

    Directory of Open Access Journals (Sweden)

    HAN Hai

    2005-11-01

    Full Text Available The development and research of casting titanium alloy and its casting technology, especially its application in aeronautical industry in China are presented. The technology of moulding, melting and casting of titanium alloy, casting quality control are introduced. The existing problem and development trend in titanium alloy casting technology are also discussed.

  19. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  20. Surface treatment for inducing nanotopography on titanium

    International Nuclear Information System (INIS)

    Oliveira, S.V. de; Ribeiro, A.A.; Oliveira, M.V. de

    2014-01-01

    The titanium implant surface plays extremely important role in the biological response. Therefore, the objective of this research was to study the titanium surface nanotopography modified by chemical treatment, in order to improve its bioactivity. Commercially pure titanium samples, ASTM F67 grade 2, were immersed in H 2 SO 4 /H 2 O 2 solution for 2 or 4 hours. The samples were characterized by Scanning Electron Microscopy, Scanning Confocal Optical Microscopy, X-ray Photoelectron Spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy. The results revealed nanostructured surfaces with TiO 2 layer, average roughness of 0.86 ± 0.06 μm and 1.07 ± 0.05 μm for 2 or 4 hours, respectively and nanopores with 18 ± 6.82 nm average diameter. (author)

  1. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  2. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  3. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  4. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling heat......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  5. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  6. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    OpenAIRE

    Liu Jun; Xue Dongfeng

    2010-01-01

    Abstract Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at th...

  7. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  8. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  9. Optimal Conditions for Fast Charging and Long Cycling Stability of Silicon Microwire Anodes for Lithium Ion Batteries, and Comparison with the Performance of Other Si Anode Concepts

    Directory of Open Access Journals (Sweden)

    Enrique Quiroga-González

    2013-10-01

    Full Text Available Cycling tests under various conditions have been performed for lithium ion battery anodes made from free-standing silicon microwires embedded at one end in a copper current collector. Optimum charging/discharging conditions have been found for which the anode shows negligible fading (< 0.001% over 80 cycles; an outstanding result for this kind of anodes. Several performance parameters of the anode have been compared to the ones of other Si anode concepts, showing that especially the capacity as well as the rates of charge flow per nominal area of anode are the highest for the present anode. With regard to applications, the specific parameters per area are more important than the specific gravimetric parameters like the gravimetric capacity, which is good for comparing the capacity between materials but not enough for comparing between anodes.

  10. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  11. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    Science.gov (United States)

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life.

  12. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  13. Creating mobile apps with Appcelerator Titanium

    CERN Document Server

    Brousseau, Christian

    2013-01-01

    Creating Mobile Apps with Appcelerator Titanium provides a hands-on approach and working examples on creating apps and games as well as embedding them onto a social networking website. Developers can then move on from there to develop their own applications based on the ones they have developed throughout the course of this book.""Creating Mobile Apps with Appcelerator Titanium"" is for developers who have experience with modern languages and development environments. Also, if you are familiar with the concepts of Object-oriented Programming (OOP), reusable components, AJAX closures, and so on

  14. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  15. Titanium plate fixation of flail chest

    OpenAIRE

    Muhammad Nadeem; Hibbut-ur-Rauf Naseem; William F. Stendardi; Kathryn D. Bass

    2018-01-01

    Introduction: We present short and long term outcomes of titanium rib plating in two pediatric patients with traumatic flail chest. Cases: Patient 1 is a 12 year old male ATV driver with left thorax handlebar impalement with a flail segment of ribs 4–8. He was unable to wean from the ventilator by hospital day (HD) 4 and had titanium plating of ribs 4–7. He was extubated on postoperative day (POD) 1 and discharged home on POD 5. He returned to contact sports at 6 months. Patient 2 is a 13 ...

  16. Titanium catalyzed silicon nanowires and nanoplatelets

    Directory of Open Access Journals (Sweden)

    Mohammad A. U. Usman

    2013-03-01

    Full Text Available Silicon nanowires, nanoplatelets, and other morphologies resulted from silicon growth catalyzed by thin titanium layers. The nanowires have diameters down to 5 nm and lengths to tens of micrometers. The two-dimensional platelets, in some instances with filigreed, snow flake-like shapes, had thicknesses down to the 10 nm scale and spans to several micrometers. These platelets grew in a narrow temperature range around 900 celsius, apparently representing a new silicon crystallite morphology at this length scale. We surmise that the platelets grow with a faceted dendritic mechanism known for larger crystals nucleated by titanium silicide catalyst islands.

  17. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  18. The Properties of Titanium and Its Alloys

    OpenAIRE

    BIŠĆAN, VLATKA; LUETIĆ, VIKTORIJA

    2012-01-01

    Titanium metal is silver-grey color and high gloss, the ninth element of the abundance in the Earth’s crust, and can be found in meteorites. It has a low electrical conductivity and low coefficient of thermal expansion. Since titanium has a great passivity, its physical property is a high level of corrosion resistance to most mineral acids and chlorides. It has mechanical properties such as steel, has a high melting temperature and is light. Since it is highly resistant to corrosion it is app...

  19. Process for anodizing a robotic device

    Science.gov (United States)

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  20. IR and Near IR Laser Ablative Deposition of Amorphous Titanium Coats Containing Nanocrystalline Grains of Titanium and Titanium Suboxides.

    Czech Academy of Sciences Publication Activity Database

    Urbanová, M.; Pokorná, D.; Kupčík, Jaroslav; Medlín, R.; Křenek, T.; Pola, J.

    2014-01-01

    Roč. 67, NOV (2014), s. 237-244 ISSN 1350-4495 Institutional support: RVO:61388980 Keywords : laser ablation * laser deposition * amorphous titanium coats Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.550, year: 2014