WorldWideScience

Sample records for anodic niobium oxides

  1. Features of the formation of anodic niobium oxide in a potassium nitrate melt

    Energy Technology Data Exchange (ETDEWEB)

    Skatkov, L.I.; Malyuk, Yu.I.

    1988-07-10

    This work is a further development of the investigations of the processes of the anodization of niobium in nitrate melts of salts at temperatures allowing recrystallization of the oxide. The anodic films of niobium formed in a nitrate melt consist of sandwiches of phases of Nb/sub 2/O/sub 5/, NbO/sub 2/, and NbO (from the outer surface of the anodic oxide film toward the niobium substrate), and high anodization temperatures cause the intense dissolution of oxygen in the niobium substrate. During the formation of an anodic oxide film, it becomes saturated with the anionic and cationic components of the electrolyte. The uptake of the anions is most significant in the initial stages of growth of the oxide layer, while saturation with potassium occurs in the final stages of anodization.

  2. Anodic and air oxidation of niobium studied by ion beam analysis with implanted Xe marker

    International Nuclear Information System (INIS)

    Xe marker implantation and backscattering analysis were used to study the growth mechanism of anodic oxides on niobium. In 5 wt% aqueous ammonium citrate solution, analysis of the Xe marker movement demonstrated that the oxide was formed mainly within the existing oxide through the transport of both niobium cations and oxygen anions from each side when the anodic oxidation was carried out with a constant current density of 1.0 mA cm-2 and a limiting oxidation potential from 60 to 100 V. During anodization, the transport numbers of niobium increased with the elevation of potential. The air oxidation behavior of niobium and the profile of Xe ions at the temperature of 200-500 C were also studied. The growth law of niobium oxide was obtained and no movement of the peak position of Xe ions was observed when the temperature was below 350 C. (orig.)

  3. Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere

    International Nuclear Information System (INIS)

    Niobium oxide films with a thickness of approximately 165 nm were prepared by electrochemical anodization. These anodic oxide layers were then treated in an ammonia atmosphere at different temperatures and durations, and characterized with XRD, XPS, ToF-SIMS and photoelectrochemical methods. Under optimized conditions nitrogen doping of the niobium oxide films takes place, resulting in a distinct photo response in the visible range of light.

  4. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability

    International Nuclear Information System (INIS)

    Porous anodic niobium oxide with a pore size of ∼10 nm was formed at 10 V in glycerol electrolyte containing 0.6 mol dm-3 K2HPO4 and 0.2 mol dm-3 K3PO4 at 433 K. After prolonged anodizing for 5.4 ks, niobium oxide microcones develop on the surface. X-ray diffraction patterns of the anodized specimens revealed that the initially formed anodic oxide is amorphous, but an amorphous-to-crystalline transition occurs during anodizing. As a consequence of the preferential chemical dissolution of the initially formed amorphous oxide, due to different solubility of the amorphous and crystalline oxides, crystalline oxide microcones appear on the film surface after prolonged anodizing. The surface is superhydrophilic. After coating with fluorinated alkylsilane, the surface becomes superhydrophobic with a contact angle of 158o for water. The surface is also oil repellent, with a contact angle as high as 140o for salad oil.

  5. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    International Nuclear Information System (INIS)

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm−3 phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H3PO4 solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising

  6. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  7. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    International Nuclear Information System (INIS)

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H3PO4, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  8. Formation of niobium oxide film with duplex layers by galvanostatic anodization

    International Nuclear Information System (INIS)

    Studies on niobium anodization in the mixture of 1 M H3PO4 and 1 wt % HF at galvanostatic anodization are described here in detail. Interestingly, duplex niobium oxide consisting of thick barrier oxide and correspondingly thick porous oxide was prepared at a constant current density of higher than 0.3 mAcm-2, whereas simple porous type oxide was formed at a current density of lower than 0.3 mAcm-2. In addition, simple barrier or porous type oxide was obtained by galvanostatic anodization at a single electrolyte of either 1 M H3PO4 or 1 wt % HF, respectively. The formation mechanism of duplex type structures was ascribed to different forming voltages required for moving anions

  9. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Science.gov (United States)

    Stojadinović, Stevan; Tadić, Nenad; Radić, Nenad; Stefanov, Plamen; Grbić, Boško; Vasilić, Rastko

    2015-11-01

    This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb2O5 hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  10. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Oikawa, Y. [Graduate School of Engineering, Hokkaido University, N13-W8, Sapporo 060-8628 (Japan); Minami, T.; Mayama, H.; Tsujii, K. [Nanotechnology Research Center, Research Institute for Electronic Science, Hokkaido University, N21-W10, Sapporo 001-0021 (Japan); Fushimi, K.; Aoki, Y. [Graduate School of Engineering, Hokkaido University, N13-W8, Sapporo 060-8628 (Japan); Skeldon, P.; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13-W8, Sapporo 060-8628 (Japan)

    2009-08-15

    Porous anodic niobium oxide with a pore size of {approx}10 nm was formed at 10 V in glycerol electrolyte containing 0.6 mol dm{sup -3} K{sub 2}HPO{sub 4} and 0.2 mol dm{sup -3} K{sub 3}PO{sub 4} at 433 K. After prolonged anodizing for 5.4 ks, niobium oxide microcones develop on the surface. X-ray diffraction patterns of the anodized specimens revealed that the initially formed anodic oxide is amorphous, but an amorphous-to-crystalline transition occurs during anodizing. As a consequence of the preferential chemical dissolution of the initially formed amorphous oxide, due to different solubility of the amorphous and crystalline oxides, crystalline oxide microcones appear on the film surface after prolonged anodizing. The surface is superhydrophilic. After coating with fluorinated alkylsilane, the surface becomes superhydrophobic with a contact angle of 158{sup o} for water. The surface is also oil repellent, with a contact angle as high as 140{sup o} for salad oil.

  11. STUDY ON COMPOSITION IN NIOBIUM ANODE

    Institute of Scientific and Technical Information of China (English)

    Li Chunguang; Gao Yong; Dong Ningli

    2004-01-01

    Niobium capacitor uses electrolytic Nb2O5 as dielectric layer formed on surface of porous niobium anode through electrolytic reaction. Analysis of Scanning Electronics Microscope (SEM) combined with X-ray Photoemission Spectrum(XPS) shows that the formed niobium oxide dielectric consists of not only Nb2O5, but also two kinds of low valence niobium NbO2 and NbO oxide. When using different electrolytic reaction conditions, different valence niobium oxide shows different relative content. The fact provides an important basis for analyzing and improving performances of niobium capacitor.

  12. Improved electrical properties of silicon-incorporated anodic niobium oxide formed on porous Nb-Si substrate

    International Nuclear Information System (INIS)

    In the present study, porous Nb-Si alloy films with isolated nano-column morphology have been successfully developed by oblique angle magnetron sputtering on to aluminum substrate with concave cell structure. The deposited films are amorphous with the 15 at% silicon supersaturated into niobium. The porous Nb-15 at% Si films, as well as niobium films with similar morphology, are anodized at several voltages up to 50 V in 0.1 mol dm-3 ammonium pentaborate electrolyte. Due to the presence of sufficient gaps between neighboring columns, the gaps are not filled with anodic oxide, despite the large Pilling-Bedworth ratio (for instance, 2.6 for Nb/Nb2O5) and hence, a linear correlation between the reciprocal of capacitance and formation voltage is obtained for the Nb-15 at% Si. From the comparison with the anodic films formed on porous niobium films, it has been found that silicon addition improves the thermal stability of anodic niobium oxide; the change in capacitance and increase in leakage current become small for the Nb-Si. The findings indicate the potential of oblique angle deposition to tailor porous non-equilibrium niobium alloy films for high performance niobium-base capacitor.

  13. Control of morphology and surface wettability of anodic niobium oxide microcones formed in hot phosphate-glycerol electrolytes

    International Nuclear Information System (INIS)

    Highlights: → Anodic niobium oxide microcones with nanofiber morphology are formed simply by anodizing. → The cone size and its tip angle are controlled by anodizing condition. → The surface shows extremely high contact angle for water after coating with a fluoroalkyl layer. - Abstract: We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate-glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0o. Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175o and a very small contact angle hysteresis of only 2o. The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.

  14. Effect of anodic oxide films on low temperature mechanical behavior of niobium single crystals

    International Nuclear Information System (INIS)

    The effect of thin (less than or equal to 1500 A) anodic oxide films on the mechanical behavior of single crystals of niobium at low temperatures (T less than or equal to 0.15 T/sub M/) was investigated. Oxide films affect mechanical behavior in two ways: the yield stress is reduced and the stress-strain curves are serrated over an appreciable range of strains. When oxide-coated specimens are also prestrained into stage I at 3000K, the serrations observed at low temperatures disappear, the flow stress is further reduced, the ductility is increased, and a three-stage work hardening behavior occurs. A model involving generation and motion of nonscrew dislocations from the oxide-metal interface is used to explain the results

  15. On some peculiarities of surface properties of niobium anodic oxide crystals

    OpenAIRE

    Gomozov, V.; Deribo, S.; Tulskiy, G.; Skatkov, L.

    2012-01-01

    Changes in surface properties of anodic crystal films Nb2O5 during the extraction of oxygen anions from near-surface layer are considered. It is shown that the anion extraction brings about a phase transition in oxide which is accompanied by a change in conductivity resulting from structure distortion occurring during disordering in oxide crystals.

  16. Effect of UV radiation on the growth and breakdown voltage of anodic oxide films on niobium

    International Nuclear Information System (INIS)

    Formation rates of anodic Nb2O5 films grown under galvanostatic conditions decrease in the presence of UV radiation, unlike those grown in the absence of UV radiation. This may be due to the development of a positive space charge near the solution/oxide interface which is responsible for an increase in electronic current in the film during its formation. Value of breakdown voltage also increases in the presence of UV radiations. The effect of current density and resistivity of the solution upon the breakdown voltage, both in the presence and absence of UV radiation, is discussed in terms of Ikonopisov theory of breakdown voltage. (author). 19 refs., 6 figs

  17. EELS investigations of stoichiometric niobium oxides and niobium-based capacitors

    OpenAIRE

    Bach, David

    2009-01-01

    A comprehensive electron energy-loss spectroscopy (EELS) study of stoichiometric niobium oxides and niobium was performed in a transmission electron microscope. Numerous EELS features were identified allowing the distinction of different Nb-oxidation states. Optimized sensitivity factors were determined for accurate quantification of the Nb-O system which were applied to nanoscale analysis of solid-electrolyte capacitors with Nb anodes and anodically grown niobium-oxide layers as dielectric.

  18. Temperature dependence of electric resistance of anodic oxide films on niobium base alloy NbTsU

    International Nuclear Information System (INIS)

    Electrical resistance of oxide coatings formed on the surface of the NbTsU niobium alloy in aqueous solutions of alkaline electrolytes is investigated. Some anomalies related to the conditions of coating formation are canceled in temperature dependences of electrical resistance. The values of activation energy of electroconducting processes for different temperature intervals are calculated

  19. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  20. Аnodic formation of nanoporous crystalline niobium oxide

    OpenAIRE

    LEONID SKATKOV; LARISA LYASHOK; VALERIY GOMOZOV; IRINA TOKAREVА; BORIS ВAYRACHNIY

    2014-01-01

    The research results of anodic deposition of crystalline niobium oxide are presented in this work. The factors that have an impact on crystalline phase nucleation and its primary growth are revealed. Dependence of morphology and properties of nanoporous niobium oxide on modes of its formation is shown.

  1. Аnodic formation of nanoporous crystalline niobium oxide

    Directory of Open Access Journals (Sweden)

    LEONID SKATKOV

    2014-05-01

    Full Text Available The research results of anodic deposition of crystalline niobium oxide are presented in this work. The factors that have an impact on crystalline phase nucleation and its primary growth are revealed. Dependence of morphology and properties of nanoporous niobium oxide on modes of its formation is shown.

  2. Niobium oxide compositions and methods for using same

    Science.gov (United States)

    Goodenough, John B; Han, Jian-Tao

    2014-02-11

    The disclosure relates a niobium oxide useful in anodes of secondary lithium ion batteries. Such niobium oxide has formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7, wherein 0.ltoreq.x.ltoreq.3, 0.ltoreq.y.ltoreq.1, and M represents Ti or Zr. The niobium oxide may be in the form of particles, which may be carbon coated. The disclosure also relates to an electrode composition containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. The disclosure further relates to electrodes, such as anodes, and batteries containing at least one or more niobium oxides of formula Li.sub.xM.sub.1-yNb.sub.yNb.sub.2O.sub.7. Furthermore, the disclosure relates to methods of forming the above.

  3. Fabrication of superhydrophobic niobium pentoxide thin films by anodization

    International Nuclear Information System (INIS)

    We report a simple method to fabricate a niobium oxide film with a lotus-like micro–nano surface structure. Self-assembled niobium pentoxide (Nb2O5) films with superhydrophobic property were fabricated by an anodization and a hydrophobic treatment. This process has several advantages such as low cost, simplicity and easy coverage of a large area. The surface of fabricated Nb2O5 film was changed from hydrophilic to superhydrophobic surface by a treatment using fluoroaldyltrimethoxysilane (FAS) solution. This value is considered to be the lowest surface free energy of any solid, based on the alignment of -CF3 groups on the surface. In particular, among FAS coated surfaces, the micro–nano complex cone structured Nb2O5 film showed the highest water-repellent property with a static contact angle of ca. 162°. This study gives promising routes from biomimetic superhydrophobic surfaces.

  4. Fabrication of superhydrophobic niobium pentoxide thin films by anodization

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bong-Yong [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Jung, Eun-Hye [Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Department of Chemical Engineering, Inha University, Incheon 402-024 (Korea, Republic of); Kim, Jin-Ho, E-mail: jhkim@kicet.re.kr [Electronic and Optic Materials Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2014-07-01

    We report a simple method to fabricate a niobium oxide film with a lotus-like micro–nano surface structure. Self-assembled niobium pentoxide (Nb{sub 2}O{sub 5}) films with superhydrophobic property were fabricated by an anodization and a hydrophobic treatment. This process has several advantages such as low cost, simplicity and easy coverage of a large area. The surface of fabricated Nb{sub 2}O{sub 5} film was changed from hydrophilic to superhydrophobic surface by a treatment using fluoroaldyltrimethoxysilane (FAS) solution. This value is considered to be the lowest surface free energy of any solid, based on the alignment of -CF{sub 3} groups on the surface. In particular, among FAS coated surfaces, the micro–nano complex cone structured Nb{sub 2}O{sub 5} film showed the highest water-repellent property with a static contact angle of ca. 162°. This study gives promising routes from biomimetic superhydrophobic surfaces.

  5. Niobium-titanium oxide alloys

    International Nuclear Information System (INIS)

    Oxide dispersion strengthening of niobium with TiO2 has lead to a material which combines superior mechanical properties with the excellent biocompatibility and corrosion resistance of the soft metal niobium. Modern analytical tools including TEM with advanced analysis features (EDX and EELS) were used to clarify the mechanism being a dissolution of the oxide at sintering temperatures and a controlled precipitation by proper aging. The influence of variations of the oxide content, the sintering conditions and the aging treatment were investigated in order to optimize the alloy. The best combination of properties was found with a Nb-1%TiO2 variant with optimized oxygen content. Strength can very well be correlated with TEM data of dispersion parameters. Applications for this ODS niobium alloy are seen in the field of high-load bearing medical implants but also in chemical engineering wherever the good corrosion resistance of niobium is needed in combination with higher mechanical and thermal strength. 14 refs., 17 figs., 3 tabs. (Author)

  6. Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores

    Science.gov (United States)

    Ni, Xiao

    Currently the recovery of niobium oxide minerals from carbonatite niobium ores relies on the use of non-selective cationic collectors. This leads to complicated process flowsheets involving multiple desliming and multiple reverse flotation stages, and low niobium recovery. In this research, anionic collectors that are capable of strong chemisorption on the niobium minerals were studied with the objective of directly floating the niobium oxide minerals from the carbonatite ores. In the flotation of both high purity minerals and Niobec ores, it was shown that the combination of hydroxamic acid and sodium metaphosphate was an effective reagent scheme for the direct flotation of niobium oxide from its ores. Batch flotation on the Niobec Mill Feed showed that over 95% of niobium oxide was recovered into a rougher concentrate that was less than 47% of the original feed mass. Preliminary cleaning tests showed that the reagent scheme could also be used to upgrade the rougher concentrate, although the depression of iron oxide minerals required further study. X-ray photoelectron spectroscopic (XPS) measurement results confirm that OHA (octyl hydroxamic acid) could chemisorb on pyrochlore surface while only physically adsorb on calcite, judging by the chemical shifts of electron binding energies in the elements in both OHA and the mineral surfaces. When hydroxamic acid was adsorbed on calcite surface, the binding energies of the N 1s electrons, at 400.3 eV, did not shift. However, after adsorption on pyrochlore, the N 1s binding energy peak split into two peaks, one at a binding energy of around 399 eV, representing chemically adsorbed OHA, the other at between 400 and 401 eV. The experimental data suggested a strong chemisorption of the OHA on pyrochlore surface in the form of a vertical head-on orientation of the OHA molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations, followed by possibly randomly oriented physisorbed OHA molecules

  7. Study on the mechanism of the anodization of niobium by using ion-implanting Xe+ markers and RBS analysis

    International Nuclear Information System (INIS)

    The mechanism of anodic oxidation on niobium in the solution of aqueous ammonium citrate (w = 5%) was studied with the layers of ion-implanted Xe atom markers in different depth and analysed by the methods of RBS, X-ray and AES and the ions migration numbers under different anodic potentials were calculated. The main reason for the forming of oxide films is the migration of both metal cations and oxygen anions in contrary directions and the area in which the oxide film formed is nearer the sample surface, which is connected with the solution, with the higher anodic potential. The composition of the oxide film is Nb2O5

  8. The oxidation behavior and protection of niobium

    Science.gov (United States)

    Perkins, Roger A.; Meier, Gerald H.

    1990-08-01

    Despite years of effort, researchers have been unable to develop a high-temperature niobium-base alloy with the ability to form a protective oxide scale. Although some of the alloys tested have potentially useful properties, the alloying elements usually act to the detriment of at least one property. Currently, niobium-base alloys are protected from high-temperature oxidation with a highly reliable silicide coating. This article reviews the efforts to develop oxidation-resistant alloys and summarizes the results of recent research on oxidation-resistant niobium-base intermetallics.

  9. Kinetics and oxidation mechanisms of polycrystaline niobium

    International Nuclear Information System (INIS)

    The oxidation kinetics of annealed niobium was determined by thermogravimetric analysis between 450 and 8000C and for oxygen pressures varying from 20 to 700 mmHg. The oxidation kinetics of cold worked and/or irradiated niobium for temperatures between 500 and 7000C, with oxygen pressures varying from 100 to 300 mmHg. Was also determined. Using X-ray diffraction it was found that the oxide formed in the range of temperature and oxygen pressure considered in this research is γ-Nb2O5. Optical and scanning eletronic microscopy showed that for annealed niobium oxidized under 6000C there was formation of non-uniform oxide layers, containing cracks and pores, presenting very irregular metal/pentoxide interface. The presence of sub-oxide NbOsub(z) platelets was observed in this interface. This sub-oxide platelets where not observed in annealed oxidized niobium samples over 6000C; the oxide layers formed were compact. At 8000C and the beginning at 7000C the interfaces were quite regular. Through microhardness measurements for the metal near the metal/pentoxide interface, the formation of oxygen solid solution was found and the oxygen diffusion coefficient was calculated. The results showed that at 6000C the oxygen diffusion coefficient in cold worked niobium is three times larger than the value obtained for annealed niobium. The results suggest that the reaction between annealed niobium and oxygen undaer 6000C is controlled by reaction in interface where the oxide layers are not compacted, parcially due to Nb sub(z) platelets formation.(Author)

  10. Electrochemical niobium oxide coating in molten NaNO3-KNO3

    International Nuclear Information System (INIS)

    Kinetics of anodic oxide film growth on niobium in molten NaNO3-KNO3 (50 mol %) is studied in galvanostatic and potentiostatic conditions. Basic kinetic parameters of the oxide-coating process are determined. Chemical composition of the oxide coatings is established

  11. Oxidation and volatilization of a niobium alloy

    International Nuclear Information System (INIS)

    This report presents the findings from a preliminary investigation into oxidation and volatilization characteristics of a niobium alloy. Niobium is a candidate alloy for use in plasma facing components (PFCS) in experimental fusion reactors like the Intemational Thermonuclear Experimental Reactor (ITER). An experimental alloy was tailored to simulate small changes in chemistry which could result from transmutations from irradiation. The alloy was exposed in air and steam between 800 degree C and 1200 degree C. Volatilized products and hydrogen were collected and measured. Post-test examinations were also performed on the samples to determine the amount of material loss during the exposures. The obtained measurements of volatilization flux (g/m2-s), hydrogen generation rates (liters/m2-s), and recession rates (mm/s) are data which can be used for safety analyses and material performance to predict consequences which may result from an accident involving the ingress of air or steam into the plasma chamber of fusion reactor. In our volatility tests, only molybdenum and niobium were found at release levels above the detection limit. Although molybdenum is present at only 0.12 wt%, the quantities of this element volatilized in air are nearly comparable to the quantities of niobium released. The niobium release in steam is only three to four times higher than that of molybdenum in steam. The hydrogen production of the niobium alloy is compared with other PFC materials that we have tested, specifically, beryllium, graphite, and a tunesten alloy. At high temperatures, the hydrogen production rate of the niobium alloy is among the lowest of these materials, significantly lower than beryllium. To understand what this means in an accident situation, modeling is necessary to predict temperatures, and therefore total hydrogen production. The INEL is currently doing this modeling

  12. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine;

    2008-01-01

    Sr-vacancy compensated Nb-doped SrTiO(3) with the nominal composition Sr(0.94)Ti(0.9)Nb(0.1)O(3) has been evaluated as part of a solid oxide fuel cell (SOFC) anode material in terms of redox stability, electrical conductivity, as well as electrochemical properties. Sr(0.94)Ti(0.9)Nb(0.1)O(3) has...... potential ability of the Nb-doped titanates to be used as a part of a SOFC anode. However, the catalytic activity of the materials was not sufficient and it needs to be improved if titanate based materials are to be realized as constituents in SOFC anodes....

  13. Niobium-doped strontium titanates as SOFC anodes

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L. Reine;

    2008-01-01

    Sr-vacancy compensated Nb-doped SrTiO(3) with the nominal composition Sr(0.94)Ti(0.9)Nb(0.1)O(3) has been evaluated as part of a solid oxide fuel cell (SOFC) anode material in terms of redox stability, electrical conductivity, as well as electrochemical properties. Sr(0.94)Ti(0.9)Nb(0.1)O(3) has ...

  14. Electrical breakdown and electronic current of niobium-niobium oxide-electrolyte systems

    International Nuclear Information System (INIS)

    Breakdown voltages and electronic current data (at constant voltage) for anodic niobium oxide films in contact with mixed solutions of aqueous electrolytes + diethylene glycol of varying concentrations and compositions at 308 K have been obtained. Breakdown voltage as well as electronic current have been found to depend on electrolyte concentration, composition and resistivity. The effects of electrolyte concentration, composition and resistivity on breakdown voltage have been discussed in terms of Ikonopisov electron avalanche model and the theory of Di Quarto. The values of parameters for impact ionization co-efficient (α) and primary electronic current (j0) have been evaluated. The major factor contributing to the decrease in breakdown voltage with increasing electrolyte concentration is the increasing primary electronic current, j0. (author). 10 refs., 5 figs., 2 tabs

  15. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature. PMID:24710725

  16. Study of niobium oxidation by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The chemical composition of thin oxide layers, grown on clean niobium, in low oxygen pressure, was studied by a surface analysis method: X-ray Photoelectron Spectroscopy. The purpose of this study was to find the best conditions for the building of Nb/Nb oxide/Pb Josephson junctions, and particularly to minimise the interface thickness during the formation of the insulator film (Nb2O5) on the metal (Nb). This interface is essentially formed by the monoxide (NbO) and dioxide (NbO2). Nb 3d XPS core level peak positions and area ratios (obtained by the signal decomposition) of the components of the total peak, were used to determine the presence of the different oxidation states II, IV and V, their relative abundance, oxide thicknesses and their depth distribution. All this information was extracted by a special numerical procedure

  17. Anodic oxidation of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A.; Borello, A.; Cabrini, A.

    1976-07-01

    The anodic polarization of zircaloy-2 in different electrolytic baths has been investigated in order to obtain thick oxide films with properties suitable for wear applications. The operative conditions to obtain hard, thick, compact oxide films resistant to thermal shocks have been determined. The influence of the bath composition and temperature on the oxide growth is reported.

  18. Electrical analysis of niobium oxide thin films

    International Nuclear Information System (INIS)

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O2 was kept constant at 1 Pa, while the O2 partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb2O5 stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O2). • Raman showed that increasing P(O2), Nb2O5 amorphous increases. • Conductivity tends to decrease with the increase of P(O2). • Dielectric analysis indicates the inexistence of preferential grow direction

  19. DEVELOPMENT OF OXIDATION RESISTANT TITANIUM ALLOYS BY NIOBIUM ADDITION

    OpenAIRE

    Ackland, Graeme; Siemers, Carsten; Tegner, Bengt E.; Saksl, K.; Brunke, F.; Kohnke, M,

    2014-01-01

    The application of titanium alloys is limited to 550°C due to their poor oxidation resistance. It is known that the addition of niobium improves the oxidation resistance of titanium whereas elements like vanadium do not support titanium’s oxidation behaviour. Hence, the underlying mechanisms are not understood. In the present study, different binary titanium-niobium and titanium-vanadium alloys as well as commercially pure titanium were investigated. Oxidation experiments were carried out at ...

  20. Oxidation protection for niobium and its alloys at high temperature

    International Nuclear Information System (INIS)

    Problems, related to increasing heat resistance of niobium and niobium-base alloys, are considered. It is mentioned, that when developing coatings to protect niobium and niobium alloy products against oxidation, one should preliminarily create a butter layer, preventing matrix interaction with the coating components, at metallic base - protective coating boundary. Depending on the temperature regime and the product application conditions, the coating can be formed on the basis of molybdenum disilicide or high-melting alloyed silicides. Besides, a composition, containing a low-melting component and high-melting filler, can be used for its creation

  1. Alkali oxide-tantalum, niobium and antimony oxide ionic conductors

    Science.gov (United States)

    Roth, R. S.; Brower, W. S.; Parker, H. S.; Minor, D. B.; Waring, J. L.

    1975-01-01

    The phase equilibrium relations of four systems were investigated in detail. These consisted of sodium and potassium antimonates with antimony oxide and tantalum and niobium oxide with rubidium oxide as far as the ratio 4Rb2O:llB2O5 (B=Nb, Ta). The ternary system NaSbO3-Sb2O4-NaF was investigated extensively to determine the actual composition of the body centered cubic sodium antimonate. Various other binary and ternary oxide systems involving alkali oxides were examined in lesser detail. The phases synthesized were screened by ion exchange methods to determine mobility of the mobility of the alkali ion within the niobium, tantalum or antimony oxide (fluoride) structural framework. Five structure types warranted further investigation; these structure types are (1) hexagonal tungsten bronze (HTB), (2) pyrochlore, (3) the hybrid HTB-pyrochlore hexagonal ordered phases, (4) body centered cubic antimonates and (5) 2K2O:3Nb2O5. Although all of these phases exhibit good ion exchange properties only the pyrochlore was prepared with Na(+) ions as an equilibrium phase and as a low porosity ceramic. Sb(+3) in the channel interferes with ionic conductivity in this case, although relatively good ionic conductivity was found for the metastable Na(+) ion exchanged analogs of RbTa2O5F and KTaWO6 pyrochlore phases.

  2. Niobium alloy heat pipes for use in oxidizing environments

    International Nuclear Information System (INIS)

    Niobium alloys have been used for many years in rocket propulsion systems and afterburner sections of gas turbine engines. In these applications, adequate oxidation resistance is provided by protective silicide coatings. By utilizing these coatings and niobium powder metallurgy to produce porous wicks, it has been demonstrated that niobium alloy heat pipes can comfortably operate in flame temperatures exceeding 3000 K. Results of lithium corrosion tests on C-103 (Nb-10%Hf-1%Ti) up to 1477 K will be presented along with thermal performance data for specific heat pipe designs

  3. Niobium alloy heat pipes for use in oxidizing environments

    Science.gov (United States)

    Craig Wojcik, C.

    1991-01-01

    Niobium alloys have been used for many years in rocket propulsion systems and afterburner sections of gas turbine engines. In these applications, adequate oxidation resistance is provided by protective silicide coatings. By utilizing these coatings and niobium powder metallurgy to produce porous wicks, it has been demonstrated that niobium alloy heat pipes can comfortably operate in flame temperatures exceeding 3000 K. Results of lithium corrosion tests on C-103 (Nb-10%Hf-1%Ti) up to 1477 K will be presented along with thermal performance data for specific heat pipe designs.

  4. Development of a niobium-doped titania inert anode for titanium electrowinning in molten chloride salts.

    Science.gov (United States)

    Snook, Graeme A; McGregor, Katherine; Urban, Andrew J; Lanyon, Marshall R; Donelson, R; Pownceby, Mark I

    2016-08-15

    The direct electrochemical reduction of solid titanium dioxide in a chloride melt is an attractive method for the production of titanium metal. It has been estimated that this type of electrolytic approach may reduce the costs of producing titanium sponge by more than half, with the additional benefit of a smaller environmental footprint. The process utilises a consumable carbon anode which releases a mixture of CO2 and CO gas during electrolysis, but suffers from low current efficiency due to the occurrence of parasitic side reactions involving carbon. The replacement of the carbon anode with a cheap, robust inert anode offers numerous benefits that include: elimination of carbon dioxide emissions, more efficient cell operation, opportunity for three-dimensional electrode configurations and reduced electrode costs. This paper reports a study of Nb-doped titania anode materials for inert anodes in a titanium electrolytic reduction cell. The study examines the effect of niobium content and sintering conditions on the performance of Nb-doped TiO2 anodes in laboratory-scale electrolysis tests. Experimental findings, including performance in a 100 h laboratory electrolysis test, are described. PMID:27265026

  5. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    International Nuclear Information System (INIS)

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6–10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere

  6. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    Science.gov (United States)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetometer indicate that the tensile films maintained a Tc approaching the dirty superconductive limit of 8.4 K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  7. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  8. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    OpenAIRE

    Sathler M.N.B.; Eon J.G.

    1998-01-01

    Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reacti...

  9. Oxidation resistance of composite silicide coatings on niobium

    International Nuclear Information System (INIS)

    This paper reports the oxidation of NbSi2-MoSi2 composite silicide coatings produced by diffusive siliconizing of molybdenum films on a niobium surface. Molybdenum-coated niobium was siliconized and an x-ray microspectral analysis of the composite silicide coating showed the phase composition to be an ca 80-um-thick outer molybdenum disilicide film with a characteristic coarsely crystalline columnar structure, and inner ca 20-um film of niobium disilicide consisting of the tiny columnar crystals, and a substrate/coating interface comprising a thin, 2-3 um film of lower silicide, i.e., Nb5Si3. The average grain sizes, unit cell parameters, and x-ray determined densities of the Mo films obtained by various methods are shown

  10. Change of chemical states of niobium in the oxide layer of zirconium–niobium alloys with oxide growth

    International Nuclear Information System (INIS)

    The change of chemical states of niobium with oxide growth was examined in the oxide layers of Zr–2.5Nb around the first kinetic transition by the conversion electron yield – X-ray absorption near-edge structure measurements. The detailed depth profiles of niobium chemical states were obtained in both the pre- and the post-transition oxide layers of Zr–2.5Nb formed in water at 663 K for 40–280 d. The depth profiling revealed that the inner oxide layer remained protective to oxidizing species even though in the post-transition region and this excellent stability of barrierness would be attributed the suppression of hydrogen pickup. (author)

  11. Synthesis of piezoelectric and bioactive NaNbO3 from metallic niobium and niobium oxide.

    Science.gov (United States)

    Prado da Silva, Marcelo Henrique; da Rocha, Daniel Navarro; de Andrade Gobbo, Luciano; Dos Santos Azevedo, Luciana Maria; Louro, Luís Henrique Leme; Machado Costa, Andréa; Brant de Campos, José

    2016-07-01

    NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016. PMID:25980635

  12. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    International Nuclear Information System (INIS)

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb2(OEt)10 does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt)5 acts as an octahedral field completing entity and leads to Nb(OEt)4(dmae). We show that Nb(OEt)4(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h−1 to values larger than 400 nm·h−1 can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt)4(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt)4(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an atomic layer deposition (ALD) process indicating that HV

  13. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Directory of Open Access Journals (Sweden)

    Sathler M.N.B.

    1998-01-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.

  14. Preparation and characterization of niobium oxide coated cellulose fiber

    International Nuclear Information System (INIS)

    Hydrous niobium(V) oxide has been investigated with respect to its surface acid strength, ion exchange capacity, and use as specific sorbent for many metal ions. The Nb2O5/cellulose composite was prepared by reacting α-cellulose with NbCl5-n (OC2H5)n, in nonaqueous solvent, under nitrogen atmosphere and submitting the obtained material to hydrolysis. An increase in the crystallinity degree is observed in the composite material because the precursor reagent reacts with the amorphous phase of the cellulose fibers. Loadings between 4.5 and 16.0% of the oxide were achieved and in every case the oxide particles uniformly cover the fiber surface. Lewis and Broensted acid sites were determined by using pyridine as the basic molecular probe

  15. Ruthenium oxide-niobium hydroxide composites for pseudocapacitor electrodes

    International Nuclear Information System (INIS)

    A simple solution-based method has been developed to vary the composition of redox active ruthenium oxide with highly proton-conducting niobium hydroxide to create stable, high capacitance electrodes at elevated temperatures. This method presents a dramatic departure from most other ruthenium oxide systems, which are prepared through annealing of hydrous ruthenium oxide. Typically RuO2 processed at high temperature only exhibits high electrical conductivity and suffers from poor proton conduction, giving low overall capacitances. Here, the optimized Ru/Nb oxide composition can be used to achieve high power densities, high capacitances, and stabilized electrodes while significantly reducing ruthenium content. Extensive materials characterization including high-resolution cross-sectional TEM, elemental mapping, XRD, electrochemical impedance spectroscopy, and proton NMR were used to evaluate the structure of the material system. The electrochemically inert niobium oxide serves as a network former enhancing accessibility to redox active ruthenium oxide. The dispersion of RuO2 in the NbO(OH)x matrix results in reduced RuO2 particle size, as observed via TEM and XRD, while also increasing the proton concentration in the material. Interconnected RuO2 particles provide electrically conducting pathways, even at low Ru contents, where percolation networks remain intact. Ruthenium is more efficiently utilized in the Ru/Nb composites and ruthenium content can be significantly reduced without decreasing capacitive performance. In addition, the composite electrodes, with the fine mixing of Ru and Nb, give higher power performance than for RuO2 alone.

  16. High temperature oxidation resistance in titanium–niobium alloys

    International Nuclear Information System (INIS)

    Highlights: • The conventional explanation for oxidation resistance is disproven, an alternative presented. • A generic analytic diffusion model for oxidation resistance is presented. • We develop a class of oxidation resistant niobium–titanium alloys. • Calculation, microscopy, spectroscopy and diffraction analysis of the alloys. • The theory is verified in oxidation tests. - Abstract: Titanium alloys are ideally suited for use as lightweight structural materials, but their use at high temperature is severely restricted by oxidation. Niobium is known to confer oxidation-resistance, and here we disprove the normal explanation, that Nb5+ ions trap oxygen vacancies. Using density functional theory calculation, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) we show that Nb is insoluble in TiO2. In fact, the Ti–Nb surface has three-layer structure: the oxide itself, an additional Nb-depleted zone below the oxide and a deeper sublayer of enhanced Nb. Microfocussed X-ray diffraction also demonstrates recrystallization in the Nb-depleted zone. We interpret this using a dynamical model: slow Nb-diffusion leads to the build up of a Nb-rich sublayer, which in turn blocks oxygen diffusion. Nb effects contrast with vanadium, where faster diffusion prevents the build up of equivalent structures

  17. HOW DOES NIOBIUM IMPROVE THE OXIDATION RESISTANCE OF COMMERCIALLY PURE TITANIUM?

    OpenAIRE

    Ackland, Graeme; Siemers, Carsten; Tegner, Bengt E.; Saksl, K.; Brunke, F.; Kohnke, M,

    2015-01-01

    The application of titanium alloys is limited to 550°C due to their poor oxidation resistance. It is known that the addition of niobium decelerates the oxidation of titanium alloys whereas elements like vanadium do not improve titanium’s oxidation resistance. The underlying mechanisms are not yet well understood. In the present study, different binary titanium-niobium and titanium-vanadium alloys as well as commercially pure titanium were investigated. Oxidation experiments were carried out a...

  18. Formation and dissolution behaviour of niobium oxide in phosphoric acid solutions

    International Nuclear Information System (INIS)

    The effect of phosphoric acid concentration and temperature on the formation and dissolution process of niobium oxide was investigated using capacitance, potential and galvanostatic measurements. The formation rate of the niobium oxide increases with increasing phosphoric acid concentration and decreases with increasing temperature. The dissolution rate of the niobium oxide is accelerated by increasing phosphoric acid concentration and temperature. The activation energy was calculated for both the formation and dissolution process and found to be 8.93 and 16.65 kJ/mol respectively. The effect of formation voltage on the dissolution process of niobium oxide was also investigated. The oxide film formed at high-formation voltage has a more defective character than that formed at lower voltage. This enhances the dissolution process of the oxide. The effect of current density on the formation rate and the thickness during the oxide film growth was measured. (orig.)

  19. Electrochemical behaviour of niobium and niobium passive films in nitric acid solutions

    International Nuclear Information System (INIS)

    Electrochemical behaviour of bare niobium and phosphoric acid anodized niobium electrodes is investigated in nitric acid solutions. Electrochemical impedance spectroscopy and polarisation techniques have been used to investigate the open-circuit growth of the passive film. The stability of the anodic oxide film has been studied as a function of the formation voltage, formation current density and concentration of the ambient electrolyte. The results show that the Nb-Nb2O5-1M HNO3 does not behave as a perfect dielectric. The flat band potential and donor concentration of the semiconducting anodic oxide film have been calculated from the Mott-Schottky plots. (author)

  20. Studies on the preparation of pure niobium oxide from pyrochlore concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Gabra, G.

    1983-02-01

    The applicability of acid leaching to the recovery of niobium oxide from pyrochlore concentrates has been investigated using hydrofluoric acid. Variables such as acid concentration, temperature, time of reaction, ratio of solid to acid, speed of agitation and particle size were correlated with the recovery of niobium oxide. It is suggested that the process is diffusion-controlled. This is supported by the dependance of reaction rate on agitation speed and by the relatively low activation energy, ..delta..H=1,86kcal/mole. The optimum conditions for extracting niobium oxide from leach solution using either methylisobutyl ketone or n-tributylphosphoric acid were also studied.

  1. Studies on the preparation of pure niobium oxide from pyrochlore concentrate

    International Nuclear Information System (INIS)

    The applicability of acid leaching to the recovery of niobium oxide from pyrochlore concentrates has been investigated using hydrofluoric acid. Variables such as acid concentration, temperature, time of reaction, ratio of solid to acid, speed of agitation and particle size were correlated with recovery of niobium oxide. It is suggested that the process is diffusion-controlled. This is supported by the dependance of reaction rate on agitation speed and by the relatively low activation energy, δH=1,86kcal/mole. The optimum conditions for extracting niobium oxide from leach solution using either methylisobutyl ketone or n-tributylphosphoric acid were also studied. (orig.)

  2. Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications

    International Nuclear Information System (INIS)

    Niobium oxide was prepared using sol-gel process and coated on 316L stainless steel (SS) substrate via dip-coating technique. The surface characterization results after a thermal treatment revealed that the coated surface was porous, uniform and well crystalline on the substrate. The corrosion resistance and bioactivity of the porous niobium oxide coated 316L SS in simulated body fluid (SBF) solution was evaluated. The in vitro test revealed a layer of carbonate-containing apatite formation over the coated porous surface. The results indicated that the porous niobium oxide coated 316L SS exhibited a high corrosion resistance and an enhanced biocompatibility in SBF solution.

  3. Formation and oxidation resistance of NbSi2 coatings on niobium by pack cementation

    International Nuclear Information System (INIS)

    NbSi2 coatings were formed on niobium by halide-activated pack cementation process. The as-coated niobium samples were oxidized in air up to 1723 K by thermogravimetry method. The surface and cross-sectional morphology, phase composition and element distribution of the NbSi2 coatings before and after oxidation were characterized by SEM, XRD and EPMA. The results show that the as-formed coatings consist of single phase of hexagonal NbSi2 and the oxidation resistance of pure niobium can be greatly improved by pack siliconizing. (orig.)

  4. Fabrication of anodic aluminum oxide with incorporated chromate ions

    Science.gov (United States)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  5. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  6. Improving the oxidation protection of niobium and tantalum by the use of multilayer coatings

    Science.gov (United States)

    Dzyadykevich, Y. V.; Kytskay, L. I.

    1997-01-01

    This article examines how the applicability of the refractory metals niobium and tantalum in high-temperature applications can be improved through the use of high-temperature, multilayer coatings based on molybdenum disilicide for oxidation resistance.

  7. Niobium oxide-polydimethylsiloxane hybrid composite coatings for tuning primary fibroblast functions.

    Science.gov (United States)

    Young, Matthew D; Tran, Nhiem; Tran, Phong A; Jarrell, John D; Hayda, Roman A; Born, Chistopher T

    2014-05-01

    This study evaluates the potential of niobium oxide-polydimethylsiloxane (PDMS) composites for tuning cellular response of fibroblasts, a key cell type of soft tissue/implant interfaces. In this study, various hybrid coatings of niobium oxide and PDMS with different niobium oxide concentrations were synthesized and characterized using scanning electron microscopy, X-ray photoelectron spectrometry (XPS), and contact angle goniometry. The coatings were then applied to 96-well plates, on which primary fibroblasts were seeded. Fibroblast viability, proliferation, and morphology were assessed after 1, 2, and 3 days of incubation using WST-1 and calcein AM assays along with fluorescent microscopy. The results showed that the prepared coatings had distinct surface features with submicron spherical composites covered in a polymeric layer. The water contact angle measurement demonstrated that the hybrid surfaces were much more hydrophobic than the original pure niobium oxide and PDMS. The combination of surface roughness and chemistry resulted in a biphasic cellular response with maximum fibroblast density on substrate with 40 wt % of niobium oxide. The results of the current study indicate that by adjusting the concentration of niobium oxide in the coating, a desirable cell response can be achieved to improve tissue/implant interfaces. PMID:23776075

  8. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  9. Optoelectronic properties of valence-state-controlled amorphous niobium oxide.

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-29

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications. PMID:27168317

  10. The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst

    OpenAIRE

    Swaan, H.M.; Li, X.; Seshan, K.; Ommen, van, B.; Ross, J.R.H.

    1993-01-01

    The promoting effect of niobium in a Li/MgO catalyst for the oxidative coupling of methane (OCM) and for the oxidative dehydrogenation of ethane (ODHE) has been studied in some detail. It has been found that a Li/Nb/MgO catalyst with 16 wt % niobium showed the highest activity for the C2 production in the OCM reaction; the activity at 600 °C was ten times that of the Li/MgO catalyst at the same temperature. The Li/Nb/MgO catalyst was also slightly more active for the ODHE reaction than was th...

  11. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  12. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  13. Investigation of solution-processed bismuth-niobium-oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Satoshi, E-mail: s-inoue@jaist.ac.jp [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Ariga, Tomoki [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Matsumoto, Shin [School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Onoue, Masatoshi; Miyasako, Takaaki [ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Tokumitsu, Eisuke; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology (JAIST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); School of Material Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); ERATO Shimoda Nano-Liquid Process Project, Japan Science and Technology Agency (JST), 2-13 Asahidai, Nomi, Ishikawa 923-1211 (Japan); Chinone, Norimichi; Cho, Yasuo [Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-21

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550°C involving three phases: an amorphous phase, Bi₃NbO₇ fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO₄ crystals at 590°C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550°C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500°C contained approximately 6.5 atm.% carbon, which was lost at approximately 550°C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  14. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-01-30

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb{sub 2}O{sub 5} was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb{sub 2}O{sub 5} coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb{sub 2}O{sub 5} coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb{sub 2}O{sub 5} coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  15. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    International Nuclear Information System (INIS)

    Niobium oxide was synthesized by sol–gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  16. Investigation of solution-processed bismuth-niobium-oxide films

    International Nuclear Information System (INIS)

    The characteristics of bismuth-niobium-oxide (BNO) films prepared using a solution process were investigated. The BNO film annealed at 550 °C involving three phases: an amorphous phase, Bi3NbO7 fluorite microcrystals, and Nb-rich cubic pyrochlore microcrystals. The cubic pyrochlore structure, which was the main phase in this film, has not previously been reported in BNO films. The relative dielectric constant of the BNO film was approximately 140, which is much higher than that of a corresponding film prepared using a conventional vacuum sputtering process. Notably, the cubic pyrochlore microcrystals disappeared with increasing annealing temperature and were replaced with triclinic β-BiNbO4 crystals at 590 °C. The relative dielectric constant also decreased with increasing annealing temperature. Therefore, the high relative dielectric constant of the BNO film annealed at 550 °C is thought to result from the BNO cubic pyrochlore structure. In addition, the BNO films annealed at 500 °C contained approximately 6.5 atm. % carbon, which was lost at approximately 550 °C. This result suggests that the carbon in the BNO film played an important role in the formation of the cubic pyrochlore structure.

  17. Q degradations in superconducting niobium cavities

    International Nuclear Information System (INIS)

    In the past year, several laboratories around the world have observed degradations of the Q value of superconducting niobium cavities made from high thermal conductivity niobium under certain cooldown conditions. Especially under slow cooldown or warmup to temperatures < 200 K of larger systems severe degradations have been reported. A systematic study of the influence of the cooldown speed, warmup conditions, multiple cooldowns and chemical surface treatment on cavity performance of cavities manufactured from niobium of different purity has been conducted. Possible cures such as anodic oxidation are being explored and results of these investigations are reported

  18. Niobium Oxide Film Deposition Using a High-Density Plasma Source

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R; Schmidt, M; Coombs, A; Anguita, J; Thwaites, M

    2006-01-27

    Niobium oxide was deposited reactively using a new type of high-density plasma sputter source. The plasma beam used for sputtering is generated remotely and its path to the target defined by the orthogonal locations of two electromagnets: one at the orifice of the plasma tube and the other just beneath the target plane. To accommodate very large batches of substrates, the trade-off between load capacity and deposition rates was evaluated. The effect on deposition rate was determined by moving the plasma source away from the target in one direction and by moving the target assembly away in an orthogonal direction. A simple methodology was used to reestablish the reactive deposition rate and oxide quality even when large changes were made to the chamber geometry. Deposition parameters were established to produce nonabsorbing niobium oxide films of about 100- and 350-nm thicknesses. The quality of the niobium oxide films was studied spectroscopically, ellipsometrically, and stoichiometrically.

  19. Composite solid oxide fuel cell anode based on ceria and strontium titanate

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.

    2008-12-23

    An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.

  20. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  1. Formation and Morphology of Anodic Oxide Films of Ti

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology and structure of the oxide films of Ti in H3PO4 were investigated by galvanostatic anodization, SEM and XRD. The oxide film grew from some pores in the grooves to layered microdomains as increasing anodizing voltage. The crystallinity of the oxide films decreased with the increase of the concentration of the electrolyte. The model has been proposed for the growth of the oxide films by two steps, i.e. by uniform thickening and by local deposition.

  2. Preliminary studies of synthesis and purification of niobium (V) oxide as intermediary for the obtention of ceramics

    International Nuclear Information System (INIS)

    The preparation of niobium (V) oxide from niobium (V) chloride, containing iron and tantalum as impurities, by reaction with ethanol under anhydrous conditions was studied. The oxide, used as ceramic precursor, with size, particle forms, distribution and highly controlled purity, was obtained by hydrolysis of the ethoxide. (author)

  3. Niobium oxide thin films formed by plasma immersion oxygen ion implantation

    International Nuclear Information System (INIS)

    In analogy to conventional beam-line ion implantation, plasma immersion ion implantation can be combined with a deposition technique to an ion assisted coating process. The structure and composition of a coating and its interface to the substrate can be modified by ion implantation. By means of electron beam evaporation and oxygen plasma immersion ion implantation niobium oxide films were prepared at low substrate temperatures (< 200 C). The film composition and thickness were determined by Rutherford backscattering spectrometry. The results show that oxygen plasma immersion ion implantation leads to incorporation of oxygen into niobium in several steps, corresponding to niobium oxide phases with different stoichiometries. By contrast to conventional beam-line ion implantation at low pressures, two channels for oxidation can be distinguished, ion implantation of high-energy species and radiation enhanced in-diffusion of low-energy species from the plasma. The latter is driven by thermodynamic forces. (orig.)

  4. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  5. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    International Nuclear Information System (INIS)

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N+ clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N+ clusters decreases as the N increases, and it is higher than that of (V 2O5)N+ for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N+ (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion

  6. Multi-component titanium–copper–cobalt- and niobium nanostructured oxides as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Henych, Jiří; Ivanova, R.; Kovacheva, D.; Štengl, Václav

    2015-01-01

    Roč. 116, č. 2 (2015), s. 397-408. ISSN 1878-5190 Institutional support: RVO:61388980 Keywords : Copper and cobalt oxides * Effect of support * Ethyl acetate combustion * Multicomponent oxides * Titania doped with niobium Subject RIV: CA - Inorganic Chemistry Impact factor: 1.170, year: 2014

  7. Anodic dissolution of metals in oxide-free cryolite melts

    OpenAIRE

    Cassayre, Laurent; Chamelot, Pierre; Arurault, Laurent; Taxil, Pierre

    2005-01-01

    The anodic behavior of metals in molten cryolite-alumina melts has been investigated mostly for use as inert anodes for the Hall-Héroult process. In the present work, gold, platinum, palladium, copper, tungsten, nickel, cobalt and iron metal electrodes were anodically polarized in an oxide-free cryolite melt (11%wt. excess AlF3 ; 5%wt. CaF2) at 1273 K. The aim of the experiments was to characterize the oxidation reactions of the metals occurring without the effect of oxygen-containing dissolv...

  8. Research on Interpore Distance of Anodic Aluminum Oxide Template

    OpenAIRE

    Liu, Xue-jie; Li, Liang-fang

    2013-01-01

    The relationship between the interpore of anodic aluminum oxide (AAO) template and the influencing factors of electrolyte, temperature and oxidation voltage etc. was researched and summarized in this paper. It was pointed out that the interpore was influenced mostly by electrolyte type and oxidation voltage, and least by the electrolyte concentration and oxidation temperature. The interpore of AAO template increases with the oxidation voltage increases. By adjusting the electrolyte and oxidat...

  9. Recent anode advances in solid oxide fuel cells

    Science.gov (United States)

    Sun, Chunwen; Stimming, Ulrich

    Solid oxide fuel cells (SOFCs) are electrochemical reactors that can directly convert the chemical energy of a fuel gas into electrical energy with high efficiency and in an environment-friendly way. The recent trends in the research of solid oxide fuel cells concern the use of available hydrocarbon fuels, such as natural gas. The most commonly used anode material Ni/YSZ cermet exhibits some disadvantages when hydrocarbons were used as fuels. Thus it is necessary to develop alternative anode materials which display mixed conductivity under fuel conditions. This article reviews the recent developments of anode in SOFCs with principal emphasis on the material aspects. In addition, the mechanism and kinetics of fuel oxidation reactions are also addressed. Various processes used for the cost-effective fabrication of anode have also been summarized. Finally, this review will be concluded with personal perspectives on the future research directions of this area.

  10. Effect of processing on structural features of anodic aluminum oxides

    Science.gov (United States)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  11. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  12. Chlorination of niobium oxide in the presence of carbon monoxide

    International Nuclear Information System (INIS)

    The chlorination kinetics of niobium pentoxide in the presence of carbon monoxide between 500-8000C of temperature is studied. The following variable that influences on the reaction rate are analysed: gas flow, geometry and volume of the Nb2O5 samples, reaction temperature and composition of the chlorinated mixture. At the same time, two other materials were studied: the CaO.Nb2O5 (synthetized in laboratory) and pyrochlorine concentrates. The three materials are compared for the chlorination method used. (M.A.C.)

  13. Tunable structural color of anodic tantalum oxide films

    Institute of Scientific and Technical Information of China (English)

    Sheng Cui-Cui; Cai Yun-Yu; Dai En-Mei; Liang Chang-Hao

    2012-01-01

    Tantalum (Ta) oxide films with tunable structural color were fabricated easily using anodic oxidation.The structure,components,and surface valence states of the oxide filns were investigated by using gazing incidence X-ray diffractometry,X-ray photoelectron microscopy,and surface analytical techniques.Their thickness and optical properties were studied by using spectroscopic ellipsometry and total reflectance spectrum.Color was accurately defined using L*a*b* scale.The thickness of compact Ta2O5 films was linearly dependent on anodizing voltage.The film color was tunable by adjusting the anodic voltage.The difference in color appearance resulted from the interference behavior between the interfaces of air-oxide and oxide-metal.

  14. Corrosion protection of AZ91 magnesium alloy by anodizing in niobium and zirconium-containing electrolytes

    International Nuclear Information System (INIS)

    A new Nb + Zr-based anodized coating was designed for the corrosion protection of AZ91 magnesium alloy. Polarization curves and electrochemical impedance diagrams plotted in Na2SO4 electrolyte showed its high protective effect. Analysis of the chemical composition by X-ray photoelectron spectroscopy indicated that the coating mainly consisted of (i) magnesium metaborate and metaphosphate, (ii) MgF2 and ZrF4, and (iii) Nb2O5, ZrO2 and MgO. A higher concentration of fluorine at both interfaces and an enrichment in Zr compared to Nb were revealed by SEM and EDS analyses. Thus, Zr-based compounds and MgF2 play a key role in the anti-corrosion ability of the coating.

  15. Formation of anodic aluminum oxide with serrated nanochannels.

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Jiang, Chuanhai; Lu, Jia G

    2010-08-11

    We report a simple and robust method to self-assemble porous anodic aluminum oxide membranes with serrated nanochannels by anodizing in phosphoric acid solution. Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to an increase of the impurity levels and also the field strength across barrier layer. On the basis of both experiment and simulation results, the initiation and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, demonstrating a unique way to design and construct a three-dimensional hierarchical system with controllable morphology and composition. PMID:20617804

  16. The electrochemical behavior of niobium low-pressure-plasma-sprayed coatings in hydrochloric acid

    International Nuclear Information System (INIS)

    Niobium coatings vacuum plasma sprayed under an inert atmosphere onto steel substrates are shown to be dense and free from visible oxide. Electrochemical analysis in deaerated 0.5 M and 4 M hydrochloric acid solutions indicates that vacuum plasma-sprayed niobium coatings are highly resistant to both general and local corrosion. Cyclic voltammetry in deaerated 4 M hydrochloric acid showed no breakdown during the anodic potentiodynamic sweep, behavior similar to that observed for pure niobium foil. The feasibility of applying low-pressure-plasma-sprayed niobium coatings for the protection of steel substrates in highly aggressive hydrochloric acid solutions was established. (Auth.)

  17. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides.

    Science.gov (United States)

    Ding, Xun-Lei; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion. PMID:26429016

  18. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Science.gov (United States)

    Zhou, Bo; Yu, Zhiming; Wei, Qiuping; Long, HangYu; Xie, Youneng; Wang, Yijia

    2016-07-01

    In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH3sbnd N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm-2, pH 5.16, flow velocity 6 L h-1. Under these conditions, 87.5% COD and 74.06% NH3sbnd N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m-3. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  19. Characterization of niobium and vanadium oxide nanocomposites with improved rate performance and cycling stability

    International Nuclear Information System (INIS)

    Highlights: • Niobium and vanadium oxides nanocomposites were synthesized using a facile sol–gel process. • Such nanocomposites exhibit both significantly improved rate and cycling stability. • Possible synergistic mechanism between the constituent components of the nanocomposites was proposed. -- Abstract: Niobium and vanadium oxides nanocomposites are synthesized using a facile sol–gel process, and characterized by scanning and transmission electron microscopy. X-ray diffraction results show that the nanocomposites are composed of Nb2O5 and its solid solutions. Such nanocomposites exhibit both significantly improved rate and cycling stability. At a current density of 1 A g−1, the nanocomposites deliver more than three times of capacity than pure Nb2O5, and remain ∼95% of its initial capacity after 50 cycles. Possible synergistic mechanism between the constituent components of the nanocomposites is also proposed

  20. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  1. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel; Alex Gurevich

    2008-01-23

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. A statistic of the position of the “hot-spots” on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermo-magnetic instability governing the Q-drop and the baking effect.

  2. Functionalization of niobium electrodes for the construction of impedimetric biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Helali, S. [Unite de recherche de Physique des Semiconducteurs et Capteurs, IPEST, La Marsa (Tunisia)], E-mail: salwahleli@yahoo.fr; Abdelghani, A.; Hafaiedh, I. [Unite de recherche de Physique des Semiconducteurs et Capteurs, IPEST, La Marsa (Tunisia); Martelet, C. [Centre de Genie Electrique de Lyon, CEGELY, ECL, 69134 Ecully cedex (France); Prodromidis, M.I.; Albanis, T. [Department of Chemistry, University of Ioannina, 45110 Ioannina (Greece); Jaffrezic-Renault, N. [Laboratoire des Sciences Analytiques, CNRS UMR 5180, Batiment Raulin, Universite de Claude Bernard, 69622 Villeurbanne Cedex (France)

    2008-07-01

    This paper describes the development of an impedimetric immunosensor, based on niobium/niobium oxide (Nb/NbOxHy) electrodes, for the detection of atrazine. Niobium oxide was anodically formed onto niobium electrodes at 25 V in 1 M H{sub 2}SO{sub 4}. Hydrous oxide layers were then silanized with APTES, and using glutaraldehyde as a cross linker, Fab fragment k47 antibody was covalently immobilized onto the surface of the electrodes. Electrochemical impedance spectroscopy (EIS) was used to characterize the building-up of the immunosensors as well as the binding of atrazine to its specific antibody. In presence of ferricyanide redox species and under a cathodic polarization voltage (- 1.2 V versus SCE), the relationship between the concentration of atrazine and the change of the electron transfer resistance value was studied.

  3. Functionalization of niobium electrodes for the construction of impedimetric biosensors

    International Nuclear Information System (INIS)

    This paper describes the development of an impedimetric immunosensor, based on niobium/niobium oxide (Nb/NbOxHy) electrodes, for the detection of atrazine. Niobium oxide was anodically formed onto niobium electrodes at 25 V in 1 M H2SO4. Hydrous oxide layers were then silanized with APTES, and using glutaraldehyde as a cross linker, Fab fragment k47 antibody was covalently immobilized onto the surface of the electrodes. Electrochemical impedance spectroscopy (EIS) was used to characterize the building-up of the immunosensors as well as the binding of atrazine to its specific antibody. In presence of ferricyanide redox species and under a cathodic polarization voltage (- 1.2 V versus SCE), the relationship between the concentration of atrazine and the change of the electron transfer resistance value was studied

  4. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    International Nuclear Information System (INIS)

    Boron-doped diamond anodes allow to directly produce OH· radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included

  5. Anodic oxide growth on Zr in neutral aqueous solution

    Indian Academy of Sciences (India)

    Z Tun; J J Noël; D W Shoesmith

    2008-10-01

    Anodization and subsequent cathodic reactions on a thin-film sample of Zr were studied with in-situ neutron reflectometry (NR) and electrochemical impedance spectroscopy (EIS). The NR results during anodization showed the originally 485 Å thick Zr film generally behaved similar to a bulk electrode in neutral solution. The anodization ratio measured at applied potentials increased in steps of 0.5 V was somewhat higher than the value determined by coulometry, while the Pilling Bedworth ratio is in good agreement with published data. Thickening of the oxide layer, accelerated immediately after each potential increase, gradually decreased over several hours, but remained non-zero even after ∼ 12 h. The thickened oxide eventually cracked when its thickness reached ∼ 120 Å, causing loss of passivation. Surprisingly, neither the anodization ratio nor the Pilling Bedworth ratio showed any discontinuity at the time of oxide cracking, and the EIS behaviour remained qualitatively as before. This observation is taken as the evidence that the cracked and intact regions of the electrode behave more or less independently as parallel electrodes. When the potential was eventually switched to cathodic polarity, NR shows, as expected, that the effects of oxide cracking were irreversible. However, the electrode resistance recovered partially suggesting the cracks were rapidly plugged with newly formed oxide.

  6. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  7. Synthesis and characterization of the hydrated niobium V oxide for application as ion exchanger

    International Nuclear Information System (INIS)

    Hydrous oxides were considered a candidate material for applications as ion-exchangers, since they show a low solubility and excellent regeneration capacity. This work presents a new process to obtain Nb2 O5. n H2 O and discusses the main results from the powder characterization. The powder characteristics were determined by chemical, BET, ATD and ATG analyses, infrared spectroscopy, X-ray diffraction, mercury porosimetry and SEM observations. The powder showed uniform sized and porous agglomerates and crystalline structure at low temperatures. At the end these characteristics are compared with of the conventional niobium V oxide obtained from alkaline fusion process. (author)

  8. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  9. Investigation of anodic oxide coatings on zirconium after heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1 A, 41-500 Chorzów (Poland); Suchanek, Katarzyna [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2015-08-15

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment.

  10. High Performance SLED Fabricated by Pulsed Anodic Oxidation

    Institute of Scientific and Technical Information of China (English)

    GAO Xin; BO Bao-xue; ZHANG Jing; LI Hui; QU Yi

    2009-01-01

    InGaAs/AlGaAs MQW superluminescent LED (SLED) is fabricated by using pulsed anodic oxidation and molecular beam epitaxy (MBE). The power and spectral output characteristics of three kinds of device structures are investigated. An output power above 10mW with FWHM of 18nm is demonstrated at a current of 150mA.

  11. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  12. A review of liquid metal anode solid oxide fuel cells

    OpenAIRE

    ALIYA TOLEUOVA; VLADIMIR YUFIT; STEFAAN SIMONS; Maskell, William C.; Brett, Daniel J. L.

    2013-01-01

    This review discusses recent advances in a solid oxide fuel cell (SOFC) variant that uses liquid metal electrodes (anodes) with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  13. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb3Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  14. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  15. Silicide Coating Fabricated by HAPC/SAPS Combination to Protect Niobium Alloy from Oxidation.

    Science.gov (United States)

    Sun, Jia; Fu, Qian-Gang; Guo, Li-Ping; Wang, Lu

    2016-06-22

    A combined silicide coating, including inner NbSi2 layer and outer MoSi2 layer, was fabricated through a two-step method. The NbSi2 was deposited on niobium alloy by halide activated pack cementation (HAPC) in the first step. Then, supersonic atmospheric plasma spray (SAPS) was applied to obtain the outer MoSi2 layer, forming a combined silicide coating. Results show that the combined coating possessed a compact structure. The phase constitution of the combined coating prepared by HAPC and SAPS was NbSi2 and MoSi2, respectively. The adhesion strength of the combined coating increased nearly two times than that for single sprayed coating, attributing to the rougher surface of the HAPC-bond layer whose roughness increased about three times than that of the grit-blast substrate. After exposure at 1200 °C in air, the mass increasing rate for single HAPC-silicide coating was 3.5 mg/cm(2) because of the pest oxidation of niobium alloy, whereas the combined coating displayed better oxidation resistance with a mass gain of only 1.2 mg/cm(2). Even more, the combined coating could significantly improve the antioxidation ability of niobium based alloy at 1500 °C. The good oxidation resistance of the combined silicide coating was attributed to the integrity of the combined coating and the continuous SiO2 protective scale provided by the oxidation of MoSi2. PMID:27243944

  16. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Oxidation behavior of Al-rich Mo(Si,Al)2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al)2 base alloys containing Mo5(Si,Al)3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al2O3 layer development. To evaluate the applicability of the Mo(Si,Al)2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al)2/Al2O3/Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  17. Formation of Nanoporous Tin Oxide Layers on Different Substrates during Anodic Oxidation in Oxalic Acid Electrolyte

    Directory of Open Access Journals (Sweden)

    Leszek Zaraska

    2015-01-01

    Full Text Available Nanoporous tin oxide layers were obtained on various Sn substrates including high- and low-purity foils and wire by one-step anodic oxidation carried out in a 0.3 M oxalic acid electrolyte at various anodizing potentials. In general, amorphous oxide layers with the atomic ratio of Sn : O (1 : 1 were grown during anodization, and a typical structure of the as-obtained film consists of the “outer” layer with less regular, interconnetted pores and the “inner” layer with much more uniform and regular channels formed as a result of vigorous gas evolution. It was found that the use of electrochemical cell with the sample placed horizontally on the metallic support and stabilized by the Teflon cover, instead of the typical two-electrode system with vertically arranged electrodes, can affect the morphology of as-obtained layers and allows fabrication of nanoporous oxides even at anodizing potentials up to 11 V. An average pore diameter in the “outer” oxide layer increases with increasing anodizing potential, and no significant effect of substrate purity on the structure of anodic film was proved, except better uniformity of the oxides grown on high-purity Sn. A strong linear relationship between the average steady-state current density and anodizing potential was also observed.

  18. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  19. Accounting for the Dynamic Oxidative Behavior of Nickel Anodes.

    Science.gov (United States)

    Smith, Rodney D L; Berlinguette, Curtis P

    2016-02-10

    The dynamic behavior of the anodic peak for amorphous nickel oxy/hydroxide (a-NiOx) films in basic media was investigated. Chronocoulometry of films with known nickel concentrations reveals that a total of four electrons per nickel site comprise the signature anodic peak at 1.32 V during the first oxidative scan, and two electrons are passed through the associated cathodic peak on the reverse scan. The anodic and cathodic signals each contain two electrons on the successive scans. Catalytic oxygen evolution reaction (OER) was detected within the anodic peak, which is at a lower potential than is widely assumed. In order to rationalize these experimental results, we propose that the four-electron oxidation event is the conversion of the film from nickel(II) hydroxide ([Ni(II)-OH](-)) to a higher valent nickel peroxide species (e.g., Ni(IV)-OO or Ni(III)-OO·). The subsequent reduction of the nickel peroxide species is confined by a chemical step resulting in the accumulation of [Ni(II)-OOH](-), which is then oxidized by two electrons to form Ni(IV)-OO during the subsequent oxidative scan on the time scale of a cyclic voltammetric experiment. Our proposed mechanism and the experimental determination that each nickel site is oxidized by four electrons helps link the myriad of seemingly disparate literature data related to OER catalysis by nickel electrodes. The faster catalysis that occurs at higher oxidative potentials is derived from a minority species and is not elaborated here. PMID:26829375

  20. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    Science.gov (United States)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  1. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  2. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  3. Low temperature oxidation of niobium alloy with silicon-aluminium coating

    International Nuclear Information System (INIS)

    Using the gravimetry methods heat resistance of niobium-titanium-aluminium alloy in the air and at 700 deg C in the initial state and when it is protected by silicide-aluminium coatings (with variable content of aluminium) is investigated. Using X-ray diffraction and micro X-ray diffraction analyses, mechanisms of the alloy oxidation and the coating protective effect are studied. The role of aluminium in the formation of coatings is analyzed and according to bend tests the plasticity of the coatings is evaluated

  4. Multi-metallic anodes for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  5. Electrochemical Fabrication of Niobium Silicon Alloys from Oxide Powder Mixtures

    OpenAIRE

    Fanke Meng; Huimin Lu

    2013-01-01

    NbSi alloys were prepared by direct electrochemically reducing four mixed Nb2O5 and SiO2 powders (Nb-10Si, Nb-20Si, Nb-30Si, and Nb-37.5Si) in molten CaCl2 electrolyte at 900°C. The samples were characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). No oxidized phases were remained by XRD tests. Under SEM, Nb phase was scattered in Nb5Si3 phase for the samples of Nb-10Si, Nb-20Si, and Nb-30Si. For the sample of Nb-37.5Si...

  6. Passivated niobium cavities

    Science.gov (United States)

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  7. Ultrafine Nb2O5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery.

    Science.gov (United States)

    Yan, Litao; Chen, Gen; Sarker, Swagotom; Richins, Stephanie; Wang, Huiqiang; Xu, Weichuan; Rui, Xianhong; Luo, Hongmei

    2016-08-31

    Ultrafine niobium oxide nanocrystals/reduced graphene oxide (Nb2O5 NCs/rGO) was demonstrated as a promising anode material for sodium ion battery with high rate performance and high cycle durability. Nb2O5 NCs/rGO was synthesized by controllable hydrolysis of niobium ethoxide and followed by heat treatment at 450 °C in flowing forming gas. Transmission electron microscopy images showed that Nb2O5 NCs with average particle size of 3 nm were uniformly deposited on rGO sheets and voids among Nb2O5 NCs existed. The architecture of ultrafine Nb2O5 NCs anchored on a highly conductive rGO network can not only enhance charge transfer and buffer the volume change during sodiation/desodiation process but also provide more active surface area for sodium ion storage, resulting in superior rate and cycle performance. Ex situ XPS analysis revealed that the sodium ion storage mechanism in Nb2O5 could be accompanied by Nb(5+)/Nb(4+) redox reaction and the ultrafine Nb2O5 NCs provide more surface area to accomplish the redox reaction. PMID:27508452

  8. Submicron fabrication by local anodic oxidation of germanium thin films

    Science.gov (United States)

    Oliveira, A. B.; Medeiros-Ribeiro, G.; Azevedo, A.

    2009-08-01

    Here we describe a lithography scheme based on the local anodic oxidation of germanium film by a scanning atomic force microscope in a humidity-controlled atmosphere. The oxidation kinetics of the Ge film were investigated by a tapping mode, in which a pulsed bias voltage was synchronized and applied with the resonance frequency of the cantilever, and by a contact mode, in which a continuous voltage was applied. In the tapping mode we clearly identified two regimes of oxidation as a function of the applied voltage: the trench width increased linearly during the vertical growth and increased exponentially during the lateral growth. Both regimes of growth were interpreted taking into consideration the Cabrera-Mott mechanism of oxidation applied to the oxide/Ge interface. We also show the feasibility of the bottom-up fabrication process presented in this work by showing a Cu nanowire fabricated on top of a silicon substrate.

  9. Vanadium-based anode catalysts for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, X.Z.; Luo, J.L.; Chuang, K.T.; Sanger, A.R. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Tu, H.Y. [Shanghai Jiao Tong Univ., Shanghai (China). Inst. of Fuel Cell, School of Mechanical Engineering; Yang, Q.M. [Vale-Inco Ltd., Mississauga, ON (Canada)

    2010-07-01

    Solid oxide fuel cells (SOFCs) are considered as important electricity generators because they convert carbon-containing fuels from fossil sources to electricity without generating pollution. Syngas is more available and less expensive than highly purified hydrogen. However, when exposed to syngas at SOFC operating temperatures, conventional nickel anode catalysts result in carbon deposition, which compromises their performance. Syngas derived from conversion of hydrocarbon or coal resources normally also contain hydrogen sulphide, which poisons nickel anode catalysts. In order to use syngas, it is necessary to either stringently clean the feed, which is a costly process, or develop catalysts that can operate using impure feed and are not prone to carbon deposition. This paper discussed the development of a vanadium-based material (VOx) which is an active anode catalyst for SOFCs, that is not prone to coking and is sulfur resistant. The VOx material was obtained by decomposition and reduction of ammonium metavanadate (NH{sub 4}VO{sub 3}) at high temperature. Coking and sulfur resistance of as-prepared VOx and nickel were compared in hydrogen sulphide-containing syngas environments at 900 degrees Celsius. It was concluded that the VOx material had much higher coking resistance and sulfur tolerance than nickel. The SOFC with VOx anode catalyst demonstrated excellent performance using hydrogen sulphide-containing syngas as fuel. 3 refs.

  10. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  11. Ultra-structural evaluation of an anodic oxidated titanium dental implant.

    Science.gov (United States)

    Yamagami, Akiyoshi; Nagaoka, Noriyuki; Yoshihara, Kumiko; Nakamura, Mariko; Shirai, Hajime; Matsumoto, Takuya; Suzuki, Kazuomi; Yoshida, Yasuhiro

    2014-01-01

    Anodic oxidation is used for the surface treatment of commercial implants to improve their functional properties for clinical success. Here we conducted ultrastructural and chemical investigations into the micro- and nanostructure of the anodic oxide film of a titanium implant. The anodic oxidized layer of a Ti6Al4V alloy implant was examined ultrastructurally by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). They were also analyzed using energy dispersive X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The TEM revealed that the oxide layer of the Ti6Al4V implant prepared through anodic oxidation was separated into two layers. Al and V were not present on the top surface of the anodic oxide. This can be attributed to the biocompatibility of the anodic oxidized Ti6Al4V alloy implant, because the release of harmful metal ions such as Al and V can be suppressed by the biocompatibility. PMID:25483382

  12. Oxidation studies of niobium thin films at room temperature by X-ray reflectivity

    International Nuclear Information System (INIS)

    We report the results of growth kinetics of oxidation process on niobium thin film surfaces exposed to air at room temperature by using a surface sensitive non-destructive X-ray reflectivity technique. The oxidation process follows a modified Cabrera-Mott model of thin films. We have shown that the oxide growth is limited by the internal field due to the contact potential which develops during the initial stage of oxidation. The calculated contact potential for 100 and 230 A thick films is 0.81 ± 0.14 and 1.20 ± 0.11 V respectively. We report that 40% increase in the contact potential increases the growth rate for the first few mono layers of Nb2O5 from ∼2.18 to ∼2790 A/s. The growth rates of oxidation on these samples become similar after the oxide thicknesses of ∼25 A are reached. We report on the basis of our studies that a protective layer should be grown in situ to avoid oxidation of Nb thin film surface of Nb/Cu cavities.

  13. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill;

    2014-01-01

    oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...... process. The effect of anodizing parameters on the optical appearance of the anodized surface was studied. Characterization was performed using FIB-SEM and TEM. The surface appearance was analysed using spectrophotometry technique which measures the diffuse and total reflectance of the surface. The...... appearance of the anodized surface changed from dark to bright upon increasing the anodizing voltage. Particles in the FSP zone were partially or completely modified during the anodizing process and modified the morphology of the surrounding anodized Al matrix which has a clear influence on the mechanism of...

  14. CoPt patterned media in anodized aluminum oxide templates

    International Nuclear Information System (INIS)

    Patterned recording media consisting of a vertically aligned array of L10 phase CoPt nanowires embedded in a thin anodized aluminum oxide (AAO) template on silicon has been prepared. A sputter deposited thin film of aluminum on silicon was anodized and a CoPt magnetic alloy was electrodeposited into the pores of the AAO. The vertically aligned arrays of CoPt nanowires were about ∼100 nm tall with ∼20 nm average diameter. Since the CoPt nanowire array is laterally constrained by the surrounding AAO, the nanowire diameter is maintained without coarsening during the L10 phase conversion heat treatment at 700 deg. C. After annealing and conversion to the L10 phase, the ∼20 nm CoPt nanowires exhibit a large coercivity of ∼8 kOe measured in the in-plane and perpendicular directions

  15. Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization

    International Nuclear Information System (INIS)

    Many conventional anodic aluminum oxide (AAO) templates were performed using two-step direct current anodization (DCA) at low temperature (0–5 °C) to avoid dissolution effects. This process is relatively complex. Pulse anodization (PA) by switching between high and low voltages has been used to improve wear resistance and corrosion resistance in barrier type anodic oxidation of aluminum or hard anodization for current nanotechnology. However, there are only few investigations of AAO by hybrid pulse anodization (HPA) with normal-positive and small-negative voltages, especially for the one-step anodization, to shorten the running time. In this article, the effects of temperature and voltage modes (DCA vs. HPA) on one-step anodization have been investigated. The porous AAO films were fabricated using one-step anodization in 0.5 M oxalic acid in different voltage modes including the HPA and DCA and the environment temperature were varied at 5–15 °C. The morphology, pore size and oxide thickness of AAO films were characterized by high resolution field emission scanning electron microscope. The pore size distribution and circularity of AAO films can be quantitatively analyzed by image processing of SEM. The pore distribution uniformity and circularity of AAO by HPA is much better than DCA due to its effective cooling at relatively high temperatures. On the other hand, increasing environment temperature can increase the growth rate and enlarge the pore size of AAO films. The results of one-step anodization by hybrid pulse could promote the AAO quality and provide a simple and convenient fabrication compared to DCA.

  16. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  17. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl− ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl2/HClO/ClO−), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO− species led to the production of ClO3− and ClO4− ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment

  18. The key factor determining the anodic deposition of vanadium oxides

    International Nuclear Information System (INIS)

    This work demonstrates that anodic deposition of vanadium oxide (denoted as VOx.nH2O) can be considered as the chemical co-precipitation of V5+ and V4+ oxy-/hydroxyl species and the accumulation of V5+ species at the vicinity of electrode surface is the key factor for the successful anodic deposition of VOx.nH2O at a potential much more negative than the equilibrium potential of the oxygen evolution reaction (OER). The results of in situ UV-vis spectra show that the V4+/V5+ ratio near the electrode surface can be controlled by varying the applied potential, leading to different, three-dimensional (3D) nanostructures of VOx.nH2O. The accumulation of V5+ species due to V4+ oxidation at potentials ≥0.4 V (vs. Ag/AgCl) has been found to be very similar to the phenomenon by adding H2O2 in the deposition solution. The X-ray photoelectron spectroscopic (XPS) results show that all VOx.nH2O deposits can be considered as aggregates consisting of mixed V5+ and V4+ oxy-/hydroxyl species with the mean oxidation state significantly increasing with the applied electrode potential.

  19. Supported and inserted monomeric niobium oxide species on/in silica: a molecular picture.

    Science.gov (United States)

    Tranca, Diana C; Wojtaszek-Gurdak, Anna; Ziolek, Maria; Tielens, Frederik

    2015-09-14

    The geometry, energetic, and spectroscopic properties of molecular structures of silica-supported niobium oxide catalysts are studied using periodic density functional calculations (DFT) and compared with experimental data. The calculations are done for Nb oxide species inserted or grafted in/on an amorphous hydroxylated silica surface. Different positions of the Nb atom/atoms in the silica structure have been investigated. By means of DFT calculations the geometry and the degree of hydration of Nb oxide species with oxidation state +5 have been studied. The local Nb geometry depends on different parameters such as the number of Nb-O-Si groups vs. Nb-O-H groups, the formation of H bonds and the distance between Nb atoms. The interaction between the oxide and silanol groups occurs by formation of Si-O-Nb bonds with chemically and thermally stable Brønsted and Lewis acid sites. UV-Vis, reflection absorption infrared vibrational spectra (RAIRS) as well as various thermodynamic properties have also been investigated in order to get a better insight into the system studied and to provide support to possible experimental studies. PMID:26250394

  20. Properties of thin anodic oxide films on zirconium alloys

    International Nuclear Information System (INIS)

    Thin (0.1-0.2 μm) anodic oxide films were formed on zirconium, Zircaloy-2 and Zr-2.5 wt% Nb alloy specimens and examined by AC impedance spectroscopy (using both metal and aqueous electrolyte contacts), UV/VIS interferometry, and scanning electron microscopy (SEM). The SEM studies showed that the extent of oxide cracking was a function of the particular alloy and the electrolyte in which the oxide was formed. AC impedance spectroscopy showed that with metallic contacts a Young impedance behaviour was observed as a result of local conduction paths in the oxide film, probably resulting from second phase particles. The extent of cracking in the oxide was identified best from SEM and AC impedance measurements in aqueous electrolytes, and did not appear to contribute to the results obtained with metallic contacts. Large discrepancies between the apparent oxide thicknesses measured from AC impedance data obtained from measurements with aqueous electrolyte and liquid metal contacts, respectively, were shown to result from surface roughness and inadequate wetting by the liquid metals. These discrepancies could be eliminated by using evaporated platinum contacts, which also showed evidence for local conduction in the oxides. UV/VIS interferometry results for the oxide refractive indices and oxide thicknesses gave much scatter because of the small number of fringes available for the analysis and the difficulties in establishing the positions of interference minima with the same accuracy as was possible for interference maxima. The use of this combination of techniques still appears to be the best method for investigating the presence of conducting paths in thick porous oxide films on these alloys. Preference should be given to using evaporated rather than liquid metal contacts when studying such oxides. The advantages of easy removal for the liquid metal contacts often, however, outweigh the errors introduced by surface roughness when using them for repetitive measurements

  1. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas;

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and...... lamination will be described. Flexural strength of the reduced cermets measured using three-point bending configuration is 468±37MPa. The graded anode supports are characterized by scanning electron microscope observations, mercury porosimetry intrusion, and resistivity measurements, showing an adequate and...

  2. Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte

    Science.gov (United States)

    Liu, Z.; Thompson, G. E.

    2015-01-01

    A sequential breakdown anodizing conditions on cp-Ti in phosphoric acid has been investigated in the present study. Anodic oxide films were formed at 100, 150, and 200 V, examined by scanning electron microscopy, Raman spectroscopy, glow discharge optical emission spectrometry, and electrochemical impedance spectroscopy. A porous oxide texture was formed at each voltage. The thickness of anodic porous oxide increased with the increase of anodic voltage. Nano-particulates were formed around and within the pores, and the size of pores increased with increased voltage due to the expansion of particulates. The amorphous-to-crystalline transition was initiated during the film growth. The degree of crystallinity in the anodic oxide film fabricated at 200 V is more abundant than 150 and 100 V. Increased content of the phosphorus species was incorporated into the porous film with the increase of anodic voltage, stabilizing for the nanocrystals developed within the oxide.

  3. Composite anodes based on nanotube titanium oxide from electro-oxidation of Ti metal substrate

    Science.gov (United States)

    Pozio, A.; Carewska, M.; Mura, F.; D'Amato, R.; Falconieri, M.; De Francesco, M.; Appetecchi, G. B.

    2014-02-01

    In this manuscript is reported an investigation on lithium-ion battery composite anodes based on nanotube titanium oxide active material obtained from electrochemical oxidation of titanium metal substrates. Nanotube TiO2 showed a good nominal capacity, particularly taking into account that no electronic conductive additive as well as no binder was incorporated into the TiO2 material. The performance of nanotube titanium oxide anode tapes was compared with that of electrodes based on TiO2 both commercially available and obtained from laser pyrolysis. Cycling tests have indicated that the anodes based on electrosynthesized nanotube TiO2 exhibit the best performance in terms of capacity values and rate capability in combination with very good capacity retention and coulombic efficiency leveling 100% even at high rates.

  4. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  5. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  6. Growth and characterization of oxide films on zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Pressure tubes for CANDU reactors are made from extruded and cold-drawn Zr-2.5Nb alloy. Their microstructure consists of elongated α-Zr grains containing about 1 atom % Nb, surrounded by a thin network of metastable β-Zr phase, containing about 20 atom % Nb. Alloys of Zr-1Nb an Zr-20Nb were prepared, heat treated, and oxidized in 573 K water to produce bulk microstructures and oxides that would simulate those normally found on a much finer scale in pressure tubes. Oxidation of Zr-20Nb (β-Zr phase) was more rapid than that for the Zr-1Nb (predominantly α-Zr phase) but, despite this, the hydrogen absorption was considerably lower. During corrosion testing, the metastable β-Zr undergoes partial decomposition to omega phase. The oxides show contrasting morphologies in terms of crystallite size (20 to 60 nm for oxides on α-Zr versus about 15 nm for oxides on β-Zr). In addition to monoclinic ZrO2, there is evidence for either tetragonal ZrO2 or the mixed oxide, 6ZrO2Nb2O5 in the β-Zr oxide. Scanning transmission electron microscopy (STEM) imaging shows niobium associated with the oxide formed over the β-Zr phase in oxidized pressure tube material. Hydrogen depth profiling by 15N nuclear reaction analyses has been used to investigate the diffusion of hydrogen in these oxides. The oxide films were implanted with hydrogen and the progressive dispersion of the implanted hydrogen, as a result of annealing, was used to investigate hydrogen diffusion as a function of temperature. The nondispersive nature of the implanted hydrogen peaks in the Zr-1Nb oxide after annealing was suggestive of the presence of interconnected porosity in those oxides. The broadened peaks in the Zr-20Nb oxide after annealing are indicative of a normal diffusion process in a nonporous medium. The implications of these observations will be discussed in terms of corrosion and hydrogen uptake in Zr-2.5Nb pressure tubes

  7. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  8. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  9. Measurement of the high-field Q-drop in a high-purity large-grain niobium cavity for different oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Kneisel, Peter; gurevich, alex

    2007-06-01

    The most challenging issue for understanding the performance of superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio > 200) niobium is due to a sharp degradation (“Q-drop”) of the cavity quality factor Q0(Bp) as the peak surface magnetic field (Bp) exceeds about 90 mT, in the absence of field emission. In addition, a low-temperature (100 – 140 C) “in-situ” baking of the cavity was found to be beneficial in reducing the Q-drop. In this contribution, we present the results from a series of rf tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes, after initial buffered chemical polishing, such as anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C, with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system allows measuring the local temperature rise of the cavity outer surface due to rf losses, which gives information about the losses location, their field dependence and space distribution. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. These treatments increased the oxide thickness and oxygen concentration, measured on niobium samples which were processed with the cavity and were analyzed with Transmission Electron Microscope (TEM) and Secondary Ion Mass Spectroscopy (SIMS). Nevertheless, the performance of the cavity after air baking at 180 °C degraded significantly and the temperature maps showed high losses, uniformly distributed on the surface, which could be completely recovered only by a post-purification treatment at 1250 °C. A statistic of the position of the “hot-spots” on the

  10. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  11. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Science.gov (United States)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  12. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Probe anodic oxidation by atomic force microscope (AFM) is one of the most important techniques in fabricating nano structures and devices. The technique was further studied in this paper. By analyzing the distribution of the electric field on substrate surface the dependence of oxide characters on field was discussed. The impacts of various parameters on oxide fabrication were experimentally studied. Based on these studies, we realized the oxidative cutting and welding of carbon nanotube (CNT) by the AFM based oxidation technique and provided a novel technique for the assembly and fabrication of CNT based nano devices.

  13. The Electrical and Mechanical Properties of Porous Anodic 6061-T6 Aluminum Alloy Oxide Film

    OpenAIRE

    Tsung-Chieh Cheng; Chu-Chiang Chou

    2015-01-01

    The properties of the growth of the 6061-T6 aluminum alloy oxide were studied using sulfuric acid anodization. The parameters for the manufacturing process include electrolyte categories, electrolyte concentration, and operating voltages. The results showed that the aluminum oxides obtained by anodization process are mainly amorphous structure and the anodic current density is an important factor affecting the rate of response for oxygen and aluminum ions in barrier. In this experiment, polis...

  14. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi2 coating prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Graphical abstract: Dense MoSi2 coating was successfully prepared on the Niobium substrate by spark plasma sintering (SPS). The MoSi2 coating shows excellent oxidation resistance at high temperatures of 1200–1500 °C. - Highlights: • A MoSi2 coating on Nb substrate was prepared by spark plasma sintering (SPS). • Phase and microstructure of the MoSi2 coating were studied. • Oxidation behavior of MoSi2 coating at high temperatures from 1200 °C to 1500 °C in air was investigated. • MoSi2 coating prepared by spark plasma sintering (SPS) shows excellent high temperature oxidation resistance. • The interdiffusion behavior between MoSi2 coating and Nb at high temperatures was investigated. - Abstract: In order to protect Niobium material from oxidation, MoSi2 coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi2 coating was investigated in air over the temperature range of 1200–1500 °C. The interfacial diffusion between MoSi2 coating and Niobium substrate was also examined. Dense MoSi2 coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi2 coating. Cracking and spallation of the SiO2 scale did not occur at test temperatures. Two intermediate phases—(Nb,Mo)5Si3 and Nb5Si3 phases, were detected in the boundary of MoSi2 coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi2, (Mo,Nb)5Si3 and Nb5Si3 in turn

  15. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.;

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not...

  16. Optical Anisotropy and Porosity of Anodic Aluminum Oxide Characterized by Spectroscopic Ellipsometry

    NARCIS (Netherlands)

    Kooij, E. Stefan; Wormeester, Herbert; Galca, Aurelian C.; Poelsema, Bene

    2003-01-01

    Anodic oxidation of aluminum results in a mesoporous oxide film. The thin-film geometry of our samples enables straightforward optical modeling of ellipsometry spectra of fully anodized films, using only three physically relevant parameters. The system of randomly distributed, but aligned cylindrica

  17. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    M. Ovundur

    2015-03-01

    Full Text Available This study was initiated to compare the tribological performances of a 5754 quality aluminum alloy after hard anodic oxidation and micro arc oxidation processes. The structural analyses of the coatings were performed using XRD and SEM techniques. The hardness of the coatings was determined using a Vickers micro-indentation tester. Tribological performances of the hard anodized and micro arc oxidized samples were compared on a reciprocating wear tester under dry sliding conditions. The dry sliding wear tests showed that the wear resistance of the oxide coating generated by micro arc oxidation is remarkably higher than that of the hard anodized alloy.

  18. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    Science.gov (United States)

    Rafailović, Lidija D; Gammer, Christoph; Rentenberger, Christian; Trišović, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  19. Thin film fuel cells with vanadium oxide anodes: Strain and stoichiometry effects

    International Nuclear Information System (INIS)

    Highlights: • Vanadium oxides of varying stoichiometry have been studied as anodes in thin film solid oxide fuel cells. • V2O3 and V2O5 anodes show superior performance. • Calculated thermal strain and phase stability provide insights into experimental observations. - ABSTRACT: Thin film solid oxide fuel cells incorporating vanadium oxide anodes having open circuit potential of 1 V with hydrogen fuel have been realized. The as-deposited anode stoichiometry was varied by choice of growth conditions of vanadium oxide and a striking correlation to fuel cell performance (open circuit potential and peak power density) is observed. Possible mechanisms leading to the experimental observations based on calculated thermodynamic phase stability under fuel cell operating environments, spectroscopic analysis of the anodes and strain-related arguments are presented

  20. Influence of precipitating agent in the preparation of hydrous niobium oxide by the method of homogeneous precipitation

    International Nuclear Information System (INIS)

    This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG), surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m2 g-1. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties. (author)

  1. Secondary electron yield and Auger electron spectroscopy measurements on oxides, carbide, and nitride of niobium

    International Nuclear Information System (INIS)

    Secondary electron yield measurements before and after Ar ion sputtercleaning were made on Nb and Nb compounds of interest for rf superconductingcavities. Total secondary electron yields (sigma) for primary energies 20--1500 eV were measured for solid Nb (sigma/sub max/ = 1.3 at 300 eV), anodized Nb2O5 (sigma/sub max/ = 1.2 at 300 eV), and powders of Nb(sigma/sub max/ = 1.0 at 400 eV), NbO (sigma/sub max/ = 0.9 at 400 eV), NbO2 (sigma/sub max/ = 1.0 at 400 eV), Nb2O5 (sigma/sub max/ = 0.95 at 400 eV), NbC(sigma/sub max/ = 0.8 at 400 eV), and NbN (sigma/sub max/ = 0.8 at 500 eV). Determinations were made for Auger elemental sensitivities, and the relationship between Auger peak heights and oxide stoichiometry is discussed. The sputter etch rate of anodized Nb2O5 was measured by depth profiling anodic coatings of known thickness

  2. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2014-01-01

    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  3. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles

    Directory of Open Access Journals (Sweden)

    Leticia Boldrin MESTIERI

    2014-12-01

    Full Text Available Objective Mineral Trioxide Aggregate (MTA is composed of Portland Cement (PC and bismuth oxide (BO. Replacing BO for niobium oxide (NbO microparticles (Nbµ or nanoparticles (Nbη may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1 PC; 2 White MTA; 3 PC+30% Nbµ; 4 PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85 were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA.

  4. Fabrication of YBCO nanowires with anodic aluminum oxide (AAO) template

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, Sedigheh, E-mail: dadras@alzahra.ac.ir; Aawani, Elaheh

    2015-10-15

    We have fabricated YBCO nanowires by using anodic aluminum oxide (AAO) template and sol–gel method, to investigate the fundamental properties of the one-dimensional nanostructure YBCO high-temperature superconductor and enhance its applications. The field-emission scanning electron microscopy and X-ray diffraction pattern results have shown forming of Y-123 nanowires in the template. As an outcome, the YBCO nanowires, prepared by dipping AAO template into YBCO sol method, have average diameter of about 38 nm and length of 1 μm; this is an optimum nanowire sample with larger diameter and length. The resistance–temperature measurement indicates that the onset critical temperature of these samples occurs at 91 K, and the resistance of the optimum sample at onset transition is 10 times lower than the other sample.

  5. Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

    CERN Document Server

    Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2008-01-01

    PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the template ; the PLGA solution was then cast on it ; the vacuum air-extraction process was applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.

  6. Investigation of top-emitting OLEDs using molybdenum oxide as anode buffer layer

    Institute of Scientific and Technical Information of China (English)

    LIN Hui; YU Jun-sheng; ZHANG Wei

    2012-01-01

    A high-effective bottom anode is essential for high-performance top-emitting organic light-emitting devices (OLEDs).In this paper,Ag-based top-emitting OLEDs are investigated.Ag has the highest reflectivity for visible light among all metals,yet its hole-injection properties are not ideal for anodes of top-emitting OLED.The performance of the devices is significantly improved using the molybdenum oxide as anode buffer layer at the surface of Ag.By introducing the molybdenum oxide,the hole injection from Ag anodes into top-emitting OLED is largely enhanced with rather high reflectivity retained.

  7. Macrokinetic relationships between anodic processes in chlorine electrolysis on ruthenium-titanium oxide anodes

    International Nuclear Information System (INIS)

    Effect of porosity on kinetics of the main (chlorine evolution) and side (oxygen evolution and anodic dissolution of ruthenium dioxide) reactions for chlorine electrolysis conditions has been analyzed. Making allowance for chlorine hydrolysis secondary reaction, the distribution of chlorine concentration, solution pH and current densities of the main and side processes over the porous anode depth, have been found. It is shown that solution acidification in the anode pores due to chlorine hydrolysis can bring about replacement of oxygen evolution and ruthenium dioxide dissolution side reactions toward the porous anode external sides thus affecting its selectivity and corrosion resistance

  8. Fundamental problems with conducting oxides used as anodes

    International Nuclear Information System (INIS)

    Some problems encountered with conducting oxides when used for oxygen and chlorine anodic evolution are outlined and discussed. Also described are the classes of oxides under investigation, their applications and the immediate interests in relation to the technological demands; the preparation procedure is reviewed with emphasis on the more significant parameters for the surface characterization. These include BET surface area, morphology, chemical composition, conductivity, response to pH, point of zero charge, proton exchange ability, electrochemical 'spectrum' and electrochemical active surface area. Examples are given for RuO2, IrO2, NiCo2O4 and Co3O4. The electrocatalytic activity is also discussed by illustrating the effect of morphology and porosity, the anomalies in the determination of the reaction orders, the retarding effect of acidity in Cl2 evolution, the misleading Tafel slope due to diffusion of products with active electrodes. A review on the present understanding of the factors determining the effect of the nature of the oxides on the electrocatalytic activity is then made. (C.L.B.)

  9. METHOD OF PRODUCING NIOBIUM METAL

    Science.gov (United States)

    Wilhelm, H.A.; Stevens, E.R.

    1960-05-24

    A process is given for preparing ductile niobium metal by the reduction of niobium pentoxide with carbon. The invention resides in the addition, to the reaction mass, of from 0.05 to 0.4 atom of titanium (in the form of metallic titanium, titanium carbide, and/or titanium oxide) per one mole of niobium pentoxide. The mixture is heated under subatmospheric pressure to above 1300 deg C but below the melting point of niobium, and the carbon- and oxygen-free niobium sponge obtained is cooled under reduced pressure.

  10. Niobium and hafnium grown on porous membranes

    International Nuclear Information System (INIS)

    In this work we report on a method for fabricating highly ordered nanostructures of niobium and hafnium metals by physical vapour deposition using two different templates: anodized aluminum oxide membranes (AAO) and zirconium onto AAO membranes (Zr/AAO). The growth mechanism of these metal nanostructures is clearly different depending on the material used as a template. A different morphology was obtained by using AAO or Zr/AAO templates: when the metal is deposited onto AAO membranes, nanospheres with ordered hexagonal regularity are obtained; however, when the metal is deposited onto a Zr/AAO template, highly ordered nanocones are formed. The experimental approach described in this work is simple and suitable for synthesizing nanospheres or nanoholes of niobium and hafnium metals in a highly ordered structure.

  11. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  12. Influence of addition of calcium oxide on physicochemical properties of Portland cement with zirconium or niobium oxide

    Directory of Open Access Journals (Sweden)

    Mario Tanomaru-Filho

    2015-01-01

    Full Text Available Context: Calcium oxide (CaO may be added to mineral trioxide aggregate (MTA or Portland cement (PC to improve physicochemical and biological properties. Aims: To evaluate the physicochemical properties of PC associated with radiopacifiers and CaO. Materials and Methods: MTA Angelus, PC + 30% zirconium oxide (Zr, or 30% niobium oxide (Nb associated with 10 or 20% of CaO were evaluated. Gilmore needles were used to evaluate initial and final setting time. Compressive strength was evaluated after the periods of 24 hours and 21 days. pH was analyzed after 3, 12, 24 hours, 7, 14, 21 days. Solubility and flow tests were performed based on the ISO 6876. The data obtained were submitted to analysis of variance and Tukey tests (P ≤ 0.05. Results: The associations with 10% CaO showed greater strength that the associations with 20% CaO. The shortest initial setting time was observed for the association PC + Zr + 20% CaO and MTA. All the cements presented alkaline pH. The flow of all cements was similar. The highest solubility was found in the associations with 20% CaO. Conclusion: The addition of CaO to PC favored the alkaline property and the PC + Zr + 20% CaO presented setting time similar to MTA.

  13. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi2 coating prepared by spark plasma sintering

    Science.gov (United States)

    Yan, JianHui; Wang, Yi; Liu, LongFei; Wang, Yueming

    2014-11-01

    In order to protect Niobium material from oxidation, MoSi2 coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi2 coating was investigated in air over the temperature range of 1200-1500 °C. The interfacial diffusion between MoSi2 coating and Niobium substrate was also examined. Dense MoSi2 coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi2 coating. Cracking and spallation of the SiO2 scale did not occur at test temperatures. Two intermediate phases-(Nb,Mo)5Si3 and Nb5Si3 phases, were detected in the boundary of MoSi2 coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi2, (Mo,Nb)5Si3 and Nb5Si3 in turn.

  14. Characterization of Human Gingival Fibroblasts on Zirconia Surfaces Containing Niobium Oxide

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2015-09-01

    Full Text Available It was indicated that tetragonal zirconia polycrystal (TZP containing yttria (Y2O3 and niobium oxide (Nb2O5 ((Y,Nb-TZP could be an adequate dental material to be used at esthetically important sites. The (Y,Nb-TZP was also proved to possess its osteogenic potential comparable with those conventional dental implant material, titanium (Ti. The objective of the current study was to characterize cellular response of human gingival fibroblasts (HGFs to smooth and rough surfaces of the (Y,Nb-TZP disc, which were obtained by polishing and sandblasting, respectively. Various microscopic, biochemical, and molecular techniques were used to investigate the disc surfaces and cellular responses for the experimental (Y,Nb-TZP and the comparing Ti groups. Sandblasted rough (Y,Nb-TZP (Zir-R discs had the highest surface roughness. HGFs cultured on polished (Y,Nb-TZP (Zir showed a rounded cell morphology and light spreading at 6 h after seeding and its proliferation rate significantly increased during seven days of culture compared to other surfaces. The mRNA expressions of type I collagen, integrin α2 and β1 were significantly stimulated for the Zir group at 24 h after seeding. The current findings, combined with the previous results, indicate that (Y,Nb-TZP provides appropriate surface condition for osseointegration at the fixture level and for peri-implant mucosal sealing at the abutment level producing a suitable candidate for dental implantation with an expected favorable clinical outcome.

  15. Direct methanol utilization in intermediate temperature liquid-tin anode solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Modification of Sn-based anode with Cu/SDC improves power density. • Cu and SDC improve wetting of Sn on YSZ and reduce anode polarization resistance. • Carbon formation has not been observed in SOFCs containing tin-based anodes. • Micro-channel structure in the anode reduces gas conversion resistance. - Abstract: Direct utilization of methanol in liquid tin anode solid oxide fuel cells has been experimentally demonstrated at 1023 K. A Cu and SDC modified Sn anode solid oxide fuel cell had a maximum power density of 259.2 mW/cm2 during operation on methanol. Carbon deposition was not observed in the Raman spectra of the post-test anodes. Electrochemical impedance spectroscopy indicated that gas conversion resistance increased when using methanol instead of hydrogen. The micro-channel architecture of the electrode mitigated the increase. Scanning electron microscopy images showed that addition of Cu and Sn improved wetting of Sn on YSZ and reduced anode polarization resistance. The anode gases were analyzed by mass spectroscopy and a mechanism for electrochemical oxidation of methanol has been proposed

  16. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  17. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela;

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...

  18. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  19. A history of niobium

    International Nuclear Information System (INIS)

    Niobium is a member of the group known as refractory metals composed of the ten metals tungsten, molybdenum, niobium, tantalum, titanium, zirconium, hafnium, vanadium, rhenium, and chromium, located near each other in the Periodic Table. All these metals have high melting points. For example, tungsten melts at 3380 C and niobium at 2487 C. They are mainly used as alloying elements in steel but also in the elemental form. Some resist high temperature without oxidation, and some are very hard, having excellent wear and abrasion resistance. Information about the history and technology of this group of metals is available in a number of monographs and review articles. (orig.)

  20. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    Science.gov (United States)

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-12-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing.

  1. Electrochemical micromachining of titanium using laser oxide film lithography: excimer laser irradiation of anodic oxide

    Energy Technology Data Exchange (ETDEWEB)

    Chauvy, P.-F.; Hoffmann, P.; Landolt, D

    2003-04-30

    In electrochemical micromachining using oxide film laser lithography (OFLL), the pattern is formed by laser irradiation of an anodic oxide film. On the irradiated areas of the film the underlying metal is then selectively dissolved in an appropriate electrolyte, the non-irradiated oxide acting as a mask. The physical interactions of 308 nm XeCl excimer laser radiation with anodically formed oxide films on titanium were studied using single pulse irradiation at varying fluence and two different pulse durations. The irradiated surfaces were characterized by secondary electron microscopy (SEM), Auger electron spectroscopy (AES) profiling and X-ray-induced photoelectron spectroscopy (XPS), additionally, their electrochemical dissolution behaviour in an electropolishing electrolyte was evaluated. Numerical simulation was applied to the estimation of the temperature profiles at the surface of the irradiated samples. Results suggest that depending on irradiation conditions different mechanisms may be responsible for the loss of the protective properties of the oxide film. The creation of a Ti(O) solid solution resulting from diffusion of oxygen from the film into the underlying molten metal was shown to be effective at high fluences. The loss of protective properties observed at lower fluences was tentatively attributed to the creation of ionic defects in the oxide by a photolytic process.

  2. Electrochemical synthesis of niobium methylate

    International Nuclear Information System (INIS)

    The formation of niobium(V) methylate in methanol against the background of lithium chloride is studied. It is found that, in the anodic dissolution of niobium in the diaphragm-free electrolytic tank, formed niobium(V) methylate is partially reduced to the four-valent state at the cathode. In order to suppress the reduction of Nb(V), an electrolytic tank was designed, which enabled one to separate the anolyte from the catholyte using the difference between their densities. Niobium methylate was not found in the anolyte; however, it formed as a result of mixing the anolyte with the catholyte after completion of electrolysis. The current efficiency of niobium methylate of 96-97% was achieved. Possible mechanism of the process is discussed

  3. Passive behavior of niobium and niobium-titanium alloys in sulfuric acid solutions

    International Nuclear Information System (INIS)

    The electrochemical behavior of niobium and niobium-titanium alloys has been investigated in dearated aqueous 0.1 mol/L H2SO4 solutions, at 25 C. The studies were carried out through cyclic voltammetry, potentiostatic technique and electrochemical impedance spectroscopy. The analyses of cyclic voltammograms indicate that the metal and alloys behave like valve metals and a passivating film grows on the metal surface during the anodic polarization. The corrosion current density for Nb and Nb-47 % Ti alloy decreases as the potential increases. With Nb-2% Ti alloy an increase in steady-state current density with the potential is observed. The passivating film resistance for Nb and alloys varies between 5 and 50 MΩ, depending on the final potential for the formation of oxide film. From the impedance data it was possible to propose the existence of a duplex film on Nb-2 % Ti surface

  4. Anode shroud for off-gas capture and removal from electrolytic oxide reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, James L.; Barnes, Laurel A.; Wiedmeyer, Stanley G.; Williamson, Mark A.; Willit, James L.

    2014-07-08

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies and an anode shroud for each of the anode assemblies. The anode shroud may be used to dilute, cool, and/or remove off-gas from the electrolytic oxide reduction system. The anode shroud may include a body portion having a tapered upper section that includes an apex. The body portion may have an inner wall that defines an off-gas collection cavity. A chimney structure may extend from the apex of the upper section and be connected to the off-gas collection cavity of the body portion. The chimney structure may include an inner tube within an outer tube. Accordingly, a sweep gas/cooling gas may be supplied down the annular space between the inner and outer tubes, while the off-gas may be removed through an exit path defined by the inner tube.

  5. Oxidation and interdiffusion behavior of Niobium substrate coated MoSi{sub 2} coating prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Yan, JianHui, E-mail: jhyan@hnust.edu.cn; Wang, Yi; Liu, LongFei; Wang, Yueming

    2014-11-30

    Graphical abstract: Dense MoSi{sub 2} coating was successfully prepared on the Niobium substrate by spark plasma sintering (SPS). The MoSi{sub 2} coating shows excellent oxidation resistance at high temperatures of 1200–1500 °C. - Highlights: • A MoSi{sub 2} coating on Nb substrate was prepared by spark plasma sintering (SPS). • Phase and microstructure of the MoSi{sub 2} coating were studied. • Oxidation behavior of MoSi{sub 2} coating at high temperatures from 1200 °C to 1500 °C in air was investigated. • MoSi{sub 2} coating prepared by spark plasma sintering (SPS) shows excellent high temperature oxidation resistance. • The interdiffusion behavior between MoSi{sub 2} coating and Nb at high temperatures was investigated. - Abstract: In order to protect Niobium material from oxidation, MoSi{sub 2} coating was prepared on the Niobium substrate by spark plasma sintering. Oxidation behavior of MoSi{sub 2} coating was investigated in air over the temperature range of 1200–1500 °C. The interfacial diffusion between MoSi{sub 2} coating and Niobium substrate was also examined. Dense MoSi{sub 2} coating was successfully prepared using spark plasma sintering. The porosities of top and side coatings are about 5.5% and 6.4%, respectively. No cracks were present in the MoSi{sub 2} coating. Cracking and spallation of the SiO{sub 2} scale did not occur at test temperatures. Two intermediate phases—(Nb,Mo){sub 5}Si{sub 3} and Nb{sub 5}Si{sub 3} phases, were detected in the boundary of MoSi{sub 2} coating and Nb substrate. The growth of the reaction layer was dominated by the diffusion of Si toward the Nb substrate and obeyed a parabolic rate law. A multi-layered structural coating formed on Nb substrate, which consisted of MoSi{sub 2}, (Mo,Nb){sub 5}Si{sub 3} and Nb{sub 5}Si{sub 3} in turn.

  6. New Niobium Capacitors with Stable Electrical Parameters

    OpenAIRE

    Lohwasser, W.; M. Stenzel; Zillgen, H.

    2002-01-01

    The replacement of the anode material in tantalum capacitors by a new generation of high CV niobium powders offers the possibility to get an economical alternative to tantalum for a wide range of applications. Due to the high CV potential of niobium powder there is also an alternative to low voltage aluminum electrolytic capacitors. We developed a new niobium capacitor which shows stable electrical values. By optimizing the structure of the dielectric and the cathodic layers as well as the pr...

  7. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism

    OpenAIRE

    Annabel Fernandes; Catarina Oliveira; MARIA J PACHECO; Lurdes Ciríaco; Ana Lopes

    2014-01-01

    The anodic oxidation of oxytetracycline was performed with success using as anode a boron-doped diamond electrode. The experiments were conducted in batch mode, using two different electrochemical cells: an up-flow cell, with recirculation, that was used to evaluate the influence of recirculation flow rate; and a stirred cell, used to determine the influence of the applied current density. Besides oxytetracyclin electrodegradation rate and mineralization extent, oxidation by-products were als...

  8. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuya [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan)], E-mail: kiku@eng.hokudai.ac.jp; Sakairi, Masatoshi [Graduate School of Engineering, Hokkaido University, N13-W8, Kita-Ku, Sapporo 060-8628 (Japan); Takahashi, Hideaki [Asahikawa National College of Technology, Syunkohdai, 2-2, 1-6, Asahikawa 071-8142 (Japan)

    2009-11-30

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-{mu}m wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  9. Growth of porous type anodic oxide films at micro-areas on aluminum exposed by laser irradiation

    International Nuclear Information System (INIS)

    Aluminum covered with pore-sealed anodic oxide films was irradiated with a pulsed Nd-YAG laser to remove the oxide film at micro-areas. The specimen was re-anodized for long periods to examine the growth of porous anodic oxide films at the area where substrate had been exposed by measuring current variations and morphological changes in the oxide during the re-anodizing. The chemical dissolution resistance of the pore-sealed anodic oxide films in an oxalic acid solution was also examined by measuring time-variations in rest potentials during immersion. The resistance to chemical dissolution of the oxide film became higher with increasing pore-sealing time and showed higher values at lower solution temperatures. During potentiostatic re-anodizing at five 35-μm wide and 4-mm long lines for 72 h after the film was removed the measured current was found to increase linearly with time. Semicircular columnar-shaped porous type anodic oxide was found to form during the re-anodizing at the laser-irradiated area, and was found to grow radially, thus resulting in an increase in the diameter. After long re-anodizing, the central and top parts of the oxide protruded along the longitudinal direction of the laser-irradiated area. The volume expansion during re-anodizing resulted in the formation of cracks, parallel to the lines, in the oxide film formed during the first anodizing.

  10. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    Science.gov (United States)

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. PMID:26478387

  11. The Microstructure and Capacitance Characterizations of Anodic Titanium Based Alloy Oxide Nanotube

    OpenAIRE

    Po Chun Chen; Sheng Jen Hsieh; Chien Chon Chen; Jun Zou

    2013-01-01

    This paper presents a simple anodization process to fabricate ordered nanotubes (NTs) of titanium and its alloys (Ti-Mo and Ti-Ta). TiO2, MoO3, and Ta2O5 are high dielectric constant materials for ultracapacitor application. The anodic titanium oxide contains a compact layer on the NT film and a barrier layer under the NT film. However, the microstructure of oxide films formed by anodic Ti-Mo and Ti-Ta alloys contains six layers, including a continuous compact layer, a continuous partial poro...

  12. Photocatalytic activity of porous TiO2 films prepared by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; WANG Tao; WANG Ling

    2007-01-01

    Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate.The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition.

  13. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes.

    Science.gov (United States)

    Yu, Seung-Ho; Lee, Soo Hong; Lee, Dong Jun; Sung, Yung-Eun; Hyeon, Taeghwan

    2016-04-01

    Developing high-energy-density electrodes for lithium ion batteries (LIBs) is of primary importance to meet the challenges in electronics and automobile industries in the near future. Conversion reaction-based transition metal oxides are attractive candidates for LIB anodes because of their high theoretical capacities. This review summarizes recent advances on the development of nanostructured transition metal oxides for use in lithium ion battery anodes based on conversion reactions. The oxide materials covered in this review include oxides of iron, manganese, cobalt, copper, nickel, molybdenum, zinc, ruthenium, chromium, and tungsten, and mixed metal oxides. Various kinds of nanostructured materials including nanowires, nanosheets, hollow structures, porous structures, and oxide/carbon nanocomposites are discussed in terms of their LIB anode applications. PMID:26627913

  14. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author)

  15. Electro-Oxidation of Concentrated Ce(Ⅲ) at Carbon Felt Anode in Nitric Acid Media

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Electro-oxidation of Ce( Ⅲ) to Ce( Ⅳ ) in parallel plate flow type electrolyzer divided with cation exchange membrane was carried out in nitric acid media at carbon felt anode under galvanostatic conditions. Carbon felt was used as an anode for its high specific surface area and high oxygen evolution overpotential. Pt coated Ti plates were used as cathcurrent efficiency (92%) until about 80% of Ce( Ⅲ) was oxidized. Then, oxygen evolution, accompanied by terminal voltage jump, took place, lowering current efficiency. Ce( Ⅲ ) was oxidized up to 90% with current efficiency of 62%. In this mode, strong carbon felt anode oxidation was observed. The wear out of carbon felt was 46% in six consequent runs (6 h of operation). After each run, carbon felt surface had to be renewed with slightly alkaline solution to remove carbon oxidation products and ensure regular operational conditions. When anode surface was blocked, oxygen evolution took place from the beginning of electrolysis due to higher actual current density. The wear out of carbon felt anode could be minimized by means of oxygen evolution prevention. In the case when electrolysis had been stopped before oxygen evolution started (at Ce( Ⅳ ) conversion of about 80% ), the wear out of anode was less than 2% during 6 consequent runs (4 h of operation).

  16. Efficient processing of reaction-sintered silicon carbide by anodically oxidation-assisted polishing

    Science.gov (United States)

    Tu, Qunzhang; Shen, Xinmin; Zhou, Jianzhao; He, Xiaohui; Yamamura, Kazuya

    2015-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a promising optical material for the space telescope systems. Anodically oxidation-assisted polishing is a method to machine RS-SiC. The electrolyte used in this study is a mixture of hydrogen peroxide (H2O2) and hydrochloric acid (HCl), and the oxidation potential has two modes: constant potential and high-frequency-square-wave potential. Oxide morphologies are compared by scanning electron microscope/energy dispersive x-ray spectroscopy and scanning white-light interferometer. The results indicate that anodic oxidation under constant potential can not only obtain a relatively smooth surface but also be propitious to obtain high material removal rate. The oxidation depth in anodic oxidation under constant potential is calculated by comparing surface morphologies before and after hydrofluoric acid etching. The theoretical oxidation rate is 5.3 nm/s based on the linear Deal-Grove model. Polishing of the oxidized RS-SiC is conducted to validate the machinability of the oxide layer. The obtained surface roughness root-mean-square is around 4.5 nm. Thus, anodically oxidation-assisted polishing can be considered as an efficient method, which can fill the performance gap between the rough figuring and fine finishing of RS-SiC. It can improve the machining quality of RS-SiC parts and promote the application of RS-SiC products.

  17. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes

    Science.gov (United States)

    Jiao, Lian-Sheng; Liu, Jin-Yu; Li, Hong-Yan; Wu, Tong-Shun; Li, Fenghua; Wang, Hao-Yu; Niu, Li

    2016-05-01

    We report a new method for synthesizing reduced graphene oxide (rGO)-porous silicon composite for lithium-ion battery anodes. Rice husks were used as a as a raw material source for the synthesis of porous Si through magnesiothermic reduction process. The as-obtained composite exhibits good rate and cycling performance taking advantage of the porous structure of silicon inheriting from rice husks and the outstanding characteristic of graphene. A considerably high delithiation capacity of 907 mA h g-1 can be retained even at a rate of 16 A g-1. A discharge capacity of 830 mA h g-1 at a current density of 1 A g-1 was delivered after 200 cycles. This may contribute to the further advancement of Si-based composite anode design.

  18. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Inverted polymer solar cells with molybdenum oxide (MoO3) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO3 to Al is formed at MoO3/Al interfaces due to electron transfer from Al to MoO3 while this phenomenon cannot be observed at MoO3/Ag interfaces. It is speculated that the electric field at the MoO3/Al interface would hinder hole extraction, and hence reduce the short-circuit current

  19. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  20. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongya; Dong, Guangneng, E-mail: donggn@mail.xjtu.edu.cn; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-30

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm{sup 2} for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  1. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    Science.gov (United States)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  2. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  4. The simulation of the temperature effects on the microhardness of anodic alumina oxide layers

    Directory of Open Access Journals (Sweden)

    M. Gombár

    2014-01-01

    Full Text Available In order to improve the mechanical properties of the layer deposited by anodic oxidation of aluminum on the material EN AW-1050 H24, in the contribution was investigated the microhardness of the deposited layer as a function of the physic-chemical factors affecting in the process of anodic oxidation at the constant anodic current density J = 3 A.dm-2 in electrolyte formed by sulfuric acid and oxalic acid, with the emphasis on the influence of electrolyte temperature in the range – 1,78 °C to 45,78 °C. The model of the studied dependence was compiled based on mathematical and statistical analysis of matrix from experimental obtained data from composite rotation plan of experiment with five independent variable factors (amount of sulfuric acid in the electrolyte, the amount of oxalic acid in the electrolyte, electrolyte, anodizing time and applied voltage.

  5. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  6. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    Science.gov (United States)

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness. PMID:26726615

  7. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells

    Science.gov (United States)

    Park, Jung Hoon; Han, Seung Min; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won

    2016-05-01

    The impact of a nanostructured Ni-yttria-stabilized zirconia (Ni-YSZ) anode on low-temperature solid oxide fuel cell (LT-SOFC) performance is investigated. By modifying processing techniques for the anode support, anode-supported SOFCs based on thin-film (∼1 μm) electrolytes (TF-SOFCs) with and without the nanostructured Ni-YSZ (grain size ∼100 nm) anode are fabricated and a direct comparison of the TF-SOFCs to reveal the role of the nanostructured anode at low temperature is made. The cell performance of the nanostructured Ni-YSZ anode significantly increases as compared to that of the cell without it, especially at low temperatures (500 °C). The electrochemical analyses confirm that increasing the triple-phase boundary (TPB) density near the electrolyte and anode interface by the particle-size reduction of the anode increases the number of sites available for charge transfer. Thus, the nanostructured anode not only secures the structural integrity of the thin-film components over it, it is also essential for lowering the operating temperature of the TF-SOFC. Although it is widely considered that the cathode is the main factor that determines the performance of LT-SOFCs, this study directly proves that anode performance also significantly affects the low-temperature performance.

  8. Modelling the growth process of porous aluminum oxide film during anodization

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2015-11-01

    Currently it has become important for the development of metamaterials and nanotechnology to obtain regular self-assembled structures. One such structure is porous anodic alumina film that consists of hexagonally packed cylindrical pores. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. In present work we consider those effects. And as a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process.

  9. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium – the contribution of the oxidation effect

    Directory of Open Access Journals (Sweden)

    Wurihan

    2015-05-01

    Full Text Available Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  10. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  11. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    International Nuclear Information System (INIS)

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  12. Electro-oxidation of perfluorooctanoic acid by carbon nanotube sponge anode and the mechanism.

    Science.gov (United States)

    Xue, An; Yuan, Zi-Wen; Sun, Yan; Cao, An-Yuan; Zhao, Hua-Zhang

    2015-12-01

    As an emerging persistent organic pollutant (POPs), perfluorooctanoic acid (PFOA) exists widely in natural environment. It is of particular significance to develop efficient techniques to remove low-concentration PFOA from the contaminated waters. In this work, we adopted a new material, carbon nanotube (CNT) sponge, as electrode to enhance electro-oxidation and achieve high removal efficiency of low-concentration (100μgL(-1)) PFOA from water. CNT sponge was pretreated by mixed acids to improve the surface morphology, hydrophilicity and the content of carbonyl groups on the surface. The highest removal efficiencies for low-concentration PFOA electrolyzed by acid-treated CNT sponge anode proved higher than 90%. The electro-oxidation mechanism of PFOA on CNT sponge anode was also discussed. PFOA is adsorbed on the CNT sponge rapidly increasing the concentration of PFOA on anode surface. When the potential on the anode is adjusted to more than 3.5V, the adsorbed PFOA undergoes electrochemically oxidation and hydrolysis to produce shorter-chain perfluorocarboxylic acids with less CF2 unit. The efficient electro-oxidation of PFOA by CNT sponge anode is due to the combined effect of adsorption and electrochemical oxidation. These findings provide an efficient method to remove actual concentration PFOA from water. PMID:26172515

  13. Microstructural coarsening effects on redox instability and mechanical damage in solid oxide fuel cell anodes

    Science.gov (United States)

    Abdeljawad, F.; Haataja, M.

    2013-11-01

    In state-of-the-art high temperature solid oxide fuel cells (SOFCs), a porous composite of nickel and yttria stabilized zirconia (Ni/YSZ) is employed as the anode. The rapid oxidation of Ni into NiO is regarded as the main cause of the so-called reduction-oxidation (redox) instability in Ni/YSZ anodes, due to the presence of extensive bulk volume changes associated with this reaction. As a consequence, the development of internal stresses can lead to performance degradation and/or structural failure. In this study, we employ a recently developed continuum formalism to quantify the mechanical deformation behavior and evolution of internal stresses in Ni/YSZ porous anodes due to re-oxidation. In our approach, a local failure criterion is coupled to the continuum framework in order to account for the heterogeneous damage accumulation in the YSZ phase. The hallmark of our approach is the ability to track the spatial evolution of mechanical damage and capture the interaction of YSZ damaged regions with the local microstructure. Simulation results highlight the importance of the microstructure characterized by Ni to YSZ particle size ratio on the redox behavior and damage accumulation in as-synthesized SOFC anode systems. Moreover, a redox-strain-to-failure criterion is developed to quantify the degree by which coarsened anode microstructures become more susceptible to mechanical damage during re-oxidation.

  14. Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Li, Ying [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Li, Jun [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Fu, Xiaolong; Li, Changyi [Stomatological Hospital, Tianjin Medical University, Tianjin 300070 (China); Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Liu, Shimin [Business School, Tianjin University of Commerce, Tianjin 300134 (China); Guo, Litong [China University of Mining and Technology, Xuzhou 221116 (China); Xin, Shigang [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Liang, Chunyong, E-mail: liangchunyong@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Li, Haipeng, E-mail: lhpcx@163.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2014-07-01

    Anodic oxidation was applied to produce a homogeneous and uniform array of nanotubes of about 70 nm on the titanium (Ti) surface, and then, the nanotubes were irradiated by ultraviolet. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodic oxidized and UV irradiated Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for two weeks. Cells cultured on the anodic oxidized Ti surface showed enhanced cell adhesion and proliferation, also presented an up-regulated gene expression of osteogenic markers OPG, compared to those cultured on the as-polished Ti surface. After UV irradiation, the cell behaviors were further improved, indicating better biocompatibility of Ti surface. Based on these results, it can be concluded that anodic oxidation improved the biological properties (bioactivity and biocompatibility) of Ti surface, while UV irradiation improved the biocompatibility to a better extent. The improved biological properties were attributed to the nanostructures as well as the enhanced hydrophilicity. Therefore, anodic oxidation combined with UV irradiation can be used to enhance the biological properties of Ti-based implants.

  15. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    Science.gov (United States)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  16. Platinum-Niobium(V Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Virginija KEPENIENĖ

    2016-05-01

    Full Text Available In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B by heating the Nb2O5/C composite obtained according to the procedure (A at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8609

  17. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance. PMID:26393523

  18. Mechanical and Abrasive Wear Properties of Anodic Oxide Layers Formed on Aluminium

    Institute of Scientific and Technical Information of China (English)

    W.Bensalah; K.Elleuch; M.Feki; M.Wery; H.F.Ayedi

    2009-01-01

    Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The Vickers microhardness, D (HV0.2). and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Caul) was maintained at 160 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.

  19. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    Science.gov (United States)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  20. [Effects on microstructure and mechanical property of pure titanium (TA1) treated by anodic oxidation].

    Science.gov (United States)

    Pan, Liuguo; Sun, Liqun

    2008-12-01

    Effects on surface microstructure and mechanical property of pure titanium (TA1) for implant treated by anodic oxidation were investigated. We found that the oxide film with a certain uniform and compact color could be achieved by anodic oxidation method. However, with the increasing of oxidizing voltage and time, the oxide film will be dissolved at local area. The oxygen content of oxide film and the hydrogen content of matrix titanium will be raised, and will also be increased. In fact, hydrogen could be diffused into matrix titanium. With the increase of hydrogen content of matrix titanium and sigmas/sigmab, there appear the possible results of plastic deformation and the fracture of implant. PMID:19166203

  1. Formation of Al-Si Composite Oxide Film by Hydrolysis Precipitation and Anodizing

    Institute of Scientific and Technical Information of China (English)

    Zhe-Sheng Feng; Ying-Jie Xia; Jia Ding; Jin-Ju Chen

    2007-01-01

    This paper presents a new technique in the high dielectric constant composite oxide film preparation.On the basis of nanocompsite high dielectric constant aluminum oxide film growth technology, a new idea of adulterating Si oxide species into the aluminum composite film was proposed. As a result, the specific capacitance and withstanding voltage of the composite oxide film formed at the anodizing voltage of 20V are enhanced, and the leakage current of the aluminum composite oxide film is reduced through incorporation of Si oxide species.

  2. Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer

    Institute of Scientific and Technical Information of China (English)

    Hyun-Chae NA; Taek-Jin SUNG; Seok-Heon YOON; Seung-Kyoun HYUN; Mok-Soon KIM; Young-Gi LEE; Sang-Hyun SHIN; Seok-Moon CHOI; Sung YI

    2009-01-01

    A series of anodic aluminum oxide(AAO) was grown on the commercially pure 1050 aluminum sheet by controlling electrolyte temperature (2-15 ℃) and anodizing time (0.5-6 h), using a fixed applied current density of 3 A/dm2 in diluted sulfuric acid electrolyte. A crack-free thick AAO with the thickness of 105-120 ìm and containing unidirectional nano sized pores (average pore diameter of 5-7 nm) is successfully achieved in the specimens anodized for 2 h, irrespective of electrolyte temperature. When anodizing time reaches 6 h, very thick AAO with the thickness of 230-284 ìm is grown, and average diameter of unidirectional pores is in the range of 6-24 nm. The higher values in both the AAO thickness and pore diameter are attained for the specimens anodized at higher temperatures of 10-15 ℃. A crack is observed to exist in the AAO after anodizing up to 4 h and more. A higher fraction (more than 9%) of the crack is shown in the specimens anodized at higher temperatures of 10-15 ℃ for 6 h and a considerable amount of giant cracks are contained.

  3. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Sulka, Grzegorz D., E-mail: Sulka@chemia.uj.edu.pl [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Brzozka, Agnieszka [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, Krakow 30-059 (Poland); Liu, Lifeng [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2011-05-30

    Graphical abstract: Display Omitted Highlights: > AAO templates with modulated pore diameter were fabricated by pulse anodization. > HA pulse duration tunes the shape of pores and the structure of AAO channels. > Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. > Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  4. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: → AAO templates with modulated pore diameter were fabricated by pulse anodization. → HA pulse duration tunes the shape of pores and the structure of AAO channels. → Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. → Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  5. Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode.

    Science.gov (United States)

    Hussain, Sajjad; Gul, Saima; Steter, Juliana R; Miwa, Douglas W; Motheo, Artur J

    2015-10-01

    The appearance of pharmaceutical compounds and their bioactive transformation products in aquatic environments is becoming an issue of increasing concern. In this study, the electrochemical oxidation of the widely used antibiotic sulfamethoxazole (SMX) was investigated using a commercial mixed oxide anode (Ti/Ru0.3Ti0.7O2) and a single compartment filter press-type flow reactor. The kinetics of SMX degradation was determined as a function of electrolyte composition, applied current density, and initial pH. Almost complete (98 %) degradation of SMX could be achieved within 30 min of electrolysis in 0.1 mol L(-1) NaCl solution at pH 3 with applied current densities ≥20 mA cm(-2). Nine major intermediates of the reaction were identified by LC-ESI-Q-TOF-MS (e.g., C6H9NO2S (m/z = 179), C6H4NOCl (m/z = 141), and C6H6O2 (m/z = 110)). The degradation followed various routes involving cleavage of the oxazole and benzene rings by hydroxyl and/or chlorine radicals, processes that could occur before or after rupture of the N-S bond, followed by oxidation of the remaining moieties. Analysis of the total organic carbon content revealed that the antibiotic was partially mineralized under the conditions employed and some inorganic ions, including NO3 (-) and SO4 (2-), could be identified. The results presented herein demonstrate the efficacy of the electrochemical process using a Ti/Ru0.3Ti0.7O2 anode for the remediation of wastewater containing the antibiotic SMX. PMID:26002364

  6. Optimization of anodized aluminum oxide pore morphology for GaAs nanowire growth

    Directory of Open Access Journals (Sweden)

    Regine A. Loberternos

    2010-06-01

    Full Text Available Anodic Aluminum oxide films were produced by anodization of sputtered Aluminum thin films on Silicon substrates. The effects of anodization voltage and aqueous oxalic acid solution on the pore diameter and interpore distance were studied. Parameters were sequentially varied to optimize the pore uniformity. Pore morphology was most uniform at 40V anodization voltage and 0.3M solution concentration. Average pore diameter and interpore distance for these parameters are 26.14nm ± 13% and 74.62 ± 8%, respectively. Pore diameter uniformity was further improved by etching with phosphoric acid solution. The AAO films were also successfully used to pattern gold nanoparticle catalysts for the synthesis of semiconductor nanowires.

  7. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    Science.gov (United States)

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  8. Laser-Doping through Anodic Aluminium Oxide Layers for Silicon Solar Cells

    OpenAIRE

    Pei Hsuan Doris Lu; Alison Lennon; Stuart Wenham

    2015-01-01

    This paper demonstrates that silicon can be locally doped with aluminium to form localised p+ surface regions by laser-doping through anodic aluminium oxide (AAO) layers formed on the silicon surface. The resulting p+ regions can extend more than 10 μm into the silicon and the electrically active p-type dopant concentration exceeds 1020 cm−3 for the first 6-7 μm of the formed p+ region. Anodic aluminium oxide layers can be doped with other impurities, such as boron and phosphorus, by anodisin...

  9. Evolution of insoluble eutectic Si particles in anodic oxidation films during adipic-sulfuric acid anodizing processes of ZL114A aluminum alloys

    Science.gov (United States)

    Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin

    2015-03-01

    The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.

  10. The mechanism of the passivating film formation of niobium in alkaline media

    International Nuclear Information System (INIS)

    The anodic growth of niobium oxide in alkaline solution is analysed using the voltametric technique. The experimental results show that the peak current increases with the square root of th sweep velocity, the peak charge with v sup(-1/2) and the peak potential changes linearly with the logarithm of the peak current. All these results are interpreted through a model previously developed. (C.L.B.)

  11. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.

    Science.gov (United States)

    Chen, Yu; Zhang, Yanxiang; Baker, Jeffrey; Majumdar, Prasun; Yang, Zhibin; Han, Minfang; Chen, Fanglin

    2014-04-01

    Application of anode-supported solid oxide fuel cell (SOFC) with ceria based electrolyte has often been limited by high cost of electrolyte film fabrication and high electrode polarization. In this study, dense Gd0.1Ce0.9O2 (GDC) thin film electrolytes have been fabricated on hierarchically oriented macroporous NiO-GDC anodes by a combination of freeze-drying tape-casting of the NiO-GDC anode, drop-coating GDC slurry on NiO-GDC anode, and co-firing the electrolyte/anode bilayers. Using 3D X-ray microscopy and subsequent analysis, it has been determined that the NiO-GDC anode substrates have a porosity of around 42% and channel size from around 10 μm at the electrolyte side to around 20 μm at the other side of the NiO-GDC (away from the electrolyte), indicating a hierarchically oriented macroporous NiO-GDC microstructure. Such NiO-GDC microstructure shows a tortuosity factor of ∼1.3 along the thickness direction, expecting to facilitate gas diffusion in the anode during fuel cell operation. SOFCs with such Ni-GDC anode, GDC film (30 μm) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm(-2) at 600 °C using H2 as fuel and ambient air as oxidant. Electrochemical Impedance Spectroscopy (EIS) analysis indicates a decrease in both activation and concentration polarizations. This study has demonstrated that freeze-drying tape-casting is a very promising approach to fabricate hierarchically oriented porous substrate for SOFC and other applications. PMID:24621230

  12. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    Science.gov (United States)

    Miller, Elizabeth C.

    This dissertation presents research on the development of novel materials and fabrication procedures for solid oxide fuel cell (SOFC) anodes. The work discussed here is divided into three main categories: all-oxide anodes, catalyst exsolution oxide anodes, and Ni-infiltrated anodes. The all-oxide and catalyst exsolution anodes presented here are further classi?ed as Ni-free anodes operating at the standard 700-800°C SOFC temperature while the Ni-infiltrated anodes operate at intermediate temperatures (≤650°C). Compared with the current state-of-the-art Ni-based cermets, all-oxide, Ni-free SOFC anodes offer fewer coking issues in carbon-containing fuels, reduced degradation due to fuel contaminants, and improved stability during redox cycling. However, electrochemical performance has proven inferior to Ni-based anodes. The perovskite oxide Fe-substituted strontium titanate (STF) has shown potential as an anode material both as a single phase electrode and when combined with Gd-doped ceria (GDC) in a composite electrode. In this work, STF is synthesized using a modified Pechini processes with the aim of reducing STF particle size and increasing the electrochemically active area in the anode. The Pechini method produced particles ? 750 nm in diameter, which is signi°Cantly smaller than the typically micron-sized solid state reaction powder. In the first iteration of anode fabrication with the Pechini powder, issues with over-sintering of the small STF particles limited gas di?usion in the anode. However, after modifying the anode firing temperature, the Pechini cells produced power density comparable to solid state reaction based cells from previous work by Cho et al. Catalyst exsolution anodes, in which metal cations exsolve out of the lattice under reducing conditions and form nanoparticles on the oxide surface, are another Ni-free option for standard operating temperature SOFCs. Little information is known about the onset of nanoparticle formation, which

  13. Preparation and analysis of anodic aluminum oxide films with continuously tunable interpore distances

    Science.gov (United States)

    Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong

    2015-02-01

    Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.

  14. Preparation and crystalline phase of a TiO2 porous film by anodic oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; TAO Jie; ZHANG Weiwei; TAO Haijun; WANG Ling

    2005-01-01

    Anatase titanium dioxide is an active photocatalyst, but it is difficult to immobilize on the substrate. A crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation in this work. Constant voltage and constant current anodic oxidation were adopted with sulphuric acid used as the electrolyte, pure titanium as the anode and copper as the cathode. The morphology and structure of the porous film on the substrate were analyzed with the aid of Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD). The effects of the parameters of anodic oxidation (such as voltage, the concentration of sulphuric acid, anodization time and current density) on the aperture and the crystalline phase of the TiO2 porous film were systematically investigated. The results indicate that the increase of current density facilitates the augment of the aperture and the generation of anatase and rutile. In addition, the forming mechanism of anatase and rutile TiO2 porous films was discussed.

  15. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    Science.gov (United States)

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  16. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices

    International Nuclear Information System (INIS)

    We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm2 devices were found to be ΔtON = 700 ps and ΔtOFF = 2.3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits. (paper)

  17. Integration of niobium oxide-based resistive switching cells with different select properties into nanostructured cross-bar arrays

    International Nuclear Information System (INIS)

    Memristive devices with different underlying physical mechanisms are investigated and compared with respect to their utilization in passive cross-bar arrays for computing and memory applications. Niobium oxide-based metal–insulator–metal structures in various configurations exhibit abrupt filamentary resistive switching, filamentary resistive switching together with a threshold switching effect and analog switching characteristics. It is found that the initial electroforming step, which is mandatory for filamentary cells, causes problems if no individual selector device ensuring internal current compliance is applied. In contrast, cells based on analog switching are forming free and could be operated without difficulty. Thus they might be of value for utilization as passive circuit elements. (paper)

  18. Operational characteristics of thin film solid oxide fuel cells with ruthenium anode in natural gas

    Science.gov (United States)

    Takagi, Yuto; Kerman, Kian; Ko, Changhyun; Ramanathan, Shriram

    2013-12-01

    Direct utilization of hydrocarbons in low temperature solid oxide fuel cells is of growing interest in the landscape of alternative energy technologies. Here, we report on performance of self-supported micro-solid oxide fuel cells (μSOFCs) with ruthenium (Ru) nano-porous thin film anodes operating in natural gas and methane. The μSOFCs consist of 8 mol% yttria-stabilized zirconia thin film electrolytes, porous platinum cathodes and porous Ru anodes, and were tested with dry natural gas and methane as fuels and air as the oxidant. At 500 °C, comparable power densities of 410 mW cm-2 and 440 mW cm-2 were obtained with dry natural gas and methane, respectively. In weakly humidified natural gas, open circuit voltage of 0.95 V at 530 °C with peak power density of 800 mW cm-2 was realized. The μSOFC was continuously operated at constant voltage of 0.7 V with methane, where quasi-periodic oscillatory behavior of the performance was observed. Through post-operation XPS studies it was found that the oxidation state of Ru anode surfaces significantly differs depending on the fuel used, oxidation being enhanced with methane or natural gas. The nature of the oscillation is discussed based on the transition in surface oxygen coverage states and electro-catalytic activity of Ru anodes.

  19. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    The volume pinning force in several niobium and vanadium samples with voids is determined at various temperatures. Reasonable agreement is found with the collective pinning theory of Larkin and Ovchinnikov above the field of maximum pinning, if the flux line lattice is assumed to be amorphous in this region and if the elementary pinning force is calculated from the quasi-classical theory of Thuneberg, Kurkijaervi, and Rainer. Also some history and relaxation effects are studied in an alternating field. A qualitative explanation is given in terms of flux line dislocations, which reduce the shear strength of the flux line lattice. (Auth.)

  20. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    This thesis describes a study of flux pinning by small voids (roughly 10 nm) in the type II superconductors niobium and vanadium. These voids were created in rectangular foils (with typical dimensions of 30x3x0.2 mm) during an irradiation with fast neutrons in the High Flux Reactor at Petten at temperatures between 400 and 10000C. The pinning force per unit volume is determined from the magnetic properties of the superconducting samples. The experiments were carried out in a slowly ramped magnetic field, as well as in a combination of a static and a much smaller alternating field. (Auth.)

  1. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. - Highlights: • First time determination of fluorine in niobium oxide using the slurry sampling technique • Application of calcium fluoride molecular absorption in graphite tube with ZrC modification • Higher specificity, better sensitivity, and huge time saving compared with the classical method based on pyrohydrolysis • New method verified by successful participation in round robin test

  2. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao Dong; Becker-Ross, Helmut [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Okruss, Michael, E-mail: michael.okruss@isas.de [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Geisler, Sebastian; Florek, Stefan [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Richter, Silke; Meckelburg, Angela [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Str. 11, 12489 Berlin (Germany)

    2014-04-01

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H{sub 2}SO{sub 4}, and H{sub 3}PO{sub 4}. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. - Highlights: • First time determination of fluorine in niobium oxide using the slurry sampling technique • Application of calcium fluoride molecular absorption in graphite tube with ZrC modification • Higher specificity, better sensitivity, and huge time saving compared with the classical method based on pyrohydrolysis • New method verified by successful participation in round robin test.

  3. Oxidation of phenol and chlorophenols on platinized titanium anodes in an acidic medium

    Science.gov (United States)

    Mokbel, Saleh Mohammed; Kolosov, E. N.; Mikhalenko, I. I.

    2016-06-01

    A comparative study of oxidation of phenol, 3-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol on Pt/Ti and Ce,Pt/Ti electrocatalysts is performed via cyclic voltammetry. It is shown that the surface morphology and roughness of the anode do not change after modification with cerium. The formal kinetic orders of electrooxidation of all compounds are found to be less than one. It is shown that the β temperature coefficients of the rate of oxidation of chlorophenols grow by 10 to 50% when the Ce,Pt/Ti anode is used at a substrate concentration of 1 mM. A tenfold increase in concentration reduces the effect of cerium additive, except for 3-chlorophenol: the latter exhibits a 250% increase in the β value, compared to the Pt/Ti anode.

  4. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  5. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    Directory of Open Access Journals (Sweden)

    Jan Van herle

    2012-08-01

    Full Text Available Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted.

  6. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  7. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    International Nuclear Information System (INIS)

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al2O3) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this work

  8. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    International Nuclear Information System (INIS)

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al2O3 with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap Eg is derived from Tauc's extrapolation, and Eg increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper

  9. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  10. Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell

    Science.gov (United States)

    Santiago, Diana; Farmer, Serene C.; Setlock, John A.

    2012-01-01

    The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.

  11. High performance fuel electrode for a solid oxide electrochemical cell

    OpenAIRE

    Jabbar, Mohammad; Høgh, Jens Valdemar Thorvald; Bonanos, Nikolaos

    2013-01-01

    A high performance anode (fuel electrode) for use in a solid oxide electrochemical cell is obtained by a process comprising the steps of (a) providing a suitably doped, stabilized zirconium oxide electrolyte, such as YSZ,ScYSZ, with an anode side having a coating of electronically conductive perovskite oxides selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate and mixtures thereof, thereby obtaining a por...

  12. Fracture toughness of solid oxide fuel cell anode substrates determined by a double-torsion technique

    Science.gov (United States)

    Pećanac, G.; Wei, J.; Malzbender, J.

    2016-09-01

    Planar solid oxide fuel cell anode substrates are exposed to high mechanical loads during assembly, start-up, steady-state operation and thermal cycling. Hence, characterization of mechanical stability of anode substrates under different oxidation states and at relevant temperatures is essential to warrant a reliable operation of solid oxide fuel cells. As a basis for mechanical assessment of brittle supports, two most common anode substrate material variants, NiO-3YSZ and NiO-8YSZ, were analyzed in this study with respect to their fracture toughness at room temperature and at a typical stack operation temperature of 800 °C. The study considered both, oxidized and reduced materials' states, where also an outlook is given on the behavior of the re-oxidized state that might be induced by malfunctions of sealants or other functional components. Aiming at the improvement of material's production, different types of warm pressed and tape cast NiO-8YSZ substrates were characterized in oxidized and reduced states. Overall, the results confirmed superior fracture toughness of 3YSZ compared to 8YSZ based composites in the oxidized state, whereas in the reduced state 3YSZ based composites showed similar fracture toughness at room temperature, but a higher value at 800 °C compared to 8YSZ based composites. Complementary microstructural analysis aided the interpretation of mechanical characterization.

  13. Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate

    Science.gov (United States)

    Permana, S.; Soedarsono, J. W.; Rustandi, A.; Maksum, A.

    2016-05-01

    Indonesia, as the second largest tin producer in the world, has a byproduct from the production of tin. This byproduct is in the forms of tin slag containing tantalum pentoxide (Ta2O5) and niobium pentoxide (Nb2O5). This study focuses on the recovery of tantalum pentoxide and niobium pentoxide from the tin slag. In the process, one part of the tin slag sample was sieved only (BTS), and the other was roasted at 900°C, water quenched and then sieved (BTS-RQS). Samples BTS and BTS-RQS were characterized by thermo gravimetric analysis (TGA) and X-ray flourence (XRF). One part of BTS-RQS sample was dissolved in hydrofluoric acid (HF) and the other was dissolved in hydrochloric acid (HCl), washed with distilled water, then dissolved into sodium hydroxide (NaOH). Each sample was characterized by using XRF. The BTS sample produced the highest recovery of 0.3807 and 0.6978% for Ta2O5 and Nb2O5, respectively, from the particle size of -1.00+0.71 and a fraction of 47.29%, while BTS-RQS produced the highest recovery of 0.3931 and 0.8994% for Ta2O5 and Nb2O5, respectively, on the particle size of -0.71+0350 and a fraction of 21%. BTS-RQS, dissolved with 8% hydro fluoride acid, yields tantalum pentoxide and niobium pentoxide with a ratio of 2.01 and 2.09, respectively. For the sample BTS-RQS dissolve first with 6M hydrochloric acid, washed with distilled water, then dissolved with sodium hydroxide 10M, the yield ratios are 1.60 and 1.84 for tantalum pentoxide and niobium pentoxide, respectively. In this study, it is found that the dissolution by using hydrofluoric acid 8% yields the best ratio.

  14. Fabrication, structural characterization and sensing properties of polydiacetylene nanofibers templated from anodized aluminum oxide

    Science.gov (United States)

    Polydiacetylene (PDA), a unique conjugated polymer, has shown its potential in the application of chem/bio-sensors and optoelectronics. In this work, we first infiltrated PDA monomer (10, 12-pentacosadiynoic acid, PCDA) melted into the anodized aluminum oxide template, and then illuminated the infil...

  15. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    Science.gov (United States)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  16. Anodic oxidation of oxytetracycline: Influence of the experimental conditions on the degradation rate and mechanism

    Directory of Open Access Journals (Sweden)

    Annabel Fernandes

    2014-12-01

    Full Text Available The anodic oxidation of oxytetracycline was performed with success using as anode a boron-doped diamond electrode. The experiments were conducted in batch mode, using two different electrochemical cells: an up-flow cell, with recirculation, that was used to evaluate the influence of recirculation flow rate; and a stirred cell, used to determine the influence of the applied current density. Besides oxytetracyclin electrodegradation rate and mineralization extent, oxidation by-products were also assessed. Both the flow rate and the applied current density have shown positive influence on the oxytetracycline oxidation rate. On the other hand, the mineralization degree presented the highest values at the lowest flow rate and the lowest current density tested. The main oxidation by-products detected were oxalic, oxamic and maleic acids.

  17. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes

    International Nuclear Information System (INIS)

    The effects of low-frequency (40 kHz) ultrasound are investigated with regard to the effectiveness and mechanisms of electrochemical oxidation of p-substituted phenols (p-nitrophenol, p-hydroxybenzaldehyde, phenol, p-cresol, and p-methoxyphenol) at BDD (boron-doped diamond) and PbO2 anodes. Although ultrasound improved the disappearance rates of p-substituted phenols at both the BDD and PbO2 anodes, the degree of enhancement varied according to the type of p-substituted phenol and type of anode under consideration. At the BDD anode, the %Increase values were in the range 73-83% for p-substituted phenol disappearance and in the range 60-70% for COD removal. However, at the PbO2 anode, the corresponding %Increase values were in the range 50-70% for disappearance of p-substituted phenols and only 5-25% for COD removal, much lower values than obtained at the BDD anode. Further investigations on the influence of ultrasound on the electrochemical oxidation mechanisms at BDD and PbO2 anodes revealed that the different increase extent were due to the specialized electrochemical oxidation mechanisms at these two anodes. The hydroxyl radicals were mainly free at the BDD electrodes with a larger reaction zone, but adsorbed at the PbO2 electrodes with a smaller reaction zone. Therefore, the enhancement due to ultrasound was greater at the BDD anode than at the PbO2 anode.

  18. Anodic Oxidation in Aluminum Electrode by Using Hydrated Amorphous Aluminum Oxide Film as Solid Electrolyte under High Electric Field.

    Science.gov (United States)

    Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi

    2016-05-01

    Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures. PMID:27070754

  19. Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification

    OpenAIRE

    Conway, B. E.; H. AL-MAZNAI

    2001-01-01

    Removal or modification of noxious organic impurities in waste-waters is a major challenge for environmental science. Pollutants such as phenols and their derivatives, as well as PCBs, have attracted special attention. In recent years, the possibilities of effecting direct electrocatalytic oxidations at high-area electrodes such as supported Pt or RuO2 have been investigated. However, in a number of cases, especially with phenolic impurities, application of anodic oxidation fails to lead to c...

  20. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    Directory of Open Access Journals (Sweden)

    Andrei Ionut Mardare

    2014-01-01

    Full Text Available A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven.

  1. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    International Nuclear Information System (INIS)

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. (paper)

  2. Electrochromic Properties of Iridium Oxide Films Prepared by Pulsed Anodic Electrodeposition

    Science.gov (United States)

    Jung, Youngwoo; Tak, Yongsug; Lee, Jaeyoung

    2002-12-01

    Thin films of iridium oxide to be used as an electrochromic material were prepared by pulsed anodic current electrodeposition onto indium tin oxide (ITO) coated glass substrates. Before the pulsed electrodeposition, iridium oxide films formed by cyclic voltammetry (CV) played an important role in good adhesion as a seed layer. Iridium oxide films with light-blue color (100 mC/cm2) were deposited when anodic current of 0.07 mA/cm2 for 0.5 sec was superimposed on off-time of 0.5 sec (i.e., zero current) in each cycle. During CV experiment in phosphate buffered saline solution, electrodeposited iridium oxide films exhibited anodic electrochromism of blue and black color at two oxidation potentials (i.e., the ejection of H+) of +0.5 V and +0.9 V (vs. SCE), respectively, while on the cathodic scan, black thin film became colorless due to the injection of H+. When +0.9 V and -0.7 V were applied for coloring and bleaching observation in different pulse voltammetry, minimal times needed for each process are 9 sec and 5 sec, respectively.

  3. Anodic destruction of abamectin acaricide solution by BDD-anodic oxidation

    OpenAIRE

    M. Errami; R. Salghi; Ebenso, Eno E.; Messali, M.; Al-Deyab, S.S.; B. Hammouti

    2014-01-01

    This paper presents the study of the electrochemical oxidation of the pesticide Abamectin at a boron-doped diamond (BDD). The effect of using different supporting electrolytes (NaCl, K2SO4, Na2CO3 and Na2SO4) during the galvanostatic electrolysis of Abamectin was investigated.The influence of several operating parameters, such as applied current density, effect of electrolytes (NaCl), was investigated. UV spectroscopy and chemical oxygen demand measurements were conducted t...

  4. Effects of the Use of Pore Formers on Performance of an Anode supported Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Pham, A; Chung, B W; DiCarlo, J F; Glass, R S

    2003-12-04

    The effects of amount of pore former used to produce porosity in the anode of an anode supported planar solid oxide fuel cell were examined. The pore forming material utilized was rice starch. The reduction rate of the anode material was measured by Thermogravimetric Analysis (TGA) to qualitatively characterize the gas transport within the porous anode materials. Fuel cells with varying amounts of porosity produced by using rice starch as a pore former were tested. The performance of the fuel cell was the greatest with an optimum amount of pore former used to create porosity in the anode. This optimum is believed to be related to a trade off between increasing gas diffusion to the active three-phase boundary region of the anode and the loss of performance due to the replacement of active three-phase boundary regions of the anode with porosity.

  5. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin; Hjelm, Johan; Bonanos, Nikolaos

    2012-01-01

    , consisting of a Nieyttria stabilized zirconia (YSZ) anode support, a Niescandia-doped yttria-stabilized zirconia (ScYSZ) anode, a ScYSZ electrolyte, and a CGO barrier layer. LSC was introduced into the CGO backbone by multiple infiltrations of an aqueous nitrate solution followed by firing. The cell was...... tested at 700 deg. C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current evoltage relationships. No measurable degradation in the cell voltage or increase in...

  6. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    International Nuclear Information System (INIS)

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C2H2 and H2 at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/μm and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  7. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    Science.gov (United States)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  8. Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation

    International Nuclear Information System (INIS)

    Highlights: • Azobenzene was reduced to aniline at the cathode of an acetate-fueled MFC. • Aniline was degraded at the bioanode of a single-chamber MFC. • Cathodic reduction of azobenzene was coupled with anodic oxidation of aniline. • Self-driven, complete mineralization of azobenzene in an MFC was accomplished. - Abstract: Bioelectrochemical systems have been intensively studied as a promising technology for wastewater treatment and environment remediation. Coupling of the anodic and cathodic electrochemical reactions allows an enhanced degradation of recalcitrant organics, but external power supply is usually needed to overcome the thermodynamic barrier. In this work, we report a self-driven degradation of azobenzene in a microbial fuel cell (MFC), where the cathodic reduction of azobenzene was effectively coupled with the anodic oxidation of its reduction degradation intermediate (i.e., aniline). The anodic degradation rate of aniline, as the sole carbon source, was significantly higher than that under open-circuit conditions, suggesting a considerable bioelectrochemical oxidation of aniline. Output voltages up to 8 mV were obtained in the MFC. However, a shift of cathodic electron acceptor from oxygen to azobenzene resulted in a decreased aniline degradation rate and output voltage. The present work may provide valuable implications for development of sustainable bioelectrochemical technologies for environmental remediation

  9. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  10. Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method

    International Nuclear Information System (INIS)

    Research highlights: → ZnO in nanosheets and sunflower structures were fabricated by anodization and annealing. → Anodization voltages, electrolyte composition and concentration have important influence. → The structural characteristics of zinc hydroxysulfate results in the formation of nanosheets. → Sunflower structures were fabricated due to oxygen bubble adhesion to the oxide layer. - Abstract: Large scale of ZnO nanosheets and sunflower structures were fabricated by anodization of zinc in (NH4)2SO4 and NH4Cl aqueous electrolytes. The products were characterized via scanning electron microscope, transmission electron microscope and X-ray diffraction analysis. Results show that the sheets are about 20-50 μm in dimension and 20 nm in thickness. The sunflower microstructures are about 400-500 μm in dimension. The possible growth mechanism is suggested on the basis of experimental results.

  11. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    Science.gov (United States)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  12. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode

    Science.gov (United States)

    Labou, D.; Slavcheva, E.; Schnakenberg, U.; Neophytides, S.

    The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm -2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm -2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg -1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.

  13. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode

    International Nuclear Information System (INIS)

    Anodic oxidation of bisphenol A (BPA), a representative endocrine disrupting chemical, was carried out using boron-doped diamond (BDD) electrode at galvanostatic mode. The electro-oxidation behavior of BPA at BDD electrode was investigated by means of cyclic voltammetric technique. The extent of degradation and mineralization of BPA were monitored by HPLC and total organic carbon (TOC) value, respectively. The results obtained, indicate that the BPA removal at BDD depends on the applied current density (Iappl), initial concentration of BPA, pH of electrolyte and supporting medium. Galvanostatic electrolysis at BDD anode cause concomitant generation of hydroxyl radical that leads to the BPA destruction. The kinetics for the BPA degradation follows a pseudo-first order reaction with a higher rate constant 12.8 x 10-5 s-1 for higher Iappl value 35.7 mA cm-2, indicating that the oxidation reaction is limited by Iappl control. Complete mineralization of BPA was achieved regardless of the variables and accordingly the mineralization current efficiency was calculated from the TOC removal measurements. Considering global oxidation process, the effect of supporting electrolytes has been discussed in terms of the electro generated inorganic oxidants. The better performance of BDD anode was proved on a comparative study with Pt and glassy carbon under similar experimental conditions. A possible reaction mechanism for BPA degradation involving three main aromatic intermediates, identified by GC-MS analysis, was proposed

  14. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications. PMID:26918615

  15. Study for preparation of nanoporous titania on titanium by anodic oxidation

    International Nuclear Information System (INIS)

    Currently titanium is the most common material used in dental, orthopedic implants and cardiovascular applications. In the mid 1960s, prof. Braenemark and coworkers developed the concept of osseointegration, meaning the direct structural and functional connection between living bone and the surface of artificial implant. Thus, studies on the modification of the implant surface are widely distributed among them are the acid attack, blasting with particles of titanium oxide or aluminum oxide, coating with bioactive materials such as hydroxyapatite, and the anodic oxidation. The focus of this work was to investigate the treatment of titanium surface by anodic oxidation. The aim was to develop a nanoporous titanium oxide overlay with controlled properties over titanium substrates. Recent results have shown that such surface treatment improves the biological interaction at the interface bone-implant besides protecting the titanium further oxidation and allow a faster osseointegration. The anodizing process was done in the potentiostatic mode, using an electrolyte composed of 1.0 mol/L H3PO4 and HF 0.5% m/I. The investigated process parameters were the electrical potential (Va) and the process time (T). The electric potential was varied from 10 V to 30 V and the process time was defined as 1.0 h, 1.5 h or 2.0 h. The treated Ti samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy X-ray (EDS), and X-ray diffraction (XRD). The results showed the formation of nanoporous titanium oxide by anodizing with electric potential (Va) in the range of 20 V to 30 V and process time in the range of 1 to 2 hours. The average pore diameter was in the range 94-128 nm. Samples anodized in electric potential lower than 20 V did not show the formation of the nanoporous surface. In the case of Va above 30 V, it was observed the formation of agglomerates of TiO2. The results obtained in this study showed no

  16. Large Scale Inert Anode for Molten Oxide Electrolysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Molten oxide electrolysis is a demonstrated laboratory-scale process for producing oxygen from the JSC-1a lunar simulant; however, critical subsystems necessary for...

  17. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

    Science.gov (United States)

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g–1) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% ‘lithiophilic’ layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ∼3,390 mAh g–1 of capacity, exhibits low overpotential (∼80 mV at 3 mA cm–2) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.

  18. Microstructure, mechanical and electrical properties of Ni-YSZ anode supported solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    G. Matula

    2008-07-01

    Full Text Available Purpose: Investigation of the Ni-YSZ cermets for anode supported solid oxide fuel cells (SOFC prepared byuniaxial pressure, sintered and reduced pellets of NiO-YSZ.Design/methodology/approach: Density examination, shrinkage examination, transverse rupture strengthtests, microstructure examination.Findings: Basing on the investigations of the anode Ni-YSZ type fabricated with powder metallurgy it wasfound of that density of sintered samples depends on NiO portion, temperature of sintering and reducing. Increaseof sintering temperature causes increase of density. Moreover increase of NiO portion and reducing temperaturecauses decrease of density and linear contraction of anode.Practical implications: The Ni-YSZ cermets fabricated using of powder metallurgy are characterized by verygood properties and can be used as SOFC anode. Powder metallurgy gives the possibility to manufacturing cermetused as an anode for SOFC on the basis of Ni-YSZ.Originality/value: Investigations of compacted, sintered and reduced samples with different amount of NiOgives information about optimal manufacturing conditions and volume fraction of NiO/YSZ components. Thisinformation is especially important at production process of extruded tubes.

  19. Study of Sr2Mg(Mo0.8Nb0.2)O6-δ as anode material for solid oxide fuel cells using hydrocarbons as fuel

    Science.gov (United States)

    Escudero, M. J.; Gómez de Parada, I.; Fuerte, A.; Daza, L.

    2013-12-01

    Sr2Mg(Mo0.8Nb0.2)O6-δ (SMMNb) was investigated as potential anode material of solid oxide fuel cells (SOFCs) for direct oxidation of methane. The compound was prepared by solid state reaction, followed by annealing under reducing atmosphere of 10% H2/N2 at 900 °C. The structural and morphological properties of fresh and reduced material were characterized by XRD, XPS and SEM. Additionally, catalytic properties towards oxidation of methane, electrical properties in reducing atmosphere as well as thermal and chemical compatibility with common SOFC electrolytes were investigated. These results reveal a double perovskite single phase in the fresh and reduced compound and, after reduction, a change in the niobium valence was observed. SMMNb shows a good activity for methane partial oxidation as well as combined reforming reaction. The material presents a semiconductor behaviour with n-type electronic conduction and an excellent thermal compatibility with SOFC electrolytes such as SDC, GDC and LSGM, based on similarity of values of TEC. However, this material reacts with zirconia-based electrolytes (YSZ and ScSZ). Although, a low electrochemical activity for H2 and CH4 oxidation was found, SMMNb demonstrates high tolerance to carbon deposition when the anode is exposed to methane.

  20. Solution processed nickel oxide anodes for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R., E-mail: alastair.buckley@sheffield.ac.uk [Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH (United Kingdom)

    2014-02-10

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.

  1. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke; Persson, Åsa Helen

    2016-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, possessing different anode and support microstructures were studied in respect to sulfur tolerance at an operating temperature of 650°C. The studied MS-SOFCs are based on ferretic stainl...

  2. Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Sudireddy, Bhaskar Reddy; Hagen, Anke; Persson, Åsa Helen

    2015-01-01

    Two metal supported solid oxide fuel cells (active area 16 cm2) with nanostructured Ni:GDC infiltrated anodes, but different anode and support microstructures were studied in respect to sulfur tolerance at the aimed operating temperature of 650ºC. The studied MS-SOFCs are based on ferretic stainl...

  3. Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode

    Institute of Scientific and Technical Information of China (English)

    Rajesh S. Bejankiwar; Abir Basu; Max Cementi

    2004-01-01

    Electrochemical oxidation of polyethylene glycol(PEG) in an acidic(pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified(PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon(TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model.

  4. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    Science.gov (United States)

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. PMID:27372125

  5. Electrochemically induced oxidative removal of As(III) from groundwater in a dual-anode sand column.

    Science.gov (United States)

    Tong, Man; Yuan, Songhu; Wang, Zimeng; Luo, Mingsen; Wang, Yanxin

    2016-03-15

    In situ treatment of high-arsenic groundwater cost-effectively is still challenging. We proposed an in situ treatment approach which utilizes O2 produced from groundwater electrolysis to increase the redox potential for oxidative removal of arsenic. A sand column was configured to simulate groundwater flow in an aquifer, and a stable anode, a stable cathode and an iron anode were arrayed in an upward mode in the column to evaluate the performance on arsenic removal from the groundwater induced by the oxidative precipitation of Fe(2+) by O2. As(III) at 500μg/L was efficiently oxidized to As(V) by the stable anode followed by the reactive oxidants produced from Fe(II)-O2, and total As were completely removed by the newly formed amorphous iron hydroxides. Quantitative models for the dependence of As(III) oxidation, total As removal and Fe(II) oxidative precipitation on the flow rate and the current density applied to Fe anode were developed. The presence of humic substance promoted the oxidation of As(III) on the stable anode but inhibited the oxidation and removal induced by Fe(II) oxidative precipitation. A stable performance on As(III) oxidation and removal was observed in a 10-day continuous operation. Results from this study prove that groundwater electrolysis could be applicable for oxidative removal of As(III) in porous media, with a controllable and lasting treatment efficiency. PMID:26642445

  6. Regularities of anodic oxidation and properties of oxidized surface of titanium ruthenium alloys in neutral sulfate solutions

    International Nuclear Information System (INIS)

    Anodic behaviour of the alloys Ti-Ru (0.1-20 weight % of Ru) in pure solUtion 1NNa2So4 (pH 5.6) and in solution containing the syste Fe(CN)64- Fe(CN)63- has been studied. The investigation is carried oUt using the potentiodynamic method on the oxidized under isopotential conditions (at -0.10-1.65 V) alloy surface. It is shown that during anodic oxidation of the Ti-Ru alloys both components of the alloy are subjected to oxidation. Composition of oxide film depends on the potential. Starting from 1.10 V as a resUlt of oxidation of Ru to higher valent states with Ru transition to solution, selective dissolution of ruthenium constituent takes place and surface layer of oxide film is enriched with TiO2. During prolong polarization at positive enough potentials formation of continuous layer of TiO2 on the surface of oxidated alloy is possible, as a result, reactions of the solution ion oxidation, proceeding in the given range of potentials, will be hampered

  7. Regularities of anodic oxidation and properties of oxidized surface of titanium ruthenium alloys in neutral sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Deryagina, O.G.; Tomashov, N.D.; Makarychev, Yu.B.; Goncharenko, B.A. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    1983-03-01

    Anodic behaviour of the alloys Ti-Ru (0.1-20 weight % of Ru) in pure solution 1NNa/sub 2/So/sub 4/ (pH 5.6) and in solution containing the system Fe(CN)/sub 6//sup 4 -/ Fe(CN)/sub 6//sup 3 -/ has been studied. The investigation is carried out using the potentiodynamic method on the oxidized material under isopotential conditions (at -0.10-1.65 V) alloy surface. It is shown that during anodic oxidation of the Ti-Ru alloys both components of the alloy are subjected to oxidation. Composition of oxide film depends on the potential. Starting from 1.10 V as a result of oxidation of Ru to higher valent states with Ru transition to solution, selective dissolution of ruthenium constituent takes place and surface layer of oxide film is enriched with TiO/sub 2/. During prolong polarization at positive enough potentials formation of continuous layer of TiO/sub 2/ on the surface of oxidated alloy is possible, as a result, reactions of the solution ion oxidation, proceeding in the given range of potentials, will be hampered.

  8. Formation of Ultrafine Metal Particles and Metal Oxide Precursor on Anodized Al by Electrolysis Deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nickel was deposited by ac electrolysis deposition in the pores of the porous oxide film of Al produced by anodizing in phosphoric acid. Ultrafine rod-shaped Ni particles were formed in the pores. At the same time a film of Ni oxide precursor was developed on the surface of the porous oxide film. The Ni particles and the Ni oxide precursor were examined by SEM, TEM and X-ray diffraction. The thickness of the barrier layer of the porous oxide film was thin and it attributed to the formation of the metal particles, while the formation of the oxide precursor was associated with the surface pits which were developed in the pretreatment of Al.

  9. Surface patterned dielectrics by direct writing of anodic oxides using scanning droplet cell microscopy

    International Nuclear Information System (INIS)

    Highlights: • Scanning droplet cell microscopy was applied for local gate oxide writing. • Sharp lines are obtained at the highest writing speed of 1 mm min−1. • 13.4 kC cm−3 was found as charge per volume for aluminium oxide. • High field constant of 24 nm V−1 and dielectric constant of 12 were determined for Al2O3 by CV and EIS. -- Abstract: Scanning droplet cell microscopy was used for patterning of anodic oxide lines on the surface of Al thin films by direct writing. The structural modifications of the written oxide lines as a function of the writing speed were studied by analyzing the relative error of the line widths. Sharper lines were obtained for writing speeds faster than 1 mm min−1. An increase in sharpness was observed for higher writing speeds. A theoretical model based on the Faraday law is proposed to explain the constant anodisation current measured during the writing process and yielded a charge per volume of 13.4 kC cm−3 for Al2O3. From calculated oxide film thicknesses the high field constant was found to be 24 nm V−1. Electrochemical impedance spectroscopy revealed an increase of the electrical permittivity up to ε = 12 with the decrease of the writing speed of the oxide line. Writing of anodic oxide lines was proven to be an important step in preparing capacitors and gate dielectrics in plastic electronics

  10. The iron and cerium oxide influence on the electric conductivity and the corrosion resistance of anodized aluminium

    International Nuclear Information System (INIS)

    The influence of different treatments on the aluminum system covered with aluminum oxide is investigated. The aluminum anodization in sulphuric media and in mixed sulphuric and phosphoric media was used to alter the corrosion resistance, thickness, coverage degree and microhardness of the anodic oxide. Iron electrodeposition inside the anodic oxide was used to change its electric conductivity and corrosion resistance. Direct and pulsed current were used for iron electrodeposition and the Fe(SO4)2(NH4)2.6H2O electrolyte composition was changed with the addition of boric and ascorbic acids. To the sealing treatment the CeCl3 composition was varied. The energy dispersive x-ray (EDS), the x-ray fluorescence spectroscopy (FRX) and the morphologic analysis by scanning electronic microscopy (SEM) allowed to verify that, the pulsed current increase the iron content inside the anodic layer and that the use of the additives inhibits the iron oxidation. The chronopotentiometric curves obtained during iron electrodeposition indicated that the boric and ascorbic acids mixture increased the electrodeposition process efficiency. The electrochemical impedance spectroscopy (EIE), the Vickers (Hv) microhardness measurements and morphologic analysis evidenced that the sealing treatment improves the corrosion resistance of the anodic film modified with iron. The electrical impedance (EI) technique allowed to prove the electric conductivity increase of the anodized aluminum with iron electrodeposited even after the cerium low concentration treatment. Iron nanowires were prepared by using the anodic oxide pores as template. (author)

  11. Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xiuping [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Ni Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China); Wei Junjun; Chen Pan [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871 (China)

    2011-10-30

    Scale-up of boron-doped diamond (BDD) anode system is critical to the practical application of electrochemical oxidation in bio-refractory organic wastewater treatment. In this study, the scale-up of BDD anode system was investigated on batch-mode electrochemical oxidation of phenol simulated wastewater. It was demonstrated that BDD anode system was successfully scaled up by 121 times without performance deterioration based on the COD and specific energy consumption (E{sub sp}) models in bath mode. The COD removal rate and E{sub sp} for the scaled-up BDD anode system through enlarging the total anode area while keeping similar configuration, remained at the similar level as those before being scaled up, under the same area/volume value, current density, retention time and wastewater characteristics. The COD and E{sub sp} models used to describe the smaller BDD anode system satisfactorily predicted the performance of the scaled-up BDD anode system. Under the suitable operating conditions, the COD of phenol simulated wastewater was reduced from 540 mg l{sup -1} to 130 mg l{sup -1} within 3 h with an E{sub sp} of only 34.76 kWh m{sup -3} in the scaled-up BDD anode system. These results demonstrate that BDD anode system is very promising in practical bio-refractory organic wastewater treatment.

  12. A mixed proton-oxide ion-electron conducting anode for highly coking-resistant solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: • A multi-phase mixed proton-oxide ion-electron conducting anode was employed. • BaO/Ni interfaces facilitate water-mediated carbon removal. • Fast oxygen ions flux and formed water are favorable for hydrocarbon reformation. - Abstract: A multi-phase mixed proton-oxide ion-electron conducting composite is employed as a new anode material for a coking-resistant solid oxide fuel cell (SOFC) based on oxide ion conducting electrolyte, operated in methane and ethanol. The formation of BaO/Ni interfaces can effectively readily adsorb water and facilitate water-mediated carbon removal. The fast oxygen ions flux and formed steam at anode side are also found to be favorable for hydrocarbon reformation to promote the cell performance and long term stability. At 700 °C, maximum power densities of 580 and 368 mW cm−2 are achieved in methane and ethanol, respectively. The resistance against carbon deposition is significantly improved, showing stable voltage in 120 h durability test

  13. Optical Properties of Au Nanoparticles Coated on Surface of Glass or Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    FENG Jinyang; WU Can; MA Xiao; ZHANG Hongquan; ZHAO Xiujian

    2012-01-01

    Au nanoparticles coated on the surface of glass (Sample A) or on anodic aluminum oxide template surface (Sample B) were prepared using titanium dioxide sol-gel doped with chloroauric acid and with a reduction process.FE-SEM,UV-Vis spectrum and Fluorescence spectrum tests show that Au nanoparticles have been distributed randomly on the surface of glass,while deposition occurs on the surface of regular hollows for anodic aluminum oxide template.A sharp absorption peak appears at the wavelength of 536 nm for sample B,while there is a red shift,with a broader peak for sample A.A distinct fluorescence emission at the wavelength of 633 nm is detected for sample A,but no noticeable fluorescence emission has been found for Sample B.The results indicate that the microstructure and optical properties of Au nanoparticles can be modulated by different substrate.

  14. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  15. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    Science.gov (United States)

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS). PMID:19441424

  16. Bioactive titanium metal surfaces with antimicrobial properties prepared by anodic oxidation treatment

    Institute of Scientific and Technical Information of China (English)

    YUE ChongXia; YANG BangCheng; ZHANG XingDong

    2009-01-01

    In order to endow titanium metals with bioactivity and antimicrobial properties,titanium plates were subjected to anodic oxidation treatment in NaCI solutions in this study.The treated titanium metals could induce apatite formation in the fast calcification solution,and osteoblasts on the treated titanium surfaces proliferated well as those on the untreated titanium metal surfaces.The treated metals could inhibit S.aureus growth in the microbial culture experiments.It was assumed that Ti-OH groups and Ti-CI groups formed on the treated titanium surface were responsible for the bioactivity and antimicrobial properties of the metals.The anodic oxidation treatment was an effective way to prepare bioactive titanium surfaces with antimicrobial properties.

  17. Bioactive titanium metal surfaces with antimicrobial properties prepared by anodic oxidation treatment

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In order to endow titanium metals with bioactivity and antimicrobial properties, titanium plates were subjected to anodic oxidation treatment in NaCl solutions in this study. The treated titanium metals could induce apatite formation in the fast calcification solution, and osteoblasts on the treated titanium surfaces proliferated well as those on the untreated titanium metal surfaces. The treated metals could inhibit S. aureus growth in the microbial culture experiments. It was assumed that Ti-OH groups and Ti-Cl groups formed on the treated titanium surface were responsible for the bioactivity and antimicrobial properties of the metals. The anodic oxidation treatment was an effective way to prepare bioactive titanium surfaces with antimicrobial properties.

  18. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    Directory of Open Access Journals (Sweden)

    Jinyu Wei

    Full Text Available The effect of a new transition metal oxide, rhenium oxide (ReO3, on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene (P3HT and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc, the X-ray photoelectron spectroscopy (XPS is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.

  19. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  20. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hui [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China); Wang Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)], E-mail: wangjl@tsinghua.edu.cn

    2008-06-15

    By using a self-made carbon/polytetrafluoroethylene (C/PTFE) O{sub 2}-fed as the cathode and Ti/IrO{sub 2}/RuO{sub 2} as the anode, the degradation of three organic compounds (phenol, 4-chlorophenol, and 2,4-dichlorophenol) was investigated in the diaphragm (with terylene as diaphragm material) electrolysis device by electrochemical oxidation process. The result indicated that the concentration of hydrogen peroxide (H{sub 2}O{sub 2}) was 8.3 mg/L, and hydroxyl radical (HO{center_dot}) was determined in the cathodic compartment by electron spin resonance spectrum (ESR). The removal efficiency for organic compounds reached about 90% after 120 min, conforming to the sequence of phenol, 4-chlorophenol, and 2,4-dichlorophenol. And the dechlorination degree of 4-chlorophenol exceeded 90% after 80 min. For H{sub 2}O{sub 2}, HO{center_dot} existed in the catholyte and reduction dechlorination at the cathode, the mineralization of organics in the cathodic compartment was better than that in the anodic compartment. The degradation of organics was supposed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H{sub 2}O{sub 2}, HO{center_dot} produced by oxygen reduction at the cathode. High-performance liquid chromatography (HPLC) allowed identifying phenol as the dechlorination product of 4-chlorophenol in the cathodic compartment, and hydroquinone, 4-chlorocatechol, benzoquinone, maleic, fumaric, oxalic, and formic acids as the main oxidation intermediates in the cathodic and anodic compartments. A reaction scheme involving all these intermediates was proposed.

  1. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis

    OpenAIRE

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric curre...

  2. Electrochemical Oxidation Using BDD Anodes Combined with Biological Aerated Filter for Biotreated Coking Wastewater Treatment

    OpenAIRE

    Wang, C.R.; Hou, Z. F.; M. R. Zhang; J. Qi; Wang, J.

    2015-01-01

    Coking wastewater is characterized by poor biodegradability and high microorganism toxicity. Thus, it is difficult to meet Grade I of Integrated Wastewater Discharge Standard of China by biological treatment technology; specifically, COD cannot meet above standard due to containing refractory organics. A novel coupling reactor, electrochemical oxidation using BDD anodes and biological aerated filter (BAF), has been developed for carbon and nitrogen removal from biotreated coking wastewater, f...

  3. A planar anode-supported Solid Oxide Fuel Cell model with internal reforming of natural gas

    OpenAIRE

    Chinda, Penyarat; Chanchaona, Somchai; Brault, Pascal; Wechsatol, Wishsanuruk

    2011-01-01

    Abstract Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural gas, carbon monoxide, methanol, ethanol, and hydrocarbon compounds, and they are becoming one of the main competitors among environmentally friendly energy sources for the future. In this study, a mathematical model of a co-flow planar anode-supported...

  4. Commensurate vortex pinning in Nb films patterned onto anodized aluminum oxide

    International Nuclear Information System (INIS)

    Anodic aluminum oxide templates containing extended arrays of holes with ∼30-nm diameter and approximately 128-nm spacing were sputter-coated with Nb. We find pronounced matching effects in the transport and magnetization measurements beyond 4 kOe. In addition, we observe Little-Parks oscillations of the superconducting critical temperature. We compare the flux pinning in the patterned samples to unpatterned reference samples and find a significant enhancement of the critical current

  5. Electrodeposition of cerium oxide on porous silicon via anodization and enhancement of photoluminescence

    Science.gov (United States)

    Mizuhata, Minoru; Kubo, Yohei; Maki, Hideshi

    2016-02-01

    A porous Si/cerium oxide composite (PSi/CeO2) was synthesized by electrodeposition of CeO2 via anodic oxidation on PSi. The PSi photoluminescence (PL) was enhanced. The anodically oxidized PSi substrates in HF solution had macropores (diameter 2 μm), mesopores (diameter 15 nm), and micropores (diameter less than 4 nm). Emission at 700 nm from microporous PSi (microPSi) was observed under ultraviolet irradiation. Transmission electron microscopy showed that in microPSi/CeO2, the oxide was infiltrated into microPSi by anodization. The deposited amount of CeO2 depended on the reaction time, applied voltage, temperature, and reaction species concentrations in anodization. Emission by microPSi/CeO2 at 650 nm was observed; the PL intensity was higher (about 10-30 times) than that of PSi because of energy transfer from CeO2 to nanosized Si in porous layers produced by HF etching. The lifetime of the PL of microPSi/CeO2 was longer than that of microPSi. Excitation spectra of microPSi/CeO2 at 650 nm and diffuse-reflectance spectra showed that the excitation peak for microPSi/CeO2 was similar to the absorbance of CeO2, and excitation of microPSi/CeO2 gave two peaks, at 3.7 and 4.4 eV; these peaks originated from the absorptions of CeO2 and Si nanocrystals. The PL of PSi was enhanced in microPSi/CeO2 because of efficient energy transfer from CeO2 to the Si nanocrystal.

  6. Low level electron field emission current intensities obtained from niobium samples

    International Nuclear Information System (INIS)

    We present results obtained with an experimental set-up allowing measurements of DC field emission currents in the range of 10-18 to 10-5 A. The experiments are carried out in ultra high vacuum (P-10 Torr) and at room temperature. The detection of currents in the range of 10-18-10-12 A is performed with an electron multiplier located behind a grid anode. Higher currents are measured using a bulk anode and a picoammeter. The whole system has been designed to study niobium samples from sheets used to build superconducting accelerator cavities. Measures in the low current range have shown electron emission regimes that seem not to fit the Fowler-Nordheim law. A possible mechanism for such emissions involving the surface oxide layer is proposed. Comparisons of the electron field emission from samples prepared by different surface treatments as chemical etching, electropolishing, oxide coating by anodization, are presented. (orig.)

  7. Large-scale calculations of solid oxide fuel cell cermet anode by tight-binding quantum chemistry method

    International Nuclear Information System (INIS)

    Improvement of anode characteristics of solid oxide fuel cells is important for the better cell performance and especially the direct use of hydrocarbons. A mixture of ceramics and metal is generally used as anode, and different combinations of ceramics and metals lead to different electrode characteristics. We performed large-scale calculations to investigate the characteristics of Ni/CeO2 and Cu/CeO2 anodes at the electronic level using our tight-binding quantum chemical molecular dynamics program. Charge distribution analysis clarified the electron transfer from metal to oxide in both anodes. The calculations of density of states clarified different contributions of Ni and Cu orbitals to the energy levels at around Fermi level in each cermet. Based on the obtained results, we made considerations to explain different characteristics of both cermet anodes. The effectiveness of our approach for the investigation of complex cermet system was proved

  8. Laser-Doping through Anodic Aluminium Oxide Layers for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Pei Hsuan Doris Lu

    2015-01-01

    Full Text Available This paper demonstrates that silicon can be locally doped with aluminium to form localised p+ surface regions by laser-doping through anodic aluminium oxide (AAO layers formed on the silicon surface. The resulting p+ regions can extend more than 10 μm into the silicon and the electrically active p-type dopant concentration exceeds 1020 cm−3 for the first 6-7 μm of the formed p+ region. Anodic aluminium oxide layers can be doped with other impurities, such as boron and phosphorus, by anodising in electrolytes containing the extrinsic impurities in ionic form. The ions become trapped in the formed anodic oxide during anodisation, therefore enabling the impurity to be introduced into the silicon, with aluminium, during laser-doping. This codoping process can be used to create very heavily doped surface layers which can reduce contact resistance on metallisation, whilst the deeper doping achieved by the intrinsic aluminium may act to shield the surface from minority carriers. laser-doping through AAO layers can be performed without introducing any voids in the silicon or fumes which may be harmful to human health.

  9. High-relative-dielectric-constant bismuth-niobium-oxide films prepared using Nb-rich precursor solution

    Science.gov (United States)

    Ariga, Tomoki; Inoue, Satoshi; Matsumoto, Shin; Onoue, Masatoshi; Miyasako, Takaaki; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2015-09-01

    Various ceramic materials have been developed for electronic devices. Bismuth-niobium-oxide (BNO) films prepared by a chemical solution deposition (CSD) method have the cubic pyrochlore phase, high relative dielectric constant, and low tangent loss (tan δ). We found that a BNO cubic pyrochlore crystal was Nb-rich, even though its pyrochlore formula is A2B2O7. The crystallization temperature of BNO increased with increasing Nb ratio. The relative dielectric constants of BNO films were related to the Nb ratio in the precursor solution. The dielectric constant of the BNO films was 250 when the Bi and Nb ratios in BNO precursor solutions were 4 and 6, respectively, and the sintering temperature was 600 °C. In addition, the tan δ was less than 0.01 at 1 kHz, which is higher than the reported values of BNO systems despite using the CSD method. These results show that the properties of BNO films prepared by the CSD method were associated with the Nb ratio in the precursor solution. Furthermore, the dielectric characteristics indicated that the Nb-rich BNO films have potential applications in electronic devices.

  10. Optimizing Hydrogen Storage by Doping the LiBH4 +MgH2 Reaction with Various Niobium Based Oxides

    Science.gov (United States)

    Hornung, Paul; Walko, Robert; Wenzel, Andrew; Wright, Richard; Dobbins, Tabbetha

    In this study, the effects of doping the dehydrogenation reaction of MgH2 + 2LiBH4 was combined with 5 mole% of three different Niobium based oxides (Nb2O5, NbO2, and LiNbO3). The compounds were mixed using high energy ball milling, and then heated using an air tight heating stage. We looked for changes in the Raman spectra as temperature increased (up to 350C) as an indication of hydrogen desorption reaction. We found that milled LiBH4 undergoes significant changes in Raman spectra during heating to 130C. MgH2 undergoes significant changes when comparing before and after milling--but in each case, the spectral peaks remain unchanged during heating to 350C. The sample with LiNbO3 exhibited a concrete change in Raman spectrum at 300 C while the sample doped with Nb2O5 underwent a change in spectra at 170C. The sample doped with NbO2 showed little change in spectra when the samples were heated up to 350C. Further studies are underway to examine the nature of the changes in the Raman spectra using X-ray diffraction and residual gas analysis.

  11. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    Science.gov (United States)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan; Richter, Silke; Meckelburg, Angela

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H2SO4, and H3PO4. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes.

  12. Characterization of native and anodic oxide films formed on commercial pure titanium using electrochemical properties and morphology techniques

    International Nuclear Information System (INIS)

    Potentiostatically anodized oxide films on the surface of commercial pure titanium (cp-Ti) formed in sulfuric (0.5 M H2SO4) and in phosphoric (1.4 M H3PO4) acid solutions under variables anodizing voltages were investigated and compared with the native oxide film. Potentiodynamic polarization and electrochemical impedance spectroscopy, EIS, were used to predicate the different in corrosion behavior of the oxide film samples. Scanning electron microscope, SEM, and electron diffraction X-ray analysis, EDX, were used to investigate the difference in the morphology between different types of oxide films. The electrochemical characteristics were examined in phosphate saline buffer solution, PSB (pH 7.4) at 25 deg. C. Results have been shown that the nature of the native oxide film is thin and amorphous, while the process of anodization of Ti in both acid solutions plays an important role in changing the properties of passive oxide films. Significant increase in the corrosion resistance of the anodized surface film was recorded after 3 h of electrode immersion in PSB. On the other side, the coverage (θ) of film formed on cp-Ti was differed by changing the anodized acid solution. Impedance results showed that both the native film and anodized film formed on cp-Ti consist of two layers. The resistance of the anodized film has reached to the highest value by anodization of cp-Ti in H3PO4 and the inner layer in the anodized film formed in both acid solutions is also porous.

  13. Anodic oxidation of Ti–13Nb–13Zr alloy in silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Socha, Robert P. [Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Krakow (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1A, 41-500 Chorzów (Poland); Michalska, Joanna [Faculty of Materials Science and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Maciej, Artur; Krząkała, Agnieszka [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2013-08-15

    Investigations on the surface modification of Ti–13Nb–13Zr alloy by anodic oxidation are reported here. The oxidation process was carried out in a solution containing K{sub 2}SiO{sub 3} and KOH. The anodising was conducted at voltages of 100, 200 and 400 V. The morphology, chemical composition, and phase composition of the treated Ti–13Nb–13Zr alloy were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It was found that the morphology of the samples surface did not change during the alloy oxidation at 100 and 200 V. It was observed that during the anodic process under sparking discharge conditions, the simultaneous incorporation of silicon in the forming oxide layer occurs. An application of 400 V led to the incorporation of silicon into the formed oxide layer and significant modification of the surface morphology. The formed coatings are typical of the plasma electrolytic oxidation process, and they include a considerable amount of incorporated silicon, which is present as SiO{sub 2}.

  14. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  15. Electrochemically oxidized carbon anode in direct L-ascorbic acid fuel cells

    International Nuclear Information System (INIS)

    The activity of electrochemically oxidized carbon electrode was investigated in the operation of a direct L-ascorbic acid fuel cell anode. The surface oxygen species placed on electrochemically oxidized carbon electrode were analyzed by X-ray photoelectron spectroscopy and cyclic voltammetry. The electrochemical oxidation process of carbon electrode can facilitate the pore-filling process (i.e., wetting) of the electrolyte into the microstructure of the carbon electrode by increasing the number of more polar functional groups on the electrode surface. The electrochemically oxidized carbon electrode exhibited significantly enhanced electro-catalytic oxidation activity of L-ascorbic acid compared to an unmodified carbon electrode. Moreover, the simplified electrode structure using carbon paper without an additional powder-based precious catalyst layer is very favorable in creating percolation network and generates power density of 18 mW/cm2 at 60 deg. C

  16. Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes.

    Science.gov (United States)

    Panizza, Marco; Cerisola, Giacomo

    2006-03-01

    Olive mill wastewater is characterized by very high chemical oxygen demand (COD) values and contains high concentrations of polyphenols that inhibit the activity of micro-organisms during biological oxidations. In this paper, the applicability of electrochemical oxidation of a real olive-mill wastewater was studied by performing galvanostatic electrolysis using parallel plate electrodes. A mixed titanium and ruthenium oxide (Ti/TiRuO2) was used as anode and stainless steel as cathode. The effect of chloride concentration and applied current on the removal of COD, aromatic content and colour was investigated. The experimental results showed that an effective electrochemical oxidation was achieved in which the wastewater was decolourised and the COD and aromatic content completely eliminated. In particular, the mineralisation took place by indirect oxidation, mediated by active chlorine, and the COD removal rate was enhanced by the addition of 5 g L(-1) of NaCl to the wastewater and by increasing the applied current. PMID:16510168

  17. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively. PMID:24734654

  18. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  19. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    International Nuclear Information System (INIS)

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency

  20. Electrocatalytic Materials and Techniques for the Anodic Oxidation of Various Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Everett Treimer

    2002-06-27

    The focus of this thesis was first to characterize and improve the applicability of Fe(III) and Bi(V) doped PbO{sub 2} film electrodes for use in anodic O-transfer reactions of toxic and waste organic compounds, e.g. phenol, aniline, benzene, and naphthalene. Further, they investigated the use of alternative solution/electrode interfacial excitation techniques to enhance the performance of these electrodes for remediation and electrosynthetic applications. Finally, they have attempted to identify a less toxic metal oxide film that may hold promise for future studies in the electrocatalysis and photoelectrocatalysis of O-transfer reactions using metal oxide film electrodes.

  1. The Effects of Different Anodizing Voltages on the Nanoporous Titanium Oxide

    OpenAIRE

    DİKİİCİ, Tuncay; Toparli, Mustafa

    2014-01-01

    The purpose of this study was to invesitigate and analyze the nanoporous titanium oxide layers produced on titanium (Cp-Ti) by electrochemical anodization with different voltages (5, 10, 20, 40, 80 V). Titanium oxide (TiO2) layers were formed in a %1.5 HF solution using a dc power supply for 30 min. The effect of applied potential on the physical properties of nanoporous strucutre including pore diameter, wall thickness, interpore distance and film thickness was studied. The surface roughness...

  2. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    International Nuclear Information System (INIS)

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH4F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO2 anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO2 structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO2 nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO2 were investigated. • Al doping into nanoporous TiO2 retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation

  3. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  4. Superconductive niobium films coating carbon nanotube fibers

    Science.gov (United States)

    Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Vecchione, A.; Fittipaldi, R.; Corato, V.

    2014-11-01

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm-2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm.

  5. Superconductive niobium films coating carbon nanotube fibers

    International Nuclear Information System (INIS)

    Superconducting niobium (Nb) has been successfully obtained by sputter deposition on carbon nanotube fibers. The transport properties of the niobium coating the fibers are compared to those of niobium thin films deposited on oxidized Si substrates during the same deposition run. For niobium films with thicknesses above 300 nm, the niobium coating the fibers and the thin films show similar normal state and superconducting properties with critical current density, measured at T = 4.2 K, of the order of 105 A cm−2. Thinner niobium layers coating the fibers also show the onset of the superconducting transition in the resistivity versus temperature dependence, but zero resistance is not observed down to T = 1 K. We evidence by scanning electron microscopy (SEM) and current-voltage measurements that the granular structure of the samples is the main reason for the lack of true global superconductivity for thicknesses below 300 nm. (paper)

  6. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    International Nuclear Information System (INIS)

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe0 foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H2O2, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe2O3 on Fe0 metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na2SO4 containing 0.5 wt% NH4F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H2O2). In case of INT-40 V in the presence of H2O2 3%, the first-order rate constant was found to be 1.7 × 10−2 min−1, and 1.2 × 10−2 min−1 with commercial hematite powder. Degradation of cyanide was much less with only H2O2. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction

  7. Losses in superconducting Niobium Films caused by Interface Tunnel Exchange

    OpenAIRE

    Junginger, Tobias; Weingarten, Wolfgang; Welsch, Carsten

    2012-01-01

    Identifying the loss mechanisms of niobium film cavities enables an accurate determination of applications for future accelerator projects and points to research topics required to mitigate their limitations. Measurements on samples show that the electric field is a dominant loss mechanism for niobium films, acting through interface tunneling between localized states in surface oxides and delocalized states in the superconducting niobium.

  8. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  9. Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery

    International Nuclear Information System (INIS)

    Herein, we characterize various metal oxide-carbon composites, i.e. CuO-MCMB (mesocarbon microbeads), Fe2O3–MCMB and NiO-MCMB, as anode materials for application in sodium-ion battery. The electrodes, supposed to react through a conversion mechanism, are studied in terms of structure, morphology and electrochemical behavior in sodium cell. The results demonstrate a specific capacity of the order of 100 mAh g−1 for Fe2O3–MCMB and NiO-MCMB, and of about 300 mAh g−1 for CuO-MCMB. The remarkable performance of the latter suggests the copper oxide-based electrode as the preferred anode material for battery application. Indeed, further study aimed to clarify the Na/CuO-MCMB reaction mechanism is performed by ex-situ X-ray diffraction on electrode material cast onto aluminum support. The study suggests a partial conversion reaction for CuO-based anode that is considered suitable candidate in replacement of sodium metal, in efficient and safe Na-ion battery

  10. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: •We studied plasma electrolytic oxidation (PEO) for a magnesium alloy, ACM522. •Amorphous film was obtained from silicate solution, while crystalline film was deposited from phosphate solution. •Both anodized films using silicate and phosphate solutions indicated a self-repairing behavior. •The addition of Na2B4O7 to the phosphate solution reduced the cracks on a self-repaired film. -- Abstract: Plasma electrolytic oxidation (PEO) on a die-casting ACM522 Mg alloy was conducted in aqueous silicate and phosphate solutions. The corrosion behavior of the anodized ACM522 Mg alloy was investigated in detail. During the investigation, the self-repairing behavior of the anodized films was evaluated by a salt spray test for 168 h, and the mechanism of this self-repairing was discussed in terms of thermodynamic equilibrium constants. Furthermore, the effects of additives to the phosphate solution on the self-repairing behavior were examined, and the addition of Na2B4O7 was found to effectively reduce cracks on a self-repaired film

  11. Lateral V/VOx/V Tunnel Junctions Formed by Anodic Oxidation

    Science.gov (United States)

    Kirkwood, David; West, Kevin; Lu, Jiwei; Wolf, Stuart

    2008-03-01

    Anodization has been found to be a simple and cost effective technique to produce oxide films of many transition metals. In this work, we have used anodic oxidation as a means of fabricating lateral V/VOx/V junctions. Vanadium wires grown by ion beam deposition were patterned by lithography and an active working window was defined on the wire. VOx was then grown under galvanostatic control in a two electrode electrochemical micro-cell. A droplet of oxygen rich saturated Boric acid was used as the electrolyte to electrically connect the Vandium working electrode to a Platinum wire counter electrode. A constant current of approximately 100 μA/cm^2 was maintained through the cell for various amounts of time. Electrical measurements of the resulting V/VOx/V junctions indicate a metal to insulator transition (MIT) near 340 ^oK that is similar to the structural phase transition and accompanied MIT of VO2 which occurs at this temperature. A 4-fold change in resistance is observed in the junctions. Below this transition temperature a typical junction behavior is observed with a dramatic change in resistance state from high to low with increasing applied current. This non-linear IV characteristic on the junction with a size of 5 μm by 15 μm suggests that the anodized VOx film behaves like a tunneling barrier.

  12. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  13. Facile hydrothermal preparation of niobium pentaoxide decorated reduced graphene oxide nanocomposites for supercapacitor applications

    Science.gov (United States)

    Murugan, M.; Kumar, R. Mohan; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, R.

    2016-04-01

    Facile synthesis of graphene-Nb2O5 composite has been reported. Graphene oxide was prepared by the modified Hummer's method. The metal oxide (Nb2O5) was introduced to the graphene to form the composite by the hydrothermal method. The prepared samples were characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared (FTIR) and thermo gravimetric analysis (TGA). SEM and TEM results revealed that the metal oxide particles are uniformly dispersed on the surface of thin sheets of well-defined multilayered graphene structure. Thermal stability of the graphene metal oxide nanocomposites was also investigated. The CV measurements reveal a significant enhancement in the specific capacitance reaching 321 Fg-1 at a scan rate of 10 mV s-1. With promising electrochemical characteristics, Nb2O5 decorated graphene nanocomposite are explored as potential electrode material for supercapacitor applications.

  14. The application of niobium and tantalum oxides for implant surface passivation.

    OpenAIRE

    Starikov, V. V.; Starikova, S. L.; Mamalis, A. G.; Lavrynenko, S. N.; Ramsden, Jeremy J.

    2007-01-01

    Despite the advantages of ceramics, with their high corrosion stability in vivo, most medical implant constructions are still made from metals [1]. To increase the corrosion stability of metals, different coatings are applied to the implant surfaces, typically such coatings are the oxides of the metals in the implants [2]. For an oxide film to have protective properties it must satisfy the following requirements: • to be unbroken and pore-free; • to have good adhesi...

  15. Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification

    Directory of Open Access Journals (Sweden)

    B. E. CONWAY

    2001-12-01

    Full Text Available Removal or modification of noxious organic impurities in waste-waters is a major challenge for environmental science. Pollutants such as phenols and their derivatives, as well as PCBs, have attracted special attention. In recent years, the possibilities of effecting direct electrocatalytic oxidations at high-area electrodes such as supported Pt or RuO2 have been investigated. However, in a number of cases, especially with phenolic impurities, application of anodic oxidation fails to lead to continuous Faradaic oxidation currents owing to the electrode surfaces becoming blocked with polymeric oxidation products leading to auto-inhibition (“passivation” of the desired electrode process. Examples of such effects with phenols and related compounds are examined comparatively in the present paper by means of cyclic volatammetry and chronoamperometry.

  16. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  17. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films

    International Nuclear Information System (INIS)

    A simple method of fabricating Zn-containing anodic aluminum oxide films for multifunctional anticounterfeit technology is reported. The resulting membranes were characterized with UV–vis illumination studies, natural light illumination color experiments, and electron microscopy analysis. Deposition of Zn in the nanopore region can enhance the color saturation of the thin alumina film with different colors dramatically. Both the anodization time and etching time have great influence on the structural color. The mechanisms for the emergence of this phenomenon are discussed and theoretical analysis further demonstrates the experimental results. - Highlights: • Iridescent PAA@Zn nanocomposite films were successfully fabricated. • A simple organics-assisted method is applied to making a series of fancy and multicolor patterns. • The color varies with the angle of incidence of the light used to view the film as is expected with Bragg–Snell formula. • Such colored films could be used in multifunctional anti-counterfeiting applications

  18. Electromechanical Breakdown of Barrier-Type Anodized Aluminum Oxide Thin Films Under High Electric Field Conditions

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Yao, Xi

    2016-02-01

    Barrier-type anodized aluminum oxide (AAO) thin films were formed on a polished aluminum substrate via electrochemical anodization in 0.1 mol/L aqueous solution of ammonium pentaborate. Electromechanical breakdown occurred under high electric field conditions as a result of the accumulation of mechanical stress in the film-substrate system by subjecting it to rapid thermal treatment. Before the breakdown event, the electricity of the films was transported in a highly nonlinear way. Immediately after the breakdown event, dramatic cracking of the films occurred, and the cracks expanded quickly to form a mesh-like dendrite network. The breakdown strength was significantly reduced because of the electromechanical coupling effect, and was only 34% of the self-healing breakdown strength of the AAO film.

  19. Phase wettability and microstructural evolution in solid oxide fuel cell anode materials

    International Nuclear Information System (INIS)

    Recent experimental and theoretical findings suggest that high-temperature solid oxide fuel cells (SOFCs) often suffer from performance degradation due to coarsening of the metallic-phase particles within the anode. In this study, we explore the feasibility of improving the microstructural stability of SOFC anode materials by tuning the contact angle between the metallic phase and electrolyte particles. To this end, a continuum diffuse-interface model is employed to capture the coarsening behavior of the metallic phase and simulate a range of equilibrium contact angles. The evolution of performance-critical, microstructural features is presented for varying degrees of phase wettability. It is found that both the density of electrochemically active triple- phase regions and contiguity of the electron-conducting phase display undesirable minima near the contact angle of conventional SOFC materials. Our results suggest that tailoring the interfacial properties of the constituent phases could lead to a significant increase in the performance and lifetime of SOFCs

  20. Nanoporous anodized aluminum oxide-coated polycarbonate surface: Tailoring of transmittance and reflection properties

    International Nuclear Information System (INIS)

    Nanostructured coatings increase the transmittance and decrease the reflection of polycarbonate (PC). In this work, nanoporous anodized aluminum oxide (AAO) coating was formed electrochemically on a PC surface. The reflection properties of the AAO-coated PC were modified by varying the thickness of the AAO layer, the anodization parameters, and the pore size of AAO. Transmittance and reflection were measured by ellipsometry. The optical transmittance of the AAO film on PC was 86-94% in the wavelength range 420-780 nm, which was about four percentage units higher than the transmittance of uncoated PC. The minimum reflection of 0.2% was observed for PC with an AAO coating of 177 nm. The reflection was about five percentage units less than the corresponding value for uncoated polycarbonate. Nanoporous surfaces and profiles of AAO were characterized by Scanning Electron Microscope

  1. Nanoporous anodized aluminum oxide-coated polycarbonate surface: Tailoring of transmittance and reflection properties

    Energy Technology Data Exchange (ETDEWEB)

    Saarikoski, Inka; Suvanto, Mika [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)], E-mail: Tapani.Pakkanen@joensuu.fi

    2008-10-01

    Nanostructured coatings increase the transmittance and decrease the reflection of polycarbonate (PC). In this work, nanoporous anodized aluminum oxide (AAO) coating was formed electrochemically on a PC surface. The reflection properties of the AAO-coated PC were modified by varying the thickness of the AAO layer, the anodization parameters, and the pore size of AAO. Transmittance and reflection were measured by ellipsometry. The optical transmittance of the AAO film on PC was 86-94% in the wavelength range 420-780 nm, which was about four percentage units higher than the transmittance of uncoated PC. The minimum reflection of 0.2% was observed for PC with an AAO coating of 177 nm. The reflection was about five percentage units less than the corresponding value for uncoated polycarbonate. Nanoporous surfaces and profiles of AAO were characterized by Scanning Electron Microscope.

  2. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    Science.gov (United States)

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively. PMID:26726567

  3. Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chun-Hung; Lin, Chung-Kwei [Department of Materials Science and Engineering, Feng Chia University, Taiwan (China); Lee, Sheng-Wei; Li, Hui-Ying [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Chang, Jeng-Kuei, E-mail: jkchang@ncu.edu.tw [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Deng, Ming-Jay [National Synchrotron Radiation Research Center, Taiwan (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. Black-Right-Pointing-Pointer Microstructure and Na content of the oxide are controlled by deposition potential. Black-Right-Pointing-Pointer A lower deposition potential leads to a higher porosity of the prepared oxide. Black-Right-Pointing-Pointer Na doping significantly increases the oxide capacitance. Black-Right-Pointing-Pointer The nanostructured Na-doped oxide shows an ideal supercapacitor performance. - Abstract: Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2 M VOSO{sub 4} solution with NaCH{sub 3}COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V{sub 2}O{sub 5} electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1 V; the optimum specific capacitance is {approx}180 F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.

  4. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  5. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  6. Influences of the main anodic electroplating parameters on cerium oxide films

    International Nuclear Information System (INIS)

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  7. Influences of the main anodic electroplating parameters on cerium oxide films

    Science.gov (United States)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu; Zhang, Zhao; Zhang, Jianqing

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  8. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    International Nuclear Information System (INIS)

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  9. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  10. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  11. Characterization and quantification of oxides generated by anodization on titanium for implantation purposes

    Science.gov (United States)

    Aloia Games, L.; Pastore, J.; Bouchet, A.; Ballarre, J.

    2011-12-01

    The use of titanium as implant material is widely known in the surgery field. The formation of natural or artificial compact and protective oxide is a convenient tool for metal protection and a good way to generate phosphate deposits to enhance biocompatibility and bone fixation with the existing tissue. The present work has the aim of superficially modify commercially pure titanium sheets used in orthopedics and odontology, with a potencistatic anodization process with an ammonium phosphate and ammonium fluoride solution as electrolyte. The objective is to generate titanium oxides doped with phosphorous on the surface, to promote bioactivity. The characterization and quantification of the generated deposits is presented as a starting point for the future application of these materials. The applied characterization methods are X ray diffraction, micro-Raman spectroscopy analysis for evaluating the chemical and phase composition on the modified surface and PDI image analysis techniques that allow the segmentation of SEM images and the measurement and quantification of the oxides generated by the anodization process. The samples with polished treated surface at 30V have the deposit of a phosphate rich thick layer covering almost all the surface and spherical-shaped titanium oxide crystals randomly placed (covering more than 20% of the surface area).

  12. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    International Nuclear Information System (INIS)

    Highlights: ► Oxidation with BDD is a powerful electrochemical method able to mineralize. ► SA is oxidized to aromatic compounds then CO2 and H2O. ► Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0–10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm2 area, by applying a current of 100, 300 and 450 mA at 25 °C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical (·OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L−1. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  13. Microstructural control of Ni-YSZ cermet anode for planer thin-film solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) cermet anode was fabricated for solid oxide fuel cells (SOFCs) by conventional ceramic processing using NiO-YSZ composite particles. Microstructures of the anode were carefully characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Ni-YSZ cermet anode was consisting of fine YSZ connections, as the conducting pass of oxygen ions, on the surface of Ni network, as that of electrons, with continuous pore structure and as that of gaseous species. No amorphous phases were present at the interface between Ni and YSZ, and there was an orientation relationship between Ni and YSZ grains (111)Ni//(111)YSZ. The cermet anode showed a high electrical performance at 800 deg. C. These results indicated that the electrochemical activity of the Ni-YSZ cermet anode was enhanced with the present microstructure

  14. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  15. Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films.

    Science.gov (United States)

    Cetinörgü-Goldenberg, Eda; Klemberg-Sapieha, Jolanta-Ewa; Martinu, Ludvik

    2012-09-20

    Optical, mechanical, and thermal properties of optical thin films are very important for a reliable device performance. In the present work, the effect of annealing on the stability and the characteristics of niobium and tantalum oxide films grown at room temperature (RT) by dual ion beam sputtering were studied. The refractive index (n(λ)), extinction coefficient (k(λ)), hardness (H), reduced Young's modulus (E(r)), and film stress (σ) were investigated as a function of the annealing temperature (T(A)). X-ray diffraction analysis showed that all as-deposited films were amorphous, and crystallization was observed only after annealing at 700°C. Compositional analyses confirmed that the atomic ratio of oxygen to metal in as-deposited and annealed films was close to 2.5, indicating that the films were stoichiometric pentoxides of Nb and Ta. The properties of Nb(2)O(5) and Ta(2)O(5) films were, respectively, affected by postdeposition annealing: n(λ) values (at 550 nm) decreased from 2.30 to 2.20 and from 2.14 to 2.08, the average H and E(r) values increased from 5.6 to 7.4 GPa, and from 121 to 132 GPa for Nb(2)O(5), and from 6.5 to 8.3 GPa, and from 132 to 144 GPa for Ta(2)O(5), and the initial low compressive stress for both materials changed to tensile. We explain the variation of the coating material properties in terms of film stoichiometry, crystallinity, electronic structure, and possible reactions at the film-substrate interface. PMID:23033019

  16. Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cells

    DEFF Research Database (Denmark)

    Lira-Cantu, M.; Norrman, K.; Andreasen, J.W.;

    2006-01-01

    exchange was demonstrated using O-18(2)-isotopic labeling in combination with time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging analysis of devices and oxide substrates. TOF-SIMS depth profiling confirmed O-18 incorporation throughout the device in hybrid solar cells. The results are...

  17. Niobium powder synthesized by calciothermic reduction of niobium hydroxide for use in capacitors

    OpenAIRE

    Baba, Masahiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2015-01-01

    Metallic niobium powder was produced for applications in electric capacitors via calciothermic reduction of niobium hydroxide in molten CaCl2. Sub-micrometer spherical metallic particles with coral-like morphologies reflected the particle size of the starting oxide powder. A fine powder was obtained from the mixtures of niobium hydroxide and CaO or Ca(OH)2, respectively. Sintered pellets of the metallic powder showed a higher capacitance (CV) than those of the simply reduced powder without pr...

  18. Influence of niobium addition on microstructure, mechanical properties and oxidation resistance of ZrN coatings

    International Nuclear Information System (INIS)

    In this study, Zr-Nb-N coatings with 0–3.8 at.% Nb addition were deposited by magnetron co-sputtering deposition. The results reveal that Nb atoms substitute Zr atoms in Zr-N lattice, forming the solid solution structure. All the Zr-Nb-N coatings illustrate a dense columnar structure with the preferred orientation of (200), showing independent of Nb addition. Nanoindentation result reveals a promoted hardness of the Zr-Nb-N coatings from 23.9 ± 0.7 GPa to 28.4 ± 0.5 GPa with enhanced Nb content from 0 to 2.8 at.% due to both the solid solution strengthening and Hall–Petch effect. Scratch tests show that adhesion between substrates and coatings can be improved by Nb addition. After oxidation in air at 600 °C for 2 h, microstructural studies indicate the oxide scales consist of monoclinic-ZrO2 outer layer and tetragonal-ZrO2 inner layer. Moreover, ZrO2 can be stabilized in the tetragonal phase by Nb doping. The Zr-Nb-N coating with 1.3 at.% Nb addition exhibits superior oxidation resistance, while excess Nb addition produces detrimental effects on oxidation resistance. - Highlights: • Moderate Nb addition improves the hardness and adhesion of Zr-Nb-N coatings. • Significant improvement of oxidation resistance is obtained by Nb addition. • GAXRD and TEM microstructural studies of the Zr-Nb-N coatings. • Phase stabilization of tetragonal-ZrO2 is achieved by Nb addition

  19. Influence of niobium addition on microstructure, mechanical properties and oxidation resistance of ZrN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.T. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Qi, Z.B. [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361005 (China); Jiang, W.F. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Wang, Z.C., E-mail: zcwang@xmu.edu.cn [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Liu, B. [Xiamen Annaiwy New Material CO., LTD, Xiamen 361005 (China)

    2014-11-03

    In this study, Zr-Nb-N coatings with 0–3.8 at.% Nb addition were deposited by magnetron co-sputtering deposition. The results reveal that Nb atoms substitute Zr atoms in Zr-N lattice, forming the solid solution structure. All the Zr-Nb-N coatings illustrate a dense columnar structure with the preferred orientation of (200), showing independent of Nb addition. Nanoindentation result reveals a promoted hardness of the Zr-Nb-N coatings from 23.9 ± 0.7 GPa to 28.4 ± 0.5 GPa with enhanced Nb content from 0 to 2.8 at.% due to both the solid solution strengthening and Hall–Petch effect. Scratch tests show that adhesion between substrates and coatings can be improved by Nb addition. After oxidation in air at 600 °C for 2 h, microstructural studies indicate the oxide scales consist of monoclinic-ZrO{sub 2} outer layer and tetragonal-ZrO{sub 2} inner layer. Moreover, ZrO{sub 2} can be stabilized in the tetragonal phase by Nb doping. The Zr-Nb-N coating with 1.3 at.% Nb addition exhibits superior oxidation resistance, while excess Nb addition produces detrimental effects on oxidation resistance. - Highlights: • Moderate Nb addition improves the hardness and adhesion of Zr-Nb-N coatings. • Significant improvement of oxidation resistance is obtained by Nb addition. • GAXRD and TEM microstructural studies of the Zr-Nb-N coatings. • Phase stabilization of tetragonal-ZrO2 is achieved by Nb addition.

  20. Study of niobium corrosion in alkaline medium

    International Nuclear Information System (INIS)

    A comparative study of niobium electrochemical behaviour in NaOH and KOH solution, with concentrations between 0,5 and 6,1M is presented. The studies were done through electrochemicals assays, consisting in the corrosion potential and anodic and cathodic polarization curves, complemented by loss of mass experiments. The niobium anodic behaviour in alkaline medium is characterized by passivation occurrence, with a stable film formation. The Na oH solution in alkaline medium are more corrosible to niobium than the KOH solution. The loss of mass assays showed that the corrosion velocit is more dependente of hydroxide concentration in KOH medium than the NaOH medium. (C.G.C.)

  1. High performance fuel electrode for a solid oxide electrochemical cell

    DEFF Research Database (Denmark)

    2013-01-01

    perovskite oxides selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate and mixtures thereof, thereby obtaining a porous anode backbone, (b) sintering the coated electrolyte at a high temperature, such as 1200 DEG C in a......A high performance anode (fuel electrode) for use in a solid oxide electrochemical cell is obtained by a process comprising the steps of (a) providing a suitably doped, stabilized zirconium oxide electrolyte, such as YSZ,ScYSZ, with an anode side having a coating of electronically conductive...

  2. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    孔令斌; 陆梅; 李梦轲; 郭新勇; 力虎林

    2003-01-01

    Uniform platinum nanowires were synthesized by electrodepositing the platinum under a very low altering current frequency (20Hz) and increasing voltage (5-15 V) in the pores of anodic aluminium oxide (AAO) template.Atomic force microscopy observation indicates that the template membranes we obtained have hexagonally closepacked nanochannels. The platinum nanowires have highly ordered arrays after partially dissolving the aluminium oxide membrane. With the increasing dissolving time, the platinum nanowire array collapsed. A concave topography of the aluminium substrate was observed after the aluminium oxide membrane was dissolved completely and the platinum nanowires were released from the template. Platinum nanowires were also characterized by transmission electron microscopy and the phase structure of the Al/AAO/Pt composite was proven by x-ray diffraction.

  3. Marker behaviour of implanted xenon during the anodic oxidation of aluminium: evidence and interpretation of dose dependant splitting effect

    International Nuclear Information System (INIS)

    Using 2 MeV lithium ions backscattering and transmission electron microscopy techniques, a part of xenon atoms introduced by implantation in aluminium metal under the initial oxide layer is shown to be tranported by the moving metal-oxide interface during anodic oxidation. From specific anodization conditions (V sup(ct), T = 900C) this splitting of the initial xenon distribution is interpreted in terms of bubble formation and growth above a given local concentration threshold. A schematic model for this behaviour evolution is proposed. This dose dependance is of practical interest in the determination of transport numbers. Although unambiguously measured they may be subject to significant systematic uncertainties which are discussed

  4. Low temperature synthesis of porous tin oxide anode for high-performance lithium-ion battery

    International Nuclear Information System (INIS)

    Highlights: • Facile, fast and low-cost urea synthesis of porous SnO2 anode for lithium ion battery. • Porous SnO2 anode delivers excellent electrochemical performances. • High surface area, good electric contact and easier Li+ diffusion give high performances. • Finer the sizes of the SnO2 nanoparticles better the cycling stability. -- Abstract: In this work, tin oxide nanoparticles have been synthesized by a facile and low-cost urea-assisted auto-combustion method in combination with subsequent calcination at a low temperature (350 °C/5 h), which produces porous structure and less nanometer size of particles (5–10 nm). These nanoparticles were employed as the anode material for lithium-ion batteries, delivering better electrochemical properties of high reversible lithium storage capacity (618 mAh g−1 after 40 cycles at 0.05 C) and high rate capability (as high as 323 mAh g−1 at 4.8 C), indicating potential application for lithium-ion batteries. The microstructural change in the electrode corresponding to the change in electrochemical behavior was also studied by field-emission transmission electron microscopy, and the results supported the notion that the finer the sizes of the SnO2 nanoparticles better the cycling stability

  5. Accelerated creep in solid oxide fuel cell anode supports during reduction

    Science.gov (United States)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  6. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun [Department of Material Science and Engineering, POSTECH Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea, Republic of)

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O{sub 2} as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl{sub 3} plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  7. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.

    Science.gov (United States)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio. PMID:21817499

  8. Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xuebing Han

    2014-07-01

    Full Text Available The lithium titanium oxide (LTO anode is widely accepted as one of the best anodes for the future lithium ion batteries in electric vehicles (EVs, especially since its cycle life is very long. In this paper, three different commercial LTO cells from different manufacturers were studied in accelerated cycle life tests and their capacity fades were compared. The result indicates that under 55 °C, the LTO battery still shows a high capacity fade rate. The battery aging processes of all the commercial LTO cells clearly include two stages. Using the incremental capacity (IC analysis, it could be judged that in the first stage, the battery capacity decreases mainly due to the loss of anode material and the degradation rate is lower. In the second stage, the battery capacity decreases much faster, mainly due to the degradation of the cathode material. The result is important for the state of health (SOH estimation and remaining useful life (RUL prediction of battery management system (BMS for LTO batteries in EVs.

  9. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Department of Mechanical and Mechatronic Engineering, Keelung (China); Hsu, Todd [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Tsai, Huei-Ting [National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Chen, Chien-Chon [National United University, Department of Energy and Resources, Miaoli (China); Liu, Shiu-Mei [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Marine Biology, Keelung (China); Lin, Tai-Yuan [National Taiwan Ocean University, Institute of Optoelectronic Sciences, Keelung (China); Chen, Chin-Hsing [National Chiao Tong University, Department of Applied Chemistry, Hsinchu (China)

    2011-02-15

    The use of titanium dioxide (TiO{sub 2}) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH{sub 4}F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously. (orig.)

  10. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion in a...

  11. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    OpenAIRE

    Mogensen, D.; J.-D. Grunwaldt; Hendriksen, P. V.; J. U. Nielsen; K. Dam-Johansen

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional ...

  12. Anodic oxidation of Zr and zircaloy-2 in 0.1M KOH

    International Nuclear Information System (INIS)

    The kinetics of anodic oxidation of zirconium and zircaloy-2 has been studied at a constant current density of 8 mA.cm-2 upto a formation voltage of 120 volts. The current efficiency is more (90%) with zircaloy-2 than with Zr (75%), whilst the field strength required to maintain a constant ionic current through the film is independent of the thickness of the film. However, the differential fields of formation of zircaloy-2 and Zr are 4.4 and 4.2 mV.cm-1, respectively. (author). 5 refs

  13. Rayleigh instability in polymer thin films coated in the nanopores of anodic aluminum oxide templates.

    Science.gov (United States)

    Tsai, Chia-Chan; Chen, Jiun-Tai

    2014-01-14

    We study the Rayleigh instability of polystyrene (PS) thin films coated in the nanopores of anodic aluminum oxide (AAO) templates. After thermal annealing, the surface of the PS thin films undulates and the nanostructures transform from nanotubes to Rayleigh-instability-induced nanostructures (short nanorods with encapsulated air bubbles). With longer annealing times, the nanostructures further transform to nanorods with longer lengths. PS samples with two different molecular weights (24 and 100 kg/mol) are used, and their instability transformation processes are compared. The morphology diagrams of the nanostructures at different stages are also constructed to elucidate the mechanism of the morphology transformation. PMID:24380368

  14. Surface enhanced Raman scattering of biospecies on anodized aluminum oxide films

    Science.gov (United States)

    Zhang, C.; Smirnov, A. I.; Hahn, D.; Grebel, H.

    2007-06-01

    Traditionally, aluminum and anodized aluminum oxide films (AAO) are not the platforms of choice for surface-enhanced raman scattering (SERS) experiments despite of the aluminum's large negative permittivity value. Here we examine the usefulness of aluminum and nanoporous alumina platforms for detecting soft biospecies ranging from bacterial spores to protein markers. We used these flat platforms to examine SERS of a model protein (cytochrome c from bovine heart tissue) and bacterial cells (spores of Bacillus subtilis ATCC13933 used as Anthrax simulant) and demonstrated clear Raman amplification.

  15. Fabrication of High power, High-Efficiency Linear Array Diode Lasers by Pulse Anodic Oxidation

    Science.gov (United States)

    Gao, Xin; Zhang, Jing; Li, Hui; Qu, Yi; Bo, Baoxue

    2006-09-01

    InGaAlAs/AlGaAs/GaAs double-quantum-well (DQW) linear array diode lasers with asymmetric wide waveguide have been successfully fabricated by pulse anodic oxidation upon molecular beam epitaxy material growth. High-efficiency and high-power quasi-continuous-wave (QCW) output has been realized at 808 nm wavelength. The threshold current and slope efficiency of the prepared high-fill-factor QCW devices are 24 A and 1.25 A/W, respectively, and a maximum wall-plug efficiency of 51% has been achieved.

  16. Preparation and Characterization of Fe Nanowire Arrays Embedded in Porous Anodic Aluminum Oxide Templates

    Institute of Scientific and Technical Information of China (English)

    迟广俊; 姚素薇

    2004-01-01

    Fe nanowire arrays are prepared by electrodeposition in porous anodic aluminum oxide template from a composite electrolyte solution. These nanowires have an uniform diameter of approximate 25 nm and a length in excess of 2.5μm.The micrographs and crystal structures of Fe nanowlres are studied by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction(XRD). It is found that each nanowire is essentially a single crystal and has a different orientation in each array. Hysteresis loops of Fe nanowire array show that its easy magnetization direction is perpendicular to the sample plane.

  17. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  18. The beneficial effect of nanocrystalline and amorphous nature on the anode performance of manganese oxide for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • A soft-chemical redox reaction yields efficient anode material of amorphous MnO2 nanocrystal. • Amorphous MnO2 nanocrystal shows better anode performance than well-crystalline homologue. • This result highlights the merit of nanocrystalline nature for the electrode performance of MnO2. • The present redox reaction provides a scalable and economic route to efficient anode material. - Abstract: The effect of the amorphous structure and nanocrystalline nature of metal oxide on its anode performance in lithium ion batteries is investigated with two nanocrystalline and one well-crystallized layered manganese oxides. X-ray amorphous manganese oxide nanocrystals are synthesized by soft-chemical redox reactions using reducing agents of KBH4 and LiI at room temperature, whereas well-crystallized layered manganese oxide is obtained by solid state reaction at elevated temperature. Although both of the amorphous manganese oxides lack a long-range structural order, they are crystallized with a layered MnO2-type local structure, which is nearly identical to the crystal structure of the well-crystallized K0.45MnO2. In comparison with the well-crystallized K0.45MnO2, both the amorphous manganese oxides commonly possess smaller particle sizes with larger surface areas and better homogeneity of composite structure. The amorphous manganese oxide nanocrystals show better anode performance with greater discharge capacity for lithium ion batteries than does the well-crystallized K0.45MnO2, which is attributable to the greater surface area, higher structural and electrochemical stability, more homogeneous composite structure, and better charge-transfer characteristics of the amorphous materials. This result highlights the merit of the nanocrystalline and amorphous nature for optimizing the electrode performance of manganese oxide. The present solution-based redox reaction can provide a facile, economic, and scalable route for synthesizing efficient manganese

  19. Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: Great interest in anode materials has dramatically emerged with increasing demand for electrochemically generated oxidants in industrial electrochemistry. For the last five decades, these needs have been mostly achieved by the introduction of two well-known anode materials, the dimensional stable anode (DSA®) and boron-doped diamond (BDD) electrodes. Nevertheless, the high cost and complicated process in fabricating these electrodes remains as a big obstacle for further development. Here, we report a novel anode material for the production of oxidants, the dark blue colored TiO2 nanotube array (NTA) (denoted as Blue TiO2 NTA) which has never been successfully achieved with titania-based materials. This titania-based electrocatalyst with irreversible electrochromism and high conductivity was successfully fabricated with simple cathodic polarization of anatase TiO2 NTA and exhibits the excellent electrocatalytic activity in generating chlorine (Cl2) and hydroxyl radical (• OH) which is comparable to the commercial DSA® and BDD electrodes, respectively. Thus, this Blue TiO2 NTA is suggested as a potential cost effective anodic material in industrial electrochemistry. In addition, even in other metal oxides other than titania, the cathodic polarization (accompanied with irreversible electrochromism) method may be applied to explore a new route for low-cost and novel anodic materials

  20. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode

    International Nuclear Information System (INIS)

    Scale-up of boron-doped diamond (BDD) anode system is significant to the practical application of electrochemical oxidation in bio-refractory wastewater treatment. In this study, the performance of a smaller BDD anode (24 cm2) system in continuous mode electrochemical oxidation of phenol simulated wastewater was first investigated and well described by the response surface methodology (RSM). Furthermore, the RSM was extended to examine the scale-up feasibility of BDD anode systems with similar configurations. It was demonstrated that both COD degradation efficiency and specific energy consumption could be expected at the same level even as the system was enlarged over 100 times, which implied that BDD anode system could be successfully scaled up through controlling the same retention time, current density, initial COD, and conductivity conditions. Based on this study, a larger BDD anode (2904 cm2) system was constructed and systematic measurements were made on its performance in electrochemical oxidation of phenol simulated wastewater. Very good agreement was found between measured and predicted results by RSM. At the optimized conditions, the larger BDD anode system could easily reduce the COD of phenol simulated wastewater from 633 mg L-1 to 145 mg L-1 (-1, National Discharge Standard of China) during 80 min with specific energy consumption only 31 kWh kgCOD-1.

  1. The effects of surface oxidation and fluorination of boron-doped diamond anodes on perchlorate formation and organic compound oxidation

    International Nuclear Information System (INIS)

    This research investigated the effects of surface functional groups on both rates of organic compound oxidation (phenol, p-nitrophenol, benzoquinone, and oxalic acid) and perchlorate (ClO4−) formation at boron-doped diamond (BDD) film anodes at 20 °C. X-ray photoelectron spectroscopy measurements determined that various oxygenated functional groups (e.g., C-OH, C=O, COOH) were incorporated on the BDD surface by applying an anodic ageing process, and fluorine functional groups (e.g., C-F, -CnF2n+1) were incorporated by electrochemical oxidation of aqueous perfluorooctanoic acid solutions. Batch oxidation experiments revealed that ClO4− formation via the oxidation of ClO3− was highly variable during anodic ageing, which was attributed to changes in oxygenated functional groups, while organic compound oxidation rates were not significantly affected. The fluorinated electrode showed a lower ClO4− formation rate (19 ± 4 μmoles m−2 min−1) compared to the oxygenated electrode (436 ± 26 μmoles m−2 min−1) indicating the fluorinated surface limits ClO4− production. Measurement of the electrode response to the Fe(CN)63−/4− redox couple using cyclic voltammetry and electrochemical impedance spectroscopy indicated that lower ClO4− formation on the fluorinated electrode was likely a result of dipole-dipole interactions between the negatively charged F atoms and ClO3− and steric hindrance caused by the perfluorocarbon chains. This effect along with the hydrophobicity of the fluorinated electrode resulted in significantly lower ClO4− formation (96% decrease) while slightly enhancing measured oxidation rates of hydrophobic organic compounds. The use of benzoquinone as OH· probe confirmed that the fluorination process did not inhibit OH· production. The rate of benzoquinone oxidation was 2212 ± 183 μmoles m−2 min−1 on the oxygenated electrode and 2926 ± 201 μmoles m−2 min−1 on the fluorinated electrode. Density functional theory

  2. Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer

    Science.gov (United States)

    Liu, Tong; Wang, Yao; Ren, Cong; Fang, Shumin; Mao, Yating; Chen, Fanglin

    2015-10-01

    Influence of the air-gap, the distance from the tube-in-orifice spinneret to the upper surface of the external coagulant bath during the extrusion/phase-inversion process, on the microstructure of nickel - yttria-stabilized zirconia (Ni-YSZ) hollow fibers has been systematically studied. When the air-gap is 0 cm, the obtained Ni-YSZ hollow fiber has a sandwich microstructure. However, when the air-gap is increased to 15 cm, a bi-layer Ni-YSZ hollow fiber consisting of a thin layer with small pores and a thick support with highly porous fingerlike macrovoids has been achieved. The output power density of microtubular solid oxide fuel cells (MT-SOFCs) with a cell configuration of Ni-YSZ/YSZ/YSZ-LSM increases from 594 mW cm-2 for the cells with the Ni-YSZ anode of sandwich microstructure to 832 mW cm-2 for the cells with the Ni-YSZ anode of bi-layer microstructure at 750 °C, implying that to achieve the same output power density, the weight of the cells with the bi-layer anode support can be reduced to 41.5% compared with that of the cells with the sandwich anode support. Thermal-cycling test shows no obvious degradation on the open-circuit-voltage (OCV), indicating that the MT-SOFCs have robust resistance to thermal cycling.

  3. Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Highlights: ► passivity of mixed α/β-phase NbTi alloys with 10 or 20 wt% Nb was studied. ► EBSD proved the α/β dual phase structure with complex subgrain crystallography. ► Voltammetry, EIS and Mott–Schottky analysis were performed. ► k, DK and EFlatband are similar, but donor density is doubled. ► Both alloys showed excellent passivity with stable and passive grain boundaries. - Abstract: Electrochemical impedance spectroscopy was used to study the interface between the anodic oxide formed on Ti–Nb alloys with specific compositions of Ti–10 wt.% Nb and Ti–20 wt.% Nb and the electrolyte. The anodic oxides were grown in an acetate buffer of pH 6.0 by using cyclic voltammetry electrochemical technique in which the potential is scanned at a rate of 100 mV s−1. The potential applied starts from 0 V and increasing at steps of 1 V till 8 V which allows to study the mechanism and the kinetics involved during the oxide growth. The electrochemical impedance measurements were started prior to applying any potential so that the electronic properties of the native oxide on the Ti–Nb alloys can be determined. The electrochemical measurements were then carried out after each oxide growth so that the electronic properties of the previously grown oxide can also be determined. The variation of the capacitance of the respective oxides determined from the impedance measurements with the applied potential enables the calculation of the relative permittivity of the respective oxides on the two alloys. Moreover the semiconducting properties of the oxides were determined by using Mott–Schottky analysis. The Mott–Schottky analysis involves electrochemical impedance measurements at fixed frequency with increasing applied bias potential so that the variation of the capacitance of the space charge region with the applied potential can be followed. The oxides from both alloys showed an n-type semiconducting property with 7.5 × 1018 cm−3 and 2.4 × 1019 cm−3

  4. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  5. Anodic oxidation of ethylenediaminetetraacetic acid on platinum electrode in alkaline medium

    International Nuclear Information System (INIS)

    Ethylenediaminetetraacetic acid (EDTA) forms strong metal complexes and is often used to remove scale from heat-transfer equipment and to decontaminate equipment exposed to radioactive material. However, the resultant waste in the form of EDTA-metal complex is hard to treat due to the high stability of such complexes. The anodic oxidation of ethylenediaminetetraacetic acid (EDTA) was studied in alkaline medium on a smooth platinum electrode. Bulk electrolysis indicated that stable organic intermediates (formaldehyde and glyoxal) are formed during the oxidation of EDTA and that complete oxidation to CO2 can be achieved. The proposed pathway suggests that the acetate groups in EDTA are initially oxidized, generating formaldehyde and ethylenediamine. The rest potential of EDTA (0.066 to 0.164 V vs. Hg/HgO) was observed to be higher than for other organic species. In alkaline medium, very little EDTA oxidation was found to occur on bare platinum. Limiting-current behavior due to PtO formation was observed immediately positive of the rest potential. Tafel behavior (Tafel slope 120 mV/dec) was observed in the potential region positive of the cessation of the bulk of oxide film formation and negative of the onset of O2 evolution. The reaction order of EDTA was determined to be ∼0.5, and that of OH- was close to zero. The reaction mechanism consistent with the experimental data involves Temkin-type adsorption and a first-electron-transfer rate-determining step

  6. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 8000C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author)

  7. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes.

    Science.gov (United States)

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed; Cañizares, Pablo; Rodrigo, Manuel A

    2015-04-01

    In this work, the electrochemical oxidation of synthetic urine by anodic oxidation using boron-doped diamond as anode and stainless steel as cathode was investigated. Results show that complete depletion of chemical oxygen demand (COD) and total organic carbon (TOC) can be attained regardless of the current density applied in the range 20-100 mA cm(-2). Oxalic and oxamic acids, and, in lower concentrations, creatol and guanidine were identified as the main intermediates. Chloride ions play a very important role as mediators and contribute not only to obtain a high efficiency in the removal of the organics but also to obtain an efficient removal of nitrogen by the transformation of the various raw nitrogen species into gaseous nitrogen through chloramine formation. The main drawback of the technology is the formation of chlorates and perchlorates as final chlorine products. The increase of current density from 20 to 60 mA cm(-2) led to an increase in the rate of COD and TOC removals although the process becomes less efficient in terms of energy consumption (removals of COD and TOC after applying 18 Ah dm(-3) were 93.94 and 94.94 %, respectively, at 20 mA cm(-2) and 89.17 and 86.72 %, respectively, at 60 mA cm(-2)). The most efficient conditions are low current densities and high temperature reaching total mineralization at an applied charge as low as 20 kAh m(-3). This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of urine. PMID:25399531

  8. Fabrication of highly ordered porous nickel oxide anode materials and their electrochemical characteristics in lithium storage

    International Nuclear Information System (INIS)

    Highlights: • NiO/Si-MCP nanocomposites electrocatalysts as anodes in lithium ion batteries. • Si MCP itself is an excellent support for electrocatalyst. • The structure with high surface to volume ratio endows higher mass NiO nanopatricles. • The ordered channel and mesoporous structure permits liquid electrolyte flow easily. • This research may provide a meaning way in integratable lithium-ion batteries. - Abstract: The structure and electrochemical properties of silicon microchannel plates (MCP)-supported NiO nanocomposites (NiO/Si-MCP) synthesized by silicon micromachining, electroless plating, and thermal annealing are investigated as anodes in lithium ion batteries. Galvanostatic charge and discharge results indicate that the NiO/Si-MCP is capable of delivering a higher capacity than the bare nickel-oxide film. At a 1 C current, the NiO/Si-MCP nanocomposite film shows an enormous first discharge capacity of about 3190 mA g−1 and charge capacity of 1977 mA g−1. After 15 cycles, the NiO/Si-MCP nanocomposite retains a reversible capacity of 1531 mA g−1 with 63.7% of the capacity maintained in the 2nd cycle. The lithium storage capacity is maintained at ∼880 mA h g−1 after 50 discharge/charge cycles and it is much larger than that of NiO and its composites. The enhanced electrochemical performance of the highly ordered three-dimensional materials is attributed to the synergistic effects offered by the silicon microchannel plates in the nickel oxide film subsequently facilitating electrolyte penetration, diffusion, and migration. The structure is promising anode materials in lithium-ion batteries

  9. Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments

    International Nuclear Information System (INIS)

    Metal injection molding (MIM) is a near net shape manufacturing method that allows for the production of components of small to moderate size and complex shape. MIM is a cost-effective and flexible manufacturing technique that provides a large innovative potential over existing methods for the industry of implantable devices. Commercially pure titanium (CP-Ti) samples were machined to the same shape as a composite feedstock with titanium and polyoxymethylene, and these metals were injected, debinded and sintered to assess comparative biological properties. Moreover, we treated MIM-Ti parts with BIOCOAT®, BIODIZE® and BIOCER®, three different anodic oxidation techniques that treat titanium using acid, alkaline and anion enriched electrolytes, respectively. Cytocompatibility as well as morphological and chemical features of surfaces was comparatively assessed on each sample, and the results revealed that MIM-Ti compared to CP-Ti demonstrated a specific surface topography with a higher roughness. MIM-Ti and BIOCER® samples significantly enhanced cell proliferation, cell adhesion and cell differentiation compared to CP-Ti. Interestingly, in the anodization post-treatment established in this study, we demonstrated the ability to improve osseointegration through anionic modification treatment. The excellent biological response we observed with MIM parts using the injection molding process represents a promising manufacturing method for the future implantable devices in direct contact with bones. - Highlights: ► Metal injection molding technique gives titanium a specific surface roughness. It enhances the biological response. ► Anodic oxidation method adds Ca, P, and Mg ions on the surface, promoting the cell adhesion. ► Cytocompatibility analyses show an increased cell adhesion and proliferation on MIM-Ti compared to pure titanium.

  10. The sulfide oxidation in an electrolytic sulfide oxidizing bioreactor using graphite anode

    International Nuclear Information System (INIS)

    The goal of the present research was the direct conversion of sulfide (an important contaminant in various industrial wastewaters) to sulfate, whose discharge limits are much less stringent than those for sulfide. The electrolysis of sodium sulfide was investigated under different conditions such as: ph, current density and working area etc. along with cyclic voltammetry. By the use of a graphite anode, we achieved near-quantitative electrochemical conversion of sulfide ions to sulfate with current efficiency of 88%. Kinetically, the reaction is first order in current density. The experimental results revealed that the sulfide removal rate of more than 88% could be achieved under the conditions T=30 deg. C, ph = 7, current density of 1 mA/cm/sup 2/ at anode area of 225 cm/sup 2/.The process can be practically coupled with bioreactor for an effective sulfide removal. (author)

  11. Superior corrosion resistance by niobium coating

    International Nuclear Information System (INIS)

    Niobium is a reactive metal which passivates spontaneously in many aggressive environments. Niobium metal also has favorable thermal and mechanical properties for use in the chemical process industries as process equipment or ancillary components which require high reliability and extensive service life. Niobium coatings can be used in applications where superior resistance against aqueous corrosion or erosion in hot-gases is needed. In this study the corrosion resistance of electrodeposited niobium on AISI 316 stainless steels in acid media has been studied. The structure and composition of niobium coatings are reviewed. The morphology, microstructure and defects were studied using a scanning electron microscope. In short term experiments the electrolyte was 30% H2SO4 at a temperature of 298 K and during long term measurements the electrolyte was 1 M H2SO4. Both Alternating Current (AC) and Direct Current (DC) electrochemical methods were used to characterize the corrosion behavior of base material and coating-base material system. Short term measurement procedure for coated samples consisted of four different measurements. Polarization resistance values measured by electrochemical impedance spectroscopy showed that the corrosion resistance of niobium coatings was related to the development of a passive layer on the niobium surface. The Long Cyclic Anodic Polarization curves showed that electrodeposited niobium coatings are capable of isolating the substrate material completely from the electrolyte. The Potentiostatic Exertion measurements showed that the corrosion resistance of electrodeposited niobium coatings was five orders of magnitude better than of the base material AISI 316 in 30 % H2SO2 electrolyte

  12. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu; Liu, Meilin; Yang, Guan-Jun

    2016-08-01

    Porous metal-supported solid oxide fuel cells (SOFCs) have attracted much attention because their potential to dramatically reduce the cost while enhancing the robustness and manufacturability. In particular, 430 ferritic steel (430L) is one of the popular choice for SOFC support because of its superior performance and low cost. In this study, we investigate the oxidation and diffusion behavior of the interface between a Ni-based anode and porous 430L support exposed to a humidified (3% H2O) hydrogen atmosphere at 700 °C. The Ni-GDC (Ce0.8Gd0.2O2-δ) cermet anodes are deposited on the porous 430L support by atmospheric plasma spraying (APS). The effect of exposure time on the microstructure and phase structure of the anode and the supports is studied and the element diffusion across the support/anode interface is characterized. Results indicate that the main oxidation product of the 430L support is Cr2O3, and that Cr and Fe will diffuse to the anode and the diffusion thickness increases with the exposure time. The diffusion thickness of Cr and Fe reach about 5 and 2 μm, respectively, after 1000 h exposure. However, the element diffusion and oxidation has little influence on the area-specific resistance, indicating that the porous 430L steel and plasma sprayed Ni-GDC anode are promising for durable SOFCs.

  13. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  14. Infiltrated lanthanum strontium chromite anodes for solid oxide fuel cells: Structural and catalytic aspects

    Science.gov (United States)

    Oh, Tae-Sik; Yu, Anthony S.; Adijanto, Lawrence; Gorte, Raymond J.; Vohs, John M.

    2014-09-01

    Infiltration is a widely used fabrication method for solid oxide fuel cell (SOFC) composite electrodes. Here we report a study of the structure and electrocatalytic properties of SOFC anodes composed of a layer of lanthanum, strontium chromite (La0.8Sr0.2CrO3, LSCr), both with and without added transition metal dopants, infiltrated into a porous yttria-stabilized zirconia (YSZ) matrix. The structural evolution of the electrode upon reduction and under typical SOFC operating conditions is compared to that reported previously for La0.8Sr0.2Cr0.5Mn0.5O3-YSZ composite anodes. For the transition metal doped materials, a portion of the metal dopants were found to be exsolved from the LSCr lattice upon reduction and to be effective in promoting electro-oxidation of hydrogen. Exsolved cobalt particles were also found to be relatively stable when exposed to hydrocarbon fuels with low activity for the formation of carbon deposits.

  15. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating......Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850 and...... 750°C is evaluated in either hydrogen/steam or hydrogen/steam/CO fuel. It was found that the poisoning effect is more severe in H2/H2O/CO vs. H2/H2O fuel. Only ∼8 ppm H2S can be allowed in the CO containing fuel without risking damage to the anode, whereas 90 ppm (or even more) is possible in H2/H2O...

  16. Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface

    International Nuclear Information System (INIS)

    Wetting theory about superhydrophobic surfaces reveals that hydrophobicity of surfaces has great relationship with surface roughness and surface free energy. Adopt electrochemical plus fluorine silane modified method to prepare superhydrophobic surface on anodic aluminum oxide surface, which not only enhances surface roughness, but also reduces surface free energy, even the static contact angle can reach 159.2° and anti-condensation is authenticated. Based on the experimental findings, analyze the reason of anti-condensation on superhydrophobic surfaces: one is that the density of droplets formed on superhydrophobic surfaces is low and the number of droplets is little; the other is bigger static contact angle and smaller rolling angle on superhydrophobic surfaces make droplets easy to detach on smaller tilt angle. This research can solve some condensation problems of equipment using in HVAC systems, such as heat exchangers in air conditioning system, cold radiation boards, air supply outlets, and so on. Highlights: • Prepare superhydrophobic surface on anodic aluminum oxide surface. • Analyze the reason of anti-condensation on superhydrophobic surfaces. • The density of droplets formed on superhydrophobic surfaces is low. • Droplets on superhydrophobic surfaces are easy to detach. • This research can solve some problems of equipment using in HVAC systems

  17. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl− led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  18. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  19. Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment

    International Nuclear Information System (INIS)

    A study of the anodic oxidation of 1,4-dioxane, a refractory water pollutant, by boron-doped diamond (BDD) electrodes was carried out under a range of major system variables: initial concentration, current density, temperature, pH, and electrolyte concentration. The 1,4-dioxane removal behavior was monitored by chemical oxygen demand (COD), and the results were compared with theoretical models for the electrochemical incineration of organic compounds. The removal efficiency of COD was shown to be greater than 95% in most cases, and no electrode fouling was observed during the reaction. Experimental degradation behavior agreed well with the theoretical models, implying that system variables can be predicted, even when the process is applied at pilot scale. Processes conducted at lower initial concentrations and higher temperatures yielded better energy consumption efficiency. Conditions of higher current density yielded faster degradation but need greater quantities of charge loading into the system. Therefore, a compromise between treatment time and energy consumption is required to achieve the desired efficiency. Meanwhile, pH and electrolyte concentrations did not affect reaction efficiency, suggesting that pH adjustment prior to wastewater treatment is not necessary. Thus, anodic oxidation of 1,4-dioxane by BDD electrodes promises to be both an economical and an efficient in wastewater treatment process.

  20. Anodic Oxidation of Ultra-Thin Ti Layers on ITO Substrates and their Application in Organic Electronic Memory Elements

    International Nuclear Information System (INIS)

    In this work, controlled anodic oxidation is reported for ultra-thin (3 nm thick) titanium layers on indium tin oxide (ITO) coated glass substrates. A physical explanation is also provided for the origin of the delamination process of the Ti during the anodic oxidation. The properties of the fabricated layers are studied using electrochemical impedance spectroscopy (EIS) and X-ray Photoelectron Spectroscopy (XPS). In addition, one intriguing application is demonstrated for the anodized layers: their use as an interfacial barrier in organic diodes. Diodes containing an electrochemically fabricated TiO2 barrier layer exhibit clear room temperature negative differential resistance (NDR) and a peak-to-valley current ratio (PVCR) of 3.6. The reference diodes without the TiO2 layer show normal diode characteristics with no observable NDR. The NDR diodes have potential applications as memory elements for large-area electronics

  1. Effect of electrolyte temperature on the thickness of anodic aluminium oxide (AAO layer

    Directory of Open Access Journals (Sweden)

    P. Michal

    2016-07-01

    Full Text Available Effect of electrolyte temperature on the thickness of resulting oxide layer has been studied. Unlike previous published studies this article was aimed to monitor the relationship between electrolyte temperature and resulting AAO layer thickness in interaction with other input factors affecting during anodizing process under special process condition, i.e. lower concentration of sulphuric acid, oxalic acid, boric acid and sodium chloride. According to Design of Experiments (DOE 80 individual test runs of experiment were carried out. Using statistical analysis and artificial intelligence for evaluation, the computational model predicting the thickness of oxide layer in the range from 5 / μm to 15 / μm with tolerance ± 0,5 / μm was developed.

  2. Titanium oxide layers on aluminium substrates produced by the anodic spark deposition process

    International Nuclear Information System (INIS)

    Titanium oxide layers were prepared on pure aluminium substrates by the anodic spark deposition method. The formed crystalline titania (TiO2) phases rutile and anatase and the sodium titanium oxide (Na0.23TiO2) were identified. The corresponding crystallite size values were obtained from X-ray diffraction data by means of the Rietveld method. The crystallite size of each of these phases continuously increases with rising current density. Furthermore, the two-dimensional distribution of the titania phases on the sample surface was determined by Raman spectroscopy. It was found that the rutile/anatase ratio is inhomogeneous distributed on an observed area of 400 x 400 μm2.

  3. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    Science.gov (United States)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was

  4. High-throughput synthesis and characterization of anodic oxides on Nb-Ti alloys

    International Nuclear Information System (INIS)

    Composition spread thin film samples of Nb and Ti were prepared by co-sputtering. The composition range from Nb-5 at.% Ti to Nb-78 at.% Ti was achieved and characterized by high resolution field emission scanning electron microscopy and grazing angle X-ray diffraction. Nb stabilized the β-Ti phase over the entire range studied. The structure was cubic with a continuous change in the lattice constants with composition. Several distinct compositional zones were identified in the as-deposited film morphology. Then, anodic oxides were grown potentiodynamically and characterized by electrochemical impedance spectroscopy using a scanning droplet cell to yield a comprehensive description of oxide film properties including dielectric permittivity, resistivity, thickness and film formation factor. Mott-Schottky analysis of potentiostatically grown oxides showed how the alloy composition influences the flat band potential and the donor density of the mixed n-type semiconducting oxides. Complementary X-ray photo electron spectroscopy as a chemical analysis revealed differences in the oxide compositions as compared to the as-deposited metal resulting from the different ion transport numbers.

  5. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation. PMID:26642379

  6. Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study

    CERN Document Server

    Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo

    2012-01-01

    Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

  7. Improvement of corrosion resistance of AZ31 Mg alloy by anodizing with co-precipitation of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    Salah Abdelghany SALMAN; Ryoichi ICHINO; Masazumi OKIDO

    2009-01-01

    Anodizing of AZ31 Mg alloy in NaOH solution by co-precipitation of cerium oxide was investigated. The chemical composition and phase structure of the coating film were determined via optical microscopy, SEM and XRD. The corrosion properties of the anodic film were characterized by using potentiodynamic polarization curves in 17 mmol/L NaCl and 0.1 mol/L Na2SO4 solution at 298 K. The corrosion resistance of AZ31 magnesium alloy is significantly improved by adding cerium oxide to alkaline solution. In addition, the surface properties are enhanced and the film contains no crack.

  8. Heterogeneous growth of anodic oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fushimi, Koji; Okawa, Tsuyoshi; Azumi, Kazuhisa; Seo, Masahiro

    2000-02-01

    A scanning electrochemical microscope (SECM) was applied to study anodic oxide film grown on a polycrystalline titanium electrode in deaerated pH 8.4 borate solution. The probe current images of SECM could detect the heterogeneous growth of anodic oxide film, depending on the substrate crystal grains. This heterogeneity increased with increasing the film formation potential at the potential higher than 3 V (SHE). The study of the dependence of film thickness on the substrate grain has been also supported with Raman microprobe spectroscopy.

  9. Crystallization and physical properties of alkali phosphomolybdate glasses containing niobium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.A.; Graca, M.P.F. [Physics Department (I3N), Aveiro University, Campus Universitario de Santiago, Aveiro (Portugal); Bih, L.; Bih, H. [Equipe Sciences de Materiaux, FST-Errachidia (Morocco)

    2011-11-15

    Glasses with transition metal ions have interest because of their potential use in electrochemical, electronic and electro-optical devices. Molybdenum oxide is not a glass-forming, but it is able to enter the glass structure in the form of MoO{sub 4} tetrahedral or MoO{sub 6} octahedral with some glass-forming, like P{sub 2}O{sub 5}. The binary MoO{sub 3}-P{sub 2}O{sub 5} glasses were stable over a wide range of compositions. The ternary glass P{sub 2}O{sub 5}-MoO{sub 3}-Li{sub 2}O presents high potentiality as fast ion-conductors. Ferroelectric crystalline particles (LiNbO{sub 3}) can be obtained by heat-treatments of the glass P{sub 2}O{sub 5}-Li{sub 2}O-Nb{sub 2}O{sub 5}. The heat-treatment does not promote glass-ceramics with a single crystalline phase. The quaternary system P{sub 2}O{sub 5}-MoO{sub 3}-Nb{sub 2}O{sub 5}-X{sub 2}O, (X=Li, Na), prepared by melt quenching, allowed the control of the crystalline phases obtained by heat-treatments. In this work, the transparent as-prepared glasses were heat-treated at 550 C and 650 C for 4 hours. The structure of the samples was analyzed by differential thermal analyses (DTA), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. The change of the MoO{sub 3}/P{sub 2}O{sub 5} ratio is the main chemical parameter that governs the nucleation and growth of different crystallites. The decrease of this ratio induces the formation of non-linear optical NbOPO{sub 4} crystallites in the glass. The increase of the ratio leads to the formation of other phases, such as LiPO{sub 3} (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Nano structured porous anodized aluminium oxide by using C2H2O4 for electronic applications: Study of the cell potential effects on formation of porous alumina

    International Nuclear Information System (INIS)

    In this research, a nano porous anodized aluminium oxide AAO thin film was successfully grown onto oxide layer on silicon substrate. The anodization of Si/ SiO2/ Al substrate was conducted in a vigorous stirring oxalic acid bath solution. The rate of growth, morphology and also the kinetic study of the AAO thin film were investigated. The resulting array, pores structure and pores density of AAO strongly depends on an applied voltage of the anodizing process. (author)

  11. Effective improvement of interface modified strontium titanate based solid oxide fuel cell anodes by infiltration with nano-sized palladium and gadolinium-doped cerium oxide

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei; Blennow Tullmar, Peter; Bonanos, Nikolaos; Boukamp, Bernard A.

    2013-01-01

    The development of low temperature solid oxide fuel cell (SOFC) anodes by infiltration of Pd/Gd-doped cerium oxide (CGO) electrocatalysts in Nb-doped SrTiO3 (STN) backbones has been investigated. Modification of the electrode/electrolyte interface by thin layer of spin-coated CGO (400-500 nm) con...

  12. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  13. Anode material selection criteria for selective oxidation of inorganic compounds in nitric acid media

    International Nuclear Information System (INIS)

    Significant progress has been made since the 19606 in developing highly effective anode materials for electrochemical processes, The problem areas currently facing electrochemistry researchers include investigating new composite materials obtained by grafting or doping, improving fabrication techniques to extend the lifetime of the materials while maintaining their selectivity, studying their electrochemical properties and relating them to the material structure. Research on materials with high oxygen over-potentials-materials on which water oxidation is kinetically affected, and which open an electro-activity window on high potentials (2.0 VESH or greater) - has opened new avenues such as the use of various metallic oxide deposits. Two oxide classes were identified from a structural standpoint on the basis of their water oxidation properties: chemisorbed active oxygen anodes (e.g. PtOx, IrO2 or RuO2) and physi-sorbed active oxygen anodes (e.g. SnO2 or PbO2). Selective electrochemical generation of powerful oxidants between 1.4 and 2.0 VESH in concentrated nitric acid media is used in the context of the nuclear fuel cycle, and the potential advantages of new materials with a high oxygen over-potential-other than widely used platinum-have attracted attention. The relevant physical, chemical and electrochemical properties of such materials were therefore investigated to assess their selective oxidation performance. The study focused in particular on identifying the specific aspects of concentrated nitric acid media in the processes occurring at the electrode/solution interface, using linear and cyclic voltammetry, imposed-potential electrolysis and impedance spectroscopy. This approach allowed characterization of the electron charge transfer kinetics of the medium (nitric acid, compared with other acids such as methane sulfonic acid) and of the selected redox couple (Ag(II)/Ag(I) in this case). The tests covered a wide range of materials, including IrO2, SnO2, PbO2

  14. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries.

    Science.gov (United States)

    Cai, Zhengyang; Xu, Lin; Yan, Mengyu; Han, Chunhua; He, Liang; Hercule, Kalele Mulonda; Niu, Chaojiang; Yuan, Zefan; Xu, Wangwang; Qu, Longbing; Zhao, Kangning; Mai, Liqiang

    2015-01-14

    Transition metal oxides have attracted much interest for their high energy density in lithium batteries. However, the fast capacity fading and the low power density still limit their practical implementation. In order to overcome these challenges, one-dimensional yolk-shell nanorods have been successfully constructed using manganese oxide as an example through a facile two-step sol-gel coating method. Dopamine and tetraethoxysilane are used as precursors to obtain uniform polymer coating and silica layer followed by converting into carbon shell and hollow space, respectively. As anode material for lithium batteries, the manganese oxide/carbon yolk-shell nanorod electrode has a reversible capacity of 660 mAh/g for initial cycle at 100 mA/g and exhibits excellent cyclability with a capacity of 634 mAh/g after 900 cycles at a current density of 500 mA/g. An enhanced capacity is observed during the long-term cycling process, which may be attributed to the structural integrity, the stability of solid electrolyte interphase layer, and the electrochemical actuation of the yolk-shell nanorod structure. The results demonstrate that the manganese oxide is well utilized with the one-dimensional yolk-shell structure, which represents an efficient way to realize excellent performance for practical applications. PMID:25490409

  15. Effect of Samarium Oxide on the Electrical Conductivity of Plasma-Sprayed SOFC Anodes

    Science.gov (United States)

    Panahi, S. N.; Samadi, H.; Nemati, A.

    2016-05-01

    Solid oxide fuel cells (SOFCs) are rapidly becoming recognized as a new alternative to traditional energy conversion systems because of their high energy efficiency. From an ecological perspective, this environmentally friendly technology, which produces clean energy, is likely to be implemented more frequently in the future. However, the current SOFC technology still cannot meet the demands of commercial applications due to temperature constraints and high cost. To develop a marketable SOFC, suppliers have tended to reduce the operating temperatures by a few hundred degrees. The overall trend for SOFC materials is to reduce their service temperature of electrolyte. Meanwhile, it is important that the other components perform at the same temperature. Currently, the anodes of SOFCs are being studied in depth. Research has indicated that anodes based on a perovskite structure are a more promising candidate in SOFCs than the traditional system because they possess more favorable electrical properties. Among the perovskite-type oxides, SrTiO3 is one of the most promising compositions, with studies demonstrating that SrTiO3 exhibits particularly favorable electrical properties in contrast with other perovskite-type oxides. The main purpose of this article is to describe our study of the effect of rare-earth dopants with a perovskite structure on the electrical behavior of anodes in SOFCs. Sm2O3-doped SrTiO3 synthesized by a solid-state reaction was coated on substrate by atmospheric plasma spray. To compare the effect of the dopant on the electrical conductivity of strontium titanate, different concentrations of Sm2O3 were used. The samples were then investigated by x-ray diffraction, four-point probe at various temperatures (to determine the electrical conductivity), and a scanning electron microscope. The study showed that at room temperature, nondoped samples have a higher electrical resistance than doped samples. As the temperature was increased, the electrical

  16. Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Iron oxide film with spaced radial nanorods is formed on the VGCF (vapor-grown carbon nanofiber) scaffolds by means of anodic electrodeposition. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that the iron oxide film deposited on the VGCF surface is α-Fe2O3 and consists of spaced radial nanorods having 16-21 nm in diameter after annealing at 400 deg. C. Galvanostatic charge/discharge results indicate that the α-Fe2O3/VGCF anode (970 mAh g-1) has higher capacity than bare α-Fe2O3 anode (680 mAh g-1) at 10 C current discharge. VGCF scaffolds fabricated by electrophoretic deposition favor the electron conduction, and the spaced radial nanorods on VGCFs facilitate the migration of lithium ion from the electrolyte. Electrochemical reactions between α-Fe2O3 and lithium ion are therefore improved significantly by this tailored architecture.

  17. Realization of tin oxide like anode for the manufacture of the organic solar cells

    Directory of Open Access Journals (Sweden)

    Khelil A.

    2012-06-01

    Full Text Available The transparent oxides such as SnO2, In2O3 and ZnO continue to arouse a private interest for their various applications. The objective of the various studies being to carry out the layers which are simultaneously most transparent and most conducting possible. Thus in the field of the solar spectrum, the transmission of the layers must be higher than 80% and their conductivity exceeding 103 (Ohm.cm-1. Their transparency which is related to the value of their forbidden band must be higher than 3.7 e V. Their electric properties as for them depend on the composition of the layers and a possible doping. In this work, one characterized layers of SnO2 deposited by chemical pulverization, one carried out measurements by, electronic scan microscopy, diffraction of x-rays and also of the optical measurements and electronic. It results from it that the layers are conducting and transparent in the visible one but they are relatively rough, following its characterizations, one carried out organic photovoltaic cells using these layers of SnO2 and also of the commercial ITO like anode in these components. More particularly one was interested in the influence of the presence of a fine layer of gold between the anode and organic material.

  18. Electrochemical incineration of dimethyl phthalate by anodic oxidation with boron-doped diamond electrode

    Institute of Scientific and Technical Information of China (English)

    HOU Yining; QU Jiuhui; ZHAO Xu; LIU Huijuan

    2009-01-01

    The anodic oxidation of aqueous solutions containing dimethyl phthalate (DMP) up to 125 mg/L with sodium sulfate (Na2SO4) as supporting electrolyte within the pH range 2.0-10.0 was studied using a one-compartment batch reactor employing a boron-doped diamond (BDD) as anode. Electrolyses were carried out at constant current density (1.5-4.5 mA/cm2). Complete mineralization was always achieved owing to the great concentration of hydroxyl radical (·OH) generated at the BDD surface. The effect of pH, apparent current density and initial DMP concentration on the degradation rate of DMP, the specific charge required for its total mineralization and mineralization current efficiency was investigated systematically. The mineralization rate of DMP was found to be pH-independent and to increase with increasing applied current density. Results indicated that this electrochemical process was subjected, at least partially, to the mass transfer of organics onto the BDD surface. Kinetic analysis of the temporal change of DMP concentration during electrolysis determined by High Performance Liquid Chromatography (HPLC) revealed that DMP decay under all tested conditions followed a pseudo first-order reaction. Aromatic intermediates and generated carboxylic acids were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and a general pathway for the electrochemical incineration of DMP on BDD was proposed.

  19. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode.

    Science.gov (United States)

    Weng, Yu-Ting; Huang, Tzu-Yang; Lim, Chek-Hai; Shao, Pei-Sian; Hy, Sunny; Kuo, Chao-Yen; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu; Wu, Nae-Lih

    2015-12-21

    MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g(-1), in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting >70% capacity retention after 500 cycles. In operando synchrotron X-ray absorption near-edge structural analysis reveals combined charge-storage mechanisms involving conversion reaction between Mn(III) and Mn(II) oxides, Mn(III)-O1.5 + Na(+) + e(-)- ↔ 1/2Na2O + Mn(II)-O, and non-Mn-centered redox reactions. The finding suggests a new strategy for "activating" the potential electrochemical electrode materials that appear inactive in the bulk form. PMID:26567463

  20. Geant4 simulation of zinc oxide nanowires in anodized aluminum oxide template as a low energy X-ray scintillator detector

    International Nuclear Information System (INIS)

    In this work, ZnO nanowires in anodized aluminum oxide nanoporous template are proposed as an architecture for development of new generation of scintillator based X-ray imagers. The optical response of crystalline ordered ZnO nanowire arrays in porous anodized aluminum oxide template under 20 keV X-ray illumination is simulated using the Geant4 Monte Carlo code. The results show that anodized aluminum oxide template has a special impact as a light guide to conduct the optical photons induced by X-ray toward the detector thickness and to decrease the light scattering in detector volume. This inexpensive and effective method can significantly improve the spatial resolution in scintillator based X-ray imagers, especially in medical applications.

  1. Polyaniline-Coated Carbon Nanotube Ultrafiltration Membranes: Enhanced Anodic Stability for In Situ Cleaning and Electro-Oxidation Processes.

    Science.gov (United States)

    Duan, Wenyan; Ronen, Avner; Walker, Sharon; Jassby, David

    2016-08-31

    Electrically conducting membranes (ECMs) have been reported to be efficient in fouling prevention and destruction of aqueous chemical compounds. In the current study, highly conductive and anodically stable composite polyaniline-carbon nanotube (PANI-CNT) ultrafiltration (UF) ECMs were fabricated through a process of electropolymerization of aniline on a CNT substrate under acidic conditions. The resulting PANI-CNT UF ECMs were characterized by scanning electron microscopy, atomic force microscopy, a four-point conductivity probe, cyclic voltammetry, and contact angle goniometry. The utilization of the PANI-CNT material led to significant advantages, including: (1) increased electrical conductivity by nearly an order of magnitude; (2) increased surface hydrophilicity while not impacting membrane selectivity or permeability; and (3) greatly improved stability under anodic conditions. The membrane's anodic stability was evaluated in a pH-controlled aqueous environment under a wide range of anodic potentials using a three-electrode cell. Results indicate a significantly reduced degradation rate in comparison to a CNT-poly(vinyl alcohol) ECM under high anodic potentials. Fouling experiments conducted with bovine serum albumin demonstrated the capacity of the PANI-CNT ECMs for in situ oxidative cleaning, with membrane flux restored to its initial value under an applied potential of 3 V. Additionally, a model organic compound (methylene blue) was electrochemically transformed at high efficiency (90%) in a single pass through the anodically charged ECM. PMID:27525344

  2. Preparation of open-through anodized aluminium oxide films with a clean method

    International Nuclear Information System (INIS)

    AAO membranes were detached from Al substrates via an anodic voltage pulse using aqueous HClO4 solution without any organic reagents. Previous studies used a mixture of HClO4(aq) and 2,3-butanedione or methanol. However, 2,3-butanedione has a strong disagreeable odour, methanol is harmful, and the oxidized products of organic reagents contaminate the AAO template. Eliminating organic reagents makes the detachment process easy and clean, with great potential for the mass fabrication and application of AAO films. The voltage and acidity are critical factors in obtaining open-through AAO films. We propose a mechanism for the detachment process, consistent with our experimental results

  3. Controllable synthesis of Ag nanorods using a porous anodic aluminum oxide template

    International Nuclear Information System (INIS)

    This paper describes a new approach to the synthesis of Ag nanorods. A solvothermal method was used to make Ag nanoparticles inside anodic aluminum oxide (AAO) templates. The nanoparticles were then annealed at 300 deg. C to produce Ag nanorods. The size of AAO templates, which is focused on in this study, would determine the diameter of Ag nanorods. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In this study, a nanorod growth mechanism is deduced, and understanding of the growth of nanorods inside AAO templates is furthered. This work demonstrates that it is possible to make crystalline nanorods that the size can be varied.

  4. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    Science.gov (United States)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  5. Electrochemical oxidation route of methyl paraben on a boron-doped diamond anode

    International Nuclear Information System (INIS)

    Parabens have been widely used in different industries and can be found in health and personal care products. They are esters of p-hydroxy-benzoic acid associated with breast tumors and classified as endocrine disruptors. This study describes the galvanostatic electrochemical oxidation of methyl paraben (MePa) on a boron-doped diamond anode using current densities in the 1.35 to 21.6 mA cm−2 range. The degradation process can be controlled by either charge transfer or mass transport, according to the experimental conditions and rate of mineralization of MePa increased by the current density. The concentration variation as a function of electrolysis time showed that the degradation kinetics follows a pseudo first-order law. A mechanism for the MePa degradation based on reactive intermediates determined by gas chromatography mass spectrometry (GC-MS) is also proposed

  6. Tribological Influence of Kinematic Oil Viscosity Impregnated in Nano pores of Anodic Aluminum Oxide Film

    International Nuclear Information System (INIS)

    The friction behavior of a 60-μm-thick anodic aluminum oxide (AEU) film having cylindrical nano pores of 45-nm diameter was investigated as a function of impregnated oil viscosity ranging from 3.4 to 392.6 CT. Reciprocating ball-on-flat sliding friction tests using a 1-mm-diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 to 1 N in an ambient environment. The friction coefficient significantly decreased with an increase in the oil viscosity. The boundary lubrication film remained effectively under all test conditions when high-viscosity oil was impregnated, whereas it was easily destroyed when low-viscosity oil was impregnated. Thin plastic deformed layer patches were formed on the worn surface with high-viscosity oil without evidence of thromboembolic reaction and transfer of counterpart material

  7. Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template

    International Nuclear Information System (INIS)

    Silicon nanotubes (SiNTs) are compatible with Si-based semiconductor technology. In particular, the small diameters and controllable structure of such nanotubes are remaining challenges. Here we describe a method to fabricate SiNTs intrinsically connected with cobalt silicide ends based on highly ordered anodic aluminum oxide (AAO) templates. Size and growth direction of the SiNTs can be well controlled via the templates. The growth of SiNTs is catalyzed by the Co nanoparticles reduced on the pore walls of the AAO after annealing, with a controllable thickness at a given growth temperature and time. Simultaneously, cobalt silicide forms on the bottom side of the SiNTs.

  8. Graphene-Assisted Chemical Etching of Silicon Using Anodic Aluminum Oxides as Patterning Templates.

    Science.gov (United States)

    Kim, Jungkil; Lee, Dae Hun; Kim, Ju Hwan; Choi, Suk-Ho

    2015-11-01

    We first report graphene-assisted chemical etching (GaCE) of silicon by using patterned graphene as an etching catalyst. Chemical-vapor-deposition-grown graphene transferred on a silicon substrate is patterned to a mesh with nanohole arrays by oxygen plasma etching using an anodic- aluminum-oxide etching mask. The prepared graphene mesh/silicon is immersed in a mixture solution of hydrofluoric acid and hydro peroxide with various molecular fractions at optimized temperatures. The silicon underneath graphene mesh is then selectively etched to form aligned nanopillar arrays. The morphology of the nanostructured silicon can be controlled to be smooth or porous depending on the etching conditions. The experimental results are systematically discussed based on possible mechanisms for GaCE of Si. PMID:26473800

  9. Synthesis of ordered Sinanowire arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Highly ordered polycrystalline Si nanowire arrays were synthesized in porous anodic aluminum oxide (AAO) templates by the chemical vapor deposition (CVD)method. The morphological structure, the crystal character of Si nanowire arrays and the individual nanowire were analyzed by the transmission electron microscopy (TEM),scanning electron microscopy (SEM), atom force microscopy (AFM) and the X-ray diffraction spectrum (XRD), respectively. It is shown that most fabricated silicon nanowires (SiNWs) tend to be assembled parallelly in bundles and constructed with highly orientated arrays. This method provides a simple and low cost fabricating craftwork and the diameters and lengths of SiNWs can be controlled, the large area Si nanowire arrays can be achieved easily under such a way.The curling and twisting SiNWs are fewer than those by other synthesis methods.

  10. Indium-Doped Zinc Oxide Thin Films as Effective Anodes of Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Ziyang Hu

    2011-01-01

    Full Text Available Indium-doped zinc oxide (IZO thin films were prepared by low-cost ultrasonic spray pyrolysis (USP. Both a low resistivity (3.13×10−3 Ω cm and an average direct transmittance (400∼1500 nm about 80% of the IZO films were achieved. The IZO films were investigated as anodes in bulk-heterojunction organic photovoltaic (OPV devices based on poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester. The device fabricated on IZO film-coated glass substrate showed an open circuit voltage of 0.56 V, a short circuit current of 8.49 mA cm-2, a fill factor of 0.40, and a power conversion efficiency of 1.91%, demonstrating that the IZO films prepared by USP technique are promising low In content and transparent electrode candidates of low-cost OPV devices.

  11. Science Letters:Anodic oxidation of salicylic acid at Ta/BDD electrode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, temperature and pH were examined.The results showed that BDD films deposited on the Ta substrates had high electrocatalytic activity for SA degradation. There was little effect of pH on SA degradation. The current efficiency (CE) was found to be dependent mainly on the initial SA concentration,current density and temperature. Chemical oxygen demand (COD) was reduced from 830 mg/L to 42 mg/L under a current density of 200 A/m2 at 30 ℃.

  12. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lindegaard, Thomas; Hansen, Uffe Rud;

    1994-01-01

    conductivity vs. oxygen partial pressure. For both typesof conductivity a dependence on dopant valency was observed. The electronic conductivity was independent of dopantradius in contrast to the ionic which was highly dependent. These measured physical properties are compared with the idealrequirements for...... solid oxide fuel cell anodes. Not all requirements are fulfilled. Measures to compensate for this arediscussed....

  13. NEW SYNTHETIC METHOD AND CHARACTERIZATION OF CERAMIC FILMS PREPARED BY ANODIC OXIDATION OF ALUMINUM UNDER SPARKING DISCHARGE

    OpenAIRE

    Yamada, M.; Mita, I.

    1986-01-01

    A new synthetic method of ceramic films by anodic oxidation of aluminium was developed. Most of the crystals in the films are composed of eta or alpha-alumina. These ceramic films can incorporate a lot of metals by electrolytic methods.

  14. Chemical Assembly of Zinc Oxide Aggregated Anodes on Plastic Substrates at Room Temperature for Flexible Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Highlights: • The ZnO aggregates are chemically assembled on the ITO-PET substrate by the room-temperature chemical treatment of the drop-cast ZnO nanoparticle layer on the substrate. • The enhanced light scattering ability and superior electron transport property are measured in the ZnO aggregated anode. • A notable efficiency of 5.16% is achieved in the flexible dye-sensitized solar cell using the ZnO aggregated anode with a light scattering layer. • Good flexibility of the ZnO nanostructured anodes fabricated free of high-temperature treatment and mechanical compression is demonstrated. - Abstract: A notable efficiency of 5.16% is achieved in the flexible dye-sensitized solar cell (DSSC) using a ZnO aggregated anode with a light scattering layer facilely fabricated on the indium tin oxide (ITO) coated-polyethylene terephthalate (PET) substrate. The ZnO aggregates composed of ZnO nanoparticles (NPs) and room-temperature (RT) grown nanostructures are chemically assembled on the ITO-PET substrate by the RT chemical treatment of the drop-cast ZnO NP layer on the substrate. The enhanced light scattering ability and superior electron transport property are measured in the ZnO aggregated matrix anode. A ZnO particle layer is further drop-cast on the ZnO aggregated matrix anode followed by another RT chemical treatment to form the light scattering layer. Dynamics of electron transport and recombination measurements indicate that an efficient electron collection is performed in the flexible ZnO anode fabricated free of high-temperature treatment and mechanical compression. Moreover, efficient photovoltaic performances are also monitored in both concave-downward and concave-upward bending configurations of the ZnO DSSCs, demonstrating the good flexibility of the ZnO nanostructured anodes

  15. Preparation and performance characterization of the Fe-Ni/ScSZ cermet anode for oxidation of ethanol fuel in SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo; Wang, S.R.; Liu, R.Z.; Wen, T.L. [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2007-05-15

    An anodic cermet of Fe-Ni alloy and scandia stabilized zirconia (ScSZ) has been investigated for a solid oxide fuel cell (SOFC) running on ethanol fuel. Composite anodes having alloy compositions of 0, 12.5, 25, 37.5, 50 and 100 wt.% Ni were exposed to ethanol stream at 700 C for 12 h to demonstrate that carbon formation is greatly suppressed on the Fe-Ni alloys compared to that of pure Ni. Then the short-term stability for the cells with the Ni/ScSZ and Fe{sub 0.5}Ni{sub 0.5}/ScSZ anodes in ethanol stream at 700 C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.03 to 1.1 V, and power densities increased from 120 to 460 mW cm{sup 2} as the operating temperature of a SOFC with Fe{sub 0.5}Ni{sub 0.5}/ScSZ anode was increased from 700 to 850 C in ethanol stream. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibits slightly less total impedance than that observed for the cell with Fe{sub 0.5}Ni{sub 0.5}/ScSZ anode. The performance of a fuel cell made with the Ni/ScSZ and Fe{sub 0.5}Ni{sub 0.5}/ScSZ anodes was tested in ethanol stream for 48 h and showed a significant decrease in polarization resistance with time. Impedance spectra of similar fuel cells suggest that small carbon deposits are formed with time and that the decrease in polarization resistance is due to enhanced electronic conductivity in the anode. (author)

  16. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol.

    Science.gov (United States)

    Sasidharan Pillai, Indu M; Gupta, Ashok K

    2016-07-01

    Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). PMID:27039363

  17. Boron-doped diamond anodic oxidation of ethidium bromide: Process optimization by response surface methodology

    International Nuclear Information System (INIS)

    Highlights: ► Boron-doped diamond was used to degrade ethidium bromide. ► The process was optimized by a central composite rotatable design coupled with response surface methodology. ► Applied current is proved to be the most significant variable. ► A possible reaction sequence involving all the detected byproducts was proposed. - Abstract: The degradation of ethidium bromide (EtBr), a DNA intercalating pollutant, had been studied by anodic oxidation on boron-doped diamond (BDD) electrode under galvanostatic conditions. A central composite rotatable design coupled with response surface methodology was implemented to optimize the various operating parameters involved, among initial pH, flow rate, applied current and supporting electrolyte concentration, on the treatment efficiency; the latter was assessed in terms of color removal, COD removal, specific energy consumption and general current efficiency. Of the four parameters involved, applied current had a considerable effect on all the response factors. Optimum EtBr degradation was achieved by applying a current of 0.90 A, 9.0 mM Na2SO4, flow rate of 400 ml min−1 and pH 6.2 at 60 min of electrolysis, being reduced color by 80.2% and COD by 29.7%, with an energy consumption of 398.32 kW h (kg COD)−1 and a general current efficiency of 10.1%. Under these optimized conditions, EtBr decays followed pseudo first-order kinetics. Moreover, HPLC analysis of the BDD-treated solution allowed the detection of a number of reaction intermediates, and a possible reaction sequence involving all the detected byproducts was proposed for the electrochemical oxidation of EtBr on BDD anode.

  18. An anode with aluminum doped on zinc oxide thin films for organic light emitting devices

    International Nuclear Information System (INIS)

    Doped zinc oxides are attractive alternative materials as transparent conducting electrode because they are nontoxic and inexpensive compared with indium tin oxide (ITO). Transparent conducting aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by DC reactive magnetron sputtering method. Films were deposited at a substrate temperature of 150-bar oC in 0.03 Pa of oxygen pressure. The electrical and optical properties of the film with the Al-doping amount of 2 wt% in the target were investigated. For the 300-nm thick AZO film deposited using a ZnO target with an Al content of 2 wt%, the lowest electrical resistivity was 4x10-4Ωcm and the average transmission in the visible range 400-700 nm was more than 90%. The AZO film was used as an anode contact to fabricate organic light-emitting diodes. The device performance was measured and the current efficiency of 2.9 cd/A was measured at a current density of 100 mA/cm2

  19. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    International Nuclear Information System (INIS)

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO2 nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  20. Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Luning; Luo Jingli, E-mail: jingli.luo@ualberta.ca

    2011-05-10

    Hydroxyapatite (HA) coating has been widely applied on metallic biomedical implants to enhance their biocompatibility. It has been reported that HA coating can be formed on annealed zirconium with anodic zirconium oxide nanotubular arrays after immersion in simulated biological fluid (SBF) for about 14 days. In the present study, we apply an alternative immersion method (AIM) to form presynthesized HA on ZrO{sub 2} nanotubes. The AIM-treated specimen was then moved to the SBF to evaluate the capability for the formation of HA on it. The HA coating formed after only 2 days immersion and thickened after 5 days in the SBF. The HA coating is the carbonated HA with a ratio of Ca to P of about 1.4, similar to the physiological HA containing other minor elements such as Mg and Na. The results demonstrate that the AIM treatment is indeed suitable for the zirconium oxide nanotubes and highly accelerates the formation of HA coating in comparison with the existing methods, i.e. the annealing of the as-formed zirconium oxide nanotubular arrays.

  1. Electrocatalytic Oxidation of Cellulose to Gluconate on Carbon Aerogel Supported Gold Nanoparticles Anode in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    Hanshuang Xiao

    2015-12-01

    Full Text Available The development of high efficient and low energy consumption approaches for the transformation of cellulose is of high significance for a sustainable production of high value-added feedstocks. Herein, electrocatalytic oxidation technique was employed for the selective conversion of cellulose to gluconate in alkaline medium by using concentrated HNO3 pretreated carbon aerogel (CA supported Au nanoparticles as anode. Results show that a high gluconate yield of 67.8% and sum salts yield of 88.9% can be obtained after 18 h of electrolysis. The high conversion of cellulose and high selectivity to gluconate could be attributed to the good dissolution of cellulose in NaOH solution which promotes its hydrolysis, the surface oxidized CA support and Au nanoparticles catalyst which possesses high amount of active sites. Moreover, the bubbled air also plays important role in the enhancement of cellulose electrocatalytic conversion efficiency. Lastly, a probable mechanism for electrocatalytic oxidation of cellulose to gluconate in alkaline medium was also proposed.

  2. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen; LI HuLin

    2001-01-01

    @@ Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.

  3. Highly Ordered Zinc Oxide Nanotubules Synthesized within the Anodic Aluminum Oxide Template

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhen

    2001-01-01

    Zinc oxide (ZnO) is a wide-band-gap semiconductor, which has a broad range of applications, e.g., in pigment, rubber additives, gas sensors, varistors and transducers1. It has recently been demonstrated that nanophase zinc oxide can be used in photocells of the Gatzel type2, which results in improved current generation efficiency. The properties of high aspect ratios and small sizes of zinc oxide nanotubules or nanowires are expected to improve the luminescence efficiency of the electro-optical devices and the sensitivity of the chemical sensors3.  ……

  4. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  5. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property

    Science.gov (United States)

    Song, Tingting; Liu, Qi; Liu, Jingyuan; Yang, Wanlu; Chen, Rongrong; Jing, Xiaoyan; Takahashi, Kazunobu; Wang, Jun

    2015-11-01

    Inspired by natural plants such as Nepenthes pitcher plants, super slippery surfaces have been developed to improve the attributes of repellent surfaces. In this report, super slippery porous anodic aluminium oxide (AAO) surfaces have fabricated by a simple and reproducible method. Firstly, the aluminium substrates were treated by an anodic process producing micro-nano structured sheet-layered pores, and then immersed in Methyl Silicone Oil, Fluororalkylsilane (FAS) and DuPont Krytox, respectively, generating super slippery surfaces. Such a good material with excellent anti-corrosion property through a simple and repeatable method may be potential candidates for metallic application in anti-corrosion and extreme environment.

  6. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    Science.gov (United States)

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  7. Thermodynamic study of niobium oxides with O/Nb ratios from 2.47 to 2.50 using a high-temperature galvanic cell

    International Nuclear Information System (INIS)

    The partial molar free energy, enthalpy, and entropy of oxygen in niobium oxides with O/Nb ratios from 2.47 to 2.50 were measured with a galvanic cell in the temperature range from 1084 to 1325 K. The partial molar enthalpies of oxygen of the Nb2O/sub 5-x/ and V phases were observed to be nearly independent of composition, indicating the presence of only weak interactions between defects. The value of the slope for the plots of log x in Nb2O/sub 5-x/ against log P/sub O2/ was observed to be -1/5.2 which is interpreted in terms of a defect structure involving both singly ionized and doubly ionized oxygen vacancies. The previously proposed phase diagram in the vicinity of Nb2O/sub 5-x/ was confirmed by the present emf measurements. 15 references, 7 figures, 2 tables

  8. Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide

    KAUST Repository

    Wilhelm, Michael E.

    2014-01-01

    The application of niobium(v) chloride and several imidazolium bromides as catalyst systems for the cycloaddition of propylene oxide (PO) with carbon dioxide to propylene carbonate (PC) is reported. A set of 31 different imidazolium bromides has been synthesized with varying substituents at all five imidazolium ring atoms, of which 17 have not been reported before. The impact of different substitution patterns (steric and electronic changes and solubility in PO) at the imidazolium ring on the catalytic activity was investigated. The optimisation of the catalyst structure allows for the valorisation of carbon dioxide under mild reaction conditions with high reaction rates in very good yield and selectivity for PC. This journal is © the Partner Organisations 2014.

  9. Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide

    KAUST Repository

    Wilhelm, Michael E.

    2014-02-19

    The application of niobium(v) chloride and several imidazolium bromides as catalyst systems for the cycloaddition of propylene oxide (PO) with carbon dioxide to propylene carbonate (PC) is reported. A set of 31 different imidazolium bromides has been synthesized with varying substituents at all five imidazolium ring atoms, of which 17 have not been reported before. The impact of different substitution patterns (steric and electronic changes and solubility in PO) at the imidazolium ring on the catalytic activity was investigated. The optimisation of the catalyst structure allows for the valorisation of carbon dioxide under mild reaction conditions with high reaction rates in very good yield and selectivity for PC. This journal is © the Partner Organisations 2014.

  10. A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Wang, H. H.; Indacochea, J. E.; Wang, M. L. (Materials Science Division); (Northeastern Univ.); (Univ. of Illinois at Chicago)

    2011-12-15

    Simple and low cost colorimetric sensors for explosives detection were explored and developed. Anodized aluminum oxide (AAO) with large surface area through its porous structure and light background color was utilized as the substrate for colorimetric sensors. Fabricated thin AAO films with thickness less than {approx} 500 nm allowed us to observe interference colors which were used as the background color for colorimetric detection. AAO thin films with various thickness and pore-to-pore distance were prepared through anodizing aluminum foils at different voltages and times in dilute sulfuric acid. Various interference colors were observed on these samples due to their difference in structures. Accordingly, suitable anodization conditions that produce AAO samples with desired light background colors for optical applications were obtained. Thin film interference model was applied to analyze the UV-vis reflectance spectra and to estimate the thickness of the AAO membranes. We found that the thickness of produced AAO films increased linearly with anodization time in sulfuric acid. In addition, the growth rate was higher for AAO anodized using higher voltages. The thin film interference formulism was further validated with a well established layer by layer deposition technique. Coating poly(styrene sulfonate) sodium salt (PSS) and poly(allylamine hydrochloride) (PAH) layer by layer on AAO thin film consistently shifted its surface color toward red due to the increase in thickness. The red shift of UV-vis reflectance was correlated quantitatively to the number of layers been assembled. This sensitive red shift due to molecular attachment (increase in thickness) on AAO substrate was applied toward nitroaromatics detection. Aminopropyltrimethoxysilane (APTS) which can be attached onto AAO nanowells covalently through silanization and attract TNT molecules was coated and applied for TNT detection. UV-vis spectra of AAO with APTS shifted to the longer wavelength side due to

  11. Concentration of cadmium hydroxy complexes near the cadmium electrode in KOH solutions of different concentration as a function of the anodic oxidation rate of the electrode

    International Nuclear Information System (INIS)

    Concentration of cadmium hydroxy complexes by anodic oxidation of cadmium electrode are determined through the rotating disk electrode method. The effect of the anodic process rate and the electrolyte solution concentration on the concentration values and supersaturation rates are established. The effective constants of the intermediate products transformation rates and the current constituents conditioned by the anodic process with participation of soluble products are experimentally determined

  12. An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode

    Science.gov (United States)

    Weng, Yu-Ting; Huang, Tzu-Yang; Lim, Chek-Hai; Shao, Pei-Sian; Hy, Sunny; Kuo, Chao-Yen; Cheng, Ju-Hsiang; Hwang, Bing-Joe; Lee, Jyh-Fu; Wu, Nae-Lih

    2015-11-01

    MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g-1, in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting >70% capacity retention after 500 cycles. In operando synchrotron X-ray absorption near-edge structural analysis reveals combined charge-storage mechanisms involving conversion reaction between Mn(iii) and Mn(ii) oxides, Mn(iii)-O1.5 + Na+ + e-- 1/2Na2O + Mn(ii)-O, and non-Mn-centered redox reactions. The finding suggests a new strategy for ``activating'' the potential electrochemical electrode materials that appear inactive in the bulk form.MnO2 is shown for the first time to be electrochemically active as a conversion anode for Na-ion batteries (NIBs). Space-confined ultrafine (UF)-MnO2, with an average crystal size of 4 nm, synthesized using a porous silicon dioxide templated hydrothermal process exhibits a high reversible sodiation capacity of 567 mA h g-1, in contrast to the negligible activity shown by the aggregates of larger (14 nm) MnO2 nanocrystallites. The remarkably enhanced sodiation activity of the UF-MnO2 is attributable to its greatly reduced crystal size, which facilitates diffusion of Na ions, along with high surface energy arising from extensive heterogeneous interfacial bonding with the SiO2 surrounding. The UF-MnO2 anode exhibits an exceptional rate and cycle performance, exhibiting

  13. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    Science.gov (United States)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  14. Testing of a cathode fabricated by painting with a brush pen for anode-supported tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Wang, Shaorong; Wen, Zhaoyin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    We have studied the properties of a cathode fabricated by painting with a brush pen for use with anode-supported tubular solid oxide fuel cells (SOFCs). The porous cathode connects well with the electrolyte. A preliminary examination of a single tubular cell, consisting of a Ni-YSZ anode support tube, a Ni-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode fabricated by painting with a brush pen, has been carried out, and an improved performance is obtained. The ohmic resistance of the cathode side clearly decreases, falling to a value only 37% of that of the comparable cathode made by dip-coating at 850 C. The single cell with the painted cathode generates a maximum power density of 405 mW cm{sup -2} at 850 C, when operating with humidified hydrogen. (author)

  15. A modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure

    DEFF Research Database (Denmark)

    2013-01-01

    -stabilised zirconium oxide electrolyte and (c) a metallic and/or a ceramic electrocatalyst in the shape of interlayers incorporated in the interface between the anode and the electrolyte. This assembly is first sintered at a given temperature and then at a lower temperature in reducing gas mixtures. These heat...... steps (a) and (b), (d) applying a layer of the selected anode backbone onto the electrolyte with applied interlayers, (e) sintering the raw assembly and (f) infiltrating the electrocatalyst precursor into the sintered assembly and heat treating the assembly to incorporate additional electrocatalyst into...... treatments resulted in a distribution of the metallic and/or ceramic interlayers in the electrolyte/anode backbone junction taking place. The structure is prepared by (a) depositing a ceramic interlayer onto one side of the electrolyte, (b) optionally applying a metallic interlayer thereon, (c) repeating...

  16. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  17. Degradation mechanisms in solid oxide electrolysis anodes: Cr poisoning and cation interdiffusion

    International Nuclear Information System (INIS)

    High temperature steam electrolysis is one of the most efficient processes for hydrogen generation from water with no CO2 emissions using electricity and heat from nuclear or concentrated solar plants. Solid Oxide Electrolytic Cells (SOEC) are the proposed technology being researched and developed for this purpose. Over a long period of operation of the cells, various sources for degradation in the cells' electrochemical performance prevail, and hence the cell resistance increases and the process becomes inefficient. Our research is aimed at identifying the mechanisms for the loss in the electrochemical performance of the cell, particularly of the oxygen electrode, namely the anode. We are performing post-mortem analysis of the anode materials from SOEC stacks that were subject to demonstration tests over 2000 hours. We are focusing on two mechanisms of degradation: i) on the diffusion and reaction of chromium from the stainless steel interconnects onto the bond layer (cobaltite) and electrode (manganite) surface; ii) inter-diffusion of electrode and composite cations dissociating the anode composition. Chromium penetrates into the electrode microstructure through vapour-phase or solid state transport and reacts with the electrode material to form secondary and inactive phases which block the active sites. We have employed Raman Spectroscopy and identified the secondary phases, on the surface of the bong layer, that include mainly Cr2O3, LaCrO3, La2O3 and Co3O4, which have much lower conductivity than the original perovskite structure. We used scanning Auger Electron Nano-spectroscopy (AES) to study the local variations in the air electrode and the bond layer microchemistry and microstructure on a nano-to-micron scale. Chromium was clearly seen to be present in the cobaltite bond layer, and the chromium content was observed to monotonically decrease along the thickness of the bond layer. The manganite and manganite/zirconia composite electrode layers did not

  18. Repairing of anodic oxide films on Al-Zn alloy coated steel after removal with photon rupture in solutions

    International Nuclear Information System (INIS)

    Analysis of abrupt destroyed of passive oxide films on Al - Zn alloy layer coated on steel and its repair is important to understand the localized corrosion of steels. In the present investigation, anodic oxide films formed on Al - Zn coated steel specimens were removed by photon rupture method (one pulse of focused pulsed Nb - YAG laser beam irradiation) aat a constant potential in sodium borate solutions, pH = 9.2, with / without chloride ions to monitor the current transient. Irradiation with a pulsed laser in solutions causes abrupt removal of the anodic oxide film on the specimen at the laser-irradiated area. Without chloride ions, oxide films were reformed in the sodium borate solution at - 0.5 to 1 V after removal of the anodic oxide film, However, in chloride ions containing solutions, pitting corrosion of Zn - 55 mass % Al coated layers occurs at high potentials, while film reformation occurs at low potentials. It was also found that chloride ions enhance dissolution of aluminum and zinc at the very initial period after laser irradiation

  19. Kinetics of the electrolytic Fe+2/Fe+3 oxidation on various anode materials

    Directory of Open Access Journals (Sweden)

    Cifuentes, L.

    2003-08-01

    Full Text Available The kinetics of the electrolytic Fe+2/Fe+3 oxidation, relevant to hydro-electrometallurgical processing, have been studied on lead, platinum, ruthenium oxide, iridium oxide and graphite anodes in ferrous sulfate-sulfuric acid solutions. The oxidation rate depends on ferrous sulfate concentration, solution temperature and degree of agitation. Potentiodynamic studies show that: a the highest oxidation rate is obtained on platinum; b lead is unsuitable as anodic material for the said reaction; c the remaining anode materials show a similar and satisfactory performance.

    Se ha estudiado la cinética de la oxidación electrolítica Fe+2/Fe+3 -relevante para el procesamiento hidroelectrometalúrgico- sobre plomo, platino, óxido de rutenio, óxido de iridio y grafito en soluciones de sulfato ferroso en ácido sulfúrico. La velocidad de oxidación depende de la concentración de sulfato ferroso, la temperatura de la solución y el grado de agitación. Estudios potenciodinámicos demuestran que: a las mayores velocidades de oxidación se obtienen sobre platino; b el plomo es inadecuado como material anódico para la reacción mencionada; c los materiales anódicos restantes exhiben un desempeño similar y satisfactorio.

  20. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  1. Tailoring defect structure and optical absorption of porous anodic aluminum oxide membranes

    International Nuclear Information System (INIS)

    Defects influence the optical and electronic properties of nanostructured materials that may be relevant for applications. In self-organized anodic aluminum oxide (AAO) templates we have investigated the effect of annealing, doping and nanoscale metal deposition. Optical absorption spectroscopy has been used as a sensitive probe for the defect density in AAO templates. The electronic spectra are found to be dominated by bands which originate from oxygen-deficient color centers (F+, F and F2). In annealing studies, the integrated absorption of the bands changes non-monotonically with annealing temperature and annealing time. This demonstrates that the concentration of defects can be optimized to tailor the optical properties of the AAO. Metallic Au wires are deposited in the template to establish a plasmonic template or array. The investigations provide an interesting insight into the interplay of reactivity and diffusivity on nanoscales. - Highlights: ► Preparation of metal wire arrays in oxide templates with tailored plasmonic properties. ► Oxygen defects are characterized using optical absorption and fluorescence. ► Optical absorption spectra are assigned to energy levels of oxygen vacancies (color centers). ► Annealing and electrodeposition of Au wires minimize defects maintaining the morphology.

  2. Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates

    International Nuclear Information System (INIS)

    Nanoporous anodic aluminum oxide (AAO) has been used widely as a template for device fabrication. In many nanostructured electro-optical device designs, AAO grown on an ITO substrate is the desired configuration. However, a residual thin aluminum oxide barrier layer between ITO and the AAO pores remains and process non-uniformities during the template fabrication can cause serious problems in the quality of nanowires deposited later in these pores. It was observed that in many templates, even the pores closest to each other could have their barrier layer thicknesses differ by as much as 10-20 nm. In this paper, causes and remedies for this non-uniformity are investigated, including the effects of a thin Ti interlayer inserted between the ITO and AAO. Templates with different Ti layer thickness and annealing conditions were compared. Mechanisms for the formation of voids beneath the barrier layer were analyzed and studied experimentally. Reactive ion etch (RIE) was found to be the preferred method to mitigate process non-uniformities. Using the above methods, barrier-free AAO templates on ITO substrates were obtained; their thicknesses ranged from 200 to 1000 nm. The characteristics of CdS nanowires electrodeposited into the initial templates with non-uniform barrier layer thicknesses and into the processed, barrier-free templates were compared.

  3. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    International Nuclear Information System (INIS)

    Highlights: ► 8-HQ can promote the coating formation and change the coating color. ► 8-HQ can increase the coating thickness and decrease the pore size. ► Insoluble Mg(HQ)2 is formed in anodic coatings in an alkaline solution with 8-HQ. ► 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ)2 and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na2SiO3 with 2 g/L 8-HQ.

  4. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, S.F., E-mail: zhangshufang790314@sina.com [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Yang, N.; Yao, L.J.; He, F.X.; Zhou, Y.P.; Xu, X.; Chang, L.; Bai, S.J. [School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer 8-HQ can promote the coating formation and change the coating color. Black-Right-Pointing-Pointer 8-HQ can increase the coating thickness and decrease the pore size. Black-Right-Pointing-Pointer Insoluble Mg(HQ){sub 2} is formed in anodic coatings in an alkaline solution with 8-HQ. Black-Right-Pointing-Pointer 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ){sub 2} and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na{sub 2}SiO{sub 3} with 2 g/L 8-HQ.

  5. Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • A nanohybrid based on ultrafine SnO2 and few-layered rGO has been prepared. • The nanohybrid exhibits excellent electrochemical Na-storage properties. • The rGO supplies combined conducting, buffering and dispersing effects. - Abstract: Na-ion Battery is attractive alternative to Li-ion battery due to the natural abundance of sodium resource. Searching for suitable anode materials is one of the critical issues for Na-ion battery due to the low Na-storage activity of carbon materials. In this work, we synthesized a nanohybrid anode consisting of ultrafine SnO2 anchored on few-layered reduced graphene oxide (rGO) by a facile hydrothermal route. The SnO2/rGO hybrid exhibits a high capacity, long cycle life and good rate capability. The hybrid can deliver a high charge capacity of 324 mAh gSnO2−1 at 50 mA g−1. At 1600 mA g−1 (2.4C), it can still yield a charge capacity of 200 mAh gSnO2−1. After 100 cycles at 100 mA g−1, the hybrid can retain a high charge capacity of 369 mAh gSnO2−1. X-ray photoelectron spectroscopy, ex situ transmission electron microscopy and electrochemical impedance spectroscopy were used to investigate the origin of the excellent electrochemical Na-storage properties of SnO2/rGO

  6. Electrodeposition, Characterization, and Corrosion Stability of Nanostructured Anodic Oxides on New Ti-15Zr-5Nb Alloy Surface

    OpenAIRE

    Jose M. Calderon Moreno; Cora Vasilescu; Silviu Iulian Drob; Monica Popa; Paula Drob; Ecaterina Vasilescu

    2013-01-01

    A new Ti-15Zr-5Nb alloy with suitable microstructure and mechanical properties was processed by galvanostatic anodization in 0.3 M H3PO4 solution and a continuous nanostructured layer of protective TiO2 oxide was electrodeposited. The obtained anatase oxide layer has a nanotubes-like porosity (SEM observations) and contains significant amount of phosphorus in phosphotitanate compound embedded in the oxide lattice (Raman, FT-IR, SEM, and EDX analysis). This layer composition can stimulate the ...

  7. Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes

    International Nuclear Information System (INIS)

    Highlights: • Ethylene glycol could be used as a sustainable fuel for solid oxide fuel cells. • Ethylene glycol was beneficial in suppressing coke formation on Ni anode. • A high power output of 1200 mW cm−2 was obtained with ethylene glycol at 750 °C. • An excellent operational stability was obtained with ethylene glycol fuel. - Abstract: In this study, renewable ethylene glycol (EG) was exploited as a potential fuel for solid oxide fuel cells (SOFCs) with conventional nickel yttria-stabilized zirconia (Ni–YSZ) cermet anodes for sustainable electric power generation. Carbon deposition behaviors over Ni–YSZ anodes under different carbon-containing atmospheres such as EG, glycerol, ethanol and methane were characterized through thermodynamic prediction, oxygen-temperature programmed oxidation and SEM–EDX analysis. EG was observed to be better than acetic acid and glycerol and much better than methane and ethanol in terms of carbon deposition. A calculation of the open-circuit voltages of EG-fueled SOFCs suggested that EG is a suitable fuel for SOFCs. A maximum power output of 1200 mW cm−2 at 750 °C was obtained from a cell operating on EG-steam fuel, which is only a little lower than that from a cell based on hydrogen fuel. The cell was further operated stably on an EG-steam gas mixture for 200 h with no apparent performance degradation, carbon deposition over the anode, Ni agglomeration, or change in the morphology of the anodes. The current study confirmed the practical applicability of EG as a direct fuel for SOFCs, which may have a great effect on future energy systems

  8. Preparation of PtRu/C anode electrocatalysts using gamma radiation for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Pt Ru/C (carbon-supported Pt Ru nanoparticles) anode electrocatalysts were prepared using radiolytic process (gamma radiation) and tested for methanol electro-oxidation. In this process, water/2-propanol and water/ethylene glycol solutions containing the metallic ions and the carbon support were submitted to gamma radiation under stirring. The water/alcohol ratio (v/v) and the total dose (kGy) were studied. A nominal Pt Ru atomic ratio of 50:50 were used in all experiments. The electrocatalysts were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique. The electrocatalysts prepared in water/2-propanol showed crystallite size in the range of 3-5 nm and Pt Ru atomic ratio of 50:50. The electrocatalysts prepared in water/ethylene glycol showed crystallite size (2-3 nm) smaller than the ones obtained in water/2-propanol, however, the Pt Ru atomic ratios obtained were approximately 80:20, showing that only part of ruthenium ions were reduced. For methanol oxidation the electrocatalytic activity depends on the water/2-propanol and water/ethylene glycol ratio used in the reaction medium. The electrocatalysts prepared in water/2-propanol showed inferior performance to the ones prepared in water/ethylene glycol, which showed similar or superior performances (amperes per gram of platinum) to the commercial electrocatalyst from E-TEK. (author)

  9. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    Science.gov (United States)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  10. Alternative anode materials for methane oxidation in solid oxide fuel cells

    OpenAIRE

    Sfeir, Joseph; Grätzel, Michael

    2005-01-01

    Fuel Cells are electrochemical devices that are able to directly convert chemical energy to electrical energy, without any Carnot limitation. Hence, their energy efficiencies are relatively high. Among the various types of fuel cells, solid oxide fuel cells (SOFC) are operated at high temperatures and in principle can run on various fuels such as natural gas and hydrogen. As natural gas is sought to become one of the main fuels of the next decades, its direct feed to a SOFC is desirable as th...

  11. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    Science.gov (United States)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  12. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  13. Synthesis of carbon nanotube arrays using ethanol in porous anodic aluminum oxide template

    Institute of Scientific and Technical Information of China (English)

    YU Guojun; WANG Sen; GONG Jinlong; ZHU Dezhang; HE Suixia; LI Yulan; ZHU Zhiyuan

    2005-01-01

    Carbon nanotube (CNT) arrays confined by porous anodic aluminum oxide (AAO) template were synthesized using ethanol as reactant carbon source at low pressure. Images by scanning electron microscope (SEM) and low magnification transmission electron microscopy (TEM) show that these CNTs have highly uniform outer diameter and length, absolutely controlled by the diameter and depth of nano-channel arrays of the AAO. High resolution transmission electron microscopy (HRTEM) imaging indicates that the graphitization of the CNT walls is better than the results reported on this kind of template-based CNT arrays, although it is not so good as that of multiwalled carbon nanotubes (MWCNTs) synthesized by catalysis. CNTs synthesized using acetylene as reactant gas show much less graphitization than those prepared using ethanol by comparing the results of HRTEM and Raman spectroscopy. The etching effects of decomposed OH radicals on the amorphous carbon and the roughness of AAO nano-channel arrays on the CNTs growth were employed to explain the graphitization and growth of the CNTs.

  14. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis.

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N

    2012-12-30

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L(-1) in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe(15)Cr(5)(OH)(60) precipitate. PMID:23284182

  15. Electrodeposited porous metal oxide films with interconnected nanoparticles applied as anode of lithium ion battery

    International Nuclear Information System (INIS)

    Highlights: • Highly porous NiO film is prepared by a co-electrodeposition method. • Porous NiO film is composed of interconnected nanoparticles. • Porous structure is favorable for fast ion/electron transfer. • Porous NiO film shows good lithium ion storage properties. - Abstract: Controllable synthesis of porous metal oxide films is highly desirable for high-performance electrochemical devices. In this work, a highly porous NiO film composed of interconnected nanoparticles is prepared by a simple co-electrodeposition method. The nanoparticles in the NiO film have a size ranging from 30 to 100 nm and construct large-quantity pores of 20–120 nm. As an anode material for lithium ion batteries, the highly porous NiO film electrode delivers a high discharge capacity of 700 mA h g−1 at 0.2 C, as well as good high-rate performance. After 100 cycles at 0.2 C, a specific capacitance of 517 mA h g−1 is attained. The good electrochemical performance is attributed to the interconnected porous structure, which facilitates the diffusion of ion and electron, and provides large reaction surface area leading to improved performance

  16. Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template

    Indian Academy of Sciences (India)

    Jaya Sarkar; Gobinda Gopal Khan; A Basumallick

    2007-06-01

    Quasi one-dimensional nanowires possess unique electrical, electronic, thermoelectrical, optical, magnetic and chemical properties, which are different from that of their parent counterpart. The physical properties of nanowires are influenced by the morphology of the nanowires, diameter dependent band gap, carrier density of states etc. Nanowires hold lot of promises for different applications. Basic electronic devices like junction diodes, transistors, FETs and logic gates can be fabricated by using semiconductor and superlattice nanowires. Thermoelectric cooling system can be fabricated by using metallic nanowires. Semiconductor nanowire junctions can be used for different opto-electronic applications. Moreover, periodic arrays of magnetic nanowires hold high potential for recording media application. Nanowires are also potential candidates for sensor and bio-medical applications. In the present article, the physical and chemical properties of nanowires along with their probable applications in different fields have been reviewed in detail. The review also includes highlights of the synthesis of nanowires via porous anodic aluminium oxide template since the technique is simple, cost-effective and a low temperature technique.

  17. Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals.

    Science.gov (United States)

    Wang, He; Yin, Ze; Xu, Wen; Zhou, Donglei; Cui, Shaobo; Chen, Xu; Cui, Haining; Song, Hongwei

    2016-05-21

    Lanthanide-doped upconversion nanoparticles (UCNPs) are attracting extensive attention due to their unique physical properties and great application potential. However, the lower luminescence quantum yield/strength is still an obstacle for real application. Local field modulation is a promising method to highly enhance the upconversion luminescence (UCL) of the UCNPs. In this work, a novel kind of two-dimensional photonic crystal (2D-PC), anodic aluminum oxides (AAOs), was explored to improve the UCL of NaYF4:Yb(3+),Er(3+) nanoplates (NPs). An optimum enhancement factor (EF) of 65-fold was obtained for the overall intensity of Er(3+) under 980 nm excitation, and 130-fold for the red emission. Systematic studies indicate that UCL enhancement mainly originates from the enlargement of the excitation field by scattering and reflection of AAO PCs. It should also be highlighted that the modulation of 2D-PC on the UCL of NaYF4:Yb(3+),Er(3+) NPs demonstrates weak size-dependent and thickness-dependent behavior, which is well consistent with the stimulated electromagnetic field distribution by the finite difference time domain (FDTD) method. PMID:27139324

  18. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells

    Science.gov (United States)

    Dang, Hongmei; Singh, Vijay

    2015-05-01

    Three nanowire solar cell device configurations have been fabricated to demonstrate the effects of the host anodized aluminum oxide (AAO) membrane on device performance. The three configurations show similar transmittance spectra, indicating that AAO membrane has negligible optical absorption. Power conversion efficiency (PCE) of the device is studied as a function of the carrier transport and collection in cell structures with and without AAO membrane. Free standing nanowire solar cells exhibit PCE of 9.9%. Through inclusion of AAO in solar cell structure, interface defects and traps caused by humidity and oxygen are reduced, and direct contact of CdTe tentacles with SnO2 and formation of micro shunt shorts are prevented; hence PCE is improved to 11.1%-11.3%. Partially embedded nanowire solar cells further reduce influence of non-ideal and non-uniform nanowire growth and generate a large amount of carriers in axial direction and also a small quantity of carriers in lateral direction, thus becoming a promising solar cell structure. Thus, including AAO membrane in solar cell structure provides favorable electro-optical properties as well as mechanical advantages.

  19. Surface decoration of anodic aluminium oxide in synthesis of Nafion (registered) -115 nanowire arrays

    International Nuclear Information System (INIS)

    An extrusion method, using anodic aluminium oxide (AAO) membranes as templates, has been developed to fabricate Nafion[reg] -115 nanowire arrays. Surface decoration of the templates plays an important role in the synthesis of the Nafion[reg] -115 nanowire arrays. By using sodium dodecyl sulfate (SDS) as a surfactant in the surface decoration, the filling rate of the Nafion[reg] -115 nanowires in the corresponding template exceeds 95%, compared with the filling rate of 42% in an undecorated template, while on using cetyltrimethylammonium bromide (CTAB) as a surfactant, the filling rate is only about 20%. Systematical investigations show that the effect of surface decoration is induced by the combination of surface tension and electrostatic force (radial component), of which the radial component of the electrostatic force is more important. This effect is significant in organic nanowire fabrication; furthermore, the as-synthesized organic nanowires would have potential application such as in organic electronics, optoelectronic devices, and nanoscale proton exchange membrane fuel cells

  20. Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    The electrochemical oxidation of textile effluents over a boron-doped diamond anode was investigated in the present study. Experiments were conducted with a multi-component synthetic solution containing seventeen dyes and other auxiliary inorganics, as well as an actual effluent from a textile dyeing process. The effect of varying operating parameters, such as current density (4–50 mA/cm2), electrolyte concentration (0.1–0.5 M HClO4), initial solution pH (1–12.3) and temperature (22–43 °C), on process efficiency was investigated following changes in total organic carbon (TOC), chemical oxygen demand (COD) and color. Complete decolorization accompanied by significant mineralization (up to 85% depending on the conditions) could be achieved after 180 min of treatment. Performance was improved at higher electrolyte concentrations and lower pH values, while the effect of temperature was marginal. Energy consumption per unit mass of COD removed was favored at lower current densities, since energy was unnecessarily wasted to side reactions at higher densities.

  1. Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response

    Science.gov (United States)

    Poinern, Gérrard Eddy Jai; Shackleton, Robert; Mamun, Shariful Islam; Fawcett, Derek

    2011-01-01

    Tissue engineering is a multidisciplinary field that can directly benefit from the many advancements in nanotechnology and nanoscience. This article reviews a novel biocompatible anodic aluminum oxide (AAO, alumina) membrane in terms of tissue engineering. Cells respond and interact with their natural environment, the extracellular matrix, and the landscape of the substrate. The interaction with the topographical features of the landscape occurs both in the micrometer and nanoscales. If all these parameters are favorable to the cell, the cell will respond in terms of adhesion, proliferation, and migration. The role of the substrate/scaffold is crucial in soliciting a favorable response from the cell. The size and type of surface feature can directly influence the response and behavior of the cell. In the case of using an AAO membrane, the surface features and porosity of the membrane can be dictated at the nanoscale during the manufacturing stage. This is achieved by using general laboratory equipment to perform a relatively straightforward electrochemical process. During this technique, changing the operational parameters of the process directly controls the nanoscale features produced. For example, the pore size, pore density, and, hence, density can be effectively controlled during the synthesis of the AAO membrane. In addition, being able to control the pore size and porosity of a biomaterial such as AAO significantly broadens its application in tissue engineering. PMID:24198483

  2. Effects of thermal treatment on the anodic growth of tungsten oxide films

    International Nuclear Information System (INIS)

    This work reports the investigation of the effects of thermal treatment on anodic growth tungsten oxide (WO3). The increase of the thermal treatment temperature above 400 °C significantly influences WO3 film where high porosity structure reduces to more compact film. As-grown film is amorphous, which transforms to monoclinic/orthorhombic phase upon annealing at 300–600 °C. With the reducing of porous structure, preferential growth of (002) plane shifts to (020) plane at 600 °C with more than twentyfold increase of peak's intensity compared to the film annealed at 500 °C. Films annealed at low thermal treatment show better ion intercalation and reversibility during electrochemical measurements; however, it has larger optical band gap. Photoelectrochemical measurement reveals that film annealed at 400 °C exhibits the best photocatalytic performance among the films annealed at 300–600 °C. - Highlights: • Porosity of the WO3 reduces as annealing temperature increases above 400 °C. • As-grown film is amorphous which transforms to monoclinic/orthorhombic upon annealing. • As-grown film shows better ion intercalation in electrochemical process. • Optical band gap of WO3 reduces as the annealing temperature increases. • Film annealed at 400 °C exhibits best photocatalytic performance

  3. Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    A novel method of mechanical exfoliation followed by hydrothermal approach was proposed to synthesize the tin oxide/graphene aerogels (SnO2/GAs) nanocomposites. Homogeneous distribution of SnO2 nanocrystals on GAs was confirmed by SEM, XRD and TEM characterization. It was found that optimized exfoliation of the SnS2 is the key factor to obtain high electrochemical lithiation/delithiation performance of the anodes. The as-prepared SnO2/GA nanocomposites exhibited high reversible capacity (up to 1086.7 mAh g−1 after 100 cycles) and excellent cycling stability. The improved rate capability was also obtained, for instance, the reversible capacity at a current density of 800 mA g−1 is over 447.9 mAh g−1, and then recovered to as high as 784.4 mAh g−1 at a current density of 100 mA g−1. - Highlights: • A novel approach was employed to synthesize the SnO2/GA nanocomposites. • The designed SnO2/GAs exhibited high reversible capacity and excellent cycling stability. • The volume change challenge of SnO2 was markedly alleviated by the GA matrix. • The novel synthesis method can be extended for other materials in lithium ion batteries

  4. Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheyu [College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000 (China); Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Xifei, E-mail: xfli2011@hotmail.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Tai, Limin, E-mail: tailimin@163.com [College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000 (China); Song, Haoze; Zhang, Yiyan; Yan, Bo; Fan, Linlin; Shan, Hui [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Li, Dejun, E-mail: dli1961@126.com [Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China)

    2015-10-15

    A novel method of mechanical exfoliation followed by hydrothermal approach was proposed to synthesize the tin oxide/graphene aerogels (SnO{sub 2}/GAs) nanocomposites. Homogeneous distribution of SnO{sub 2} nanocrystals on GAs was confirmed by SEM, XRD and TEM characterization. It was found that optimized exfoliation of the SnS{sub 2} is the key factor to obtain high electrochemical lithiation/delithiation performance of the anodes. The as-prepared SnO{sub 2}/GA nanocomposites exhibited high reversible capacity (up to 1086.7 mAh g{sup −1} after 100 cycles) and excellent cycling stability. The improved rate capability was also obtained, for instance, the reversible capacity at a current density of 800 mA g{sup −1} is over 447.9 mAh g{sup −1}, and then recovered to as high as 784.4 mAh g{sup −1} at a current density of 100 mA g{sup −1}. - Highlights: • A novel approach was employed to synthesize the SnO{sub 2}/GA nanocomposites. • The designed SnO{sub 2}/GAs exhibited high reversible capacity and excellent cycling stability. • The volume change challenge of SnO{sub 2} was markedly alleviated by the GA matrix. • The novel synthesis method can be extended for other materials in lithium ion batteries.

  5. Electrodeposited porous metal oxide films with interconnected nanoparticles applied as anode of lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2014-12-15

    Highlights: • Highly porous NiO film is prepared by a co-electrodeposition method. • Porous NiO film is composed of interconnected nanoparticles. • Porous structure is favorable for fast ion/electron transfer. • Porous NiO film shows good lithium ion storage properties. - Abstract: Controllable synthesis of porous metal oxide films is highly desirable for high-performance electrochemical devices. In this work, a highly porous NiO film composed of interconnected nanoparticles is prepared by a simple co-electrodeposition method. The nanoparticles in the NiO film have a size ranging from 30 to 100 nm and construct large-quantity pores of 20–120 nm. As an anode material for lithium ion batteries, the highly porous NiO film electrode delivers a high discharge capacity of 700 mA h g{sup −1} at 0.2 C, as well as good high-rate performance. After 100 cycles at 0.2 C, a specific capacitance of 517 mA h g{sup −1} is attained. The good electrochemical performance is attributed to the interconnected porous structure, which facilitates the diffusion of ion and electron, and provides large reaction surface area leading to improved performance.

  6. Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode

    OpenAIRE

    Wang, YH; Cheng, S.; Chan, KY

    2006-01-01

    The generation of ozone from air using an electrochemical cell consisting of an air cathode, a polymer-electrolyte-membrane (PEM), and a doped tin oxide anode is reported. This synthesis is environmentally friendly compared to the conventional high-voltage corona discharge process since NOx formation is eliminated; a higher ozone concentration is generated; and lower energy may be required. © The Royal Society of Chemistry 2006.

  7. Large-area sub-micron structured surfaces using micro injection moulding templates of nanoporous anodized Aluminum Oxide

    OpenAIRE

    Zhang, Nan; Harrison, S.; Meagher, P.; et al.

    2012-01-01

    This study demonstrates a mass production method using nanoporous Anodized Aluminum Oxide (AAO) templates as mould insert tools that are used to structure large area polymer surfaces by a micro injection moulding process. SEM and water contact angle measurements served to evaluate the effect of nanostructures on surface properties. Human umbilical vein endothelial cells were cultured on nano-structured and ultra-smooth surfaces of polymer parts. Experimental results indicated that...

  8. A spiraled niobium tin superconductive ribbon

    Science.gov (United States)

    Coles, W. D.

    1973-01-01

    Copper film is vapor-deposited on clean ribbon and sprayed with photosensitive etch-resistant material. Photographic film masks are placed on ribbon and exposed to ultraviolet light. Etchant removes copper and exposure to oxidizing atmosphere forms niobium oxide. Photosensitive material is removed and ribbon is immersed in molten temperatures.

  9. A planar anode-supported Solid Oxide Fuel Cell model with internal reforming of natural gas

    Science.gov (United States)

    Chinda, P.; Chanchaona, S.; Brault, P.; Wechsatol, W.

    2011-05-01

    Solid Oxide Fuel Cells (SOFCs) are of great interest due to their high energy efficiency, low emission level, and multiple fuel utilization. SOFC can operate with various kinds of fuels such as natural gas, carbon monoxide, methanol, ethanol, and hydrocarbon compounds, and they are becoming one of the main competitors among environmentally friendly energy sources for the future. In this study, a mathematical model of a co-flow planar anode-supported solid oxide fuel cell with internal reforming of natural gas has been developed. The model simultaneously solves mass, energy transport equations, and chemical as well as electrochemical reactions. The model can effectively predict the compound species distributions as well as the cell performance under specific operating conditions. The main result is a rather small temperature gradient obtained at 800 °C with S/C = 1 in classical operating conditions. The cell performance is reported for several operating temperatures and pressures. The cell performance is specified in terms of cell voltage and power density at any specific current density. The influence of electrode microstructure on cell performance was investigated. The simulation results show that the steady state performance is almost insensitive to microstructure of cells such as porosity and tortuosity unlike the operating pressure and temperature. However, for SOFC power output enhancement, the power output could be maximized by adjusting the pore size to an optimal value, similarly to porosity and tortuosity. At standard operating pressure (1 atm) and 800 °C with 48% fuel utilization, when an output cell voltage was 0.73 V, a current density of 0.38 A cm-2 with a power density of 0.28 W cm-2 was predicted. The accuracy of the model was validated by comparing with existing experimental results from the available literature.

  10. Electrodeposition, Characterization, and Corrosion Stability of Nanostructured Anodic Oxides on New Ti-15Zr-5Nb Alloy Surface

    Directory of Open Access Journals (Sweden)

    Jose M. Calderon Moreno

    2013-01-01

    Full Text Available A new Ti-15Zr-5Nb alloy with suitable microstructure and mechanical properties was processed by galvanostatic anodization in 0.3 M H3PO4 solution and a continuous nanostructured layer of protective TiO2 oxide was electrodeposited. The obtained anatase oxide layer has a nanotubes-like porosity (SEM observations and contains significant amount of phosphorus in phosphotitanate compound embedded in the oxide lattice (Raman, FT-IR, SEM, and EDX analysis. This layer composition can stimulate the formation of the bone and its porosity can offer a good scaffold for bone cell adhesion. The electrochemical behaviour, corrosion stability, and variations of the open circuit potentials, Eoc, and corresponding open circuit potential gradients, ΔEoc, for 1500 soaking hours in Ringer solutions of 3.21, 7.58, and 8.91 pH values were studied. The anodized layer was more resistant, stable (from EIS spectra, and was formed from an inner barrier insulating layer that assures the very good alloy corrosion resistance and an outer porous layer that provides the good conditions for cell development. The nanostructured alloy has higher corrosion stability, namely, a more reduced quantity of ions released and a lower toxicity than that of the bare one. The monitoring of Eoc and ΔEoc showed the enhancement and stabilizing of the long-term passive state of the anodized alloy and, respectively, no possibility at galvanic corrosion.

  11. Influence of precipitating agent in the preparation of hydrous niobium oxide by the method of homogeneous precipitation; Influencia do agente precipitante na preparacao do oxido de niobio (V) hidratado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo Virginio; Silva, Maria Lcia C.P. da; Silva, Gilberto L.J.P. da [Faculdade de Engenharia Quimica de Lorena, SP (Brazil). Dept. de Engenharia Quimica]. E-mail: mlcaetano@dequi.faenquil.br

    2005-04-01

    This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG), surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m{sup 2} g{sup -1}. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties. (author)

  12. Cadmium, lead and silver adsorption in hydrous niobium oxide(V) prepared by precipitation in homogeneous solution method; Adsorcao de chumbo, cadmio e prata em oxido de niobio(V) hidratado preparado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo V.; Pereira, Paulo Henrique F.; Rodrigues, Liana Alvares; Silva, Maria Lucia Caetano Pinto da, E-mail: fernandes_eng@yahoo.com.b [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica

    2011-07-01

    This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q{sub 0}) for Pb{sup 2+}, Ag{sup +} and Cd{sup 2+} was found to be 452.5, 188.68 and 8.85 mg g{sup -1}, respectively. (author)

  13. Dielectric properties and X-ray photoelectron spectroscopic studies of niobium oxide thin films prepared by direct liquid injection chemical vapor deposition method

    International Nuclear Information System (INIS)

    Niobium oxide thin films were grown by direct liquid injection chemical vapor deposition using Nb(OC2H5)5 precursor. Influence of reactant's molar ratios [oxygen:Nb(OC2H5)5] and deposition temperatures on films properties such as growth rate, stoichiometry, crystal structure, morphology, dielectric constant and leakage current were studied. Films start crystallizing above 340 °C in O2 atmosphere and become crystalline at 400 °C. The surface roughness of weakly crystalline and crystalline films was significantly affected by deposition temperatures and reactant's molar ratios. It was found that decrease in surface roughness improved leakage current. X-ray photoelectron spectroscopic studies showed that films were in different oxidation states (Nb2+, Nb4+ and Nb5+). The dielectric constants of films were improved by increasing oxygen ratios. At ratio (150:1), the film showed high dielectric constant value (47) at 340 °C and leakage current density of 2.0 × 10−5 A/cm2 (at 3 V). - Highlights: • High dielectric constant (47) of Nb2O5 thin film with chemical vapor deposition • The change in morphology as a function of growth temperature and O2 molar ratio • A stoichiometric Nb2O5 phase and smooth surface show better electrical properties

  14. Effect of the stoichiometry of niobium oxide on the resistive switching of Nb{sub 2}O{sub 5} based metal–insulator–metal stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, F., E-mail: florian.hanzig@ww.tu-freiberg.de [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Mähne, H. [NaMLab gGmbH, 01187 Dresden (Germany); Veselý, J. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Faculty of Mathematics and Physics, Charles University Prague, 121 16 Prague (Czech Republic); Wylezich, H.; Slesazeck, S. [NaMLab gGmbH, 01187 Dresden (Germany); Leuteritz, A. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Zschornak, M. [Institute of Experimental Physics, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Motylenko, M.; Klemm, V. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Mikolajick, T. [NaMLab gGmbH, 01187 Dresden (Germany); Nanoelectronic Materials, TU Dresden, 01187 Dresden (Germany); Rafaja, D. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany)

    2015-07-15

    Highlights: • In Pt/Nb{sub 2}O{sub 5}/Al, oxygen from Nb{sub 2}O{sub 5} diffused towards Al and formed aluminum oxide. • Diffusion-induced under-stoichiometry of Nb{sub 2}O{sub 5} facilitated bipolar resistive switching. • In Pt/Nb{sub 2}O{sub 5}/Pt, no oxygen diffusion was observed; Nb{sub 2}O{sub 5} remained stoichiometric. - Abstract: The oxygen concentration profiles, which develop at the interfaces between niobium pentoxide and the Al or Pt electrode in a metal–insulator–metal stack, were investigated by means of the X-ray and electron energy loss spectroscopies in a scanning transmission electron microscope with high resolution. The contact between Al and Nb{sub 2}O{sub 5} was found to facilitate diffusion of oxygen from Nb{sub 2}O{sub 5} to the Al electrode and to support the formation of a thin aluminum oxide layer at the Nb{sub 2}O{sub 5}/Al interface. In contrast, almost no diffusion of oxygen from Nb{sub 2}O{sub 5} was observed at the Nb{sub 2}O{sub 5}/Pt interface. Different extent of the oxygen diffusion correlates with the observed differences in the resistive switching of the Pt/Nb{sub 2}O{sub 5}/Al and Pt/Nb{sub 2}O{sub 5}/Pt stacks.

  15. Effect of the stoichiometry of niobium oxide on the resistive switching of Nb2O5 based metal–insulator–metal stacks

    International Nuclear Information System (INIS)

    Highlights: • In Pt/Nb2O5/Al, oxygen from Nb2O5 diffused towards Al and formed aluminum oxide. • Diffusion-induced under-stoichiometry of Nb2O5 facilitated bipolar resistive switching. • In Pt/Nb2O5/Pt, no oxygen diffusion was observed; Nb2O5 remained stoichiometric. - Abstract: The oxygen concentration profiles, which develop at the interfaces between niobium pentoxide and the Al or Pt electrode in a metal–insulator–metal stack, were investigated by means of the X-ray and electron energy loss spectroscopies in a scanning transmission electron microscope with high resolution. The contact between Al and Nb2O5 was found to facilitate diffusion of oxygen from Nb2O5 to the Al electrode and to support the formation of a thin aluminum oxide layer at the Nb2O5/Al interface. In contrast, almost no diffusion of oxygen from Nb2O5 was observed at the Nb2O5/Pt interface. Different extent of the oxygen diffusion correlates with the observed differences in the resistive switching of the Pt/Nb2O5/Al and Pt/Nb2O5/Pt stacks

  16. Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

    2009-01-07

    A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

  17. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Liangliang; ZHENG Tao; HU Zhimin; LUO Linghong; WU Yefan; XU Xu; CHENG Liang; SHI Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3stabilized zirconia (Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells (DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuCl3solvent at pH=4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98MnO3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy,energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 mW/cmat 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  18. Energy level alignment of electrically doped hole transport layers with transparent and conductive indium tin oxide and polymer anodes

    Science.gov (United States)

    Fehse, Karsten; Olthof, Selina; Walzer, Karsten; Leo, Karl; Johnson, Robert L.; Glowatzki, Hendrik; Bröker, Benjamin; Koch, Norbert

    2007-10-01

    Using ultraviolet photoemission spectroscopy, we investigated the energy level alignment at the interfaces of typical anodes used in organic electronics, indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), with the oligomeric hole transport material N ,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD), and studied the influence of electrical interface doping by the strong electron acceptor tetrafluoro tetracyanoquinodimethane (F4-TCNQ). The fundamentally different anode materials with work functions of 4.40eV (ITO) and 4.85eV (PEDOT:PSS) show different hole injection barriers, which also depend on the thickness of the F4-TCNQ interface dopant layer. PEDOT:PSS anodes exhibit a consistently lower hole injection barrier to MeO-TPD compared to ITO by 0.1eV. We attribute this low hole injection barrier to additional charge transfer reactions at the PEDOT:PSS/MeO-TPD interface. In contrast, the deposition of the electron acceptor at the interface helps significantly to lower the hole injection barrier for ITO anodes.

  19. Niobium in rail steels

    International Nuclear Information System (INIS)

    The strengthening capacity of niobium in high carbon steels is governed by the carbon content, soaking conditions prior to rolling and the finish rolling temperature. Yield and tensile strengths may be increased by up to 70-100 MPa (10-15 k.s.i.) in C-Mn-Cr rails with niobium additions of about 0.03 percent. The strengthening mechanism appears to be precipitation hardening of niobium carbonitride in the pro-eutectoid ferrite and ferrite lamellae in pearlite. In addition, ductility improvements may be effected through the austenite grain refining action of niobium in hot rolling leading to a reduction in pearlite colony size

  20. Application of wet powder spraying for anode supported solid oxide fuel cell with a perovskite SrTi{sub 0.98}Nb{sub 0.02}O{sub 3-{delta}} anode

    Energy Technology Data Exchange (ETDEWEB)

    Gdaniec, Pawel; Karczewski, Jakub; Bochentyn, Beata; Gazda, Maria; Kusz, Boguslaw [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, 80-233 (Poland); Molin, Sebastian; Jasinski, Piotr [Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, 80-233 (Poland); Krupa, Andrzej [Institute of Fluid Flow Machinery, Polish Academy of Sciences, ul. Fiszera 14, Gdansk, 80-231 (Poland)

    2013-12-15

    Anode-supported solid oxide fuel cell with SrTi{sub 0.98}Nb{sub 0.02}O{sub 3-{delta}}anode, yttria-stabilized zirconia electrolyte and La(Ni{sub 0.6}Fe{sub 0.4})O{sub 3{+-}{delta}} cathode has been successfully fabricated and evaluated. Process of anode support fabrication has been presented. Wet powder spraying and high temperature sintering method have been studied and applied to deposit the thin electrolyte layer.In order to improve catalytic properties of the anode, it has been impregnated with Ni. Electrical properties of fuel cells have been measured to determine their performance. The open cell voltage of 1.08 V and maximum power density at the level of 160 mWcm {sup -2} were observed at 800 C. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)