WorldWideScience

Sample records for anodically oxidized titanium

  1. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  2. Anodic oxidation of commercially pure titanium for purification of polluted water

    Science.gov (United States)

    Benkafada, Faouzia; Kerdoud, Djahida; Bouchoucha, Ali

    2018-05-01

    Anodisation of pure titanium has been carried out in sulphuric acid solution at potentials ranging from 40 V to 5 days. We studied the parameters influencing the anodic deposition such as acid concentration and anodic periods. Anodic oxides thin films were characterized by X-ray diffraction, cyclic polarization and electrochemical impedance spectroscopy. The I-V curves and electrochemical impedance measurements were carried out in 0.1 N NaOH solution. The results indicated that although the thin films obtained by anodic oxidation are nonstoichiometric, they have an electric behaviour like n-type semiconducting material.

  3. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Passos, Alessandra Pires

    2014-01-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H 3 PO 4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO 2 . The results obtained in this study showed no

  4. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Science.gov (United States)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  5. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  6. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  7. Study of the phase composition of nanostructures produced by the local anodic oxidation of titanium films

    International Nuclear Information System (INIS)

    Avilov, V. I.; Ageev, O. A.; Konoplev, B. G.; Smirnov, V. A.; Solodovnik, M. S.; Tsukanova, O. G.

    2016-01-01

    The results of experimental studies of the phase composition of oxide nanostructures formed by the local anodic oxidation of a titanium thin film are reported. The data of the phase analysis of titanium-oxide nanostructures are obtained by X-ray photoelectron spectroscopy in the ion profiling mode of measurements. It is established that the surface of titanium-oxide nanostructures 4.5 ± 0.2 nm in height possesses a binding energy of core levels characteristic of TiO_2 (458.4 eV). By analyzing the titanium-oxide nanostructures in depth by X-ray photoelectron spectroscopy, the formation of phases with binding energies of core levels characteristic of Ti_2O_3 (456.6 eV) and TiO (454.8 eV) is established. The results can be used in developing the technological processes of the formation of a future electronic-component base for nanoelectronics on the basis of titanium-oxide nanostructures and probe nanotechnologies.

  8. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  9. Fabrication of free standing anodic titanium oxide membranes with clean surface using recycling process.

    Science.gov (United States)

    Meng, Xianhui; Lee, Tae-Young; Chen, Huiyu; Shin, Dong-Wook; Kwon, Kee-Won; Kwon, Sang Jik; Yoo, Ji-Beom

    2010-07-01

    Large area of self-organized, free standing anodic titanium oxide (ATO) nanotube membranes with clean surfaces were facilely prepared to desired lengths via electrochemical anodization of highly pure Ti sheets in an ethylene glycol electrolyte, with a small amount of NH4F and H2O at 50 V, followed by self-detachment of the ATO membrane from the Ti substrate using recycling processes. In the first anodization step, the nanowire oxide layer existed over the well-arranged ATO nanotube. After sufficiently rinsing with water, the whole ATO layer was removed from the Ti sheet by high pressure N2 gas, and a well-patterned dimple layer with a thickness of about 30 nm existed on the Ti substrate. By using these naturally formed nano-scale pits as templates, in the second and third anodization process, highly ordered, vertically aligned, and free standing ATO membranes with the anodic aluminum oxide (AAO)-like clean surface were obtained. The inter-pore distance and diameter was 154 +/- 2 nm and 91+/- 2 nm, the tube arrays lengths for 25 and 46 hours were 44 and 70 microm, respectively. The present study demonstrates a simple approach to producing high quality, length controllable, large area TiO2 membrane.

  10. Invariance of the mobility edge in anodic titanium oxides

    International Nuclear Information System (INIS)

    Tit, N.; Halley, J.W.; Shore, H.B.

    1992-05-01

    We present a theoretical investigation to explain the electronic and optical properties of anodic rutile TiO 2 thin films of different thicknesses (ranging from 5nm to 20nm). There is experimental evidence that the observed gap state at 0.7eV below the edge of conduction-band is due to an oxygen vacancy. For this reason, oxygen vacancies are used as defects in our model. A comparison of the calculated bulk-photoconductivity to photospectroscopy experiment reveals that the films have bulk-like transport properties with a bandgap E g =3.0eV. On the other hand, a fit of the surface density of states to the scanning tunneling microscopy (STM) experiment on the (001) surfaces has suggested a surface defect density of 5% of oxygen vacancies. To resolve this discrepancy, we calculated the dc-conductivity where localization effects are included. Our results show an impurity band formation at about p c =9% of oxygen vacancies. We concluded that the studied films have defect densities below the threshold of impurity band formation. As a consequence the gap states seen in STM are localized (i.e. the oxygen vacancies are playing the role of trapping centers, deep levels) and the mobility edge is invariant. (author). 11 refs, 3 figs

  11. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  12. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  13. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  14. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  15. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  16. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells.

    Science.gov (United States)

    Chang, Chih-Hung; Lee, Hsin-Chun; Chen, Chia-Chun; Wu, Yi-Hau; Hsu, Yuan-Ming; Chang, Yin-Pen; Yang, Ta-I; Fang, Hsu-Wei

    2012-07-01

    Titanium oxide (TiO(2) ) surface layers with various surface nanostructures (nanotubes and nanowires) have been developed using an anodizing technique. The pore size and length of TiO(2) nanotubes can be tailored by changing the anodizing time and applied voltage. We developed a novel method to transform the upper part of the formed TiO(2) nanotubes into a nanowire-like structure by rotating the titanium anode during anodizing process. The transformation of nanotubes contributed to the preferential chemical dissolution of TiO(2) on the areas with intense interface tension stress. Furthermore, we further compared the effect of various TiO(2) surface nanostructures including flat, nanotubes, and nanowires on bioactive applications. The MG-63 osteoblastic cells cultured on the TiO(2) nanowires exhibited a polygonal shape with extending filopodia and showed highest levels of cell viability and alkaline phosphatase activity (ALP). The TiO(2) nanowire structure formed by our novel method can provide beneficial effects for MG-63 osteoblastic cells in attachment, proliferation, and secretion of ALP on the TiO(2) surface layer. Copyright © 2012 Wiley Periodicals, Inc.

  17. Correlation of electrolyte-derived inclusions to crystallization in the early stage of anodic oxide film growth on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, C., E-mail: christian.jaeggi@empa.ch [Empa, Swiss Federal Laboratories for Materials Testing and Research, Advanced Materials Processing Laboratory, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Parlinska-Wojtan, M., E-mail: magdalena.parlinska@empa.ch [Empa, Swiss Federal Laboratories for Materials Testing and Research, Center for Electron Microscopy, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Kern, P., E-mail: Philippe.Kern@neopac.ch [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2012-01-01

    Pure titanium has been subjected to anodization in sulfuric and phosphoric acid. For a better understanding of the oxide growth and properties of the final film, with a particular interest focused on the solution anions in the early stage of crystallization, microstructural analyses (Raman, Transmission Electron Microscopy [TEM]) of the oxide films were correlated to chemical depth profiling by glow discharge optical emission spectroscopy (GDOES). Raman spectroscopy shows that crystallization of the oxide films starts at potentials as low as 10-20 V. The onset of crystallization and the ongoing increase in crystallinity with increasing anodization potentials had already earlier been correlated to ac-impedance measurements [Jaeggi et al., Surf. Interface Anal. 38 (2006) 182]. TEM observations show a clear difference in the early phase of crystallization between oxides grown in 1 M sulfuric acid compared to 1 M phosphoric acid. Moreover, independent of electrolyte type, nano-sized pores from oxygen bubbles formation were revealed in the central part of the films. Until now, oxygen bubbles inside an anodically grown oxide have not been observed before without the presence of crystalline regions nearby. A growth model is proposed, in which the different starting locations of crystallization inside the films are correlated to the presence of the acid anions as residues in the film, as found by GDOES chemical depth-profiling.

  18. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

  19. Study for preparation of nanoporous titania on titanium by anodic oxidation; Estudo da preparacao de titania nanoporosa sobre titanio por oxidacao anodica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Alessandra Pires

    2014-07-01

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H{sub 3}PO{sub 4} and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO{sub 2}. The results obtained in this study

  20. Molten salt synthesis of sodium lithium titanium oxide anode material for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yin, S.Y., E-mail: yshy2004@hotmail.com [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Feng, C.Q. [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062 (China); Wu, S.J.; Liu, H.L.; Ke, B.Q. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Zhang, K.L. [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Chen, D.H. [College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, Hubei (China)

    2015-09-05

    Highlights: • Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} has been successfully synthesized via a molten salt route. • Calcination temperature is an important effect on the component and microstructure of the product. • Pure phase Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 12} could be obtained at 700 °C for 2 h. - Abstract: The sodium lithium titanium oxide with composition Na{sub 2}Li{sub 2}Ti{sub 6}O{sub 14} has been synthesized by a molten salt synthesis method using sodium chloride and potassium chloride mixture as a flux medium. Synthetic variables on the synthesis, such as sintering temperature, sintering time and the amount of lithium carbonate, were intensively investigated. Powder X-ray diffraction and scanning electron microscopy images of the reaction products indicates that pure phase sodium lithium titanium oxide has been obtained at 700 °C, and impure phase sodium hexatitanate with whiskers produced at higher temperature due to lithium evaporative losses. The results of cyclic voltammetry and discharge–charge tests demonstrate that the synthesized products prepared at various temperatures exhibited electrochemical diversities due to the difference of the components. And the sample obtained at 700 °C revealed highly reversible insertion and extraction of Li{sup +} and displayed a single potential plateau at around 1.3 V. The product obtained at 700 °C for 2 h exhibits good cycling properties and retains the specific capacity of 62 mAh g{sup −1} after 500 cycles.

  1. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  2. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  3. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).

  4. Bacterial adherence to anodized titanium alloy

    International Nuclear Information System (INIS)

    Peremarch, C Perez-Jorge; Tanoira, R Perez; Arenas, M A; Matykina, E; Conde, A; De Damborenea, J J; Gomez Barrena, E; Esteban, J

    2010-01-01

    The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.

  5. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.

    Science.gov (United States)

    Yao, Chang; Webster, Thomas J

    2006-01-01

    Anodization is a well-established surface modification technique that produces protective oxide layers on valve metals such as titanium. Many studies have used anodization to produce micro-porous titanium oxide films on implant surfaces for orthopedic applications. An additional hydrothermal treatment has also been used in conjunction with anodization to deposit hydroxyapatite on titanium surfaces; this is in contrast to using traditional plasma spray deposition techniques. Recently, the ability to create nanometer surface structures (e.g., nano-tubular) via anodization of titanium implants in fluorine solutions have intrigued investigators to fabricate nano-scale surface features that mimic the natural bone environment. This paper will present an overview of anodization techniques used to produce micro-porous titanium oxide structures and nano-tubular oxide structures, subsequent properties of these anodized titanium surfaces, and ultimately their in vitro as well as in vivo biological responses pertinent for orthopedic applications. Lastly, this review will emphasize why anodized titanium structures that have nanometer surface features enhance bone forming cell functions.

  6. One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gao, Hongxu; Hou, Feng; Wan, Zhipeng; Zhao, Sha; Yang, Deming; Liu, Jiachen; Guo, Anran; Gong, Yuxuan

    2015-01-01

    Highlights: • CNTs/TiO 2 compoiste films synthesized are continuous and free-standing. • The film can be directly used as flexible, binder-free Lithium-Ion Battery electrode. • The CNTs/TiO 2 electrodes exhibit excellent rate capacity and cyclic stability. • Our strategy is readily applicable to fabricate other CNTs-based composite films. - Abstract: Continuous free-standing Carbon Nanotubes (CNTs)/Titanium oxide (TiO 2 ) composite films were fabricated in a vertical CVD gas flow reactor with water sealing by the One-Step Chemical Vapor Deposition (CVD) approach. The composite films consist of multiple layers of conductive carbon nanotube networks with titanium oxide nanoparticles decorating on carbon nanotube surface. The as-synthesized flexible and transferrable composite films show excellent electrochemical properties, when the content of tetrabutyl titanate is 19.0 wt.%, which can be promising as binder-free anodes for Lithium-Ion Battery (LIB) applications. It demonstrates remarkably high rate capacity of 150 mAh g −1 , as well as excellent high rate cyclic stability over 500 cycles (current density of 3000 mA g −1 ). Such observations can be attributed to the relatively larger surface area and pore volume comparing with pristine CNT films. Great potentials of CNTs/TiO 2 composite films for large-scale production and application in energy devices were shown

  7. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.

    Science.gov (United States)

    Li, Xiang; Chen, Tao; Hu, Jing; Li, Shujun; Zou, Qin; Li, Yunfeng; Jiang, Nan; Li, Hui; Li, Jihua

    2016-08-01

    The Ti-24Nb-4Zr-7.9Sn titanium alloy (Ti2448) has shown potential for use in biomedical implants, because this alloy possesses several important mechanical properties, such as a high fracture strength, low elastic modulus, and good corrosion resistance. In this study, we aimed to produce a hierarchical nanostructure on the surface of Ti2448 to endow this alloy with favorable biological properties. The chemical composition of Ti2448 (64.0wt% Ti, 23.9wt% Nb, 3.9wt% Zr, and 8.1wt% Sn) gives this material electrochemical properties that lead to the generation of topographical features under standard anodic oxidation. We characterized the surface properties of pure Ti (Ti), nanotube-Ti (NT), Ti2448, and nanotube-Ti2448 (NTi2448) based on surface morphology (scanning electron microscopy and atomic force microscopy), chemical and phase compositions (X-ray diffraction and X-ray photoelectron spectroscopy), and wettability (water contact angle). We evaluated the biocompatibility and osteointegration of implant surfaces by observing the behavior of bone marrow stromal cells (BMSCs) cultured on the surfaces in vitro and conducting histological analysis after in vivo implantation of the modified materials. Our results showed that a hierarchical structure with a nanoscale bone-like layer was achieved along with nanotube formation on the Ti2448 surface. The surface characterization data suggested the superior biocompatibility of the NTi2448 surface in comparison with the Ti, NT, and Ti2448 surfaces. Moreover, the NTi2448 surface showed better biocompatibility for BMSCs in vitro and better osteointegration in vivo. Based on these results, we conclude that anodic oxidation facilitated the formation of a nanoscale bone-like structure and nanotubes on Ti2448. Unlike the modified titanium surfaces developed to date, the NTi2448 surface, which presents both mechanical compatibility and bioactivity, offers excellent biocompatibility and osteointegration, suggesting its potential for

  8. Effects of sodium tartrate anodizing on fatigue life of TA15 titanium alloy

    Directory of Open Access Journals (Sweden)

    Fu Chunjuan

    2015-08-01

    Full Text Available Anodizing is always used as an effective surface modification method to improve the corrosion resistance and wear resistance of titanium alloy. The sodium tartrate anodizing is a new kind of environmental anodizing method. In this work, the effects of sodium tartrate anodizing on mechanical property were studied. The oxide film was performed on the TA15 titanium alloy using sodium tartrate as the film former. The effects of this anodizing and the traditional acid anodizing on the fatigue life of TA15 alloy were compared. The results show that the sodium tartrate anodizing just caused a slight increase of hydrogen content in the alloy, and had a slight effect on the fatigue life. While, the traditional acid anodizing caused a significant increase of hydrogen content in the substrate and reduced the fatigue life of the alloy significantly.

  9. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  10. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  11. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M., E-mail: josecalderonmoreno@yahoo.com [Institute of Physical Chemistry ' Ilie Murgulescu' of the Romanian Academy, Bucharest (Romania)

    2013-07-15

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  12. Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy

    International Nuclear Information System (INIS)

    Popa, Monica; Vasilescu, Cora; Drob, Silviu I.; Osiceanu, Petre; Anastasescu, Mihai; Calderon-Moreno, Jose M.

    2013-01-01

    In this work, the anodic galvanostatic electrodeposition of an oxidation film containing phosphates on Ti-20Nb-10Zr-5Ta alloy from orthophosphoric acid solution is presented. Its composition was determined by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman micro-spectroscopy, and its topography by atomic force microscopy (AFM). The corrosion resistance of the coated alloy in simulated human fluid (by linear polarization method and monitoring of open circuit potentials, corresponding open circuit potential gradients) as well as the characterization of the coating (by Raman spectroscopy and depth profile X-ray photoelectron spectroscopy (XPS)) deposited in a period of 300 h soaking in simulated human body fluid were studied. The electrodeposited film was composed of amorphous titanium dioxide and contained phosphate groups. The corrosion resistance of the coated Ti-20Nb-10Zr-5Ta alloy in neutral and alkaline Ringer's solutions was higher than that of the bare alloy due to the protective properties of the electrodeposited film. The corrosion parameters improved over time as result of the thickening of the surface film by the deposition from the physiological solution. The deposited coating presented a variable composition in depth: at the deeper layer nucleated nanocrystalline hydroxyapatite and at the outer layer amorphous calcium phosphate. (author)

  13. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  14. Photocatalytic activity of ferric oxide/titanium dioxide nanocomposite films on stainless steel fabricated by anodization and ion implantation

    Science.gov (United States)

    Zhan, Wei-ting; Ni, Hong-wei; Chen, Rong-sheng; Yue, Gao; Tai, Jun-kai; Wang, Zi-yang

    2013-08-01

    A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm-2 and then annealed in air at 450°C for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.

  15. Mechanochemistry of titanium oxides

    Directory of Open Access Journals (Sweden)

    Veljković Ivana

    2009-01-01

    Full Text Available Mechanochemistry represents an alternative route in synthesis of nanomaterials. Mechanochemical routes are attractive because of their simplicity, flexibility, and ability to prepare materials by solid state reactions at room temperature. The aim of this work is the mechanochemical synthesis of nanostructured titanium oxides of different composition starting from mixtures of Ti and TiO2, TiO and TiO2 or Ti2O3 and TiO2. Emphasis is on the Magneli phases Ti4O7 and Ti5O9 because their mixture is commercially known as EBONEX material. The materials prepared were characterized by XRPD, TG/DTA analysis, SEM and optical microscopy. Titanium monoxide and several Magneli oxides, Ti4O7, Ti5O9 and Ti6O11, are successfully prepared. The results are very interesting because the EBONEX materials were prepared at lower than usual temperature, which would decrease the effective cost of production.

  16. Development of a model for the anodic behavior of T60 titanium in chlorinated and oxygenated aqueous media. Application to the specific conditions of hydrothermal oxidation (1 MPa

    International Nuclear Information System (INIS)

    Frayret, C.; Jaszay, Th.; Lestienne, B.; Delville, M.H.

    2003-01-01

    This work evaluates the anodic electrochemical behavior of titanium metal in hydrothermal oxidation conditions (up to 400 deg. C and 28 MPa) in chlorinated media in order to estimate the supercritical water oxidation reactors reliability for the treatment of less than 10% organic-waste waters. The titanium room temperature dissolution mechanism in chlorinated acidic medium (pH 2 oxide formation with a very limited tetravalent dissolution). In hydrothermal oxidation (pH>1), only the second branch is effective. The titanium protection is directly related to the oxide stability in high pH systems. The mechanism model is expressed in terms of 'current-potential' laws, which provide kinetic parameters using optimization calculations. The different elementary steps reaction rates were estimated as well as the evolution of the reaction intermediates coverage ratios with the potential. The quantification of each elementary step was performed to understand and/or orient the materials behavior according to different factors (pH, chloride ions contents, potentials...)

  17. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    International Nuclear Information System (INIS)

    Ohtsu, Naofumi; Kozuka, Taro; Hirano, Mitsuhiro; Arai, Hirofumi

    2015-01-01

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO 2 layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH 4 ) 2 O·5B 2 O 3 , (NH 4 ) 2 SO 4 , or (NH 4 ) 3 PO 4 , after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO 2 ), while incorporation from electrolyte was only observed for (NH 4 ) 3 PO 4 . Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO 2 formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials

  18. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  19. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    Science.gov (United States)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed

  20. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features

    Directory of Open Access Journals (Sweden)

    Balasubramanian K

    2011-08-01

    Full Text Available Amancherla Rajyalakshmi1, Batur Ercan2,3, K Balasubramanian1, Thomas J Webster2,31Non-Ferrous Materials Technology Development Centre, Hyderabad, India; 2School of Engineering, 3Department of Orthopedics, Brown University, Providence, RI, USAAbstract: One of the important prerequisites for a successful orthopedic implant apart from being osteoconductive is the elicitation of a favorable immune response that does not lead to the rejection of the implant by the host tissue. Anodization is one of the simplest surface modification processes used to create nanotextured and nanotubular features on metal oxides which has been shown to improve bone formation. Anodization of titanium (Ti leads to the formation of TiO2 nanotubes on the surface, and the presence of these nanotubes mimics the natural nanoscale features of bone, which in turn contributes to improved bone cell attachment, migration, and proliferation. However, inflammatory cell responses on anodized Ti remains to be tested. It is hypothesized that surface roughness and surface feature size on anodized Ti can be carefully manipulated to control immune cell (specifically, macrophages responses. Here, when Ti samples were anodized at 10 V in the presence of 1% hydrofluoric acid (HF for 1 minute, nanotextured (nonnanotube surfaces were created. When anodization of Ti samples was carried out with 1% HF for 10 minutes at 15 V, nanotubes with 40–50 nm diameters were formed, whereas at 20 V with 1% HF for 10 minutes, nanotubes with 60–70 nm diameters were formed. In this study, a reduced density of macrophages was observed after 24 hours of culture on nanotextured and nanotubular Ti samples which were anodized at 10, 15, and 20 V, compared with conventional unmodified Ti samples. This in vitro study thus demonstrated a reduced density of macrophages on anodized Ti, thereby providing further evidence of the greater efficacy of anodized Ti for orthopedic applications.Keywords: anodization, titanium

  1. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol–gel procedure

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIĆ

    2010-10-01

    Full Text Available The electrochemical characteristics of Ti0.6Ir0.4O2/Ti and Ti0.6Ru0.4O2/Ti anodes prepared by the sol–gel procedure from the corresponding oxide sols, obtained by force hydrolysis of the corresponding metal chlorides, were compared. The voltammetric properties in H2SO4 solution indicate that Ti0.6Ir0.4O2/Ti has more pronounced pseudocapacitive characteristics, caused by proton-assisted, solid state surface redox transitions of the oxide. At potentials negative to 0.0 VSCE, this electrode is of poor conductivity and activity, while the voltammetric behavior of the Ti0.6Ru0.4O2/Ti electrode is governed by proton injection/ejection into the oxide structure. The Ti0.6Ir0.4O2/Ti electrode had a higher electrocatalytical activity for oxygen evolution, while the investigated anodes were of similar activity for chlorine evolution. The potential dependence of the impedance characteristics showed that the Ti0.6Ru0.4O2/Ti electrode behaved like a capacitor over a wider potential range than the Ti0.6Ir0.4O2/Ti electrode, with fully-developed pseudocapacitive properties at potentials positive to 0.60 VSCE. However, the impedance characteristics of the Ti0.6Ir0.4O2/Ti electrode changed with increasing potential from resistor-like to capacitor-like behavior.

  2. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  3. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  4. Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Kim, Ji Yoon; Pham-Cong, De; Jeong, Se Young; Chang, Jinho; Choi, Jun Hee; Braun, Paul V.; Cho, Chae Ryong

    2016-01-01

    Highlights: • Li_4Ti_5O_1_2 nanofibers are fabricated by electrospinning and annealing process. • Carbon-coated Li_4Ti_5O_1_2 nanofibers are prepared by hydrothermal process. • Individually graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers are prepared by electrostatic force. • Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers. - Abstract: The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li_4Ti_5O_1_2 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110 mAh g"−"1 at 20C) and over two orders of magnitude higher diffusion coefficient (D_L_i = ∼1.04 × 10"−"1"1 cm"2 s"−"1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.

  5. Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, N.T.C. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Biaggio, S.R. [Departamento de Quimica, Universidade Federal de Sao Carlos, CP 676, 13560-970 Sao Carlos, SP (Brazil); Piazza, S. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: piazza@dicpm.unipa.it; Sunseri, C. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Quarto, F. [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2004-10-15

    The anodic behaviour of two titanium cast alloys, obtained by fusion in a voltaic arc under argon atmosphere, was analyzed in aerated aqueous solutions having different pH values. In all solutions the alloys, having nominal compositions Ti-50Zr at.% and Ti-13Zr-13Nb wt.%, displayed a valve-metal behaviour, owing to the formation of barrier-type oxide films. Passive films, grown potentiodynamically up to about 9 V, were investigated by photocurrent spectroscopy (PCS) and electrochemical impedance spectroscopy (EIS). These passive layers show photoactivity under anodic polarizations, with optical gaps close to 3.55 and 3.25 eV for the binary and the ternary alloy, respectively, independent of the anodizing electrolyte. Films grown on the binary alloy present insulating behaviour and anodic impedance spectra with one time constant; this was interpreted in terms of a single-layer mixed Ti-Zr oxide enriched in Ti with respect to the alloy composition. Also for the ternary alloy the results are consistent with the formation, upon anodization, of Ti-Nb-Zr mixed oxide films, but they display n-type semiconducting behaviour, owing to their poor content of ZrO{sub 2} groups.

  6. The titanium oxide phi system

    Science.gov (United States)

    Galehouse, D. C.; Davis, S. P.

    1980-01-01

    The phy system of titanium oxide has been studied in emission in the near-infrared, with the Fourier transform spectrometer at a resolution of 8000,000. Approximately 3000 lines from 25 bands of this system have been identified, including all five 0-0 and 0-1 bands corresponding to the five natural titanium isotopes. Eleven vibrational levels have been observed, and all bands have been rotationally analyzed. Band intensities are agreement with known isotopic abundances and calculated Franck-Condon factors.

  7. Flexible anodized aluminum oxide membranes with customizable back contact materials.

    Science.gov (United States)

    Nadimpally, B; Jarro, C A; Mangu, R; Rajaputra, S; Singh, V P

    2016-12-16

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe 2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  8. Flexible anodized aluminum oxide membranes with customizable back contact materials

    Science.gov (United States)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  9. Resistive switching in microscale anodic titanium dioxide-based memristors

    Science.gov (United States)

    Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Lo Cicero, U.; Mosca, M.; Macaluso, R.

    2018-01-01

    The potentiality of anodic TiO2 as an oxide material for the realization of resistive switching memory cells has been explored in this paper. Cu/anodic-TiO2/Ti memristors of different sizes, ranging from 1 × 1 μm2 to 10 × 10 μm2 have been fabricated and characterized. The oxide films were grown by anodizing Ti films, using three different process conditions. Measured IV curves have shown similar asymmetric bipolar hysteresis behaviors in all the tested devices, with a gradual switching from the high resistance state to the low resistance state and vice versa, and a ROFF/RON ratio of 80 for the thickest oxide film devices.

  10. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  12. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  13. Histomorphometric and histologic evaluation of titanium-zirconium (aTiZr) implants with anodized surfaces.

    Science.gov (United States)

    Sharma, Ajay; McQuillan, A James; Shibata, Yo; Sharma, Lavanya A; Waddell, John Neil; Duncan, Warwick John

    2016-05-01

    The choice of implant surface has a significant influence on osseointegration. Modification of TiZr surface by anodization is reported to have the potential to modulate the osteoblast cell behaviour favouring more rapid bone formation. The aim of this study is to investigate the effect of anodizing the surface of TiZr discs with respect to osseointegration after four weeks implantation in sheep femurs. Titanium (Ti) and TiZr discs were anodized in an electrolyte containing DL-α-glycerophosphate and calcium acetate at 300 V. The surface characteristics were analyzed by scanning electron microscopy, electron dispersive spectroscopy, atomic force microscopy and goniometry. Forty implant discs with thickness of 1.5 and 10 mm diameter (10 of each-titanium, titanium-zirconium, anodized titanium and anodized titanium-zirconium) were placed in the femoral condyles of 10 sheep. Histomorphometric and histologic analysis were performed 4 weeks after implantation. The anodized implants displayed hydrophilic, porous, nano-to-micrometer scale roughened surfaces. Energy dispersive spectroscopy analysis revealed calcium and phosphorous incorporation into the surface of both titanium and titanium-zirconium after anodization. Histologically there was new bone apposition on all implanted discs, slightly more pronounced on anodised discs. The percentage bone-to-implant contact measurements of anodized implants were higher than machined/unmodified implants but there was no significant difference between the two groups with anodized surfaces (P > 0.05, n = 10). The present histomorphometric and histological findings confirm that surface modification of titanium-zirconium by anodization is similar to anodised titanium enhances early osseointegration compared to machined implant surfaces.

  14. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    OpenAIRE

    Zhaoxiang Chen; Xipeng Ren; Limei Ren; Tengchao Wang; Xiaowen Qi; Yulin Yang

    2018-01-01

    Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC) was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC ...

  15. Titanium oxide fever; De titaniumoxidekoorts

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, D.; Visser, J. [Afdeling Luchtkwaliteit, GGD Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [Dutch] Een van de maatregelen om de luchtkwaliteit te verbeteren is het aanbrengen van fotokatalytische stoffen waarmee NOx kan worden afgevangen op bijvoorbeeld wegdek of op geluidsschermen langs wegen. Over het effect van titaniumoxidehoudende straatklinkers en hierop aangebrachte coatings verscheen in mei 2011 het rapport 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands'. Dit artikel gaat over de manier waarop de effectiviteit in het hiervoor genoemde onderzoek is bepaald. Kunnen titaniumoxidehoudende klinkers en coatings inderdaad NOx afvangen?.

  16. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    Directory of Open Access Journals (Sweden)

    Zhaoxiang Chen

    2018-02-01

    Full Text Available Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC composite coating were investigated and compared with the anodic TiO2 mono-film and DLC mono-film. Results show that the DLC deposition significantly decreased the surface roughness and porosity of spark-anodized titanium. The fabricated TiO2/DLC composite coating exhibited a more stable and much lower friction coefficient than anodic TiO2 mono-film. Although the friction coefficient of the composite coating and the DLC mono-film was similar under both light load and heavy load conditions, the wear life of the composite coating was about 43% longer than that of DLC mono-film under heavy load condition. The wear rate of titanium with protective composite coating was much lower than that of titanium with DLC mono-film. The superior low friction coefficient and wear rate of the TiO2/DLC composite coating make it a good candidate as protective coating on titanium alloys.

  17. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  18. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine [Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Kalinichenko, Oleg [Ukrainian State University of Chemical Technology (SHEI), Gagarin av. 8, Dnepropetrovsk, UA-49005 (Ukraine); Sereda, Olha [Centre Suisse d’Electronique et de Microtechnique (CSEM), Rue Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Moussa, Mira; Durual, Stéphane [Laboratory of Biomaterials, University of Geneva, rue Barthelemy Menn 19, CH-1205 Geneva (Switzerland); Snizhko, Lyubov [Ukrainian State University of Chemical Technology (SHEI), Gagarin av. 8, Dnepropetrovsk, UA-49005 (Ukraine)

    2016-08-15

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca{sub 3}(PO{sub 4}){sub 2}, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  19. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    International Nuclear Information System (INIS)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-01-01

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca_3(PO_4)_2, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  20. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  1. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  2. Electrochemical machining of titanium alloys with the use of anodal activating pulses

    International Nuclear Information System (INIS)

    Davydov, A.D.; Klepikov, R.P.; Moroz, I.I.

    1980-01-01

    A comparative investigation of electrochemical machining of VT-6 titanium alloy by direct current and in different pulse mode is carried out taking into account the peculiarities of anodal behaviour of titanium alloys at high current desities. The mode of electrochemical machining of VT-6 alloy with activating pulses is chosen. It allows to conduct a process at lower voltages and small interelectrode gaps

  3. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    Science.gov (United States)

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium

  4. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  5. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  6. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  7. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  8. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    Lee, J.M.; Lee, J.I.; Lim, Y.J.

    2010-01-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  9. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  10. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  11. Laser induced single spot oxidation of titanium

    International Nuclear Information System (INIS)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-01-01

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  12. Increasing Wear Resistance of Titanium Alloys by Anode Plasma Electrolytic Saturation with Interstitial Elements

    Science.gov (United States)

    Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.

    2017-05-01

    In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.

  13. Electrocatalysis of anodic oxidation of ethanol

    Science.gov (United States)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  14. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    Tarasevich, M R; Korchagin, O V; Kuzov, A V

    2013-01-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  15. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems — LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 — PB2450, B-3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  16. Thermochemically active iron titanium oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Miller, James E.

    2018-01-16

    A thermal oxidation-reduction cycle is disclosed that uses iron titanium oxide as the reactive material. The cycle may be used for the thermal splitting of water and/or carbon dioxide to form hydrogen and/or carbon monoxide. The formed compounds may be used as syngas precursors to form fuels.

  17. Patterned titania nanostructures produced by electrochemical anodization of titanium sheet

    Science.gov (United States)

    Dong, Junzhe; Ariyanti, Dessy; Gao, Wei; Niu, Zhenjiang; Weil, Emeline

    2017-07-01

    A two-step anodization method has been used to produce patterned arrays of TiO2 on the surface of Ti sheet. Hexagonal ripples were created on Ti substrate after removing the TiO2 layer produced by first-step anodization. The shallow concaves were served as an ideal position for the subsequent step anodization due to their low electrical resistance, resulting in novel hierarchical nanostructures with small pits inside the original ripples. The mechanism of morphology evolution during patterned anodization was studied through changing the anodizing voltages and duration time. This work provides a new idea for controlling nanostructures and thus tailoring the photocatalytic property and wettability of anodic TiO2.

  18. Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension

    Directory of Open Access Journals (Sweden)

    Alicja Kazek-Kęsik

    2017-08-01

    Full Text Available The surface modification of titanium alloys is an effective method to improve their biocompatibility and tailor the material to the desired profile of implant functionality. In this work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition from the powder phase suspended in solution. The anodized samples were immersed in NaOH or KOH solution with various concentrations with a different set of temperatures and exposure times. Based on their morphologies (observed by scanning electron microscope, the selected samples were investigated by Raman and X-ray photoelectron spectroscopy (XPS. Titaniate compounds were formed on the previously anodized titanium surfaces. The surface wettability significantly decreased, mainly on the modified Ti-15Mo alloy surface. Titanium alloy compounds had an influence on the results of the titanium alloys’ surface modification, which caused the surfaces to exhibit differential physical properties. In this paper, we present the influence of the anodization procedure on alkali treatment effects and the properties of obtained hybrid coatings.

  19. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    OpenAIRE

    Gerrard Eddy Jai Poinern; Derek Fawcett; Nurshahidah Ali

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical ...

  20. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  1. Titanium Nanosurface Modification by Anodization for Orthopedic Applications

    National Research Council Canada - National Science Library

    Yao, Chang; Slamovich, Elliott B; Webster, Thomas J

    2005-01-01

    .... For this reason, the objective of the present in vitro study was to modify the surface of conventional titanium to include nanostructured surface features that promote the functions of osteoblasts (bone-forming cells...

  2. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Kiesler, D.; Bastuck, T.; Theissmann, R.; Kruis, F. E.

    2015-01-01

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N 1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N 1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  3. EFFECT OF PHOSPHORIC ACID CONCENTRATION AND ANODIZING TIME ON THE PROPERTIES OF ANODIC FILMS ON TITANIUM

    Directory of Open Access Journals (Sweden)

    DIMAS L. TORRES

    2015-07-01

    Full Text Available In this study, it was investigated the influence of electrolyte concentration and anodizing time on the electrochemical behaviour and morphology of anodic films formed on commercially pure Ti. Electrochemical methods and surface analyses were used to characterize the films. It was found that the electrolyte concentration and anodizing time affect the growth and protective characteristics of films in a physiologic medium. It was possible to observe their non-uniformity on Ti substrates under the tested conditions. In potentiodynamic profiles, it was observed that passivation current values are affected by an anodizing time increase. Variations in impedance spectra were associated with an increase of defects within the film.

  4. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  5. Osteoblast response on co-modified titanium surfaces via anodization and electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Bayram, Cem [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Chemistry Department, Aksaray University, Aksaray, 68100 (Turkey); Demirbilek, Murat; Yalçın, Eda [Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Beytepe, 06800 (Turkey); Bozkurt, Murat; Doğan, Metin [Orthopaedics and Traumatology Division, Yıldırım Beyazıt University, School of Medicine, Cankaya, 06550 (Turkey); Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Chemistry Department, Hacettepe University, Ankara, Beytepe, 06800 (Turkey)

    2014-01-01

    Topography plays a key role in osseointegration and surface modifications at the subcellular level, increasing initial cell attachment in the early period. In the past decade, nanosized texture on metal like a nanotube layer and also more recently extracellular matrix like surface modifications – such as polymeric nanofibrils – have been proposed for a better osseointegration in the literature. Here, we investigate two types of nanoscaled modifications alone and together for the first time. We characterized different types of surface modifications morphologically and investigated how they affected osteoblast cells in vitro, in terms of cell adhesion, proliferation, alkaline phosphatase activity and calcium content. We anodized titanium samples with a thickness of 0.127 mm to obtain a nanotubular titania layer and the silk fibroin (SF), as a biocompatible polymeric material, was electrospun onto both anodized and unanodized samples to acquire 4 sample groups. We analyzed the resulting samples morphologically by scanning electron microscopy (SEM). Cell adhesion, proliferation, alkaline phosphatase (ALP) activity and calcium content were evaluated at 3, 7 and 14 days. We found that cell proliferation increased by 70% on the groups having two modifications respect to unmodified titanium and after 7 days, ALP activity and calcium content were 110% and 150%, respectively, higher on surfaces having both surface treatments than that of unmodified group. In conclusion, a nanotube layer and SF nanofibers on a titanium surface enhanced cell attachment and proliferation most. Comodification of titanium surfaces by anodization and SF electrospinning may be useful to enhance osseointegration but it requires in vivo confirmation.

  6. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  7. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  8. The influence of surface roughness and high pressure torsion on the growth of anodic titania nanotubes on pure titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan; Gao, Nong, E-mail: N.Gao@soton.ac.uk; Starink, Marco J.

    2016-11-30

    Highlights: • HPT has substantially improved the UTS and Hv of pure Ti. • TNT layers was fabricated on UFG Ti made by HPT. • Influence of sample preparation on TNT layers was systematically studied. • Oxide dissolution was accelerated when TNTs formed on the HPT sample. - Abstract: Anodic titanium dioxide nanotube (TNT) arrays have wide applications in photocatalytic, catalysis, electronics, solar cells and biomedical implants. When TNT coatings are combined with severe plastic deformation (SPD), metal processing techniques which efficiently improve the strength of metals, a new generation of biomedical implant is made possible with both improved bulk and surface properties. This work investigated the effect of processing by high pressure torsion (HPT) and different mechanical preparations on the substrate and subsequently on the morphology of TNT layers. HPT processing was applied to refine the grain size of commercially pure titanium samples and substantially improved their strength and hardness. Subsequent anodization at 30 V in 0.25 wt.% NH{sub 4}F for 2 h to form TNT layers on sample surfaces prepared with different mechanical preparation methods was carried out. It appeared that the local roughness of the titanium surface on a microscopic level affected the TNT morphology more than the macroscopic surface roughness. For HPT-processed sample, the substrate has to be pre-treated by a mechanical preparation finer than 4000 grit for HPT to have a significant influence on TNTs. During the formation of TNT layers the oxide dissolution rate was increased for the ultrafine-grained microstructure formed due to HPT processing.

  9. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  10. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  11. Structural evolution in nanoporous anodic aluminium oxide

    International Nuclear Information System (INIS)

    Rocca, Emmanuel; Vantelon, Delphine; Reguer, Solenn; Mirambet, François

    2012-01-01

    Nanoporous and self-organized layers of aluminium alloys are used in many applications as membranes, templates for nanometric objects or corrosion protection for aluminium alloys. The use of this nanometric structure widely remains empirical, especially in the case of very small pores ( 4 into AlO 6 cluster and a partial release of sulphate ions are an important chemical transformation of the amorphous structure. This structural transformation defines the chemistry (pH and surface charge) inside the nanopores, the ageing behaviour and the possible incorporation or diffusion of chemical species in the nanostructure. Highlights: ► Investigations of local chemical environment of aluminium atoms in anodic aluminium oxide. ► The oxide structure is constituted by 2/3 of aluminium in tetrahedral coordination 1/3 in octahedral coordination. ► In contact with water, AlO 4 clusters are transformed into AlO 6 cluster and the aluminium sulphate bonds are hydrolysed. ► These transformations induce a pH decrease inside the nanostructure.

  12. Porous Anodic Aluminum Oxide with Serrated Nanochannels

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Lu, Jia G.

    2010-03-01

    Self-assembled nanoporous anodic aluminum oxide (AAO) membrane with straight channels has long been an important tool in synthesizing highly ordered and vertically aligned quasi-1D nanostructures for various applications. Recently shape-selective nanomaterials have been achieved using AAO as a template. It is envisioned that nanowires with multi-branches will significantly increase the active functional sites for applications as sensors, catalysts, chemical cells, etc. Here AAO membranes with serrated nanochannels have been successfully fabricated via a two-step annodization method. The serrated channels with periodic intervals are aligned at an angle of ˜25^circ along the stem channels. The formation of the serrated channels is attributed to the evolution of oxygen gas bubbles and the resulted plastic deformation in oxide membrane. In order to reveal the inside channel structure, Platinum are electrodeposited into the AAO template. The as-synthesized serrated Pt nanowires demonstrate a superior electrocatalytic activity. This is attributed to the enhanced electric field strength around serrated tips as shown in the electric field simulation by COMOSL. Moreover, hierarchical serrated/straight hybrid structures can be constructed using this simple and novel self assembly technique.

  13. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  14. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion.

    Science.gov (United States)

    Mueller, Yves; Tognini, Roger; Mayer, Joerg; Virtanen, Sannakaisa

    2007-09-15

    The combination of different materials in an implant gives the opportunity to better fulfill the requirements that are needed to improve the healing process. However, using different materials increases the risk of galvanic coupling corrosion. In this study, coupling effects of gold-anodized titanium, stainless steel for biomedical applications, carbon fiber reinforced polyetheretherketone (CFRP), and CFRP containing tantalum fibers are investigated electrochemically and by long-term immersion experiments in simulated body fluid (SBF). Potentiodynamic polarization experiments (i/E curves) and electrochemical impedance spectroscopy (EIS) of the separated materials showed a passive behavior of the metallic samples. Anodized titanium showed no corrosion attacks, whereas stainless steel is highly susceptibility for localized corrosion. On the other side, an active dissolution behavior of both of the CFRPs in the given environment could be determined, leading to delaminating of the carbon fibers from the matrix. Long-term immersion experiments were carried out using a set-up especially developed to simulate coupling conditions of a point contact fixator system (PC-Fix) in a biological environment. Electrochemical data were acquired in situ during the whole immersion time. The results of the immersion experiments correlate with the findings of the electrochemical investigation. Localized corrosion attacks were found on stainless steel, whereas anodized titanium showed no corrosion attacks. No significant differences between the two CFRP types could be found. Galvanic coupling corrosion in combination with crevice conditions and possible corrosion mechanisms are discussed. Copyright 2007 Wiley Periodicals, Inc.

  15. Anodic oxidation as a new practical procedure for water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Kirmaier, N; Schoeberl, M

    1980-05-01

    The anodic oxidation could be developed for practical purposes by extensive scientific investigations and engineering optimization. Its safe bactericide, virucide, fungicide and bacteriostatic effect combined with engineering advantages makes it an essential component for water processing.

  16. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  17. Semi-transparent ordered TiO{sub 2} nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Szkoda, Mariusz, E-mail: mariusz-szkoda@wp.pl [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Lisowska-Oleksiak, Anna [Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233 (Poland); Grochowska, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland); Skowroński, Łukasz [Institute of Mathematics and Physics, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231 Gdańsk (Poland)

    2016-09-15

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO{sub 2} were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO{sub 2} layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO{sub 2} nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO{sub 2} formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO{sub 2} films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm{sup −2}) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  18. Semi-transparent ordered TiO_2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    International Nuclear Information System (INIS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-01-01

    Highlights: • High quality titanium coatings were doposited using industrial magnetron sputtering equipment. • Semi-transparent TiO_2 were prepared via anodization realized in various conditions. • Depending on electrolyte type, ordered tubular or porous TiO_2 layers were obtained. • Prepared material can act as semiconducting layer in photovoltaic cells. - Abstract: In a significant amount of cases, the highly ordered TiO_2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO_2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV–vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO_2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm"−"2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  19. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  20. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  1. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    Science.gov (United States)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  2. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  3. Effect of processing on structural features of anodic aluminum oxides

    Science.gov (United States)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  4. On the anodic aluminium oxide refractive index of nanoporous templates

    International Nuclear Information System (INIS)

    Hierro-Rodriguez, A; Rocha-Rodrigues, P; Araujo, J P; Valdés-Bango, F; Alameda, J M; Teixeira, J M; Jorge, P A S; Santos, J L; Guerreiro, A

    2015-01-01

    In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS–NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell–Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (∼1.55) is quite lower (∼22%) than the commonly used Al 2 O 3 handbook value (∼1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates. (paper)

  5. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  6. Anodic solubility and electrochemical machining of hard alloys on the base of chromium and titanium carbides

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A D; Klepikov, A N; Malofeeva, A N; Moroz, I I

    1985-01-01

    The regularities of anodic behaviour and electrochemical machining (ECM) of the samples of three materials with the following compositions: 25% of Cr/sub 3/C/sub 2/, 15% of Ni, 70% of TiC, 25% of Ni, 5% of Cr, 70% of TiC, 15% of Ni, 15% of Mo are investigated. It is shown that the electrochemical method is applicable to hard alloys machining on the base of chromium and titanium carbides, the machining of which mechanically meets serious difficulties. The alloys machining rate by a mobile cathode constitutes about 0.5 mm/min.

  7. Anodic oxidation of InP in pure water

    International Nuclear Information System (INIS)

    Robach, Y.; Joseph, J.; Bergignat, E.; Hollinger, G.

    1989-01-01

    It is shown that thin InP native oxide films can be grown by anodization of InP in pure water. An interfacial phosphorus-rich In(PO 3 ) 3 -like condensed phosphate is obtained this way. This condensed phosphate has good passivating properties and can be used in electronic device technology. The chemical composition of these native oxides was found similar to that of an anodic oxide grown in an anodization in glycol and water (AGW) electrolyte. From the similarity between the two depth profiles observed in pure water and AGW electrolyte, they can conclude that dissolution phenomena do not seem to play a major role. The oxide growth seems to be controlled by the drift of ionic species under the electric field

  8. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  9. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  10. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  11. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  12. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  13. Using sewage sludge pyrolytic gas to modify titanium alloy to obtain high-performance anodes in bio-electrochemical systems

    Science.gov (United States)

    Gu, Yuan; Ying, Kang; Shen, Dongsheng; Huang, Lijie; Ying, Xianbin; Huang, Haoqian; Cheng, Kun; Chen, Jiazheng; Zhou, Yuyang; Chen, Ting; Feng, Huajun

    2017-12-01

    Titanium is under consideration as a potential stable bio-anode because of its high conductivity, suitable mechanical properties, and electrochemical inertness in the operating potential window of bio-electrochemical systems; however, its application is limited by its poor electron-transfer capacity with electroactive bacteria and weak ability to form biofilms on its hydrophobic surface. This study reports an effective and low-cost way to convert a hydrophobic titanium alloy surface into a hydrophilic surface that can be used as a bio-electrode with higher electron-transfer rates. Pyrolytic gas of sewage sludge is used to modify the titanium alloy. The current generation, anodic biofilm formation surface, and hydrophobicity are systematically investigated by comparing bare electrodes with three modified electrodes. Maximum current density (15.80 A/m2), achieved using a modified electrode, is 316-fold higher than that of the bare titanium alloy electrode (0.05 A/m2) and that achieved by titanium alloy electrodes modified by other methods (12.70 A/m2). The pyrolytic gas-modified titanium alloy electrode can be used as a high-performance and scalable bio-anode for bio-electrochemical systems because of its high electron-transfer rates, hydrophilic nature, and ability to achieve high current density.

  14. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  15. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    International Nuclear Information System (INIS)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-01-01

    Boron-doped diamond anodes allow to directly produce OH· radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included

  16. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  17. Molecular geometries and relative stabilities of titanium oxide and gold-titanium oxide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Rohan J.; Falcinella, Alexander; Metha, Gregory F., E-mail: greg.metha@adelaide.edu.au

    2016-09-30

    Titanium oxide and gold-titanium oxide clusters of stoichiometry M{sub x}O{sub y} (M{sub x} = Ti{sub 3}, Ti{sub 4} & AuTi{sub 3}; y = 0 − (2x + 2)) have been investigated using density functional theory. Geometries of determined global energy minimum structures are reported and other isomers predicted up to 0.5 eV higher in energy. The Ti{sub 3}O{sub n} geometries build upon a triangular Ti{sub 3} motif, while Ti{sub 4}O{sub n} stoichiometries template upon a pseudo-tetrahedral Ti{sub 4} structure. Addition of a gold atom to the Ti{sub 3}O{sub n} series does not significantly alter the cluster geometry, with the gold atom preferentially binding to titanium atoms over oxygen atoms. Adiabatic ionization energies, electron affinities and HOMO/LUMO energies increase in magnitude with increasing oxygenation. The HOMO-LUMO energy gaps reach the bulk anatase band gap energy at stoichiometry (Au)Ti{sub m}O{sub 2m−1}, and increase above this upon further oxygen addition. The most stable structural moieties are found to be a cage-like, C{sub 3v} symmetric Ti{sub 4}O{sub 6/7} geometry and a Ti{sub 3}O{sub 6} structure with an η{sup 3}-bound oxygen atom.

  18. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  20. Fabrication of high quality ordered porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Liu Kai; Du Kai; Chen Jing; Zhou Lan; Zhang Lin; Fang Yu

    2010-01-01

    The preparation of porous anodic aluminum oxide (AAO) templates has been studied with oxalic acid as electrolyte. The morphology of the as-prepared templates has been characterized by field-emission scanning electron microscope (FE-SEM). The pores distributed orderly and uniformly with the diameter ranging from 40 nm to 70 nm. The experimental results indicate that electrolyte concentration, oxidation voltage, oxidation temperature and oxidation time affect the structure of AAO templates. Ordered porous AAO templates can be derived without annealing and finishing. X-ray diffraction (XRD) analysis indicates that the aluminum oxide film is mainly composed of amorphous Al 2 O 3 . (authors)

  1. Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing

    International Nuclear Information System (INIS)

    Sah, Santosh Prasad; Tatsuno, Yasuhiro; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-01-01

    Research highlights: → We examined dielectric breakdown of anodic alumina by single pulse anodizing. → Current transients and morphology of discharge channels are dependent upon electrolyte and voltage. → There is a good correlation between current transient and morphology of discharge channel. → Healing of open discharge pores occurs in alkaline silicate, but not in pentaborate electrolyte. - Abstract: Single pulse anodizing of aluminium micro-electrode has been employed to study the behaviour of dielectric breakdown and subsequent oxide formation on aluminium in alkaline silicate and pentaborate electrolytes. Current transients during applying pulse voltage have been measured, and surface has been observed by scanning electron microscopy. Two types of current transients are observed, depending on the electrolyte and applied voltage. There is a good correlation between the current transient behaviour and the shape of discharge channels. In alkaline silicate electrolyte, circular open pores are healed by increasing the pulse width, but such healing is not obvious in pentaborate electrolyte.

  2. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  3. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  4. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    Science.gov (United States)

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  5. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  6. Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques

    International Nuclear Information System (INIS)

    Diamanti, M.V.; Souier, T.; Stefancich, M.; Chiesa, M.; Pedeferri, M.P.

    2014-01-01

    Graphical abstract: - Highlights: • Nanoscale anodic titanium oxides were investigated with multidisciplinary approach. • Oxide thickness was estimated via spectrophotometry and coulometry. • C-AFM identified nanometric conductivity heterogeneities, ascribed to oxide structure. • High conductivity areas exhibited local memristive behavior. - Abstract: Anodic oxidation of titanium in acid electrolytes allows to obtain a thin, compact oxide layer with thickness, structure, color, and electrical properties that vary with process parameters imposed, among which cell voltage has a key effect. Although oxidation kinetics have been investigated in several research works, a broader vision of oxide properties–including thickness and structure–still has to be achieved, especially in the case of very thin oxide films, few tens of nanometers thick. This is vital for engineered applications of nanostructured TiO 2 films, as in the field of memristive devices, where a precise control of oxide thickness, composition and structure is required to tune its electrical response. In this work, oxide films were produced on titanium with thickness ranging from few nanometers to 200 nm. Oxide thickness was estimated by coulometry and spectrophotometry. These techniques were then combined with C-AFM, which provided a deeper understanding of oxide thickness and uniformity of the metal surface and probed the presence of crystalline nano-domains within the amorphous oxide phase affecting the overall film electrical and optical properties

  7. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  8. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  9. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    Science.gov (United States)

    Xiang, Lian; Park, Sang-Shik

    2016-12-01

    Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  10. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Hu, Naiping; Dong, Xuecheng; He, Xueying; Browning, James F.; Schaefer, Dale W.

    2015-01-01

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  11. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  12. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  13. Facile Fabrication of Ordered Anodized Aluminum Oxide Membranes with Controlled Pore Size by Improved Hard Anodization.

    Science.gov (United States)

    Fan, Jiangxia; Zhu, Xinxin; Wang, Kunzhou; Chen, Xiaoyuan; Wang, Xinqing; Yan, Minhao; Ren, Yong

    2018-05-01

    We have fabricated highly ordered anodized aluminum oxide (AAO) membranes with different diameter through improved hard anodization (HA) at high temperature. This process can generate thick AAO membranes (30 μm) in a short anodizing time with high growth rate 20-60 μm h-1 which is much faster than that in traditional mild two-step anodization. We enlarged the AAO pore diameter by adjusting the voltage rise rate at the same time, which has a great influence on current density and temperature. The AAO pore diameter varies from 60-110 nm to 160-190 nm. The pore diameter (Dp) of the AAO prepared by this improved process is much larger than that prepared by HA (40-60 nm) when H2C2O4 as electrolyte. It can expand potential use of the AAO membranes such as for the template-based synthesis of nanowires or nanotubes with modulated diameters and also for practical separation technology. We also has used the AAO with different diameters prepared by this improved HA to fabricate Co nanowires and γ-Fe2O3 superparamagnetic nanorods.

  14. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    Science.gov (United States)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  15. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Lian, E-mail: xianglian93@163.com; Park, Sang-Shik, E-mail: parkss@knu.ac.kr

    2016-12-01

    Highlights: • Al{sub 2}O{sub 3}–TiO{sub 2} composite films were prepared onto high voltage Al etching foil. • The coated and anodized samples showed multi-layer structures. • The capacitances of TiO{sub 2} coated samples showed an increase of 42%. • The increase in capacitance was mainly due to the Al–Ti composite layer. - Abstract: Al{sub 2}O{sub 3}–TiO{sub 2} (Al–Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO{sub 2} films were prepared on etched Al foils by vacuum infiltration. TiO{sub 2} films prepared using a sol–gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al{sub 2}O{sub 3} outer layer, an Al–Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO{sub 2} coating, the specific capacitances of the TiO{sub 2}-coated specimens are increased. The specific capacitance of the anode Al foil with TiO{sub 2} coating increased by 42% compared to that of a specimen without TiO{sub 2} coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  16. Anodic oxidation of anthraquinone dye Alizarin Red S at Ti/BDD electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jianrui; Lu Haiyan [College of Chemistry, Jilin University, Changchun 130012 (China); Du Lili [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Lin Haibo, E-mail: lhb910@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China); State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li Hongdong, E-mail: hdli@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China)

    2011-05-15

    The boron-doped diamond (BDD) thin-film electrode with high quality using industrially titanium plate (Ti/BDD) as substrate has been prepared and firstly used in the oxidation of anthraquinone dye Alizarin Red S (ARS) in wastewaters. The Ti/BDD electrodes are shown to have high concentration of sp{sup 3}-bonded carbon and wide electrochemical window. The results of the cyclic voltammetries show that BDD has unique properties such as high anodic stability and the production of active intermediates at the high potential. The oxidation regions of ARS and water are significantly separated at the Ti/BDD electrode, and the peak current increases linearly with increasing ARS concentration. The bulk electrolysis shows that removal of chemical oxygen demand (COD) and color can be completely reached and the electrooxidation of ARS behaves as a mass-transfer-controlled process at the Ti/BDD electrode. It is demonstrated that the performances of the Ti/BDD electrode for anodic oxidation ARS have been significantly improved with respect to the traditional electrodes.

  17. Cleavage of olefinic double bonds by mediated anodic oxidation

    International Nuclear Information System (INIS)

    Baeumer, U.-St.; Schaefer, H.J.

    2003-01-01

    Seven alkenes, e.g. 1-decene, methyl oleate, cyclododecene, norbornene, are cleaved by indirect anodic oxidation with IO 4 - /RuCl 3 as mediator to carboxylic acids. The best performance was achieved with two alternative ex cell-methods. Periodate is regenerated from iodate in a divided cell at a PbO 2 /Ti-anode. In the chemical reactor alkene and the produced carboxylic acid are immobilized in a chromatography column on Chromosorb W and oxidized with IO 4 - /RuO 4 in CH 3 CN/water. In the alternative version the alkene is oxidized in an emulsion generated by sonication and the organic phase is retained in the reactor by a separator. Acids and diacids are obtained in 61-91% chemical yield and good current yields. The amount of consumed periodate can be reduced to less than 5% of the amount needed for the chemical oxidation. The mediated anodic cleavage of alkenes is altogether an interesting alternative to ozonolysis

  18. Structural and optical characterization of porous anodic aluminum oxide

    International Nuclear Information System (INIS)

    Galca, Aurelian C.; Kooij, E. Stefan; Wormeester, Herbert; Salm, Cora; Leca, Victor; Rector, Jan H.; Poelsema, Bene

    2003-01-01

    Spectroscopic ellipsometry and scanning electron microscopy (SEM) experiments are employed to characterize porous aluminum oxide obtained by anodization of thin aluminum films. Rutherford backscattering spectra and x-ray diffraction experiments provide information on the composition and the structure of the samples. Results on our thin film samples with a well-defined geometry show that anodization of aluminum is reproducible and results in a porous aluminum oxide network with randomly distributed, but perfectly aligned cylindrical pores perpendicular to the substrate. The ellipsometry spectra are analyzed using an anisotropic optical model, partly based on the original work by Bruggeman. The model adequately describes the optical response of the anodized film in terms of three physically relevant parameters: the film thickness, the cylinder fraction, and the nanoporosity of the aluminum oxide matrix. Values of the first two quantities, obtained from fitting the spectra, are in perfect agreement with SEM results, when the nanoporosity of the aluminum oxide matrix is taken into account. The validity of our optical model was verified over a large range of cylinder fractions, by widening of the pores through chemical etching in phosphoric acid. While the cylinder fraction increases significantly with etch time and etchant concentration, the nanoporosity remains almost unchanged. Additionally, based on a simple model considering a linear etch rate, the concentration dependence of the etch rate was determined

  19. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  20. Multi-metallic anodes for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Restivo, T.A. Guisard; Mello-Castanho, S.R.H.; Leite, D. Will

    2009-01-01

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  1. Research progress in formation mechanism of anodizing aluminum oxide

    Science.gov (United States)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  2. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    OpenAIRE

    Hsueh , Cheng-Chih; Wang , Gou-Jen; Hsu , Shan-Hui; Hung , Huey-Shan

    2008-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838); International audience; PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the...

  3. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  4. Template synthesis of indium nanowires using anodic aluminum oxide membranes.

    Science.gov (United States)

    Chen, Feng; Kitai, Adrian H

    2008-09-01

    Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

  5. Microstructural evolution of nanograin nickel-zirconia cermet anode materials for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Nayak, Bibhuti Bhusan

    2012-01-01

    The aim of the study is to study the structure, microstructure, porosity, thermal expansion, electrical conductivity and electrochemical behavior of the anode material thus synthesized in order to find its suitability for solid oxide fuel cell (SOFC) anode application

  6. Characterization of Anodized Titanium Based Novel Paradigm Supercapacitors: Impact of Salt Identity and Frequency on Dielectric Values, Power, and Energy Densities

    Science.gov (United States)

    2017-03-01

    solution, sufficient charge carriers to counteract the applied but not cause ion- lock , are energy densities at their maximum. For the salt identities and...OF ANODIZED TITANIUM- BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER, AND ENERGY DENSITIES...SUBTITLE CHARACTERIZATION OF ANODIZED TITANIUM-BASED NOVEL PARADIGM SUPERCAPACITORS: IMPACT OF SALT IDENTITY AND FREQUENCY ON DIELECTRIC VALUES, POWER

  7. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  8. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  9. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  10. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mir Ghasem, E-mail: mg-hosseini@tabrizu.ac.ir; Faraji, Masoud; Momeni, Mohamad Mohsen

    2011-03-31

    Au/TiO{sub 2}/Ti electrodes have been prepared by galvanic deposition of gold particles on TiO{sub 2} nanotube substrates. Titanium oxide nanotubes are fabricated by anodizing titanium foil in a Dimethyl Sulfoxide electrolyte containing fluoride. The scanning electron microscopy results indicated that gold particles are homogeneously deposited on the surface of TiO{sub 2} nanotubes. The TiO{sub 2} layers consist of individual tubes of about 40-80 nm diameters. The electro-catalytic behavior of Au/TiO{sub 2}/Ti and flat gold electrodes for the ascorbic acid electro-oxidation was studied by cyclic voltammetry. The results showed that the flat gold electrode is not suitable for the oxidation of ascorbic acid. However, the Au/TiO{sub 2}/Ti electrodes are shown to possess catalytic activity toward the oxidation reaction. Catalytic oxidation peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve is obtained in the concentration range of 1-5 mM of ascorbic acid. Also, determination of ascorbic acid in real samples was evaluated. The obtained results were found to be satisfactory. Finally the effects of interference on the detection of ascorbic acid were investigated.

  11. Investigation of anodizing parameter effect on barrier layer of anodic zirconium oxide

    International Nuclear Information System (INIS)

    Kharchenko, Eh.P.

    1979-01-01

    Effect of fluoride concentration and forming direction upon kinetics of barrier layer transformations in the process of preparation of phase anodic zirconium oxide in acid fluorine-containing solutions is considered. Suppositions are made on the mechanism of barrier layer transformation under the effect of the parameters mentioned. The thickness of the barrier layer is determined by two methods and it is shown that coefficient of the layer thickess growth at the voltage increase by 1 V is much lower than during formation of the barrier films in non-agressive electrolytes

  12. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    Science.gov (United States)

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  15. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  16. Process for making a titanium diboride-chromium diboride-yttrium titanium oxide ceramic composition

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.

    1992-04-28

    A ceramic composition is described. The ceramic composition consists essentially of from about 84 to 96 w/o titanium diboride, from about 1 to 9 w/o chromium diboride, and from about 3 to about 15 w/o yttrium-titanium-oxide. A method of making the ceramic composition is also described. The method of making the ceramic composition comprises the following steps: Step 1--A consolidated body containing stoichiometric quantities of titanium diboride and chromium diboride is provided. Step 2--The consolidated body is enclosed in and in contact with a thermally insulated package of yttria granules having a thickness of at least 0.5 inches. Step 3--The consolidated body enclosed in the thermally insulated package of yttria granules is heated in a microwave oven with microwave energy to a temperature equal to or greater than 1,900 degrees centigrade to sinter and uniformly disperse yttria particles having a size range from about 1 to about 12 microns throughout the consolidated body forming a densified body consisting essentially of titanium diboride, chromium diboride, and yttrium-titanium-oxide. The resulting densified body has enhanced fracture toughness and hardness. No Drawings

  17. Titanium oxide nanocoating on a titanium thin film deposited on a glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Cummings, F.R. [University of the Western Cape, Electron Microscopy Unit, Physics Department, Bellville 7535, Cape Town (South Africa); Turco, S. Lo; Ntwaeaborwa, O.M. [Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milano, Italy Via Giovanni Pascoli, 70/3, 20133 Milano (Italy); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)-CNR, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape (South Africa)

    2016-03-31

    Thin films of titanium were deposited on a glass substrate using electron beam evaporator. Femtosecond laser pulses were focused on the surface of the films, and the samples were scanned while mounted on the motorized computer-controlled motion stage to produce an areal modification of the films. X-ray diffraction of the laser-patterned samples showed evidence of the formation of a γ-Ti{sub 3}O{sub 5} with a monoclinic phase. Rutherford backscattering spectrometry simulation showed that there is an increase in the oxygen concentration as the average laser fluence is increased. Time of flight secondary ions mass spectrometry analysis showed an even distribution of the titanium and oxygen ions on the sample and also ionized molecules of the oxides of titanium were observed. The formation of the oxide of titanium was further supported using the UV–Vis-NIR spectroscopy, which showed that for 0.1 J/cm{sup 2} fluence, the laser-exposed film showed the electron transfer band and the d–d transition peak of titanium was observed at lower wavelengths. - Highlights: • γ-Ti{sub 3}O{sub 5} formed using femtosecond laser. • Fluence and oxygen relation were studied. • Nanoflakes of γ-Ti{sub 3}O{sub 5} were observed under HRSEM.

  18. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  19. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  20. Microhardness of anodic aluminum oxide formed in an alkaline electrolyte

    Science.gov (United States)

    Kanygina, O. N.; Filyak, M. M.

    2017-04-01

    The microhardness of anodic aluminum oxide formed by anodizing of aluminum sheet in electrolyte on the basis of sodium hydroxide has been determined experimentally. The microhardness of the hard film/soft substrate system has been estimated by three approaches: indentation geometry (length of diagonals) in film surfaces, the sum of the hardnesses of the film and the surface with allowance for the indentation surface area and geometry, and with allowance for the indentation depth. It is demonstrated that the approach accounting for the indentation depth makes it possible to eliminate the influence of the substrate. It is established that the microhardness of the films formed in alkaline electrolytes is comparable with that formed in acid electrolytes.

  1. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H{sub 3}PO{sub 4} with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO{sub 2} without an evidence of the crystalline anatase or rutile forms of TiO{sub 2}. Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO{sub 2} nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability.

  2. Formation of titanium dioxide nanotubes on Ti–30Nb–xTa alloys by anodizing

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The goal of this study was to investigate the formation of titanium dioxide nanotubes on the surface of cast Ti–30Nb–xTa alloys by anodizing. The anodization technique for creating the nanotubes utilized a potentiostat and an electrolyte containing 1 M H 3 PO 4 with 0.8 wt.% NaF. The grain size of the Ti–30Nb–xTa alloys increased as the Ta content increased. Using X-ray diffraction, for the Ti–30Nb alloy the main peaks were identified as α″ martensite with strong peaks of β phase. The phases in the Ti–30Nb–xTa alloys changed from a duplex (α″ + β) microstructure to solely β phase with increasing Ta content. The nanotubes that formed on the surface of the Ti–30Nb–xTa alloys were amorphous TiO 2 without an evidence of the crystalline anatase or rutile forms of TiO 2 . Scanning electron microscopy revealed that the average diameters of the small and large nanotubes on the Ti–30Nb alloy not containing Ta were approximately 100 nm and 400 nm, respectively, whereas the small and large nanotubes on the alloy had diameters of approximately 85 nm and 300 nm, respectively. As the Ta content increased from 0 to 15 wt.%, the average lengths of the nanotubes increased from 2 μm to 3.5 μm. Energy-dispersive X-ray spectroscopy indicated that the nanotubes were principally composed of Ti, Nb, Ta, O and F. Contact angle measurements showed that the nanotube surface had good wettability by water droplets. - Highlights: • TiO 2 nanotube layers on anodized Ti-30Nb-xTa alloys have been investigated. • Nanotube surface had an amorphous structure without heat treatment. • Nanotube diameter of Ti-30Nb-xTa decreased, whereas tube layer increased with Ta content. • The nanotube surface exhibited the low contact angle and good wettability

  3. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  4. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability

    International Nuclear Information System (INIS)

    Oikawa, Y.; Minami, T.; Mayama, H.; Tsujii, K.; Fushimi, K.; Aoki, Y.; Skeldon, P.; Thompson, G.E.; Habazaki, H.

    2009-01-01

    Porous anodic niobium oxide with a pore size of ∼10 nm was formed at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2 HPO 4 and 0.2 mol dm -3 K 3 PO 4 at 433 K. After prolonged anodizing for 5.4 ks, niobium oxide microcones develop on the surface. X-ray diffraction patterns of the anodized specimens revealed that the initially formed anodic oxide is amorphous, but an amorphous-to-crystalline transition occurs during anodizing. As a consequence of the preferential chemical dissolution of the initially formed amorphous oxide, due to different solubility of the amorphous and crystalline oxides, crystalline oxide microcones appear on the film surface after prolonged anodizing. The surface is superhydrophilic. After coating with fluorinated alkylsilane, the surface becomes superhydrophobic with a contact angle of 158 o for water. The surface is also oil repellent, with a contact angle as high as 140 o for salad oil.

  5. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  6. Modification of titanium oxide membranes by Pt electrodeposition

    International Nuclear Information System (INIS)

    Avalle, L.; Santos, E.; Leiva, E.P.M.; Macagno, V.A.

    1990-01-01

    Electrochemistry techniques mainly voltamperometry and measures of impedance with titanium oxides changed by platinum atoms incorporation, were studied. This changes production some alteration in the physical chemical and electrocatalytic properties, as an example the improvement of corrosion resistance and the uses in nuclear industry. (author)

  7. In-Situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes

    Science.gov (United States)

    2010-12-28

    DATES COVERED (From - To) 1/29/10-9/30/10 4. TITLE AND SUBTITLE In situ optical studies of oxidation/reduction kinetics on SOFC cermet anodes 5a...0572 In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Department of Chemistry and Biochemistry Montana State University...of Research In-situ Optical Studies of Oxidation/Reduction Kinetics on SOFC Cermet Anodes Principal Investigator Robert Walker Organization

  8. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  9. Oxidation behaviour of titanium in high temperature steam

    Energy Technology Data Exchange (ETDEWEB)

    Moroishi, T; Shida, Y [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Central Research Labs.

    1978-03-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550/sup 0/C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500/sup 0/C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550/sup 0/C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450/sup 0/C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO/sub 2/. Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO/sub 2/ scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal.

  10. Oxidation behaviour of titanium in high temperature steam

    International Nuclear Information System (INIS)

    Moroishi, Taishi; Shida, Yoshiaki

    1978-01-01

    The oxidation of pure titanium was studied in superheated steam at 400 -- 550 0 C. The effects of prior cold working and several heat treatment conditions on the oxidation were examined and also the effects of the addition of small amounts of iron and oxygen were investigated. The oxidation mechanism of pure titanium is discussed in relation to the scale structure and the oxidation kinetics. Hydrogen absorption rate was also measured. As a result, the following conclusions were drawn: (1) The oxidation of pure titanium in steam was faster than in air and breakaway oxidation was observed above 500 0 C after the specimen had gained a certain weight. Prior cold working and heat treatment conditions scarcely affected the oxidation rate, whereas the specimen containing small amounts of iron and oxygen showed a little more rapid oxidation. (2) At 500 and 550 0 C a dark grey inner scale and a yellow-brown outer scale were formed. The outer scale was apt to exfoliate after the occurrence of breakaway oxidation. At 400 and 450 0 C only a dark grey scale was observed. All of these oxides were identified as the rutile type, TiO 2 . Furthermore, the presence of a thin and uniform oxygen rich layer beneath the external scale was confirmed at all test temperatures. (3) The measured weight gain approximately followed the cubic rate law; this would be expected for the following reason; one component of the weight gain is due to the dissolved oxygen, the amount of which remains constant after the early stages of oxidation. The second component is due to the parabolic growth of the external TiO 2 scale. When these contributions are added a pseudo-cubic weight gain curve results. (4) It was shown that 50 percent of the hydrogen generated during the oxidation was absorbed into the metal. (auth.)

  11. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  12. Electrochemical degradation of clofibric acid in water by anodic oxidation

    International Nuclear Information System (INIS)

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  13. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  14. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron

    Science.gov (United States)

    Pawlik, Anna; Hnida, Katarzyna; Socha, Robert P.; Wiercigroch, Ewelina; Małek, Kamilla; Sulka, Grzegorz D.

    2017-12-01

    Anodic iron oxide layers were formed by anodization of the iron foil in an ethylene glycol-based electrolyte containing 0.2 M NH4F and 0.5 M H2O at 40 V for 1 h. The anodizing conditions such as electrolyte composition and applied potential were optimized. In order to examine the influence of electrolyte stirring and applied magnetic field, the anodic samples were prepared under the dynamic and static conditions in the presence or absence of magnetic field. It was shown that ordered iron oxide nanopore arrays could be obtained at lower anodizing temperatures (10 and 20 °C) at the static conditions without the magnetic field or at the dynamic conditions with the applied magnetic field. Since the as-prepared anodic layers are amorphous in nature, the samples were annealed in air at different temperatures (200-500 °C) for a fixed duration of time (1 h). The morphology and crystal phases developed after anodization and subsequent annealing were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The results proved that the annealing process transforms the amorphous layer into magnetite and hematite phases. In addition, the heat treatment results in a substantial decrease in the fluorine content and increase in the oxygen content.

  15. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    Stojadinovic, S.; Vasilic, R.; Petkovic, M.; Nedic, Z.; Kasalica, B.; Belca, I.; Zekovic, Lj.

    2010-01-01

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  16. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    International Nuclear Information System (INIS)

    Asoh, Hidetaka; Uchibori, Kota; Ono, Sachiko

    2009-01-01

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  17. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  18. FIB-SEM investigation of trapped intermetallic particles in anodic oxide films on AA1050 aluminium

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Møller, Per; Dunin-Borkowski, Rafal E.

    2011-01-01

    -containing intermetallic particles incorporated into the anodic oxide films on industrially pure aluminium (AA1050, 99.5 per cent) has been investigated. AA1050 aluminium was anodized in a 100?ml/l sulphuric acid bath with an applied voltage of 14?V at 20°C ±2°C for 10 or 120?min. The anodic film subsequently was analyzed......Purpose - The purpose of this investigation is to understand the structure of trapped intermetallics particles and localized composition changes in the anodized anodic oxide film on AA1050 aluminium substrates. Design/methodology/approach - The morphology and composition of Fe......-shaped particles were embedded in the anodic oxide film as a thin strip structure and located near the top surface of the film, whereas the round-shaped particles were trapped in the film with a spherical structure, but partially dissolved and were located throughout the thickness of the anodic film. The Fe...

  19. Halogen effect for improving high temperature oxidation resistance of Ti-50Al by anodization

    Science.gov (United States)

    Mo, Min-Hua; Wu, Lian-Kui; Cao, Hua-Zhen; Lin, Jun-Pin; Zheng, Guo-Qu

    2017-06-01

    The high temperature oxidation resistance of Ti-50Al was significantly improved via halogen effect which was achieved by anodizing in an ethylene glycol solution containing with fluorine ion. The anodized Ti-50Al with holes and micro-cracks could be self-repaired during oxidation at 1000 °C. The thickness of the oxide scale increases with the prolonging of oxidation time. On the basis of halogen effect for improving the high temperature oxidation resistance of Ti-50Al by anodization, only fluorine addition into the electrolyte can effectively improve the high temperature oxidation resistance of Ti-50Al.

  20. Osseointegration improvement by plasma electrolytic oxidation of modified titanium alloys surfaces.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Quintero Giraldo, David; Pavón, Juan; López-Lacomba, José Luis; Jiménez-Piqué, Emilio; Anglada, Marc; Robledo, Sara M; Castaño, Juan G; Echeverría, Félix

    2015-02-01

    Titanium (Ti) is a material frequently used in orthopedic applications, due to its good mechanical properties and high corrosion resistance. However, formation of a non-adherent fibrous tissue between material and bone drastically could affect the osseointegration process and, therefore, the mechanical stability of the implant. Modifications of topography and configuration of the tissue/material interface is one of the mechanisms to improve that process by manipulating parameters such as morphology and roughness. There are different techniques that can be used to modify the titanium surface; plasma electrolytic oxidation (PEO) is one of those alternatives, which consists of obtaining porous anodic coatings by controlling parameters such as voltage, current, anodizing solution and time of the reaction. From all of the above factors, and based on previous studies that demonstrated that bone cells sense substrates features to grow new tissue, in this work commercially pure Ti (c.p Ti) and Ti6Al4V alloy samples were modified at their surface by PEO in different anodizing solutions composed of H2SO4 and H3PO4 mixtures. Treated surfaces were characterized and used as platforms to grow osteoblasts; subsequently, cell behavior parameters like adhesion, proliferation and differentiation were also studied. Although the results showed no significant differences in proliferation, differentiation and cell biological activity, overall results showed an important influence of topography of the modified surfaces compared with polished untreated surfaces. Finally, this study offers an alternative protocol to modify surfaces of Ti and their alloys in a controlled and reproducible way in which biocompatibility of the material is not compromised and osseointegration would be improved.

  1. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  2. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  3. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Science.gov (United States)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  4. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  5. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    Science.gov (United States)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  6. Ultrahighly Dispersed Titanium Oxide on Silica : Effect of Precursors on the Structure and Photocatalysis

    OpenAIRE

    Yoshida , S.; Takenaka , S.; Tanaka , T.; Funabiki , T.

    1997-01-01

    The effect of precursor on the dispersion and catalytic performance of titanium oxide supported on silica has ben investigated. The catalysts were prepared by a simple impregnation method with three kinds of titanium complexes of different ligands (bis(isopropyato)-bis(pivaroylmethanato) : DPM, acetylacetonato : ACAC, tetrakis(isopropylato) : IPRO) with the aim of preparing ultrahighly dispersed titanium oxide on silica. The XAFS study revealed that titanium species in the catalyst prepared f...

  7. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  8. Characteristics of Sr0.92Y0.08Ti1-yNiyO3-δ anode and Ni-infiltrated Sr0.92Y0.08TiO3-δ anode using CH4 fuel in solid oxide fuel cells

    Science.gov (United States)

    Park, Eun Kyoung; Lee, Soonil; Yun, Jeong Woo

    2018-01-01

    Strontium titanium oxide co-doped with yttrium and nickel (SrxY1-xTiyNi1-yO3-δ; hereafter, SYTN), was investigated as an alternative anode material for solid oxide fuel cells. To improve the ionic conductivity of the Sr0.92Y0.08TiO3-δ (SYT) anode, Ni2+ was substituted into the B-site (initially occupied by Ti4+), thereby forming oxygen vacancies. To analyze the effects of Ni-doping in the SYT anode, the electrochemical properties of the SYTN anode were compared with those of the Ni-infiltrated SYT(Ni@SYT) using H2 and CH4 as fuels. The electrochemical reactions at the SYTN anode in the presence of both H2 and CH4 were limited by relatively slow reactions, such as non-charged processes including oxygen surface exchange and solid surface diffusion. The high electrical conductivity and excellent catalytic activity of the Ni nanoparticles in the Ni@SYT anode led to improved cell performance. CH4 decomposition at the Ni@SYT anode occurred via thermal pyrolysis of CH4 rather than by steam methane reforming, resulting in carbon deposition. In comparison, the poor inherent catalytic activity for CH4 oxidation exhibited by the SYTN anode minimized carbon deposition on the anode surface.

  9. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  10. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  11. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA® oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  12. Photocatalytic Activity of Nanotubular TiO2 Films Obtained by Anodic Oxidation: A Comparison in Gas and Liquid Phase

    Directory of Open Access Journals (Sweden)

    Beatriz Eugenia Sanabria Arenas

    2018-03-01

    Full Text Available The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters. Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2 nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2 layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested.

  13. Effects of the nanotopographic surface structure of commercially pure titanium following anodization-hydrothermal treatment on gene expression and adhesion in gingival epithelial cells.

    Science.gov (United States)

    Takebe, J; Miyata, K; Miura, S; Ito, S

    2014-09-01

    The long-term stability and maintenance of endosseous implants with anodized-hydrothermally treated commercially pure titanium surfaces and a nanotopographic structure (SA-treated c.p.Ti) depend on the barrier function provided by the interface between the transmucosal portion of the implant surface and the peri-implant epithelium. This study investigated the effects of extracellular and intracellular gene expression in adherent gingival epithelial cells cultured for 1-7 days on SA-treated c.p.Ti implant surfaces compared to anodic oxide (AO) c.p.Ti and c.p.Ti disks. Scanning electron microscopy (SEM) showed filopodium-like extensions bound closely to the nanotopographic structure of SA-treated c.p.Ti at day 7 of culture. Gene expressions of focal adhesion kinase, integrin-α6β4, and laminin-5 (α3, β3, γ2) were significantly higher on SA-treated c.p.Ti than on c.p.Ti or AO c.p.Ti after 7 days (Pcells adhere to SA-treated c.p.Ti as the transmucosal portion of an implant, and that this interaction markedly improves expression of focal adhesion molecules and enhances the epithelial cell phenotype. The cellular gene expression responses driving extracellular and intracellular molecular interactions thus play an important role in maintenance at the interface between SA-treated c.p.Ti implant surfaces and the gingival epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  15. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  16. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    Science.gov (United States)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  17. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Science.gov (United States)

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  18. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  19. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat......Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting...... and lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate...... of tapes at room temperature without using plasticizers. This is made by the combination of two different binders with varying Tg (glass transition temperature) which resulted in plastic deformation at room temperature. Those results indicate that the proposed process is a cost-effective method...

  20. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  1. Polypyrrole/titanium oxide nanotube arrays composites as an active material for supercapacitors.

    Science.gov (United States)

    Kim, Min Seok; Park, Jong Hyeok

    2011-05-01

    The authors present the first reported use of vertically oriented titanium oxide nanotube/polypyrrole (PPy) nanocomposites to increase the specific capacitance of TiO2 based energy storage devices. To increase their electrical storage capacity, titanium oxide nanotubes were coated with PPy and their morphologies were characterized. The incorporation of PPy increased the specific capacitance of the titanium oxide nanotube based supercapacitor system, due to their increased surface area and additional pseudo-capacitance.

  2. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems

    International Nuclear Information System (INIS)

    Zhan, Guoqiang; Zhang, Lixia; Tao, Yong; Wang, Yujian; Zhu, Xiaoyu; Li, Daping

    2014-01-01

    In this paper we report ammonia oxidation to nitrogen gas using microbes as biocatalyst on the anode, with polarized electrode (+600 mV vs. Ag/AgCl) as electron acceptor. In batch experiments, the maximal rate of ammonia-N oxidation by the mixed culture was ∼ 60 mg L −1 d −1 , and nitrogen gas was the main products in anode compartment. Cyclic voltammetry for testing the electroactivity of the anodic biofilms revealed that an oxidation peak appeared at +600 mV (vs. Ag/AgCl), whereas the electrode without biofilms didn’t appear oxidation peak, indicating that the bioanode had good electroactivities for ammonia oxidation. Microbial community analysis of 16S rRNA genes based on high throughput sequencing indicated that the combination of the dominant genera of Nitrosomonas, Comamonas and Paracocus could be important for the electron transfer from ammonia oxidation to anode

  3. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  4. In-situ electrochemical doping of nanoporous anodic aluminum oxide with indigo carmine organic dye

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Budner, Bogusław; Michalska-Domańska, Marta; Nowak-Stępniowska, Agata; Bombalska, Aneta; Kaliszewski, Miron; Mostek, Anna; Thorat, Sanjay; Salerno, Marco; Giersig, Michael; Bojar, Zbigniew

    2016-01-01

    Nanoporous anodic aluminum oxide was formed in sulfuric acid with addition of indigo carmine. During anodizing, the organic dye was incorporated into the porous oxide walls. X-ray photoelectron spectroscopy revealed the presence of nitrogen and sulfur in the anodic aluminum oxide. Two types of incorporated sulfur were found: belonging to the sulfate anions SO_4"2"− of the electrolyte and belonging to the C-SO_3"− side groups of the indigo carmine. Raman spectroscopy confirmed the incorporation and showed that the inorganic–organic hybrid material inherited optical properties from the indigo carmine. Typical modes from pyrrolidone rings, unique for indigo carmine in the investigated system (650 and 1585 cm"−"1), were found to be the strongest for the greatest anodizing voltages used. Despite the indigo carmine incorporation, the morphology of the oxide is still nanoporous and its geometry is still tuned by the voltage applied during aluminum anodization. This work presents an inexpensive and facile approach to doping an inorganic oxide material with organic compounds. - Highlights: • Nanoporous anodic alumina was formed in electrolyte with indigo carmine. • XPS confirmed the presence of N and S in anodic alumina. • Raman spectroscopy revealed indigo carmine bands in anodic alumina. • The higher the voltage, the more indigo carmine was incorporated.

  5. In-situ electrochemical doping of nanoporous anodic aluminum oxide with indigo carmine organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Stępniowski, Wojciech J., E-mail: wojciech.stepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Norek, Małgorzata [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Budner, Bogusław [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Michalska-Domańska, Marta [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Nowak-Stępniowska, Agata; Bombalska, Aneta; Kaliszewski, Miron [Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Mostek, Anna [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Thorat, Sanjay; Salerno, Marco [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, Genova I-16163 (Italy); Giersig, Michael [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of Advanced Technology and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland)

    2016-01-01

    Nanoporous anodic aluminum oxide was formed in sulfuric acid with addition of indigo carmine. During anodizing, the organic dye was incorporated into the porous oxide walls. X-ray photoelectron spectroscopy revealed the presence of nitrogen and sulfur in the anodic aluminum oxide. Two types of incorporated sulfur were found: belonging to the sulfate anions SO{sub 4}{sup 2−} of the electrolyte and belonging to the C-SO{sub 3}{sup −} side groups of the indigo carmine. Raman spectroscopy confirmed the incorporation and showed that the inorganic–organic hybrid material inherited optical properties from the indigo carmine. Typical modes from pyrrolidone rings, unique for indigo carmine in the investigated system (650 and 1585 cm{sup −1}), were found to be the strongest for the greatest anodizing voltages used. Despite the indigo carmine incorporation, the morphology of the oxide is still nanoporous and its geometry is still tuned by the voltage applied during aluminum anodization. This work presents an inexpensive and facile approach to doping an inorganic oxide material with organic compounds. - Highlights: • Nanoporous anodic alumina was formed in electrolyte with indigo carmine. • XPS confirmed the presence of N and S in anodic alumina. • Raman spectroscopy revealed indigo carmine bands in anodic alumina. • The higher the voltage, the more indigo carmine was incorporated.

  6. Self-cleaning glass coating containing titanium oxide and silicon

    International Nuclear Information System (INIS)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  7. Self-cleaning glasses containing nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Araujo, A.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique nanofibers of titanium oxide were synthesized. As precursor materials, titanium propoxide and a solution of polyvinylpyrrolidone were used. After the electrospinning process, the non-tissue material obtained was heat treated and characterized by X-ray diffraction to determine the phase crystallinity, and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in isopropyl alcohol, the glass coatings were made by dip-coating methodology. The removal velocity was kept constant, but the solution composition was varied to obtain a transparent and photo active film. The film was characterized by the contact angle of a water droplet in its surface (hydrophilicity), the transparency was evaluated using a spectrophotometer and the photocatalytic activity of the film was also evaluated. (author)

  8. THE USE OF /cap beta/-SPECTROSCOPY FOR THE STUDY OF ANODIC OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, J. P.S.; Davies, J. A.

    1964-04-15

    Anodic oxidation of metal foils can be studied by injectin Xe/sup 125/ atoms into the foils, measuring the beta spectrum, anodi-zing the foils, and measuring the beta spectrum again Calibration of the method was achieved by injecting Xe/sup 125/ into Al and W foils. The method was applied to the anodization of W, Nb, Ta, and Al, and the reasons for the discrepancies are discussed. (D.L.C.)

  9. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  10. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  11. Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium

    Energy Technology Data Exchange (ETDEWEB)

    Nagahara, K. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan); Sakairi, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: Takahasi@elechem1-mc.eng.hokudai.ac.jp; Matsumoto, K. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan); Takayama, K. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan); Oda, Y. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan)

    2007-01-01

    Anodizing of niobium has been investigated to develop niobium solid electrolytic capacitors. Chemically polished niobium specimens were anodized in a diluted phosphoric acid solution, initially galvanostatically at i {sub a} = 4 A m{sup -2} up to E {sub a} = 100 V, and then potentiostatically at E {sub a} = 100 V for t {sub pa} = 43.2 ks. During the galvanostatic anodizing, the anode potential increased almost linearly with time, while, during potentiostatic anodizing, the anodic current decreased up to t {sub pa} = 3.6 ks, and then increased slowly before decreasing again after t {sub pa} = 30.0 ks. Images of FE-SEM and in situ AFM showed that nuclei of imperfections were formed at the ridge of cell structures before t {sub pa} = 3.6 ks. After formation, the imperfection nuclei grew, showing cracking and rolling-up of the anodic oxide film, and crystalline oxide was formed at the center of imperfections after t {sub pa} = 3.6 ks. The growth of imperfections caused increases in the anodic current between t {sub pa} = 3.6 and 30.0 ks. Long-term anodizing caused a coalescence of the imperfections, leading to decreases in the anodic current after t {sub pa} = 30.0 ks. As the imperfections grew, the dielectric dispersion of the anodic oxide films became serious, showing a bias voltage dependence of the parallel equivalent capacitance, C {sub p}, and a dielectric dissipation factor, tan {delta}. The mechanism of formation and growth of the imperfections, and the correlation between the structure and dielectric properties of anodic oxide films is discussed.

  12. Cathodic arc sputtering of functional titanium oxide thin films, demonstrating resistive switching

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Petr, E-mail: pshvets@innopark.kantiana.ru; Maksimova, Ksenia; Demin, Maxim; Dikaya, Olga; Goikhman, Alexander

    2017-05-15

    The formation of thin films of the different stable and metastable titanium oxide phases is demonstrated by cathode arc sputtering of a titanium target in an oxygen atmosphere. We also show that sputtering of titanium in vacuum yields the formation of titanium silicides on the silicon substrate. The crystal structure of the produced samples was investigated using Raman spectroscopy and X-ray diffraction. We conclude that cathode arc sputtering is a flexible method suitable for producing the functional films for electronic applications. The functionality is verified by the memory effect demonstration, based on the resistive switching in the titanium oxide thin film structure.

  13. Electrochemical synthesis of magnetic nanostructures using anodic aluminum oxide templates

    Science.gov (United States)

    Gong, Jie

    In this dissertation, template electrodeposition was employed to fabricate high quality magnetic nanostructures suited for the reliable investigation of novel spintronics phenomena such as CIMS, BMR, and CPP-GMR. Several critical aspects/steps relating to the synthesis process were investigated in this work. In order to obtain high quality magnetic nanostructures, free-standing and Si-supported anodic aluminum oxide templates with closely controlled pore diameters, lengths, as well as constriction sizes, were synthesized by anodization, followed by appropriate post-processing. The pore opening size on the barrier layer can be controlled down to 5 nm by ion beam etching. After optimization of the compositional, structural, and magnetic properties of homogeneous FeCoNiCu layers electrodeposited under different conditions, the pulsed deposition process of FeCoNI/Cu multilayers on n-Si was studied. The influence of Cu deposition potential and Fe2+ concentration on microstructure, chemical and electrochemical properties, magnetic properties, and hence magnetotransport properties were assessed. The dissolution of the FM layer during potential transition was minimized in order to control interface sharpness. Combined with the systematic sublayer thickness and FM layer composition optimization, unprecedented GMR sensitivity of 0.11%/Oe at 5-15 Oe was obtained. Growth of multilayer nanowires was performed, and contact to a single wire was attempted using an electrochemical technique. We succeeded in addressing a small number of nanowires and measured a CPP-GMR of 17%. Template electrodeposition thus provides a promising way to repeatably fabricate prototypes for spin dependent transport studies.

  14. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    Science.gov (United States)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  15. Transition metal oxide as anode interface buffer for impedance spectroscopy

    Science.gov (United States)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  16. Treatment of winery wastewater by anodic oxidation using BDD electrode.

    Science.gov (United States)

    Candia-Onfray, Christian; Espinoza, Nicole; Sabino da Silva, Evanimek B; Toledo-Neira, Carla; Espinoza, L Carolina; Santander, Rocío; García, Verónica; Salazar, Ricardo

    2018-05-04

    The effective removal of organics from winery wastewater was obtained in real residual effluents from the wine industry using anodic oxidation (AO). The effluent had an initial organic load of [COD] 0 of 3490 mg L -1 equal to [TOC] 0 of 1320 mg L -1 . In addition, more than 40 organic compounds were identified by means of GC-MS. Different density currents as well as the addition of electrolytes were tested during electrolysis. The results show the decay of [COD] t by 63.6% when no support electrolyte was added, whereas almost total mineralization and disinfection was reached after adding of 50 mM of sodium sulfate and sodium chloride and applying higher density currents. The presence of sulfate and chloride in large concentration favors the production of oxidants such as hydroxyl radicals and active chlorine species that react with organics in solution. Moreover, the addition of a supporting electrolyte to industrial wastewater increases conductivity, reduces cell potential and therefore, decreases the energy consumption of the AO process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  18. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  19. Synthesis and characterization of titanium oxide supported silica materials

    Science.gov (United States)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  20. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  1. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  2. Galvanic detection of sulfur dioxide in ambient air at trace levels by anodic oxidation

    NARCIS (Netherlands)

    Lindqvist, F.

    1978-01-01

    A continuous method for the measurement of SO2 in ambient air at trace levels is described. The principle of detection is based on the anodic oxidation of SO2 in a galvanic cell. A differential measuring technique with a cell with two anodes and one cathode is used; background and noise current are

  3. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  4. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  5. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2005-06-01

    Full Text Available The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison with the n-butane reaction allowed different activation pathways for the activation of alkanes to be proposed. The catalytic properties of TiP2O7 in the oxidative dehydrogenation of isobutane was also compared to those obtained previously with several other pyrophosphates and TiP2O7 was found to be less active and selective for this reaction.

  6. Titanium

    DEFF Research Database (Denmark)

    Fage, Simon W; Muris, Joris; Jakobsen, Stig S

    2016-01-01

    Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental...... and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although...... most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations...

  7. New approach to local anodic oxidation of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Martaus, Jozef; Gregusova, Dagmar; Cambel, Vladimir; Kudela, Robert; Soltys, Jan

    2008-01-01

    We have experimentally explored a new approach to local anodic oxidation (LAO) of a semiconductor heterostructures by means of atomic force microscopy (AFM). We have applied LAO to an InGaP/AlGaAs/GaAs heterostructure. Although LAO is usually applied to oxidize GaAs/AlGaAs/GaAs-based heterostructures, the use of the InGaP/AlGaAs/GaAs system is more advantageous. The difference lies in the use of different cap layer materials: Unlike GaAs, InGaP acts like a barrier material with respect to the underlying AlGaAs layer and has almost one order of magnitude lower density of surface states than GaAs. Consequently, the InGaP/AlGaAs/GaAs heterostructure had the remote Si-δ doping layer only 6.5 nm beneath the surface and the two-dimensional electron gas (2DEG) was confined only 23.5 nm beneath the surface. Moreover, InGaP unaffected by LAO is a very durable material in various etchants and allows us to repeatedly remove thin portions of the underlying AlGaAs layer via wet etching. This approach influences LAO technology fundamentally: LAO was used only to oxidize InGaP cap layer to define very narrow (∼50 nm) patterns. Subsequent wet etching was used to form very narrow and high-energy barriers in the 2DEG patterns. This new approach is promising for the development of future nano-devices operated both at low and high temperatures

  8. Guided self-assembly of nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Wang Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu Yingda

    2012-01-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO x nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO x nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO x nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO x nanorods with rough surfaces are formed by the self-assembly of TiO x nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO x nanorods shows stronger ER properties than that of the other nanostructured TiO x particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect. (paper)

  9. Guided self-assembly of nanostructured titanium oxide

    Science.gov (United States)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  10. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  11. Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide

    Science.gov (United States)

    Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe

    2012-08-01

    Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3

  12. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin; La Mantia, Fabio; Deshazer, Heather; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect

  13. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  14. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  15. Nanoporous Pirani sensor based on anodic aluminum oxide

    Science.gov (United States)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  16. Fabrication and characterization of conductive anodic aluminum oxide substrates

    Science.gov (United States)

    Altuntas, Sevde; Buyukserin, Fatih

    2014-11-01

    Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm2) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAAO surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate.

  17. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  18. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    International Nuclear Information System (INIS)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M.

    2016-01-01

    Amorphous titanium dioxide (TiO_2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO_2 nanotubes.

  19. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  20. Oxidation behaviour of the near α-titanium alloy IMI 834

    Indian Academy of Sciences (India)

    Unknown

    Oxidation behaviour of the near α-titanium alloy IMI 834 was investigated over a range of tem- peratures, from ... perties and adequate resistance against environmental degradation. ... the change of weight of the specimen. The oxidation data.

  1. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  2. Study of ionic movements during anodic oxidation of nitrogen-implanted aluminium

    International Nuclear Information System (INIS)

    Terwagne, G.; Lucas, S.; Bodart, F.; Sorensen, G.; Jensen, H.

    1990-01-01

    In recent years there has been a considerable interest in synthesizing aluminium nitrides by ion implantation in order to modify the tribological properties of aluminium. The growth of an oxide layer by anodic process on these synthesized aluminium nitrides gives an interesting oxide-on-semiconductor material with surprising dynamic and decorative properties. During the anodic oxidation, ionic movements are involved in the near-surface region of the aluminium material; these ionic movements have been studied by Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) on thin aluminium foils (7000 A) preimplanted with nitrogen and post-oxidized in an ammonium pentaborate solution. The growth of the oxide layer is reduced when the aluminium is preimplanted with nitrogen: the speed of oxidation depends on the implantation conditions (energy and fluence). Moreover, the aluminium nitride can be dissolved when all metallic aluminium staying between the surface and the AlN are consumed by the anodic process. (orig.)

  3. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  4. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  5. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maejima, M.; Saruwatari, K. [Fujikura Ltd., Tokyo (Japan); Takaya, M. [Faculty of Engineering, Chiba Institute of Technology 17-1, Tsudanuma 2-Chome, 275-0016, Narasino-shi Chiba (Japan)

    2000-10-23

    In order to improve the lubricity and wear resistance of aluminum anodic oxide films, it is necessary to ensure the film layers are dense to prevent cracking, and to harden the films as well as reduce the shear stress of the film surfaces. From this view point, lubricious, hard anodic oxide films have been studied in the past, but fully satisfactory results have yet to be realized. In this paper, we report on our study of the re-anodizing of anodic oxide film in an aqueous solution of (NH)MoS. Molybdenum sulfide and compounds filled the 20-nm diameter pores of the film, creating internal stress which compressed the film, suppressing the occurrence of cracks and reducing the friction coefficient. (orig.)

  6. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  7. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  8. The electrochemical properties and mechanism of formation of anodic oxide films on Mg-Al alloys

    International Nuclear Information System (INIS)

    Kim, Seong Jong; Okido, Masazumi

    2003-01-01

    The electronchemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH) 2 in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH) 2 was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·dm -3 NaCl and 0.1 mol·dm -3 Na 2 SO 4 at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min

  9. The electrochemical properties and mechanism of formation of anodic oxide films on Mg-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jong; Okido, Masazumi [Nagoya Univ., Nagoya (Japan)

    2003-07-01

    The electronchemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH){sub 2} in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH){sub 2} was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the {beta} phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in {beta} phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in {alpha} phase, which had a lower Al content. In the anodic polarization test in 0.017 mol{center_dot}dm{sup -3} NaCl and 0.1 mol{center_dot}dm{sup -3} Na{sub 2}SO{sub 4} at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the {alpha} phase is a non-compacted film. The anodic film on the {alpha} phase at 30 min was a compact film as compared with that at 10 min.

  10. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zheng, Hongmei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Zhao, Jiebo [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Cui, Jiewu; Qin, Yongqiang; Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-08-01

    Graphical abstract: Current-time and potential-time curves of the copper foil anodization process, CV of copper substrate in anodization solution and SEM morphologies of anodization products on Cu substrates obtained at different time. - Highlights: • Copper oxides nanosheet arrays were achieved via anodization method. • The growth mechanisms of the copper anodization process were studied. • Photoelectrochemical performances of copper oxides NSAs were studied. - Abstract: We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu{sub 2}O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm{sup 2} at the current density of 1.0 A/dm{sup 2}, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  11. Effects of titanium on a ferritic steel oxidation at 950 C

    Energy Technology Data Exchange (ETDEWEB)

    Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; El Messki, S.; Karimi, N. [Lab. Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), IUT de Clermont-Fd1 - Dept. de Chimie - Science des materiaux, Le Puy en Velay (France); Antoni, L. [CEA Grenoble, DTEN/SCSE/LHPAC (France)

    2004-07-01

    This work presents the titanium effect on the oxidation behaviour of chromia-forming alloys at 950 C. When the amount of titanium is high enough in the substrate, in situ XRD permit to show that this element reacts with oxygen to form Cr{sub 2}TiO{sub 5}. This oxide is quickly transformed into TiO{sub 2} during the first hours of oxidation. These oxides contribute to an increase of the mass gain registered. Titanium leads to a doping effect of the chromia layer inducing an increase of the cationic vacancies concentration and chromium diffusion. (orig.)

  12. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  13. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  14. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  15. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Directory of Open Access Journals (Sweden)

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  16. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  17. Preparation of mesoporous titanium dioxide anode by a film- and pore-forming agent for the dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjing; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Zhou, Haihan; Chang, Yunzhen; Zhang, Ying

    2016-04-15

    Highlights: • PVP is used as a film- and pore-forming agent to prepare the mesoporous TiO{sub 2} anode. • The TiO{sub 2} anode supplies high surface area for the dye adsorption. • The DSSC efficiency is strongly dependent on the pore properties of the TiO{sub 2} anode. • The DSSC efficiency with the TiO{sub 2} anode prepared by 20 wt% PVP reaches 8.39%. - Abstract: A novel mean of generating mesoporous titanium dioxide (TiO{sub 2}) anodes by employing polyvinylpyrrolidone (PVP) as the film- and pore-forming agent are proposed for dye-sensitized solar cells (DSSCs). The influences on the morphology and photovoltaic performances of the TiO{sub 2} anodes are investigated by adjusting the PVP content in synthesizing the mesoporous TiO{sub 2} anodes. The photovoltaic conversion efficiency of the DSSC is found to be strongly dependent on the pore properties of the TiO{sub 2} anode. After the sintering process, the removal of the PVP leaves porously interconnected channel structures inside the TiO{sub 2} anode, supplying enhanced specific surface area for the dye adsorption as well as the efficient electron transmission. As a result, the TiO{sub 2} anode prepared by 20 wt% PVP presents the highest performances, based on which the DSSC achieves the highest conversion efficiency of 8.39%, approximately increased by 56.53% than that of the DSSC fabricated without PVP (5.36%).

  18. Improved biological performance of low modulus Ti-24Nb-4Zr-7.9Sn implants due to surface modification by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Gao, B., E-mail: gaobo_fmmu@163.com [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Wang, R. [Fengtai Health Center of Navy Outpatient Department, Beijing 100071 (China); Wu, J.; Zhang, L.J. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Hao, Y.L.; Tao, X.J. [Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-02-15

    Dental implants are usually made from commercially pure titanium or titanium alloys. The purpose of this study was to evaluate the influence of surface treatment to low modulus Ti-24Nb-4Zr-7.9Sn (TNZS) on cell and bone responses. The TNZS alloy samples were modified using anodic oxidation (AD). Surface oxide properties were characterized by using various surface analytic techniques, involving scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffractometry (XRD) and surface profilometer. During the AD treatment, porous titanium oxide layer was formed and Ca ions were incorporated into the oxide layer. The viability and morphology of osteoblasts on Ca-incorporated TNZS were studied. The bone responses of Ca-incorporated TNZS were evaluated by pull-out tests and morphological analysis after implantation in rabbit tibiae. The non-treated Ti and TNZS samples were used as the control. Significant increases in cell viability and pull-out forces (p < 0.05) were observed for Ca-incorporated TNZS implants compared with those for the control groups. Porous structures supplied positive guidance cues for osteoblasts to attach. The enhanced cell and bone responses to Ca-incorporated TNZS implants could be explained by the surface chemistry and microtopography.

  19. Doped titanium oxide photcatalysts: Preparation, structure and interaction with viruses

    Science.gov (United States)

    Li, Qi

    Since the discovery of photoelectrochemical splitting of water on n-titanium oxide (n-TiO2) electrodes by Fujishima and Honda in 1972, there has been much interest in semiconductor-based materials as photocatalysts for both solar energy conversion and environmental applications in the past several decades. Among various semiconductor-based photocatalysts, TiO2 is the only candidate suitable for industrial use because of its high chemical stability, good photoactivity, relatively low cost, and nontoxicity. However, the photocatalytic capability of TiO 2 is limited to only ultraviolet (UV) light (wavelength, lambda, strategy to use atomic force microscope (AFM) to conduct in-situ observation of viruses on semiconductor surfaces in aqueous environment was developed, which combines information from both height profile and phase profile and solves the difficulty of observing small nanosized biomolecules on substrates with similar feature sizes.

  20. The simulation of the temperature effects on the microhardness of anodic alumina oxide layers

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2014-01-01

    Full Text Available In order to improve the mechanical properties of the layer deposited by anodic oxidation of aluminum on the material EN AW-1050 H24, in the contribution was investigated the microhardness of the deposited layer as a function of the physic-chemical factors affecting in the process of anodic oxidation at the constant anodic current density J = 3 A.dm-2 in electrolyte formed by sulfuric acid and oxalic acid, with the emphasis on the influence of electrolyte temperature in the range – 1,78 °C to 45,78 °C. The model of the studied dependence was compiled based on mathematical and statistical analysis of matrix from experimental obtained data from composite rotation plan of experiment with five independent variable factors (amount of sulfuric acid in the electrolyte, the amount of oxalic acid in the electrolyte, electrolyte, anodizing time and applied voltage.

  1. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  2. Anode protection system for shutdown of solid oxide fuel cell system

    Science.gov (United States)

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  3. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  4. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  5. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  6. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    Science.gov (United States)

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  7. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today\\'s commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH -neutral 2 M Li2 S O4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. © 2011 The Electrochemical Society.

  8. Nano-porous anodic aluminium oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan; Liu Xiaohua; Pan Caofeng; Zhu Jing [Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-08-29

    Self-organized nano-porous anodic aluminium oxide (AAO) membranes with small pore diameters were obtained by applying a low anodizing potential in sulfuric acid solutions. The pore diameters of the as-prepared AAO membranes were in the range of about 6-19 nm and the interpore distances were about 20-58 nm. Low potentials (6-18 V) were applied in anodizing processes to make such small pores. A linear relationship between the anodizing potential (U{sub a}) and the interpore distance (D{sub int}) was also revealed. By carefully monitoring the current density's evolution as a function of time with different U{sub a} (2-18 V) during the anodizing processes, a new formula is proposed to simulate the self-ordering anodizing process.

  9. Modelling the growth process of porous aluminum oxide film during anodization

    International Nuclear Information System (INIS)

    Aryslanova, E M; Alfimov, A V; Chivilikhin, S A

    2015-01-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. (paper)

  10. Modelling the growth process of porous aluminum oxide film during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  11. Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells

    Science.gov (United States)

    2010-01-14

    Thus, in this Chapter we report a detail study of the electrode behavior of pure Ni/GDC and Ni/YSZ cermet anodes in weakly humidified H2 fuel...impedance behavior for the oxidation reaction in hydrogen, methane and ethanol over a pure and Pd-impregnated Ni/GDC anode of SOFC were also studied ...surfaces [1]. So Ni/YSZ based cermet anodes have a very low tolerance to fuels containing H2S even at a very low level (ppm) [2]. Thus, the development of

  12. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes

    OpenAIRE

    Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W.Z.

    2008-01-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that me...

  13. Role of surfactant-mediated electrodeposited titanium oxide substrate in improving electrocatalytic features of supported platinum particles

    Energy Technology Data Exchange (ETDEWEB)

    Spătaru, Tanţa; Preda, Loredana; Osiceanu, Petre; Munteanu, Cornel; Anastasescu, Mihai; Marcu, Maria; Spătaru, Nicolae, E-mail: nspataru@icf.ro

    2014-01-01

    A new hybrid system with improved photocatalytic and electrocatalytic performances was obtained by two-step potentiostatic deposition on highly boron-doped diamond (BDD) substrate. First, hydrated TiO{sub 2} was anodically deposited from a TiCl{sub 3} aqueous solution, both in the presence and in the absence of sodium dodecyl sulfate (SDS). The study of the UV irradiation effect evidenced that titanium oxide coatings obtained by surfactant-assisted electrodeposition (TiO{sub 2}:SDS) exhibit enhanced photocurrent, due to its very rough texonsture and presumably to better efficiency of charge carrier separation. Electrochemical deposition of platinum on the oxide-coated BDD was carried out in a second step and AFM, SEM and XPS measurements have shown that, on the TiO{sub 2}:SDS substrate, Pt particles are smaller, more uniformly distributed, and tend to form clusters, leading to a specific surface area of the electrocatalyst of ca. 6.55 m{sup 2} g{sup −1}. Carbon monoxide stripping experiments demonstrated that, when deposited on TiO{sub 2}:SDS, Pt particles are also less sensitive to CO-poisoning during methanol anodic oxidation.

  14. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  15. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    Science.gov (United States)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  16. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S.K. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Jeong, G.H. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Park, I.S. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Na, S.M. [Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)]. E-mail: nsmv2k@skku.edu; Suh, S.J. [School of Advanced Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Advanced Materials and Process Research for IT, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2007-03-15

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-{mu}m-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  17. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    Science.gov (United States)

    Lim, S. K.; Jeong, G. H.; Park, I. S.; Na, S. M.; Suh, S. J.

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 °C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM.

  18. Fabrication of electrodeposited Co-Pt nano-arrays embedded in an anodic aluminum oxide/Ti/Si substrate

    International Nuclear Information System (INIS)

    Lim, S.K.; Jeong, G.H.; Park, I.S.; Na, S.M.; Suh, S.J.

    2007-01-01

    An anodic aluminum oxide (AAO) template, which is filled with the Co-Pt alloys, is a promising material for high-density magnetic recording media due to its high magnetic anisotropy and high coercivity. The porous AAO templates were fabricated by the two-step anodizing of 1-μm-thick Al thin film evaporated on top of the titanium layer with the thickness of 250 nm. The AAO template with pore size of approximately 60 nm and aspect ratio of 10 was obtained at voltage of 40 V, temperature of 5 deg. C, oxalic acid of 0.3 M and widening time of 55 min. Then the thickness of barrier is less than 20 nm. The Co-Pt alloy electrodeposited at pulsed current density, pH of 4 and room temperature was successfully filled in the AAO template with pore size of 80 nm and aspect ratio of 3. Then the Co-Pt alloy with Pt concentration of 45 at% was uniformly filled in the template and the coercivity of 1100 Oe was observed by VSM

  19. Pore-scale investigation of mass transport and electrochemistry in a solid oxide fuel cell anode

    Energy Technology Data Exchange (ETDEWEB)

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K.S. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

    2010-04-15

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure. (author)

  20. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  1. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  2. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  3. High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Chang-Woo; Kim, Hyun-Mi; Kim, Ki-Bum [WCUHybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of); Son, Ji-Won; Lee, Jong-Ho; Lee, Hae-Weon [High Temperature Energy Materials Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of)

    2011-03-22

    Micro-solid oxide fuel cells ({mu}-SOFCs) are fabricated on nanoporous anodic aluminum oxide (AAO) templates with a cell structure composed of a 600-nm-thick AAO free-standing membrane embedded on a Si substrate, sputter-deposited Pt electrodes (cathode and anode) and an yttria-stabilized zirconia (YSZ) electrolyte deposited by pulsed laser deposition (PLD). Initially, the open circuit voltages (OCVs) of the AAO-supported {mu}-SOFCs are in the range of 0.05 V to 0.78 V, which is much lower than the ideal value, depending on the average pore size of the AAO template and the thickness of the YSZ electrolyte. Transmission electron microscopy (TEM) analysis reveals the formation of pinholes in the electrolyte layer that originate from the porous nature of the underlying AAO membrane. In order to clog these pinholes, a 20-nm thick Al{sub 2}O{sub 3} layer is deposited by atomic layer deposition (ALD) on top of the 300-nm thick YSZ layer and another 600-nm thick YSZ layer is deposited after removing the top intermittent Al{sub 2}O{sub 3} layer. Fuel cell devices fabricated in this way manifest OCVs of 1.02 V, and a maximum power density of 350 mW cm{sup -2} at 500 C. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  5. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  6. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,3 1Chameleon Scientific, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA and coat it on titanium (Ti using molecular plasma deposition (MPD. NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. Keywords: hydroxyapatite, anodization, nanotechnology

  7. Optical properties of alumina membranes prepared by anodic oxidation process

    International Nuclear Information System (INIS)

    Li Zhaojian; Huang Kelong

    2007-01-01

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F + centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane

  8. Optical properties of alumina membranes prepared by anodic oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaojian [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: lizhaojian_lzj@hotmail.com; Huang Kelong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: klhuang@mail.csu.edu.cn

    2007-12-15

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F{sup +} centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane.

  9. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  10. Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution

    International Nuclear Information System (INIS)

    Ashraf, P. Muhamed; Edwin, Leela

    2013-01-01

    Highlights: ► Corrosion resistant aluminium incorporated with nano oxides of cerium and titanium. ► 0.2% nano CeO 2 and 0.05% nano TiO 2 showed increased corrosion resistance. ► Nano TiO 2 concentration influenced the optimum performance of the material. ► Comparison of Micro and nano CeO 2 and TiO 2 aluminium showed the latter is best. - Abstract: The study highlights the development of an aluminium matrix composite by incorporating mixture of nanometre sized cerium oxide and titanium oxide in pure aluminium and its corrosion resistance in marine environment. The mixed nanometre sized oxides incorporated aluminium exhibited improved microstructure and excellent corrosion resistance. Corrosion resistance depends on the concentration of nanometre sized titanium oxide. Electrochemical characteristics improved several folds in nanometre sized mixed oxides incorporated aluminium than micrometre sized oxides incorporated aluminium.

  11. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  12. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  13. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  14. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Sulka, Grzegorz D., E-mail: Sulka@chemia.uj.edu.pl [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Brzozka, Agnieszka [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, Krakow 30-059 (Poland); Liu, Lifeng [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2011-05-30

    Graphical abstract: Display Omitted Highlights: > AAO templates with modulated pore diameter were fabricated by pulse anodization. > HA pulse duration tunes the shape of pores and the structure of AAO channels. > Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. > Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  15. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Sulka, Grzegorz D.; Brzozka, Agnieszka; Liu, Lifeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → AAO templates with modulated pore diameter were fabricated by pulse anodization. → HA pulse duration tunes the shape of pores and the structure of AAO channels. → Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. → Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  16. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  17. Characterization polyethylene terephthalate nanocomposites mixing with nano-silica and titanium oxide

    Directory of Open Access Journals (Sweden)

    Rusu Mircea A.

    2017-01-01

    Full Text Available Polyethylene terephthalate (PET based nanocomposites containing nano-silica (Aerosil (Degusa and titanium oxide (TiO2 (Merk were prepared by melt compounding. Influence of nano-silica and titanium oxide on properties of the resulting nanocomposites was investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and atomic force microscopy (AFM. The possible interaction between nano-silica and titanium oxide particles with PET functional groups at bulk and surface was elucidated by transmission of FTIR-ATR spectroscopy. AFM studies of the resulting nanocomposites showed an increased surface roughness compared to pure PET. SEM images illustrated that nano-silica particles have tendency to migrate to the surface of the PET matrix much more than titanium oxide powder.

  18. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  19. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  20. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  1. Pilot demonstration of cerium oxide coated anodes. Final report, April 1990--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ({approximately}1.5) and low current density (0.5 A/cm{sup 2}), a {ge}1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  2. Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkali-Ion Batteries.

    Science.gov (United States)

    Das, Suman; Swain, Diptikanta; Araujo, Rafael B; Shi, Songxin; Ahuja, Rajeev; Row, Tayur N Guru; Bhattacharyya, Aninda J

    2018-02-02

    We discuss here a unique flexible non-carbonaceous layered host, namely, metal titanium niobates (M-Ti-niobate, M: Al 3+ , Pb 2+ , Sb 3+ , Ba 2+ , Mg 2+ ), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M-Ti-niobate is formed by ion exchange of the K + ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO 6 and NbO 6 octahedral units in the sol-gel synthesized potassium titanium niobate (KTiNbO 5 ). Drastic volume changes (approximately 300-400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M-Ti-niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50-75 % of total K + ) in the M-Ti-niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M-Ti-niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li + and Na + ion cyclability (>2 Li + /Na + per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al-titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M-Ti-niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes

  3. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  4. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  5. Microstructural variation in titanium oxide thin films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Kamruddin, M.; Tyagi, A.K.

    2013-01-01

    We report on the microstructural evolution of titanium oxide thin films deposited by reactive DC magnetron sputtering using titanium metal target. By varying the ratio of sputter-gas mixture containing argon, oxygen and nitrogen various phases of titanium oxide, almost pure rutile, rutile-rich and anatase-rich nano-crystalline, were deposited on Si substrates at room temperature. Using high-resolution scanning electron microscopy, X-ray diffraction and micro-Raman techniques the microstructure of the films were revealed. The relationship between the microstructure of the films and the oxygen partial pressure during sputtering is discussed

  6. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  7. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  8. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    Science.gov (United States)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  9. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    Science.gov (United States)

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  10. cw argon laser annealing of anodic oxide on GaAs

    International Nuclear Information System (INIS)

    Chakravarti, S.N.; Das, P.; Webster, R.T.; Bhat, K.N.

    1981-01-01

    Anodic oxide films (850 +- 50 A thick) grown on n + (100) bulk GaAs were subjected to selective area annealing using a cw argon laser operating at an output power of 1.2 W. Capacitance-voltage (C-V) measurements performed on Al-anodic oxide-GaAs MOS capacitor structures show that laser-annealed capacitor dots have greatly reduced field-induced hysteresis effects in their capacitance-voltage characteristics compared to the unannealed ones. The oxide leakage current also shows a significant improvement: the leakage current magnitude of MOS capacitors in laser-annealed oxide island is over four orders of magnitude less than the oxide region which was not exposed to the laser radiation. Dielectric breakdown measurement indicates that laser-annealed capacitors have considerably higher breakdown voltages, about a factor of 2 higher than the unannealed capacitors

  11. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  12. Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Ping; Xing, Lei [Chemical Engineering Department, Taiyuan University of Technology, Shanxi 030024 (China); Scott, Keith [School of Chemical Engineering and Advanced Materials, Merz Court, University of Newcastle, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2010-01-01

    A kinetic model of a porous Pt-Ru anode for methanol oxidation is presented. It was based on the dual-site mechanism for methanol oxidation and used to predict anode performance and the influence of species adsorption on the overall oxidation (macro-) kinetics. The performance of the porous Pt-Ru anode depended on the parameters of the intrinsic chemical kinetics of methanol oxidation and physical parameters such as electrode thickness, surface area, effective diffusion and charge transfer coefficients and concentration of methanol and temperature. The model was solved by using the finite difference method with a subroutine for solving a set of nonlinear algebraic equations in each step. Surface coverage ratio distributions of adsorbed species, effectiveness of the porous electrode and macro-polarisation curves were obtained. The simulated polarisation curves were compared to experimental polarisation data for methanol oxidation on Pt-Ru porous anodes at different temperatures and methanol concentrations. The intrinsic kinetic parameters were regressed from the corresponding experimental data. The predicted polarisation curves calculated by the model, were consistent with experimental polarisation data at lower current densities. The departure of experimental data from the predicted polarisation curves at high concentration and high apparent current densities was believed to be due to two-phase flow in the electrode. (author)

  13. Structural and morphological changes in pseudobarrier films of anodic aluminum oxide caused by irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    We have studied the structural and morphological changes, occurring under the electron beam in pseudobarrier films of anodic aluminum oxide, prepared in seven different solutions and irradiated beforehand by protons of x-rays, with the aim of elucidating the structure of anodic aluminum oxides. An increased stability of the pseudobarrier films of anodic aluminum oxide has been observed towards the action of the electron beam of an UEMV-100K microscope at standard working regimes (75 keV) as a result of irradiation with protons or x-rays. A difference has been found to exist between structural and morphological changes of anodic aluminum oxide films, prepared in different solutions, when irradiated with high-energy particles. A structural and phase inhomogeneity of amorphous pseudobarrier films of anodic aluminum oxide has been detected and its influence on the character of solid-phase transformations under the maximum-intensity electron beam

  14. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  15. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  16. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  17. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  18. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  19. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal; Anjum, Dalaver H.; Gogotsi, Yury; Alshareef, Husam N.

    2017-01-01

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications

  20. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Institute of Hybrid Materials, Laboratory of New Fiber Materials and Modern Textile—The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Wang, Ning; Dou, Xiaowei; Han, Liangliang; Wen, Shuguang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-12-31

    Titanium oxide (TiO{sub X}) is an effective electron transport layer (ETL) in polymer solar cells (PSCs). We report efficient inverted PSCs with a simple solution-processed amorphous TiO{sub X} (s-TiO{sub X}) film as an ETL. The s-TiO{sub X} film with high light transmittance was prepared by spin-coating titanium (IV) isopropoxide isopropanol solution on indium tin oxide coated glass in inert and then placed in air under room temperature for 60 min. The introduction of s-TiO{sub X} ETL greatly improved the short circuit current density of the devices. PSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester and poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl -thieno[3,4-b]thiophene):[6,6]-phenyl- C71-butyric acid methyl ester using s-TiO{sub X} film as ETL shows high power conversion efficiency of 4.29% and 6.7% under the illumination of AM 1.5G, 100 mW/cm{sup 2}, which shows enhancements compared to the conventional PSCs with poly(styrenesulfonate)-doped poly(ethylenedioxythiophene) as anode buffer layer. In addition, the device exhibits good stability in a humid ambient atmosphere without capsulation. The results indicate that the annealing-free, simple solution processed s-TiO{sub X} film is an efficient ETL for high-performance PSCs. - Highlights: • High quality s-TiO{sub X} films were prepared by a simple, solution method without thermal treatment. • The s-TiO{sub X} films with high transmittance are very smooth. • The organic photovoltaic performance with s-TiO{sub X} film improved greatly and exhibited good stability. • The annealing-free, simple prepared s-TiO{sub X} film will be much compatible with flexible substrates.

  1. Effects of titanium surface anodization with CaP incorporation on human osteoblastic response

    Science.gov (United States)

    OLIVEIRA, Natássia Cristina Martins; MOURA, Camilla Christian Gomes; ZANETTA-BARBOSA, Darceny; MENDONÇA, Daniela Baccelli Silveira; MENDONÇA, Gustavo; DECHICHI, Paula

    2015-01-01

    In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7 days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p0.05). Although no significant correlation was found for growth factors secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response. PMID:23498218

  2. Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Na Yang

    2016-09-01

    Full Text Available The inferior hydrophilicity of graphene is an adverse factor to the performance of the graphene modified anodes (G anodes in microbial fuel cells (MFCs. In this paper, different amounts of hydrophilic graphene oxide (GO were doped into the modification layers to elevate the hydrophilicity of the G anodes so as to further improve their performance. Increasing the GO doped ratio from 0.15 mg·mg−1 to 0.2 mg·mg−1 and 0.25 mg·mg−1, the static water contact angle (θc of the G-GO anodes decreased from 74.2 ± 0.52° to 64.6 ± 2.75° and 41.7 ± 3.69°, respectively. The G-GO0.2 anode with GO doped ratio of 0.2 mg·mg−1 exhibited the optimal performance and the maximum power density (Pmax of the corresponding MFC was 1100.18 mW·m−2, 1.51 times higher than that of the MFC with the G anode.

  3. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  4. Anodic oxidation of chloride ions in 1-butyl-3-methyl-limidazolium tetrafluoroborate ionic liquid

    International Nuclear Information System (INIS)

    Zhang, Qibo; Hua, Yixin; Wang, Rui

    2013-01-01

    Highlights: • The anodic oxidation of Cl − in BMIMBF 4 is electrochemically irreversible with diffusion controlled. • The oxidation of Cl − in BMIMBF 4 is more likely to form tri-chloride ion, Cl 3 − but not chlorine, Cl 2 . • The minute amount of Cl 2 detected after electrolysis forms according to the equilibrium of Cl 2 + Cl − ⇌ Cl 3 − . -- Abstract: The oxidation behavior of chloride ions on platinum electrodes was investigated in a natural ionic liquid, 1-butyl-3-methyl-limidazolium tetrafluoroborate (BMIMBF 4 ) in the presence of high concentrations of 1-butyl-3-methyl-limidazolium chloride (BMIMCl). Analysis of the electrode reaction was explored using cyclic voltammetry, and chronoamperometry with a platinum micro-disk electrode, and bulk potentiostatic electrolysis and UV–vis spectroscopy. The anodic oxidation of chloride ions on the platinum micro-disk electrode in the mixture was considered to be an irreversible process with diffusion controlled as revealed by cyclic voltammetry. The diffusion coefficient, D, and the number of electrons transferred, n, for anodic oxidation of Cl − in BMIMBF 4 derived from results of chronoamperometry revealed that the oxidation of chloride ions was more likely to form tri-chloride ion, Cl 3 − but not chlorine, Cl 2 . Bulk electrolysis and UV–vis spectroscopy further confirmed that the tri-chloride ion was the main product from the overall oxidation of the chloride ion

  5. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments

    International Nuclear Information System (INIS)

    Wang Hui; Wang Jianlong

    2008-01-01

    By using a self-made carbon/polytetrafluoroethylene (C/PTFE) O 2 -fed as the cathode and Ti/IrO 2 /RuO 2 as the anode, the degradation of three organic compounds (phenol, 4-chlorophenol, and 2,4-dichlorophenol) was investigated in the diaphragm (with terylene as diaphragm material) electrolysis device by electrochemical oxidation process. The result indicated that the concentration of hydrogen peroxide (H 2 O 2 ) was 8.3 mg/L, and hydroxyl radical (HO·) was determined in the cathodic compartment by electron spin resonance spectrum (ESR). The removal efficiency for organic compounds reached about 90% after 120 min, conforming to the sequence of phenol, 4-chlorophenol, and 2,4-dichlorophenol. And the dechlorination degree of 4-chlorophenol exceeded 90% after 80 min. For H 2 O 2 , HO· existed in the catholyte and reduction dechlorination at the cathode, the mineralization of organics in the cathodic compartment was better than that in the anodic compartment. The degradation of organics was supposed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H 2 O 2 , HO· produced by oxygen reduction at the cathode. High-performance liquid chromatography (HPLC) allowed identifying phenol as the dechlorination product of 4-chlorophenol in the cathodic compartment, and hydroquinone, 4-chlorocatechol, benzoquinone, maleic, fumaric, oxalic, and formic acids as the main oxidation intermediates in the cathodic and anodic compartments. A reaction scheme involving all these intermediates was proposed

  6. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...

  7. Fabrication of Polymeric Antireflection Film Manufactured by Anodic Aluminum Oxide Template on Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2017-03-01

    Full Text Available In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs were successfully fabricated by attaching a double anti-reflection (AR layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA film and a polydimethylsiloxane (PDMS film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO2 nanoparticles (NPs with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC and conversion efficiency from 14.77 to 15.79 mA/cm2 and from 6.26% to 6.79%, respectively.

  8. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism

    Directory of Open Access Journals (Sweden)

    Annabel Fernandes

    2014-12-01

    Full Text Available The anodic oxidation of oxytetracycline was performed with success using as anode a boron-doped diamond electrode. The experiments were conducted in batch mode, using two different electrochemical cells: an up-flow cell, with recirculation, that was used to evaluate the influence of recirculation flow rate; and a stirred cell, used to determine the influence of the applied current density. Besides oxytetracyclin electrodegradation rate and mineralization extent, oxidation by-products were also assessed. Both the flow rate and the applied current density have shown positive influence on the oxytetracycline oxidation rate. On the other hand, the mineralization degree presented the highest values at the lowest flow rate and the lowest current density tested. The main oxidation by-products detected were oxalic, oxamic and maleic acids.

  9. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  10. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    Science.gov (United States)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  11. Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation

    International Nuclear Information System (INIS)

    Liu, Rong-Hua; Li, Wen-Wei; Sheng, Guo-Ping; Tong, Zhong-Hua; Lam, Michael Hon-Wah; Yu, Han-Qing

    2015-01-01

    Highlights: • Azobenzene was reduced to aniline at the cathode of an acetate-fueled MFC. • Aniline was degraded at the bioanode of a single-chamber MFC. • Cathodic reduction of azobenzene was coupled with anodic oxidation of aniline. • Self-driven, complete mineralization of azobenzene in an MFC was accomplished. - Abstract: Bioelectrochemical systems have been intensively studied as a promising technology for wastewater treatment and environment remediation. Coupling of the anodic and cathodic electrochemical reactions allows an enhanced degradation of recalcitrant organics, but external power supply is usually needed to overcome the thermodynamic barrier. In this work, we report a self-driven degradation of azobenzene in a microbial fuel cell (MFC), where the cathodic reduction of azobenzene was effectively coupled with the anodic oxidation of its reduction degradation intermediate (i.e., aniline). The anodic degradation rate of aniline, as the sole carbon source, was significantly higher than that under open-circuit conditions, suggesting a considerable bioelectrochemical oxidation of aniline. Output voltages up to 8 mV were obtained in the MFC. However, a shift of cathodic electron acceptor from oxygen to azobenzene resulted in a decreased aniline degradation rate and output voltage. The present work may provide valuable implications for development of sustainable bioelectrochemical technologies for environmental remediation

  12. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    Science.gov (United States)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  13. Influence of water on the anodic oxidation mechanism of ...

    African Journals Online (AJOL)

    Diethylenetriamine was oxidised in different electrolytes on platinum electrode. In non-aqueous electrolyte, an irreversible oxidation peak characteristic of DETA oxidation appears on the voltammogram followed by a constant current until the higher limit of the sweeping potential domain is attained. The following successive ...

  14. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    Science.gov (United States)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

  15. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  16. Formation of pyridine N-oxides using mesoporous titanium silicalite-1

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Perez-Ferreras, Susana

    2014-01-01

    Mesoporous titanium silicalite-1 (TS-1) prepared by carbon-templating is significantly more active than conventional TS-1 for the oxidation of pyridine derivatives using aqueous hydrogen peroxide as oxidant. The catalytic activity is increased by the system of mesopores that helps to overcome the...

  17. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Model of porous aluminium oxide growth during initial stage of anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2014-10-01

    Currently, the development of nanotechnology and metamaterials requires the ability to obtain regular self-assembled structures with different parameters. One such structure is porous alumina in which the pores grow perpendicular to the substrate and are hexagonally packed. Pore size and the distance between them can be varied depending on the anodization voltage, the electrolyte and the anodization time (pore diameter - from 2 to 350 nm, the distance between the pores - from 5 to 50 nm). At the moment, there are different models describing the process of anodizing aluminum, in this paper we propose a model that takes into account the effect of layers of aluminum, aluminum oxide, and the electrolyte, as well as the influence of the effect of surface diffusion.

  19. Organic photovoltaics using thin gold film as an alternative anode to indium tin oxide

    International Nuclear Information System (INIS)

    Haldar, Amrita; Yambem, Soniya D.; Liao, Kang-Shyang; Alley, Nigel J.; Dillon, Eoghan P.; Barron, Andrew R.; Curran, Seamus A.

    2011-01-01

    Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C 61 -butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm 2 , open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.

  20. Anodically generated manganese(III) sulphate for the oxidation of ...

    Indian Academy of Sciences (India)

    Unknown

    oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study ... acetic acid (TFA) and N-methylmorpholine (NMM) were purchased ... and chloroform–methanol– acetic acid .... tion), manganese(II) sulphate and water (to keep the.

  1. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries

    Science.gov (United States)

    Wang, Rui; Feng, Lili; Yang, Wenrong; Zhang, Yinyin; Zhang, Yanli; Bai, Wei; Liu, Bo; Zhang, Wei; Chuan, Yongming; Zheng, Ziguang; Guan, Hongjin

    2017-10-01

    When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, the mixture of styrene butadiene rubber and sodium carboxymethyl cellulose (SBR+CMC), and polyacrylonitrile (LA133) were studied to make anode electrodes (compared to the full battery). The electrochemical tests show that using SBR+CMC and LA133 binder which use water as solution were significantly better than PVDF. The SBR+CMC binder remarkably improve the bonding capacity, cycle stability, and rate performance of battery anode, and the capacity retention was about 87% after 50th cycle relative to the second cycle. SBR+CMC binder was more suitable for making transition metal oxides anodes of LIBs.

  2. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  3. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    Science.gov (United States)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  4. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  5. Topotactic reduction yielding black titanium oxide nanostructures as metallic electronic conductors.

    Science.gov (United States)

    Tominaka, Satoshi

    2012-10-01

    Detailed analyses of reduced, single crystal, rutile-type TiO(2) via high-resolution transmission electron microscopy (TEM) are reported which reveal that the reduction proceeds topotactically via interstitial diffusion of Ti ions at low temperature, around 350 °C. This important finding encouraged the production of various nanostructured reduced titanium oxides from TiO(2) precursors with morphology retention, and in the process, the synthesis of black titanium oxide nanorods using TiO(2) nanorods was demonstrated. Interestingly, as opposed to the semiconductive behavior of Ti(2)O(3) synthesized at high temperature, topotactically synthesized Ti(2)O(3) exhibits metallic electrical resistance, and the value at room temperature is quite low (topotactically synthesized Ti(2)O(3). This work shows that topotactically reduced titanium oxides can have fascinating properties as well as nanostructures.

  6. Isolation and characterisation of barium sulphate and titanium oxides in monument crusts

    Energy Technology Data Exchange (ETDEWEB)

    Luis Perez-Rodriguez, Jose; Carmen Jimenez de Haro, Maria del; Maqueda, Celia

    2004-10-25

    Black crusts from historical ornamental materials contain Ba and Ti. These elements are in low proportion, making their determination difficult and especially the characterisation of the phases in which they are present. For this reason, works on the mineralogical composition of the two elements in black crusts is scarce. Thus the isolation, previous to their characterisation, is important for the study of the surface layer in altered monuments. An acid attack for the isolation of barium sulphate and titanium oxides in black crusts from polluted areas has been used. The acid employed is a mixture of HF, HNO{sub 3} and HClO{sub 4}. The residue isolated by acid attack was analysed by energy dispersive X-ray fluorescence and X-ray diffraction. It was characterised, and the percentages of barite (barium sulphate), anatase (titanium oxide), and rutile (titanium oxide) phases present in the surface layers were calculated.

  7. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  8. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  9. Surface patterned dielectrics by direct writing of anodic oxides using scanning droplet cell microscopy

    International Nuclear Information System (INIS)

    Siket, Christian M.; Mardare, Andrei Ionut; Kaltenbrunner, Martin; Bauer, Siegfried; Hassel, Achim Walter

    2013-01-01

    Highlights: • Scanning droplet cell microscopy was applied for local gate oxide writing. • Sharp lines are obtained at the highest writing speed of 1 mm min −1 . • 13.4 kC cm −3 was found as charge per volume for aluminium oxide. • High field constant of 24 nm V −1 and dielectric constant of 12 were determined for Al 2 O 3 by CV and EIS. -- Abstract: Scanning droplet cell microscopy was used for patterning of anodic oxide lines on the surface of Al thin films by direct writing. The structural modifications of the written oxide lines as a function of the writing speed were studied by analyzing the relative error of the line widths. Sharper lines were obtained for writing speeds faster than 1 mm min −1 . An increase in sharpness was observed for higher writing speeds. A theoretical model based on the Faraday law is proposed to explain the constant anodisation current measured during the writing process and yielded a charge per volume of 13.4 kC cm −3 for Al 2 O 3 . From calculated oxide film thicknesses the high field constant was found to be 24 nm V −1 . Electrochemical impedance spectroscopy revealed an increase of the electrical permittivity up to ε = 12 with the decrease of the writing speed of the oxide line. Writing of anodic oxide lines was proven to be an important step in preparing capacitors and gate dielectrics in plastic electronics

  10. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes

    International Nuclear Information System (INIS)

    Yang, Shu; Habazaki, Hiroki; Fujii, Takashi; Aoki, Yoshitaka; Skeldon, Peter; Thompson, George E.

    2011-01-01

    Highlights: → Anodic niobium oxide microcones with nanofiber morphology are formed simply by anodizing. → The cone size and its tip angle are controlled by anodizing condition. → The surface shows extremely high contact angle for water after coating with a fluoroalkyl layer. - Abstract: We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0 o . Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175 o and a very small contact angle hysteresis of only 2 o . The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.

  11. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    Souza, Kellie Provazi de

    2006-01-01

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO 4 ) 2 (NH 4 ) 2 .6H 2 O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl 3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  12. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  13. Phases quantification in titanium oxides by means of X-ray diffraction

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Ita T, A. de; Chavez R, A.

    2001-01-01

    In this work two phases of titanium oxides are quantified which belong to the same crystalline system and by means of a computer program named Quanto created by the first author, contains the information for calculating the absorption coefficients, it can be quantified phases having one of the pure phases and the problem samples. In order to perform this work different mixtures of different titanium oxides were prepared measuring by means of the X-ray diffraction technique in the Siemens X-ray diffractometer of ININ which were processed with the Peakfit package and also they were evaluated by means of the computer program with the necessary information finding acceptable results. (Author)

  14. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  15. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60min at 50mA. Direct electron transfer was mainly responsible at the current below 30mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20mM), while was dramatically increased with increasing the concentration of chloride (0-10mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  17. Photocatalytic Oxidation of a Volatile Organic Component of Acetaldehyde Using Titanium Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2007-01-01

    Full Text Available Titanium oxide nanotubes are prepared and treated with Au (Au/nanotube sample and Pt (Pt/nanotube sample, and the photoactivity of these catalysts compared to a standard Degussa P25 photocatalyst is investigated. The samples were analyzed using X-ray diffraction, field emission gun scanning transmission electron microscopy (STEM. Both high-resolution TEM images and high-angle annular dark-field (HAAD images were recorded for the specimens. Oxidation of acetaldehyde was used to test the efficiency of the catalysts. Nanotube samples showed better photoactivity than the standard P25, because the P25 titania deactivates quickly. Enhanced reactivity of the nanotube is related to surface charge polarity developed on outer and inner surfaces due to the difference in overlap of oxygen anions that resulted from curving of octahedral sheets. A tentative and qualitative surface polarity model is proposed for enhancing electron-hole pair separation. The inner surface benefits reduction; whereas, the outer surface benefits oxidation reactions. Both the metal identity and the size of the metal particles in the nanotubes affected the photocatalytic activity. Specifically, the addition of platinum increased the activity significantly, and increased the total yield. The addition of gold had lesser impact compared to the platinum. Formation of Pt large nanoparticles on the nanotube surfaces reduces the oxidation reactivity.

  18. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    OpenAIRE

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-01-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has be...

  19. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  20. Anodic aluminium oxide membranes used for the growth of carbon nanotubes.

    Science.gov (United States)

    López, Vicente; Morant, Carmen; Márquez, Francisco; Zamora, Félix; Elizalde, Eduardo

    2009-11-01

    The suitability of anodic aluminum oxide (AAO) membranes as template supported on Si substrates for obtaining organized iron catalyst for carbon nanotube (CNT) growth has been investigated. The iron catalyst was confined in the holes of the AAO membrane. CVD synthesis with ethylene as carbon source led to a variety of carbon structures (nanotubes, helices, bamboo-like, etc). In absence of AAO membrane the catalyst was homogeneously distributed on the Si surface producing a high density of micron-length CNTs.

  1. Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response

    OpenAIRE

    Poinern, Gérrard Eddy Jai; Shackleton, Robert; Mamun, Shariful Islam; Fawcett, Derek

    2011-01-01

    Gérrard Eddy Jai Poinern, Robert Shackleton, Shariful Islam Mamun, Derek FawcettMurdoch Applied Nanotechnology Research Group, Department of Physics, Energy Studies and Nanotechnology, School of Engineering and Energy, Murdoch University, Murdoch, Western Australia, AustraliaAbstract: Tissue engineering is a multidisciplinary field that can directly benefit from the many advancements in nanotechnology and nanoscience. This article reviews a novel biocompatible anodic aluminum oxide...

  2. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    Science.gov (United States)

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.

  3. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  4. Large-scale calculations of solid oxide fuel cell cermet anode by tight-binding quantum chemistry method

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    Improvement of anode characteristics of solid oxide fuel cells is important for the better cell performance and especially the direct use of hydrocarbons. A mixture of ceramics and metal is generally used as anode, and different combinations of ceramics and metals lead to different electrode characteristics. We performed large-scale calculations to investigate the characteristics of Ni/CeO 2 and Cu/CeO 2 anodes at the electronic level using our tight-binding quantum chemical molecular dynamics program. Charge distribution analysis clarified the electron transfer from metal to oxide in both anodes. The calculations of density of states clarified different contributions of Ni and Cu orbitals to the energy levels at around Fermi level in each cermet. Based on the obtained results, we made considerations to explain different characteristics of both cermet anodes. The effectiveness of our approach for the investigation of complex cermet system was proved

  5. Novel enhancement of thin-form-factor galvanic cells: Probing halogenated organic oxidizers and metal anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas-Valencia, Andres M.; Adornato, Lori; Short, R. Timothy; Langebrake, Larry [SRI International, Engineering and Systems Division, Marine Technology Program, 140 Seventh Avenue South, St Petersburg, FL 33701 (United States)

    2008-09-15

    The work reported herein demonstrates a novel method to improve the overall performance of thin-form-factor galvanic cells, fabricated via micro-electromechanical systems (MEMS) processes. Use of solid, low cost, cyclic-halogenated, organic catholyte materials permits water activation of cells consisting of metal anode and catalytic platinum positive electrodes. Similar cells, employing aluminum and zinc anodes, have been activated using sodium hypochlorite (NaClO) solutions, i.e. bleach, in the past. The oxidizers chosen for this study (bromo-, chloro- and iodo-succinimides, and sodium dichloroisocyanuric acid) supply the cathode's oxy-halogenated ions when in contact with water. Zinc, magnesium and aluminum anodes are utilized to fabricate galvanic cells. A comparison between these anodes, coupled with various oxidizers, is included herein. Results using aluminum anode cells show that, even though the utilization efficiency of the catholyte reagents is low (faradic efficiencies between 16 and 19%), the performance of the new water-activated cells (6 cm x 6 cm x 0.25 cm) is superior when compared to those activated with bleach. For instance, operational lives of 6 h (activation with 10% NaClO solution) increase to more than 30 h using the new approach, with a 100-ohm-load. It is also shown that specific energies of 90-110 Wh kg{sup -1} (calculated to include both reagent and packaging mass) could be obtained using the described approach with current draws between 10 and 20 mA. The specific energies obtained suggest that novel MEMS-type cells could have much broader application than low-current, bleach-activated cells. (author)

  6. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  7. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  8. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    Science.gov (United States)

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  9. Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wenelska, K.; Ottmann, A.; Schneider, P.; Thauer, E.; Klingeler, R.; Mijowska, E.

    2016-01-01

    HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO_2 and MnO_2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The mesoporous nature of the nanocomposites is confirmed by Brunauer–Emmett–Teller analysis. For both metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of electrochemical performance. The charge capacity of HCS/SnO_2 is 370 mA hg"−"1 after 45 cycles (266 mA hg"−"1 in HCS/MnO_2) which clearly exceeds the value of 188 mA hg"−"1 in pristine HCS. Remarkably, the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable enough to accommodate big volume change effects. - Highlights: • Strategy to synthesize hollow carbon spheres decorated by metal oxides nanoparticles. • High-performance of HCS/MOx storage as mesoporous hybrid material. • The results hence demonstrate high electrochemical activity of the HCS/MOx.

  10. Localized and collectivized behaviour of d-electrons in complicated titanium, vanadium and niobium oxides

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Shvejkin, G.P.

    1980-01-01

    On the basis of investigation of electric and magnetic properties of oxide compounds of transition metals made are the conclusions on the degree of localization and delocalization of d-electrons in them. Generalized are the investigation results of complicated titanium, vanadium, niobium oxide compounds in low degrees of oxidation with rare earth and alkaline earth elements belonging to the two structural types: perovskite and pyrochlore. Presented are the results of investigations of perovskite-like solid solutions and of variable-content phases containing cations of transition metals in two different oxidation degrees: oxide niobium bronzes of two-valent europium and titanium bronzes of rare-earth elements, as well as Lnsub(1-x)Msub(x)Vsub(1-x)sup(3+)Vsub(x)sup(4+)Osub(3), where M is an alkaline earth element

  11. X-ray spectral determination of chemical state of phosphorus and sulfur in anodic oxide films on niobium

    International Nuclear Information System (INIS)

    Bokij, L.P.; Kostikov, Yu.P.

    1989-01-01

    Chemical forms of phosphorus and sulfur in niobium oxide anodic film, obtained by electrochemical technique using niobium in H 2 SO 4 and H 3 PO 4 aqueous solutions, are determined using data on chemical shifts of X-ray emission lines. Films represent Nb 2 O 5(1-γ) (SO 4 ) 5γ and Nb 2 O 5(1-γ) (PO 4 ) 10γ/3 (γ -share of oxygen substituted by acid anion) composition oxosalts. Electrolyte role in formation of niobium anodic oxide structure and effect of phosphorus and sulfur compounds on anodic film conductivity are determined

  12. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  13. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  14. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  15. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Stephen Everett [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO2 film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  16. Polymerisation occurrence in the anodic oxidation of phosphite on a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Petrucci, Elisabetta; Montanaro, Daniele; Merli, Carlo

    2008-01-01

    The electrogeneration of polymeric phosphorus compounds during the anodic oxidation of aqueous solutions of phosphites on a boron-doped diamond electrode has been studied. Although the main oxidation product is orthophosphate, the results indicate the simultaneous generation of short-chain and cyclic compounds containing two and three phosphorus atoms whose evolution has been followed by ion chromatography. The effect on the reaction yield of several operative parameters such as current density, pH, temperature and initial phosphite concentration has been investigated. Consistently with the data presented, a new process for the generation of polymeric phosphates is obtained

  17. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    International Nuclear Information System (INIS)

    Panizza, M.; Kapalka, Agnieszka; Comninellis, Ch.

    2008-01-01

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency

  18. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M. [Department of Chemical and Process Engineering, University of Genoa, P.le J.F. Kennedy 1, 16129 Genova (Italy)], E-mail: marco.panizza@unige.it; Kapalka, Agnieszka [Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: christos.comninellis@epfl.ch

    2008-01-01

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency.

  19. Oxochloroalkoxide of the Cerium (IV and Titanium (IV as oxides precursor

    Directory of Open Access Journals (Sweden)

    Machado Luiz Carlos

    2002-01-01

    Full Text Available The Cerium (IV and Titanium (IV oxides mixture (CeO2-3TiO2 was prepared by thermal treatment of the oxochloroisopropoxide of Cerium (IV and Titanium (IV. The chemical route utilizing the Cerium (III chloride alcoholic complex and Titanium (IV isopropoxide is presented. The compound Ce5Ti15Cl16O30 (iOPr4(OH-Et15 was characterized by elemental analysis, FTIR and TG/DTG. The X-ray diffraction patterns of the oxides resulting from the thermal decomposition of the precursor at 1000 degreesC for 36 h indicated the formation of cubic cerianite (a = 5.417Å and tetragonal rutile (a = 4.592Å and (c = 2.962 Å, with apparent crystallite sizes around 38 and 55nm, respectively.

  20. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    Science.gov (United States)

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  1. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  2. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  3. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  4. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  5. Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity

    International Nuclear Information System (INIS)

    Syrek, Karolina; Zych, Marta; Zaraska, Leszek; Sulka, Grzegorz D.

    2017-01-01

    Highlights: • Effect of annealing temperature on the morphology and crystalline structure of anodic WO 3 was investigated. • Photoelectrochemical properties of WO 3 layers annealed at different temperatures were studied. • Edges of conduction and valence bands were estimated for tungsten oxide layers annealed at different temperatures. • Influence of annealing time on crystalline structure, morphology and photoelectrochemical performance was studied. - Abstract: The nanoporous tungsten oxide films having an amorphous structure were prepared in an electrolyte containing fluoride ions via an anodization process. The as-synthesized anodic oxide layers can be easily converted to the monoclinic WO 3 phase upon annealing in air. The as-synthesized and annealed WO 3 layers were investigated by using X-ray diffraction, scanning electron microscopy, and photocurrent spectroscopy. The effect of annealing temperature and annealing time on the oxide morphology, crystal structure and electrochemical properties were studied. The samples were annealed in air at the temperatures ranging from 400 to 600 °C, and it was found that the original porous morphology of oxide is completely lost after annealing at 600 °C. The changes in the average crystallite sizes upon annealing were confirmed by XRD measurements. The photoelectrochemical performance of the annealed WO 3 layers were studied under pulsed UV illumination, and the highest photocurrents were observed at the incident light wavelength of 350 nm for the sample annealed at 500 °C for 2 h. The band gap energy and the positions of conduction and valence band edges were determined for all studied samples.

  6. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application

    International Nuclear Information System (INIS)

    Mujawar, Sarfraj H.; Ambade, Swapnil B.; Battumur, T.; Ambade, Rohan B.; Lee, Soo-Hyoung

    2011-01-01

    Highlights: → Polyaniline (PANI)-Titanium nanotube template (TNT) composite for supercapacitors. → The mechanism of the controlled growth of hollow open ended PANI nanotubes using a TNT template is studied. → A rare effort to electropolymerise PANI on TNTs resulting into an appreciable capacitance of 740 F g -1 . - Abstract: Vertically aligned polyaniline (PANI) nanotubes have great potential application in supercapacitor electrode material. In this paper we have investigated facile growth of PANI nanotubes on a titanium nanotube template (TNT) using electrochemical polymerization. The morphology of PANI nanostructures grown over TNT is strongly influenced by the scan rate in the electrochemical polymerization. The growth morphology of PANI nanotubes has been carefully analyzed by field emission scanning electron microscopy. The detailed growth mechanism of PANI nanotubes has been put forward. Specific capacitance value of 740 F g -1 was obtained for PANI nanotube structures (measured at charge-discharge rate of 3 A g -1 ).

  7. Non thermal preparation of photoactive titanium (IV) oxide thin layers

    Czech Academy of Sciences Publication Activity Database

    Klusoň, P.; Lusková, H.; Cajthaml, Tomáš; Šolcová, Olga

    2006-01-01

    Roč. 495, - (2006), s. 18-23 ISSN 0040-6090 R&D Projects: GA ČR GA104/04/0963; GA ČR GD203/03/H140; GA MPO FT-TA/023 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40720504 Keywords : titanium dioxide * nanostructures * photocatalysis Subject RIV: EE - Microbiology, Virology Impact factor: 1.666, year: 2006

  8. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Mrlík, M.; Pavlínek, V.; Sáha, P.; Quadrat, Otakar

    2012-01-01

    Roč. 290, č. 1 (2012), s. 41-48 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * titanium oxide * hollow globular clusters Subject RIV: JI - Composite Materials Impact factor: 2.161, year: 2012

  9. Electrical properties of vacuum-annealed titanium-doped indium oxide films

    NARCIS (Netherlands)

    Yan, L.T.; Rath, J.K.; Schropp, R.E.I.

    2011-01-01

    Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited

  10. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  11. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  12. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei; Baker, L. Robert; Hervier, Antoine; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2013-01-01

    on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context

  13. Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

    KAUST Repository

    Ali, Haider; Yang, Xinbo; Weber, Klaus; Schoenfeld, Winston V.; Davis, Kristopher O.

    2017-01-01

    In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21

  14. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    Science.gov (United States)

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  15. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  16. Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells

    Science.gov (United States)

    Accardo, Grazia; Frattini, Domenico; Yoon, Sung Pil; Ham, Hyung Chul; Nam, Suk Woo

    2017-12-01

    Development of electrode materials for molten carbonate fuel cells is a fundamental issue as a balance between mechanical and electrochemical properties is required due to the particular operating environments of these cells. As concern the anode, a viable strategy is to use nano-reinforced particles during electrodes' fabrication. Candidate nanomaterials comprise, but are not limited to, ZrO2, CeO2, TiO2, Ti, Mg, Al, etc. This work deals with the characterization and test of two different types of hard oxide nanoparticles as reinforce for NiAl-based anodes in molten carbonate fuel cells. Nano ceria and nano zirconia are compared each other and single cell test performances are presented. Compared to literature, the use of hard metal oxide nanoparticles allows good performance and promising perspectives with respect to the use a third alloying metal. However, nano zirconia performed slightly better than nano ceria as polarization and power curves are higher even if nano ceria has the highest mechanical properties. This means that the choice of nanoparticles to obtain improved anodes performance and properties is not trivial and a trade-off between relevant properties plays a key role.

  17. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  18. Kinetic models of controllable pore growth of anodic aluminum oxide membrane

    Science.gov (United States)

    Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin

    2012-06-01

    An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.

  19. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E., E-mail: sarahamindelima@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: souzajulio@joinville.udesc.br, E-mail: gemelli@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2009-07-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  20. Synthesis and characterization of nanocomposite powders of calcium phosphate/titanium oxide for biomedical applications

    International Nuclear Information System (INIS)

    Delima, S.A.; Camargo, N.H.A.; Souza, J.C.P.; Gemelli, E.

    2009-01-01

    The nanostructured bioceramics of calcium phosphate are current themes of research and they are becoming important as bone matrix in regeneration of tissues in orthopedic and dental applications. Nanocomposite powders of calcium phosphate, reinforced with nanometric particles of titanium oxide, silica oxide and alumina oxid ealpha, are being widely studied because they offer new microstructures, nanostructures and interconnected microporosity with high superficial area of micropores that contribute to osteointegration and osteoinduction processes. This study is about the synthesis of nanocomposites powders of calcium phosphate reinforced with 1%, 2%, 3% and 5% in volume of titanium oxide and its characterization through the techniques of X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Differential Thermal Analysis (DTA), Thermogravimetry (TG) and Dilatometry. (author)

  1. The influence of humidity on the kinetics of local anodic oxidation

    International Nuclear Information System (INIS)

    BartosIk, M; Skoda, D; Tomanec, O; Kalousek, R; Jansky, P; Zlamal, J; Spousta, J; Sikola, T

    2007-01-01

    In this paper the influence of relative humidity on fabrication of nanostructures at GaAs (100) surfaces by local anodic oxidation (LAO) is reported. The attention was paid both to the dimensions of oxide nanolines prepared at different relative humidities for tip-surface voltages of 6 - 9 V and tip speeds of 10 - 200 nm/s, and to the profiles corresponding to line trenches (etched in HCl after the nanoxidation). Contrary to the expectations the height and the half-width of oxide nanolines did not increase with relative humidity in the whole interval from 35% to 90%, but for lower relative humidities (< 50%) the lines were comparable in size to those prepared at 90%. However, this was accompanied with instabilities in the oxidation process resulting most probably from enhanced size variations of the water meniscus between the tip and the surface at these low humidities

  2. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2003-10-15

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO{sub 2} and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes.

  4. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 1. Cyclic voltammetry and potential step experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2003-01-01

    The anodic oxidation of 2-naphthol has been studied by cyclic voltammetry and chronoamperometry, using a range of electrode materials such as Ti-Ru-Sn ternary oxide, lead dioxide and boron-doped diamond (BDD) anodes. The results show that polymeric films, which cause electrode fouling, are formed during oxidation in the potential region of supporting electrolyte stability. IR spectroscopy verified the formation of this organic film. While the Ti-Ru-Sn ternary oxide surface cannot be reactivated, PbO 2 and BDD can be restored to their initial activity by simple anodic treatment in the potential region of electrolyte decomposition. In fact, during the polarization in this region, complex oxidation reactions leading to the complete incineration of polymeric materials can take place on these electrodes due to electrogenerated hydroxyl radicals. Moreover, it was found that BDD deactivation was less pronounced and its reactivation was faster than that of the other electrodes

  5. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  6. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Lee, Kun-Hong [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2004-08-15

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C{sub 2}H{sub 2} and H{sub 2} at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/mum and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  7. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    Science.gov (United States)

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.

  8. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step.

    Science.gov (United States)

    Tian, Mingliang; Xu, Shengyong; Wang, Jinguo; Kumar, Nitesh; Wertz, Eric; Li, Qi; Campbell, Paul M; Chan, Moses H W; Mallouk, Thomas E

    2005-04-01

    A simple method for penetrating the barrier layer of an anodic aluminum oxide (AAO) film and for detaching the AAO film from residual Al foil was developed by reversing the bias voltage in situ after the anodization process is completed. With this technique, we have been able to obtain large pieces of free-standing AAO membranes with regular pore sizes of sub-10 nm. By combining Ar ion milling and wetting enhancement processes, Au nanowires were grown in the sub-10 nm pores of the AAO films. Further scaling down of the pore size and extension to the deposition of nanowires and nanotubes of materials other than Au should be possible by further optimizing this procedure.

  9. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation...

  10. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  11. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  12. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  13. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  14. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bo, E-mail: 357436235@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Long, HangYu, E-mail: 55686385@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xie, Youneng, E-mail: 1187272844@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Yijia, E-mail: 503630433@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-30

    Highlights: • High quality boron-doped diamond film electrodes were synthesized on Nb substrates. • Electrochemical oxidation on boron-doped diamond anode is an effective method for treating landfill leachate concentrates. • Optimal operating conditions for electrochemical oxidation of landfill leachate concentrates is determined. • 87.5% COD removal and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment. - Abstract: In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH{sub 3}−N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm{sup −2}, pH 5.16, flow velocity 6 L h{sup −1}. Under these conditions, 87.5% COD and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m{sup −3}. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  15. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    International Nuclear Information System (INIS)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng

    2010-01-01

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H 3 PO 4 and 0.15 M H 2 CrO 4 ), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO 3 solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl 4 and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C

  16. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng [Chinese Academy of Science, Hefei, Anhui (China)

    2010-09-15

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H{sub 3}PO{sub 4} and 0.15 M H{sub 2}CrO{sub 4}), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO{sub 3} solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl{sub 4} and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C.

  17. Clean forming of stainless steel and titanium products by lubricious oxides

    DEFF Research Database (Denmark)

    Heikkilä, Irma; Wadman, Boel; Thoors, Håkan

    2012-01-01

    to industrial forming processes. Preliminary evaluations show a beneficial influence of two oxides types, on stainless steel and on titanium. More work is needed to test the lubricating effect in other forming operations and to analyse the sustainability aspects for products manufactured with this alternative......Big social benefits can be attained through increased use of stainless steel or titanium in new sheet metal applications. Unfortunately, forming of these materials is often a challenging and costly operation, that can lead to environmental and health problems when solving the technical limitations...

  18. Structural-morphological variations in pseudo-barrier films of anode aluminium oxide under irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    Comparative study of structural-morphological variations under electron beam effect in pseudo-barrier films of anode aluminium oxide, obtained in seven different solutions and proton or X-rays pre-irradiated to determine structure peculiarities of anode aluminium oxides, is presented. Such study is a matter of interest from the solid-phase transformation theory point of view and for anode aluminium films application under radiation. Stability increase of pseudo-barrier films of anode aluminium oxide to the effect of UEhMV-100 K microscope electron beam at standard modes of operation (75 kV) due to proton or X-rays irradiation is found. Difference in structural-monorphological variations obtained in different solutions of anode aluminium films under high-energy particles irradiation is determined. Strucural-phase microinhomogeneity of amorphous pseudo-barrier films of anode aluminium oxide and its influence on solid-phase transformations character under electron bean of maximal intensity are detected

  19. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  20. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    Science.gov (United States)

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  1. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    International Nuclear Information System (INIS)

    Russo, V.L.; Ivanov, E.N.

    1977-01-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100 deg C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed

  2. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V L; Ivanov, E N

    1977-03-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100/sup 0/C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed.

  3. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  4. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  6. Lasing of a Solid-State Active Element Based on Anodized Aluminum Oxide Film Doped with Rhodamine 6G

    Science.gov (United States)

    Shelkovnikov, V. V.; Lyubas, G. A.; Korotaev, S. V.; Kopylova, T. N.; Tel'minov, E. N.; Gadirov, R. M.; Nikonova, E. N.; Nikonov, S. Yu.; Solodova, T. A.; Novikov, V. A.

    2017-04-01

    Spectral-luminescent and lasing characteristics of rhodamine 6G in porous aluminum oxide films anodized under various conditions are investigated. Lasing is obtained without external resonator in the longitudinal scheme under excitation by the second harmonic of Nd3+:YAG-laser radiation. The threshold pump power densities are in the range 3.5-15 MW/cm2 depending on the anodizing conditions. Wherein, the lasing line narrows down from 12 to 5 nm.

  7. A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes

    Science.gov (United States)

    Cui, Jiewu; Wu, Yucheng; Wang, Yan; Zheng, Hongmei; Xu, Guangqing; Zhang, Xinyi

    2012-05-01

    The well aligned porous anodic aluminum oxide (AAO) membrane is fabricated by a two-step anodization method. The oxide barrier layer of AAO membrane must be removed to get through-hole membrane for synthesizing nanowires and nanotubes of metals, semiconductors and conducting polymers. Removal of the barrier layer of oxide and pore-extending is of significant importance for the preparation of AAO membrane with through-hole pore morphology and desired pore diameter. The conventional method for pore opening is that AAO membrane after removing of aluminum substrate is immersed in chemical etching solution, which is completely empirical and results in catastrophic damage for AAO membrane frequently. A very simple and efficient approach based on capillary action for detecting pore opening of AAO membrane is introduced in this paper, this method can achieve the detection for pore opening visually and control the pore diameter precisely to get desired morphology and the pore diameter of AAO membrane. Two kinds of AAO membranes with different pore shape were obtained by different pore opening methods. In addition, one-dimensional gradient gold nanowires are also fabricated by electrodeposition based on AAO membranes.

  8. Improved coking resistance of direct ethanol solid oxide fuel cells with a Ni-Sx anode

    Science.gov (United States)

    Yan, Ning; Luo, Jing-Li; Chuang, Karl T.

    2014-03-01

    In this study, the coking resistance of anode supported direct ethanol solid oxide fuel cell with a Ni-Sx anode was investigated comparatively with the conventional cell using pure Ni catalyst. The surface catalytic properties of Ni were manipulated via depositing a layer of S atoms. It was confirmed that on the surface of Ni, a combination of S monolayer and elemental S was formed without producing Ni3S2 phase. The developed Ni-Sx cell exhibited a significantly improved coke resistivity in ethanol feed while maintaining an adequately high performance. The S species on Ni enabled the suppression of the coke formation as well as the alleviation of the metal dusting effect of the anode structure. After operating in ethanol fuel for identical period of time at 850 °C, a maximum power density of 400 mW cm-2 was sustained whereas the conventional cell performance decreased to less than 40 mW cm-2 from the original 704 mW cm-2. In an optimized stability test, the Ni-Sx cell operated at 750 °C for more than 22 h until the fuel drained without any degradation.

  9. Pore diameter control of anodic aluminum oxide with ordered array of nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Allen; Yang, Yong-Feng [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu, 30013 (China); Hu, Chi-Chang [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 401 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Lin, Chi-Cheng [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2008-01-01

    Highly uniform, self-ordered anodic aluminum oxide (AAO) with an ordered nanoporous array can be effectively formed from industrially pure (99.5%) aluminum sheets through an anodizing program in a mixture solution of sulfuric and oxalic acids. The influences of anodizing variables, such as applied voltage, solution temperature, oxalic acid concentration, agitation rate, and sulfuric acid concentration, on the average pore diameter of AAO were systematically investigated using fractional factorial design (FFD). The applied voltage, and sulfuric acid concentration were found to be the key factors affecting the pore diameter of AAO films in the FFD study. The pore diameter of AAO is regularly increased from ca. 50 to 150 nm when the applied voltage and the concentration of sulfuric acid are gradually increased from 53 to 80 V and from 3.5 to 8 M, respectively. Fine tuning of the pore diameter for AAO films with an ordered, nanoporous, arrayed structure from industrially pure aluminum sheets can be achieved. (author)

  10. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun [Department of Material Science and Engineering, POSTECH Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O{sub 2} as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl{sub 3} plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  11. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes

    Science.gov (United States)

    Belwalkar, A.; Grasing, E.; Huang, Z.; Misiolek, W.Z.

    2008-01-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 µm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity. PMID:19578471

  12. Formation of Self-assembled Nanostructure on Noble Metal Islands Based on Anodized Aluminum Oxide

    International Nuclear Information System (INIS)

    Park, Jong Bae; Kim, Young Sic; Kim, Seong Kyu; Lee, Hae Seong

    2004-01-01

    We have developed the methodology to produce nanoscale gold rods using an AAO template. Each gold rod was generated in every AAO pore. This nanoislands array of gold formed over the AAO pores can be used as corner stones for building nanostructures. We demonstrated this by forming a nanostructure on the Au/AAO by binding a self-assembly class of molecules onto the metal islands. Anodized aluminum oxide (AAO) has been considered an attractive template for simple fabrication of highly-ordered nanostructures. It provides a 2-dimensional array of hexagonal cells with pores of uniform diameter and inter-pore distance that are adjustable in the range of a few tens to hundreds of nanometers. It can be easily grown on an aluminum sheet with high purity by a sequence of several electrochemical steps; electro-polishing, the 1st anodization, etching, and the 2nd anodization. The pores are grown vertically with respect to the AAO surface. The regularity of the pore structure is usually limited by the inherent grain domain in the aluminum sheet to a few micrometers, but can be improved to cover many millimeters of monodomain by pre-indenting the aluminum sheet with SiC 7 or Si 3 N 4 molds. Although fabrication of such molds requires elaborate and costly processes with e-beam nanolithography, such potentially superb regularity can be practically applied to fabrication of nanoscale devices in electronics, optics, biosensors, etc

  13. Recent progress in the development of anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cowin, Peter I.; Petit, Christophe T.G.; Lan, Rong; Tao, Shanwen [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2011-05-15

    The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    Science.gov (United States)

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  15. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes.

    Science.gov (United States)

    Belwalkar, A; Grasing, E; Van Geertruyden, W; Huang, Z; Misiolek, W Z

    2008-07-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 microm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity.

  16. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  17. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  18. Superhydrophilicity of anodic aluminum oxide films: From 'honeycomb' to 'bird's nest'

    International Nuclear Information System (INIS)

    Ye Jiaming; Yin Qiming; Zhou Yongliang

    2009-01-01

    An electrochemical method has been used to prepare different kinds of surfaces including 'honeycomb'-like and 'bird's nest'-like surfaces on anodic aluminum oxide (AAO) films. The relationship between the morphology and wettability of the AAO films was investigated by scanning electron microscopy and the measurement of water contact angles. The results show that the 'bird's nest'-like structure is necessary for superhydrophilic property, which provide direct experimental evidences for the 3D capillary theory concerning superhydrophilicity. It is expected that this investigation will be devoted to guiding the fabrication of superhydrophilic and superhydrophobic surfaces.

  19. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 2. Bulk electrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2004-08-15

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO{sub 2} and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency.

  20. Influence of anode material on the electrochemical oxidation of 2-naphthol. Pt. 2. Bulk electrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G. [Genoa Univ. (Italy). Dept. of Chemical and Process Engineering

    2004-08-15

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO{sub 2} and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency. (author)

  1. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 2. Bulk electrolysis experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2004-01-01

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO 2 and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency

  2. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  3. Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye

    International Nuclear Information System (INIS)

    El-Ghenymy, Abdellatif; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Garrido, José Antonio; Sirés, Ignasi; Brillas, Enric

    2015-01-01

    Highlights: • Degradation of Malachite Green oxalate solutions at pH 3.0 by AO, AO-H 2 O 2 , EF and PEF. • A Pt anode leads to slower decolorization and mineralization than BDD. • Up to 97% mineralization by the most powerful PEF process with BDD at 100 mA cm −2 . • Study of the evolution of seven final short-chain aliphatic carboxylic acids. • Conversion of the initial N atoms of the dye mainly into NH 4 + , along with small amounts of NO 3 − . - Abstract: The degradation of 100 cm 3 of 177 mg dm −3 of the triphenylmethane dye Malachite Green oxalate at pH 3.0 was studied by anodic oxidation with stainless steel cathode (AO-SS), AO with air-diffusion cathode (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The main oxidizing species were hydroxyl radicals formed from either water oxidation at the anode surface or in the bulk between added Fe 2+ and H 2 O 2 generated at the air-diffusion cathode. The use of a Pt anode led to slower decolorization and mineralization than BDD in all treatments because of the higher oxidation power of the latter. The decolorization was much faster for EF and PEF compared to AO-SS and AO-H 2 O 2 due to the contribution of hydroxyl radicals in the bulk. PEF allowed the quickest color removal by the rapid Fe 2+ regeneration from the photolysis of Fe(III) complexes with oxalate. The most powerful process was PEF with BDD, which yielded total decolorization in 6 min and 97% mineralization at 240 min operating at 100 mA cm −2 , thanks to hydroxyl radicals formed at the anode surface and in the bulk along with the photolytic action of UVA radiation. The evolution of final carboxylic acids like maleic, fumaric, succinic, acetic, oxalic, formic and oxamic was followed by ion-exclusion HPLC. All these acids and their Fe(III) complexes were removed more slowly with Pt anode. The initial N atoms of the dye were pre-eminently accumulated as NH 4 + ion, along with small amounts of NO 3 − ion.

  4. Direct dynamic synthesis of nanodispersed phases of titanium oxides upon sputtering of electrodischarge titanium plasma into an air atmosphere

    Science.gov (United States)

    Sivkov, A. A.; Gerasimov, D. Yu.; Nikitin, D. S.

    2017-01-01

    Experimental investigations of the possibility of directly synthesizing nanodispersed crystalline phases of titanium dioxides with rutile and anatase structures in a hypervelocity jet of electroerosion plasma generated by a coaxial magnetoplasma accelerator with titanium electrodes are presented. A powder product containing nanosized polymorphic phases of titanium dioxide with a spherical shape of particles has been manufactured.

  5. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  6. Conduction and stability of holmium titanium oxide thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castán, H., E-mail: helena@ele.uva.es [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); García, H.; Dueñas, S.; Bailón, L. [Department of Electronic, University of Valladolid, 47011 Valladolid (Spain); Miranda, E. [Departament d' Enginyería Electrònica, Universitat Autónoma de Barcelona, 08193 Bellaterra (Spain); Kukli, K. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland); Institute of Physics, University of Tartu, EE-50411,Tartu (Estonia); Kemell, M.; Ritala, M.; Leskelä, M. [Department of Chemistry, University of Helsinki, FI-00014 Helsinki (Finland)

    2015-09-30

    Holmium titanium oxide (HoTiO{sub x}) thin films of variable chemical composition grown by atomic layer deposition are studied in order to assess their suitability as dielectric materials in metal–insulator–metal electronic devices. The correlation between thermal and electrical stabilities as well as the potential usefulness of HoTiO{sub x} as a resistive switching oxide are also explored. It is shown that the layer thickness and the relative holmium content play important roles in the switching behavior of the devices. Cycled current–voltage measurements showed that the resistive switching is bipolar with a resistance window of up to five orders of magnitude. In addition, it is demonstrated that the post-breakdown current–voltage characteristics in HoTiO{sub x} are well described by a power-law model in a wide voltage and current range which extends from the soft to the hard breakdown regimes. - Highlights: • Gate and memory suitabilities of atomic layer deposited holmium titanium oxide. • Holmium titanium oxide exhibits resistive switching. • Layer thickness and holmium content influence the resistive switching. • Low and high resistance regimes follow a power-law model. • The power-law model can be extended to the hard breakdown regime.

  7. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  8. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin

    2012-01-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell...... was tested at 700 deg. C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current evoltage relationships. No measurable degradation in the cell voltage or increase...... in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79Wcm-2 at a cell voltage of 0.6 V at 750 deg. C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference...

  9. Effect of copper oxide electrocatalyst on CO2 reduction using Co3O4 as anode

    Directory of Open Access Journals (Sweden)

    V.S.K. Yadav

    2016-09-01

    Full Text Available The reduction of carbon dioxide (CO2 to products electrochemically (RCPE in 0.5 M NaHCO3 and Na2CO3 liquid phase electrolyte solutions was investigated. Cobalt oxide (Co3O4 as anode and cuprous oxide (Cu2O as the cathode were considered, respectively. The impacts of applied potential with time of reaction during reduction of CO2 to products were studied. The anode and cathode were prepared by depositing electrocatalysts on the graphite plate. Ultra-fast liquid chromatography (UFLC was used to analyze the products obtained from the reduction of CO2. The feasible way of reduction by applying voltages with current densities was clearly correlated. The results illustrate the capability of electrocatalyst successfully to remove atmospheric CO2 in the form of valuable chemicals. Maximum Faradaic efficiency of ethanol was 98.1% at 2 V and for formic acid (36.6% at 1.5 V was observed in NaHCO3. On the other hand, in Na2CO3 electrolyte solution maximum efficiency for ethanol was 55.21% at 1.5 V and 25.1% for formic acid at 2 V. In both electrolytes other end products like methanol, propanol, formaldehyde and acetic acid were formed at various applied voltage and output current densities.

  10. Graphene oxide-multiwalled carbon nanotubes composite as an anode for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Majchrzycki Łukasz

    2016-09-01

    Full Text Available Nowadays reduced graphene oxide (rGO is regarded as a highly interesting material which is appropriate for possible applications in electrochemistry, especially in lithium-ion batteries (LIBs. Several methods were proposed for the preparation of rGO-based electrodes, resulting in high-capacity LIBs anodes. However, the mechanism of lithium storage in rGO and related materials is still not well understood. In this work we focused on the proposed mechanism of favorable bonding sites induced by additional functionalities attached to the graphene planes. This mechanism might increase the capacity of electrodes. In order to verify this hypothesis the composite of non-reduced graphene oxide (GO with multiwalled carbon nanotubes electrodes was fabricated. Electrochemical properties of GO composite anodes were studied in comparison with similarly prepared electrodes based on rGO. This allowed us to estimate the impact of functional groups on the reversible capacity changes. As a result, it was shown that oxygen containing functional groups of GO do not create, in noticeable way, additional active sites for the electrochemical reactions of lithium storage, contrary to what has been postulated previously.

  11. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J.

    2015-01-01

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl − led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  12. Photoluminescence properties of anodic aluminum oxide formed in a mixture of ammonium fluoride and oxalic acid

    Science.gov (United States)

    Li, Shou-Yi; Wang, Jian; Li, Yan

    2017-06-01

    Highly ordered anodic aluminum oxide (AAO) membranes are fabricated electrochemically in an electrolyte mixture with various concentrations of C2H2O4 or NH4F. Photoluminescence (PL) properties of AAO membranes have been investigated before and after annealing in the range from 300°C to 650°C. X-ray diffraction reveals the amorphous nature of AAO membranes. Energy dispersive spectroscopy indicates the presence of fluorine species incorporated in oxide membranes during the anodizing. PL measurements show a strong PL band in the wavelength range of 350 to 550 nm. With the increase of the concentration of the NH4F or C2H2O4 in the electrolyte mixture, the peak positions of the PL bands have a blueshift or redshift and the intensities have a maximum value. As indicated by the PL excitation spectra, there are two excitation peaks of 285 and 330 nm, which can account for the PL emission band. We have proposed that the PL originates from optical transitions in two kinds of centers that are related to oxygen vacancies, F+ (285 nm) and F (330 nm). This work is not only beneficial to further understanding of the light-emitting property of AAO membranes but also enlarges the application scope.

  13. Session 4: The influence of elementary heterogeneous reforming chemistry within solid-oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Kee, R.J. [Engineering Division, Colorado School of Mines, Golden, CO (United States); Janardhanan, V.M.; Deutschmann, O. [Karlsruhe Univ., Institute for Chemical Technology (Germany); Goodwin, D.G. [Engineering and Applied Science., California Inst. of Technology, Pasadena, CA (United States); Sullivan, N.P. [ITN Energy Systems, Littleton, CO (United States)

    2004-07-01

    In the work presented a computational model is developed that represents the coupled effects of fluid flow in fuel channels, porous media transport and chemistry in the anode, and electrochemistry associated with the membrane-electrode assembly. An important objective is to explore the role of heterogeneous chemistry within the anode. In addition to cell electrical performance the chemistry model predicts important behaviors like catalyst-fouling deposit formation (i.e., coking). The model is applied to investigate alternative fuel-cell operating conditions, including varying fuel flow rates, adding air to the fuel stream, and recirculating exhaust gases. Results include assessments of performance metrics like fuel utilization, cell efficiency, power density, and catalyst coking. The model shows that 'direct electrochemical oxidation' of hydrocarbon fuels in solid-oxide fuel cells can be explained by a process that involves reforming the fuel to H{sub 2}, with hydrogen being the only species responsible for charge exchange. The model can be applied to investigate alternative design and operating conditions, seeking to improve the overall performance. (O.M.)

  14. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  15. Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface

    International Nuclear Information System (INIS)

    Wu, Yanpeng; Zhang, Chaoying

    2013-01-01

    Wetting theory about superhydrophobic surfaces reveals that hydrophobicity of surfaces has great relationship with surface roughness and surface free energy. Adopt electrochemical plus fluorine silane modified method to prepare superhydrophobic surface on anodic aluminum oxide surface, which not only enhances surface roughness, but also reduces surface free energy, even the static contact angle can reach 159.2° and anti-condensation is authenticated. Based on the experimental findings, analyze the reason of anti-condensation on superhydrophobic surfaces: one is that the density of droplets formed on superhydrophobic surfaces is low and the number of droplets is little; the other is bigger static contact angle and smaller rolling angle on superhydrophobic surfaces make droplets easy to detach on smaller tilt angle. This research can solve some condensation problems of equipment using in HVAC systems, such as heat exchangers in air conditioning system, cold radiation boards, air supply outlets, and so on. Highlights: • Prepare superhydrophobic surface on anodic aluminum oxide surface. • Analyze the reason of anti-condensation on superhydrophobic surfaces. • The density of droplets formed on superhydrophobic surfaces is low. • Droplets on superhydrophobic surfaces are easy to detach. • This research can solve some problems of equipment using in HVAC systems

  16. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    Science.gov (United States)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was

  17. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  18. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  19. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  20. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  1. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    Science.gov (United States)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  2. Two-Step Cycle for Producing Multiple Anodic Aluminum Oxide (AAO) Films with Increasing Long-Range Order.

    Science.gov (United States)

    Choudhary, Eric; Szalai, Veronika

    2016-01-01

    Nanoporous anodic aluminum oxide (AAO) membranes are being used for an increasing number of applications. However, the original two-step anodization method in which the first anodization is sacrificial to pre-pattern the second is still widely used to produce them. This method provides relatively low throughput and material utilization as half of the films are discarded. An alternative scheme that relies on alternating anodization and cathodic delamination is demonstrated that allows for the fabrication of several AAO films with only one sacrificial layer thus greatly improving total aluminum to alumina yield. The thickness for which the cathodic delamination performs best to yield full, unbroken AAO sheets is around 85 μm. Additionally, an image analysis method is used to quantify the degree of long-range ordering of the unit cells in the AAO films which was found to increase with each successive iteration of the fabrication cycle.

  3. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

    Science.gov (United States)

    Sun, Yige; Tang, Jie; Zhang, Kun; Yuan, Jinshi; Li, Jing; Zhu, Da-Ming; Ozawa, Kiyoshi; Qin, Lu-Chang

    2017-02-16

    Hydrazine-reduced graphite oxide and graphene oxide were synthesized to compare their performances as anode materials in lithium-ion batteries and sodium-ion batteries. Reduced graphite oxide inherits the layer structure of graphite, with an average spacing between neighboring layers (d-spacing) of 0.374 nm; this exceeds the d-spacing of graphite (0.335 nm). The larger d-spacing provides wider channels for transporting lithium ions and sodium ions in the material. We showed that reduced graphite oxide as an anode in lithium-ion batteries can reach a specific capacity of 917 mA h g -1 , which is about three times of 372 mA h g -1 , the value expected for the LiC 6 structures on the electrode. This increase is consistent with the wider d-spacing, which enhances lithium intercalation and de-intercalation on the electrodes. The electrochemical performance of the lithium-ion batteries and sodium-ion batteries with reduced graphite oxide anodes show a noticeable improvement compared to those with reduced graphene oxide anodes. This improvement indicates that reduced graphite oxide, with larger interlayer spacing, has fewer defects and is thus more stable. In summary, we found that reduced graphite oxide may be a more favorable form of graphene for the fabrication of electrodes for lithium-ion and sodium-ion batteries and other energy storage devices.

  4. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  5. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    Science.gov (United States)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  6. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  7. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  8. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    Science.gov (United States)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of 0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was 0.18%.

  10. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  11. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  12. Molybdenum oxide nanosheets prepared by an anodizing-exfoliation process and observation of photochromic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ranjba, M., E-mail: ranjbar@cc.iut.ac.ir; Delalat, F.; Salamati, H.

    2017-02-28

    Highlights: • Blue molybdenum oxide nanosheets are prepared by a facile anodizing method. • PdCl{sub 2} solution is able to decolorize the nanosheets from blue to colorless. • The colorless colloids show a strong photochromic effect under UV laser irradiation. - Abstract: Anodizing-exfoliation of molybdenum foil was performed in 0.02 M HCl electrolyte at 30 V. In this process, the electrolyte rapidly turned into a blue colloidal solution of molybdenum oxide nanosheets with fragmented edges observed on transmission electron microscope (TEM). X-ray Diffraction (XRD) pattern of particles was free of peak while annealing at a temperature range of 100–500 °C led to formation of monoclinic (for T < 300 °C) and orthorhombic (for T > 300 °C) phases of MoO{sub 3}. Moreover, addition of PdCl{sub 2} (0.2 g/l) salt solution caused a spontaneous bleaching of the initial blue colloid. Annealing of powders extracted from these bleached solutions with different PdCl{sub 2} concentrations at 500 °C led to a preferential growth of (0k0) orientation. X-ray photoelectron spectroscopy (XPS) revealed that the blue nanosheets solution contains mainly Mo{sup 5+} with slightly Mo{sup 6+} oxidation states and each of annealing or salt bleaching procedures can entirely convert Mo{sup 5+} to Mo{sup 6+}. When the bleached solutions was exposed to KrF laser beam (λ = 248 nm) a strong photochromic coloration with a deep blue color was occurred. Regardless of Pd:Mo ratio, the primary and laser irradiated solutions showed analogues optical absorption bands in the 1–3 nm photon energy range while the photochromic process led to a broader absorption band.

  13. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  14. Enhanced electrochemical properties of vanadium-doped titanium niobate as a new anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wen, Xiaoyan; Ma, Chenxiang; Du, Chenqiang; Liu, Jie; Zhang, Xinhe; Qu, Deyang; Tang, Zhiyuan

    2015-01-01

    The Vanadium-doped TiNb 2 O 7 (TNO) samples have been investigated as novel anode active materials for application in lithium-ion batteries. The samples are characterized by X-ray diffraction patterns (XRD), raman spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge tests, and cyclic voltammetry (CV) tests. The XRD results indicate that V-doping expands the lattice parameters of TiNb 2 O 7 samples and facilitates the enhanced lithium ion diffusion. SEM and TEM results show that lattice expansion caused by V-doping doesn’t significantly change the particle size distribution of TiNb 2 O 7 samples. The electrochemical measurements indicate that the TiNb 1.98 V 0.02 O 7 anode material displays a highly reversible capacity and excellent cycling stability. The initial discharge capacities of TiNb 1.98 V 0.02 O 7 are 298.48 mAh g −1 and 171.99 mAh g −1 at 0.3C and 10C, respectively, indicating that the TiNb 1.98 V 0.02 O 7 material can be utilized as a promising anode material for lithium-ion batteries.

  15. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Science.gov (United States)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared